1 /* Common subexpression elimination for GNU compiler.
2    Copyright (C) 1987-2016 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "cfghooks.h"
28 #include "df.h"
29 #include "tm_p.h"
30 #include "insn-config.h"
31 #include "regs.h"
32 #include "emit-rtl.h"
33 #include "recog.h"
34 #include "cfgrtl.h"
35 #include "cfganal.h"
36 #include "cfgcleanup.h"
37 #include "alias.h"
38 #include "toplev.h"
39 #include "params.h"
40 #include "rtlhooks-def.h"
41 #include "tree-pass.h"
42 #include "dbgcnt.h"
43 #include "rtl-iter.h"
44 
45 #ifndef LOAD_EXTEND_OP
46 #define LOAD_EXTEND_OP(M) UNKNOWN
47 #endif
48 
49 /* The basic idea of common subexpression elimination is to go
50    through the code, keeping a record of expressions that would
51    have the same value at the current scan point, and replacing
52    expressions encountered with the cheapest equivalent expression.
53 
54    It is too complicated to keep track of the different possibilities
55    when control paths merge in this code; so, at each label, we forget all
56    that is known and start fresh.  This can be described as processing each
57    extended basic block separately.  We have a separate pass to perform
58    global CSE.
59 
60    Note CSE can turn a conditional or computed jump into a nop or
61    an unconditional jump.  When this occurs we arrange to run the jump
62    optimizer after CSE to delete the unreachable code.
63 
64    We use two data structures to record the equivalent expressions:
65    a hash table for most expressions, and a vector of "quantity
66    numbers" to record equivalent (pseudo) registers.
67 
68    The use of the special data structure for registers is desirable
69    because it is faster.  It is possible because registers references
70    contain a fairly small number, the register number, taken from
71    a contiguously allocated series, and two register references are
72    identical if they have the same number.  General expressions
73    do not have any such thing, so the only way to retrieve the
74    information recorded on an expression other than a register
75    is to keep it in a hash table.
76 
77 Registers and "quantity numbers":
78 
79    At the start of each basic block, all of the (hardware and pseudo)
80    registers used in the function are given distinct quantity
81    numbers to indicate their contents.  During scan, when the code
82    copies one register into another, we copy the quantity number.
83    When a register is loaded in any other way, we allocate a new
84    quantity number to describe the value generated by this operation.
85    `REG_QTY (N)' records what quantity register N is currently thought
86    of as containing.
87 
88    All real quantity numbers are greater than or equal to zero.
89    If register N has not been assigned a quantity, `REG_QTY (N)' will
90    equal -N - 1, which is always negative.
91 
92    Quantity numbers below zero do not exist and none of the `qty_table'
93    entries should be referenced with a negative index.
94 
95    We also maintain a bidirectional chain of registers for each
96    quantity number.  The `qty_table` members `first_reg' and `last_reg',
97    and `reg_eqv_table' members `next' and `prev' hold these chains.
98 
99    The first register in a chain is the one whose lifespan is least local.
100    Among equals, it is the one that was seen first.
101    We replace any equivalent register with that one.
102 
103    If two registers have the same quantity number, it must be true that
104    REG expressions with qty_table `mode' must be in the hash table for both
105    registers and must be in the same class.
106 
107    The converse is not true.  Since hard registers may be referenced in
108    any mode, two REG expressions might be equivalent in the hash table
109    but not have the same quantity number if the quantity number of one
110    of the registers is not the same mode as those expressions.
111 
112 Constants and quantity numbers
113 
114    When a quantity has a known constant value, that value is stored
115    in the appropriate qty_table `const_rtx'.  This is in addition to
116    putting the constant in the hash table as is usual for non-regs.
117 
118    Whether a reg or a constant is preferred is determined by the configuration
119    macro CONST_COSTS and will often depend on the constant value.  In any
120    event, expressions containing constants can be simplified, by fold_rtx.
121 
122    When a quantity has a known nearly constant value (such as an address
123    of a stack slot), that value is stored in the appropriate qty_table
124    `const_rtx'.
125 
126    Integer constants don't have a machine mode.  However, cse
127    determines the intended machine mode from the destination
128    of the instruction that moves the constant.  The machine mode
129    is recorded in the hash table along with the actual RTL
130    constant expression so that different modes are kept separate.
131 
132 Other expressions:
133 
134    To record known equivalences among expressions in general
135    we use a hash table called `table'.  It has a fixed number of buckets
136    that contain chains of `struct table_elt' elements for expressions.
137    These chains connect the elements whose expressions have the same
138    hash codes.
139 
140    Other chains through the same elements connect the elements which
141    currently have equivalent values.
142 
143    Register references in an expression are canonicalized before hashing
144    the expression.  This is done using `reg_qty' and qty_table `first_reg'.
145    The hash code of a register reference is computed using the quantity
146    number, not the register number.
147 
148    When the value of an expression changes, it is necessary to remove from the
149    hash table not just that expression but all expressions whose values
150    could be different as a result.
151 
152      1. If the value changing is in memory, except in special cases
153      ANYTHING referring to memory could be changed.  That is because
154      nobody knows where a pointer does not point.
155      The function `invalidate_memory' removes what is necessary.
156 
157      The special cases are when the address is constant or is
158      a constant plus a fixed register such as the frame pointer
159      or a static chain pointer.  When such addresses are stored in,
160      we can tell exactly which other such addresses must be invalidated
161      due to overlap.  `invalidate' does this.
162      All expressions that refer to non-constant
163      memory addresses are also invalidated.  `invalidate_memory' does this.
164 
165      2. If the value changing is a register, all expressions
166      containing references to that register, and only those,
167      must be removed.
168 
169    Because searching the entire hash table for expressions that contain
170    a register is very slow, we try to figure out when it isn't necessary.
171    Precisely, this is necessary only when expressions have been
172    entered in the hash table using this register, and then the value has
173    changed, and then another expression wants to be added to refer to
174    the register's new value.  This sequence of circumstances is rare
175    within any one basic block.
176 
177    `REG_TICK' and `REG_IN_TABLE', accessors for members of
178    cse_reg_info, are used to detect this case.  REG_TICK (i) is
179    incremented whenever a value is stored in register i.
180    REG_IN_TABLE (i) holds -1 if no references to register i have been
181    entered in the table; otherwise, it contains the value REG_TICK (i)
182    had when the references were entered.  If we want to enter a
183    reference and REG_IN_TABLE (i) != REG_TICK (i), we must scan and
184    remove old references.  Until we want to enter a new entry, the
185    mere fact that the two vectors don't match makes the entries be
186    ignored if anyone tries to match them.
187 
188    Registers themselves are entered in the hash table as well as in
189    the equivalent-register chains.  However, `REG_TICK' and
190    `REG_IN_TABLE' do not apply to expressions which are simple
191    register references.  These expressions are removed from the table
192    immediately when they become invalid, and this can be done even if
193    we do not immediately search for all the expressions that refer to
194    the register.
195 
196    A CLOBBER rtx in an instruction invalidates its operand for further
197    reuse.  A CLOBBER or SET rtx whose operand is a MEM:BLK
198    invalidates everything that resides in memory.
199 
200 Related expressions:
201 
202    Constant expressions that differ only by an additive integer
203    are called related.  When a constant expression is put in
204    the table, the related expression with no constant term
205    is also entered.  These are made to point at each other
206    so that it is possible to find out if there exists any
207    register equivalent to an expression related to a given expression.  */
208 
209 /* Length of qty_table vector.  We know in advance we will not need
210    a quantity number this big.  */
211 
212 static int max_qty;
213 
214 /* Next quantity number to be allocated.
215    This is 1 + the largest number needed so far.  */
216 
217 static int next_qty;
218 
219 /* Per-qty information tracking.
220 
221    `first_reg' and `last_reg' track the head and tail of the
222    chain of registers which currently contain this quantity.
223 
224    `mode' contains the machine mode of this quantity.
225 
226    `const_rtx' holds the rtx of the constant value of this
227    quantity, if known.  A summations of the frame/arg pointer
228    and a constant can also be entered here.  When this holds
229    a known value, `const_insn' is the insn which stored the
230    constant value.
231 
232    `comparison_{code,const,qty}' are used to track when a
233    comparison between a quantity and some constant or register has
234    been passed.  In such a case, we know the results of the comparison
235    in case we see it again.  These members record a comparison that
236    is known to be true.  `comparison_code' holds the rtx code of such
237    a comparison, else it is set to UNKNOWN and the other two
238    comparison members are undefined.  `comparison_const' holds
239    the constant being compared against, or zero if the comparison
240    is not against a constant.  `comparison_qty' holds the quantity
241    being compared against when the result is known.  If the comparison
242    is not with a register, `comparison_qty' is -1.  */
243 
244 struct qty_table_elem
245 {
246   rtx const_rtx;
247   rtx_insn *const_insn;
248   rtx comparison_const;
249   int comparison_qty;
250   unsigned int first_reg, last_reg;
251   /* The sizes of these fields should match the sizes of the
252      code and mode fields of struct rtx_def (see rtl.h).  */
253   ENUM_BITFIELD(rtx_code) comparison_code : 16;
254   ENUM_BITFIELD(machine_mode) mode : 8;
255 };
256 
257 /* The table of all qtys, indexed by qty number.  */
258 static struct qty_table_elem *qty_table;
259 
260 /* For machines that have a CC0, we do not record its value in the hash
261    table since its use is guaranteed to be the insn immediately following
262    its definition and any other insn is presumed to invalidate it.
263 
264    Instead, we store below the current and last value assigned to CC0.
265    If it should happen to be a constant, it is stored in preference
266    to the actual assigned value.  In case it is a constant, we store
267    the mode in which the constant should be interpreted.  */
268 
269 static rtx this_insn_cc0, prev_insn_cc0;
270 static machine_mode this_insn_cc0_mode, prev_insn_cc0_mode;
271 
272 /* Insn being scanned.  */
273 
274 static rtx_insn *this_insn;
275 static bool optimize_this_for_speed_p;
276 
277 /* Index by register number, gives the number of the next (or
278    previous) register in the chain of registers sharing the same
279    value.
280 
281    Or -1 if this register is at the end of the chain.
282 
283    If REG_QTY (N) == -N - 1, reg_eqv_table[N].next is undefined.  */
284 
285 /* Per-register equivalence chain.  */
286 struct reg_eqv_elem
287 {
288   int next, prev;
289 };
290 
291 /* The table of all register equivalence chains.  */
292 static struct reg_eqv_elem *reg_eqv_table;
293 
294 struct cse_reg_info
295 {
296   /* The timestamp at which this register is initialized.  */
297   unsigned int timestamp;
298 
299   /* The quantity number of the register's current contents.  */
300   int reg_qty;
301 
302   /* The number of times the register has been altered in the current
303      basic block.  */
304   int reg_tick;
305 
306   /* The REG_TICK value at which rtx's containing this register are
307      valid in the hash table.  If this does not equal the current
308      reg_tick value, such expressions existing in the hash table are
309      invalid.  */
310   int reg_in_table;
311 
312   /* The SUBREG that was set when REG_TICK was last incremented.  Set
313      to -1 if the last store was to the whole register, not a subreg.  */
314   unsigned int subreg_ticked;
315 };
316 
317 /* A table of cse_reg_info indexed by register numbers.  */
318 static struct cse_reg_info *cse_reg_info_table;
319 
320 /* The size of the above table.  */
321 static unsigned int cse_reg_info_table_size;
322 
323 /* The index of the first entry that has not been initialized.  */
324 static unsigned int cse_reg_info_table_first_uninitialized;
325 
326 /* The timestamp at the beginning of the current run of
327    cse_extended_basic_block.  We increment this variable at the beginning of
328    the current run of cse_extended_basic_block.  The timestamp field of a
329    cse_reg_info entry matches the value of this variable if and only
330    if the entry has been initialized during the current run of
331    cse_extended_basic_block.  */
332 static unsigned int cse_reg_info_timestamp;
333 
334 /* A HARD_REG_SET containing all the hard registers for which there is
335    currently a REG expression in the hash table.  Note the difference
336    from the above variables, which indicate if the REG is mentioned in some
337    expression in the table.  */
338 
339 static HARD_REG_SET hard_regs_in_table;
340 
341 /* True if CSE has altered the CFG.  */
342 static bool cse_cfg_altered;
343 
344 /* True if CSE has altered conditional jump insns in such a way
345    that jump optimization should be redone.  */
346 static bool cse_jumps_altered;
347 
348 /* True if we put a LABEL_REF into the hash table for an INSN
349    without a REG_LABEL_OPERAND, we have to rerun jump after CSE
350    to put in the note.  */
351 static bool recorded_label_ref;
352 
353 /* canon_hash stores 1 in do_not_record
354    if it notices a reference to CC0, PC, or some other volatile
355    subexpression.  */
356 
357 static int do_not_record;
358 
359 /* canon_hash stores 1 in hash_arg_in_memory
360    if it notices a reference to memory within the expression being hashed.  */
361 
362 static int hash_arg_in_memory;
363 
364 /* The hash table contains buckets which are chains of `struct table_elt's,
365    each recording one expression's information.
366    That expression is in the `exp' field.
367 
368    The canon_exp field contains a canonical (from the point of view of
369    alias analysis) version of the `exp' field.
370 
371    Those elements with the same hash code are chained in both directions
372    through the `next_same_hash' and `prev_same_hash' fields.
373 
374    Each set of expressions with equivalent values
375    are on a two-way chain through the `next_same_value'
376    and `prev_same_value' fields, and all point with
377    the `first_same_value' field at the first element in
378    that chain.  The chain is in order of increasing cost.
379    Each element's cost value is in its `cost' field.
380 
381    The `in_memory' field is nonzero for elements that
382    involve any reference to memory.  These elements are removed
383    whenever a write is done to an unidentified location in memory.
384    To be safe, we assume that a memory address is unidentified unless
385    the address is either a symbol constant or a constant plus
386    the frame pointer or argument pointer.
387 
388    The `related_value' field is used to connect related expressions
389    (that differ by adding an integer).
390    The related expressions are chained in a circular fashion.
391    `related_value' is zero for expressions for which this
392    chain is not useful.
393 
394    The `cost' field stores the cost of this element's expression.
395    The `regcost' field stores the value returned by approx_reg_cost for
396    this element's expression.
397 
398    The `is_const' flag is set if the element is a constant (including
399    a fixed address).
400 
401    The `flag' field is used as a temporary during some search routines.
402 
403    The `mode' field is usually the same as GET_MODE (`exp'), but
404    if `exp' is a CONST_INT and has no machine mode then the `mode'
405    field is the mode it was being used as.  Each constant is
406    recorded separately for each mode it is used with.  */
407 
408 struct table_elt
409 {
410   rtx exp;
411   rtx canon_exp;
412   struct table_elt *next_same_hash;
413   struct table_elt *prev_same_hash;
414   struct table_elt *next_same_value;
415   struct table_elt *prev_same_value;
416   struct table_elt *first_same_value;
417   struct table_elt *related_value;
418   int cost;
419   int regcost;
420   /* The size of this field should match the size
421      of the mode field of struct rtx_def (see rtl.h).  */
422   ENUM_BITFIELD(machine_mode) mode : 8;
423   char in_memory;
424   char is_const;
425   char flag;
426 };
427 
428 /* We don't want a lot of buckets, because we rarely have very many
429    things stored in the hash table, and a lot of buckets slows
430    down a lot of loops that happen frequently.  */
431 #define HASH_SHIFT	5
432 #define HASH_SIZE	(1 << HASH_SHIFT)
433 #define HASH_MASK	(HASH_SIZE - 1)
434 
435 /* Compute hash code of X in mode M.  Special-case case where X is a pseudo
436    register (hard registers may require `do_not_record' to be set).  */
437 
438 #define HASH(X, M)	\
439  ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER	\
440   ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X)))	\
441   : canon_hash (X, M)) & HASH_MASK)
442 
443 /* Like HASH, but without side-effects.  */
444 #define SAFE_HASH(X, M)	\
445  ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER	\
446   ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X)))	\
447   : safe_hash (X, M)) & HASH_MASK)
448 
449 /* Determine whether register number N is considered a fixed register for the
450    purpose of approximating register costs.
451    It is desirable to replace other regs with fixed regs, to reduce need for
452    non-fixed hard regs.
453    A reg wins if it is either the frame pointer or designated as fixed.  */
454 #define FIXED_REGNO_P(N)  \
455   ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
456    || fixed_regs[N] || global_regs[N])
457 
458 /* Compute cost of X, as stored in the `cost' field of a table_elt.  Fixed
459    hard registers and pointers into the frame are the cheapest with a cost
460    of 0.  Next come pseudos with a cost of one and other hard registers with
461    a cost of 2.  Aside from these special cases, call `rtx_cost'.  */
462 
463 #define CHEAP_REGNO(N)							\
464   (REGNO_PTR_FRAME_P (N)						\
465    || (HARD_REGISTER_NUM_P (N)						\
466        && FIXED_REGNO_P (N) && REGNO_REG_CLASS (N) != NO_REGS))
467 
468 #define COST(X, MODE)							\
469   (REG_P (X) ? 0 : notreg_cost (X, MODE, SET, 1))
470 #define COST_IN(X, MODE, OUTER, OPNO)					\
471   (REG_P (X) ? 0 : notreg_cost (X, MODE, OUTER, OPNO))
472 
473 /* Get the number of times this register has been updated in this
474    basic block.  */
475 
476 #define REG_TICK(N) (get_cse_reg_info (N)->reg_tick)
477 
478 /* Get the point at which REG was recorded in the table.  */
479 
480 #define REG_IN_TABLE(N) (get_cse_reg_info (N)->reg_in_table)
481 
482 /* Get the SUBREG set at the last increment to REG_TICK (-1 if not a
483    SUBREG).  */
484 
485 #define SUBREG_TICKED(N) (get_cse_reg_info (N)->subreg_ticked)
486 
487 /* Get the quantity number for REG.  */
488 
489 #define REG_QTY(N) (get_cse_reg_info (N)->reg_qty)
490 
491 /* Determine if the quantity number for register X represents a valid index
492    into the qty_table.  */
493 
494 #define REGNO_QTY_VALID_P(N) (REG_QTY (N) >= 0)
495 
496 /* Compare table_elt X and Y and return true iff X is cheaper than Y.  */
497 
498 #define CHEAPER(X, Y) \
499  (preferable ((X)->cost, (X)->regcost, (Y)->cost, (Y)->regcost) < 0)
500 
501 static struct table_elt *table[HASH_SIZE];
502 
503 /* Chain of `struct table_elt's made so far for this function
504    but currently removed from the table.  */
505 
506 static struct table_elt *free_element_chain;
507 
508 /* Set to the cost of a constant pool reference if one was found for a
509    symbolic constant.  If this was found, it means we should try to
510    convert constants into constant pool entries if they don't fit in
511    the insn.  */
512 
513 static int constant_pool_entries_cost;
514 static int constant_pool_entries_regcost;
515 
516 /* Trace a patch through the CFG.  */
517 
518 struct branch_path
519 {
520   /* The basic block for this path entry.  */
521   basic_block bb;
522 };
523 
524 /* This data describes a block that will be processed by
525    cse_extended_basic_block.  */
526 
527 struct cse_basic_block_data
528 {
529   /* Total number of SETs in block.  */
530   int nsets;
531   /* Size of current branch path, if any.  */
532   int path_size;
533   /* Current path, indicating which basic_blocks will be processed.  */
534   struct branch_path *path;
535 };
536 
537 
538 /* Pointers to the live in/live out bitmaps for the boundaries of the
539    current EBB.  */
540 static bitmap cse_ebb_live_in, cse_ebb_live_out;
541 
542 /* A simple bitmap to track which basic blocks have been visited
543    already as part of an already processed extended basic block.  */
544 static sbitmap cse_visited_basic_blocks;
545 
546 static bool fixed_base_plus_p (rtx x);
547 static int notreg_cost (rtx, machine_mode, enum rtx_code, int);
548 static int preferable (int, int, int, int);
549 static void new_basic_block (void);
550 static void make_new_qty (unsigned int, machine_mode);
551 static void make_regs_eqv (unsigned int, unsigned int);
552 static void delete_reg_equiv (unsigned int);
553 static int mention_regs (rtx);
554 static int insert_regs (rtx, struct table_elt *, int);
555 static void remove_from_table (struct table_elt *, unsigned);
556 static void remove_pseudo_from_table (rtx, unsigned);
557 static struct table_elt *lookup (rtx, unsigned, machine_mode);
558 static struct table_elt *lookup_for_remove (rtx, unsigned, machine_mode);
559 static rtx lookup_as_function (rtx, enum rtx_code);
560 static struct table_elt *insert_with_costs (rtx, struct table_elt *, unsigned,
561 					    machine_mode, int, int);
562 static struct table_elt *insert (rtx, struct table_elt *, unsigned,
563 				 machine_mode);
564 static void merge_equiv_classes (struct table_elt *, struct table_elt *);
565 static void invalidate (rtx, machine_mode);
566 static void remove_invalid_refs (unsigned int);
567 static void remove_invalid_subreg_refs (unsigned int, unsigned int,
568 					machine_mode);
569 static void rehash_using_reg (rtx);
570 static void invalidate_memory (void);
571 static void invalidate_for_call (void);
572 static rtx use_related_value (rtx, struct table_elt *);
573 
574 static inline unsigned canon_hash (rtx, machine_mode);
575 static inline unsigned safe_hash (rtx, machine_mode);
576 static inline unsigned hash_rtx_string (const char *);
577 
578 static rtx canon_reg (rtx, rtx_insn *);
579 static enum rtx_code find_comparison_args (enum rtx_code, rtx *, rtx *,
580 					   machine_mode *,
581 					   machine_mode *);
582 static rtx fold_rtx (rtx, rtx_insn *);
583 static rtx equiv_constant (rtx);
584 static void record_jump_equiv (rtx_insn *, bool);
585 static void record_jump_cond (enum rtx_code, machine_mode, rtx, rtx,
586 			      int);
587 static void cse_insn (rtx_insn *);
588 static void cse_prescan_path (struct cse_basic_block_data *);
589 static void invalidate_from_clobbers (rtx_insn *);
590 static void invalidate_from_sets_and_clobbers (rtx_insn *);
591 static rtx cse_process_notes (rtx, rtx, bool *);
592 static void cse_extended_basic_block (struct cse_basic_block_data *);
593 extern void dump_class (struct table_elt*);
594 static void get_cse_reg_info_1 (unsigned int regno);
595 static struct cse_reg_info * get_cse_reg_info (unsigned int regno);
596 
597 static void flush_hash_table (void);
598 static bool insn_live_p (rtx_insn *, int *);
599 static bool set_live_p (rtx, rtx_insn *, int *);
600 static void cse_change_cc_mode_insn (rtx_insn *, rtx);
601 static void cse_change_cc_mode_insns (rtx_insn *, rtx_insn *, rtx);
602 static machine_mode cse_cc_succs (basic_block, basic_block, rtx, rtx,
603 				       bool);
604 
605 
606 #undef RTL_HOOKS_GEN_LOWPART
607 #define RTL_HOOKS_GEN_LOWPART		gen_lowpart_if_possible
608 
609 static const struct rtl_hooks cse_rtl_hooks = RTL_HOOKS_INITIALIZER;
610 
611 /* Nonzero if X has the form (PLUS frame-pointer integer).  */
612 
613 static bool
fixed_base_plus_p(rtx x)614 fixed_base_plus_p (rtx x)
615 {
616   switch (GET_CODE (x))
617     {
618     case REG:
619       if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx)
620 	return true;
621       if (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
622 	return true;
623       return false;
624 
625     case PLUS:
626       if (!CONST_INT_P (XEXP (x, 1)))
627 	return false;
628       return fixed_base_plus_p (XEXP (x, 0));
629 
630     default:
631       return false;
632     }
633 }
634 
635 /* Dump the expressions in the equivalence class indicated by CLASSP.
636    This function is used only for debugging.  */
637 DEBUG_FUNCTION void
dump_class(struct table_elt * classp)638 dump_class (struct table_elt *classp)
639 {
640   struct table_elt *elt;
641 
642   fprintf (stderr, "Equivalence chain for ");
643   print_rtl (stderr, classp->exp);
644   fprintf (stderr, ": \n");
645 
646   for (elt = classp->first_same_value; elt; elt = elt->next_same_value)
647     {
648       print_rtl (stderr, elt->exp);
649       fprintf (stderr, "\n");
650     }
651 }
652 
653 /* Return an estimate of the cost of the registers used in an rtx.
654    This is mostly the number of different REG expressions in the rtx;
655    however for some exceptions like fixed registers we use a cost of
656    0.  If any other hard register reference occurs, return MAX_COST.  */
657 
658 static int
approx_reg_cost(const_rtx x)659 approx_reg_cost (const_rtx x)
660 {
661   int cost = 0;
662   subrtx_iterator::array_type array;
663   FOR_EACH_SUBRTX (iter, array, x, NONCONST)
664     {
665       const_rtx x = *iter;
666       if (REG_P (x))
667 	{
668 	  unsigned int regno = REGNO (x);
669 	  if (!CHEAP_REGNO (regno))
670 	    {
671 	      if (regno < FIRST_PSEUDO_REGISTER)
672 		{
673 		  if (targetm.small_register_classes_for_mode_p (GET_MODE (x)))
674 		    return MAX_COST;
675 		  cost += 2;
676 		}
677 	      else
678 		cost += 1;
679 	    }
680 	}
681     }
682   return cost;
683 }
684 
685 /* Return a negative value if an rtx A, whose costs are given by COST_A
686    and REGCOST_A, is more desirable than an rtx B.
687    Return a positive value if A is less desirable, or 0 if the two are
688    equally good.  */
689 static int
preferable(int cost_a,int regcost_a,int cost_b,int regcost_b)690 preferable (int cost_a, int regcost_a, int cost_b, int regcost_b)
691 {
692   /* First, get rid of cases involving expressions that are entirely
693      unwanted.  */
694   if (cost_a != cost_b)
695     {
696       if (cost_a == MAX_COST)
697 	return 1;
698       if (cost_b == MAX_COST)
699 	return -1;
700     }
701 
702   /* Avoid extending lifetimes of hardregs.  */
703   if (regcost_a != regcost_b)
704     {
705       if (regcost_a == MAX_COST)
706 	return 1;
707       if (regcost_b == MAX_COST)
708 	return -1;
709     }
710 
711   /* Normal operation costs take precedence.  */
712   if (cost_a != cost_b)
713     return cost_a - cost_b;
714   /* Only if these are identical consider effects on register pressure.  */
715   if (regcost_a != regcost_b)
716     return regcost_a - regcost_b;
717   return 0;
718 }
719 
720 /* Internal function, to compute cost when X is not a register; called
721    from COST macro to keep it simple.  */
722 
723 static int
notreg_cost(rtx x,machine_mode mode,enum rtx_code outer,int opno)724 notreg_cost (rtx x, machine_mode mode, enum rtx_code outer, int opno)
725 {
726   return ((GET_CODE (x) == SUBREG
727 	   && REG_P (SUBREG_REG (x))
728 	   && GET_MODE_CLASS (mode) == MODE_INT
729 	   && GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_INT
730 	   && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))
731 	   && subreg_lowpart_p (x)
732 	   && TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (SUBREG_REG (x))))
733 	  ? 0
734 	  : rtx_cost (x, mode, outer, opno, optimize_this_for_speed_p) * 2);
735 }
736 
737 
738 /* Initialize CSE_REG_INFO_TABLE.  */
739 
740 static void
init_cse_reg_info(unsigned int nregs)741 init_cse_reg_info (unsigned int nregs)
742 {
743   /* Do we need to grow the table?  */
744   if (nregs > cse_reg_info_table_size)
745     {
746       unsigned int new_size;
747 
748       if (cse_reg_info_table_size < 2048)
749 	{
750 	  /* Compute a new size that is a power of 2 and no smaller
751 	     than the large of NREGS and 64.  */
752 	  new_size = (cse_reg_info_table_size
753 		      ? cse_reg_info_table_size : 64);
754 
755 	  while (new_size < nregs)
756 	    new_size *= 2;
757 	}
758       else
759 	{
760 	  /* If we need a big table, allocate just enough to hold
761 	     NREGS registers.  */
762 	  new_size = nregs;
763 	}
764 
765       /* Reallocate the table with NEW_SIZE entries.  */
766       free (cse_reg_info_table);
767       cse_reg_info_table = XNEWVEC (struct cse_reg_info, new_size);
768       cse_reg_info_table_size = new_size;
769       cse_reg_info_table_first_uninitialized = 0;
770     }
771 
772   /* Do we have all of the first NREGS entries initialized?  */
773   if (cse_reg_info_table_first_uninitialized < nregs)
774     {
775       unsigned int old_timestamp = cse_reg_info_timestamp - 1;
776       unsigned int i;
777 
778       /* Put the old timestamp on newly allocated entries so that they
779 	 will all be considered out of date.  We do not touch those
780 	 entries beyond the first NREGS entries to be nice to the
781 	 virtual memory.  */
782       for (i = cse_reg_info_table_first_uninitialized; i < nregs; i++)
783 	cse_reg_info_table[i].timestamp = old_timestamp;
784 
785       cse_reg_info_table_first_uninitialized = nregs;
786     }
787 }
788 
789 /* Given REGNO, initialize the cse_reg_info entry for REGNO.  */
790 
791 static void
get_cse_reg_info_1(unsigned int regno)792 get_cse_reg_info_1 (unsigned int regno)
793 {
794   /* Set TIMESTAMP field to CSE_REG_INFO_TIMESTAMP so that this
795      entry will be considered to have been initialized.  */
796   cse_reg_info_table[regno].timestamp = cse_reg_info_timestamp;
797 
798   /* Initialize the rest of the entry.  */
799   cse_reg_info_table[regno].reg_tick = 1;
800   cse_reg_info_table[regno].reg_in_table = -1;
801   cse_reg_info_table[regno].subreg_ticked = -1;
802   cse_reg_info_table[regno].reg_qty = -regno - 1;
803 }
804 
805 /* Find a cse_reg_info entry for REGNO.  */
806 
807 static inline struct cse_reg_info *
get_cse_reg_info(unsigned int regno)808 get_cse_reg_info (unsigned int regno)
809 {
810   struct cse_reg_info *p = &cse_reg_info_table[regno];
811 
812   /* If this entry has not been initialized, go ahead and initialize
813      it.  */
814   if (p->timestamp != cse_reg_info_timestamp)
815     get_cse_reg_info_1 (regno);
816 
817   return p;
818 }
819 
820 /* Clear the hash table and initialize each register with its own quantity,
821    for a new basic block.  */
822 
823 static void
new_basic_block(void)824 new_basic_block (void)
825 {
826   int i;
827 
828   next_qty = 0;
829 
830   /* Invalidate cse_reg_info_table.  */
831   cse_reg_info_timestamp++;
832 
833   /* Clear out hash table state for this pass.  */
834   CLEAR_HARD_REG_SET (hard_regs_in_table);
835 
836   /* The per-quantity values used to be initialized here, but it is
837      much faster to initialize each as it is made in `make_new_qty'.  */
838 
839   for (i = 0; i < HASH_SIZE; i++)
840     {
841       struct table_elt *first;
842 
843       first = table[i];
844       if (first != NULL)
845 	{
846 	  struct table_elt *last = first;
847 
848 	  table[i] = NULL;
849 
850 	  while (last->next_same_hash != NULL)
851 	    last = last->next_same_hash;
852 
853 	  /* Now relink this hash entire chain into
854 	     the free element list.  */
855 
856 	  last->next_same_hash = free_element_chain;
857 	  free_element_chain = first;
858 	}
859     }
860 
861   prev_insn_cc0 = 0;
862 }
863 
864 /* Say that register REG contains a quantity in mode MODE not in any
865    register before and initialize that quantity.  */
866 
867 static void
make_new_qty(unsigned int reg,machine_mode mode)868 make_new_qty (unsigned int reg, machine_mode mode)
869 {
870   int q;
871   struct qty_table_elem *ent;
872   struct reg_eqv_elem *eqv;
873 
874   gcc_assert (next_qty < max_qty);
875 
876   q = REG_QTY (reg) = next_qty++;
877   ent = &qty_table[q];
878   ent->first_reg = reg;
879   ent->last_reg = reg;
880   ent->mode = mode;
881   ent->const_rtx = ent->const_insn = NULL;
882   ent->comparison_code = UNKNOWN;
883 
884   eqv = &reg_eqv_table[reg];
885   eqv->next = eqv->prev = -1;
886 }
887 
888 /* Make reg NEW equivalent to reg OLD.
889    OLD is not changing; NEW is.  */
890 
891 static void
make_regs_eqv(unsigned int new_reg,unsigned int old_reg)892 make_regs_eqv (unsigned int new_reg, unsigned int old_reg)
893 {
894   unsigned int lastr, firstr;
895   int q = REG_QTY (old_reg);
896   struct qty_table_elem *ent;
897 
898   ent = &qty_table[q];
899 
900   /* Nothing should become eqv until it has a "non-invalid" qty number.  */
901   gcc_assert (REGNO_QTY_VALID_P (old_reg));
902 
903   REG_QTY (new_reg) = q;
904   firstr = ent->first_reg;
905   lastr = ent->last_reg;
906 
907   /* Prefer fixed hard registers to anything.  Prefer pseudo regs to other
908      hard regs.  Among pseudos, if NEW will live longer than any other reg
909      of the same qty, and that is beyond the current basic block,
910      make it the new canonical replacement for this qty.  */
911   if (! (firstr < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (firstr))
912       /* Certain fixed registers might be of the class NO_REGS.  This means
913 	 that not only can they not be allocated by the compiler, but
914 	 they cannot be used in substitutions or canonicalizations
915 	 either.  */
916       && (new_reg >= FIRST_PSEUDO_REGISTER || REGNO_REG_CLASS (new_reg) != NO_REGS)
917       && ((new_reg < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (new_reg))
918 	  || (new_reg >= FIRST_PSEUDO_REGISTER
919 	      && (firstr < FIRST_PSEUDO_REGISTER
920 		  || (bitmap_bit_p (cse_ebb_live_out, new_reg)
921 		      && !bitmap_bit_p (cse_ebb_live_out, firstr))
922 		  || (bitmap_bit_p (cse_ebb_live_in, new_reg)
923 		      && !bitmap_bit_p (cse_ebb_live_in, firstr))))))
924     {
925       reg_eqv_table[firstr].prev = new_reg;
926       reg_eqv_table[new_reg].next = firstr;
927       reg_eqv_table[new_reg].prev = -1;
928       ent->first_reg = new_reg;
929     }
930   else
931     {
932       /* If NEW is a hard reg (known to be non-fixed), insert at end.
933 	 Otherwise, insert before any non-fixed hard regs that are at the
934 	 end.  Registers of class NO_REGS cannot be used as an
935 	 equivalent for anything.  */
936       while (lastr < FIRST_PSEUDO_REGISTER && reg_eqv_table[lastr].prev >= 0
937 	     && (REGNO_REG_CLASS (lastr) == NO_REGS || ! FIXED_REGNO_P (lastr))
938 	     && new_reg >= FIRST_PSEUDO_REGISTER)
939 	lastr = reg_eqv_table[lastr].prev;
940       reg_eqv_table[new_reg].next = reg_eqv_table[lastr].next;
941       if (reg_eqv_table[lastr].next >= 0)
942 	reg_eqv_table[reg_eqv_table[lastr].next].prev = new_reg;
943       else
944 	qty_table[q].last_reg = new_reg;
945       reg_eqv_table[lastr].next = new_reg;
946       reg_eqv_table[new_reg].prev = lastr;
947     }
948 }
949 
950 /* Remove REG from its equivalence class.  */
951 
952 static void
delete_reg_equiv(unsigned int reg)953 delete_reg_equiv (unsigned int reg)
954 {
955   struct qty_table_elem *ent;
956   int q = REG_QTY (reg);
957   int p, n;
958 
959   /* If invalid, do nothing.  */
960   if (! REGNO_QTY_VALID_P (reg))
961     return;
962 
963   ent = &qty_table[q];
964 
965   p = reg_eqv_table[reg].prev;
966   n = reg_eqv_table[reg].next;
967 
968   if (n != -1)
969     reg_eqv_table[n].prev = p;
970   else
971     ent->last_reg = p;
972   if (p != -1)
973     reg_eqv_table[p].next = n;
974   else
975     ent->first_reg = n;
976 
977   REG_QTY (reg) = -reg - 1;
978 }
979 
980 /* Remove any invalid expressions from the hash table
981    that refer to any of the registers contained in expression X.
982 
983    Make sure that newly inserted references to those registers
984    as subexpressions will be considered valid.
985 
986    mention_regs is not called when a register itself
987    is being stored in the table.
988 
989    Return 1 if we have done something that may have changed the hash code
990    of X.  */
991 
992 static int
mention_regs(rtx x)993 mention_regs (rtx x)
994 {
995   enum rtx_code code;
996   int i, j;
997   const char *fmt;
998   int changed = 0;
999 
1000   if (x == 0)
1001     return 0;
1002 
1003   code = GET_CODE (x);
1004   if (code == REG)
1005     {
1006       unsigned int regno = REGNO (x);
1007       unsigned int endregno = END_REGNO (x);
1008       unsigned int i;
1009 
1010       for (i = regno; i < endregno; i++)
1011 	{
1012 	  if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1013 	    remove_invalid_refs (i);
1014 
1015 	  REG_IN_TABLE (i) = REG_TICK (i);
1016 	  SUBREG_TICKED (i) = -1;
1017 	}
1018 
1019       return 0;
1020     }
1021 
1022   /* If this is a SUBREG, we don't want to discard other SUBREGs of the same
1023      pseudo if they don't use overlapping words.  We handle only pseudos
1024      here for simplicity.  */
1025   if (code == SUBREG && REG_P (SUBREG_REG (x))
1026       && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
1027     {
1028       unsigned int i = REGNO (SUBREG_REG (x));
1029 
1030       if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1031 	{
1032 	  /* If REG_IN_TABLE (i) differs from REG_TICK (i) by one, and
1033 	     the last store to this register really stored into this
1034 	     subreg, then remove the memory of this subreg.
1035 	     Otherwise, remove any memory of the entire register and
1036 	     all its subregs from the table.  */
1037 	  if (REG_TICK (i) - REG_IN_TABLE (i) > 1
1038 	      || SUBREG_TICKED (i) != REGNO (SUBREG_REG (x)))
1039 	    remove_invalid_refs (i);
1040 	  else
1041 	    remove_invalid_subreg_refs (i, SUBREG_BYTE (x), GET_MODE (x));
1042 	}
1043 
1044       REG_IN_TABLE (i) = REG_TICK (i);
1045       SUBREG_TICKED (i) = REGNO (SUBREG_REG (x));
1046       return 0;
1047     }
1048 
1049   /* If X is a comparison or a COMPARE and either operand is a register
1050      that does not have a quantity, give it one.  This is so that a later
1051      call to record_jump_equiv won't cause X to be assigned a different
1052      hash code and not found in the table after that call.
1053 
1054      It is not necessary to do this here, since rehash_using_reg can
1055      fix up the table later, but doing this here eliminates the need to
1056      call that expensive function in the most common case where the only
1057      use of the register is in the comparison.  */
1058 
1059   if (code == COMPARE || COMPARISON_P (x))
1060     {
1061       if (REG_P (XEXP (x, 0))
1062 	  && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
1063 	if (insert_regs (XEXP (x, 0), NULL, 0))
1064 	  {
1065 	    rehash_using_reg (XEXP (x, 0));
1066 	    changed = 1;
1067 	  }
1068 
1069       if (REG_P (XEXP (x, 1))
1070 	  && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
1071 	if (insert_regs (XEXP (x, 1), NULL, 0))
1072 	  {
1073 	    rehash_using_reg (XEXP (x, 1));
1074 	    changed = 1;
1075 	  }
1076     }
1077 
1078   fmt = GET_RTX_FORMAT (code);
1079   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1080     if (fmt[i] == 'e')
1081       changed |= mention_regs (XEXP (x, i));
1082     else if (fmt[i] == 'E')
1083       for (j = 0; j < XVECLEN (x, i); j++)
1084 	changed |= mention_regs (XVECEXP (x, i, j));
1085 
1086   return changed;
1087 }
1088 
1089 /* Update the register quantities for inserting X into the hash table
1090    with a value equivalent to CLASSP.
1091    (If the class does not contain a REG, it is irrelevant.)
1092    If MODIFIED is nonzero, X is a destination; it is being modified.
1093    Note that delete_reg_equiv should be called on a register
1094    before insert_regs is done on that register with MODIFIED != 0.
1095 
1096    Nonzero value means that elements of reg_qty have changed
1097    so X's hash code may be different.  */
1098 
1099 static int
insert_regs(rtx x,struct table_elt * classp,int modified)1100 insert_regs (rtx x, struct table_elt *classp, int modified)
1101 {
1102   if (REG_P (x))
1103     {
1104       unsigned int regno = REGNO (x);
1105       int qty_valid;
1106 
1107       /* If REGNO is in the equivalence table already but is of the
1108 	 wrong mode for that equivalence, don't do anything here.  */
1109 
1110       qty_valid = REGNO_QTY_VALID_P (regno);
1111       if (qty_valid)
1112 	{
1113 	  struct qty_table_elem *ent = &qty_table[REG_QTY (regno)];
1114 
1115 	  if (ent->mode != GET_MODE (x))
1116 	    return 0;
1117 	}
1118 
1119       if (modified || ! qty_valid)
1120 	{
1121 	  if (classp)
1122 	    for (classp = classp->first_same_value;
1123 		 classp != 0;
1124 		 classp = classp->next_same_value)
1125 	      if (REG_P (classp->exp)
1126 		  && GET_MODE (classp->exp) == GET_MODE (x))
1127 		{
1128 		  unsigned c_regno = REGNO (classp->exp);
1129 
1130 		  gcc_assert (REGNO_QTY_VALID_P (c_regno));
1131 
1132 		  /* Suppose that 5 is hard reg and 100 and 101 are
1133 		     pseudos.  Consider
1134 
1135 		     (set (reg:si 100) (reg:si 5))
1136 		     (set (reg:si 5) (reg:si 100))
1137 		     (set (reg:di 101) (reg:di 5))
1138 
1139 		     We would now set REG_QTY (101) = REG_QTY (5), but the
1140 		     entry for 5 is in SImode.  When we use this later in
1141 		     copy propagation, we get the register in wrong mode.  */
1142 		  if (qty_table[REG_QTY (c_regno)].mode != GET_MODE (x))
1143 		    continue;
1144 
1145 		  make_regs_eqv (regno, c_regno);
1146 		  return 1;
1147 		}
1148 
1149 	  /* Mention_regs for a SUBREG checks if REG_TICK is exactly one larger
1150 	     than REG_IN_TABLE to find out if there was only a single preceding
1151 	     invalidation - for the SUBREG - or another one, which would be
1152 	     for the full register.  However, if we find here that REG_TICK
1153 	     indicates that the register is invalid, it means that it has
1154 	     been invalidated in a separate operation.  The SUBREG might be used
1155 	     now (then this is a recursive call), or we might use the full REG
1156 	     now and a SUBREG of it later.  So bump up REG_TICK so that
1157 	     mention_regs will do the right thing.  */
1158 	  if (! modified
1159 	      && REG_IN_TABLE (regno) >= 0
1160 	      && REG_TICK (regno) == REG_IN_TABLE (regno) + 1)
1161 	    REG_TICK (regno)++;
1162 	  make_new_qty (regno, GET_MODE (x));
1163 	  return 1;
1164 	}
1165 
1166       return 0;
1167     }
1168 
1169   /* If X is a SUBREG, we will likely be inserting the inner register in the
1170      table.  If that register doesn't have an assigned quantity number at
1171      this point but does later, the insertion that we will be doing now will
1172      not be accessible because its hash code will have changed.  So assign
1173      a quantity number now.  */
1174 
1175   else if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x))
1176 	   && ! REGNO_QTY_VALID_P (REGNO (SUBREG_REG (x))))
1177     {
1178       insert_regs (SUBREG_REG (x), NULL, 0);
1179       mention_regs (x);
1180       return 1;
1181     }
1182   else
1183     return mention_regs (x);
1184 }
1185 
1186 
1187 /* Compute upper and lower anchors for CST.  Also compute the offset of CST
1188    from these anchors/bases such that *_BASE + *_OFFS = CST.  Return false iff
1189    CST is equal to an anchor.  */
1190 
1191 static bool
compute_const_anchors(rtx cst,HOST_WIDE_INT * lower_base,HOST_WIDE_INT * lower_offs,HOST_WIDE_INT * upper_base,HOST_WIDE_INT * upper_offs)1192 compute_const_anchors (rtx cst,
1193 		       HOST_WIDE_INT *lower_base, HOST_WIDE_INT *lower_offs,
1194 		       HOST_WIDE_INT *upper_base, HOST_WIDE_INT *upper_offs)
1195 {
1196   HOST_WIDE_INT n = INTVAL (cst);
1197 
1198   *lower_base = n & ~(targetm.const_anchor - 1);
1199   if (*lower_base == n)
1200     return false;
1201 
1202   *upper_base =
1203     (n + (targetm.const_anchor - 1)) & ~(targetm.const_anchor - 1);
1204   *upper_offs = n - *upper_base;
1205   *lower_offs = n - *lower_base;
1206   return true;
1207 }
1208 
1209 /* Insert the equivalence between ANCHOR and (REG + OFF) in mode MODE.  */
1210 
1211 static void
insert_const_anchor(HOST_WIDE_INT anchor,rtx reg,HOST_WIDE_INT offs,machine_mode mode)1212 insert_const_anchor (HOST_WIDE_INT anchor, rtx reg, HOST_WIDE_INT offs,
1213 		     machine_mode mode)
1214 {
1215   struct table_elt *elt;
1216   unsigned hash;
1217   rtx anchor_exp;
1218   rtx exp;
1219 
1220   anchor_exp = GEN_INT (anchor);
1221   hash = HASH (anchor_exp, mode);
1222   elt = lookup (anchor_exp, hash, mode);
1223   if (!elt)
1224     elt = insert (anchor_exp, NULL, hash, mode);
1225 
1226   exp = plus_constant (mode, reg, offs);
1227   /* REG has just been inserted and the hash codes recomputed.  */
1228   mention_regs (exp);
1229   hash = HASH (exp, mode);
1230 
1231   /* Use the cost of the register rather than the whole expression.  When
1232      looking up constant anchors we will further offset the corresponding
1233      expression therefore it does not make sense to prefer REGs over
1234      reg-immediate additions.  Prefer instead the oldest expression.  Also
1235      don't prefer pseudos over hard regs so that we derive constants in
1236      argument registers from other argument registers rather than from the
1237      original pseudo that was used to synthesize the constant.  */
1238   insert_with_costs (exp, elt, hash, mode, COST (reg, mode), 1);
1239 }
1240 
1241 /* The constant CST is equivalent to the register REG.  Create
1242    equivalences between the two anchors of CST and the corresponding
1243    register-offset expressions using REG.  */
1244 
1245 static void
insert_const_anchors(rtx reg,rtx cst,machine_mode mode)1246 insert_const_anchors (rtx reg, rtx cst, machine_mode mode)
1247 {
1248   HOST_WIDE_INT lower_base, lower_offs, upper_base, upper_offs;
1249 
1250   if (!compute_const_anchors (cst, &lower_base, &lower_offs,
1251 			      &upper_base, &upper_offs))
1252       return;
1253 
1254   /* Ignore anchors of value 0.  Constants accessible from zero are
1255      simple.  */
1256   if (lower_base != 0)
1257     insert_const_anchor (lower_base, reg, -lower_offs, mode);
1258 
1259   if (upper_base != 0)
1260     insert_const_anchor (upper_base, reg, -upper_offs, mode);
1261 }
1262 
1263 /* We need to express ANCHOR_ELT->exp + OFFS.  Walk the equivalence list of
1264    ANCHOR_ELT and see if offsetting any of the entries by OFFS would create a
1265    valid expression.  Return the cheapest and oldest of such expressions.  In
1266    *OLD, return how old the resulting expression is compared to the other
1267    equivalent expressions.  */
1268 
1269 static rtx
find_reg_offset_for_const(struct table_elt * anchor_elt,HOST_WIDE_INT offs,unsigned * old)1270 find_reg_offset_for_const (struct table_elt *anchor_elt, HOST_WIDE_INT offs,
1271 			   unsigned *old)
1272 {
1273   struct table_elt *elt;
1274   unsigned idx;
1275   struct table_elt *match_elt;
1276   rtx match;
1277 
1278   /* Find the cheapest and *oldest* expression to maximize the chance of
1279      reusing the same pseudo.  */
1280 
1281   match_elt = NULL;
1282   match = NULL_RTX;
1283   for (elt = anchor_elt->first_same_value, idx = 0;
1284        elt;
1285        elt = elt->next_same_value, idx++)
1286     {
1287       if (match_elt && CHEAPER (match_elt, elt))
1288 	return match;
1289 
1290       if (REG_P (elt->exp)
1291 	  || (GET_CODE (elt->exp) == PLUS
1292 	      && REG_P (XEXP (elt->exp, 0))
1293 	      && GET_CODE (XEXP (elt->exp, 1)) == CONST_INT))
1294 	{
1295 	  rtx x;
1296 
1297 	  /* Ignore expressions that are no longer valid.  */
1298 	  if (!REG_P (elt->exp) && !exp_equiv_p (elt->exp, elt->exp, 1, false))
1299 	    continue;
1300 
1301 	  x = plus_constant (GET_MODE (elt->exp), elt->exp, offs);
1302 	  if (REG_P (x)
1303 	      || (GET_CODE (x) == PLUS
1304 		  && IN_RANGE (INTVAL (XEXP (x, 1)),
1305 			       -targetm.const_anchor,
1306 			       targetm.const_anchor - 1)))
1307 	    {
1308 	      match = x;
1309 	      match_elt = elt;
1310 	      *old = idx;
1311 	    }
1312 	}
1313     }
1314 
1315   return match;
1316 }
1317 
1318 /* Try to express the constant SRC_CONST using a register+offset expression
1319    derived from a constant anchor.  Return it if successful or NULL_RTX,
1320    otherwise.  */
1321 
1322 static rtx
try_const_anchors(rtx src_const,machine_mode mode)1323 try_const_anchors (rtx src_const, machine_mode mode)
1324 {
1325   struct table_elt *lower_elt, *upper_elt;
1326   HOST_WIDE_INT lower_base, lower_offs, upper_base, upper_offs;
1327   rtx lower_anchor_rtx, upper_anchor_rtx;
1328   rtx lower_exp = NULL_RTX, upper_exp = NULL_RTX;
1329   unsigned lower_old, upper_old;
1330 
1331   /* CONST_INT is used for CC modes, but we should leave those alone.  */
1332   if (GET_MODE_CLASS (mode) == MODE_CC)
1333     return NULL_RTX;
1334 
1335   gcc_assert (SCALAR_INT_MODE_P (mode));
1336   if (!compute_const_anchors (src_const, &lower_base, &lower_offs,
1337 			      &upper_base, &upper_offs))
1338     return NULL_RTX;
1339 
1340   lower_anchor_rtx = GEN_INT (lower_base);
1341   upper_anchor_rtx = GEN_INT (upper_base);
1342   lower_elt = lookup (lower_anchor_rtx, HASH (lower_anchor_rtx, mode), mode);
1343   upper_elt = lookup (upper_anchor_rtx, HASH (upper_anchor_rtx, mode), mode);
1344 
1345   if (lower_elt)
1346     lower_exp = find_reg_offset_for_const (lower_elt, lower_offs, &lower_old);
1347   if (upper_elt)
1348     upper_exp = find_reg_offset_for_const (upper_elt, upper_offs, &upper_old);
1349 
1350   if (!lower_exp)
1351     return upper_exp;
1352   if (!upper_exp)
1353     return lower_exp;
1354 
1355   /* Return the older expression.  */
1356   return (upper_old > lower_old ? upper_exp : lower_exp);
1357 }
1358 
1359 /* Look in or update the hash table.  */
1360 
1361 /* Remove table element ELT from use in the table.
1362    HASH is its hash code, made using the HASH macro.
1363    It's an argument because often that is known in advance
1364    and we save much time not recomputing it.  */
1365 
1366 static void
remove_from_table(struct table_elt * elt,unsigned int hash)1367 remove_from_table (struct table_elt *elt, unsigned int hash)
1368 {
1369   if (elt == 0)
1370     return;
1371 
1372   /* Mark this element as removed.  See cse_insn.  */
1373   elt->first_same_value = 0;
1374 
1375   /* Remove the table element from its equivalence class.  */
1376 
1377   {
1378     struct table_elt *prev = elt->prev_same_value;
1379     struct table_elt *next = elt->next_same_value;
1380 
1381     if (next)
1382       next->prev_same_value = prev;
1383 
1384     if (prev)
1385       prev->next_same_value = next;
1386     else
1387       {
1388 	struct table_elt *newfirst = next;
1389 	while (next)
1390 	  {
1391 	    next->first_same_value = newfirst;
1392 	    next = next->next_same_value;
1393 	  }
1394       }
1395   }
1396 
1397   /* Remove the table element from its hash bucket.  */
1398 
1399   {
1400     struct table_elt *prev = elt->prev_same_hash;
1401     struct table_elt *next = elt->next_same_hash;
1402 
1403     if (next)
1404       next->prev_same_hash = prev;
1405 
1406     if (prev)
1407       prev->next_same_hash = next;
1408     else if (table[hash] == elt)
1409       table[hash] = next;
1410     else
1411       {
1412 	/* This entry is not in the proper hash bucket.  This can happen
1413 	   when two classes were merged by `merge_equiv_classes'.  Search
1414 	   for the hash bucket that it heads.  This happens only very
1415 	   rarely, so the cost is acceptable.  */
1416 	for (hash = 0; hash < HASH_SIZE; hash++)
1417 	  if (table[hash] == elt)
1418 	    table[hash] = next;
1419       }
1420   }
1421 
1422   /* Remove the table element from its related-value circular chain.  */
1423 
1424   if (elt->related_value != 0 && elt->related_value != elt)
1425     {
1426       struct table_elt *p = elt->related_value;
1427 
1428       while (p->related_value != elt)
1429 	p = p->related_value;
1430       p->related_value = elt->related_value;
1431       if (p->related_value == p)
1432 	p->related_value = 0;
1433     }
1434 
1435   /* Now add it to the free element chain.  */
1436   elt->next_same_hash = free_element_chain;
1437   free_element_chain = elt;
1438 }
1439 
1440 /* Same as above, but X is a pseudo-register.  */
1441 
1442 static void
remove_pseudo_from_table(rtx x,unsigned int hash)1443 remove_pseudo_from_table (rtx x, unsigned int hash)
1444 {
1445   struct table_elt *elt;
1446 
1447   /* Because a pseudo-register can be referenced in more than one
1448      mode, we might have to remove more than one table entry.  */
1449   while ((elt = lookup_for_remove (x, hash, VOIDmode)))
1450     remove_from_table (elt, hash);
1451 }
1452 
1453 /* Look up X in the hash table and return its table element,
1454    or 0 if X is not in the table.
1455 
1456    MODE is the machine-mode of X, or if X is an integer constant
1457    with VOIDmode then MODE is the mode with which X will be used.
1458 
1459    Here we are satisfied to find an expression whose tree structure
1460    looks like X.  */
1461 
1462 static struct table_elt *
lookup(rtx x,unsigned int hash,machine_mode mode)1463 lookup (rtx x, unsigned int hash, machine_mode mode)
1464 {
1465   struct table_elt *p;
1466 
1467   for (p = table[hash]; p; p = p->next_same_hash)
1468     if (mode == p->mode && ((x == p->exp && REG_P (x))
1469 			    || exp_equiv_p (x, p->exp, !REG_P (x), false)))
1470       return p;
1471 
1472   return 0;
1473 }
1474 
1475 /* Like `lookup' but don't care whether the table element uses invalid regs.
1476    Also ignore discrepancies in the machine mode of a register.  */
1477 
1478 static struct table_elt *
lookup_for_remove(rtx x,unsigned int hash,machine_mode mode)1479 lookup_for_remove (rtx x, unsigned int hash, machine_mode mode)
1480 {
1481   struct table_elt *p;
1482 
1483   if (REG_P (x))
1484     {
1485       unsigned int regno = REGNO (x);
1486 
1487       /* Don't check the machine mode when comparing registers;
1488 	 invalidating (REG:SI 0) also invalidates (REG:DF 0).  */
1489       for (p = table[hash]; p; p = p->next_same_hash)
1490 	if (REG_P (p->exp)
1491 	    && REGNO (p->exp) == regno)
1492 	  return p;
1493     }
1494   else
1495     {
1496       for (p = table[hash]; p; p = p->next_same_hash)
1497 	if (mode == p->mode
1498 	    && (x == p->exp || exp_equiv_p (x, p->exp, 0, false)))
1499 	  return p;
1500     }
1501 
1502   return 0;
1503 }
1504 
1505 /* Look for an expression equivalent to X and with code CODE.
1506    If one is found, return that expression.  */
1507 
1508 static rtx
lookup_as_function(rtx x,enum rtx_code code)1509 lookup_as_function (rtx x, enum rtx_code code)
1510 {
1511   struct table_elt *p
1512     = lookup (x, SAFE_HASH (x, VOIDmode), GET_MODE (x));
1513 
1514   if (p == 0)
1515     return 0;
1516 
1517   for (p = p->first_same_value; p; p = p->next_same_value)
1518     if (GET_CODE (p->exp) == code
1519 	/* Make sure this is a valid entry in the table.  */
1520 	&& exp_equiv_p (p->exp, p->exp, 1, false))
1521       return p->exp;
1522 
1523   return 0;
1524 }
1525 
1526 /* Insert X in the hash table, assuming HASH is its hash code and
1527    CLASSP is an element of the class it should go in (or 0 if a new
1528    class should be made).  COST is the code of X and reg_cost is the
1529    cost of registers in X.  It is inserted at the proper position to
1530    keep the class in the order cheapest first.
1531 
1532    MODE is the machine-mode of X, or if X is an integer constant
1533    with VOIDmode then MODE is the mode with which X will be used.
1534 
1535    For elements of equal cheapness, the most recent one
1536    goes in front, except that the first element in the list
1537    remains first unless a cheaper element is added.  The order of
1538    pseudo-registers does not matter, as canon_reg will be called to
1539    find the cheapest when a register is retrieved from the table.
1540 
1541    The in_memory field in the hash table element is set to 0.
1542    The caller must set it nonzero if appropriate.
1543 
1544    You should call insert_regs (X, CLASSP, MODIFY) before calling here,
1545    and if insert_regs returns a nonzero value
1546    you must then recompute its hash code before calling here.
1547 
1548    If necessary, update table showing constant values of quantities.  */
1549 
1550 static struct table_elt *
insert_with_costs(rtx x,struct table_elt * classp,unsigned int hash,machine_mode mode,int cost,int reg_cost)1551 insert_with_costs (rtx x, struct table_elt *classp, unsigned int hash,
1552 		   machine_mode mode, int cost, int reg_cost)
1553 {
1554   struct table_elt *elt;
1555 
1556   /* If X is a register and we haven't made a quantity for it,
1557      something is wrong.  */
1558   gcc_assert (!REG_P (x) || REGNO_QTY_VALID_P (REGNO (x)));
1559 
1560   /* If X is a hard register, show it is being put in the table.  */
1561   if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1562     add_to_hard_reg_set (&hard_regs_in_table, GET_MODE (x), REGNO (x));
1563 
1564   /* Put an element for X into the right hash bucket.  */
1565 
1566   elt = free_element_chain;
1567   if (elt)
1568     free_element_chain = elt->next_same_hash;
1569   else
1570     elt = XNEW (struct table_elt);
1571 
1572   elt->exp = x;
1573   elt->canon_exp = NULL_RTX;
1574   elt->cost = cost;
1575   elt->regcost = reg_cost;
1576   elt->next_same_value = 0;
1577   elt->prev_same_value = 0;
1578   elt->next_same_hash = table[hash];
1579   elt->prev_same_hash = 0;
1580   elt->related_value = 0;
1581   elt->in_memory = 0;
1582   elt->mode = mode;
1583   elt->is_const = (CONSTANT_P (x) || fixed_base_plus_p (x));
1584 
1585   if (table[hash])
1586     table[hash]->prev_same_hash = elt;
1587   table[hash] = elt;
1588 
1589   /* Put it into the proper value-class.  */
1590   if (classp)
1591     {
1592       classp = classp->first_same_value;
1593       if (CHEAPER (elt, classp))
1594 	/* Insert at the head of the class.  */
1595 	{
1596 	  struct table_elt *p;
1597 	  elt->next_same_value = classp;
1598 	  classp->prev_same_value = elt;
1599 	  elt->first_same_value = elt;
1600 
1601 	  for (p = classp; p; p = p->next_same_value)
1602 	    p->first_same_value = elt;
1603 	}
1604       else
1605 	{
1606 	  /* Insert not at head of the class.  */
1607 	  /* Put it after the last element cheaper than X.  */
1608 	  struct table_elt *p, *next;
1609 
1610 	  for (p = classp;
1611 	       (next = p->next_same_value) && CHEAPER (next, elt);
1612 	       p = next)
1613 	    ;
1614 
1615 	  /* Put it after P and before NEXT.  */
1616 	  elt->next_same_value = next;
1617 	  if (next)
1618 	    next->prev_same_value = elt;
1619 
1620 	  elt->prev_same_value = p;
1621 	  p->next_same_value = elt;
1622 	  elt->first_same_value = classp;
1623 	}
1624     }
1625   else
1626     elt->first_same_value = elt;
1627 
1628   /* If this is a constant being set equivalent to a register or a register
1629      being set equivalent to a constant, note the constant equivalence.
1630 
1631      If this is a constant, it cannot be equivalent to a different constant,
1632      and a constant is the only thing that can be cheaper than a register.  So
1633      we know the register is the head of the class (before the constant was
1634      inserted).
1635 
1636      If this is a register that is not already known equivalent to a
1637      constant, we must check the entire class.
1638 
1639      If this is a register that is already known equivalent to an insn,
1640      update the qtys `const_insn' to show that `this_insn' is the latest
1641      insn making that quantity equivalent to the constant.  */
1642 
1643   if (elt->is_const && classp && REG_P (classp->exp)
1644       && !REG_P (x))
1645     {
1646       int exp_q = REG_QTY (REGNO (classp->exp));
1647       struct qty_table_elem *exp_ent = &qty_table[exp_q];
1648 
1649       exp_ent->const_rtx = gen_lowpart (exp_ent->mode, x);
1650       exp_ent->const_insn = this_insn;
1651     }
1652 
1653   else if (REG_P (x)
1654 	   && classp
1655 	   && ! qty_table[REG_QTY (REGNO (x))].const_rtx
1656 	   && ! elt->is_const)
1657     {
1658       struct table_elt *p;
1659 
1660       for (p = classp; p != 0; p = p->next_same_value)
1661 	{
1662 	  if (p->is_const && !REG_P (p->exp))
1663 	    {
1664 	      int x_q = REG_QTY (REGNO (x));
1665 	      struct qty_table_elem *x_ent = &qty_table[x_q];
1666 
1667 	      x_ent->const_rtx
1668 		= gen_lowpart (GET_MODE (x), p->exp);
1669 	      x_ent->const_insn = this_insn;
1670 	      break;
1671 	    }
1672 	}
1673     }
1674 
1675   else if (REG_P (x)
1676 	   && qty_table[REG_QTY (REGNO (x))].const_rtx
1677 	   && GET_MODE (x) == qty_table[REG_QTY (REGNO (x))].mode)
1678     qty_table[REG_QTY (REGNO (x))].const_insn = this_insn;
1679 
1680   /* If this is a constant with symbolic value,
1681      and it has a term with an explicit integer value,
1682      link it up with related expressions.  */
1683   if (GET_CODE (x) == CONST)
1684     {
1685       rtx subexp = get_related_value (x);
1686       unsigned subhash;
1687       struct table_elt *subelt, *subelt_prev;
1688 
1689       if (subexp != 0)
1690 	{
1691 	  /* Get the integer-free subexpression in the hash table.  */
1692 	  subhash = SAFE_HASH (subexp, mode);
1693 	  subelt = lookup (subexp, subhash, mode);
1694 	  if (subelt == 0)
1695 	    subelt = insert (subexp, NULL, subhash, mode);
1696 	  /* Initialize SUBELT's circular chain if it has none.  */
1697 	  if (subelt->related_value == 0)
1698 	    subelt->related_value = subelt;
1699 	  /* Find the element in the circular chain that precedes SUBELT.  */
1700 	  subelt_prev = subelt;
1701 	  while (subelt_prev->related_value != subelt)
1702 	    subelt_prev = subelt_prev->related_value;
1703 	  /* Put new ELT into SUBELT's circular chain just before SUBELT.
1704 	     This way the element that follows SUBELT is the oldest one.  */
1705 	  elt->related_value = subelt_prev->related_value;
1706 	  subelt_prev->related_value = elt;
1707 	}
1708     }
1709 
1710   return elt;
1711 }
1712 
1713 /* Wrap insert_with_costs by passing the default costs.  */
1714 
1715 static struct table_elt *
insert(rtx x,struct table_elt * classp,unsigned int hash,machine_mode mode)1716 insert (rtx x, struct table_elt *classp, unsigned int hash,
1717 	machine_mode mode)
1718 {
1719   return insert_with_costs (x, classp, hash, mode,
1720 			    COST (x, mode), approx_reg_cost (x));
1721 }
1722 
1723 
1724 /* Given two equivalence classes, CLASS1 and CLASS2, put all the entries from
1725    CLASS2 into CLASS1.  This is done when we have reached an insn which makes
1726    the two classes equivalent.
1727 
1728    CLASS1 will be the surviving class; CLASS2 should not be used after this
1729    call.
1730 
1731    Any invalid entries in CLASS2 will not be copied.  */
1732 
1733 static void
merge_equiv_classes(struct table_elt * class1,struct table_elt * class2)1734 merge_equiv_classes (struct table_elt *class1, struct table_elt *class2)
1735 {
1736   struct table_elt *elt, *next, *new_elt;
1737 
1738   /* Ensure we start with the head of the classes.  */
1739   class1 = class1->first_same_value;
1740   class2 = class2->first_same_value;
1741 
1742   /* If they were already equal, forget it.  */
1743   if (class1 == class2)
1744     return;
1745 
1746   for (elt = class2; elt; elt = next)
1747     {
1748       unsigned int hash;
1749       rtx exp = elt->exp;
1750       machine_mode mode = elt->mode;
1751 
1752       next = elt->next_same_value;
1753 
1754       /* Remove old entry, make a new one in CLASS1's class.
1755 	 Don't do this for invalid entries as we cannot find their
1756 	 hash code (it also isn't necessary).  */
1757       if (REG_P (exp) || exp_equiv_p (exp, exp, 1, false))
1758 	{
1759 	  bool need_rehash = false;
1760 
1761 	  hash_arg_in_memory = 0;
1762 	  hash = HASH (exp, mode);
1763 
1764 	  if (REG_P (exp))
1765 	    {
1766 	      need_rehash = REGNO_QTY_VALID_P (REGNO (exp));
1767 	      delete_reg_equiv (REGNO (exp));
1768 	    }
1769 
1770 	  if (REG_P (exp) && REGNO (exp) >= FIRST_PSEUDO_REGISTER)
1771 	    remove_pseudo_from_table (exp, hash);
1772 	  else
1773 	    remove_from_table (elt, hash);
1774 
1775 	  if (insert_regs (exp, class1, 0) || need_rehash)
1776 	    {
1777 	      rehash_using_reg (exp);
1778 	      hash = HASH (exp, mode);
1779 	    }
1780 	  new_elt = insert (exp, class1, hash, mode);
1781 	  new_elt->in_memory = hash_arg_in_memory;
1782 	  if (GET_CODE (exp) == ASM_OPERANDS && elt->cost == MAX_COST)
1783 	    new_elt->cost = MAX_COST;
1784 	}
1785     }
1786 }
1787 
1788 /* Flush the entire hash table.  */
1789 
1790 static void
flush_hash_table(void)1791 flush_hash_table (void)
1792 {
1793   int i;
1794   struct table_elt *p;
1795 
1796   for (i = 0; i < HASH_SIZE; i++)
1797     for (p = table[i]; p; p = table[i])
1798       {
1799 	/* Note that invalidate can remove elements
1800 	   after P in the current hash chain.  */
1801 	if (REG_P (p->exp))
1802 	  invalidate (p->exp, VOIDmode);
1803 	else
1804 	  remove_from_table (p, i);
1805       }
1806 }
1807 
1808 /* Check whether an anti dependence exists between X and EXP.  MODE and
1809    ADDR are as for canon_anti_dependence.  */
1810 
1811 static bool
check_dependence(const_rtx x,rtx exp,machine_mode mode,rtx addr)1812 check_dependence (const_rtx x, rtx exp, machine_mode mode, rtx addr)
1813 {
1814   subrtx_iterator::array_type array;
1815   FOR_EACH_SUBRTX (iter, array, x, NONCONST)
1816     {
1817       const_rtx x = *iter;
1818       if (MEM_P (x) && canon_anti_dependence (x, true, exp, mode, addr))
1819 	return true;
1820     }
1821   return false;
1822 }
1823 
1824 /* Remove from the hash table, or mark as invalid, all expressions whose
1825    values could be altered by storing in X.  X is a register, a subreg, or
1826    a memory reference with nonvarying address (because, when a memory
1827    reference with a varying address is stored in, all memory references are
1828    removed by invalidate_memory so specific invalidation is superfluous).
1829    FULL_MODE, if not VOIDmode, indicates that this much should be
1830    invalidated instead of just the amount indicated by the mode of X.  This
1831    is only used for bitfield stores into memory.
1832 
1833    A nonvarying address may be just a register or just a symbol reference,
1834    or it may be either of those plus a numeric offset.  */
1835 
1836 static void
invalidate(rtx x,machine_mode full_mode)1837 invalidate (rtx x, machine_mode full_mode)
1838 {
1839   int i;
1840   struct table_elt *p;
1841   rtx addr;
1842 
1843   switch (GET_CODE (x))
1844     {
1845     case REG:
1846       {
1847 	/* If X is a register, dependencies on its contents are recorded
1848 	   through the qty number mechanism.  Just change the qty number of
1849 	   the register, mark it as invalid for expressions that refer to it,
1850 	   and remove it itself.  */
1851 	unsigned int regno = REGNO (x);
1852 	unsigned int hash = HASH (x, GET_MODE (x));
1853 
1854 	/* Remove REGNO from any quantity list it might be on and indicate
1855 	   that its value might have changed.  If it is a pseudo, remove its
1856 	   entry from the hash table.
1857 
1858 	   For a hard register, we do the first two actions above for any
1859 	   additional hard registers corresponding to X.  Then, if any of these
1860 	   registers are in the table, we must remove any REG entries that
1861 	   overlap these registers.  */
1862 
1863 	delete_reg_equiv (regno);
1864 	REG_TICK (regno)++;
1865 	SUBREG_TICKED (regno) = -1;
1866 
1867 	if (regno >= FIRST_PSEUDO_REGISTER)
1868 	  remove_pseudo_from_table (x, hash);
1869 	else
1870 	  {
1871 	    HOST_WIDE_INT in_table
1872 	      = TEST_HARD_REG_BIT (hard_regs_in_table, regno);
1873 	    unsigned int endregno = END_REGNO (x);
1874 	    unsigned int tregno, tendregno, rn;
1875 	    struct table_elt *p, *next;
1876 
1877 	    CLEAR_HARD_REG_BIT (hard_regs_in_table, regno);
1878 
1879 	    for (rn = regno + 1; rn < endregno; rn++)
1880 	      {
1881 		in_table |= TEST_HARD_REG_BIT (hard_regs_in_table, rn);
1882 		CLEAR_HARD_REG_BIT (hard_regs_in_table, rn);
1883 		delete_reg_equiv (rn);
1884 		REG_TICK (rn)++;
1885 		SUBREG_TICKED (rn) = -1;
1886 	      }
1887 
1888 	    if (in_table)
1889 	      for (hash = 0; hash < HASH_SIZE; hash++)
1890 		for (p = table[hash]; p; p = next)
1891 		  {
1892 		    next = p->next_same_hash;
1893 
1894 		    if (!REG_P (p->exp)
1895 			|| REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
1896 		      continue;
1897 
1898 		    tregno = REGNO (p->exp);
1899 		    tendregno = END_REGNO (p->exp);
1900 		    if (tendregno > regno && tregno < endregno)
1901 		      remove_from_table (p, hash);
1902 		  }
1903 	  }
1904       }
1905       return;
1906 
1907     case SUBREG:
1908       invalidate (SUBREG_REG (x), VOIDmode);
1909       return;
1910 
1911     case PARALLEL:
1912       for (i = XVECLEN (x, 0) - 1; i >= 0; --i)
1913 	invalidate (XVECEXP (x, 0, i), VOIDmode);
1914       return;
1915 
1916     case EXPR_LIST:
1917       /* This is part of a disjoint return value; extract the location in
1918 	 question ignoring the offset.  */
1919       invalidate (XEXP (x, 0), VOIDmode);
1920       return;
1921 
1922     case MEM:
1923       addr = canon_rtx (get_addr (XEXP (x, 0)));
1924       /* Calculate the canonical version of X here so that
1925 	 true_dependence doesn't generate new RTL for X on each call.  */
1926       x = canon_rtx (x);
1927 
1928       /* Remove all hash table elements that refer to overlapping pieces of
1929 	 memory.  */
1930       if (full_mode == VOIDmode)
1931 	full_mode = GET_MODE (x);
1932 
1933       for (i = 0; i < HASH_SIZE; i++)
1934 	{
1935 	  struct table_elt *next;
1936 
1937 	  for (p = table[i]; p; p = next)
1938 	    {
1939 	      next = p->next_same_hash;
1940 	      if (p->in_memory)
1941 		{
1942 		  /* Just canonicalize the expression once;
1943 		     otherwise each time we call invalidate
1944 		     true_dependence will canonicalize the
1945 		     expression again.  */
1946 		  if (!p->canon_exp)
1947 		    p->canon_exp = canon_rtx (p->exp);
1948 		  if (check_dependence (p->canon_exp, x, full_mode, addr))
1949 		    remove_from_table (p, i);
1950 		}
1951 	    }
1952 	}
1953       return;
1954 
1955     default:
1956       gcc_unreachable ();
1957     }
1958 }
1959 
1960 /* Invalidate DEST.  Used when DEST is not going to be added
1961    into the hash table for some reason, e.g. do_not_record
1962    flagged on it.  */
1963 
1964 static void
invalidate_dest(rtx dest)1965 invalidate_dest (rtx dest)
1966 {
1967   if (REG_P (dest)
1968       || GET_CODE (dest) == SUBREG
1969       || MEM_P (dest))
1970     invalidate (dest, VOIDmode);
1971   else if (GET_CODE (dest) == STRICT_LOW_PART
1972 	   || GET_CODE (dest) == ZERO_EXTRACT)
1973     invalidate (XEXP (dest, 0), GET_MODE (dest));
1974 }
1975 
1976 /* Remove all expressions that refer to register REGNO,
1977    since they are already invalid, and we are about to
1978    mark that register valid again and don't want the old
1979    expressions to reappear as valid.  */
1980 
1981 static void
remove_invalid_refs(unsigned int regno)1982 remove_invalid_refs (unsigned int regno)
1983 {
1984   unsigned int i;
1985   struct table_elt *p, *next;
1986 
1987   for (i = 0; i < HASH_SIZE; i++)
1988     for (p = table[i]; p; p = next)
1989       {
1990 	next = p->next_same_hash;
1991 	if (!REG_P (p->exp) && refers_to_regno_p (regno, p->exp))
1992 	  remove_from_table (p, i);
1993       }
1994 }
1995 
1996 /* Likewise for a subreg with subreg_reg REGNO, subreg_byte OFFSET,
1997    and mode MODE.  */
1998 static void
remove_invalid_subreg_refs(unsigned int regno,unsigned int offset,machine_mode mode)1999 remove_invalid_subreg_refs (unsigned int regno, unsigned int offset,
2000 			    machine_mode mode)
2001 {
2002   unsigned int i;
2003   struct table_elt *p, *next;
2004   unsigned int end = offset + (GET_MODE_SIZE (mode) - 1);
2005 
2006   for (i = 0; i < HASH_SIZE; i++)
2007     for (p = table[i]; p; p = next)
2008       {
2009 	rtx exp = p->exp;
2010 	next = p->next_same_hash;
2011 
2012 	if (!REG_P (exp)
2013 	    && (GET_CODE (exp) != SUBREG
2014 		|| !REG_P (SUBREG_REG (exp))
2015 		|| REGNO (SUBREG_REG (exp)) != regno
2016 		|| (((SUBREG_BYTE (exp)
2017 		      + (GET_MODE_SIZE (GET_MODE (exp)) - 1)) >= offset)
2018 		    && SUBREG_BYTE (exp) <= end))
2019 	    && refers_to_regno_p (regno, p->exp))
2020 	  remove_from_table (p, i);
2021       }
2022 }
2023 
2024 /* Recompute the hash codes of any valid entries in the hash table that
2025    reference X, if X is a register, or SUBREG_REG (X) if X is a SUBREG.
2026 
2027    This is called when we make a jump equivalence.  */
2028 
2029 static void
rehash_using_reg(rtx x)2030 rehash_using_reg (rtx x)
2031 {
2032   unsigned int i;
2033   struct table_elt *p, *next;
2034   unsigned hash;
2035 
2036   if (GET_CODE (x) == SUBREG)
2037     x = SUBREG_REG (x);
2038 
2039   /* If X is not a register or if the register is known not to be in any
2040      valid entries in the table, we have no work to do.  */
2041 
2042   if (!REG_P (x)
2043       || REG_IN_TABLE (REGNO (x)) < 0
2044       || REG_IN_TABLE (REGNO (x)) != REG_TICK (REGNO (x)))
2045     return;
2046 
2047   /* Scan all hash chains looking for valid entries that mention X.
2048      If we find one and it is in the wrong hash chain, move it.  */
2049 
2050   for (i = 0; i < HASH_SIZE; i++)
2051     for (p = table[i]; p; p = next)
2052       {
2053 	next = p->next_same_hash;
2054 	if (reg_mentioned_p (x, p->exp)
2055 	    && exp_equiv_p (p->exp, p->exp, 1, false)
2056 	    && i != (hash = SAFE_HASH (p->exp, p->mode)))
2057 	  {
2058 	    if (p->next_same_hash)
2059 	      p->next_same_hash->prev_same_hash = p->prev_same_hash;
2060 
2061 	    if (p->prev_same_hash)
2062 	      p->prev_same_hash->next_same_hash = p->next_same_hash;
2063 	    else
2064 	      table[i] = p->next_same_hash;
2065 
2066 	    p->next_same_hash = table[hash];
2067 	    p->prev_same_hash = 0;
2068 	    if (table[hash])
2069 	      table[hash]->prev_same_hash = p;
2070 	    table[hash] = p;
2071 	  }
2072       }
2073 }
2074 
2075 /* Remove from the hash table any expression that is a call-clobbered
2076    register.  Also update their TICK values.  */
2077 
2078 static void
invalidate_for_call(void)2079 invalidate_for_call (void)
2080 {
2081   unsigned int regno, endregno;
2082   unsigned int i;
2083   unsigned hash;
2084   struct table_elt *p, *next;
2085   int in_table = 0;
2086   hard_reg_set_iterator hrsi;
2087 
2088   /* Go through all the hard registers.  For each that is clobbered in
2089      a CALL_INSN, remove the register from quantity chains and update
2090      reg_tick if defined.  Also see if any of these registers is currently
2091      in the table.  */
2092   EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, regno, hrsi)
2093     {
2094       delete_reg_equiv (regno);
2095       if (REG_TICK (regno) >= 0)
2096 	{
2097 	  REG_TICK (regno)++;
2098 	  SUBREG_TICKED (regno) = -1;
2099 	}
2100       in_table |= (TEST_HARD_REG_BIT (hard_regs_in_table, regno) != 0);
2101     }
2102 
2103   /* In the case where we have no call-clobbered hard registers in the
2104      table, we are done.  Otherwise, scan the table and remove any
2105      entry that overlaps a call-clobbered register.  */
2106 
2107   if (in_table)
2108     for (hash = 0; hash < HASH_SIZE; hash++)
2109       for (p = table[hash]; p; p = next)
2110 	{
2111 	  next = p->next_same_hash;
2112 
2113 	  if (!REG_P (p->exp)
2114 	      || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
2115 	    continue;
2116 
2117 	  regno = REGNO (p->exp);
2118 	  endregno = END_REGNO (p->exp);
2119 
2120 	  for (i = regno; i < endregno; i++)
2121 	    if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
2122 	      {
2123 		remove_from_table (p, hash);
2124 		break;
2125 	      }
2126 	}
2127 }
2128 
2129 /* Given an expression X of type CONST,
2130    and ELT which is its table entry (or 0 if it
2131    is not in the hash table),
2132    return an alternate expression for X as a register plus integer.
2133    If none can be found, return 0.  */
2134 
2135 static rtx
use_related_value(rtx x,struct table_elt * elt)2136 use_related_value (rtx x, struct table_elt *elt)
2137 {
2138   struct table_elt *relt = 0;
2139   struct table_elt *p, *q;
2140   HOST_WIDE_INT offset;
2141 
2142   /* First, is there anything related known?
2143      If we have a table element, we can tell from that.
2144      Otherwise, must look it up.  */
2145 
2146   if (elt != 0 && elt->related_value != 0)
2147     relt = elt;
2148   else if (elt == 0 && GET_CODE (x) == CONST)
2149     {
2150       rtx subexp = get_related_value (x);
2151       if (subexp != 0)
2152 	relt = lookup (subexp,
2153 		       SAFE_HASH (subexp, GET_MODE (subexp)),
2154 		       GET_MODE (subexp));
2155     }
2156 
2157   if (relt == 0)
2158     return 0;
2159 
2160   /* Search all related table entries for one that has an
2161      equivalent register.  */
2162 
2163   p = relt;
2164   while (1)
2165     {
2166       /* This loop is strange in that it is executed in two different cases.
2167 	 The first is when X is already in the table.  Then it is searching
2168 	 the RELATED_VALUE list of X's class (RELT).  The second case is when
2169 	 X is not in the table.  Then RELT points to a class for the related
2170 	 value.
2171 
2172 	 Ensure that, whatever case we are in, that we ignore classes that have
2173 	 the same value as X.  */
2174 
2175       if (rtx_equal_p (x, p->exp))
2176 	q = 0;
2177       else
2178 	for (q = p->first_same_value; q; q = q->next_same_value)
2179 	  if (REG_P (q->exp))
2180 	    break;
2181 
2182       if (q)
2183 	break;
2184 
2185       p = p->related_value;
2186 
2187       /* We went all the way around, so there is nothing to be found.
2188 	 Alternatively, perhaps RELT was in the table for some other reason
2189 	 and it has no related values recorded.  */
2190       if (p == relt || p == 0)
2191 	break;
2192     }
2193 
2194   if (q == 0)
2195     return 0;
2196 
2197   offset = (get_integer_term (x) - get_integer_term (p->exp));
2198   /* Note: OFFSET may be 0 if P->xexp and X are related by commutativity.  */
2199   return plus_constant (q->mode, q->exp, offset);
2200 }
2201 
2202 
2203 /* Hash a string.  Just add its bytes up.  */
2204 static inline unsigned
hash_rtx_string(const char * ps)2205 hash_rtx_string (const char *ps)
2206 {
2207   unsigned hash = 0;
2208   const unsigned char *p = (const unsigned char *) ps;
2209 
2210   if (p)
2211     while (*p)
2212       hash += *p++;
2213 
2214   return hash;
2215 }
2216 
2217 /* Same as hash_rtx, but call CB on each rtx if it is not NULL.
2218    When the callback returns true, we continue with the new rtx.  */
2219 
2220 unsigned
hash_rtx_cb(const_rtx x,machine_mode mode,int * do_not_record_p,int * hash_arg_in_memory_p,bool have_reg_qty,hash_rtx_callback_function cb)2221 hash_rtx_cb (const_rtx x, machine_mode mode,
2222              int *do_not_record_p, int *hash_arg_in_memory_p,
2223              bool have_reg_qty, hash_rtx_callback_function cb)
2224 {
2225   int i, j;
2226   unsigned hash = 0;
2227   enum rtx_code code;
2228   const char *fmt;
2229   machine_mode newmode;
2230   rtx newx;
2231 
2232   /* Used to turn recursion into iteration.  We can't rely on GCC's
2233      tail-recursion elimination since we need to keep accumulating values
2234      in HASH.  */
2235  repeat:
2236   if (x == 0)
2237     return hash;
2238 
2239   /* Invoke the callback first.  */
2240   if (cb != NULL
2241       && ((*cb) (x, mode, &newx, &newmode)))
2242     {
2243       hash += hash_rtx_cb (newx, newmode, do_not_record_p,
2244                            hash_arg_in_memory_p, have_reg_qty, cb);
2245       return hash;
2246     }
2247 
2248   code = GET_CODE (x);
2249   switch (code)
2250     {
2251     case REG:
2252       {
2253 	unsigned int regno = REGNO (x);
2254 
2255 	if (do_not_record_p && !reload_completed)
2256 	  {
2257 	    /* On some machines, we can't record any non-fixed hard register,
2258 	       because extending its life will cause reload problems.  We
2259 	       consider ap, fp, sp, gp to be fixed for this purpose.
2260 
2261 	       We also consider CCmode registers to be fixed for this purpose;
2262 	       failure to do so leads to failure to simplify 0<100 type of
2263 	       conditionals.
2264 
2265 	       On all machines, we can't record any global registers.
2266 	       Nor should we record any register that is in a small
2267 	       class, as defined by TARGET_CLASS_LIKELY_SPILLED_P.  */
2268 	    bool record;
2269 
2270 	    if (regno >= FIRST_PSEUDO_REGISTER)
2271 	      record = true;
2272 	    else if (x == frame_pointer_rtx
2273 		     || x == hard_frame_pointer_rtx
2274 		     || x == arg_pointer_rtx
2275 		     || x == stack_pointer_rtx
2276 		     || x == pic_offset_table_rtx)
2277 	      record = true;
2278 	    else if (global_regs[regno])
2279 	      record = false;
2280 	    else if (fixed_regs[regno])
2281 	      record = true;
2282 	    else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_CC)
2283 	      record = true;
2284 	    else if (targetm.small_register_classes_for_mode_p (GET_MODE (x)))
2285 	      record = false;
2286 	    else if (targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno)))
2287 	      record = false;
2288 	    else
2289 	      record = true;
2290 
2291 	    if (!record)
2292 	      {
2293 		*do_not_record_p = 1;
2294 		return 0;
2295 	      }
2296 	  }
2297 
2298 	hash += ((unsigned int) REG << 7);
2299         hash += (have_reg_qty ? (unsigned) REG_QTY (regno) : regno);
2300 	return hash;
2301       }
2302 
2303     /* We handle SUBREG of a REG specially because the underlying
2304        reg changes its hash value with every value change; we don't
2305        want to have to forget unrelated subregs when one subreg changes.  */
2306     case SUBREG:
2307       {
2308 	if (REG_P (SUBREG_REG (x)))
2309 	  {
2310 	    hash += (((unsigned int) SUBREG << 7)
2311 		     + REGNO (SUBREG_REG (x))
2312 		     + (SUBREG_BYTE (x) / UNITS_PER_WORD));
2313 	    return hash;
2314 	  }
2315 	break;
2316       }
2317 
2318     case CONST_INT:
2319       hash += (((unsigned int) CONST_INT << 7) + (unsigned int) mode
2320                + (unsigned int) INTVAL (x));
2321       return hash;
2322 
2323     case CONST_WIDE_INT:
2324       for (i = 0; i < CONST_WIDE_INT_NUNITS (x); i++)
2325 	hash += CONST_WIDE_INT_ELT (x, i);
2326       return hash;
2327 
2328     case CONST_DOUBLE:
2329       /* This is like the general case, except that it only counts
2330 	 the integers representing the constant.  */
2331       hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2332       if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (x) == VOIDmode)
2333 	hash += ((unsigned int) CONST_DOUBLE_LOW (x)
2334 		 + (unsigned int) CONST_DOUBLE_HIGH (x));
2335       else
2336 	hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
2337       return hash;
2338 
2339     case CONST_FIXED:
2340       hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2341       hash += fixed_hash (CONST_FIXED_VALUE (x));
2342       return hash;
2343 
2344     case CONST_VECTOR:
2345       {
2346 	int units;
2347 	rtx elt;
2348 
2349 	units = CONST_VECTOR_NUNITS (x);
2350 
2351 	for (i = 0; i < units; ++i)
2352 	  {
2353 	    elt = CONST_VECTOR_ELT (x, i);
2354 	    hash += hash_rtx_cb (elt, GET_MODE (elt),
2355                                  do_not_record_p, hash_arg_in_memory_p,
2356                                  have_reg_qty, cb);
2357 	  }
2358 
2359 	return hash;
2360       }
2361 
2362       /* Assume there is only one rtx object for any given label.  */
2363     case LABEL_REF:
2364       /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
2365 	 differences and differences between each stage's debugging dumps.  */
2366 	 hash += (((unsigned int) LABEL_REF << 7)
2367 		  + CODE_LABEL_NUMBER (LABEL_REF_LABEL (x)));
2368       return hash;
2369 
2370     case SYMBOL_REF:
2371       {
2372 	/* Don't hash on the symbol's address to avoid bootstrap differences.
2373 	   Different hash values may cause expressions to be recorded in
2374 	   different orders and thus different registers to be used in the
2375 	   final assembler.  This also avoids differences in the dump files
2376 	   between various stages.  */
2377 	unsigned int h = 0;
2378 	const unsigned char *p = (const unsigned char *) XSTR (x, 0);
2379 
2380 	while (*p)
2381 	  h += (h << 7) + *p++; /* ??? revisit */
2382 
2383 	hash += ((unsigned int) SYMBOL_REF << 7) + h;
2384 	return hash;
2385       }
2386 
2387     case MEM:
2388       /* We don't record if marked volatile or if BLKmode since we don't
2389 	 know the size of the move.  */
2390       if (do_not_record_p && (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode))
2391 	{
2392 	  *do_not_record_p = 1;
2393 	  return 0;
2394 	}
2395       if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2396 	*hash_arg_in_memory_p = 1;
2397 
2398       /* Now that we have already found this special case,
2399 	 might as well speed it up as much as possible.  */
2400       hash += (unsigned) MEM;
2401       x = XEXP (x, 0);
2402       goto repeat;
2403 
2404     case USE:
2405       /* A USE that mentions non-volatile memory needs special
2406 	 handling since the MEM may be BLKmode which normally
2407 	 prevents an entry from being made.  Pure calls are
2408 	 marked by a USE which mentions BLKmode memory.
2409 	 See calls.c:emit_call_1.  */
2410       if (MEM_P (XEXP (x, 0))
2411 	  && ! MEM_VOLATILE_P (XEXP (x, 0)))
2412 	{
2413 	  hash += (unsigned) USE;
2414 	  x = XEXP (x, 0);
2415 
2416 	  if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2417 	    *hash_arg_in_memory_p = 1;
2418 
2419 	  /* Now that we have already found this special case,
2420 	     might as well speed it up as much as possible.  */
2421 	  hash += (unsigned) MEM;
2422 	  x = XEXP (x, 0);
2423 	  goto repeat;
2424 	}
2425       break;
2426 
2427     case PRE_DEC:
2428     case PRE_INC:
2429     case POST_DEC:
2430     case POST_INC:
2431     case PRE_MODIFY:
2432     case POST_MODIFY:
2433     case PC:
2434     case CC0:
2435     case CALL:
2436     case UNSPEC_VOLATILE:
2437       if (do_not_record_p) {
2438         *do_not_record_p = 1;
2439         return 0;
2440       }
2441       else
2442         return hash;
2443       break;
2444 
2445     case ASM_OPERANDS:
2446       if (do_not_record_p && MEM_VOLATILE_P (x))
2447 	{
2448 	  *do_not_record_p = 1;
2449 	  return 0;
2450 	}
2451       else
2452 	{
2453 	  /* We don't want to take the filename and line into account.  */
2454 	  hash += (unsigned) code + (unsigned) GET_MODE (x)
2455 	    + hash_rtx_string (ASM_OPERANDS_TEMPLATE (x))
2456 	    + hash_rtx_string (ASM_OPERANDS_OUTPUT_CONSTRAINT (x))
2457 	    + (unsigned) ASM_OPERANDS_OUTPUT_IDX (x);
2458 
2459 	  if (ASM_OPERANDS_INPUT_LENGTH (x))
2460 	    {
2461 	      for (i = 1; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
2462 		{
2463 		  hash += (hash_rtx_cb (ASM_OPERANDS_INPUT (x, i),
2464                                         GET_MODE (ASM_OPERANDS_INPUT (x, i)),
2465                                         do_not_record_p, hash_arg_in_memory_p,
2466                                         have_reg_qty, cb)
2467 			   + hash_rtx_string
2468                            (ASM_OPERANDS_INPUT_CONSTRAINT (x, i)));
2469 		}
2470 
2471 	      hash += hash_rtx_string (ASM_OPERANDS_INPUT_CONSTRAINT (x, 0));
2472 	      x = ASM_OPERANDS_INPUT (x, 0);
2473 	      mode = GET_MODE (x);
2474 	      goto repeat;
2475 	    }
2476 
2477 	  return hash;
2478 	}
2479       break;
2480 
2481     default:
2482       break;
2483     }
2484 
2485   i = GET_RTX_LENGTH (code) - 1;
2486   hash += (unsigned) code + (unsigned) GET_MODE (x);
2487   fmt = GET_RTX_FORMAT (code);
2488   for (; i >= 0; i--)
2489     {
2490       switch (fmt[i])
2491 	{
2492 	case 'e':
2493 	  /* If we are about to do the last recursive call
2494 	     needed at this level, change it into iteration.
2495 	     This function  is called enough to be worth it.  */
2496 	  if (i == 0)
2497 	    {
2498 	      x = XEXP (x, i);
2499 	      goto repeat;
2500 	    }
2501 
2502 	  hash += hash_rtx_cb (XEXP (x, i), VOIDmode, do_not_record_p,
2503                                hash_arg_in_memory_p,
2504                                have_reg_qty, cb);
2505 	  break;
2506 
2507 	case 'E':
2508 	  for (j = 0; j < XVECLEN (x, i); j++)
2509 	    hash += hash_rtx_cb (XVECEXP (x, i, j), VOIDmode, do_not_record_p,
2510                                  hash_arg_in_memory_p,
2511                                  have_reg_qty, cb);
2512 	  break;
2513 
2514 	case 's':
2515 	  hash += hash_rtx_string (XSTR (x, i));
2516 	  break;
2517 
2518 	case 'i':
2519 	  hash += (unsigned int) XINT (x, i);
2520 	  break;
2521 
2522 	case '0': case 't':
2523 	  /* Unused.  */
2524 	  break;
2525 
2526 	default:
2527 	  gcc_unreachable ();
2528 	}
2529     }
2530 
2531   return hash;
2532 }
2533 
2534 /* Hash an rtx.  We are careful to make sure the value is never negative.
2535    Equivalent registers hash identically.
2536    MODE is used in hashing for CONST_INTs only;
2537    otherwise the mode of X is used.
2538 
2539    Store 1 in DO_NOT_RECORD_P if any subexpression is volatile.
2540 
2541    If HASH_ARG_IN_MEMORY_P is not NULL, store 1 in it if X contains
2542    a MEM rtx which does not have the MEM_READONLY_P flag set.
2543 
2544    Note that cse_insn knows that the hash code of a MEM expression
2545    is just (int) MEM plus the hash code of the address.  */
2546 
2547 unsigned
hash_rtx(const_rtx x,machine_mode mode,int * do_not_record_p,int * hash_arg_in_memory_p,bool have_reg_qty)2548 hash_rtx (const_rtx x, machine_mode mode, int *do_not_record_p,
2549 	  int *hash_arg_in_memory_p, bool have_reg_qty)
2550 {
2551   return hash_rtx_cb (x, mode, do_not_record_p,
2552                       hash_arg_in_memory_p, have_reg_qty, NULL);
2553 }
2554 
2555 /* Hash an rtx X for cse via hash_rtx.
2556    Stores 1 in do_not_record if any subexpression is volatile.
2557    Stores 1 in hash_arg_in_memory if X contains a mem rtx which
2558    does not have the MEM_READONLY_P flag set.  */
2559 
2560 static inline unsigned
canon_hash(rtx x,machine_mode mode)2561 canon_hash (rtx x, machine_mode mode)
2562 {
2563   return hash_rtx (x, mode, &do_not_record, &hash_arg_in_memory, true);
2564 }
2565 
2566 /* Like canon_hash but with no side effects, i.e. do_not_record
2567    and hash_arg_in_memory are not changed.  */
2568 
2569 static inline unsigned
safe_hash(rtx x,machine_mode mode)2570 safe_hash (rtx x, machine_mode mode)
2571 {
2572   int dummy_do_not_record;
2573   return hash_rtx (x, mode, &dummy_do_not_record, NULL, true);
2574 }
2575 
2576 /* Return 1 iff X and Y would canonicalize into the same thing,
2577    without actually constructing the canonicalization of either one.
2578    If VALIDATE is nonzero,
2579    we assume X is an expression being processed from the rtl
2580    and Y was found in the hash table.  We check register refs
2581    in Y for being marked as valid.
2582 
2583    If FOR_GCSE is true, we compare X and Y for equivalence for GCSE.  */
2584 
2585 int
exp_equiv_p(const_rtx x,const_rtx y,int validate,bool for_gcse)2586 exp_equiv_p (const_rtx x, const_rtx y, int validate, bool for_gcse)
2587 {
2588   int i, j;
2589   enum rtx_code code;
2590   const char *fmt;
2591 
2592   /* Note: it is incorrect to assume an expression is equivalent to itself
2593      if VALIDATE is nonzero.  */
2594   if (x == y && !validate)
2595     return 1;
2596 
2597   if (x == 0 || y == 0)
2598     return x == y;
2599 
2600   code = GET_CODE (x);
2601   if (code != GET_CODE (y))
2602     return 0;
2603 
2604   /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.  */
2605   if (GET_MODE (x) != GET_MODE (y))
2606     return 0;
2607 
2608   /* MEMs referring to different address space are not equivalent.  */
2609   if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
2610     return 0;
2611 
2612   switch (code)
2613     {
2614     case PC:
2615     case CC0:
2616     CASE_CONST_UNIQUE:
2617       return x == y;
2618 
2619     case LABEL_REF:
2620       return LABEL_REF_LABEL (x) == LABEL_REF_LABEL (y);
2621 
2622     case SYMBOL_REF:
2623       return XSTR (x, 0) == XSTR (y, 0);
2624 
2625     case REG:
2626       if (for_gcse)
2627 	return REGNO (x) == REGNO (y);
2628       else
2629 	{
2630 	  unsigned int regno = REGNO (y);
2631 	  unsigned int i;
2632 	  unsigned int endregno = END_REGNO (y);
2633 
2634 	  /* If the quantities are not the same, the expressions are not
2635 	     equivalent.  If there are and we are not to validate, they
2636 	     are equivalent.  Otherwise, ensure all regs are up-to-date.  */
2637 
2638 	  if (REG_QTY (REGNO (x)) != REG_QTY (regno))
2639 	    return 0;
2640 
2641 	  if (! validate)
2642 	    return 1;
2643 
2644 	  for (i = regno; i < endregno; i++)
2645 	    if (REG_IN_TABLE (i) != REG_TICK (i))
2646 	      return 0;
2647 
2648 	  return 1;
2649 	}
2650 
2651     case MEM:
2652       if (for_gcse)
2653 	{
2654 	  /* A volatile mem should not be considered equivalent to any
2655 	     other.  */
2656 	  if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2657 	    return 0;
2658 
2659 	  /* Can't merge two expressions in different alias sets, since we
2660 	     can decide that the expression is transparent in a block when
2661 	     it isn't, due to it being set with the different alias set.
2662 
2663 	     Also, can't merge two expressions with different MEM_ATTRS.
2664 	     They could e.g. be two different entities allocated into the
2665 	     same space on the stack (see e.g. PR25130).  In that case, the
2666 	     MEM addresses can be the same, even though the two MEMs are
2667 	     absolutely not equivalent.
2668 
2669 	     But because really all MEM attributes should be the same for
2670 	     equivalent MEMs, we just use the invariant that MEMs that have
2671 	     the same attributes share the same mem_attrs data structure.  */
2672 	  if (!mem_attrs_eq_p (MEM_ATTRS (x), MEM_ATTRS (y)))
2673 	    return 0;
2674 
2675 	  /* If we are handling exceptions, we cannot consider two expressions
2676 	     with different trapping status as equivalent, because simple_mem
2677 	     might accept one and reject the other.  */
2678 	  if (cfun->can_throw_non_call_exceptions
2679 	      && (MEM_NOTRAP_P (x) != MEM_NOTRAP_P (y)))
2680 	    return 0;
2681 	}
2682       break;
2683 
2684     /*  For commutative operations, check both orders.  */
2685     case PLUS:
2686     case MULT:
2687     case AND:
2688     case IOR:
2689     case XOR:
2690     case NE:
2691     case EQ:
2692       return ((exp_equiv_p (XEXP (x, 0), XEXP (y, 0),
2693 			     validate, for_gcse)
2694 	       && exp_equiv_p (XEXP (x, 1), XEXP (y, 1),
2695 				validate, for_gcse))
2696 	      || (exp_equiv_p (XEXP (x, 0), XEXP (y, 1),
2697 				validate, for_gcse)
2698 		  && exp_equiv_p (XEXP (x, 1), XEXP (y, 0),
2699 				   validate, for_gcse)));
2700 
2701     case ASM_OPERANDS:
2702       /* We don't use the generic code below because we want to
2703 	 disregard filename and line numbers.  */
2704 
2705       /* A volatile asm isn't equivalent to any other.  */
2706       if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2707 	return 0;
2708 
2709       if (GET_MODE (x) != GET_MODE (y)
2710 	  || strcmp (ASM_OPERANDS_TEMPLATE (x), ASM_OPERANDS_TEMPLATE (y))
2711 	  || strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
2712 		     ASM_OPERANDS_OUTPUT_CONSTRAINT (y))
2713 	  || ASM_OPERANDS_OUTPUT_IDX (x) != ASM_OPERANDS_OUTPUT_IDX (y)
2714 	  || ASM_OPERANDS_INPUT_LENGTH (x) != ASM_OPERANDS_INPUT_LENGTH (y))
2715 	return 0;
2716 
2717       if (ASM_OPERANDS_INPUT_LENGTH (x))
2718 	{
2719 	  for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
2720 	    if (! exp_equiv_p (ASM_OPERANDS_INPUT (x, i),
2721 			       ASM_OPERANDS_INPUT (y, i),
2722 			       validate, for_gcse)
2723 		|| strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x, i),
2724 			   ASM_OPERANDS_INPUT_CONSTRAINT (y, i)))
2725 	      return 0;
2726 	}
2727 
2728       return 1;
2729 
2730     default:
2731       break;
2732     }
2733 
2734   /* Compare the elements.  If any pair of corresponding elements
2735      fail to match, return 0 for the whole thing.  */
2736 
2737   fmt = GET_RTX_FORMAT (code);
2738   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2739     {
2740       switch (fmt[i])
2741 	{
2742 	case 'e':
2743 	  if (! exp_equiv_p (XEXP (x, i), XEXP (y, i),
2744 			      validate, for_gcse))
2745 	    return 0;
2746 	  break;
2747 
2748 	case 'E':
2749 	  if (XVECLEN (x, i) != XVECLEN (y, i))
2750 	    return 0;
2751 	  for (j = 0; j < XVECLEN (x, i); j++)
2752 	    if (! exp_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j),
2753 				validate, for_gcse))
2754 	      return 0;
2755 	  break;
2756 
2757 	case 's':
2758 	  if (strcmp (XSTR (x, i), XSTR (y, i)))
2759 	    return 0;
2760 	  break;
2761 
2762 	case 'i':
2763 	  if (XINT (x, i) != XINT (y, i))
2764 	    return 0;
2765 	  break;
2766 
2767 	case 'w':
2768 	  if (XWINT (x, i) != XWINT (y, i))
2769 	    return 0;
2770 	  break;
2771 
2772 	case '0':
2773 	case 't':
2774 	  break;
2775 
2776 	default:
2777 	  gcc_unreachable ();
2778 	}
2779     }
2780 
2781   return 1;
2782 }
2783 
2784 /* Subroutine of canon_reg.  Pass *XLOC through canon_reg, and validate
2785    the result if necessary.  INSN is as for canon_reg.  */
2786 
2787 static void
validate_canon_reg(rtx * xloc,rtx_insn * insn)2788 validate_canon_reg (rtx *xloc, rtx_insn *insn)
2789 {
2790   if (*xloc)
2791     {
2792       rtx new_rtx = canon_reg (*xloc, insn);
2793 
2794       /* If replacing pseudo with hard reg or vice versa, ensure the
2795          insn remains valid.  Likewise if the insn has MATCH_DUPs.  */
2796       gcc_assert (insn && new_rtx);
2797       validate_change (insn, xloc, new_rtx, 1);
2798     }
2799 }
2800 
2801 /* Canonicalize an expression:
2802    replace each register reference inside it
2803    with the "oldest" equivalent register.
2804 
2805    If INSN is nonzero validate_change is used to ensure that INSN remains valid
2806    after we make our substitution.  The calls are made with IN_GROUP nonzero
2807    so apply_change_group must be called upon the outermost return from this
2808    function (unless INSN is zero).  The result of apply_change_group can
2809    generally be discarded since the changes we are making are optional.  */
2810 
2811 static rtx
canon_reg(rtx x,rtx_insn * insn)2812 canon_reg (rtx x, rtx_insn *insn)
2813 {
2814   int i;
2815   enum rtx_code code;
2816   const char *fmt;
2817 
2818   if (x == 0)
2819     return x;
2820 
2821   code = GET_CODE (x);
2822   switch (code)
2823     {
2824     case PC:
2825     case CC0:
2826     case CONST:
2827     CASE_CONST_ANY:
2828     case SYMBOL_REF:
2829     case LABEL_REF:
2830     case ADDR_VEC:
2831     case ADDR_DIFF_VEC:
2832       return x;
2833 
2834     case REG:
2835       {
2836 	int first;
2837 	int q;
2838 	struct qty_table_elem *ent;
2839 
2840 	/* Never replace a hard reg, because hard regs can appear
2841 	   in more than one machine mode, and we must preserve the mode
2842 	   of each occurrence.  Also, some hard regs appear in
2843 	   MEMs that are shared and mustn't be altered.  Don't try to
2844 	   replace any reg that maps to a reg of class NO_REGS.  */
2845 	if (REGNO (x) < FIRST_PSEUDO_REGISTER
2846 	    || ! REGNO_QTY_VALID_P (REGNO (x)))
2847 	  return x;
2848 
2849 	q = REG_QTY (REGNO (x));
2850 	ent = &qty_table[q];
2851 	first = ent->first_reg;
2852 	return (first >= FIRST_PSEUDO_REGISTER ? regno_reg_rtx[first]
2853 		: REGNO_REG_CLASS (first) == NO_REGS ? x
2854 		: gen_rtx_REG (ent->mode, first));
2855       }
2856 
2857     default:
2858       break;
2859     }
2860 
2861   fmt = GET_RTX_FORMAT (code);
2862   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2863     {
2864       int j;
2865 
2866       if (fmt[i] == 'e')
2867 	validate_canon_reg (&XEXP (x, i), insn);
2868       else if (fmt[i] == 'E')
2869 	for (j = 0; j < XVECLEN (x, i); j++)
2870 	  validate_canon_reg (&XVECEXP (x, i, j), insn);
2871     }
2872 
2873   return x;
2874 }
2875 
2876 /* Given an operation (CODE, *PARG1, *PARG2), where code is a comparison
2877    operation (EQ, NE, GT, etc.), follow it back through the hash table and
2878    what values are being compared.
2879 
2880    *PARG1 and *PARG2 are updated to contain the rtx representing the values
2881    actually being compared.  For example, if *PARG1 was (cc0) and *PARG2
2882    was (const_int 0), *PARG1 and *PARG2 will be set to the objects that were
2883    compared to produce cc0.
2884 
2885    The return value is the comparison operator and is either the code of
2886    A or the code corresponding to the inverse of the comparison.  */
2887 
2888 static enum rtx_code
find_comparison_args(enum rtx_code code,rtx * parg1,rtx * parg2,machine_mode * pmode1,machine_mode * pmode2)2889 find_comparison_args (enum rtx_code code, rtx *parg1, rtx *parg2,
2890 		      machine_mode *pmode1, machine_mode *pmode2)
2891 {
2892   rtx arg1, arg2;
2893   hash_set<rtx> *visited = NULL;
2894   /* Set nonzero when we find something of interest.  */
2895   rtx x = NULL;
2896 
2897   arg1 = *parg1, arg2 = *parg2;
2898 
2899   /* If ARG2 is const0_rtx, see what ARG1 is equivalent to.  */
2900 
2901   while (arg2 == CONST0_RTX (GET_MODE (arg1)))
2902     {
2903       int reverse_code = 0;
2904       struct table_elt *p = 0;
2905 
2906       /* Remember state from previous iteration.  */
2907       if (x)
2908 	{
2909 	  if (!visited)
2910 	    visited = new hash_set<rtx>;
2911 	  visited->add (x);
2912 	  x = 0;
2913 	}
2914 
2915       /* If arg1 is a COMPARE, extract the comparison arguments from it.
2916 	 On machines with CC0, this is the only case that can occur, since
2917 	 fold_rtx will return the COMPARE or item being compared with zero
2918 	 when given CC0.  */
2919 
2920       if (GET_CODE (arg1) == COMPARE && arg2 == const0_rtx)
2921 	x = arg1;
2922 
2923       /* If ARG1 is a comparison operator and CODE is testing for
2924 	 STORE_FLAG_VALUE, get the inner arguments.  */
2925 
2926       else if (COMPARISON_P (arg1))
2927 	{
2928 #ifdef FLOAT_STORE_FLAG_VALUE
2929 	  REAL_VALUE_TYPE fsfv;
2930 #endif
2931 
2932 	  if (code == NE
2933 	      || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2934 		  && code == LT && STORE_FLAG_VALUE == -1)
2935 #ifdef FLOAT_STORE_FLAG_VALUE
2936 	      || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
2937 		  && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2938 		      REAL_VALUE_NEGATIVE (fsfv)))
2939 #endif
2940 	      )
2941 	    x = arg1;
2942 	  else if (code == EQ
2943 		   || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2944 		       && code == GE && STORE_FLAG_VALUE == -1)
2945 #ifdef FLOAT_STORE_FLAG_VALUE
2946 		   || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
2947 		       && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2948 			   REAL_VALUE_NEGATIVE (fsfv)))
2949 #endif
2950 		   )
2951 	    x = arg1, reverse_code = 1;
2952 	}
2953 
2954       /* ??? We could also check for
2955 
2956 	 (ne (and (eq (...) (const_int 1))) (const_int 0))
2957 
2958 	 and related forms, but let's wait until we see them occurring.  */
2959 
2960       if (x == 0)
2961 	/* Look up ARG1 in the hash table and see if it has an equivalence
2962 	   that lets us see what is being compared.  */
2963 	p = lookup (arg1, SAFE_HASH (arg1, GET_MODE (arg1)), GET_MODE (arg1));
2964       if (p)
2965 	{
2966 	  p = p->first_same_value;
2967 
2968 	  /* If what we compare is already known to be constant, that is as
2969 	     good as it gets.
2970 	     We need to break the loop in this case, because otherwise we
2971 	     can have an infinite loop when looking at a reg that is known
2972 	     to be a constant which is the same as a comparison of a reg
2973 	     against zero which appears later in the insn stream, which in
2974 	     turn is constant and the same as the comparison of the first reg
2975 	     against zero...  */
2976 	  if (p->is_const)
2977 	    break;
2978 	}
2979 
2980       for (; p; p = p->next_same_value)
2981 	{
2982 	  machine_mode inner_mode = GET_MODE (p->exp);
2983 #ifdef FLOAT_STORE_FLAG_VALUE
2984 	  REAL_VALUE_TYPE fsfv;
2985 #endif
2986 
2987 	  /* If the entry isn't valid, skip it.  */
2988 	  if (! exp_equiv_p (p->exp, p->exp, 1, false))
2989 	    continue;
2990 
2991 	  /* If it's a comparison we've used before, skip it.  */
2992 	  if (visited && visited->contains (p->exp))
2993 	    continue;
2994 
2995 	  if (GET_CODE (p->exp) == COMPARE
2996 	      /* Another possibility is that this machine has a compare insn
2997 		 that includes the comparison code.  In that case, ARG1 would
2998 		 be equivalent to a comparison operation that would set ARG1 to
2999 		 either STORE_FLAG_VALUE or zero.  If this is an NE operation,
3000 		 ORIG_CODE is the actual comparison being done; if it is an EQ,
3001 		 we must reverse ORIG_CODE.  On machine with a negative value
3002 		 for STORE_FLAG_VALUE, also look at LT and GE operations.  */
3003 	      || ((code == NE
3004 		   || (code == LT
3005 		       && val_signbit_known_set_p (inner_mode,
3006 						   STORE_FLAG_VALUE))
3007 #ifdef FLOAT_STORE_FLAG_VALUE
3008 		   || (code == LT
3009 		       && SCALAR_FLOAT_MODE_P (inner_mode)
3010 		       && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3011 			   REAL_VALUE_NEGATIVE (fsfv)))
3012 #endif
3013 		   )
3014 		  && COMPARISON_P (p->exp)))
3015 	    {
3016 	      x = p->exp;
3017 	      break;
3018 	    }
3019 	  else if ((code == EQ
3020 		    || (code == GE
3021 			&& val_signbit_known_set_p (inner_mode,
3022 						    STORE_FLAG_VALUE))
3023 #ifdef FLOAT_STORE_FLAG_VALUE
3024 		    || (code == GE
3025 			&& SCALAR_FLOAT_MODE_P (inner_mode)
3026 			&& (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3027 			    REAL_VALUE_NEGATIVE (fsfv)))
3028 #endif
3029 		    )
3030 		   && COMPARISON_P (p->exp))
3031 	    {
3032 	      reverse_code = 1;
3033 	      x = p->exp;
3034 	      break;
3035 	    }
3036 
3037 	  /* If this non-trapping address, e.g. fp + constant, the
3038 	     equivalent is a better operand since it may let us predict
3039 	     the value of the comparison.  */
3040 	  else if (!rtx_addr_can_trap_p (p->exp))
3041 	    {
3042 	      arg1 = p->exp;
3043 	      continue;
3044 	    }
3045 	}
3046 
3047       /* If we didn't find a useful equivalence for ARG1, we are done.
3048 	 Otherwise, set up for the next iteration.  */
3049       if (x == 0)
3050 	break;
3051 
3052       /* If we need to reverse the comparison, make sure that is
3053 	 possible -- we can't necessarily infer the value of GE from LT
3054 	 with floating-point operands.  */
3055       if (reverse_code)
3056 	{
3057 	  enum rtx_code reversed = reversed_comparison_code (x, NULL_RTX);
3058 	  if (reversed == UNKNOWN)
3059 	    break;
3060 	  else
3061 	    code = reversed;
3062 	}
3063       else if (COMPARISON_P (x))
3064 	code = GET_CODE (x);
3065       arg1 = XEXP (x, 0), arg2 = XEXP (x, 1);
3066     }
3067 
3068   /* Return our results.  Return the modes from before fold_rtx
3069      because fold_rtx might produce const_int, and then it's too late.  */
3070   *pmode1 = GET_MODE (arg1), *pmode2 = GET_MODE (arg2);
3071   *parg1 = fold_rtx (arg1, 0), *parg2 = fold_rtx (arg2, 0);
3072 
3073   if (visited)
3074     delete visited;
3075   return code;
3076 }
3077 
3078 /* If X is a nontrivial arithmetic operation on an argument for which
3079    a constant value can be determined, return the result of operating
3080    on that value, as a constant.  Otherwise, return X, possibly with
3081    one or more operands changed to a forward-propagated constant.
3082 
3083    If X is a register whose contents are known, we do NOT return
3084    those contents here; equiv_constant is called to perform that task.
3085    For SUBREGs and MEMs, we do that both here and in equiv_constant.
3086 
3087    INSN is the insn that we may be modifying.  If it is 0, make a copy
3088    of X before modifying it.  */
3089 
3090 static rtx
fold_rtx(rtx x,rtx_insn * insn)3091 fold_rtx (rtx x, rtx_insn *insn)
3092 {
3093   enum rtx_code code;
3094   machine_mode mode;
3095   const char *fmt;
3096   int i;
3097   rtx new_rtx = 0;
3098   int changed = 0;
3099 
3100   /* Operands of X.  */
3101   /* Workaround -Wmaybe-uninitialized false positive during
3102      profiledbootstrap by initializing them.  */
3103   rtx folded_arg0 = NULL_RTX;
3104   rtx folded_arg1 = NULL_RTX;
3105 
3106   /* Constant equivalents of first three operands of X;
3107      0 when no such equivalent is known.  */
3108   rtx const_arg0;
3109   rtx const_arg1;
3110   rtx const_arg2;
3111 
3112   /* The mode of the first operand of X.  We need this for sign and zero
3113      extends.  */
3114   machine_mode mode_arg0;
3115 
3116   if (x == 0)
3117     return x;
3118 
3119   /* Try to perform some initial simplifications on X.  */
3120   code = GET_CODE (x);
3121   switch (code)
3122     {
3123     case MEM:
3124     case SUBREG:
3125     /* The first operand of a SIGN/ZERO_EXTRACT has a different meaning
3126        than it would in other contexts.  Basically its mode does not
3127        signify the size of the object read.  That information is carried
3128        by size operand.    If we happen to have a MEM of the appropriate
3129        mode in our tables with a constant value we could simplify the
3130        extraction incorrectly if we allowed substitution of that value
3131        for the MEM.   */
3132     case ZERO_EXTRACT:
3133     case SIGN_EXTRACT:
3134       if ((new_rtx = equiv_constant (x)) != NULL_RTX)
3135         return new_rtx;
3136       return x;
3137 
3138     case CONST:
3139     CASE_CONST_ANY:
3140     case SYMBOL_REF:
3141     case LABEL_REF:
3142     case REG:
3143     case PC:
3144       /* No use simplifying an EXPR_LIST
3145 	 since they are used only for lists of args
3146 	 in a function call's REG_EQUAL note.  */
3147     case EXPR_LIST:
3148       return x;
3149 
3150     case CC0:
3151       return prev_insn_cc0;
3152 
3153     case ASM_OPERANDS:
3154       if (insn)
3155 	{
3156 	  for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
3157 	    validate_change (insn, &ASM_OPERANDS_INPUT (x, i),
3158 			     fold_rtx (ASM_OPERANDS_INPUT (x, i), insn), 0);
3159 	}
3160       return x;
3161 
3162     case CALL:
3163       if (NO_FUNCTION_CSE && CONSTANT_P (XEXP (XEXP (x, 0), 0)))
3164 	return x;
3165       break;
3166 
3167     /* Anything else goes through the loop below.  */
3168     default:
3169       break;
3170     }
3171 
3172   mode = GET_MODE (x);
3173   const_arg0 = 0;
3174   const_arg1 = 0;
3175   const_arg2 = 0;
3176   mode_arg0 = VOIDmode;
3177 
3178   /* Try folding our operands.
3179      Then see which ones have constant values known.  */
3180 
3181   fmt = GET_RTX_FORMAT (code);
3182   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3183     if (fmt[i] == 'e')
3184       {
3185 	rtx folded_arg = XEXP (x, i), const_arg;
3186 	machine_mode mode_arg = GET_MODE (folded_arg);
3187 
3188 	switch (GET_CODE (folded_arg))
3189 	  {
3190 	  case MEM:
3191 	  case REG:
3192 	  case SUBREG:
3193 	    const_arg = equiv_constant (folded_arg);
3194 	    break;
3195 
3196 	  case CONST:
3197 	  CASE_CONST_ANY:
3198 	  case SYMBOL_REF:
3199 	  case LABEL_REF:
3200 	    const_arg = folded_arg;
3201 	    break;
3202 
3203 	  case CC0:
3204 	    /* The cc0-user and cc0-setter may be in different blocks if
3205 	       the cc0-setter potentially traps.  In that case PREV_INSN_CC0
3206 	       will have been cleared as we exited the block with the
3207 	       setter.
3208 
3209 	       While we could potentially track cc0 in this case, it just
3210 	       doesn't seem to be worth it given that cc0 targets are not
3211 	       terribly common or important these days and trapping math
3212 	       is rarely used.  The combination of those two conditions
3213 	       necessary to trip this situation is exceedingly rare in the
3214 	       real world.  */
3215 	    if (!prev_insn_cc0)
3216 	      {
3217 		const_arg = NULL_RTX;
3218 	      }
3219 	    else
3220 	      {
3221 		folded_arg = prev_insn_cc0;
3222 		mode_arg = prev_insn_cc0_mode;
3223 		const_arg = equiv_constant (folded_arg);
3224 	      }
3225 	    break;
3226 
3227 	  default:
3228 	    folded_arg = fold_rtx (folded_arg, insn);
3229 	    const_arg = equiv_constant (folded_arg);
3230 	    break;
3231 	  }
3232 
3233 	/* For the first three operands, see if the operand
3234 	   is constant or equivalent to a constant.  */
3235 	switch (i)
3236 	  {
3237 	  case 0:
3238 	    folded_arg0 = folded_arg;
3239 	    const_arg0 = const_arg;
3240 	    mode_arg0 = mode_arg;
3241 	    break;
3242 	  case 1:
3243 	    folded_arg1 = folded_arg;
3244 	    const_arg1 = const_arg;
3245 	    break;
3246 	  case 2:
3247 	    const_arg2 = const_arg;
3248 	    break;
3249 	  }
3250 
3251 	/* Pick the least expensive of the argument and an equivalent constant
3252 	   argument.  */
3253 	if (const_arg != 0
3254 	    && const_arg != folded_arg
3255 	    && (COST_IN (const_arg, mode_arg, code, i)
3256 		<= COST_IN (folded_arg, mode_arg, code, i))
3257 
3258 	    /* It's not safe to substitute the operand of a conversion
3259 	       operator with a constant, as the conversion's identity
3260 	       depends upon the mode of its operand.  This optimization
3261 	       is handled by the call to simplify_unary_operation.  */
3262 	    && (GET_RTX_CLASS (code) != RTX_UNARY
3263 		|| GET_MODE (const_arg) == mode_arg0
3264 		|| (code != ZERO_EXTEND
3265 		    && code != SIGN_EXTEND
3266 		    && code != TRUNCATE
3267 		    && code != FLOAT_TRUNCATE
3268 		    && code != FLOAT_EXTEND
3269 		    && code != FLOAT
3270 		    && code != FIX
3271 		    && code != UNSIGNED_FLOAT
3272 		    && code != UNSIGNED_FIX)))
3273 	  folded_arg = const_arg;
3274 
3275 	if (folded_arg == XEXP (x, i))
3276 	  continue;
3277 
3278 	if (insn == NULL_RTX && !changed)
3279 	  x = copy_rtx (x);
3280 	changed = 1;
3281 	validate_unshare_change (insn, &XEXP (x, i), folded_arg, 1);
3282       }
3283 
3284   if (changed)
3285     {
3286       /* Canonicalize X if necessary, and keep const_argN and folded_argN
3287 	 consistent with the order in X.  */
3288       if (canonicalize_change_group (insn, x))
3289 	{
3290 	  std::swap (const_arg0, const_arg1);
3291 	  std::swap (folded_arg0, folded_arg1);
3292 	}
3293 
3294       apply_change_group ();
3295     }
3296 
3297   /* If X is an arithmetic operation, see if we can simplify it.  */
3298 
3299   switch (GET_RTX_CLASS (code))
3300     {
3301     case RTX_UNARY:
3302       {
3303 	/* We can't simplify extension ops unless we know the
3304 	   original mode.  */
3305 	if ((code == ZERO_EXTEND || code == SIGN_EXTEND)
3306 	    && mode_arg0 == VOIDmode)
3307 	  break;
3308 
3309 	new_rtx = simplify_unary_operation (code, mode,
3310 					    const_arg0 ? const_arg0 : folded_arg0,
3311 					    mode_arg0);
3312       }
3313       break;
3314 
3315     case RTX_COMPARE:
3316     case RTX_COMM_COMPARE:
3317       /* See what items are actually being compared and set FOLDED_ARG[01]
3318 	 to those values and CODE to the actual comparison code.  If any are
3319 	 constant, set CONST_ARG0 and CONST_ARG1 appropriately.  We needn't
3320 	 do anything if both operands are already known to be constant.  */
3321 
3322       /* ??? Vector mode comparisons are not supported yet.  */
3323       if (VECTOR_MODE_P (mode))
3324 	break;
3325 
3326       if (const_arg0 == 0 || const_arg1 == 0)
3327 	{
3328 	  struct table_elt *p0, *p1;
3329 	  rtx true_rtx, false_rtx;
3330 	  machine_mode mode_arg1;
3331 
3332 	  if (SCALAR_FLOAT_MODE_P (mode))
3333 	    {
3334 #ifdef FLOAT_STORE_FLAG_VALUE
3335 	      true_rtx = (const_double_from_real_value
3336 			  (FLOAT_STORE_FLAG_VALUE (mode), mode));
3337 #else
3338 	      true_rtx = NULL_RTX;
3339 #endif
3340 	      false_rtx = CONST0_RTX (mode);
3341 	    }
3342 	  else
3343 	    {
3344 	      true_rtx = const_true_rtx;
3345 	      false_rtx = const0_rtx;
3346 	    }
3347 
3348 	  code = find_comparison_args (code, &folded_arg0, &folded_arg1,
3349 				       &mode_arg0, &mode_arg1);
3350 
3351 	  /* If the mode is VOIDmode or a MODE_CC mode, we don't know
3352 	     what kinds of things are being compared, so we can't do
3353 	     anything with this comparison.  */
3354 
3355 	  if (mode_arg0 == VOIDmode || GET_MODE_CLASS (mode_arg0) == MODE_CC)
3356 	    break;
3357 
3358 	  const_arg0 = equiv_constant (folded_arg0);
3359 	  const_arg1 = equiv_constant (folded_arg1);
3360 
3361 	  /* If we do not now have two constants being compared, see
3362 	     if we can nevertheless deduce some things about the
3363 	     comparison.  */
3364 	  if (const_arg0 == 0 || const_arg1 == 0)
3365 	    {
3366 	      if (const_arg1 != NULL)
3367 		{
3368 		  rtx cheapest_simplification;
3369 		  int cheapest_cost;
3370 		  rtx simp_result;
3371 		  struct table_elt *p;
3372 
3373 		  /* See if we can find an equivalent of folded_arg0
3374 		     that gets us a cheaper expression, possibly a
3375 		     constant through simplifications.  */
3376 		  p = lookup (folded_arg0, SAFE_HASH (folded_arg0, mode_arg0),
3377 			      mode_arg0);
3378 
3379 		  if (p != NULL)
3380 		    {
3381 		      cheapest_simplification = x;
3382 		      cheapest_cost = COST (x, mode);
3383 
3384 		      for (p = p->first_same_value; p != NULL; p = p->next_same_value)
3385 			{
3386 			  int cost;
3387 
3388 			  /* If the entry isn't valid, skip it.  */
3389 			  if (! exp_equiv_p (p->exp, p->exp, 1, false))
3390 			    continue;
3391 
3392 			  /* Try to simplify using this equivalence.  */
3393 			  simp_result
3394 			    = simplify_relational_operation (code, mode,
3395 							     mode_arg0,
3396 							     p->exp,
3397 							     const_arg1);
3398 
3399 			  if (simp_result == NULL)
3400 			    continue;
3401 
3402 			  cost = COST (simp_result, mode);
3403 			  if (cost < cheapest_cost)
3404 			    {
3405 			      cheapest_cost = cost;
3406 			      cheapest_simplification = simp_result;
3407 			    }
3408 			}
3409 
3410 		      /* If we have a cheaper expression now, use that
3411 			 and try folding it further, from the top.  */
3412 		      if (cheapest_simplification != x)
3413 			return fold_rtx (copy_rtx (cheapest_simplification),
3414 					 insn);
3415 		    }
3416 		}
3417 
3418 	      /* See if the two operands are the same.  */
3419 
3420 	      if ((REG_P (folded_arg0)
3421 		   && REG_P (folded_arg1)
3422 		   && (REG_QTY (REGNO (folded_arg0))
3423 		       == REG_QTY (REGNO (folded_arg1))))
3424 		  || ((p0 = lookup (folded_arg0,
3425 				    SAFE_HASH (folded_arg0, mode_arg0),
3426 				    mode_arg0))
3427 		      && (p1 = lookup (folded_arg1,
3428 				       SAFE_HASH (folded_arg1, mode_arg0),
3429 				       mode_arg0))
3430 		      && p0->first_same_value == p1->first_same_value))
3431 		folded_arg1 = folded_arg0;
3432 
3433 	      /* If FOLDED_ARG0 is a register, see if the comparison we are
3434 		 doing now is either the same as we did before or the reverse
3435 		 (we only check the reverse if not floating-point).  */
3436 	      else if (REG_P (folded_arg0))
3437 		{
3438 		  int qty = REG_QTY (REGNO (folded_arg0));
3439 
3440 		  if (REGNO_QTY_VALID_P (REGNO (folded_arg0)))
3441 		    {
3442 		      struct qty_table_elem *ent = &qty_table[qty];
3443 
3444 		      if ((comparison_dominates_p (ent->comparison_code, code)
3445 			   || (! FLOAT_MODE_P (mode_arg0)
3446 			       && comparison_dominates_p (ent->comparison_code,
3447 						          reverse_condition (code))))
3448 			  && (rtx_equal_p (ent->comparison_const, folded_arg1)
3449 			      || (const_arg1
3450 				  && rtx_equal_p (ent->comparison_const,
3451 						  const_arg1))
3452 			      || (REG_P (folded_arg1)
3453 				  && (REG_QTY (REGNO (folded_arg1)) == ent->comparison_qty))))
3454 			{
3455 			  if (comparison_dominates_p (ent->comparison_code, code))
3456 			    {
3457 			      if (true_rtx)
3458 				return true_rtx;
3459 			      else
3460 				break;
3461 			    }
3462 			  else
3463 			    return false_rtx;
3464 			}
3465 		    }
3466 		}
3467 	    }
3468 	}
3469 
3470       /* If we are comparing against zero, see if the first operand is
3471 	 equivalent to an IOR with a constant.  If so, we may be able to
3472 	 determine the result of this comparison.  */
3473       if (const_arg1 == const0_rtx && !const_arg0)
3474 	{
3475 	  rtx y = lookup_as_function (folded_arg0, IOR);
3476 	  rtx inner_const;
3477 
3478 	  if (y != 0
3479 	      && (inner_const = equiv_constant (XEXP (y, 1))) != 0
3480 	      && CONST_INT_P (inner_const)
3481 	      && INTVAL (inner_const) != 0)
3482 	    folded_arg0 = gen_rtx_IOR (mode_arg0, XEXP (y, 0), inner_const);
3483 	}
3484 
3485       {
3486 	rtx op0 = const_arg0 ? const_arg0 : copy_rtx (folded_arg0);
3487 	rtx op1 = const_arg1 ? const_arg1 : copy_rtx (folded_arg1);
3488 	new_rtx = simplify_relational_operation (code, mode, mode_arg0,
3489 						 op0, op1);
3490       }
3491       break;
3492 
3493     case RTX_BIN_ARITH:
3494     case RTX_COMM_ARITH:
3495       switch (code)
3496 	{
3497 	case PLUS:
3498 	  /* If the second operand is a LABEL_REF, see if the first is a MINUS
3499 	     with that LABEL_REF as its second operand.  If so, the result is
3500 	     the first operand of that MINUS.  This handles switches with an
3501 	     ADDR_DIFF_VEC table.  */
3502 	  if (const_arg1 && GET_CODE (const_arg1) == LABEL_REF)
3503 	    {
3504 	      rtx y
3505 		= GET_CODE (folded_arg0) == MINUS ? folded_arg0
3506 		: lookup_as_function (folded_arg0, MINUS);
3507 
3508 	      if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
3509 		  && LABEL_REF_LABEL (XEXP (y, 1)) == LABEL_REF_LABEL (const_arg1))
3510 		return XEXP (y, 0);
3511 
3512 	      /* Now try for a CONST of a MINUS like the above.  */
3513 	      if ((y = (GET_CODE (folded_arg0) == CONST ? folded_arg0
3514 			: lookup_as_function (folded_arg0, CONST))) != 0
3515 		  && GET_CODE (XEXP (y, 0)) == MINUS
3516 		  && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
3517 		  && LABEL_REF_LABEL (XEXP (XEXP (y, 0), 1)) == LABEL_REF_LABEL (const_arg1))
3518 		return XEXP (XEXP (y, 0), 0);
3519 	    }
3520 
3521 	  /* Likewise if the operands are in the other order.  */
3522 	  if (const_arg0 && GET_CODE (const_arg0) == LABEL_REF)
3523 	    {
3524 	      rtx y
3525 		= GET_CODE (folded_arg1) == MINUS ? folded_arg1
3526 		: lookup_as_function (folded_arg1, MINUS);
3527 
3528 	      if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
3529 		  && LABEL_REF_LABEL (XEXP (y, 1)) == LABEL_REF_LABEL (const_arg0))
3530 		return XEXP (y, 0);
3531 
3532 	      /* Now try for a CONST of a MINUS like the above.  */
3533 	      if ((y = (GET_CODE (folded_arg1) == CONST ? folded_arg1
3534 			: lookup_as_function (folded_arg1, CONST))) != 0
3535 		  && GET_CODE (XEXP (y, 0)) == MINUS
3536 		  && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
3537 		  && LABEL_REF_LABEL (XEXP (XEXP (y, 0), 1)) == LABEL_REF_LABEL (const_arg0))
3538 		return XEXP (XEXP (y, 0), 0);
3539 	    }
3540 
3541 	  /* If second operand is a register equivalent to a negative
3542 	     CONST_INT, see if we can find a register equivalent to the
3543 	     positive constant.  Make a MINUS if so.  Don't do this for
3544 	     a non-negative constant since we might then alternate between
3545 	     choosing positive and negative constants.  Having the positive
3546 	     constant previously-used is the more common case.  Be sure
3547 	     the resulting constant is non-negative; if const_arg1 were
3548 	     the smallest negative number this would overflow: depending
3549 	     on the mode, this would either just be the same value (and
3550 	     hence not save anything) or be incorrect.  */
3551 	  if (const_arg1 != 0 && CONST_INT_P (const_arg1)
3552 	      && INTVAL (const_arg1) < 0
3553 	      /* This used to test
3554 
3555 	         -INTVAL (const_arg1) >= 0
3556 
3557 		 But The Sun V5.0 compilers mis-compiled that test.  So
3558 		 instead we test for the problematic value in a more direct
3559 		 manner and hope the Sun compilers get it correct.  */
3560 	      && INTVAL (const_arg1) !=
3561 	        ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1))
3562 	      && REG_P (folded_arg1))
3563 	    {
3564 	      rtx new_const = GEN_INT (-INTVAL (const_arg1));
3565 	      struct table_elt *p
3566 		= lookup (new_const, SAFE_HASH (new_const, mode), mode);
3567 
3568 	      if (p)
3569 		for (p = p->first_same_value; p; p = p->next_same_value)
3570 		  if (REG_P (p->exp))
3571 		    return simplify_gen_binary (MINUS, mode, folded_arg0,
3572 						canon_reg (p->exp, NULL));
3573 	    }
3574 	  goto from_plus;
3575 
3576 	case MINUS:
3577 	  /* If we have (MINUS Y C), see if Y is known to be (PLUS Z C2).
3578 	     If so, produce (PLUS Z C2-C).  */
3579 	  if (const_arg1 != 0 && CONST_INT_P (const_arg1))
3580 	    {
3581 	      rtx y = lookup_as_function (XEXP (x, 0), PLUS);
3582 	      if (y && CONST_INT_P (XEXP (y, 1)))
3583 		return fold_rtx (plus_constant (mode, copy_rtx (y),
3584 						-INTVAL (const_arg1)),
3585 				 NULL);
3586 	    }
3587 
3588 	  /* Fall through.  */
3589 
3590 	from_plus:
3591 	case SMIN:    case SMAX:      case UMIN:    case UMAX:
3592 	case IOR:     case AND:       case XOR:
3593 	case MULT:
3594 	case ASHIFT:  case LSHIFTRT:  case ASHIFTRT:
3595 	  /* If we have (<op> <reg> <const_int>) for an associative OP and REG
3596 	     is known to be of similar form, we may be able to replace the
3597 	     operation with a combined operation.  This may eliminate the
3598 	     intermediate operation if every use is simplified in this way.
3599 	     Note that the similar optimization done by combine.c only works
3600 	     if the intermediate operation's result has only one reference.  */
3601 
3602 	  if (REG_P (folded_arg0)
3603 	      && const_arg1 && CONST_INT_P (const_arg1))
3604 	    {
3605 	      int is_shift
3606 		= (code == ASHIFT || code == ASHIFTRT || code == LSHIFTRT);
3607 	      rtx y, inner_const, new_const;
3608 	      rtx canon_const_arg1 = const_arg1;
3609 	      enum rtx_code associate_code;
3610 
3611 	      if (is_shift
3612 		  && (INTVAL (const_arg1) >= GET_MODE_PRECISION (mode)
3613 		      || INTVAL (const_arg1) < 0))
3614 		{
3615 		  if (SHIFT_COUNT_TRUNCATED)
3616 		    canon_const_arg1 = GEN_INT (INTVAL (const_arg1)
3617 						& (GET_MODE_BITSIZE (mode)
3618 						   - 1));
3619 		  else
3620 		    break;
3621 		}
3622 
3623 	      y = lookup_as_function (folded_arg0, code);
3624 	      if (y == 0)
3625 		break;
3626 
3627 	      /* If we have compiled a statement like
3628 		 "if (x == (x & mask1))", and now are looking at
3629 		 "x & mask2", we will have a case where the first operand
3630 		 of Y is the same as our first operand.  Unless we detect
3631 		 this case, an infinite loop will result.  */
3632 	      if (XEXP (y, 0) == folded_arg0)
3633 		break;
3634 
3635 	      inner_const = equiv_constant (fold_rtx (XEXP (y, 1), 0));
3636 	      if (!inner_const || !CONST_INT_P (inner_const))
3637 		break;
3638 
3639 	      /* Don't associate these operations if they are a PLUS with the
3640 		 same constant and it is a power of two.  These might be doable
3641 		 with a pre- or post-increment.  Similarly for two subtracts of
3642 		 identical powers of two with post decrement.  */
3643 
3644 	      if (code == PLUS && const_arg1 == inner_const
3645 		  && ((HAVE_PRE_INCREMENT
3646 			  && exact_log2 (INTVAL (const_arg1)) >= 0)
3647 		      || (HAVE_POST_INCREMENT
3648 			  && exact_log2 (INTVAL (const_arg1)) >= 0)
3649 		      || (HAVE_PRE_DECREMENT
3650 			  && exact_log2 (- INTVAL (const_arg1)) >= 0)
3651 		      || (HAVE_POST_DECREMENT
3652 			  && exact_log2 (- INTVAL (const_arg1)) >= 0)))
3653 		break;
3654 
3655 	      /* ??? Vector mode shifts by scalar
3656 		 shift operand are not supported yet.  */
3657 	      if (is_shift && VECTOR_MODE_P (mode))
3658                 break;
3659 
3660 	      if (is_shift
3661 		  && (INTVAL (inner_const) >= GET_MODE_PRECISION (mode)
3662 		      || INTVAL (inner_const) < 0))
3663 		{
3664 		  if (SHIFT_COUNT_TRUNCATED)
3665 		    inner_const = GEN_INT (INTVAL (inner_const)
3666 					   & (GET_MODE_BITSIZE (mode) - 1));
3667 		  else
3668 		    break;
3669 		}
3670 
3671 	      /* Compute the code used to compose the constants.  For example,
3672 		 A-C1-C2 is A-(C1 + C2), so if CODE == MINUS, we want PLUS.  */
3673 
3674 	      associate_code = (is_shift || code == MINUS ? PLUS : code);
3675 
3676 	      new_const = simplify_binary_operation (associate_code, mode,
3677 						     canon_const_arg1,
3678 						     inner_const);
3679 
3680 	      if (new_const == 0)
3681 		break;
3682 
3683 	      /* If we are associating shift operations, don't let this
3684 		 produce a shift of the size of the object or larger.
3685 		 This could occur when we follow a sign-extend by a right
3686 		 shift on a machine that does a sign-extend as a pair
3687 		 of shifts.  */
3688 
3689 	      if (is_shift
3690 		  && CONST_INT_P (new_const)
3691 		  && INTVAL (new_const) >= GET_MODE_PRECISION (mode))
3692 		{
3693 		  /* As an exception, we can turn an ASHIFTRT of this
3694 		     form into a shift of the number of bits - 1.  */
3695 		  if (code == ASHIFTRT)
3696 		    new_const = GEN_INT (GET_MODE_BITSIZE (mode) - 1);
3697 		  else if (!side_effects_p (XEXP (y, 0)))
3698 		    return CONST0_RTX (mode);
3699 		  else
3700 		    break;
3701 		}
3702 
3703 	      y = copy_rtx (XEXP (y, 0));
3704 
3705 	      /* If Y contains our first operand (the most common way this
3706 		 can happen is if Y is a MEM), we would do into an infinite
3707 		 loop if we tried to fold it.  So don't in that case.  */
3708 
3709 	      if (! reg_mentioned_p (folded_arg0, y))
3710 		y = fold_rtx (y, insn);
3711 
3712 	      return simplify_gen_binary (code, mode, y, new_const);
3713 	    }
3714 	  break;
3715 
3716 	case DIV:       case UDIV:
3717 	  /* ??? The associative optimization performed immediately above is
3718 	     also possible for DIV and UDIV using associate_code of MULT.
3719 	     However, we would need extra code to verify that the
3720 	     multiplication does not overflow, that is, there is no overflow
3721 	     in the calculation of new_const.  */
3722 	  break;
3723 
3724 	default:
3725 	  break;
3726 	}
3727 
3728       new_rtx = simplify_binary_operation (code, mode,
3729 				       const_arg0 ? const_arg0 : folded_arg0,
3730 				       const_arg1 ? const_arg1 : folded_arg1);
3731       break;
3732 
3733     case RTX_OBJ:
3734       /* (lo_sum (high X) X) is simply X.  */
3735       if (code == LO_SUM && const_arg0 != 0
3736 	  && GET_CODE (const_arg0) == HIGH
3737 	  && rtx_equal_p (XEXP (const_arg0, 0), const_arg1))
3738 	return const_arg1;
3739       break;
3740 
3741     case RTX_TERNARY:
3742     case RTX_BITFIELD_OPS:
3743       new_rtx = simplify_ternary_operation (code, mode, mode_arg0,
3744 					const_arg0 ? const_arg0 : folded_arg0,
3745 					const_arg1 ? const_arg1 : folded_arg1,
3746 					const_arg2 ? const_arg2 : XEXP (x, 2));
3747       break;
3748 
3749     default:
3750       break;
3751     }
3752 
3753   return new_rtx ? new_rtx : x;
3754 }
3755 
3756 /* Return a constant value currently equivalent to X.
3757    Return 0 if we don't know one.  */
3758 
3759 static rtx
equiv_constant(rtx x)3760 equiv_constant (rtx x)
3761 {
3762   if (REG_P (x)
3763       && REGNO_QTY_VALID_P (REGNO (x)))
3764     {
3765       int x_q = REG_QTY (REGNO (x));
3766       struct qty_table_elem *x_ent = &qty_table[x_q];
3767 
3768       if (x_ent->const_rtx)
3769 	x = gen_lowpart (GET_MODE (x), x_ent->const_rtx);
3770     }
3771 
3772   if (x == 0 || CONSTANT_P (x))
3773     return x;
3774 
3775   if (GET_CODE (x) == SUBREG)
3776     {
3777       machine_mode mode = GET_MODE (x);
3778       machine_mode imode = GET_MODE (SUBREG_REG (x));
3779       rtx new_rtx;
3780 
3781       /* See if we previously assigned a constant value to this SUBREG.  */
3782       if ((new_rtx = lookup_as_function (x, CONST_INT)) != 0
3783 	  || (new_rtx = lookup_as_function (x, CONST_WIDE_INT)) != 0
3784           || (new_rtx = lookup_as_function (x, CONST_DOUBLE)) != 0
3785           || (new_rtx = lookup_as_function (x, CONST_FIXED)) != 0)
3786         return new_rtx;
3787 
3788       /* If we didn't and if doing so makes sense, see if we previously
3789 	 assigned a constant value to the enclosing word mode SUBREG.  */
3790       if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (word_mode)
3791 	  && GET_MODE_SIZE (word_mode) < GET_MODE_SIZE (imode))
3792 	{
3793 	  int byte = SUBREG_BYTE (x) - subreg_lowpart_offset (mode, word_mode);
3794 	  if (byte >= 0 && (byte % UNITS_PER_WORD) == 0)
3795 	    {
3796 	      rtx y = gen_rtx_SUBREG (word_mode, SUBREG_REG (x), byte);
3797 	      new_rtx = lookup_as_function (y, CONST_INT);
3798 	      if (new_rtx)
3799 		return gen_lowpart (mode, new_rtx);
3800 	    }
3801 	}
3802 
3803       /* Otherwise see if we already have a constant for the inner REG,
3804 	 and if that is enough to calculate an equivalent constant for
3805 	 the subreg.  Note that the upper bits of paradoxical subregs
3806 	 are undefined, so they cannot be said to equal anything.  */
3807       if (REG_P (SUBREG_REG (x))
3808 	  && GET_MODE_SIZE (mode) <= GET_MODE_SIZE (imode)
3809 	  && (new_rtx = equiv_constant (SUBREG_REG (x))) != 0)
3810         return simplify_subreg (mode, new_rtx, imode, SUBREG_BYTE (x));
3811 
3812       return 0;
3813     }
3814 
3815   /* If X is a MEM, see if it is a constant-pool reference, or look it up in
3816      the hash table in case its value was seen before.  */
3817 
3818   if (MEM_P (x))
3819     {
3820       struct table_elt *elt;
3821 
3822       x = avoid_constant_pool_reference (x);
3823       if (CONSTANT_P (x))
3824 	return x;
3825 
3826       elt = lookup (x, SAFE_HASH (x, GET_MODE (x)), GET_MODE (x));
3827       if (elt == 0)
3828 	return 0;
3829 
3830       for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
3831 	if (elt->is_const && CONSTANT_P (elt->exp))
3832 	  return elt->exp;
3833     }
3834 
3835   return 0;
3836 }
3837 
3838 /* Given INSN, a jump insn, TAKEN indicates if we are following the
3839    "taken" branch.
3840 
3841    In certain cases, this can cause us to add an equivalence.  For example,
3842    if we are following the taken case of
3843 	if (i == 2)
3844    we can add the fact that `i' and '2' are now equivalent.
3845 
3846    In any case, we can record that this comparison was passed.  If the same
3847    comparison is seen later, we will know its value.  */
3848 
3849 static void
record_jump_equiv(rtx_insn * insn,bool taken)3850 record_jump_equiv (rtx_insn *insn, bool taken)
3851 {
3852   int cond_known_true;
3853   rtx op0, op1;
3854   rtx set;
3855   machine_mode mode, mode0, mode1;
3856   int reversed_nonequality = 0;
3857   enum rtx_code code;
3858 
3859   /* Ensure this is the right kind of insn.  */
3860   gcc_assert (any_condjump_p (insn));
3861 
3862   set = pc_set (insn);
3863 
3864   /* See if this jump condition is known true or false.  */
3865   if (taken)
3866     cond_known_true = (XEXP (SET_SRC (set), 2) == pc_rtx);
3867   else
3868     cond_known_true = (XEXP (SET_SRC (set), 1) == pc_rtx);
3869 
3870   /* Get the type of comparison being done and the operands being compared.
3871      If we had to reverse a non-equality condition, record that fact so we
3872      know that it isn't valid for floating-point.  */
3873   code = GET_CODE (XEXP (SET_SRC (set), 0));
3874   op0 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 0), insn);
3875   op1 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 1), insn);
3876 
3877   /* On a cc0 target the cc0-setter and cc0-user may end up in different
3878      blocks.  When that happens the tracking of the cc0-setter via
3879      PREV_INSN_CC0 is spoiled.  That means that fold_rtx may return
3880      NULL_RTX.  In those cases, there's nothing to record.  */
3881   if (op0 == NULL_RTX || op1 == NULL_RTX)
3882     return;
3883 
3884   code = find_comparison_args (code, &op0, &op1, &mode0, &mode1);
3885   if (! cond_known_true)
3886     {
3887       code = reversed_comparison_code_parts (code, op0, op1, insn);
3888 
3889       /* Don't remember if we can't find the inverse.  */
3890       if (code == UNKNOWN)
3891 	return;
3892     }
3893 
3894   /* The mode is the mode of the non-constant.  */
3895   mode = mode0;
3896   if (mode1 != VOIDmode)
3897     mode = mode1;
3898 
3899   record_jump_cond (code, mode, op0, op1, reversed_nonequality);
3900 }
3901 
3902 /* Yet another form of subreg creation.  In this case, we want something in
3903    MODE, and we should assume OP has MODE iff it is naturally modeless.  */
3904 
3905 static rtx
record_jump_cond_subreg(machine_mode mode,rtx op)3906 record_jump_cond_subreg (machine_mode mode, rtx op)
3907 {
3908   machine_mode op_mode = GET_MODE (op);
3909   if (op_mode == mode || op_mode == VOIDmode)
3910     return op;
3911   return lowpart_subreg (mode, op, op_mode);
3912 }
3913 
3914 /* We know that comparison CODE applied to OP0 and OP1 in MODE is true.
3915    REVERSED_NONEQUALITY is nonzero if CODE had to be swapped.
3916    Make any useful entries we can with that information.  Called from
3917    above function and called recursively.  */
3918 
3919 static void
record_jump_cond(enum rtx_code code,machine_mode mode,rtx op0,rtx op1,int reversed_nonequality)3920 record_jump_cond (enum rtx_code code, machine_mode mode, rtx op0,
3921 		  rtx op1, int reversed_nonequality)
3922 {
3923   unsigned op0_hash, op1_hash;
3924   int op0_in_memory, op1_in_memory;
3925   struct table_elt *op0_elt, *op1_elt;
3926 
3927   /* If OP0 and OP1 are known equal, and either is a paradoxical SUBREG,
3928      we know that they are also equal in the smaller mode (this is also
3929      true for all smaller modes whether or not there is a SUBREG, but
3930      is not worth testing for with no SUBREG).  */
3931 
3932   /* Note that GET_MODE (op0) may not equal MODE.  */
3933   if (code == EQ && paradoxical_subreg_p (op0))
3934     {
3935       machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
3936       rtx tem = record_jump_cond_subreg (inner_mode, op1);
3937       if (tem)
3938 	record_jump_cond (code, mode, SUBREG_REG (op0), tem,
3939 			  reversed_nonequality);
3940     }
3941 
3942   if (code == EQ && paradoxical_subreg_p (op1))
3943     {
3944       machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
3945       rtx tem = record_jump_cond_subreg (inner_mode, op0);
3946       if (tem)
3947 	record_jump_cond (code, mode, SUBREG_REG (op1), tem,
3948 			  reversed_nonequality);
3949     }
3950 
3951   /* Similarly, if this is an NE comparison, and either is a SUBREG
3952      making a smaller mode, we know the whole thing is also NE.  */
3953 
3954   /* Note that GET_MODE (op0) may not equal MODE;
3955      if we test MODE instead, we can get an infinite recursion
3956      alternating between two modes each wider than MODE.  */
3957 
3958   if (code == NE && GET_CODE (op0) == SUBREG
3959       && subreg_lowpart_p (op0)
3960       && (GET_MODE_SIZE (GET_MODE (op0))
3961 	  < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
3962     {
3963       machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
3964       rtx tem = record_jump_cond_subreg (inner_mode, op1);
3965       if (tem)
3966 	record_jump_cond (code, mode, SUBREG_REG (op0), tem,
3967 			  reversed_nonequality);
3968     }
3969 
3970   if (code == NE && GET_CODE (op1) == SUBREG
3971       && subreg_lowpart_p (op1)
3972       && (GET_MODE_SIZE (GET_MODE (op1))
3973 	  < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
3974     {
3975       machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
3976       rtx tem = record_jump_cond_subreg (inner_mode, op0);
3977       if (tem)
3978 	record_jump_cond (code, mode, SUBREG_REG (op1), tem,
3979 			  reversed_nonequality);
3980     }
3981 
3982   /* Hash both operands.  */
3983 
3984   do_not_record = 0;
3985   hash_arg_in_memory = 0;
3986   op0_hash = HASH (op0, mode);
3987   op0_in_memory = hash_arg_in_memory;
3988 
3989   if (do_not_record)
3990     return;
3991 
3992   do_not_record = 0;
3993   hash_arg_in_memory = 0;
3994   op1_hash = HASH (op1, mode);
3995   op1_in_memory = hash_arg_in_memory;
3996 
3997   if (do_not_record)
3998     return;
3999 
4000   /* Look up both operands.  */
4001   op0_elt = lookup (op0, op0_hash, mode);
4002   op1_elt = lookup (op1, op1_hash, mode);
4003 
4004   /* If both operands are already equivalent or if they are not in the
4005      table but are identical, do nothing.  */
4006   if ((op0_elt != 0 && op1_elt != 0
4007        && op0_elt->first_same_value == op1_elt->first_same_value)
4008       || op0 == op1 || rtx_equal_p (op0, op1))
4009     return;
4010 
4011   /* If we aren't setting two things equal all we can do is save this
4012      comparison.   Similarly if this is floating-point.  In the latter
4013      case, OP1 might be zero and both -0.0 and 0.0 are equal to it.
4014      If we record the equality, we might inadvertently delete code
4015      whose intent was to change -0 to +0.  */
4016 
4017   if (code != EQ || FLOAT_MODE_P (GET_MODE (op0)))
4018     {
4019       struct qty_table_elem *ent;
4020       int qty;
4021 
4022       /* If we reversed a floating-point comparison, if OP0 is not a
4023 	 register, or if OP1 is neither a register or constant, we can't
4024 	 do anything.  */
4025 
4026       if (!REG_P (op1))
4027 	op1 = equiv_constant (op1);
4028 
4029       if ((reversed_nonequality && FLOAT_MODE_P (mode))
4030 	  || !REG_P (op0) || op1 == 0)
4031 	return;
4032 
4033       /* Put OP0 in the hash table if it isn't already.  This gives it a
4034 	 new quantity number.  */
4035       if (op0_elt == 0)
4036 	{
4037 	  if (insert_regs (op0, NULL, 0))
4038 	    {
4039 	      rehash_using_reg (op0);
4040 	      op0_hash = HASH (op0, mode);
4041 
4042 	      /* If OP0 is contained in OP1, this changes its hash code
4043 		 as well.  Faster to rehash than to check, except
4044 		 for the simple case of a constant.  */
4045 	      if (! CONSTANT_P (op1))
4046 		op1_hash = HASH (op1,mode);
4047 	    }
4048 
4049 	  op0_elt = insert (op0, NULL, op0_hash, mode);
4050 	  op0_elt->in_memory = op0_in_memory;
4051 	}
4052 
4053       qty = REG_QTY (REGNO (op0));
4054       ent = &qty_table[qty];
4055 
4056       ent->comparison_code = code;
4057       if (REG_P (op1))
4058 	{
4059 	  /* Look it up again--in case op0 and op1 are the same.  */
4060 	  op1_elt = lookup (op1, op1_hash, mode);
4061 
4062 	  /* Put OP1 in the hash table so it gets a new quantity number.  */
4063 	  if (op1_elt == 0)
4064 	    {
4065 	      if (insert_regs (op1, NULL, 0))
4066 		{
4067 		  rehash_using_reg (op1);
4068 		  op1_hash = HASH (op1, mode);
4069 		}
4070 
4071 	      op1_elt = insert (op1, NULL, op1_hash, mode);
4072 	      op1_elt->in_memory = op1_in_memory;
4073 	    }
4074 
4075 	  ent->comparison_const = NULL_RTX;
4076 	  ent->comparison_qty = REG_QTY (REGNO (op1));
4077 	}
4078       else
4079 	{
4080 	  ent->comparison_const = op1;
4081 	  ent->comparison_qty = -1;
4082 	}
4083 
4084       return;
4085     }
4086 
4087   /* If either side is still missing an equivalence, make it now,
4088      then merge the equivalences.  */
4089 
4090   if (op0_elt == 0)
4091     {
4092       if (insert_regs (op0, NULL, 0))
4093 	{
4094 	  rehash_using_reg (op0);
4095 	  op0_hash = HASH (op0, mode);
4096 	}
4097 
4098       op0_elt = insert (op0, NULL, op0_hash, mode);
4099       op0_elt->in_memory = op0_in_memory;
4100     }
4101 
4102   if (op1_elt == 0)
4103     {
4104       if (insert_regs (op1, NULL, 0))
4105 	{
4106 	  rehash_using_reg (op1);
4107 	  op1_hash = HASH (op1, mode);
4108 	}
4109 
4110       op1_elt = insert (op1, NULL, op1_hash, mode);
4111       op1_elt->in_memory = op1_in_memory;
4112     }
4113 
4114   merge_equiv_classes (op0_elt, op1_elt);
4115 }
4116 
4117 /* CSE processing for one instruction.
4118 
4119    Most "true" common subexpressions are mostly optimized away in GIMPLE,
4120    but the few that "leak through" are cleaned up by cse_insn, and complex
4121    addressing modes are often formed here.
4122 
4123    The main function is cse_insn, and between here and that function
4124    a couple of helper functions is defined to keep the size of cse_insn
4125    within reasonable proportions.
4126 
4127    Data is shared between the main and helper functions via STRUCT SET,
4128    that contains all data related for every set in the instruction that
4129    is being processed.
4130 
4131    Note that cse_main processes all sets in the instruction.  Most
4132    passes in GCC only process simple SET insns or single_set insns, but
4133    CSE processes insns with multiple sets as well.  */
4134 
4135 /* Data on one SET contained in the instruction.  */
4136 
4137 struct set
4138 {
4139   /* The SET rtx itself.  */
4140   rtx rtl;
4141   /* The SET_SRC of the rtx (the original value, if it is changing).  */
4142   rtx src;
4143   /* The hash-table element for the SET_SRC of the SET.  */
4144   struct table_elt *src_elt;
4145   /* Hash value for the SET_SRC.  */
4146   unsigned src_hash;
4147   /* Hash value for the SET_DEST.  */
4148   unsigned dest_hash;
4149   /* The SET_DEST, with SUBREG, etc., stripped.  */
4150   rtx inner_dest;
4151   /* Nonzero if the SET_SRC is in memory.  */
4152   char src_in_memory;
4153   /* Nonzero if the SET_SRC contains something
4154      whose value cannot be predicted and understood.  */
4155   char src_volatile;
4156   /* Original machine mode, in case it becomes a CONST_INT.
4157      The size of this field should match the size of the mode
4158      field of struct rtx_def (see rtl.h).  */
4159   ENUM_BITFIELD(machine_mode) mode : 8;
4160   /* A constant equivalent for SET_SRC, if any.  */
4161   rtx src_const;
4162   /* Hash value of constant equivalent for SET_SRC.  */
4163   unsigned src_const_hash;
4164   /* Table entry for constant equivalent for SET_SRC, if any.  */
4165   struct table_elt *src_const_elt;
4166   /* Table entry for the destination address.  */
4167   struct table_elt *dest_addr_elt;
4168 };
4169 
4170 /* Special handling for (set REG0 REG1) where REG0 is the
4171    "cheapest", cheaper than REG1.  After cse, REG1 will probably not
4172    be used in the sequel, so (if easily done) change this insn to
4173    (set REG1 REG0) and replace REG1 with REG0 in the previous insn
4174    that computed their value.  Then REG1 will become a dead store
4175    and won't cloud the situation for later optimizations.
4176 
4177    Do not make this change if REG1 is a hard register, because it will
4178    then be used in the sequel and we may be changing a two-operand insn
4179    into a three-operand insn.
4180 
4181    This is the last transformation that cse_insn will try to do.  */
4182 
4183 static void
try_back_substitute_reg(rtx set,rtx_insn * insn)4184 try_back_substitute_reg (rtx set, rtx_insn *insn)
4185 {
4186   rtx dest = SET_DEST (set);
4187   rtx src = SET_SRC (set);
4188 
4189   if (REG_P (dest)
4190       && REG_P (src) && ! HARD_REGISTER_P (src)
4191       && REGNO_QTY_VALID_P (REGNO (src)))
4192     {
4193       int src_q = REG_QTY (REGNO (src));
4194       struct qty_table_elem *src_ent = &qty_table[src_q];
4195 
4196       if (src_ent->first_reg == REGNO (dest))
4197 	{
4198 	  /* Scan for the previous nonnote insn, but stop at a basic
4199 	     block boundary.  */
4200 	  rtx_insn *prev = insn;
4201 	  rtx_insn *bb_head = BB_HEAD (BLOCK_FOR_INSN (insn));
4202 	  do
4203 	    {
4204 	      prev = PREV_INSN (prev);
4205 	    }
4206 	  while (prev != bb_head && (NOTE_P (prev) || DEBUG_INSN_P (prev)));
4207 
4208 	  /* Do not swap the registers around if the previous instruction
4209 	     attaches a REG_EQUIV note to REG1.
4210 
4211 	     ??? It's not entirely clear whether we can transfer a REG_EQUIV
4212 	     from the pseudo that originally shadowed an incoming argument
4213 	     to another register.  Some uses of REG_EQUIV might rely on it
4214 	     being attached to REG1 rather than REG2.
4215 
4216 	     This section previously turned the REG_EQUIV into a REG_EQUAL
4217 	     note.  We cannot do that because REG_EQUIV may provide an
4218 	     uninitialized stack slot when REG_PARM_STACK_SPACE is used.  */
4219 	  if (NONJUMP_INSN_P (prev)
4220 	      && GET_CODE (PATTERN (prev)) == SET
4221 	      && SET_DEST (PATTERN (prev)) == src
4222 	      && ! find_reg_note (prev, REG_EQUIV, NULL_RTX))
4223 	    {
4224 	      rtx note;
4225 
4226 	      validate_change (prev, &SET_DEST (PATTERN (prev)), dest, 1);
4227 	      validate_change (insn, &SET_DEST (set), src, 1);
4228 	      validate_change (insn, &SET_SRC (set), dest, 1);
4229 	      apply_change_group ();
4230 
4231 	      /* If INSN has a REG_EQUAL note, and this note mentions
4232 		 REG0, then we must delete it, because the value in
4233 		 REG0 has changed.  If the note's value is REG1, we must
4234 		 also delete it because that is now this insn's dest.  */
4235 	      note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
4236 	      if (note != 0
4237 		  && (reg_mentioned_p (dest, XEXP (note, 0))
4238 		      || rtx_equal_p (src, XEXP (note, 0))))
4239 		remove_note (insn, note);
4240 	    }
4241 	}
4242     }
4243 }
4244 
4245 /* Record all the SETs in this instruction into SETS_PTR,
4246    and return the number of recorded sets.  */
4247 static int
find_sets_in_insn(rtx_insn * insn,struct set ** psets)4248 find_sets_in_insn (rtx_insn *insn, struct set **psets)
4249 {
4250   struct set *sets = *psets;
4251   int n_sets = 0;
4252   rtx x = PATTERN (insn);
4253 
4254   if (GET_CODE (x) == SET)
4255     {
4256       /* Ignore SETs that are unconditional jumps.
4257 	 They never need cse processing, so this does not hurt.
4258 	 The reason is not efficiency but rather
4259 	 so that we can test at the end for instructions
4260 	 that have been simplified to unconditional jumps
4261 	 and not be misled by unchanged instructions
4262 	 that were unconditional jumps to begin with.  */
4263       if (SET_DEST (x) == pc_rtx
4264 	  && GET_CODE (SET_SRC (x)) == LABEL_REF)
4265 	;
4266       /* Don't count call-insns, (set (reg 0) (call ...)), as a set.
4267 	 The hard function value register is used only once, to copy to
4268 	 someplace else, so it isn't worth cse'ing.  */
4269       else if (GET_CODE (SET_SRC (x)) == CALL)
4270 	;
4271       else
4272 	sets[n_sets++].rtl = x;
4273     }
4274   else if (GET_CODE (x) == PARALLEL)
4275     {
4276       int i, lim = XVECLEN (x, 0);
4277 
4278       /* Go over the expressions of the PARALLEL in forward order, to
4279 	 put them in the same order in the SETS array.  */
4280       for (i = 0; i < lim; i++)
4281 	{
4282 	  rtx y = XVECEXP (x, 0, i);
4283 	  if (GET_CODE (y) == SET)
4284 	    {
4285 	      /* As above, we ignore unconditional jumps and call-insns and
4286 		 ignore the result of apply_change_group.  */
4287 	      if (SET_DEST (y) == pc_rtx
4288 		  && GET_CODE (SET_SRC (y)) == LABEL_REF)
4289 		;
4290 	      else if (GET_CODE (SET_SRC (y)) == CALL)
4291 		;
4292 	      else
4293 		sets[n_sets++].rtl = y;
4294 	    }
4295 	}
4296     }
4297 
4298   return n_sets;
4299 }
4300 
4301 /* Where possible, substitute every register reference in the N_SETS
4302    number of SETS in INSN with the canonical register.
4303 
4304    Register canonicalization propagatest the earliest register (i.e.
4305    one that is set before INSN) with the same value.  This is a very
4306    useful, simple form of CSE, to clean up warts from expanding GIMPLE
4307    to RTL.  For instance, a CONST for an address is usually expanded
4308    multiple times to loads into different registers, thus creating many
4309    subexpressions of the form:
4310 
4311    (set (reg1) (some_const))
4312    (set (mem (... reg1 ...) (thing)))
4313    (set (reg2) (some_const))
4314    (set (mem (... reg2 ...) (thing)))
4315 
4316    After canonicalizing, the code takes the following form:
4317 
4318    (set (reg1) (some_const))
4319    (set (mem (... reg1 ...) (thing)))
4320    (set (reg2) (some_const))
4321    (set (mem (... reg1 ...) (thing)))
4322 
4323    The set to reg2 is now trivially dead, and the memory reference (or
4324    address, or whatever) may be a candidate for further CSEing.
4325 
4326    In this function, the result of apply_change_group can be ignored;
4327    see canon_reg.  */
4328 
4329 static void
canonicalize_insn(rtx_insn * insn,struct set ** psets,int n_sets)4330 canonicalize_insn (rtx_insn *insn, struct set **psets, int n_sets)
4331 {
4332   struct set *sets = *psets;
4333   rtx tem;
4334   rtx x = PATTERN (insn);
4335   int i;
4336 
4337   if (CALL_P (insn))
4338     {
4339       for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
4340 	if (GET_CODE (XEXP (tem, 0)) != SET)
4341 	  XEXP (tem, 0) = canon_reg (XEXP (tem, 0), insn);
4342     }
4343 
4344   if (GET_CODE (x) == SET && GET_CODE (SET_SRC (x)) == CALL)
4345     {
4346       canon_reg (SET_SRC (x), insn);
4347       apply_change_group ();
4348       fold_rtx (SET_SRC (x), insn);
4349     }
4350   else if (GET_CODE (x) == CLOBBER)
4351     {
4352       /* If we clobber memory, canon the address.
4353 	 This does nothing when a register is clobbered
4354 	 because we have already invalidated the reg.  */
4355       if (MEM_P (XEXP (x, 0)))
4356 	canon_reg (XEXP (x, 0), insn);
4357     }
4358   else if (GET_CODE (x) == USE
4359 	   && ! (REG_P (XEXP (x, 0))
4360 		 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER))
4361     /* Canonicalize a USE of a pseudo register or memory location.  */
4362     canon_reg (x, insn);
4363   else if (GET_CODE (x) == ASM_OPERANDS)
4364     {
4365       for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
4366 	{
4367 	  rtx input = ASM_OPERANDS_INPUT (x, i);
4368 	  if (!(REG_P (input) && REGNO (input) < FIRST_PSEUDO_REGISTER))
4369 	    {
4370 	      input = canon_reg (input, insn);
4371 	      validate_change (insn, &ASM_OPERANDS_INPUT (x, i), input, 1);
4372 	    }
4373 	}
4374     }
4375   else if (GET_CODE (x) == CALL)
4376     {
4377       canon_reg (x, insn);
4378       apply_change_group ();
4379       fold_rtx (x, insn);
4380     }
4381   else if (DEBUG_INSN_P (insn))
4382     canon_reg (PATTERN (insn), insn);
4383   else if (GET_CODE (x) == PARALLEL)
4384     {
4385       for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
4386 	{
4387 	  rtx y = XVECEXP (x, 0, i);
4388 	  if (GET_CODE (y) == SET && GET_CODE (SET_SRC (y)) == CALL)
4389 	    {
4390 	      canon_reg (SET_SRC (y), insn);
4391 	      apply_change_group ();
4392 	      fold_rtx (SET_SRC (y), insn);
4393 	    }
4394 	  else if (GET_CODE (y) == CLOBBER)
4395 	    {
4396 	      if (MEM_P (XEXP (y, 0)))
4397 		canon_reg (XEXP (y, 0), insn);
4398 	    }
4399 	  else if (GET_CODE (y) == USE
4400 		   && ! (REG_P (XEXP (y, 0))
4401 			 && REGNO (XEXP (y, 0)) < FIRST_PSEUDO_REGISTER))
4402 	    canon_reg (y, insn);
4403 	  else if (GET_CODE (y) == CALL)
4404 	    {
4405 	      canon_reg (y, insn);
4406 	      apply_change_group ();
4407 	      fold_rtx (y, insn);
4408 	    }
4409 	}
4410     }
4411 
4412   if (n_sets == 1 && REG_NOTES (insn) != 0
4413       && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0)
4414     {
4415       /* We potentially will process this insn many times.  Therefore,
4416 	 drop the REG_EQUAL note if it is equal to the SET_SRC of the
4417 	 unique set in INSN.
4418 
4419 	 Do not do so if the REG_EQUAL note is for a STRICT_LOW_PART,
4420 	 because cse_insn handles those specially.  */
4421       if (GET_CODE (SET_DEST (sets[0].rtl)) != STRICT_LOW_PART
4422 	  && rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl)))
4423 	remove_note (insn, tem);
4424       else
4425 	{
4426 	  canon_reg (XEXP (tem, 0), insn);
4427 	  apply_change_group ();
4428 	  XEXP (tem, 0) = fold_rtx (XEXP (tem, 0), insn);
4429 	  df_notes_rescan (insn);
4430 	}
4431     }
4432 
4433   /* Canonicalize sources and addresses of destinations.
4434      We do this in a separate pass to avoid problems when a MATCH_DUP is
4435      present in the insn pattern.  In that case, we want to ensure that
4436      we don't break the duplicate nature of the pattern.  So we will replace
4437      both operands at the same time.  Otherwise, we would fail to find an
4438      equivalent substitution in the loop calling validate_change below.
4439 
4440      We used to suppress canonicalization of DEST if it appears in SRC,
4441      but we don't do this any more.  */
4442 
4443   for (i = 0; i < n_sets; i++)
4444     {
4445       rtx dest = SET_DEST (sets[i].rtl);
4446       rtx src = SET_SRC (sets[i].rtl);
4447       rtx new_rtx = canon_reg (src, insn);
4448 
4449       validate_change (insn, &SET_SRC (sets[i].rtl), new_rtx, 1);
4450 
4451       if (GET_CODE (dest) == ZERO_EXTRACT)
4452 	{
4453 	  validate_change (insn, &XEXP (dest, 1),
4454 			   canon_reg (XEXP (dest, 1), insn), 1);
4455 	  validate_change (insn, &XEXP (dest, 2),
4456 			   canon_reg (XEXP (dest, 2), insn), 1);
4457 	}
4458 
4459       while (GET_CODE (dest) == SUBREG
4460 	     || GET_CODE (dest) == ZERO_EXTRACT
4461 	     || GET_CODE (dest) == STRICT_LOW_PART)
4462 	dest = XEXP (dest, 0);
4463 
4464       if (MEM_P (dest))
4465 	canon_reg (dest, insn);
4466     }
4467 
4468   /* Now that we have done all the replacements, we can apply the change
4469      group and see if they all work.  Note that this will cause some
4470      canonicalizations that would have worked individually not to be applied
4471      because some other canonicalization didn't work, but this should not
4472      occur often.
4473 
4474      The result of apply_change_group can be ignored; see canon_reg.  */
4475 
4476   apply_change_group ();
4477 }
4478 
4479 /* Main function of CSE.
4480    First simplify sources and addresses of all assignments
4481    in the instruction, using previously-computed equivalents values.
4482    Then install the new sources and destinations in the table
4483    of available values.  */
4484 
4485 static void
cse_insn(rtx_insn * insn)4486 cse_insn (rtx_insn *insn)
4487 {
4488   rtx x = PATTERN (insn);
4489   int i;
4490   rtx tem;
4491   int n_sets = 0;
4492 
4493   rtx src_eqv = 0;
4494   struct table_elt *src_eqv_elt = 0;
4495   int src_eqv_volatile = 0;
4496   int src_eqv_in_memory = 0;
4497   unsigned src_eqv_hash = 0;
4498 
4499   struct set *sets = (struct set *) 0;
4500 
4501   if (GET_CODE (x) == SET)
4502     sets = XALLOCA (struct set);
4503   else if (GET_CODE (x) == PARALLEL)
4504     sets = XALLOCAVEC (struct set, XVECLEN (x, 0));
4505 
4506   this_insn = insn;
4507   /* Records what this insn does to set CC0.  */
4508   this_insn_cc0 = 0;
4509   this_insn_cc0_mode = VOIDmode;
4510 
4511   /* Find all regs explicitly clobbered in this insn,
4512      to ensure they are not replaced with any other regs
4513      elsewhere in this insn.  */
4514   invalidate_from_sets_and_clobbers (insn);
4515 
4516   /* Record all the SETs in this instruction.  */
4517   n_sets = find_sets_in_insn (insn, &sets);
4518 
4519   /* Substitute the canonical register where possible.  */
4520   canonicalize_insn (insn, &sets, n_sets);
4521 
4522   /* If this insn has a REG_EQUAL note, store the equivalent value in SRC_EQV,
4523      if different, or if the DEST is a STRICT_LOW_PART/ZERO_EXTRACT.  The
4524      latter condition is necessary because SRC_EQV is handled specially for
4525      this case, and if it isn't set, then there will be no equivalence
4526      for the destination.  */
4527   if (n_sets == 1 && REG_NOTES (insn) != 0
4528       && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0)
4529     {
4530 
4531       if (GET_CODE (SET_DEST (sets[0].rtl)) != ZERO_EXTRACT
4532 	  && (! rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl))
4533 	      || GET_CODE (SET_DEST (sets[0].rtl)) == STRICT_LOW_PART))
4534 	src_eqv = copy_rtx (XEXP (tem, 0));
4535       /* If DEST is of the form ZERO_EXTACT, as in:
4536 	 (set (zero_extract:SI (reg:SI 119)
4537 		  (const_int 16 [0x10])
4538 		  (const_int 16 [0x10]))
4539 	      (const_int 51154 [0xc7d2]))
4540 	 REG_EQUAL note will specify the value of register (reg:SI 119) at this
4541 	 point.  Note that this is different from SRC_EQV. We can however
4542 	 calculate SRC_EQV with the position and width of ZERO_EXTRACT.  */
4543       else if (GET_CODE (SET_DEST (sets[0].rtl)) == ZERO_EXTRACT
4544 	       && CONST_INT_P (XEXP (tem, 0))
4545 	       && CONST_INT_P (XEXP (SET_DEST (sets[0].rtl), 1))
4546 	       && CONST_INT_P (XEXP (SET_DEST (sets[0].rtl), 2)))
4547 	{
4548 	  rtx dest_reg = XEXP (SET_DEST (sets[0].rtl), 0);
4549 	  rtx width = XEXP (SET_DEST (sets[0].rtl), 1);
4550 	  rtx pos = XEXP (SET_DEST (sets[0].rtl), 2);
4551 	  HOST_WIDE_INT val = INTVAL (XEXP (tem, 0));
4552 	  HOST_WIDE_INT mask;
4553 	  unsigned int shift;
4554 	  if (BITS_BIG_ENDIAN)
4555 	    shift = GET_MODE_PRECISION (GET_MODE (dest_reg))
4556 	      - INTVAL (pos) - INTVAL (width);
4557 	  else
4558 	    shift = INTVAL (pos);
4559 	  if (INTVAL (width) == HOST_BITS_PER_WIDE_INT)
4560 	    mask = ~(HOST_WIDE_INT) 0;
4561 	  else
4562 	    mask = ((HOST_WIDE_INT) 1 << INTVAL (width)) - 1;
4563 	  val = (val >> shift) & mask;
4564 	  src_eqv = GEN_INT (val);
4565 	}
4566     }
4567 
4568   /* Set sets[i].src_elt to the class each source belongs to.
4569      Detect assignments from or to volatile things
4570      and set set[i] to zero so they will be ignored
4571      in the rest of this function.
4572 
4573      Nothing in this loop changes the hash table or the register chains.  */
4574 
4575   for (i = 0; i < n_sets; i++)
4576     {
4577       bool repeat = false;
4578       rtx src, dest;
4579       rtx src_folded;
4580       struct table_elt *elt = 0, *p;
4581       machine_mode mode;
4582       rtx src_eqv_here;
4583       rtx src_const = 0;
4584       rtx src_related = 0;
4585       bool src_related_is_const_anchor = false;
4586       struct table_elt *src_const_elt = 0;
4587       int src_cost = MAX_COST;
4588       int src_eqv_cost = MAX_COST;
4589       int src_folded_cost = MAX_COST;
4590       int src_related_cost = MAX_COST;
4591       int src_elt_cost = MAX_COST;
4592       int src_regcost = MAX_COST;
4593       int src_eqv_regcost = MAX_COST;
4594       int src_folded_regcost = MAX_COST;
4595       int src_related_regcost = MAX_COST;
4596       int src_elt_regcost = MAX_COST;
4597       /* Set nonzero if we need to call force_const_mem on with the
4598 	 contents of src_folded before using it.  */
4599       int src_folded_force_flag = 0;
4600 
4601       dest = SET_DEST (sets[i].rtl);
4602       src = SET_SRC (sets[i].rtl);
4603 
4604       /* If SRC is a constant that has no machine mode,
4605 	 hash it with the destination's machine mode.
4606 	 This way we can keep different modes separate.  */
4607 
4608       mode = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
4609       sets[i].mode = mode;
4610 
4611       if (src_eqv)
4612 	{
4613 	  machine_mode eqvmode = mode;
4614 	  if (GET_CODE (dest) == STRICT_LOW_PART)
4615 	    eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
4616 	  do_not_record = 0;
4617 	  hash_arg_in_memory = 0;
4618 	  src_eqv_hash = HASH (src_eqv, eqvmode);
4619 
4620 	  /* Find the equivalence class for the equivalent expression.  */
4621 
4622 	  if (!do_not_record)
4623 	    src_eqv_elt = lookup (src_eqv, src_eqv_hash, eqvmode);
4624 
4625 	  src_eqv_volatile = do_not_record;
4626 	  src_eqv_in_memory = hash_arg_in_memory;
4627 	}
4628 
4629       /* If this is a STRICT_LOW_PART assignment, src_eqv corresponds to the
4630 	 value of the INNER register, not the destination.  So it is not
4631 	 a valid substitution for the source.  But save it for later.  */
4632       if (GET_CODE (dest) == STRICT_LOW_PART)
4633 	src_eqv_here = 0;
4634       else
4635 	src_eqv_here = src_eqv;
4636 
4637       /* Simplify and foldable subexpressions in SRC.  Then get the fully-
4638 	 simplified result, which may not necessarily be valid.  */
4639       src_folded = fold_rtx (src, NULL);
4640 
4641 #if 0
4642       /* ??? This caused bad code to be generated for the m68k port with -O2.
4643 	 Suppose src is (CONST_INT -1), and that after truncation src_folded
4644 	 is (CONST_INT 3).  Suppose src_folded is then used for src_const.
4645 	 At the end we will add src and src_const to the same equivalence
4646 	 class.  We now have 3 and -1 on the same equivalence class.  This
4647 	 causes later instructions to be mis-optimized.  */
4648       /* If storing a constant in a bitfield, pre-truncate the constant
4649 	 so we will be able to record it later.  */
4650       if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
4651 	{
4652 	  rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
4653 
4654 	  if (CONST_INT_P (src)
4655 	      && CONST_INT_P (width)
4656 	      && INTVAL (width) < HOST_BITS_PER_WIDE_INT
4657 	      && (INTVAL (src) & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
4658 	    src_folded
4659 	      = GEN_INT (INTVAL (src) & (((HOST_WIDE_INT) 1
4660 					  << INTVAL (width)) - 1));
4661 	}
4662 #endif
4663 
4664       /* Compute SRC's hash code, and also notice if it
4665 	 should not be recorded at all.  In that case,
4666 	 prevent any further processing of this assignment.  */
4667       do_not_record = 0;
4668       hash_arg_in_memory = 0;
4669 
4670       sets[i].src = src;
4671       sets[i].src_hash = HASH (src, mode);
4672       sets[i].src_volatile = do_not_record;
4673       sets[i].src_in_memory = hash_arg_in_memory;
4674 
4675       /* If SRC is a MEM, there is a REG_EQUIV note for SRC, and DEST is
4676 	 a pseudo, do not record SRC.  Using SRC as a replacement for
4677 	 anything else will be incorrect in that situation.  Note that
4678 	 this usually occurs only for stack slots, in which case all the
4679 	 RTL would be referring to SRC, so we don't lose any optimization
4680 	 opportunities by not having SRC in the hash table.  */
4681 
4682       if (MEM_P (src)
4683 	  && find_reg_note (insn, REG_EQUIV, NULL_RTX) != 0
4684 	  && REG_P (dest)
4685 	  && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
4686 	sets[i].src_volatile = 1;
4687 
4688       else if (GET_CODE (src) == ASM_OPERANDS
4689 	       && GET_CODE (x) == PARALLEL)
4690 	{
4691 	  /* Do not record result of a non-volatile inline asm with
4692 	     more than one result.  */
4693 	  if (n_sets > 1)
4694 	    sets[i].src_volatile = 1;
4695 
4696 	  int j, lim = XVECLEN (x, 0);
4697 	  for (j = 0; j < lim; j++)
4698 	    {
4699 	      rtx y = XVECEXP (x, 0, j);
4700 	      /* And do not record result of a non-volatile inline asm
4701 		 with "memory" clobber.  */
4702 	      if (GET_CODE (y) == CLOBBER && MEM_P (XEXP (y, 0)))
4703 		{
4704 		  sets[i].src_volatile = 1;
4705 		  break;
4706 		}
4707 	    }
4708 	}
4709 
4710 #if 0
4711       /* It is no longer clear why we used to do this, but it doesn't
4712 	 appear to still be needed.  So let's try without it since this
4713 	 code hurts cse'ing widened ops.  */
4714       /* If source is a paradoxical subreg (such as QI treated as an SI),
4715 	 treat it as volatile.  It may do the work of an SI in one context
4716 	 where the extra bits are not being used, but cannot replace an SI
4717 	 in general.  */
4718       if (paradoxical_subreg_p (src))
4719 	sets[i].src_volatile = 1;
4720 #endif
4721 
4722       /* Locate all possible equivalent forms for SRC.  Try to replace
4723          SRC in the insn with each cheaper equivalent.
4724 
4725          We have the following types of equivalents: SRC itself, a folded
4726          version, a value given in a REG_EQUAL note, or a value related
4727 	 to a constant.
4728 
4729          Each of these equivalents may be part of an additional class
4730          of equivalents (if more than one is in the table, they must be in
4731          the same class; we check for this).
4732 
4733 	 If the source is volatile, we don't do any table lookups.
4734 
4735          We note any constant equivalent for possible later use in a
4736          REG_NOTE.  */
4737 
4738       if (!sets[i].src_volatile)
4739 	elt = lookup (src, sets[i].src_hash, mode);
4740 
4741       sets[i].src_elt = elt;
4742 
4743       if (elt && src_eqv_here && src_eqv_elt)
4744 	{
4745 	  if (elt->first_same_value != src_eqv_elt->first_same_value)
4746 	    {
4747 	      /* The REG_EQUAL is indicating that two formerly distinct
4748 		 classes are now equivalent.  So merge them.  */
4749 	      merge_equiv_classes (elt, src_eqv_elt);
4750 	      src_eqv_hash = HASH (src_eqv, elt->mode);
4751 	      src_eqv_elt = lookup (src_eqv, src_eqv_hash, elt->mode);
4752 	    }
4753 
4754 	  src_eqv_here = 0;
4755 	}
4756 
4757       else if (src_eqv_elt)
4758 	elt = src_eqv_elt;
4759 
4760       /* Try to find a constant somewhere and record it in `src_const'.
4761 	 Record its table element, if any, in `src_const_elt'.  Look in
4762 	 any known equivalences first.  (If the constant is not in the
4763 	 table, also set `sets[i].src_const_hash').  */
4764       if (elt)
4765 	for (p = elt->first_same_value; p; p = p->next_same_value)
4766 	  if (p->is_const)
4767 	    {
4768 	      src_const = p->exp;
4769 	      src_const_elt = elt;
4770 	      break;
4771 	    }
4772 
4773       if (src_const == 0
4774 	  && (CONSTANT_P (src_folded)
4775 	      /* Consider (minus (label_ref L1) (label_ref L2)) as
4776 		 "constant" here so we will record it. This allows us
4777 		 to fold switch statements when an ADDR_DIFF_VEC is used.  */
4778 	      || (GET_CODE (src_folded) == MINUS
4779 		  && GET_CODE (XEXP (src_folded, 0)) == LABEL_REF
4780 		  && GET_CODE (XEXP (src_folded, 1)) == LABEL_REF)))
4781 	src_const = src_folded, src_const_elt = elt;
4782       else if (src_const == 0 && src_eqv_here && CONSTANT_P (src_eqv_here))
4783 	src_const = src_eqv_here, src_const_elt = src_eqv_elt;
4784 
4785       /* If we don't know if the constant is in the table, get its
4786 	 hash code and look it up.  */
4787       if (src_const && src_const_elt == 0)
4788 	{
4789 	  sets[i].src_const_hash = HASH (src_const, mode);
4790 	  src_const_elt = lookup (src_const, sets[i].src_const_hash, mode);
4791 	}
4792 
4793       sets[i].src_const = src_const;
4794       sets[i].src_const_elt = src_const_elt;
4795 
4796       /* If the constant and our source are both in the table, mark them as
4797 	 equivalent.  Otherwise, if a constant is in the table but the source
4798 	 isn't, set ELT to it.  */
4799       if (src_const_elt && elt
4800 	  && src_const_elt->first_same_value != elt->first_same_value)
4801 	merge_equiv_classes (elt, src_const_elt);
4802       else if (src_const_elt && elt == 0)
4803 	elt = src_const_elt;
4804 
4805       /* See if there is a register linearly related to a constant
4806          equivalent of SRC.  */
4807       if (src_const
4808 	  && (GET_CODE (src_const) == CONST
4809 	      || (src_const_elt && src_const_elt->related_value != 0)))
4810 	{
4811 	  src_related = use_related_value (src_const, src_const_elt);
4812 	  if (src_related)
4813 	    {
4814 	      struct table_elt *src_related_elt
4815 		= lookup (src_related, HASH (src_related, mode), mode);
4816 	      if (src_related_elt && elt)
4817 		{
4818 		  if (elt->first_same_value
4819 		      != src_related_elt->first_same_value)
4820 		    /* This can occur when we previously saw a CONST
4821 		       involving a SYMBOL_REF and then see the SYMBOL_REF
4822 		       twice.  Merge the involved classes.  */
4823 		    merge_equiv_classes (elt, src_related_elt);
4824 
4825 		  src_related = 0;
4826 		  src_related_elt = 0;
4827 		}
4828 	      else if (src_related_elt && elt == 0)
4829 		elt = src_related_elt;
4830 	    }
4831 	}
4832 
4833       /* See if we have a CONST_INT that is already in a register in a
4834 	 wider mode.  */
4835 
4836       if (src_const && src_related == 0 && CONST_INT_P (src_const)
4837 	  && GET_MODE_CLASS (mode) == MODE_INT
4838 	  && GET_MODE_PRECISION (mode) < BITS_PER_WORD)
4839 	{
4840 	  machine_mode wider_mode;
4841 
4842 	  for (wider_mode = GET_MODE_WIDER_MODE (mode);
4843 	       wider_mode != VOIDmode
4844 	       && GET_MODE_PRECISION (wider_mode) <= BITS_PER_WORD
4845 	       && src_related == 0;
4846 	       wider_mode = GET_MODE_WIDER_MODE (wider_mode))
4847 	    {
4848 	      struct table_elt *const_elt
4849 		= lookup (src_const, HASH (src_const, wider_mode), wider_mode);
4850 
4851 	      if (const_elt == 0)
4852 		continue;
4853 
4854 	      for (const_elt = const_elt->first_same_value;
4855 		   const_elt; const_elt = const_elt->next_same_value)
4856 		if (REG_P (const_elt->exp))
4857 		  {
4858 		    src_related = gen_lowpart (mode, const_elt->exp);
4859 		    break;
4860 		  }
4861 	    }
4862 	}
4863 
4864       /* Another possibility is that we have an AND with a constant in
4865 	 a mode narrower than a word.  If so, it might have been generated
4866 	 as part of an "if" which would narrow the AND.  If we already
4867 	 have done the AND in a wider mode, we can use a SUBREG of that
4868 	 value.  */
4869 
4870       if (flag_expensive_optimizations && ! src_related
4871 	  && GET_CODE (src) == AND && CONST_INT_P (XEXP (src, 1))
4872 	  && GET_MODE_SIZE (mode) < UNITS_PER_WORD)
4873 	{
4874 	  machine_mode tmode;
4875 	  rtx new_and = gen_rtx_AND (VOIDmode, NULL_RTX, XEXP (src, 1));
4876 
4877 	  for (tmode = GET_MODE_WIDER_MODE (mode);
4878 	       GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
4879 	       tmode = GET_MODE_WIDER_MODE (tmode))
4880 	    {
4881 	      rtx inner = gen_lowpart (tmode, XEXP (src, 0));
4882 	      struct table_elt *larger_elt;
4883 
4884 	      if (inner)
4885 		{
4886 		  PUT_MODE (new_and, tmode);
4887 		  XEXP (new_and, 0) = inner;
4888 		  larger_elt = lookup (new_and, HASH (new_and, tmode), tmode);
4889 		  if (larger_elt == 0)
4890 		    continue;
4891 
4892 		  for (larger_elt = larger_elt->first_same_value;
4893 		       larger_elt; larger_elt = larger_elt->next_same_value)
4894 		    if (REG_P (larger_elt->exp))
4895 		      {
4896 			src_related
4897 			  = gen_lowpart (mode, larger_elt->exp);
4898 			break;
4899 		      }
4900 
4901 		  if (src_related)
4902 		    break;
4903 		}
4904 	    }
4905 	}
4906 
4907       /* See if a MEM has already been loaded with a widening operation;
4908 	 if it has, we can use a subreg of that.  Many CISC machines
4909 	 also have such operations, but this is only likely to be
4910 	 beneficial on these machines.  */
4911 
4912       if (flag_expensive_optimizations && src_related == 0
4913 	  && (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
4914 	  && GET_MODE_CLASS (mode) == MODE_INT
4915 	  && MEM_P (src) && ! do_not_record
4916 	  && LOAD_EXTEND_OP (mode) != UNKNOWN)
4917 	{
4918 	  struct rtx_def memory_extend_buf;
4919 	  rtx memory_extend_rtx = &memory_extend_buf;
4920 	  machine_mode tmode;
4921 
4922 	  /* Set what we are trying to extend and the operation it might
4923 	     have been extended with.  */
4924 	  memset (memory_extend_rtx, 0, sizeof (*memory_extend_rtx));
4925 	  PUT_CODE (memory_extend_rtx, LOAD_EXTEND_OP (mode));
4926 	  XEXP (memory_extend_rtx, 0) = src;
4927 
4928 	  for (tmode = GET_MODE_WIDER_MODE (mode);
4929 	       GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
4930 	       tmode = GET_MODE_WIDER_MODE (tmode))
4931 	    {
4932 	      struct table_elt *larger_elt;
4933 
4934 	      PUT_MODE (memory_extend_rtx, tmode);
4935 	      larger_elt = lookup (memory_extend_rtx,
4936 				   HASH (memory_extend_rtx, tmode), tmode);
4937 	      if (larger_elt == 0)
4938 		continue;
4939 
4940 	      for (larger_elt = larger_elt->first_same_value;
4941 		   larger_elt; larger_elt = larger_elt->next_same_value)
4942 		if (REG_P (larger_elt->exp))
4943 		  {
4944 		    src_related = gen_lowpart (mode, larger_elt->exp);
4945 		    break;
4946 		  }
4947 
4948 	      if (src_related)
4949 		break;
4950 	    }
4951 	}
4952 
4953       /* Try to express the constant using a register+offset expression
4954 	 derived from a constant anchor.  */
4955 
4956       if (targetm.const_anchor
4957 	  && !src_related
4958 	  && src_const
4959 	  && GET_CODE (src_const) == CONST_INT)
4960 	{
4961 	  src_related = try_const_anchors (src_const, mode);
4962 	  src_related_is_const_anchor = src_related != NULL_RTX;
4963 	}
4964 
4965 
4966       if (src == src_folded)
4967 	src_folded = 0;
4968 
4969       /* At this point, ELT, if nonzero, points to a class of expressions
4970          equivalent to the source of this SET and SRC, SRC_EQV, SRC_FOLDED,
4971 	 and SRC_RELATED, if nonzero, each contain additional equivalent
4972 	 expressions.  Prune these latter expressions by deleting expressions
4973 	 already in the equivalence class.
4974 
4975 	 Check for an equivalent identical to the destination.  If found,
4976 	 this is the preferred equivalent since it will likely lead to
4977 	 elimination of the insn.  Indicate this by placing it in
4978 	 `src_related'.  */
4979 
4980       if (elt)
4981 	elt = elt->first_same_value;
4982       for (p = elt; p; p = p->next_same_value)
4983 	{
4984 	  enum rtx_code code = GET_CODE (p->exp);
4985 
4986 	  /* If the expression is not valid, ignore it.  Then we do not
4987 	     have to check for validity below.  In most cases, we can use
4988 	     `rtx_equal_p', since canonicalization has already been done.  */
4989 	  if (code != REG && ! exp_equiv_p (p->exp, p->exp, 1, false))
4990 	    continue;
4991 
4992 	  /* Also skip paradoxical subregs, unless that's what we're
4993 	     looking for.  */
4994 	  if (paradoxical_subreg_p (p->exp)
4995 	      && ! (src != 0
4996 		    && GET_CODE (src) == SUBREG
4997 		    && GET_MODE (src) == GET_MODE (p->exp)
4998 		    && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
4999 			< GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))))
5000 	    continue;
5001 
5002 	  if (src && GET_CODE (src) == code && rtx_equal_p (src, p->exp))
5003 	    src = 0;
5004 	  else if (src_folded && GET_CODE (src_folded) == code
5005 		   && rtx_equal_p (src_folded, p->exp))
5006 	    src_folded = 0;
5007 	  else if (src_eqv_here && GET_CODE (src_eqv_here) == code
5008 		   && rtx_equal_p (src_eqv_here, p->exp))
5009 	    src_eqv_here = 0;
5010 	  else if (src_related && GET_CODE (src_related) == code
5011 		   && rtx_equal_p (src_related, p->exp))
5012 	    src_related = 0;
5013 
5014 	  /* This is the same as the destination of the insns, we want
5015 	     to prefer it.  Copy it to src_related.  The code below will
5016 	     then give it a negative cost.  */
5017 	  if (GET_CODE (dest) == code && rtx_equal_p (p->exp, dest))
5018 	    src_related = dest;
5019 	}
5020 
5021       /* Find the cheapest valid equivalent, trying all the available
5022          possibilities.  Prefer items not in the hash table to ones
5023          that are when they are equal cost.  Note that we can never
5024          worsen an insn as the current contents will also succeed.
5025 	 If we find an equivalent identical to the destination, use it as best,
5026 	 since this insn will probably be eliminated in that case.  */
5027       if (src)
5028 	{
5029 	  if (rtx_equal_p (src, dest))
5030 	    src_cost = src_regcost = -1;
5031 	  else
5032 	    {
5033 	      src_cost = COST (src, mode);
5034 	      src_regcost = approx_reg_cost (src);
5035 	    }
5036 	}
5037 
5038       if (src_eqv_here)
5039 	{
5040 	  if (rtx_equal_p (src_eqv_here, dest))
5041 	    src_eqv_cost = src_eqv_regcost = -1;
5042 	  else
5043 	    {
5044 	      src_eqv_cost = COST (src_eqv_here, mode);
5045 	      src_eqv_regcost = approx_reg_cost (src_eqv_here);
5046 	    }
5047 	}
5048 
5049       if (src_folded)
5050 	{
5051 	  if (rtx_equal_p (src_folded, dest))
5052 	    src_folded_cost = src_folded_regcost = -1;
5053 	  else
5054 	    {
5055 	      src_folded_cost = COST (src_folded, mode);
5056 	      src_folded_regcost = approx_reg_cost (src_folded);
5057 	    }
5058 	}
5059 
5060       if (src_related)
5061 	{
5062 	  if (rtx_equal_p (src_related, dest))
5063 	    src_related_cost = src_related_regcost = -1;
5064 	  else
5065 	    {
5066 	      src_related_cost = COST (src_related, mode);
5067 	      src_related_regcost = approx_reg_cost (src_related);
5068 
5069 	      /* If a const-anchor is used to synthesize a constant that
5070 		 normally requires multiple instructions then slightly prefer
5071 		 it over the original sequence.  These instructions are likely
5072 		 to become redundant now.  We can't compare against the cost
5073 		 of src_eqv_here because, on MIPS for example, multi-insn
5074 		 constants have zero cost; they are assumed to be hoisted from
5075 		 loops.  */
5076 	      if (src_related_is_const_anchor
5077 		  && src_related_cost == src_cost
5078 		  && src_eqv_here)
5079 		src_related_cost--;
5080 	    }
5081 	}
5082 
5083       /* If this was an indirect jump insn, a known label will really be
5084 	 cheaper even though it looks more expensive.  */
5085       if (dest == pc_rtx && src_const && GET_CODE (src_const) == LABEL_REF)
5086 	src_folded = src_const, src_folded_cost = src_folded_regcost = -1;
5087 
5088       /* Terminate loop when replacement made.  This must terminate since
5089          the current contents will be tested and will always be valid.  */
5090       while (1)
5091 	{
5092 	  rtx trial;
5093 
5094 	  /* Skip invalid entries.  */
5095 	  while (elt && !REG_P (elt->exp)
5096 		 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
5097 	    elt = elt->next_same_value;
5098 
5099 	  /* A paradoxical subreg would be bad here: it'll be the right
5100 	     size, but later may be adjusted so that the upper bits aren't
5101 	     what we want.  So reject it.  */
5102 	  if (elt != 0
5103 	      && paradoxical_subreg_p (elt->exp)
5104 	      /* It is okay, though, if the rtx we're trying to match
5105 		 will ignore any of the bits we can't predict.  */
5106 	      && ! (src != 0
5107 		    && GET_CODE (src) == SUBREG
5108 		    && GET_MODE (src) == GET_MODE (elt->exp)
5109 		    && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5110 			< GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))))
5111 	    {
5112 	      elt = elt->next_same_value;
5113 	      continue;
5114 	    }
5115 
5116 	  if (elt)
5117 	    {
5118 	      src_elt_cost = elt->cost;
5119 	      src_elt_regcost = elt->regcost;
5120 	    }
5121 
5122 	  /* Find cheapest and skip it for the next time.   For items
5123 	     of equal cost, use this order:
5124 	     src_folded, src, src_eqv, src_related and hash table entry.  */
5125 	  if (src_folded
5126 	      && preferable (src_folded_cost, src_folded_regcost,
5127 			     src_cost, src_regcost) <= 0
5128 	      && preferable (src_folded_cost, src_folded_regcost,
5129 			     src_eqv_cost, src_eqv_regcost) <= 0
5130 	      && preferable (src_folded_cost, src_folded_regcost,
5131 			     src_related_cost, src_related_regcost) <= 0
5132 	      && preferable (src_folded_cost, src_folded_regcost,
5133 			     src_elt_cost, src_elt_regcost) <= 0)
5134 	    {
5135 	      trial = src_folded, src_folded_cost = MAX_COST;
5136 	      if (src_folded_force_flag)
5137 		{
5138 		  rtx forced = force_const_mem (mode, trial);
5139 		  if (forced)
5140 		    trial = forced;
5141 		}
5142 	    }
5143 	  else if (src
5144 		   && preferable (src_cost, src_regcost,
5145 				  src_eqv_cost, src_eqv_regcost) <= 0
5146 		   && preferable (src_cost, src_regcost,
5147 				  src_related_cost, src_related_regcost) <= 0
5148 		   && preferable (src_cost, src_regcost,
5149 				  src_elt_cost, src_elt_regcost) <= 0)
5150 	    trial = src, src_cost = MAX_COST;
5151 	  else if (src_eqv_here
5152 		   && preferable (src_eqv_cost, src_eqv_regcost,
5153 				  src_related_cost, src_related_regcost) <= 0
5154 		   && preferable (src_eqv_cost, src_eqv_regcost,
5155 				  src_elt_cost, src_elt_regcost) <= 0)
5156 	    trial = src_eqv_here, src_eqv_cost = MAX_COST;
5157 	  else if (src_related
5158 		   && preferable (src_related_cost, src_related_regcost,
5159 				  src_elt_cost, src_elt_regcost) <= 0)
5160 	    trial = src_related, src_related_cost = MAX_COST;
5161 	  else
5162 	    {
5163 	      trial = elt->exp;
5164 	      elt = elt->next_same_value;
5165 	      src_elt_cost = MAX_COST;
5166 	    }
5167 
5168 	  /* Avoid creation of overlapping memory moves.  */
5169 	  if (MEM_P (trial) && MEM_P (SET_DEST (sets[i].rtl)))
5170 	    {
5171 	      rtx src, dest;
5172 
5173 	      /* BLKmode moves are not handled by cse anyway.  */
5174 	      if (GET_MODE (trial) == BLKmode)
5175 		break;
5176 
5177 	      src = canon_rtx (trial);
5178 	      dest = canon_rtx (SET_DEST (sets[i].rtl));
5179 
5180 	      if (!MEM_P (src) || !MEM_P (dest)
5181 		  || !nonoverlapping_memrefs_p (src, dest, false))
5182 		break;
5183 	    }
5184 
5185 	  /* Try to optimize
5186 	     (set (reg:M N) (const_int A))
5187 	     (set (reg:M2 O) (const_int B))
5188 	     (set (zero_extract:M2 (reg:M N) (const_int C) (const_int D))
5189 		  (reg:M2 O)).  */
5190 	  if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT
5191 	      && CONST_INT_P (trial)
5192 	      && CONST_INT_P (XEXP (SET_DEST (sets[i].rtl), 1))
5193 	      && CONST_INT_P (XEXP (SET_DEST (sets[i].rtl), 2))
5194 	      && REG_P (XEXP (SET_DEST (sets[i].rtl), 0))
5195 	      && (GET_MODE_PRECISION (GET_MODE (SET_DEST (sets[i].rtl)))
5196 		  >= INTVAL (XEXP (SET_DEST (sets[i].rtl), 1)))
5197 	      && ((unsigned) INTVAL (XEXP (SET_DEST (sets[i].rtl), 1))
5198 		  + (unsigned) INTVAL (XEXP (SET_DEST (sets[i].rtl), 2))
5199 		  <= HOST_BITS_PER_WIDE_INT))
5200 	    {
5201 	      rtx dest_reg = XEXP (SET_DEST (sets[i].rtl), 0);
5202 	      rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5203 	      rtx pos = XEXP (SET_DEST (sets[i].rtl), 2);
5204 	      unsigned int dest_hash = HASH (dest_reg, GET_MODE (dest_reg));
5205 	      struct table_elt *dest_elt
5206 		= lookup (dest_reg, dest_hash, GET_MODE (dest_reg));
5207 	      rtx dest_cst = NULL;
5208 
5209 	      if (dest_elt)
5210 		for (p = dest_elt->first_same_value; p; p = p->next_same_value)
5211 		  if (p->is_const && CONST_INT_P (p->exp))
5212 		    {
5213 		      dest_cst = p->exp;
5214 		      break;
5215 		    }
5216 	      if (dest_cst)
5217 		{
5218 		  HOST_WIDE_INT val = INTVAL (dest_cst);
5219 		  HOST_WIDE_INT mask;
5220 		  unsigned int shift;
5221 		  if (BITS_BIG_ENDIAN)
5222 		    shift = GET_MODE_PRECISION (GET_MODE (dest_reg))
5223 			    - INTVAL (pos) - INTVAL (width);
5224 		  else
5225 		    shift = INTVAL (pos);
5226 		  if (INTVAL (width) == HOST_BITS_PER_WIDE_INT)
5227 		    mask = ~(HOST_WIDE_INT) 0;
5228 		  else
5229 		    mask = ((HOST_WIDE_INT) 1 << INTVAL (width)) - 1;
5230 		  val &= ~(mask << shift);
5231 		  val |= (INTVAL (trial) & mask) << shift;
5232 		  val = trunc_int_for_mode (val, GET_MODE (dest_reg));
5233 		  validate_unshare_change (insn, &SET_DEST (sets[i].rtl),
5234 					   dest_reg, 1);
5235 		  validate_unshare_change (insn, &SET_SRC (sets[i].rtl),
5236 					   GEN_INT (val), 1);
5237 		  if (apply_change_group ())
5238 		    {
5239 		      rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
5240 		      if (note)
5241 			{
5242 			  remove_note (insn, note);
5243 			  df_notes_rescan (insn);
5244 			}
5245 		      src_eqv = NULL_RTX;
5246 		      src_eqv_elt = NULL;
5247 		      src_eqv_volatile = 0;
5248 		      src_eqv_in_memory = 0;
5249 		      src_eqv_hash = 0;
5250 		      repeat = true;
5251 		      break;
5252 		    }
5253 		}
5254 	    }
5255 
5256 	  /* We don't normally have an insn matching (set (pc) (pc)), so
5257 	     check for this separately here.  We will delete such an
5258 	     insn below.
5259 
5260 	     For other cases such as a table jump or conditional jump
5261 	     where we know the ultimate target, go ahead and replace the
5262 	     operand.  While that may not make a valid insn, we will
5263 	     reemit the jump below (and also insert any necessary
5264 	     barriers).  */
5265 	  if (n_sets == 1 && dest == pc_rtx
5266 	      && (trial == pc_rtx
5267 		  || (GET_CODE (trial) == LABEL_REF
5268 		      && ! condjump_p (insn))))
5269 	    {
5270 	      /* Don't substitute non-local labels, this confuses CFG.  */
5271 	      if (GET_CODE (trial) == LABEL_REF
5272 		  && LABEL_REF_NONLOCAL_P (trial))
5273 		continue;
5274 
5275 	      SET_SRC (sets[i].rtl) = trial;
5276 	      cse_jumps_altered = true;
5277 	      break;
5278 	    }
5279 
5280 	  /* Reject certain invalid forms of CONST that we create.  */
5281 	  else if (CONSTANT_P (trial)
5282 		   && GET_CODE (trial) == CONST
5283 		   /* Reject cases that will cause decode_rtx_const to
5284 		      die.  On the alpha when simplifying a switch, we
5285 		      get (const (truncate (minus (label_ref)
5286 		      (label_ref)))).  */
5287 		   && (GET_CODE (XEXP (trial, 0)) == TRUNCATE
5288 		       /* Likewise on IA-64, except without the
5289 			  truncate.  */
5290 		       || (GET_CODE (XEXP (trial, 0)) == MINUS
5291 			   && GET_CODE (XEXP (XEXP (trial, 0), 0)) == LABEL_REF
5292 			   && GET_CODE (XEXP (XEXP (trial, 0), 1)) == LABEL_REF)))
5293 	    /* Do nothing for this case.  */
5294 	    ;
5295 
5296 	  /* Look for a substitution that makes a valid insn.  */
5297 	  else if (validate_unshare_change (insn, &SET_SRC (sets[i].rtl),
5298 					    trial, 0))
5299 	    {
5300 	      rtx new_rtx = canon_reg (SET_SRC (sets[i].rtl), insn);
5301 
5302 	      /* The result of apply_change_group can be ignored; see
5303 		 canon_reg.  */
5304 
5305 	      validate_change (insn, &SET_SRC (sets[i].rtl), new_rtx, 1);
5306 	      apply_change_group ();
5307 
5308 	      break;
5309 	    }
5310 
5311 	  /* If we previously found constant pool entries for
5312 	     constants and this is a constant, try making a
5313 	     pool entry.  Put it in src_folded unless we already have done
5314 	     this since that is where it likely came from.  */
5315 
5316 	  else if (constant_pool_entries_cost
5317 		   && CONSTANT_P (trial)
5318 		   && (src_folded == 0
5319 		       || (!MEM_P (src_folded)
5320 			   && ! src_folded_force_flag))
5321 		   && GET_MODE_CLASS (mode) != MODE_CC
5322 		   && mode != VOIDmode)
5323 	    {
5324 	      src_folded_force_flag = 1;
5325 	      src_folded = trial;
5326 	      src_folded_cost = constant_pool_entries_cost;
5327 	      src_folded_regcost = constant_pool_entries_regcost;
5328 	    }
5329 	}
5330 
5331       /* If we changed the insn too much, handle this set from scratch.  */
5332       if (repeat)
5333 	{
5334 	  i--;
5335 	  continue;
5336 	}
5337 
5338       src = SET_SRC (sets[i].rtl);
5339 
5340       /* In general, it is good to have a SET with SET_SRC == SET_DEST.
5341 	 However, there is an important exception:  If both are registers
5342 	 that are not the head of their equivalence class, replace SET_SRC
5343 	 with the head of the class.  If we do not do this, we will have
5344 	 both registers live over a portion of the basic block.  This way,
5345 	 their lifetimes will likely abut instead of overlapping.  */
5346       if (REG_P (dest)
5347 	  && REGNO_QTY_VALID_P (REGNO (dest)))
5348 	{
5349 	  int dest_q = REG_QTY (REGNO (dest));
5350 	  struct qty_table_elem *dest_ent = &qty_table[dest_q];
5351 
5352 	  if (dest_ent->mode == GET_MODE (dest)
5353 	      && dest_ent->first_reg != REGNO (dest)
5354 	      && REG_P (src) && REGNO (src) == REGNO (dest)
5355 	      /* Don't do this if the original insn had a hard reg as
5356 		 SET_SRC or SET_DEST.  */
5357 	      && (!REG_P (sets[i].src)
5358 		  || REGNO (sets[i].src) >= FIRST_PSEUDO_REGISTER)
5359 	      && (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER))
5360 	    /* We can't call canon_reg here because it won't do anything if
5361 	       SRC is a hard register.  */
5362 	    {
5363 	      int src_q = REG_QTY (REGNO (src));
5364 	      struct qty_table_elem *src_ent = &qty_table[src_q];
5365 	      int first = src_ent->first_reg;
5366 	      rtx new_src
5367 		= (first >= FIRST_PSEUDO_REGISTER
5368 		   ? regno_reg_rtx[first] : gen_rtx_REG (GET_MODE (src), first));
5369 
5370 	      /* We must use validate-change even for this, because this
5371 		 might be a special no-op instruction, suitable only to
5372 		 tag notes onto.  */
5373 	      if (validate_change (insn, &SET_SRC (sets[i].rtl), new_src, 0))
5374 		{
5375 		  src = new_src;
5376 		  /* If we had a constant that is cheaper than what we are now
5377 		     setting SRC to, use that constant.  We ignored it when we
5378 		     thought we could make this into a no-op.  */
5379 		  if (src_const && COST (src_const, mode) < COST (src, mode)
5380 		      && validate_change (insn, &SET_SRC (sets[i].rtl),
5381 					  src_const, 0))
5382 		    src = src_const;
5383 		}
5384 	    }
5385 	}
5386 
5387       /* If we made a change, recompute SRC values.  */
5388       if (src != sets[i].src)
5389 	{
5390 	  do_not_record = 0;
5391 	  hash_arg_in_memory = 0;
5392 	  sets[i].src = src;
5393 	  sets[i].src_hash = HASH (src, mode);
5394 	  sets[i].src_volatile = do_not_record;
5395 	  sets[i].src_in_memory = hash_arg_in_memory;
5396 	  sets[i].src_elt = lookup (src, sets[i].src_hash, mode);
5397 	}
5398 
5399       /* If this is a single SET, we are setting a register, and we have an
5400 	 equivalent constant, we want to add a REG_EQUAL note if the constant
5401 	 is different from the source.  We don't want to do it for a constant
5402 	 pseudo since verifying that this pseudo hasn't been eliminated is a
5403 	 pain; moreover such a note won't help anything.
5404 
5405 	 Avoid a REG_EQUAL note for (CONST (MINUS (LABEL_REF) (LABEL_REF)))
5406 	 which can be created for a reference to a compile time computable
5407 	 entry in a jump table.  */
5408       if (n_sets == 1
5409 	  && REG_P (dest)
5410 	  && src_const
5411 	  && !REG_P (src_const)
5412 	  && !(GET_CODE (src_const) == SUBREG
5413 	       && REG_P (SUBREG_REG (src_const)))
5414 	  && !(GET_CODE (src_const) == CONST
5415 	       && GET_CODE (XEXP (src_const, 0)) == MINUS
5416 	       && GET_CODE (XEXP (XEXP (src_const, 0), 0)) == LABEL_REF
5417 	       && GET_CODE (XEXP (XEXP (src_const, 0), 1)) == LABEL_REF)
5418 	  && !rtx_equal_p (src, src_const))
5419 	{
5420 	  /* Make sure that the rtx is not shared.  */
5421 	  src_const = copy_rtx (src_const);
5422 
5423 	  /* Record the actual constant value in a REG_EQUAL note,
5424 	     making a new one if one does not already exist.  */
5425 	  set_unique_reg_note (insn, REG_EQUAL, src_const);
5426 	  df_notes_rescan (insn);
5427 	}
5428 
5429       /* Now deal with the destination.  */
5430       do_not_record = 0;
5431 
5432       /* Look within any ZERO_EXTRACT to the MEM or REG within it.  */
5433       while (GET_CODE (dest) == SUBREG
5434 	     || GET_CODE (dest) == ZERO_EXTRACT
5435 	     || GET_CODE (dest) == STRICT_LOW_PART)
5436 	dest = XEXP (dest, 0);
5437 
5438       sets[i].inner_dest = dest;
5439 
5440       if (MEM_P (dest))
5441 	{
5442 #ifdef PUSH_ROUNDING
5443 	  /* Stack pushes invalidate the stack pointer.  */
5444 	  rtx addr = XEXP (dest, 0);
5445 	  if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC
5446 	      && XEXP (addr, 0) == stack_pointer_rtx)
5447 	    invalidate (stack_pointer_rtx, VOIDmode);
5448 #endif
5449 	  dest = fold_rtx (dest, insn);
5450 	}
5451 
5452       /* Compute the hash code of the destination now,
5453 	 before the effects of this instruction are recorded,
5454 	 since the register values used in the address computation
5455 	 are those before this instruction.  */
5456       sets[i].dest_hash = HASH (dest, mode);
5457 
5458       /* Don't enter a bit-field in the hash table
5459 	 because the value in it after the store
5460 	 may not equal what was stored, due to truncation.  */
5461 
5462       if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
5463 	{
5464 	  rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5465 
5466 	  if (src_const != 0 && CONST_INT_P (src_const)
5467 	      && CONST_INT_P (width)
5468 	      && INTVAL (width) < HOST_BITS_PER_WIDE_INT
5469 	      && ! (INTVAL (src_const)
5470 		    & (HOST_WIDE_INT_M1U << INTVAL (width))))
5471 	    /* Exception: if the value is constant,
5472 	       and it won't be truncated, record it.  */
5473 	    ;
5474 	  else
5475 	    {
5476 	      /* This is chosen so that the destination will be invalidated
5477 		 but no new value will be recorded.
5478 		 We must invalidate because sometimes constant
5479 		 values can be recorded for bitfields.  */
5480 	      sets[i].src_elt = 0;
5481 	      sets[i].src_volatile = 1;
5482 	      src_eqv = 0;
5483 	      src_eqv_elt = 0;
5484 	    }
5485 	}
5486 
5487       /* If only one set in a JUMP_INSN and it is now a no-op, we can delete
5488 	 the insn.  */
5489       else if (n_sets == 1 && dest == pc_rtx && src == pc_rtx)
5490 	{
5491 	  /* One less use of the label this insn used to jump to.  */
5492 	  delete_insn_and_edges (insn);
5493 	  cse_jumps_altered = true;
5494 	  /* No more processing for this set.  */
5495 	  sets[i].rtl = 0;
5496 	}
5497 
5498       /* If this SET is now setting PC to a label, we know it used to
5499 	 be a conditional or computed branch.  */
5500       else if (dest == pc_rtx && GET_CODE (src) == LABEL_REF
5501 	       && !LABEL_REF_NONLOCAL_P (src))
5502 	{
5503 	  /* We reemit the jump in as many cases as possible just in
5504 	     case the form of an unconditional jump is significantly
5505 	     different than a computed jump or conditional jump.
5506 
5507 	     If this insn has multiple sets, then reemitting the
5508 	     jump is nontrivial.  So instead we just force rerecognition
5509 	     and hope for the best.  */
5510 	  if (n_sets == 1)
5511 	    {
5512 	      rtx_jump_insn *new_rtx;
5513 	      rtx note;
5514 
5515 	      rtx_insn *seq = targetm.gen_jump (XEXP (src, 0));
5516 	      new_rtx = emit_jump_insn_before (seq, insn);
5517 	      JUMP_LABEL (new_rtx) = XEXP (src, 0);
5518 	      LABEL_NUSES (XEXP (src, 0))++;
5519 
5520 	      /* Make sure to copy over REG_NON_LOCAL_GOTO.  */
5521 	      note = find_reg_note (insn, REG_NON_LOCAL_GOTO, 0);
5522 	      if (note)
5523 		{
5524 		  XEXP (note, 1) = NULL_RTX;
5525 		  REG_NOTES (new_rtx) = note;
5526 		}
5527 
5528 	      delete_insn_and_edges (insn);
5529 	      insn = new_rtx;
5530 	    }
5531 	  else
5532 	    INSN_CODE (insn) = -1;
5533 
5534 	  /* Do not bother deleting any unreachable code, let jump do it.  */
5535 	  cse_jumps_altered = true;
5536 	  sets[i].rtl = 0;
5537 	}
5538 
5539       /* If destination is volatile, invalidate it and then do no further
5540 	 processing for this assignment.  */
5541 
5542       else if (do_not_record)
5543 	{
5544 	  invalidate_dest (dest);
5545 	  sets[i].rtl = 0;
5546 	}
5547 
5548       if (sets[i].rtl != 0 && dest != SET_DEST (sets[i].rtl))
5549 	{
5550 	  do_not_record = 0;
5551 	  sets[i].dest_hash = HASH (SET_DEST (sets[i].rtl), mode);
5552 	  if (do_not_record)
5553 	    {
5554 	      invalidate_dest (SET_DEST (sets[i].rtl));
5555 	      sets[i].rtl = 0;
5556 	    }
5557 	}
5558 
5559       /* If setting CC0, record what it was set to, or a constant, if it
5560 	 is equivalent to a constant.  If it is being set to a floating-point
5561 	 value, make a COMPARE with the appropriate constant of 0.  If we
5562 	 don't do this, later code can interpret this as a test against
5563 	 const0_rtx, which can cause problems if we try to put it into an
5564 	 insn as a floating-point operand.  */
5565       if (dest == cc0_rtx)
5566 	{
5567 	  this_insn_cc0 = src_const && mode != VOIDmode ? src_const : src;
5568 	  this_insn_cc0_mode = mode;
5569 	  if (FLOAT_MODE_P (mode))
5570 	    this_insn_cc0 = gen_rtx_COMPARE (VOIDmode, this_insn_cc0,
5571 					     CONST0_RTX (mode));
5572 	}
5573     }
5574 
5575   /* Now enter all non-volatile source expressions in the hash table
5576      if they are not already present.
5577      Record their equivalence classes in src_elt.
5578      This way we can insert the corresponding destinations into
5579      the same classes even if the actual sources are no longer in them
5580      (having been invalidated).  */
5581 
5582   if (src_eqv && src_eqv_elt == 0 && sets[0].rtl != 0 && ! src_eqv_volatile
5583       && ! rtx_equal_p (src_eqv, SET_DEST (sets[0].rtl)))
5584     {
5585       struct table_elt *elt;
5586       struct table_elt *classp = sets[0].src_elt;
5587       rtx dest = SET_DEST (sets[0].rtl);
5588       machine_mode eqvmode = GET_MODE (dest);
5589 
5590       if (GET_CODE (dest) == STRICT_LOW_PART)
5591 	{
5592 	  eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
5593 	  classp = 0;
5594 	}
5595       if (insert_regs (src_eqv, classp, 0))
5596 	{
5597 	  rehash_using_reg (src_eqv);
5598 	  src_eqv_hash = HASH (src_eqv, eqvmode);
5599 	}
5600       elt = insert (src_eqv, classp, src_eqv_hash, eqvmode);
5601       elt->in_memory = src_eqv_in_memory;
5602       src_eqv_elt = elt;
5603 
5604       /* Check to see if src_eqv_elt is the same as a set source which
5605 	 does not yet have an elt, and if so set the elt of the set source
5606 	 to src_eqv_elt.  */
5607       for (i = 0; i < n_sets; i++)
5608 	if (sets[i].rtl && sets[i].src_elt == 0
5609 	    && rtx_equal_p (SET_SRC (sets[i].rtl), src_eqv))
5610 	  sets[i].src_elt = src_eqv_elt;
5611     }
5612 
5613   for (i = 0; i < n_sets; i++)
5614     if (sets[i].rtl && ! sets[i].src_volatile
5615 	&& ! rtx_equal_p (SET_SRC (sets[i].rtl), SET_DEST (sets[i].rtl)))
5616       {
5617 	if (GET_CODE (SET_DEST (sets[i].rtl)) == STRICT_LOW_PART)
5618 	  {
5619 	    /* REG_EQUAL in setting a STRICT_LOW_PART
5620 	       gives an equivalent for the entire destination register,
5621 	       not just for the subreg being stored in now.
5622 	       This is a more interesting equivalence, so we arrange later
5623 	       to treat the entire reg as the destination.  */
5624 	    sets[i].src_elt = src_eqv_elt;
5625 	    sets[i].src_hash = src_eqv_hash;
5626 	  }
5627 	else
5628 	  {
5629 	    /* Insert source and constant equivalent into hash table, if not
5630 	       already present.  */
5631 	    struct table_elt *classp = src_eqv_elt;
5632 	    rtx src = sets[i].src;
5633 	    rtx dest = SET_DEST (sets[i].rtl);
5634 	    machine_mode mode
5635 	      = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
5636 
5637 	    /* It's possible that we have a source value known to be
5638 	       constant but don't have a REG_EQUAL note on the insn.
5639 	       Lack of a note will mean src_eqv_elt will be NULL.  This
5640 	       can happen where we've generated a SUBREG to access a
5641 	       CONST_INT that is already in a register in a wider mode.
5642 	       Ensure that the source expression is put in the proper
5643 	       constant class.  */
5644 	    if (!classp)
5645 	      classp = sets[i].src_const_elt;
5646 
5647 	    if (sets[i].src_elt == 0)
5648 	      {
5649 		struct table_elt *elt;
5650 
5651 		/* Note that these insert_regs calls cannot remove
5652 		   any of the src_elt's, because they would have failed to
5653 		   match if not still valid.  */
5654 		if (insert_regs (src, classp, 0))
5655 		  {
5656 		    rehash_using_reg (src);
5657 		    sets[i].src_hash = HASH (src, mode);
5658 		  }
5659 		elt = insert (src, classp, sets[i].src_hash, mode);
5660 		elt->in_memory = sets[i].src_in_memory;
5661 		/* If inline asm has any clobbers, ensure we only reuse
5662 		   existing inline asms and never try to put the ASM_OPERANDS
5663 		   into an insn that isn't inline asm.  */
5664 		if (GET_CODE (src) == ASM_OPERANDS
5665 		    && GET_CODE (x) == PARALLEL)
5666 		  elt->cost = MAX_COST;
5667 		sets[i].src_elt = classp = elt;
5668 	      }
5669 	    if (sets[i].src_const && sets[i].src_const_elt == 0
5670 		&& src != sets[i].src_const
5671 		&& ! rtx_equal_p (sets[i].src_const, src))
5672 	      sets[i].src_elt = insert (sets[i].src_const, classp,
5673 					sets[i].src_const_hash, mode);
5674 	  }
5675       }
5676     else if (sets[i].src_elt == 0)
5677       /* If we did not insert the source into the hash table (e.g., it was
5678 	 volatile), note the equivalence class for the REG_EQUAL value, if any,
5679 	 so that the destination goes into that class.  */
5680       sets[i].src_elt = src_eqv_elt;
5681 
5682   /* Record destination addresses in the hash table.  This allows us to
5683      check if they are invalidated by other sets.  */
5684   for (i = 0; i < n_sets; i++)
5685     {
5686       if (sets[i].rtl)
5687 	{
5688 	  rtx x = sets[i].inner_dest;
5689 	  struct table_elt *elt;
5690 	  machine_mode mode;
5691 	  unsigned hash;
5692 
5693 	  if (MEM_P (x))
5694 	    {
5695 	      x = XEXP (x, 0);
5696 	      mode = GET_MODE (x);
5697 	      hash = HASH (x, mode);
5698 	      elt = lookup (x, hash, mode);
5699 	      if (!elt)
5700 		{
5701 		  if (insert_regs (x, NULL, 0))
5702 		    {
5703 		      rtx dest = SET_DEST (sets[i].rtl);
5704 
5705 		      rehash_using_reg (x);
5706 		      hash = HASH (x, mode);
5707 		      sets[i].dest_hash = HASH (dest, GET_MODE (dest));
5708 		    }
5709 		  elt = insert (x, NULL, hash, mode);
5710 		}
5711 
5712 	      sets[i].dest_addr_elt = elt;
5713 	    }
5714 	  else
5715 	    sets[i].dest_addr_elt = NULL;
5716 	}
5717     }
5718 
5719   invalidate_from_clobbers (insn);
5720 
5721   /* Some registers are invalidated by subroutine calls.  Memory is
5722      invalidated by non-constant calls.  */
5723 
5724   if (CALL_P (insn))
5725     {
5726       if (!(RTL_CONST_OR_PURE_CALL_P (insn)))
5727 	invalidate_memory ();
5728       invalidate_for_call ();
5729     }
5730 
5731   /* Now invalidate everything set by this instruction.
5732      If a SUBREG or other funny destination is being set,
5733      sets[i].rtl is still nonzero, so here we invalidate the reg
5734      a part of which is being set.  */
5735 
5736   for (i = 0; i < n_sets; i++)
5737     if (sets[i].rtl)
5738       {
5739 	/* We can't use the inner dest, because the mode associated with
5740 	   a ZERO_EXTRACT is significant.  */
5741 	rtx dest = SET_DEST (sets[i].rtl);
5742 
5743 	/* Needed for registers to remove the register from its
5744 	   previous quantity's chain.
5745 	   Needed for memory if this is a nonvarying address, unless
5746 	   we have just done an invalidate_memory that covers even those.  */
5747 	if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5748 	  invalidate (dest, VOIDmode);
5749 	else if (MEM_P (dest))
5750 	  invalidate (dest, VOIDmode);
5751 	else if (GET_CODE (dest) == STRICT_LOW_PART
5752 		 || GET_CODE (dest) == ZERO_EXTRACT)
5753 	  invalidate (XEXP (dest, 0), GET_MODE (dest));
5754       }
5755 
5756   /* Don't cse over a call to setjmp; on some machines (eg VAX)
5757      the regs restored by the longjmp come from a later time
5758      than the setjmp.  */
5759   if (CALL_P (insn) && find_reg_note (insn, REG_SETJMP, NULL))
5760     {
5761       flush_hash_table ();
5762       goto done;
5763     }
5764 
5765   /* Make sure registers mentioned in destinations
5766      are safe for use in an expression to be inserted.
5767      This removes from the hash table
5768      any invalid entry that refers to one of these registers.
5769 
5770      We don't care about the return value from mention_regs because
5771      we are going to hash the SET_DEST values unconditionally.  */
5772 
5773   for (i = 0; i < n_sets; i++)
5774     {
5775       if (sets[i].rtl)
5776 	{
5777 	  rtx x = SET_DEST (sets[i].rtl);
5778 
5779 	  if (!REG_P (x))
5780 	    mention_regs (x);
5781 	  else
5782 	    {
5783 	      /* We used to rely on all references to a register becoming
5784 		 inaccessible when a register changes to a new quantity,
5785 		 since that changes the hash code.  However, that is not
5786 		 safe, since after HASH_SIZE new quantities we get a
5787 		 hash 'collision' of a register with its own invalid
5788 		 entries.  And since SUBREGs have been changed not to
5789 		 change their hash code with the hash code of the register,
5790 		 it wouldn't work any longer at all.  So we have to check
5791 		 for any invalid references lying around now.
5792 		 This code is similar to the REG case in mention_regs,
5793 		 but it knows that reg_tick has been incremented, and
5794 		 it leaves reg_in_table as -1 .  */
5795 	      unsigned int regno = REGNO (x);
5796 	      unsigned int endregno = END_REGNO (x);
5797 	      unsigned int i;
5798 
5799 	      for (i = regno; i < endregno; i++)
5800 		{
5801 		  if (REG_IN_TABLE (i) >= 0)
5802 		    {
5803 		      remove_invalid_refs (i);
5804 		      REG_IN_TABLE (i) = -1;
5805 		    }
5806 		}
5807 	    }
5808 	}
5809     }
5810 
5811   /* We may have just removed some of the src_elt's from the hash table.
5812      So replace each one with the current head of the same class.
5813      Also check if destination addresses have been removed.  */
5814 
5815   for (i = 0; i < n_sets; i++)
5816     if (sets[i].rtl)
5817       {
5818 	if (sets[i].dest_addr_elt
5819 	    && sets[i].dest_addr_elt->first_same_value == 0)
5820 	  {
5821 	    /* The elt was removed, which means this destination is not
5822 	       valid after this instruction.  */
5823 	    sets[i].rtl = NULL_RTX;
5824 	  }
5825 	else if (sets[i].src_elt && sets[i].src_elt->first_same_value == 0)
5826 	  /* If elt was removed, find current head of same class,
5827 	     or 0 if nothing remains of that class.  */
5828 	  {
5829 	    struct table_elt *elt = sets[i].src_elt;
5830 
5831 	    while (elt && elt->prev_same_value)
5832 	      elt = elt->prev_same_value;
5833 
5834 	    while (elt && elt->first_same_value == 0)
5835 	      elt = elt->next_same_value;
5836 	    sets[i].src_elt = elt ? elt->first_same_value : 0;
5837 	  }
5838       }
5839 
5840   /* Now insert the destinations into their equivalence classes.  */
5841 
5842   for (i = 0; i < n_sets; i++)
5843     if (sets[i].rtl)
5844       {
5845 	rtx dest = SET_DEST (sets[i].rtl);
5846 	struct table_elt *elt;
5847 
5848 	/* Don't record value if we are not supposed to risk allocating
5849 	   floating-point values in registers that might be wider than
5850 	   memory.  */
5851 	if ((flag_float_store
5852 	     && MEM_P (dest)
5853 	     && FLOAT_MODE_P (GET_MODE (dest)))
5854 	    /* Don't record BLKmode values, because we don't know the
5855 	       size of it, and can't be sure that other BLKmode values
5856 	       have the same or smaller size.  */
5857 	    || GET_MODE (dest) == BLKmode
5858 	    /* If we didn't put a REG_EQUAL value or a source into the hash
5859 	       table, there is no point is recording DEST.  */
5860 	    || sets[i].src_elt == 0
5861 	    /* If DEST is a paradoxical SUBREG and SRC is a ZERO_EXTEND
5862 	       or SIGN_EXTEND, don't record DEST since it can cause
5863 	       some tracking to be wrong.
5864 
5865 	       ??? Think about this more later.  */
5866 	    || (paradoxical_subreg_p (dest)
5867 		&& (GET_CODE (sets[i].src) == SIGN_EXTEND
5868 		    || GET_CODE (sets[i].src) == ZERO_EXTEND)))
5869 	  continue;
5870 
5871 	/* STRICT_LOW_PART isn't part of the value BEING set,
5872 	   and neither is the SUBREG inside it.
5873 	   Note that in this case SETS[I].SRC_ELT is really SRC_EQV_ELT.  */
5874 	if (GET_CODE (dest) == STRICT_LOW_PART)
5875 	  dest = SUBREG_REG (XEXP (dest, 0));
5876 
5877 	if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5878 	  /* Registers must also be inserted into chains for quantities.  */
5879 	  if (insert_regs (dest, sets[i].src_elt, 1))
5880 	    {
5881 	      /* If `insert_regs' changes something, the hash code must be
5882 		 recalculated.  */
5883 	      rehash_using_reg (dest);
5884 	      sets[i].dest_hash = HASH (dest, GET_MODE (dest));
5885 	    }
5886 
5887 	elt = insert (dest, sets[i].src_elt,
5888 		      sets[i].dest_hash, GET_MODE (dest));
5889 
5890 	/* If this is a constant, insert the constant anchors with the
5891 	   equivalent register-offset expressions using register DEST.  */
5892 	if (targetm.const_anchor
5893 	    && REG_P (dest)
5894 	    && SCALAR_INT_MODE_P (GET_MODE (dest))
5895 	    && GET_CODE (sets[i].src_elt->exp) == CONST_INT)
5896 	  insert_const_anchors (dest, sets[i].src_elt->exp, GET_MODE (dest));
5897 
5898 	elt->in_memory = (MEM_P (sets[i].inner_dest)
5899 			  && !MEM_READONLY_P (sets[i].inner_dest));
5900 
5901 	/* If we have (set (subreg:m1 (reg:m2 foo) 0) (bar:m1)), M1 is no
5902 	   narrower than M2, and both M1 and M2 are the same number of words,
5903 	   we are also doing (set (reg:m2 foo) (subreg:m2 (bar:m1) 0)) so
5904 	   make that equivalence as well.
5905 
5906 	   However, BAR may have equivalences for which gen_lowpart
5907 	   will produce a simpler value than gen_lowpart applied to
5908 	   BAR (e.g., if BAR was ZERO_EXTENDed from M2), so we will scan all
5909 	   BAR's equivalences.  If we don't get a simplified form, make
5910 	   the SUBREG.  It will not be used in an equivalence, but will
5911 	   cause two similar assignments to be detected.
5912 
5913 	   Note the loop below will find SUBREG_REG (DEST) since we have
5914 	   already entered SRC and DEST of the SET in the table.  */
5915 
5916 	if (GET_CODE (dest) == SUBREG
5917 	    && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))) - 1)
5918 		 / UNITS_PER_WORD)
5919 		== (GET_MODE_SIZE (GET_MODE (dest)) - 1) / UNITS_PER_WORD)
5920 	    && (GET_MODE_SIZE (GET_MODE (dest))
5921 		>= GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
5922 	    && sets[i].src_elt != 0)
5923 	  {
5924 	    machine_mode new_mode = GET_MODE (SUBREG_REG (dest));
5925 	    struct table_elt *elt, *classp = 0;
5926 
5927 	    for (elt = sets[i].src_elt->first_same_value; elt;
5928 		 elt = elt->next_same_value)
5929 	      {
5930 		rtx new_src = 0;
5931 		unsigned src_hash;
5932 		struct table_elt *src_elt;
5933 		int byte = 0;
5934 
5935 		/* Ignore invalid entries.  */
5936 		if (!REG_P (elt->exp)
5937 		    && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
5938 		  continue;
5939 
5940 		/* We may have already been playing subreg games.  If the
5941 		   mode is already correct for the destination, use it.  */
5942 		if (GET_MODE (elt->exp) == new_mode)
5943 		  new_src = elt->exp;
5944 		else
5945 		  {
5946 		    /* Calculate big endian correction for the SUBREG_BYTE.
5947 		       We have already checked that M1 (GET_MODE (dest))
5948 		       is not narrower than M2 (new_mode).  */
5949 		    if (BYTES_BIG_ENDIAN)
5950 		      byte = (GET_MODE_SIZE (GET_MODE (dest))
5951 			      - GET_MODE_SIZE (new_mode));
5952 
5953 		    new_src = simplify_gen_subreg (new_mode, elt->exp,
5954 					           GET_MODE (dest), byte);
5955 		  }
5956 
5957 		/* The call to simplify_gen_subreg fails if the value
5958 		   is VOIDmode, yet we can't do any simplification, e.g.
5959 		   for EXPR_LISTs denoting function call results.
5960 		   It is invalid to construct a SUBREG with a VOIDmode
5961 		   SUBREG_REG, hence a zero new_src means we can't do
5962 		   this substitution.  */
5963 		if (! new_src)
5964 		  continue;
5965 
5966 		src_hash = HASH (new_src, new_mode);
5967 		src_elt = lookup (new_src, src_hash, new_mode);
5968 
5969 		/* Put the new source in the hash table is if isn't
5970 		   already.  */
5971 		if (src_elt == 0)
5972 		  {
5973 		    if (insert_regs (new_src, classp, 0))
5974 		      {
5975 			rehash_using_reg (new_src);
5976 			src_hash = HASH (new_src, new_mode);
5977 		      }
5978 		    src_elt = insert (new_src, classp, src_hash, new_mode);
5979 		    src_elt->in_memory = elt->in_memory;
5980 		    if (GET_CODE (new_src) == ASM_OPERANDS
5981 			&& elt->cost == MAX_COST)
5982 		      src_elt->cost = MAX_COST;
5983 		  }
5984 		else if (classp && classp != src_elt->first_same_value)
5985 		  /* Show that two things that we've seen before are
5986 		     actually the same.  */
5987 		  merge_equiv_classes (src_elt, classp);
5988 
5989 		classp = src_elt->first_same_value;
5990 		/* Ignore invalid entries.  */
5991 		while (classp
5992 		       && !REG_P (classp->exp)
5993 		       && ! exp_equiv_p (classp->exp, classp->exp, 1, false))
5994 		  classp = classp->next_same_value;
5995 	      }
5996 	  }
5997       }
5998 
5999   /* Special handling for (set REG0 REG1) where REG0 is the
6000      "cheapest", cheaper than REG1.  After cse, REG1 will probably not
6001      be used in the sequel, so (if easily done) change this insn to
6002      (set REG1 REG0) and replace REG1 with REG0 in the previous insn
6003      that computed their value.  Then REG1 will become a dead store
6004      and won't cloud the situation for later optimizations.
6005 
6006      Do not make this change if REG1 is a hard register, because it will
6007      then be used in the sequel and we may be changing a two-operand insn
6008      into a three-operand insn.
6009 
6010      Also do not do this if we are operating on a copy of INSN.  */
6011 
6012   if (n_sets == 1 && sets[0].rtl)
6013     try_back_substitute_reg (sets[0].rtl, insn);
6014 
6015 done:;
6016 }
6017 
6018 /* Remove from the hash table all expressions that reference memory.  */
6019 
6020 static void
invalidate_memory(void)6021 invalidate_memory (void)
6022 {
6023   int i;
6024   struct table_elt *p, *next;
6025 
6026   for (i = 0; i < HASH_SIZE; i++)
6027     for (p = table[i]; p; p = next)
6028       {
6029 	next = p->next_same_hash;
6030 	if (p->in_memory)
6031 	  remove_from_table (p, i);
6032       }
6033 }
6034 
6035 /* Perform invalidation on the basis of everything about INSN,
6036    except for invalidating the actual places that are SET in it.
6037    This includes the places CLOBBERed, and anything that might
6038    alias with something that is SET or CLOBBERed.  */
6039 
6040 static void
invalidate_from_clobbers(rtx_insn * insn)6041 invalidate_from_clobbers (rtx_insn *insn)
6042 {
6043   rtx x = PATTERN (insn);
6044 
6045   if (GET_CODE (x) == CLOBBER)
6046     {
6047       rtx ref = XEXP (x, 0);
6048       if (ref)
6049 	{
6050 	  if (REG_P (ref) || GET_CODE (ref) == SUBREG
6051 	      || MEM_P (ref))
6052 	    invalidate (ref, VOIDmode);
6053 	  else if (GET_CODE (ref) == STRICT_LOW_PART
6054 		   || GET_CODE (ref) == ZERO_EXTRACT)
6055 	    invalidate (XEXP (ref, 0), GET_MODE (ref));
6056 	}
6057     }
6058   else if (GET_CODE (x) == PARALLEL)
6059     {
6060       int i;
6061       for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
6062 	{
6063 	  rtx y = XVECEXP (x, 0, i);
6064 	  if (GET_CODE (y) == CLOBBER)
6065 	    {
6066 	      rtx ref = XEXP (y, 0);
6067 	      if (REG_P (ref) || GET_CODE (ref) == SUBREG
6068 		  || MEM_P (ref))
6069 		invalidate (ref, VOIDmode);
6070 	      else if (GET_CODE (ref) == STRICT_LOW_PART
6071 		       || GET_CODE (ref) == ZERO_EXTRACT)
6072 		invalidate (XEXP (ref, 0), GET_MODE (ref));
6073 	    }
6074 	}
6075     }
6076 }
6077 
6078 /* Perform invalidation on the basis of everything about INSN.
6079    This includes the places CLOBBERed, and anything that might
6080    alias with something that is SET or CLOBBERed.  */
6081 
6082 static void
invalidate_from_sets_and_clobbers(rtx_insn * insn)6083 invalidate_from_sets_and_clobbers (rtx_insn *insn)
6084 {
6085   rtx tem;
6086   rtx x = PATTERN (insn);
6087 
6088   if (CALL_P (insn))
6089     {
6090       for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
6091 	if (GET_CODE (XEXP (tem, 0)) == CLOBBER)
6092 	  invalidate (SET_DEST (XEXP (tem, 0)), VOIDmode);
6093     }
6094 
6095   /* Ensure we invalidate the destination register of a CALL insn.
6096      This is necessary for machines where this register is a fixed_reg,
6097      because no other code would invalidate it.  */
6098   if (GET_CODE (x) == SET && GET_CODE (SET_SRC (x)) == CALL)
6099     invalidate (SET_DEST (x), VOIDmode);
6100 
6101   else if (GET_CODE (x) == PARALLEL)
6102     {
6103       int i;
6104 
6105       for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
6106 	{
6107 	  rtx y = XVECEXP (x, 0, i);
6108 	  if (GET_CODE (y) == CLOBBER)
6109 	    {
6110 	      rtx clobbered = XEXP (y, 0);
6111 
6112 	      if (REG_P (clobbered)
6113 		  || GET_CODE (clobbered) == SUBREG)
6114 		invalidate (clobbered, VOIDmode);
6115 	      else if (GET_CODE (clobbered) == STRICT_LOW_PART
6116 		       || GET_CODE (clobbered) == ZERO_EXTRACT)
6117 		invalidate (XEXP (clobbered, 0), GET_MODE (clobbered));
6118 	    }
6119 	  else if (GET_CODE (y) == SET && GET_CODE (SET_SRC (y)) == CALL)
6120 	    invalidate (SET_DEST (y), VOIDmode);
6121 	}
6122     }
6123 }
6124 
6125 /* Process X, part of the REG_NOTES of an insn.  Look at any REG_EQUAL notes
6126    and replace any registers in them with either an equivalent constant
6127    or the canonical form of the register.  If we are inside an address,
6128    only do this if the address remains valid.
6129 
6130    OBJECT is 0 except when within a MEM in which case it is the MEM.
6131 
6132    Return the replacement for X.  */
6133 
6134 static rtx
cse_process_notes_1(rtx x,rtx object,bool * changed)6135 cse_process_notes_1 (rtx x, rtx object, bool *changed)
6136 {
6137   enum rtx_code code = GET_CODE (x);
6138   const char *fmt = GET_RTX_FORMAT (code);
6139   int i;
6140 
6141   switch (code)
6142     {
6143     case CONST:
6144     case SYMBOL_REF:
6145     case LABEL_REF:
6146     CASE_CONST_ANY:
6147     case PC:
6148     case CC0:
6149     case LO_SUM:
6150       return x;
6151 
6152     case MEM:
6153       validate_change (x, &XEXP (x, 0),
6154 		       cse_process_notes (XEXP (x, 0), x, changed), 0);
6155       return x;
6156 
6157     case EXPR_LIST:
6158       if (REG_NOTE_KIND (x) == REG_EQUAL)
6159 	XEXP (x, 0) = cse_process_notes (XEXP (x, 0), NULL_RTX, changed);
6160       /* Fall through.  */
6161 
6162     case INSN_LIST:
6163     case INT_LIST:
6164       if (XEXP (x, 1))
6165 	XEXP (x, 1) = cse_process_notes (XEXP (x, 1), NULL_RTX, changed);
6166       return x;
6167 
6168     case SIGN_EXTEND:
6169     case ZERO_EXTEND:
6170     case SUBREG:
6171       {
6172 	rtx new_rtx = cse_process_notes (XEXP (x, 0), object, changed);
6173 	/* We don't substitute VOIDmode constants into these rtx,
6174 	   since they would impede folding.  */
6175 	if (GET_MODE (new_rtx) != VOIDmode)
6176 	  validate_change (object, &XEXP (x, 0), new_rtx, 0);
6177 	return x;
6178       }
6179 
6180     case UNSIGNED_FLOAT:
6181       {
6182 	rtx new_rtx = cse_process_notes (XEXP (x, 0), object, changed);
6183 	/* We don't substitute negative VOIDmode constants into these rtx,
6184 	   since they would impede folding.  */
6185 	if (GET_MODE (new_rtx) != VOIDmode
6186 	    || (CONST_INT_P (new_rtx) && INTVAL (new_rtx) >= 0)
6187 	    || (CONST_DOUBLE_P (new_rtx) && CONST_DOUBLE_HIGH (new_rtx) >= 0))
6188 	  validate_change (object, &XEXP (x, 0), new_rtx, 0);
6189 	return x;
6190       }
6191 
6192     case REG:
6193       i = REG_QTY (REGNO (x));
6194 
6195       /* Return a constant or a constant register.  */
6196       if (REGNO_QTY_VALID_P (REGNO (x)))
6197 	{
6198 	  struct qty_table_elem *ent = &qty_table[i];
6199 
6200 	  if (ent->const_rtx != NULL_RTX
6201 	      && (CONSTANT_P (ent->const_rtx)
6202 		  || REG_P (ent->const_rtx)))
6203 	    {
6204 	      rtx new_rtx = gen_lowpart (GET_MODE (x), ent->const_rtx);
6205 	      if (new_rtx)
6206 		return copy_rtx (new_rtx);
6207 	    }
6208 	}
6209 
6210       /* Otherwise, canonicalize this register.  */
6211       return canon_reg (x, NULL);
6212 
6213     default:
6214       break;
6215     }
6216 
6217   for (i = 0; i < GET_RTX_LENGTH (code); i++)
6218     if (fmt[i] == 'e')
6219       validate_change (object, &XEXP (x, i),
6220 		       cse_process_notes (XEXP (x, i), object, changed), 0);
6221 
6222   return x;
6223 }
6224 
6225 static rtx
cse_process_notes(rtx x,rtx object,bool * changed)6226 cse_process_notes (rtx x, rtx object, bool *changed)
6227 {
6228   rtx new_rtx = cse_process_notes_1 (x, object, changed);
6229   if (new_rtx != x)
6230     *changed = true;
6231   return new_rtx;
6232 }
6233 
6234 
6235 /* Find a path in the CFG, starting with FIRST_BB to perform CSE on.
6236 
6237    DATA is a pointer to a struct cse_basic_block_data, that is used to
6238    describe the path.
6239    It is filled with a queue of basic blocks, starting with FIRST_BB
6240    and following a trace through the CFG.
6241 
6242    If all paths starting at FIRST_BB have been followed, or no new path
6243    starting at FIRST_BB can be constructed, this function returns FALSE.
6244    Otherwise, DATA->path is filled and the function returns TRUE indicating
6245    that a path to follow was found.
6246 
6247    If FOLLOW_JUMPS is false, the maximum path length is 1 and the only
6248    block in the path will be FIRST_BB.  */
6249 
6250 static bool
cse_find_path(basic_block first_bb,struct cse_basic_block_data * data,int follow_jumps)6251 cse_find_path (basic_block first_bb, struct cse_basic_block_data *data,
6252 	       int follow_jumps)
6253 {
6254   basic_block bb;
6255   edge e;
6256   int path_size;
6257 
6258   bitmap_set_bit (cse_visited_basic_blocks, first_bb->index);
6259 
6260   /* See if there is a previous path.  */
6261   path_size = data->path_size;
6262 
6263   /* There is a previous path.  Make sure it started with FIRST_BB.  */
6264   if (path_size)
6265     gcc_assert (data->path[0].bb == first_bb);
6266 
6267   /* There was only one basic block in the last path.  Clear the path and
6268      return, so that paths starting at another basic block can be tried.  */
6269   if (path_size == 1)
6270     {
6271       path_size = 0;
6272       goto done;
6273     }
6274 
6275   /* If the path was empty from the beginning, construct a new path.  */
6276   if (path_size == 0)
6277     data->path[path_size++].bb = first_bb;
6278   else
6279     {
6280       /* Otherwise, path_size must be equal to or greater than 2, because
6281 	 a previous path exists that is at least two basic blocks long.
6282 
6283 	 Update the previous branch path, if any.  If the last branch was
6284 	 previously along the branch edge, take the fallthrough edge now.  */
6285       while (path_size >= 2)
6286 	{
6287 	  basic_block last_bb_in_path, previous_bb_in_path;
6288 	  edge e;
6289 
6290 	  --path_size;
6291 	  last_bb_in_path = data->path[path_size].bb;
6292 	  previous_bb_in_path = data->path[path_size - 1].bb;
6293 
6294 	  /* If we previously followed a path along the branch edge, try
6295 	     the fallthru edge now.  */
6296 	  if (EDGE_COUNT (previous_bb_in_path->succs) == 2
6297 	      && any_condjump_p (BB_END (previous_bb_in_path))
6298 	      && (e = find_edge (previous_bb_in_path, last_bb_in_path))
6299 	      && e == BRANCH_EDGE (previous_bb_in_path))
6300 	    {
6301 	      bb = FALLTHRU_EDGE (previous_bb_in_path)->dest;
6302 	      if (bb != EXIT_BLOCK_PTR_FOR_FN (cfun)
6303 		  && single_pred_p (bb)
6304 		  /* We used to assert here that we would only see blocks
6305 		     that we have not visited yet.  But we may end up
6306 		     visiting basic blocks twice if the CFG has changed
6307 		     in this run of cse_main, because when the CFG changes
6308 		     the topological sort of the CFG also changes.  A basic
6309 		     blocks that previously had more than two predecessors
6310 		     may now have a single predecessor, and become part of
6311 		     a path that starts at another basic block.
6312 
6313 		     We still want to visit each basic block only once, so
6314 		     halt the path here if we have already visited BB.  */
6315 		  && !bitmap_bit_p (cse_visited_basic_blocks, bb->index))
6316 		{
6317 		  bitmap_set_bit (cse_visited_basic_blocks, bb->index);
6318 		  data->path[path_size++].bb = bb;
6319 		  break;
6320 		}
6321 	    }
6322 
6323 	  data->path[path_size].bb = NULL;
6324 	}
6325 
6326       /* If only one block remains in the path, bail.  */
6327       if (path_size == 1)
6328 	{
6329 	  path_size = 0;
6330 	  goto done;
6331 	}
6332     }
6333 
6334   /* Extend the path if possible.  */
6335   if (follow_jumps)
6336     {
6337       bb = data->path[path_size - 1].bb;
6338       while (bb && path_size < PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH))
6339 	{
6340 	  if (single_succ_p (bb))
6341 	    e = single_succ_edge (bb);
6342 	  else if (EDGE_COUNT (bb->succs) == 2
6343 		   && any_condjump_p (BB_END (bb)))
6344 	    {
6345 	      /* First try to follow the branch.  If that doesn't lead
6346 		 to a useful path, follow the fallthru edge.  */
6347 	      e = BRANCH_EDGE (bb);
6348 	      if (!single_pred_p (e->dest))
6349 		e = FALLTHRU_EDGE (bb);
6350 	    }
6351 	  else
6352 	    e = NULL;
6353 
6354 	  if (e
6355 	      && !((e->flags & EDGE_ABNORMAL_CALL) && cfun->has_nonlocal_label)
6356 	      && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
6357 	      && single_pred_p (e->dest)
6358 	      /* Avoid visiting basic blocks twice.  The large comment
6359 		 above explains why this can happen.  */
6360 	      && !bitmap_bit_p (cse_visited_basic_blocks, e->dest->index))
6361 	    {
6362 	      basic_block bb2 = e->dest;
6363 	      bitmap_set_bit (cse_visited_basic_blocks, bb2->index);
6364 	      data->path[path_size++].bb = bb2;
6365 	      bb = bb2;
6366 	    }
6367 	  else
6368 	    bb = NULL;
6369 	}
6370     }
6371 
6372 done:
6373   data->path_size = path_size;
6374   return path_size != 0;
6375 }
6376 
6377 /* Dump the path in DATA to file F.  NSETS is the number of sets
6378    in the path.  */
6379 
6380 static void
cse_dump_path(struct cse_basic_block_data * data,int nsets,FILE * f)6381 cse_dump_path (struct cse_basic_block_data *data, int nsets, FILE *f)
6382 {
6383   int path_entry;
6384 
6385   fprintf (f, ";; Following path with %d sets: ", nsets);
6386   for (path_entry = 0; path_entry < data->path_size; path_entry++)
6387     fprintf (f, "%d ", (data->path[path_entry].bb)->index);
6388   fputc ('\n', dump_file);
6389   fflush (f);
6390 }
6391 
6392 
6393 /* Return true if BB has exception handling successor edges.  */
6394 
6395 static bool
have_eh_succ_edges(basic_block bb)6396 have_eh_succ_edges (basic_block bb)
6397 {
6398   edge e;
6399   edge_iterator ei;
6400 
6401   FOR_EACH_EDGE (e, ei, bb->succs)
6402     if (e->flags & EDGE_EH)
6403       return true;
6404 
6405   return false;
6406 }
6407 
6408 
6409 /* Scan to the end of the path described by DATA.  Return an estimate of
6410    the total number of SETs of all insns in the path.  */
6411 
6412 static void
cse_prescan_path(struct cse_basic_block_data * data)6413 cse_prescan_path (struct cse_basic_block_data *data)
6414 {
6415   int nsets = 0;
6416   int path_size = data->path_size;
6417   int path_entry;
6418 
6419   /* Scan to end of each basic block in the path.  */
6420   for (path_entry = 0; path_entry < path_size; path_entry++)
6421     {
6422       basic_block bb;
6423       rtx_insn *insn;
6424 
6425       bb = data->path[path_entry].bb;
6426 
6427       FOR_BB_INSNS (bb, insn)
6428 	{
6429 	  if (!INSN_P (insn))
6430 	    continue;
6431 
6432 	  /* A PARALLEL can have lots of SETs in it,
6433 	     especially if it is really an ASM_OPERANDS.  */
6434 	  if (GET_CODE (PATTERN (insn)) == PARALLEL)
6435 	    nsets += XVECLEN (PATTERN (insn), 0);
6436 	  else
6437 	    nsets += 1;
6438 	}
6439     }
6440 
6441   data->nsets = nsets;
6442 }
6443 
6444 /* Return true if the pattern of INSN uses a LABEL_REF for which
6445    there isn't a REG_LABEL_OPERAND note.  */
6446 
6447 static bool
check_for_label_ref(rtx_insn * insn)6448 check_for_label_ref (rtx_insn *insn)
6449 {
6450   /* If this insn uses a LABEL_REF and there isn't a REG_LABEL_OPERAND
6451      note for it, we must rerun jump since it needs to place the note.  If
6452      this is a LABEL_REF for a CODE_LABEL that isn't in the insn chain,
6453      don't do this since no REG_LABEL_OPERAND will be added.  */
6454   subrtx_iterator::array_type array;
6455   FOR_EACH_SUBRTX (iter, array, PATTERN (insn), ALL)
6456     {
6457       const_rtx x = *iter;
6458       if (GET_CODE (x) == LABEL_REF
6459 	  && !LABEL_REF_NONLOCAL_P (x)
6460 	  && (!JUMP_P (insn)
6461 	      || !label_is_jump_target_p (LABEL_REF_LABEL (x), insn))
6462 	  && LABEL_P (LABEL_REF_LABEL (x))
6463 	  && INSN_UID (LABEL_REF_LABEL (x)) != 0
6464 	  && !find_reg_note (insn, REG_LABEL_OPERAND, LABEL_REF_LABEL (x)))
6465 	return true;
6466     }
6467   return false;
6468 }
6469 
6470 /* Process a single extended basic block described by EBB_DATA.  */
6471 
6472 static void
cse_extended_basic_block(struct cse_basic_block_data * ebb_data)6473 cse_extended_basic_block (struct cse_basic_block_data *ebb_data)
6474 {
6475   int path_size = ebb_data->path_size;
6476   int path_entry;
6477   int num_insns = 0;
6478 
6479   /* Allocate the space needed by qty_table.  */
6480   qty_table = XNEWVEC (struct qty_table_elem, max_qty);
6481 
6482   new_basic_block ();
6483   cse_ebb_live_in = df_get_live_in (ebb_data->path[0].bb);
6484   cse_ebb_live_out = df_get_live_out (ebb_data->path[path_size - 1].bb);
6485   for (path_entry = 0; path_entry < path_size; path_entry++)
6486     {
6487       basic_block bb;
6488       rtx_insn *insn;
6489 
6490       bb = ebb_data->path[path_entry].bb;
6491 
6492       /* Invalidate recorded information for eh regs if there is an EH
6493 	 edge pointing to that bb.  */
6494       if (bb_has_eh_pred (bb))
6495 	{
6496 	  df_ref def;
6497 
6498 	  FOR_EACH_ARTIFICIAL_DEF (def, bb->index)
6499 	    if (DF_REF_FLAGS (def) & DF_REF_AT_TOP)
6500 	      invalidate (DF_REF_REG (def), GET_MODE (DF_REF_REG (def)));
6501 	}
6502 
6503       optimize_this_for_speed_p = optimize_bb_for_speed_p (bb);
6504       FOR_BB_INSNS (bb, insn)
6505 	{
6506 	  /* If we have processed 1,000 insns, flush the hash table to
6507 	     avoid extreme quadratic behavior.  We must not include NOTEs
6508 	     in the count since there may be more of them when generating
6509 	     debugging information.  If we clear the table at different
6510 	     times, code generated with -g -O might be different than code
6511 	     generated with -O but not -g.
6512 
6513 	     FIXME: This is a real kludge and needs to be done some other
6514 		    way.  */
6515 	  if (NONDEBUG_INSN_P (insn)
6516 	      && num_insns++ > PARAM_VALUE (PARAM_MAX_CSE_INSNS))
6517 	    {
6518 	      flush_hash_table ();
6519 	      num_insns = 0;
6520 	    }
6521 
6522 	  if (INSN_P (insn))
6523 	    {
6524 	      /* Process notes first so we have all notes in canonical forms
6525 		 when looking for duplicate operations.  */
6526 	      if (REG_NOTES (insn))
6527 		{
6528 		  bool changed = false;
6529 		  REG_NOTES (insn) = cse_process_notes (REG_NOTES (insn),
6530 						        NULL_RTX, &changed);
6531 		  if (changed)
6532 		    df_notes_rescan (insn);
6533 		}
6534 
6535 	      cse_insn (insn);
6536 
6537 	      /* If we haven't already found an insn where we added a LABEL_REF,
6538 		 check this one.  */
6539 	      if (INSN_P (insn) && !recorded_label_ref
6540 		  && check_for_label_ref (insn))
6541 		recorded_label_ref = true;
6542 
6543 	      if (HAVE_cc0 && NONDEBUG_INSN_P (insn))
6544 		{
6545 		  /* If the previous insn sets CC0 and this insn no
6546 		     longer references CC0, delete the previous insn.
6547 		     Here we use fact that nothing expects CC0 to be
6548 		     valid over an insn, which is true until the final
6549 		     pass.  */
6550 		  rtx_insn *prev_insn;
6551 		  rtx tem;
6552 
6553 		  prev_insn = prev_nonnote_nondebug_insn (insn);
6554 		  if (prev_insn && NONJUMP_INSN_P (prev_insn)
6555 		      && (tem = single_set (prev_insn)) != NULL_RTX
6556 		      && SET_DEST (tem) == cc0_rtx
6557 		      && ! reg_mentioned_p (cc0_rtx, PATTERN (insn)))
6558 		    delete_insn (prev_insn);
6559 
6560 		  /* If this insn is not the last insn in the basic
6561 		     block, it will be PREV_INSN(insn) in the next
6562 		     iteration.  If we recorded any CC0-related
6563 		     information for this insn, remember it.  */
6564 		  if (insn != BB_END (bb))
6565 		    {
6566 		      prev_insn_cc0 = this_insn_cc0;
6567 		      prev_insn_cc0_mode = this_insn_cc0_mode;
6568 		    }
6569 		}
6570 	    }
6571 	}
6572 
6573       /* With non-call exceptions, we are not always able to update
6574 	 the CFG properly inside cse_insn.  So clean up possibly
6575 	 redundant EH edges here.  */
6576       if (cfun->can_throw_non_call_exceptions && have_eh_succ_edges (bb))
6577 	cse_cfg_altered |= purge_dead_edges (bb);
6578 
6579       /* If we changed a conditional jump, we may have terminated
6580 	 the path we are following.  Check that by verifying that
6581 	 the edge we would take still exists.  If the edge does
6582 	 not exist anymore, purge the remainder of the path.
6583 	 Note that this will cause us to return to the caller.  */
6584       if (path_entry < path_size - 1)
6585 	{
6586 	  basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6587 	  if (!find_edge (bb, next_bb))
6588 	    {
6589 	      do
6590 		{
6591 		  path_size--;
6592 
6593 		  /* If we truncate the path, we must also reset the
6594 		     visited bit on the remaining blocks in the path,
6595 		     or we will never visit them at all.  */
6596 		  bitmap_clear_bit (cse_visited_basic_blocks,
6597 			     ebb_data->path[path_size].bb->index);
6598 		  ebb_data->path[path_size].bb = NULL;
6599 		}
6600 	      while (path_size - 1 != path_entry);
6601 	      ebb_data->path_size = path_size;
6602 	    }
6603 	}
6604 
6605       /* If this is a conditional jump insn, record any known
6606 	 equivalences due to the condition being tested.  */
6607       insn = BB_END (bb);
6608       if (path_entry < path_size - 1
6609 	  && JUMP_P (insn)
6610 	  && single_set (insn)
6611 	  && any_condjump_p (insn))
6612 	{
6613 	  basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6614 	  bool taken = (next_bb == BRANCH_EDGE (bb)->dest);
6615 	  record_jump_equiv (insn, taken);
6616 	}
6617 
6618       /* Clear the CC0-tracking related insns, they can't provide
6619 	 useful information across basic block boundaries.  */
6620       prev_insn_cc0 = 0;
6621     }
6622 
6623   gcc_assert (next_qty <= max_qty);
6624 
6625   free (qty_table);
6626 }
6627 
6628 
6629 /* Perform cse on the instructions of a function.
6630    F is the first instruction.
6631    NREGS is one plus the highest pseudo-reg number used in the instruction.
6632 
6633    Return 2 if jump optimizations should be redone due to simplifications
6634    in conditional jump instructions.
6635    Return 1 if the CFG should be cleaned up because it has been modified.
6636    Return 0 otherwise.  */
6637 
6638 static int
cse_main(rtx_insn * f ATTRIBUTE_UNUSED,int nregs)6639 cse_main (rtx_insn *f ATTRIBUTE_UNUSED, int nregs)
6640 {
6641   struct cse_basic_block_data ebb_data;
6642   basic_block bb;
6643   int *rc_order = XNEWVEC (int, last_basic_block_for_fn (cfun));
6644   int i, n_blocks;
6645 
6646   df_set_flags (DF_LR_RUN_DCE);
6647   df_note_add_problem ();
6648   df_analyze ();
6649   df_set_flags (DF_DEFER_INSN_RESCAN);
6650 
6651   reg_scan (get_insns (), max_reg_num ());
6652   init_cse_reg_info (nregs);
6653 
6654   ebb_data.path = XNEWVEC (struct branch_path,
6655 			   PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH));
6656 
6657   cse_cfg_altered = false;
6658   cse_jumps_altered = false;
6659   recorded_label_ref = false;
6660   constant_pool_entries_cost = 0;
6661   constant_pool_entries_regcost = 0;
6662   ebb_data.path_size = 0;
6663   ebb_data.nsets = 0;
6664   rtl_hooks = cse_rtl_hooks;
6665 
6666   init_recog ();
6667   init_alias_analysis ();
6668 
6669   reg_eqv_table = XNEWVEC (struct reg_eqv_elem, nregs);
6670 
6671   /* Set up the table of already visited basic blocks.  */
6672   cse_visited_basic_blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
6673   bitmap_clear (cse_visited_basic_blocks);
6674 
6675   /* Loop over basic blocks in reverse completion order (RPO),
6676      excluding the ENTRY and EXIT blocks.  */
6677   n_blocks = pre_and_rev_post_order_compute (NULL, rc_order, false);
6678   i = 0;
6679   while (i < n_blocks)
6680     {
6681       /* Find the first block in the RPO queue that we have not yet
6682 	 processed before.  */
6683       do
6684 	{
6685 	  bb = BASIC_BLOCK_FOR_FN (cfun, rc_order[i++]);
6686 	}
6687       while (bitmap_bit_p (cse_visited_basic_blocks, bb->index)
6688 	     && i < n_blocks);
6689 
6690       /* Find all paths starting with BB, and process them.  */
6691       while (cse_find_path (bb, &ebb_data, flag_cse_follow_jumps))
6692 	{
6693 	  /* Pre-scan the path.  */
6694 	  cse_prescan_path (&ebb_data);
6695 
6696 	  /* If this basic block has no sets, skip it.  */
6697 	  if (ebb_data.nsets == 0)
6698 	    continue;
6699 
6700 	  /* Get a reasonable estimate for the maximum number of qty's
6701 	     needed for this path.  For this, we take the number of sets
6702 	     and multiply that by MAX_RECOG_OPERANDS.  */
6703 	  max_qty = ebb_data.nsets * MAX_RECOG_OPERANDS;
6704 
6705 	  /* Dump the path we're about to process.  */
6706 	  if (dump_file)
6707 	    cse_dump_path (&ebb_data, ebb_data.nsets, dump_file);
6708 
6709 	  cse_extended_basic_block (&ebb_data);
6710 	}
6711     }
6712 
6713   /* Clean up.  */
6714   end_alias_analysis ();
6715   free (reg_eqv_table);
6716   free (ebb_data.path);
6717   sbitmap_free (cse_visited_basic_blocks);
6718   free (rc_order);
6719   rtl_hooks = general_rtl_hooks;
6720 
6721   if (cse_jumps_altered || recorded_label_ref)
6722     return 2;
6723   else if (cse_cfg_altered)
6724     return 1;
6725   else
6726     return 0;
6727 }
6728 
6729 /* Count the number of times registers are used (not set) in X.
6730    COUNTS is an array in which we accumulate the count, INCR is how much
6731    we count each register usage.
6732 
6733    Don't count a usage of DEST, which is the SET_DEST of a SET which
6734    contains X in its SET_SRC.  This is because such a SET does not
6735    modify the liveness of DEST.
6736    DEST is set to pc_rtx for a trapping insn, or for an insn with side effects.
6737    We must then count uses of a SET_DEST regardless, because the insn can't be
6738    deleted here.  */
6739 
6740 static void
count_reg_usage(rtx x,int * counts,rtx dest,int incr)6741 count_reg_usage (rtx x, int *counts, rtx dest, int incr)
6742 {
6743   enum rtx_code code;
6744   rtx note;
6745   const char *fmt;
6746   int i, j;
6747 
6748   if (x == 0)
6749     return;
6750 
6751   switch (code = GET_CODE (x))
6752     {
6753     case REG:
6754       if (x != dest)
6755 	counts[REGNO (x)] += incr;
6756       return;
6757 
6758     case PC:
6759     case CC0:
6760     case CONST:
6761     CASE_CONST_ANY:
6762     case SYMBOL_REF:
6763     case LABEL_REF:
6764       return;
6765 
6766     case CLOBBER:
6767       /* If we are clobbering a MEM, mark any registers inside the address
6768          as being used.  */
6769       if (MEM_P (XEXP (x, 0)))
6770 	count_reg_usage (XEXP (XEXP (x, 0), 0), counts, NULL_RTX, incr);
6771       return;
6772 
6773     case SET:
6774       /* Unless we are setting a REG, count everything in SET_DEST.  */
6775       if (!REG_P (SET_DEST (x)))
6776 	count_reg_usage (SET_DEST (x), counts, NULL_RTX, incr);
6777       count_reg_usage (SET_SRC (x), counts,
6778 		       dest ? dest : SET_DEST (x),
6779 		       incr);
6780       return;
6781 
6782     case DEBUG_INSN:
6783       return;
6784 
6785     case CALL_INSN:
6786     case INSN:
6787     case JUMP_INSN:
6788       /* We expect dest to be NULL_RTX here.  If the insn may throw,
6789 	 or if it cannot be deleted due to side-effects, mark this fact
6790 	 by setting DEST to pc_rtx.  */
6791       if ((!cfun->can_delete_dead_exceptions && !insn_nothrow_p (x))
6792 	  || side_effects_p (PATTERN (x)))
6793 	dest = pc_rtx;
6794       if (code == CALL_INSN)
6795 	count_reg_usage (CALL_INSN_FUNCTION_USAGE (x), counts, dest, incr);
6796       count_reg_usage (PATTERN (x), counts, dest, incr);
6797 
6798       /* Things used in a REG_EQUAL note aren't dead since loop may try to
6799 	 use them.  */
6800 
6801       note = find_reg_equal_equiv_note (x);
6802       if (note)
6803 	{
6804 	  rtx eqv = XEXP (note, 0);
6805 
6806 	  if (GET_CODE (eqv) == EXPR_LIST)
6807 	  /* This REG_EQUAL note describes the result of a function call.
6808 	     Process all the arguments.  */
6809 	    do
6810 	      {
6811 		count_reg_usage (XEXP (eqv, 0), counts, dest, incr);
6812 		eqv = XEXP (eqv, 1);
6813 	      }
6814 	    while (eqv && GET_CODE (eqv) == EXPR_LIST);
6815 	  else
6816 	    count_reg_usage (eqv, counts, dest, incr);
6817 	}
6818       return;
6819 
6820     case EXPR_LIST:
6821       if (REG_NOTE_KIND (x) == REG_EQUAL
6822 	  || (REG_NOTE_KIND (x) != REG_NONNEG && GET_CODE (XEXP (x,0)) == USE)
6823 	  /* FUNCTION_USAGE expression lists may include (CLOBBER (mem /u)),
6824 	     involving registers in the address.  */
6825 	  || GET_CODE (XEXP (x, 0)) == CLOBBER)
6826 	count_reg_usage (XEXP (x, 0), counts, NULL_RTX, incr);
6827 
6828       count_reg_usage (XEXP (x, 1), counts, NULL_RTX, incr);
6829       return;
6830 
6831     case ASM_OPERANDS:
6832       /* Iterate over just the inputs, not the constraints as well.  */
6833       for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
6834 	count_reg_usage (ASM_OPERANDS_INPUT (x, i), counts, dest, incr);
6835       return;
6836 
6837     case INSN_LIST:
6838     case INT_LIST:
6839       gcc_unreachable ();
6840 
6841     default:
6842       break;
6843     }
6844 
6845   fmt = GET_RTX_FORMAT (code);
6846   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6847     {
6848       if (fmt[i] == 'e')
6849 	count_reg_usage (XEXP (x, i), counts, dest, incr);
6850       else if (fmt[i] == 'E')
6851 	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6852 	  count_reg_usage (XVECEXP (x, i, j), counts, dest, incr);
6853     }
6854 }
6855 
6856 /* Return true if X is a dead register.  */
6857 
6858 static inline int
is_dead_reg(const_rtx x,int * counts)6859 is_dead_reg (const_rtx x, int *counts)
6860 {
6861   return (REG_P (x)
6862 	  && REGNO (x) >= FIRST_PSEUDO_REGISTER
6863 	  && counts[REGNO (x)] == 0);
6864 }
6865 
6866 /* Return true if set is live.  */
6867 static bool
set_live_p(rtx set,rtx_insn * insn ATTRIBUTE_UNUSED,int * counts)6868 set_live_p (rtx set, rtx_insn *insn ATTRIBUTE_UNUSED, /* Only used with HAVE_cc0.  */
6869 	    int *counts)
6870 {
6871   rtx_insn *tem;
6872 
6873   if (set_noop_p (set))
6874     ;
6875 
6876   else if (GET_CODE (SET_DEST (set)) == CC0
6877 	   && !side_effects_p (SET_SRC (set))
6878 	   && ((tem = next_nonnote_nondebug_insn (insn)) == NULL_RTX
6879 	       || !INSN_P (tem)
6880 	       || !reg_referenced_p (cc0_rtx, PATTERN (tem))))
6881     return false;
6882   else if (!is_dead_reg (SET_DEST (set), counts)
6883 	   || side_effects_p (SET_SRC (set)))
6884     return true;
6885   return false;
6886 }
6887 
6888 /* Return true if insn is live.  */
6889 
6890 static bool
insn_live_p(rtx_insn * insn,int * counts)6891 insn_live_p (rtx_insn *insn, int *counts)
6892 {
6893   int i;
6894   if (!cfun->can_delete_dead_exceptions && !insn_nothrow_p (insn))
6895     return true;
6896   else if (GET_CODE (PATTERN (insn)) == SET)
6897     return set_live_p (PATTERN (insn), insn, counts);
6898   else if (GET_CODE (PATTERN (insn)) == PARALLEL)
6899     {
6900       for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
6901 	{
6902 	  rtx elt = XVECEXP (PATTERN (insn), 0, i);
6903 
6904 	  if (GET_CODE (elt) == SET)
6905 	    {
6906 	      if (set_live_p (elt, insn, counts))
6907 		return true;
6908 	    }
6909 	  else if (GET_CODE (elt) != CLOBBER && GET_CODE (elt) != USE)
6910 	    return true;
6911 	}
6912       return false;
6913     }
6914   else if (DEBUG_INSN_P (insn))
6915     {
6916       rtx_insn *next;
6917 
6918       for (next = NEXT_INSN (insn); next; next = NEXT_INSN (next))
6919 	if (NOTE_P (next))
6920 	  continue;
6921 	else if (!DEBUG_INSN_P (next))
6922 	  return true;
6923 	else if (INSN_VAR_LOCATION_DECL (insn) == INSN_VAR_LOCATION_DECL (next))
6924 	  return false;
6925 
6926       return true;
6927     }
6928   else
6929     return true;
6930 }
6931 
6932 /* Count the number of stores into pseudo.  Callback for note_stores.  */
6933 
6934 static void
count_stores(rtx x,const_rtx set ATTRIBUTE_UNUSED,void * data)6935 count_stores (rtx x, const_rtx set ATTRIBUTE_UNUSED, void *data)
6936 {
6937   int *counts = (int *) data;
6938   if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
6939     counts[REGNO (x)]++;
6940 }
6941 
6942 /* Return if DEBUG_INSN pattern PAT needs to be reset because some dead
6943    pseudo doesn't have a replacement.  COUNTS[X] is zero if register X
6944    is dead and REPLACEMENTS[X] is null if it has no replacemenet.
6945    Set *SEEN_REPL to true if we see a dead register that does have
6946    a replacement.  */
6947 
6948 static bool
is_dead_debug_insn(const_rtx pat,int * counts,rtx * replacements,bool * seen_repl)6949 is_dead_debug_insn (const_rtx pat, int *counts, rtx *replacements,
6950 		    bool *seen_repl)
6951 {
6952   subrtx_iterator::array_type array;
6953   FOR_EACH_SUBRTX (iter, array, pat, NONCONST)
6954     {
6955       const_rtx x = *iter;
6956       if (is_dead_reg (x, counts))
6957 	{
6958 	  if (replacements && replacements[REGNO (x)] != NULL_RTX)
6959 	    *seen_repl = true;
6960 	  else
6961 	    return true;
6962 	}
6963     }
6964   return false;
6965 }
6966 
6967 /* Replace a dead pseudo in a DEBUG_INSN with replacement DEBUG_EXPR.
6968    Callback for simplify_replace_fn_rtx.  */
6969 
6970 static rtx
replace_dead_reg(rtx x,const_rtx old_rtx ATTRIBUTE_UNUSED,void * data)6971 replace_dead_reg (rtx x, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data)
6972 {
6973   rtx *replacements = (rtx *) data;
6974 
6975   if (REG_P (x)
6976       && REGNO (x) >= FIRST_PSEUDO_REGISTER
6977       && replacements[REGNO (x)] != NULL_RTX)
6978     {
6979       if (GET_MODE (x) == GET_MODE (replacements[REGNO (x)]))
6980 	return replacements[REGNO (x)];
6981       return lowpart_subreg (GET_MODE (x), replacements[REGNO (x)],
6982 			     GET_MODE (replacements[REGNO (x)]));
6983     }
6984   return NULL_RTX;
6985 }
6986 
6987 /* Scan all the insns and delete any that are dead; i.e., they store a register
6988    that is never used or they copy a register to itself.
6989 
6990    This is used to remove insns made obviously dead by cse, loop or other
6991    optimizations.  It improves the heuristics in loop since it won't try to
6992    move dead invariants out of loops or make givs for dead quantities.  The
6993    remaining passes of the compilation are also sped up.  */
6994 
6995 int
delete_trivially_dead_insns(rtx_insn * insns,int nreg)6996 delete_trivially_dead_insns (rtx_insn *insns, int nreg)
6997 {
6998   int *counts;
6999   rtx_insn *insn, *prev;
7000   rtx *replacements = NULL;
7001   int ndead = 0;
7002 
7003   timevar_push (TV_DELETE_TRIVIALLY_DEAD);
7004   /* First count the number of times each register is used.  */
7005   if (MAY_HAVE_DEBUG_INSNS)
7006     {
7007       counts = XCNEWVEC (int, nreg * 3);
7008       for (insn = insns; insn; insn = NEXT_INSN (insn))
7009 	if (DEBUG_INSN_P (insn))
7010 	  count_reg_usage (INSN_VAR_LOCATION_LOC (insn), counts + nreg,
7011 			   NULL_RTX, 1);
7012 	else if (INSN_P (insn))
7013 	  {
7014 	    count_reg_usage (insn, counts, NULL_RTX, 1);
7015 	    note_stores (PATTERN (insn), count_stores, counts + nreg * 2);
7016 	  }
7017       /* If there can be debug insns, COUNTS are 3 consecutive arrays.
7018 	 First one counts how many times each pseudo is used outside
7019 	 of debug insns, second counts how many times each pseudo is
7020 	 used in debug insns and third counts how many times a pseudo
7021 	 is stored.  */
7022     }
7023   else
7024     {
7025       counts = XCNEWVEC (int, nreg);
7026       for (insn = insns; insn; insn = NEXT_INSN (insn))
7027 	if (INSN_P (insn))
7028 	  count_reg_usage (insn, counts, NULL_RTX, 1);
7029       /* If no debug insns can be present, COUNTS is just an array
7030 	 which counts how many times each pseudo is used.  */
7031     }
7032   /* Pseudo PIC register should be considered as used due to possible
7033      new usages generated.  */
7034   if (!reload_completed
7035       && pic_offset_table_rtx
7036       && REGNO (pic_offset_table_rtx) >= FIRST_PSEUDO_REGISTER)
7037     counts[REGNO (pic_offset_table_rtx)]++;
7038   /* Go from the last insn to the first and delete insns that only set unused
7039      registers or copy a register to itself.  As we delete an insn, remove
7040      usage counts for registers it uses.
7041 
7042      The first jump optimization pass may leave a real insn as the last
7043      insn in the function.   We must not skip that insn or we may end
7044      up deleting code that is not really dead.
7045 
7046      If some otherwise unused register is only used in DEBUG_INSNs,
7047      try to create a DEBUG_EXPR temporary and emit a DEBUG_INSN before
7048      the setter.  Then go through DEBUG_INSNs and if a DEBUG_EXPR
7049      has been created for the unused register, replace it with
7050      the DEBUG_EXPR, otherwise reset the DEBUG_INSN.  */
7051   for (insn = get_last_insn (); insn; insn = prev)
7052     {
7053       int live_insn = 0;
7054 
7055       prev = PREV_INSN (insn);
7056       if (!INSN_P (insn))
7057 	continue;
7058 
7059       live_insn = insn_live_p (insn, counts);
7060 
7061       /* If this is a dead insn, delete it and show registers in it aren't
7062 	 being used.  */
7063 
7064       if (! live_insn && dbg_cnt (delete_trivial_dead))
7065 	{
7066 	  if (DEBUG_INSN_P (insn))
7067 	    count_reg_usage (INSN_VAR_LOCATION_LOC (insn), counts + nreg,
7068 			     NULL_RTX, -1);
7069 	  else
7070 	    {
7071 	      rtx set;
7072 	      if (MAY_HAVE_DEBUG_INSNS
7073 		  && (set = single_set (insn)) != NULL_RTX
7074 		  && is_dead_reg (SET_DEST (set), counts)
7075 		  /* Used at least once in some DEBUG_INSN.  */
7076 		  && counts[REGNO (SET_DEST (set)) + nreg] > 0
7077 		  /* And set exactly once.  */
7078 		  && counts[REGNO (SET_DEST (set)) + nreg * 2] == 1
7079 		  && !side_effects_p (SET_SRC (set))
7080 		  && asm_noperands (PATTERN (insn)) < 0)
7081 		{
7082 		  rtx dval, bind_var_loc;
7083 		  rtx_insn *bind;
7084 
7085 		  /* Create DEBUG_EXPR (and DEBUG_EXPR_DECL).  */
7086 		  dval = make_debug_expr_from_rtl (SET_DEST (set));
7087 
7088 		  /* Emit a debug bind insn before the insn in which
7089 		     reg dies.  */
7090 		  bind_var_loc =
7091 		    gen_rtx_VAR_LOCATION (GET_MODE (SET_DEST (set)),
7092 					  DEBUG_EXPR_TREE_DECL (dval),
7093 					  SET_SRC (set),
7094 					  VAR_INIT_STATUS_INITIALIZED);
7095 		  count_reg_usage (bind_var_loc, counts + nreg, NULL_RTX, 1);
7096 
7097 		  bind = emit_debug_insn_before (bind_var_loc, insn);
7098 		  df_insn_rescan (bind);
7099 
7100 		  if (replacements == NULL)
7101 		    replacements = XCNEWVEC (rtx, nreg);
7102 		  replacements[REGNO (SET_DEST (set))] = dval;
7103 		}
7104 
7105 	      count_reg_usage (insn, counts, NULL_RTX, -1);
7106 	      ndead++;
7107 	    }
7108 	  delete_insn_and_edges (insn);
7109 	}
7110     }
7111 
7112   if (MAY_HAVE_DEBUG_INSNS)
7113     {
7114       for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
7115 	if (DEBUG_INSN_P (insn))
7116 	  {
7117 	    /* If this debug insn references a dead register that wasn't replaced
7118 	       with an DEBUG_EXPR, reset the DEBUG_INSN.  */
7119 	    bool seen_repl = false;
7120 	    if (is_dead_debug_insn (INSN_VAR_LOCATION_LOC (insn),
7121 				    counts, replacements, &seen_repl))
7122 	      {
7123 		INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
7124 		df_insn_rescan (insn);
7125 	      }
7126 	    else if (seen_repl)
7127 	      {
7128 		INSN_VAR_LOCATION_LOC (insn)
7129 		  = simplify_replace_fn_rtx (INSN_VAR_LOCATION_LOC (insn),
7130 					     NULL_RTX, replace_dead_reg,
7131 					     replacements);
7132 		df_insn_rescan (insn);
7133 	      }
7134 	  }
7135       free (replacements);
7136     }
7137 
7138   if (dump_file && ndead)
7139     fprintf (dump_file, "Deleted %i trivially dead insns\n",
7140 	     ndead);
7141   /* Clean up.  */
7142   free (counts);
7143   timevar_pop (TV_DELETE_TRIVIALLY_DEAD);
7144   return ndead;
7145 }
7146 
7147 /* If LOC contains references to NEWREG in a different mode, change them
7148    to use NEWREG instead.  */
7149 
7150 static void
cse_change_cc_mode(subrtx_ptr_iterator::array_type & array,rtx * loc,rtx_insn * insn,rtx newreg)7151 cse_change_cc_mode (subrtx_ptr_iterator::array_type &array,
7152 		    rtx *loc, rtx_insn *insn, rtx newreg)
7153 {
7154   FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST)
7155     {
7156       rtx *loc = *iter;
7157       rtx x = *loc;
7158       if (x
7159 	  && REG_P (x)
7160 	  && REGNO (x) == REGNO (newreg)
7161 	  && GET_MODE (x) != GET_MODE (newreg))
7162 	{
7163 	  validate_change (insn, loc, newreg, 1);
7164 	  iter.skip_subrtxes ();
7165 	}
7166     }
7167 }
7168 
7169 /* Change the mode of any reference to the register REGNO (NEWREG) to
7170    GET_MODE (NEWREG) in INSN.  */
7171 
7172 static void
cse_change_cc_mode_insn(rtx_insn * insn,rtx newreg)7173 cse_change_cc_mode_insn (rtx_insn *insn, rtx newreg)
7174 {
7175   int success;
7176 
7177   if (!INSN_P (insn))
7178     return;
7179 
7180   subrtx_ptr_iterator::array_type array;
7181   cse_change_cc_mode (array, &PATTERN (insn), insn, newreg);
7182   cse_change_cc_mode (array, &REG_NOTES (insn), insn, newreg);
7183 
7184   /* If the following assertion was triggered, there is most probably
7185      something wrong with the cc_modes_compatible back end function.
7186      CC modes only can be considered compatible if the insn - with the mode
7187      replaced by any of the compatible modes - can still be recognized.  */
7188   success = apply_change_group ();
7189   gcc_assert (success);
7190 }
7191 
7192 /* Change the mode of any reference to the register REGNO (NEWREG) to
7193    GET_MODE (NEWREG), starting at START.  Stop before END.  Stop at
7194    any instruction which modifies NEWREG.  */
7195 
7196 static void
cse_change_cc_mode_insns(rtx_insn * start,rtx_insn * end,rtx newreg)7197 cse_change_cc_mode_insns (rtx_insn *start, rtx_insn *end, rtx newreg)
7198 {
7199   rtx_insn *insn;
7200 
7201   for (insn = start; insn != end; insn = NEXT_INSN (insn))
7202     {
7203       if (! INSN_P (insn))
7204 	continue;
7205 
7206       if (reg_set_p (newreg, insn))
7207 	return;
7208 
7209       cse_change_cc_mode_insn (insn, newreg);
7210     }
7211 }
7212 
7213 /* BB is a basic block which finishes with CC_REG as a condition code
7214    register which is set to CC_SRC.  Look through the successors of BB
7215    to find blocks which have a single predecessor (i.e., this one),
7216    and look through those blocks for an assignment to CC_REG which is
7217    equivalent to CC_SRC.  CAN_CHANGE_MODE indicates whether we are
7218    permitted to change the mode of CC_SRC to a compatible mode.  This
7219    returns VOIDmode if no equivalent assignments were found.
7220    Otherwise it returns the mode which CC_SRC should wind up with.
7221    ORIG_BB should be the same as BB in the outermost cse_cc_succs call,
7222    but is passed unmodified down to recursive calls in order to prevent
7223    endless recursion.
7224 
7225    The main complexity in this function is handling the mode issues.
7226    We may have more than one duplicate which we can eliminate, and we
7227    try to find a mode which will work for multiple duplicates.  */
7228 
7229 static machine_mode
cse_cc_succs(basic_block bb,basic_block orig_bb,rtx cc_reg,rtx cc_src,bool can_change_mode)7230 cse_cc_succs (basic_block bb, basic_block orig_bb, rtx cc_reg, rtx cc_src,
7231 	      bool can_change_mode)
7232 {
7233   bool found_equiv;
7234   machine_mode mode;
7235   unsigned int insn_count;
7236   edge e;
7237   rtx_insn *insns[2];
7238   machine_mode modes[2];
7239   rtx_insn *last_insns[2];
7240   unsigned int i;
7241   rtx newreg;
7242   edge_iterator ei;
7243 
7244   /* We expect to have two successors.  Look at both before picking
7245      the final mode for the comparison.  If we have more successors
7246      (i.e., some sort of table jump, although that seems unlikely),
7247      then we require all beyond the first two to use the same
7248      mode.  */
7249 
7250   found_equiv = false;
7251   mode = GET_MODE (cc_src);
7252   insn_count = 0;
7253   FOR_EACH_EDGE (e, ei, bb->succs)
7254     {
7255       rtx_insn *insn;
7256       rtx_insn *end;
7257 
7258       if (e->flags & EDGE_COMPLEX)
7259 	continue;
7260 
7261       if (EDGE_COUNT (e->dest->preds) != 1
7262 	  || e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
7263 	  /* Avoid endless recursion on unreachable blocks.  */
7264 	  || e->dest == orig_bb)
7265 	continue;
7266 
7267       end = NEXT_INSN (BB_END (e->dest));
7268       for (insn = BB_HEAD (e->dest); insn != end; insn = NEXT_INSN (insn))
7269 	{
7270 	  rtx set;
7271 
7272 	  if (! INSN_P (insn))
7273 	    continue;
7274 
7275 	  /* If CC_SRC is modified, we have to stop looking for
7276 	     something which uses it.  */
7277 	  if (modified_in_p (cc_src, insn))
7278 	    break;
7279 
7280 	  /* Check whether INSN sets CC_REG to CC_SRC.  */
7281 	  set = single_set (insn);
7282 	  if (set
7283 	      && REG_P (SET_DEST (set))
7284 	      && REGNO (SET_DEST (set)) == REGNO (cc_reg))
7285 	    {
7286 	      bool found;
7287 	      machine_mode set_mode;
7288 	      machine_mode comp_mode;
7289 
7290 	      found = false;
7291 	      set_mode = GET_MODE (SET_SRC (set));
7292 	      comp_mode = set_mode;
7293 	      if (rtx_equal_p (cc_src, SET_SRC (set)))
7294 		found = true;
7295 	      else if (GET_CODE (cc_src) == COMPARE
7296 		       && GET_CODE (SET_SRC (set)) == COMPARE
7297 		       && mode != set_mode
7298 		       && rtx_equal_p (XEXP (cc_src, 0),
7299 				       XEXP (SET_SRC (set), 0))
7300 		       && rtx_equal_p (XEXP (cc_src, 1),
7301 				       XEXP (SET_SRC (set), 1)))
7302 
7303 		{
7304 		  comp_mode = targetm.cc_modes_compatible (mode, set_mode);
7305 		  if (comp_mode != VOIDmode
7306 		      && (can_change_mode || comp_mode == mode))
7307 		    found = true;
7308 		}
7309 
7310 	      if (found)
7311 		{
7312 		  found_equiv = true;
7313 		  if (insn_count < ARRAY_SIZE (insns))
7314 		    {
7315 		      insns[insn_count] = insn;
7316 		      modes[insn_count] = set_mode;
7317 		      last_insns[insn_count] = end;
7318 		      ++insn_count;
7319 
7320 		      if (mode != comp_mode)
7321 			{
7322 			  gcc_assert (can_change_mode);
7323 			  mode = comp_mode;
7324 
7325 			  /* The modified insn will be re-recognized later.  */
7326 			  PUT_MODE (cc_src, mode);
7327 			}
7328 		    }
7329 		  else
7330 		    {
7331 		      if (set_mode != mode)
7332 			{
7333 			  /* We found a matching expression in the
7334 			     wrong mode, but we don't have room to
7335 			     store it in the array.  Punt.  This case
7336 			     should be rare.  */
7337 			  break;
7338 			}
7339 		      /* INSN sets CC_REG to a value equal to CC_SRC
7340 			 with the right mode.  We can simply delete
7341 			 it.  */
7342 		      delete_insn (insn);
7343 		    }
7344 
7345 		  /* We found an instruction to delete.  Keep looking,
7346 		     in the hopes of finding a three-way jump.  */
7347 		  continue;
7348 		}
7349 
7350 	      /* We found an instruction which sets the condition
7351 		 code, so don't look any farther.  */
7352 	      break;
7353 	    }
7354 
7355 	  /* If INSN sets CC_REG in some other way, don't look any
7356 	     farther.  */
7357 	  if (reg_set_p (cc_reg, insn))
7358 	    break;
7359 	}
7360 
7361       /* If we fell off the bottom of the block, we can keep looking
7362 	 through successors.  We pass CAN_CHANGE_MODE as false because
7363 	 we aren't prepared to handle compatibility between the
7364 	 further blocks and this block.  */
7365       if (insn == end)
7366 	{
7367 	  machine_mode submode;
7368 
7369 	  submode = cse_cc_succs (e->dest, orig_bb, cc_reg, cc_src, false);
7370 	  if (submode != VOIDmode)
7371 	    {
7372 	      gcc_assert (submode == mode);
7373 	      found_equiv = true;
7374 	      can_change_mode = false;
7375 	    }
7376 	}
7377     }
7378 
7379   if (! found_equiv)
7380     return VOIDmode;
7381 
7382   /* Now INSN_COUNT is the number of instructions we found which set
7383      CC_REG to a value equivalent to CC_SRC.  The instructions are in
7384      INSNS.  The modes used by those instructions are in MODES.  */
7385 
7386   newreg = NULL_RTX;
7387   for (i = 0; i < insn_count; ++i)
7388     {
7389       if (modes[i] != mode)
7390 	{
7391 	  /* We need to change the mode of CC_REG in INSNS[i] and
7392 	     subsequent instructions.  */
7393 	  if (! newreg)
7394 	    {
7395 	      if (GET_MODE (cc_reg) == mode)
7396 		newreg = cc_reg;
7397 	      else
7398 		newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7399 	    }
7400 	  cse_change_cc_mode_insns (NEXT_INSN (insns[i]), last_insns[i],
7401 				    newreg);
7402 	}
7403 
7404       delete_insn_and_edges (insns[i]);
7405     }
7406 
7407   return mode;
7408 }
7409 
7410 /* If we have a fixed condition code register (or two), walk through
7411    the instructions and try to eliminate duplicate assignments.  */
7412 
7413 static void
cse_condition_code_reg(void)7414 cse_condition_code_reg (void)
7415 {
7416   unsigned int cc_regno_1;
7417   unsigned int cc_regno_2;
7418   rtx cc_reg_1;
7419   rtx cc_reg_2;
7420   basic_block bb;
7421 
7422   if (! targetm.fixed_condition_code_regs (&cc_regno_1, &cc_regno_2))
7423     return;
7424 
7425   cc_reg_1 = gen_rtx_REG (CCmode, cc_regno_1);
7426   if (cc_regno_2 != INVALID_REGNUM)
7427     cc_reg_2 = gen_rtx_REG (CCmode, cc_regno_2);
7428   else
7429     cc_reg_2 = NULL_RTX;
7430 
7431   FOR_EACH_BB_FN (bb, cfun)
7432     {
7433       rtx_insn *last_insn;
7434       rtx cc_reg;
7435       rtx_insn *insn;
7436       rtx_insn *cc_src_insn;
7437       rtx cc_src;
7438       machine_mode mode;
7439       machine_mode orig_mode;
7440 
7441       /* Look for blocks which end with a conditional jump based on a
7442 	 condition code register.  Then look for the instruction which
7443 	 sets the condition code register.  Then look through the
7444 	 successor blocks for instructions which set the condition
7445 	 code register to the same value.  There are other possible
7446 	 uses of the condition code register, but these are by far the
7447 	 most common and the ones which we are most likely to be able
7448 	 to optimize.  */
7449 
7450       last_insn = BB_END (bb);
7451       if (!JUMP_P (last_insn))
7452 	continue;
7453 
7454       if (reg_referenced_p (cc_reg_1, PATTERN (last_insn)))
7455 	cc_reg = cc_reg_1;
7456       else if (cc_reg_2 && reg_referenced_p (cc_reg_2, PATTERN (last_insn)))
7457 	cc_reg = cc_reg_2;
7458       else
7459 	continue;
7460 
7461       cc_src_insn = NULL;
7462       cc_src = NULL_RTX;
7463       for (insn = PREV_INSN (last_insn);
7464 	   insn && insn != PREV_INSN (BB_HEAD (bb));
7465 	   insn = PREV_INSN (insn))
7466 	{
7467 	  rtx set;
7468 
7469 	  if (! INSN_P (insn))
7470 	    continue;
7471 	  set = single_set (insn);
7472 	  if (set
7473 	      && REG_P (SET_DEST (set))
7474 	      && REGNO (SET_DEST (set)) == REGNO (cc_reg))
7475 	    {
7476 	      cc_src_insn = insn;
7477 	      cc_src = SET_SRC (set);
7478 	      break;
7479 	    }
7480 	  else if (reg_set_p (cc_reg, insn))
7481 	    break;
7482 	}
7483 
7484       if (! cc_src_insn)
7485 	continue;
7486 
7487       if (modified_between_p (cc_src, cc_src_insn, NEXT_INSN (last_insn)))
7488 	continue;
7489 
7490       /* Now CC_REG is a condition code register used for a
7491 	 conditional jump at the end of the block, and CC_SRC, in
7492 	 CC_SRC_INSN, is the value to which that condition code
7493 	 register is set, and CC_SRC is still meaningful at the end of
7494 	 the basic block.  */
7495 
7496       orig_mode = GET_MODE (cc_src);
7497       mode = cse_cc_succs (bb, bb, cc_reg, cc_src, true);
7498       if (mode != VOIDmode)
7499 	{
7500 	  gcc_assert (mode == GET_MODE (cc_src));
7501 	  if (mode != orig_mode)
7502 	    {
7503 	      rtx newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7504 
7505 	      cse_change_cc_mode_insn (cc_src_insn, newreg);
7506 
7507 	      /* Do the same in the following insns that use the
7508 		 current value of CC_REG within BB.  */
7509 	      cse_change_cc_mode_insns (NEXT_INSN (cc_src_insn),
7510 					NEXT_INSN (last_insn),
7511 					newreg);
7512 	    }
7513 	}
7514     }
7515 }
7516 
7517 
7518 /* Perform common subexpression elimination.  Nonzero value from
7519    `cse_main' means that jumps were simplified and some code may now
7520    be unreachable, so do jump optimization again.  */
7521 static unsigned int
rest_of_handle_cse(void)7522 rest_of_handle_cse (void)
7523 {
7524   int tem;
7525 
7526   if (dump_file)
7527     dump_flow_info (dump_file, dump_flags);
7528 
7529   tem = cse_main (get_insns (), max_reg_num ());
7530 
7531   /* If we are not running more CSE passes, then we are no longer
7532      expecting CSE to be run.  But always rerun it in a cheap mode.  */
7533   cse_not_expected = !flag_rerun_cse_after_loop && !flag_gcse;
7534 
7535   if (tem == 2)
7536     {
7537       timevar_push (TV_JUMP);
7538       rebuild_jump_labels (get_insns ());
7539       cleanup_cfg (CLEANUP_CFG_CHANGED);
7540       timevar_pop (TV_JUMP);
7541     }
7542   else if (tem == 1 || optimize > 1)
7543     cleanup_cfg (0);
7544 
7545   return 0;
7546 }
7547 
7548 namespace {
7549 
7550 const pass_data pass_data_cse =
7551 {
7552   RTL_PASS, /* type */
7553   "cse1", /* name */
7554   OPTGROUP_NONE, /* optinfo_flags */
7555   TV_CSE, /* tv_id */
7556   0, /* properties_required */
7557   0, /* properties_provided */
7558   0, /* properties_destroyed */
7559   0, /* todo_flags_start */
7560   TODO_df_finish, /* todo_flags_finish */
7561 };
7562 
7563 class pass_cse : public rtl_opt_pass
7564 {
7565 public:
pass_cse(gcc::context * ctxt)7566   pass_cse (gcc::context *ctxt)
7567     : rtl_opt_pass (pass_data_cse, ctxt)
7568   {}
7569 
7570   /* opt_pass methods: */
gate(function *)7571   virtual bool gate (function *) { return optimize > 0; }
execute(function *)7572   virtual unsigned int execute (function *) { return rest_of_handle_cse (); }
7573 
7574 }; // class pass_cse
7575 
7576 } // anon namespace
7577 
7578 rtl_opt_pass *
make_pass_cse(gcc::context * ctxt)7579 make_pass_cse (gcc::context *ctxt)
7580 {
7581   return new pass_cse (ctxt);
7582 }
7583 
7584 
7585 /* Run second CSE pass after loop optimizations.  */
7586 static unsigned int
rest_of_handle_cse2(void)7587 rest_of_handle_cse2 (void)
7588 {
7589   int tem;
7590 
7591   if (dump_file)
7592     dump_flow_info (dump_file, dump_flags);
7593 
7594   tem = cse_main (get_insns (), max_reg_num ());
7595 
7596   /* Run a pass to eliminate duplicated assignments to condition code
7597      registers.  We have to run this after bypass_jumps, because it
7598      makes it harder for that pass to determine whether a jump can be
7599      bypassed safely.  */
7600   cse_condition_code_reg ();
7601 
7602   delete_trivially_dead_insns (get_insns (), max_reg_num ());
7603 
7604   if (tem == 2)
7605     {
7606       timevar_push (TV_JUMP);
7607       rebuild_jump_labels (get_insns ());
7608       cleanup_cfg (CLEANUP_CFG_CHANGED);
7609       timevar_pop (TV_JUMP);
7610     }
7611   else if (tem == 1)
7612     cleanup_cfg (0);
7613 
7614   cse_not_expected = 1;
7615   return 0;
7616 }
7617 
7618 
7619 namespace {
7620 
7621 const pass_data pass_data_cse2 =
7622 {
7623   RTL_PASS, /* type */
7624   "cse2", /* name */
7625   OPTGROUP_NONE, /* optinfo_flags */
7626   TV_CSE2, /* tv_id */
7627   0, /* properties_required */
7628   0, /* properties_provided */
7629   0, /* properties_destroyed */
7630   0, /* todo_flags_start */
7631   TODO_df_finish, /* todo_flags_finish */
7632 };
7633 
7634 class pass_cse2 : public rtl_opt_pass
7635 {
7636 public:
pass_cse2(gcc::context * ctxt)7637   pass_cse2 (gcc::context *ctxt)
7638     : rtl_opt_pass (pass_data_cse2, ctxt)
7639   {}
7640 
7641   /* opt_pass methods: */
gate(function *)7642   virtual bool gate (function *)
7643     {
7644       return optimize > 0 && flag_rerun_cse_after_loop;
7645     }
7646 
execute(function *)7647   virtual unsigned int execute (function *) { return rest_of_handle_cse2 (); }
7648 
7649 }; // class pass_cse2
7650 
7651 } // anon namespace
7652 
7653 rtl_opt_pass *
make_pass_cse2(gcc::context * ctxt)7654 make_pass_cse2 (gcc::context *ctxt)
7655 {
7656   return new pass_cse2 (ctxt);
7657 }
7658 
7659 /* Run second CSE pass after loop optimizations.  */
7660 static unsigned int
rest_of_handle_cse_after_global_opts(void)7661 rest_of_handle_cse_after_global_opts (void)
7662 {
7663   int save_cfj;
7664   int tem;
7665 
7666   /* We only want to do local CSE, so don't follow jumps.  */
7667   save_cfj = flag_cse_follow_jumps;
7668   flag_cse_follow_jumps = 0;
7669 
7670   rebuild_jump_labels (get_insns ());
7671   tem = cse_main (get_insns (), max_reg_num ());
7672   purge_all_dead_edges ();
7673   delete_trivially_dead_insns (get_insns (), max_reg_num ());
7674 
7675   cse_not_expected = !flag_rerun_cse_after_loop;
7676 
7677   /* If cse altered any jumps, rerun jump opts to clean things up.  */
7678   if (tem == 2)
7679     {
7680       timevar_push (TV_JUMP);
7681       rebuild_jump_labels (get_insns ());
7682       cleanup_cfg (CLEANUP_CFG_CHANGED);
7683       timevar_pop (TV_JUMP);
7684     }
7685   else if (tem == 1)
7686     cleanup_cfg (0);
7687 
7688   flag_cse_follow_jumps = save_cfj;
7689   return 0;
7690 }
7691 
7692 namespace {
7693 
7694 const pass_data pass_data_cse_after_global_opts =
7695 {
7696   RTL_PASS, /* type */
7697   "cse_local", /* name */
7698   OPTGROUP_NONE, /* optinfo_flags */
7699   TV_CSE, /* tv_id */
7700   0, /* properties_required */
7701   0, /* properties_provided */
7702   0, /* properties_destroyed */
7703   0, /* todo_flags_start */
7704   TODO_df_finish, /* todo_flags_finish */
7705 };
7706 
7707 class pass_cse_after_global_opts : public rtl_opt_pass
7708 {
7709 public:
pass_cse_after_global_opts(gcc::context * ctxt)7710   pass_cse_after_global_opts (gcc::context *ctxt)
7711     : rtl_opt_pass (pass_data_cse_after_global_opts, ctxt)
7712   {}
7713 
7714   /* opt_pass methods: */
gate(function *)7715   virtual bool gate (function *)
7716     {
7717       return optimize > 0 && flag_rerun_cse_after_global_opts;
7718     }
7719 
execute(function *)7720   virtual unsigned int execute (function *)
7721     {
7722       return rest_of_handle_cse_after_global_opts ();
7723     }
7724 
7725 }; // class pass_cse_after_global_opts
7726 
7727 } // anon namespace
7728 
7729 rtl_opt_pass *
make_pass_cse_after_global_opts(gcc::context * ctxt)7730 make_pass_cse_after_global_opts (gcc::context *ctxt)
7731 {
7732   return new pass_cse_after_global_opts (ctxt);
7733 }
7734