1 /* Convert RTL to assembler code and output it, for GNU compiler.
2    Copyright (C) 1987-2016 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 /* This is the final pass of the compiler.
21    It looks at the rtl code for a function and outputs assembler code.
22 
23    Call `final_start_function' to output the assembler code for function entry,
24    `final' to output assembler code for some RTL code,
25    `final_end_function' to output assembler code for function exit.
26    If a function is compiled in several pieces, each piece is
27    output separately with `final'.
28 
29    Some optimizations are also done at this level.
30    Move instructions that were made unnecessary by good register allocation
31    are detected and omitted from the output.  (Though most of these
32    are removed by the last jump pass.)
33 
34    Instructions to set the condition codes are omitted when it can be
35    seen that the condition codes already had the desired values.
36 
37    In some cases it is sufficient if the inherited condition codes
38    have related values, but this may require the following insn
39    (the one that tests the condition codes) to be modified.
40 
41    The code for the function prologue and epilogue are generated
42    directly in assembler by the target functions function_prologue and
43    function_epilogue.  Those instructions never exist as rtl.  */
44 
45 #include "config.h"
46 #define INCLUDE_ALGORITHM /* reverse */
47 #include "system.h"
48 #include "coretypes.h"
49 #include "backend.h"
50 #include "target.h"
51 #include "rtl.h"
52 #include "tree.h"
53 #include "cfghooks.h"
54 #include "df.h"
55 #include "tm_p.h"
56 #include "insn-config.h"
57 #include "regs.h"
58 #include "emit-rtl.h"
59 #include "recog.h"
60 #include "cgraph.h"
61 #include "tree-pretty-print.h" /* for dump_function_header */
62 #include "varasm.h"
63 #include "insn-attr.h"
64 #include "conditions.h"
65 #include "flags.h"
66 #include "output.h"
67 #include "except.h"
68 #include "rtl-error.h"
69 #include "toplev.h" /* exact_log2, floor_log2 */
70 #include "reload.h"
71 #include "intl.h"
72 #include "cfgrtl.h"
73 #include "debug.h"
74 #include "tree-pass.h"
75 #include "tree-ssa.h"
76 #include "cfgloop.h"
77 #include "params.h"
78 #include "asan.h"
79 #include "rtl-iter.h"
80 #include "print-rtl.h"
81 
82 #ifdef XCOFF_DEBUGGING_INFO
83 #include "xcoffout.h"		/* Needed for external data declarations.  */
84 #endif
85 
86 #include "dwarf2out.h"
87 
88 #ifdef DBX_DEBUGGING_INFO
89 #include "dbxout.h"
90 #endif
91 
92 #include "sdbout.h"
93 
94 /* Most ports that aren't using cc0 don't need to define CC_STATUS_INIT.
95    So define a null default for it to save conditionalization later.  */
96 #ifndef CC_STATUS_INIT
97 #define CC_STATUS_INIT
98 #endif
99 
100 /* Is the given character a logical line separator for the assembler?  */
101 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
102 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C, STR) ((C) == ';')
103 #endif
104 
105 #ifndef JUMP_TABLES_IN_TEXT_SECTION
106 #define JUMP_TABLES_IN_TEXT_SECTION 0
107 #endif
108 
109 /* Bitflags used by final_scan_insn.  */
110 #define SEEN_NOTE	1
111 #define SEEN_EMITTED	2
112 
113 /* Last insn processed by final_scan_insn.  */
114 static rtx_insn *debug_insn;
115 rtx_insn *current_output_insn;
116 
117 /* Line number of last NOTE.  */
118 static int last_linenum;
119 
120 /* Last discriminator written to assembly.  */
121 static int last_discriminator;
122 
123 /* Discriminator of current block.  */
124 static int discriminator;
125 
126 /* Highest line number in current block.  */
127 static int high_block_linenum;
128 
129 /* Likewise for function.  */
130 static int high_function_linenum;
131 
132 /* Filename of last NOTE.  */
133 static const char *last_filename;
134 
135 /* Override filename and line number.  */
136 static const char *override_filename;
137 static int override_linenum;
138 
139 /* Whether to force emission of a line note before the next insn.  */
140 static bool force_source_line = false;
141 
142 extern const int length_unit_log; /* This is defined in insn-attrtab.c.  */
143 
144 /* Nonzero while outputting an `asm' with operands.
145    This means that inconsistencies are the user's fault, so don't die.
146    The precise value is the insn being output, to pass to error_for_asm.  */
147 const rtx_insn *this_is_asm_operands;
148 
149 /* Number of operands of this insn, for an `asm' with operands.  */
150 static unsigned int insn_noperands;
151 
152 /* Compare optimization flag.  */
153 
154 static rtx last_ignored_compare = 0;
155 
156 /* Assign a unique number to each insn that is output.
157    This can be used to generate unique local labels.  */
158 
159 static int insn_counter = 0;
160 
161 /* This variable contains machine-dependent flags (defined in tm.h)
162    set and examined by output routines
163    that describe how to interpret the condition codes properly.  */
164 
165 CC_STATUS cc_status;
166 
167 /* During output of an insn, this contains a copy of cc_status
168    from before the insn.  */
169 
170 CC_STATUS cc_prev_status;
171 
172 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen.  */
173 
174 static int block_depth;
175 
176 /* Nonzero if have enabled APP processing of our assembler output.  */
177 
178 static int app_on;
179 
180 /* If we are outputting an insn sequence, this contains the sequence rtx.
181    Zero otherwise.  */
182 
183 rtx_sequence *final_sequence;
184 
185 #ifdef ASSEMBLER_DIALECT
186 
187 /* Number of the assembler dialect to use, starting at 0.  */
188 static int dialect_number;
189 #endif
190 
191 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern.  */
192 rtx current_insn_predicate;
193 
194 /* True if printing into -fdump-final-insns= dump.  */
195 bool final_insns_dump_p;
196 
197 /* True if profile_function should be called, but hasn't been called yet.  */
198 static bool need_profile_function;
199 
200 static int asm_insn_count (rtx);
201 static void profile_function (FILE *);
202 static void profile_after_prologue (FILE *);
203 static bool notice_source_line (rtx_insn *, bool *);
204 static rtx walk_alter_subreg (rtx *, bool *);
205 static void output_asm_name (void);
206 static void output_alternate_entry_point (FILE *, rtx_insn *);
207 static tree get_mem_expr_from_op (rtx, int *);
208 static void output_asm_operand_names (rtx *, int *, int);
209 #ifdef LEAF_REGISTERS
210 static void leaf_renumber_regs (rtx_insn *);
211 #endif
212 #if HAVE_cc0
213 static int alter_cond (rtx);
214 #endif
215 #ifndef ADDR_VEC_ALIGN
216 static int final_addr_vec_align (rtx);
217 #endif
218 static int align_fuzz (rtx, rtx, int, unsigned);
219 static void collect_fn_hard_reg_usage (void);
220 static tree get_call_fndecl (rtx_insn *);
221 
222 /* Initialize data in final at the beginning of a compilation.  */
223 
224 void
init_final(const char * filename ATTRIBUTE_UNUSED)225 init_final (const char *filename ATTRIBUTE_UNUSED)
226 {
227   app_on = 0;
228   final_sequence = 0;
229 
230 #ifdef ASSEMBLER_DIALECT
231   dialect_number = ASSEMBLER_DIALECT;
232 #endif
233 }
234 
235 /* Default target function prologue and epilogue assembler output.
236 
237    If not overridden for epilogue code, then the function body itself
238    contains return instructions wherever needed.  */
239 void
default_function_pro_epilogue(FILE * file ATTRIBUTE_UNUSED,HOST_WIDE_INT size ATTRIBUTE_UNUSED)240 default_function_pro_epilogue (FILE *file ATTRIBUTE_UNUSED,
241 			       HOST_WIDE_INT size ATTRIBUTE_UNUSED)
242 {
243 }
244 
245 void
default_function_switched_text_sections(FILE * file ATTRIBUTE_UNUSED,tree decl ATTRIBUTE_UNUSED,bool new_is_cold ATTRIBUTE_UNUSED)246 default_function_switched_text_sections (FILE *file ATTRIBUTE_UNUSED,
247 					 tree decl ATTRIBUTE_UNUSED,
248 					 bool new_is_cold ATTRIBUTE_UNUSED)
249 {
250 }
251 
252 /* Default target hook that outputs nothing to a stream.  */
253 void
no_asm_to_stream(FILE * file ATTRIBUTE_UNUSED)254 no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED)
255 {
256 }
257 
258 /* Enable APP processing of subsequent output.
259    Used before the output from an `asm' statement.  */
260 
261 void
app_enable(void)262 app_enable (void)
263 {
264   if (! app_on)
265     {
266       fputs (ASM_APP_ON, asm_out_file);
267       app_on = 1;
268     }
269 }
270 
271 /* Disable APP processing of subsequent output.
272    Called from varasm.c before most kinds of output.  */
273 
274 void
app_disable(void)275 app_disable (void)
276 {
277   if (app_on)
278     {
279       fputs (ASM_APP_OFF, asm_out_file);
280       app_on = 0;
281     }
282 }
283 
284 /* Return the number of slots filled in the current
285    delayed branch sequence (we don't count the insn needing the
286    delay slot).   Zero if not in a delayed branch sequence.  */
287 
288 int
dbr_sequence_length(void)289 dbr_sequence_length (void)
290 {
291   if (final_sequence != 0)
292     return XVECLEN (final_sequence, 0) - 1;
293   else
294     return 0;
295 }
296 
297 /* The next two pages contain routines used to compute the length of an insn
298    and to shorten branches.  */
299 
300 /* Arrays for insn lengths, and addresses.  The latter is referenced by
301    `insn_current_length'.  */
302 
303 static int *insn_lengths;
304 
305 vec<int> insn_addresses_;
306 
307 /* Max uid for which the above arrays are valid.  */
308 static int insn_lengths_max_uid;
309 
310 /* Address of insn being processed.  Used by `insn_current_length'.  */
311 int insn_current_address;
312 
313 /* Address of insn being processed in previous iteration.  */
314 int insn_last_address;
315 
316 /* known invariant alignment of insn being processed.  */
317 int insn_current_align;
318 
319 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
320    gives the next following alignment insn that increases the known
321    alignment, or NULL_RTX if there is no such insn.
322    For any alignment obtained this way, we can again index uid_align with
323    its uid to obtain the next following align that in turn increases the
324    alignment, till we reach NULL_RTX; the sequence obtained this way
325    for each insn we'll call the alignment chain of this insn in the following
326    comments.  */
327 
328 struct label_alignment
329 {
330   short alignment;
331   short max_skip;
332 };
333 
334 static rtx *uid_align;
335 static int *uid_shuid;
336 static struct label_alignment *label_align;
337 
338 /* Indicate that branch shortening hasn't yet been done.  */
339 
340 void
init_insn_lengths(void)341 init_insn_lengths (void)
342 {
343   if (uid_shuid)
344     {
345       free (uid_shuid);
346       uid_shuid = 0;
347     }
348   if (insn_lengths)
349     {
350       free (insn_lengths);
351       insn_lengths = 0;
352       insn_lengths_max_uid = 0;
353     }
354   if (HAVE_ATTR_length)
355     INSN_ADDRESSES_FREE ();
356   if (uid_align)
357     {
358       free (uid_align);
359       uid_align = 0;
360     }
361 }
362 
363 /* Obtain the current length of an insn.  If branch shortening has been done,
364    get its actual length.  Otherwise, use FALLBACK_FN to calculate the
365    length.  */
366 static int
get_attr_length_1(rtx_insn * insn,int (* fallback_fn)(rtx_insn *))367 get_attr_length_1 (rtx_insn *insn, int (*fallback_fn) (rtx_insn *))
368 {
369   rtx body;
370   int i;
371   int length = 0;
372 
373   if (!HAVE_ATTR_length)
374     return 0;
375 
376   if (insn_lengths_max_uid > INSN_UID (insn))
377     return insn_lengths[INSN_UID (insn)];
378   else
379     switch (GET_CODE (insn))
380       {
381       case NOTE:
382       case BARRIER:
383       case CODE_LABEL:
384       case DEBUG_INSN:
385 	return 0;
386 
387       case CALL_INSN:
388       case JUMP_INSN:
389 	length = fallback_fn (insn);
390 	break;
391 
392       case INSN:
393 	body = PATTERN (insn);
394 	if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
395 	  return 0;
396 
397 	else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
398 	  length = asm_insn_count (body) * fallback_fn (insn);
399 	else if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (body))
400 	  for (i = 0; i < seq->len (); i++)
401 	    length += get_attr_length_1 (seq->insn (i), fallback_fn);
402 	else
403 	  length = fallback_fn (insn);
404 	break;
405 
406       default:
407 	break;
408       }
409 
410 #ifdef ADJUST_INSN_LENGTH
411   ADJUST_INSN_LENGTH (insn, length);
412 #endif
413   return length;
414 }
415 
416 /* Obtain the current length of an insn.  If branch shortening has been done,
417    get its actual length.  Otherwise, get its maximum length.  */
418 int
get_attr_length(rtx_insn * insn)419 get_attr_length (rtx_insn *insn)
420 {
421   return get_attr_length_1 (insn, insn_default_length);
422 }
423 
424 /* Obtain the current length of an insn.  If branch shortening has been done,
425    get its actual length.  Otherwise, get its minimum length.  */
426 int
get_attr_min_length(rtx_insn * insn)427 get_attr_min_length (rtx_insn *insn)
428 {
429   return get_attr_length_1 (insn, insn_min_length);
430 }
431 
432 /* Code to handle alignment inside shorten_branches.  */
433 
434 /* Here is an explanation how the algorithm in align_fuzz can give
435    proper results:
436 
437    Call a sequence of instructions beginning with alignment point X
438    and continuing until the next alignment point `block X'.  When `X'
439    is used in an expression, it means the alignment value of the
440    alignment point.
441 
442    Call the distance between the start of the first insn of block X, and
443    the end of the last insn of block X `IX', for the `inner size of X'.
444    This is clearly the sum of the instruction lengths.
445 
446    Likewise with the next alignment-delimited block following X, which we
447    shall call block Y.
448 
449    Call the distance between the start of the first insn of block X, and
450    the start of the first insn of block Y `OX', for the `outer size of X'.
451 
452    The estimated padding is then OX - IX.
453 
454    OX can be safely estimated as
455 
456            if (X >= Y)
457                    OX = round_up(IX, Y)
458            else
459                    OX = round_up(IX, X) + Y - X
460 
461    Clearly est(IX) >= real(IX), because that only depends on the
462    instruction lengths, and those being overestimated is a given.
463 
464    Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
465    we needn't worry about that when thinking about OX.
466 
467    When X >= Y, the alignment provided by Y adds no uncertainty factor
468    for branch ranges starting before X, so we can just round what we have.
469    But when X < Y, we don't know anything about the, so to speak,
470    `middle bits', so we have to assume the worst when aligning up from an
471    address mod X to one mod Y, which is Y - X.  */
472 
473 #ifndef LABEL_ALIGN
474 #define LABEL_ALIGN(LABEL) align_labels_log
475 #endif
476 
477 #ifndef LOOP_ALIGN
478 #define LOOP_ALIGN(LABEL) align_loops_log
479 #endif
480 
481 #ifndef LABEL_ALIGN_AFTER_BARRIER
482 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
483 #endif
484 
485 #ifndef JUMP_ALIGN
486 #define JUMP_ALIGN(LABEL) align_jumps_log
487 #endif
488 
489 int
default_label_align_after_barrier_max_skip(rtx_insn * insn ATTRIBUTE_UNUSED)490 default_label_align_after_barrier_max_skip (rtx_insn *insn ATTRIBUTE_UNUSED)
491 {
492   return 0;
493 }
494 
495 int
default_loop_align_max_skip(rtx_insn * insn ATTRIBUTE_UNUSED)496 default_loop_align_max_skip (rtx_insn *insn ATTRIBUTE_UNUSED)
497 {
498   return align_loops_max_skip;
499 }
500 
501 int
default_label_align_max_skip(rtx_insn * insn ATTRIBUTE_UNUSED)502 default_label_align_max_skip (rtx_insn *insn ATTRIBUTE_UNUSED)
503 {
504   return align_labels_max_skip;
505 }
506 
507 int
default_jump_align_max_skip(rtx_insn * insn ATTRIBUTE_UNUSED)508 default_jump_align_max_skip (rtx_insn *insn ATTRIBUTE_UNUSED)
509 {
510   return align_jumps_max_skip;
511 }
512 
513 #ifndef ADDR_VEC_ALIGN
514 static int
final_addr_vec_align(rtx addr_vec)515 final_addr_vec_align (rtx addr_vec)
516 {
517   int align = GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec)));
518 
519   if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
520     align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
521   return exact_log2 (align);
522 
523 }
524 
525 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
526 #endif
527 
528 #ifndef INSN_LENGTH_ALIGNMENT
529 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
530 #endif
531 
532 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
533 
534 static int min_labelno, max_labelno;
535 
536 #define LABEL_TO_ALIGNMENT(LABEL) \
537   (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
538 
539 #define LABEL_TO_MAX_SKIP(LABEL) \
540   (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
541 
542 /* For the benefit of port specific code do this also as a function.  */
543 
544 int
label_to_alignment(rtx label)545 label_to_alignment (rtx label)
546 {
547   if (CODE_LABEL_NUMBER (label) <= max_labelno)
548     return LABEL_TO_ALIGNMENT (label);
549   return 0;
550 }
551 
552 int
label_to_max_skip(rtx label)553 label_to_max_skip (rtx label)
554 {
555   if (CODE_LABEL_NUMBER (label) <= max_labelno)
556     return LABEL_TO_MAX_SKIP (label);
557   return 0;
558 }
559 
560 /* The differences in addresses
561    between a branch and its target might grow or shrink depending on
562    the alignment the start insn of the range (the branch for a forward
563    branch or the label for a backward branch) starts out on; if these
564    differences are used naively, they can even oscillate infinitely.
565    We therefore want to compute a 'worst case' address difference that
566    is independent of the alignment the start insn of the range end
567    up on, and that is at least as large as the actual difference.
568    The function align_fuzz calculates the amount we have to add to the
569    naively computed difference, by traversing the part of the alignment
570    chain of the start insn of the range that is in front of the end insn
571    of the range, and considering for each alignment the maximum amount
572    that it might contribute to a size increase.
573 
574    For casesi tables, we also want to know worst case minimum amounts of
575    address difference, in case a machine description wants to introduce
576    some common offset that is added to all offsets in a table.
577    For this purpose, align_fuzz with a growth argument of 0 computes the
578    appropriate adjustment.  */
579 
580 /* Compute the maximum delta by which the difference of the addresses of
581    START and END might grow / shrink due to a different address for start
582    which changes the size of alignment insns between START and END.
583    KNOWN_ALIGN_LOG is the alignment known for START.
584    GROWTH should be ~0 if the objective is to compute potential code size
585    increase, and 0 if the objective is to compute potential shrink.
586    The return value is undefined for any other value of GROWTH.  */
587 
588 static int
align_fuzz(rtx start,rtx end,int known_align_log,unsigned int growth)589 align_fuzz (rtx start, rtx end, int known_align_log, unsigned int growth)
590 {
591   int uid = INSN_UID (start);
592   rtx align_label;
593   int known_align = 1 << known_align_log;
594   int end_shuid = INSN_SHUID (end);
595   int fuzz = 0;
596 
597   for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
598     {
599       int align_addr, new_align;
600 
601       uid = INSN_UID (align_label);
602       align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
603       if (uid_shuid[uid] > end_shuid)
604 	break;
605       known_align_log = LABEL_TO_ALIGNMENT (align_label);
606       new_align = 1 << known_align_log;
607       if (new_align < known_align)
608 	continue;
609       fuzz += (-align_addr ^ growth) & (new_align - known_align);
610       known_align = new_align;
611     }
612   return fuzz;
613 }
614 
615 /* Compute a worst-case reference address of a branch so that it
616    can be safely used in the presence of aligned labels.  Since the
617    size of the branch itself is unknown, the size of the branch is
618    not included in the range.  I.e. for a forward branch, the reference
619    address is the end address of the branch as known from the previous
620    branch shortening pass, minus a value to account for possible size
621    increase due to alignment.  For a backward branch, it is the start
622    address of the branch as known from the current pass, plus a value
623    to account for possible size increase due to alignment.
624    NB.: Therefore, the maximum offset allowed for backward branches needs
625    to exclude the branch size.  */
626 
627 int
insn_current_reference_address(rtx_insn * branch)628 insn_current_reference_address (rtx_insn *branch)
629 {
630   rtx dest;
631   int seq_uid;
632 
633   if (! INSN_ADDRESSES_SET_P ())
634     return 0;
635 
636   rtx_insn *seq = NEXT_INSN (PREV_INSN (branch));
637   seq_uid = INSN_UID (seq);
638   if (!JUMP_P (branch))
639     /* This can happen for example on the PA; the objective is to know the
640        offset to address something in front of the start of the function.
641        Thus, we can treat it like a backward branch.
642        We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
643        any alignment we'd encounter, so we skip the call to align_fuzz.  */
644     return insn_current_address;
645   dest = JUMP_LABEL (branch);
646 
647   /* BRANCH has no proper alignment chain set, so use SEQ.
648      BRANCH also has no INSN_SHUID.  */
649   if (INSN_SHUID (seq) < INSN_SHUID (dest))
650     {
651       /* Forward branch.  */
652       return (insn_last_address + insn_lengths[seq_uid]
653 	      - align_fuzz (seq, dest, length_unit_log, ~0));
654     }
655   else
656     {
657       /* Backward branch.  */
658       return (insn_current_address
659 	      + align_fuzz (dest, seq, length_unit_log, ~0));
660     }
661 }
662 
663 /* Compute branch alignments based on frequency information in the
664    CFG.  */
665 
666 unsigned int
compute_alignments(void)667 compute_alignments (void)
668 {
669   int log, max_skip, max_log;
670   basic_block bb;
671   int freq_max = 0;
672   int freq_threshold = 0;
673 
674   if (label_align)
675     {
676       free (label_align);
677       label_align = 0;
678     }
679 
680   max_labelno = max_label_num ();
681   min_labelno = get_first_label_num ();
682   label_align = XCNEWVEC (struct label_alignment, max_labelno - min_labelno + 1);
683 
684   /* If not optimizing or optimizing for size, don't assign any alignments.  */
685   if (! optimize || optimize_function_for_size_p (cfun))
686     return 0;
687 
688   if (dump_file)
689     {
690       dump_reg_info (dump_file);
691       dump_flow_info (dump_file, TDF_DETAILS);
692       flow_loops_dump (dump_file, NULL, 1);
693     }
694   loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
695   FOR_EACH_BB_FN (bb, cfun)
696     if (bb->frequency > freq_max)
697       freq_max = bb->frequency;
698   freq_threshold = freq_max / PARAM_VALUE (PARAM_ALIGN_THRESHOLD);
699 
700   if (dump_file)
701     fprintf (dump_file, "freq_max: %i\n",freq_max);
702   FOR_EACH_BB_FN (bb, cfun)
703     {
704       rtx_insn *label = BB_HEAD (bb);
705       int fallthru_frequency = 0, branch_frequency = 0, has_fallthru = 0;
706       edge e;
707       edge_iterator ei;
708 
709       if (!LABEL_P (label)
710 	  || optimize_bb_for_size_p (bb))
711 	{
712 	  if (dump_file)
713 	    fprintf (dump_file,
714 		     "BB %4i freq %4i loop %2i loop_depth %2i skipped.\n",
715 		     bb->index, bb->frequency, bb->loop_father->num,
716 		     bb_loop_depth (bb));
717 	  continue;
718 	}
719       max_log = LABEL_ALIGN (label);
720       max_skip = targetm.asm_out.label_align_max_skip (label);
721 
722       FOR_EACH_EDGE (e, ei, bb->preds)
723 	{
724 	  if (e->flags & EDGE_FALLTHRU)
725 	    has_fallthru = 1, fallthru_frequency += EDGE_FREQUENCY (e);
726 	  else
727 	    branch_frequency += EDGE_FREQUENCY (e);
728 	}
729       if (dump_file)
730 	{
731 	  fprintf (dump_file, "BB %4i freq %4i loop %2i loop_depth"
732 		   " %2i fall %4i branch %4i",
733 		   bb->index, bb->frequency, bb->loop_father->num,
734 		   bb_loop_depth (bb),
735 		   fallthru_frequency, branch_frequency);
736 	  if (!bb->loop_father->inner && bb->loop_father->num)
737 	    fprintf (dump_file, " inner_loop");
738 	  if (bb->loop_father->header == bb)
739 	    fprintf (dump_file, " loop_header");
740 	  fprintf (dump_file, "\n");
741 	}
742 
743       /* There are two purposes to align block with no fallthru incoming edge:
744 	 1) to avoid fetch stalls when branch destination is near cache boundary
745 	 2) to improve cache efficiency in case the previous block is not executed
746 	    (so it does not need to be in the cache).
747 
748 	 We to catch first case, we align frequently executed blocks.
749 	 To catch the second, we align blocks that are executed more frequently
750 	 than the predecessor and the predecessor is likely to not be executed
751 	 when function is called.  */
752 
753       if (!has_fallthru
754 	  && (branch_frequency > freq_threshold
755 	      || (bb->frequency > bb->prev_bb->frequency * 10
756 		  && (bb->prev_bb->frequency
757 		      <= ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency / 2))))
758 	{
759 	  log = JUMP_ALIGN (label);
760 	  if (dump_file)
761 	    fprintf (dump_file, "  jump alignment added.\n");
762 	  if (max_log < log)
763 	    {
764 	      max_log = log;
765 	      max_skip = targetm.asm_out.jump_align_max_skip (label);
766 	    }
767 	}
768       /* In case block is frequent and reached mostly by non-fallthru edge,
769 	 align it.  It is most likely a first block of loop.  */
770       if (has_fallthru
771 	  && !(single_succ_p (bb)
772 	       && single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (cfun))
773 	  && optimize_bb_for_speed_p (bb)
774 	  && branch_frequency + fallthru_frequency > freq_threshold
775 	  && (branch_frequency
776 	      > fallthru_frequency * PARAM_VALUE (PARAM_ALIGN_LOOP_ITERATIONS)))
777 	{
778 	  log = LOOP_ALIGN (label);
779 	  if (dump_file)
780 	    fprintf (dump_file, "  internal loop alignment added.\n");
781 	  if (max_log < log)
782 	    {
783 	      max_log = log;
784 	      max_skip = targetm.asm_out.loop_align_max_skip (label);
785 	    }
786 	}
787       LABEL_TO_ALIGNMENT (label) = max_log;
788       LABEL_TO_MAX_SKIP (label) = max_skip;
789     }
790 
791   loop_optimizer_finalize ();
792   free_dominance_info (CDI_DOMINATORS);
793   return 0;
794 }
795 
796 /* Grow the LABEL_ALIGN array after new labels are created.  */
797 
798 static void
grow_label_align(void)799 grow_label_align (void)
800 {
801   int old = max_labelno;
802   int n_labels;
803   int n_old_labels;
804 
805   max_labelno = max_label_num ();
806 
807   n_labels = max_labelno - min_labelno + 1;
808   n_old_labels = old - min_labelno + 1;
809 
810   label_align = XRESIZEVEC (struct label_alignment, label_align, n_labels);
811 
812   /* Range of labels grows monotonically in the function.  Failing here
813      means that the initialization of array got lost.  */
814   gcc_assert (n_old_labels <= n_labels);
815 
816   memset (label_align + n_old_labels, 0,
817           (n_labels - n_old_labels) * sizeof (struct label_alignment));
818 }
819 
820 /* Update the already computed alignment information.  LABEL_PAIRS is a vector
821    made up of pairs of labels for which the alignment information of the first
822    element will be copied from that of the second element.  */
823 
824 void
update_alignments(vec<rtx> & label_pairs)825 update_alignments (vec<rtx> &label_pairs)
826 {
827   unsigned int i = 0;
828   rtx iter, label = NULL_RTX;
829 
830   if (max_labelno != max_label_num ())
831     grow_label_align ();
832 
833   FOR_EACH_VEC_ELT (label_pairs, i, iter)
834     if (i & 1)
835       {
836 	LABEL_TO_ALIGNMENT (label) = LABEL_TO_ALIGNMENT (iter);
837 	LABEL_TO_MAX_SKIP (label) = LABEL_TO_MAX_SKIP (iter);
838       }
839     else
840       label = iter;
841 }
842 
843 namespace {
844 
845 const pass_data pass_data_compute_alignments =
846 {
847   RTL_PASS, /* type */
848   "alignments", /* name */
849   OPTGROUP_NONE, /* optinfo_flags */
850   TV_NONE, /* tv_id */
851   0, /* properties_required */
852   0, /* properties_provided */
853   0, /* properties_destroyed */
854   0, /* todo_flags_start */
855   0, /* todo_flags_finish */
856 };
857 
858 class pass_compute_alignments : public rtl_opt_pass
859 {
860 public:
pass_compute_alignments(gcc::context * ctxt)861   pass_compute_alignments (gcc::context *ctxt)
862     : rtl_opt_pass (pass_data_compute_alignments, ctxt)
863   {}
864 
865   /* opt_pass methods: */
execute(function *)866   virtual unsigned int execute (function *) { return compute_alignments (); }
867 
868 }; // class pass_compute_alignments
869 
870 } // anon namespace
871 
872 rtl_opt_pass *
make_pass_compute_alignments(gcc::context * ctxt)873 make_pass_compute_alignments (gcc::context *ctxt)
874 {
875   return new pass_compute_alignments (ctxt);
876 }
877 
878 
879 /* Make a pass over all insns and compute their actual lengths by shortening
880    any branches of variable length if possible.  */
881 
882 /* shorten_branches might be called multiple times:  for example, the SH
883    port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
884    In order to do this, it needs proper length information, which it obtains
885    by calling shorten_branches.  This cannot be collapsed with
886    shorten_branches itself into a single pass unless we also want to integrate
887    reorg.c, since the branch splitting exposes new instructions with delay
888    slots.  */
889 
890 void
shorten_branches(rtx_insn * first)891 shorten_branches (rtx_insn *first)
892 {
893   rtx_insn *insn;
894   int max_uid;
895   int i;
896   int max_log;
897   int max_skip;
898 #define MAX_CODE_ALIGN 16
899   rtx_insn *seq;
900   int something_changed = 1;
901   char *varying_length;
902   rtx body;
903   int uid;
904   rtx align_tab[MAX_CODE_ALIGN + 1];
905 
906   /* Compute maximum UID and allocate label_align / uid_shuid.  */
907   max_uid = get_max_uid ();
908 
909   /* Free uid_shuid before reallocating it.  */
910   free (uid_shuid);
911 
912   uid_shuid = XNEWVEC (int, max_uid);
913 
914   if (max_labelno != max_label_num ())
915     grow_label_align ();
916 
917   /* Initialize label_align and set up uid_shuid to be strictly
918      monotonically rising with insn order.  */
919   /* We use max_log here to keep track of the maximum alignment we want to
920      impose on the next CODE_LABEL (or the current one if we are processing
921      the CODE_LABEL itself).  */
922 
923   max_log = 0;
924   max_skip = 0;
925 
926   for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
927     {
928       int log;
929 
930       INSN_SHUID (insn) = i++;
931       if (INSN_P (insn))
932 	continue;
933 
934       if (LABEL_P (insn))
935 	{
936 	  rtx_insn *next;
937 	  bool next_is_jumptable;
938 
939 	  /* Merge in alignments computed by compute_alignments.  */
940 	  log = LABEL_TO_ALIGNMENT (insn);
941 	  if (max_log < log)
942 	    {
943 	      max_log = log;
944 	      max_skip = LABEL_TO_MAX_SKIP (insn);
945 	    }
946 
947 	  next = next_nonnote_insn (insn);
948 	  next_is_jumptable = next && JUMP_TABLE_DATA_P (next);
949 	  if (!next_is_jumptable)
950 	    {
951 	      log = LABEL_ALIGN (insn);
952 	      if (max_log < log)
953 		{
954 		  max_log = log;
955 		  max_skip = targetm.asm_out.label_align_max_skip (insn);
956 		}
957 	    }
958 	  /* ADDR_VECs only take room if read-only data goes into the text
959 	     section.  */
960 	  if ((JUMP_TABLES_IN_TEXT_SECTION
961 	       || readonly_data_section == text_section)
962 	      && next_is_jumptable)
963 	    {
964 	      log = ADDR_VEC_ALIGN (next);
965 	      if (max_log < log)
966 		{
967 		  max_log = log;
968 		  max_skip = targetm.asm_out.label_align_max_skip (insn);
969 		}
970 	    }
971 	  LABEL_TO_ALIGNMENT (insn) = max_log;
972 	  LABEL_TO_MAX_SKIP (insn) = max_skip;
973 	  max_log = 0;
974 	  max_skip = 0;
975 	}
976       else if (BARRIER_P (insn))
977 	{
978 	  rtx_insn *label;
979 
980 	  for (label = insn; label && ! INSN_P (label);
981 	       label = NEXT_INSN (label))
982 	    if (LABEL_P (label))
983 	      {
984 		log = LABEL_ALIGN_AFTER_BARRIER (insn);
985 		if (max_log < log)
986 		  {
987 		    max_log = log;
988 		    max_skip = targetm.asm_out.label_align_after_barrier_max_skip (label);
989 		  }
990 		break;
991 	      }
992 	}
993     }
994   if (!HAVE_ATTR_length)
995     return;
996 
997   /* Allocate the rest of the arrays.  */
998   insn_lengths = XNEWVEC (int, max_uid);
999   insn_lengths_max_uid = max_uid;
1000   /* Syntax errors can lead to labels being outside of the main insn stream.
1001      Initialize insn_addresses, so that we get reproducible results.  */
1002   INSN_ADDRESSES_ALLOC (max_uid);
1003 
1004   varying_length = XCNEWVEC (char, max_uid);
1005 
1006   /* Initialize uid_align.  We scan instructions
1007      from end to start, and keep in align_tab[n] the last seen insn
1008      that does an alignment of at least n+1, i.e. the successor
1009      in the alignment chain for an insn that does / has a known
1010      alignment of n.  */
1011   uid_align = XCNEWVEC (rtx, max_uid);
1012 
1013   for (i = MAX_CODE_ALIGN + 1; --i >= 0;)
1014     align_tab[i] = NULL_RTX;
1015   seq = get_last_insn ();
1016   for (; seq; seq = PREV_INSN (seq))
1017     {
1018       int uid = INSN_UID (seq);
1019       int log;
1020       log = (LABEL_P (seq) ? LABEL_TO_ALIGNMENT (seq) : 0);
1021       uid_align[uid] = align_tab[0];
1022       if (log)
1023 	{
1024 	  /* Found an alignment label.  */
1025 	  uid_align[uid] = align_tab[log];
1026 	  for (i = log - 1; i >= 0; i--)
1027 	    align_tab[i] = seq;
1028 	}
1029     }
1030 
1031   /* When optimizing, we start assuming minimum length, and keep increasing
1032      lengths as we find the need for this, till nothing changes.
1033      When not optimizing, we start assuming maximum lengths, and
1034      do a single pass to update the lengths.  */
1035   bool increasing = optimize != 0;
1036 
1037 #ifdef CASE_VECTOR_SHORTEN_MODE
1038   if (optimize)
1039     {
1040       /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
1041          label fields.  */
1042 
1043       int min_shuid = INSN_SHUID (get_insns ()) - 1;
1044       int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
1045       int rel;
1046 
1047       for (insn = first; insn != 0; insn = NEXT_INSN (insn))
1048 	{
1049 	  rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
1050 	  int len, i, min, max, insn_shuid;
1051 	  int min_align;
1052 	  addr_diff_vec_flags flags;
1053 
1054 	  if (! JUMP_TABLE_DATA_P (insn)
1055 	      || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
1056 	    continue;
1057 	  pat = PATTERN (insn);
1058 	  len = XVECLEN (pat, 1);
1059 	  gcc_assert (len > 0);
1060 	  min_align = MAX_CODE_ALIGN;
1061 	  for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
1062 	    {
1063 	      rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
1064 	      int shuid = INSN_SHUID (lab);
1065 	      if (shuid < min)
1066 		{
1067 		  min = shuid;
1068 		  min_lab = lab;
1069 		}
1070 	      if (shuid > max)
1071 		{
1072 		  max = shuid;
1073 		  max_lab = lab;
1074 		}
1075 	      if (min_align > LABEL_TO_ALIGNMENT (lab))
1076 		min_align = LABEL_TO_ALIGNMENT (lab);
1077 	    }
1078 	  XEXP (pat, 2) = gen_rtx_LABEL_REF (Pmode, min_lab);
1079 	  XEXP (pat, 3) = gen_rtx_LABEL_REF (Pmode, max_lab);
1080 	  insn_shuid = INSN_SHUID (insn);
1081 	  rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
1082 	  memset (&flags, 0, sizeof (flags));
1083 	  flags.min_align = min_align;
1084 	  flags.base_after_vec = rel > insn_shuid;
1085 	  flags.min_after_vec  = min > insn_shuid;
1086 	  flags.max_after_vec  = max > insn_shuid;
1087 	  flags.min_after_base = min > rel;
1088 	  flags.max_after_base = max > rel;
1089 	  ADDR_DIFF_VEC_FLAGS (pat) = flags;
1090 
1091 	  if (increasing)
1092 	    PUT_MODE (pat, CASE_VECTOR_SHORTEN_MODE (0, 0, pat));
1093 	}
1094     }
1095 #endif /* CASE_VECTOR_SHORTEN_MODE */
1096 
1097   /* Compute initial lengths, addresses, and varying flags for each insn.  */
1098   int (*length_fun) (rtx_insn *) = increasing ? insn_min_length : insn_default_length;
1099 
1100   for (insn_current_address = 0, insn = first;
1101        insn != 0;
1102        insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
1103     {
1104       uid = INSN_UID (insn);
1105 
1106       insn_lengths[uid] = 0;
1107 
1108       if (LABEL_P (insn))
1109 	{
1110 	  int log = LABEL_TO_ALIGNMENT (insn);
1111 	  if (log)
1112 	    {
1113 	      int align = 1 << log;
1114 	      int new_address = (insn_current_address + align - 1) & -align;
1115 	      insn_lengths[uid] = new_address - insn_current_address;
1116 	    }
1117 	}
1118 
1119       INSN_ADDRESSES (uid) = insn_current_address + insn_lengths[uid];
1120 
1121       if (NOTE_P (insn) || BARRIER_P (insn)
1122 	  || LABEL_P (insn) || DEBUG_INSN_P (insn))
1123 	continue;
1124       if (insn->deleted ())
1125 	continue;
1126 
1127       body = PATTERN (insn);
1128       if (JUMP_TABLE_DATA_P (insn))
1129 	{
1130 	  /* This only takes room if read-only data goes into the text
1131 	     section.  */
1132 	  if (JUMP_TABLES_IN_TEXT_SECTION
1133 	      || readonly_data_section == text_section)
1134 	    insn_lengths[uid] = (XVECLEN (body,
1135 					  GET_CODE (body) == ADDR_DIFF_VEC)
1136 				 * GET_MODE_SIZE (GET_MODE (body)));
1137 	  /* Alignment is handled by ADDR_VEC_ALIGN.  */
1138 	}
1139       else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
1140 	insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1141       else if (rtx_sequence *body_seq = dyn_cast <rtx_sequence *> (body))
1142 	{
1143 	  int i;
1144 	  int const_delay_slots;
1145 	  if (DELAY_SLOTS)
1146 	    const_delay_slots = const_num_delay_slots (body_seq->insn (0));
1147 	  else
1148 	    const_delay_slots = 0;
1149 
1150 	  int (*inner_length_fun) (rtx_insn *)
1151 	    = const_delay_slots ? length_fun : insn_default_length;
1152 	  /* Inside a delay slot sequence, we do not do any branch shortening
1153 	     if the shortening could change the number of delay slots
1154 	     of the branch.  */
1155 	  for (i = 0; i < body_seq->len (); i++)
1156 	    {
1157 	      rtx_insn *inner_insn = body_seq->insn (i);
1158 	      int inner_uid = INSN_UID (inner_insn);
1159 	      int inner_length;
1160 
1161 	      if (GET_CODE (PATTERN (inner_insn)) == ASM_INPUT
1162 		  || asm_noperands (PATTERN (inner_insn)) >= 0)
1163 		inner_length = (asm_insn_count (PATTERN (inner_insn))
1164 				* insn_default_length (inner_insn));
1165 	      else
1166 		inner_length = inner_length_fun (inner_insn);
1167 
1168 	      insn_lengths[inner_uid] = inner_length;
1169 	      if (const_delay_slots)
1170 		{
1171 		  if ((varying_length[inner_uid]
1172 		       = insn_variable_length_p (inner_insn)) != 0)
1173 		    varying_length[uid] = 1;
1174 		  INSN_ADDRESSES (inner_uid) = (insn_current_address
1175 						+ insn_lengths[uid]);
1176 		}
1177 	      else
1178 		varying_length[inner_uid] = 0;
1179 	      insn_lengths[uid] += inner_length;
1180 	    }
1181 	}
1182       else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1183 	{
1184 	  insn_lengths[uid] = length_fun (insn);
1185 	  varying_length[uid] = insn_variable_length_p (insn);
1186 	}
1187 
1188       /* If needed, do any adjustment.  */
1189 #ifdef ADJUST_INSN_LENGTH
1190       ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1191       if (insn_lengths[uid] < 0)
1192 	fatal_insn ("negative insn length", insn);
1193 #endif
1194     }
1195 
1196   /* Now loop over all the insns finding varying length insns.  For each,
1197      get the current insn length.  If it has changed, reflect the change.
1198      When nothing changes for a full pass, we are done.  */
1199 
1200   while (something_changed)
1201     {
1202       something_changed = 0;
1203       insn_current_align = MAX_CODE_ALIGN - 1;
1204       for (insn_current_address = 0, insn = first;
1205 	   insn != 0;
1206 	   insn = NEXT_INSN (insn))
1207 	{
1208 	  int new_length;
1209 #ifdef ADJUST_INSN_LENGTH
1210 	  int tmp_length;
1211 #endif
1212 	  int length_align;
1213 
1214 	  uid = INSN_UID (insn);
1215 
1216 	  if (LABEL_P (insn))
1217 	    {
1218 	      int log = LABEL_TO_ALIGNMENT (insn);
1219 
1220 #ifdef CASE_VECTOR_SHORTEN_MODE
1221 	      /* If the mode of a following jump table was changed, we
1222 		 may need to update the alignment of this label.  */
1223 	      rtx_insn *next;
1224 	      bool next_is_jumptable;
1225 
1226 	      next = next_nonnote_insn (insn);
1227 	      next_is_jumptable = next && JUMP_TABLE_DATA_P (next);
1228 	      if ((JUMP_TABLES_IN_TEXT_SECTION
1229 		   || readonly_data_section == text_section)
1230 		  && next_is_jumptable)
1231 		{
1232 		  int newlog = ADDR_VEC_ALIGN (next);
1233 		  if (newlog != log)
1234 		    {
1235 		      log = newlog;
1236 		      LABEL_TO_ALIGNMENT (insn) = log;
1237 		      something_changed = 1;
1238 		    }
1239 		}
1240 #endif
1241 
1242 	      if (log > insn_current_align)
1243 		{
1244 		  int align = 1 << log;
1245 		  int new_address= (insn_current_address + align - 1) & -align;
1246 		  insn_lengths[uid] = new_address - insn_current_address;
1247 		  insn_current_align = log;
1248 		  insn_current_address = new_address;
1249 		}
1250 	      else
1251 		insn_lengths[uid] = 0;
1252 	      INSN_ADDRESSES (uid) = insn_current_address;
1253 	      continue;
1254 	    }
1255 
1256 	  length_align = INSN_LENGTH_ALIGNMENT (insn);
1257 	  if (length_align < insn_current_align)
1258 	    insn_current_align = length_align;
1259 
1260 	  insn_last_address = INSN_ADDRESSES (uid);
1261 	  INSN_ADDRESSES (uid) = insn_current_address;
1262 
1263 #ifdef CASE_VECTOR_SHORTEN_MODE
1264 	  if (optimize
1265 	      && JUMP_TABLE_DATA_P (insn)
1266 	      && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1267 	    {
1268 	      rtx body = PATTERN (insn);
1269 	      int old_length = insn_lengths[uid];
1270 	      rtx_insn *rel_lab =
1271 		safe_as_a <rtx_insn *> (XEXP (XEXP (body, 0), 0));
1272 	      rtx min_lab = XEXP (XEXP (body, 2), 0);
1273 	      rtx max_lab = XEXP (XEXP (body, 3), 0);
1274 	      int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
1275 	      int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
1276 	      int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
1277 	      rtx_insn *prev;
1278 	      int rel_align = 0;
1279 	      addr_diff_vec_flags flags;
1280 	      machine_mode vec_mode;
1281 
1282 	      /* Avoid automatic aggregate initialization.  */
1283 	      flags = ADDR_DIFF_VEC_FLAGS (body);
1284 
1285 	      /* Try to find a known alignment for rel_lab.  */
1286 	      for (prev = rel_lab;
1287 		   prev
1288 		   && ! insn_lengths[INSN_UID (prev)]
1289 		   && ! (varying_length[INSN_UID (prev)] & 1);
1290 		   prev = PREV_INSN (prev))
1291 		if (varying_length[INSN_UID (prev)] & 2)
1292 		  {
1293 		    rel_align = LABEL_TO_ALIGNMENT (prev);
1294 		    break;
1295 		  }
1296 
1297 	      /* See the comment on addr_diff_vec_flags in rtl.h for the
1298 		 meaning of the flags values.  base: REL_LAB   vec: INSN  */
1299 	      /* Anything after INSN has still addresses from the last
1300 		 pass; adjust these so that they reflect our current
1301 		 estimate for this pass.  */
1302 	      if (flags.base_after_vec)
1303 		rel_addr += insn_current_address - insn_last_address;
1304 	      if (flags.min_after_vec)
1305 		min_addr += insn_current_address - insn_last_address;
1306 	      if (flags.max_after_vec)
1307 		max_addr += insn_current_address - insn_last_address;
1308 	      /* We want to know the worst case, i.e. lowest possible value
1309 		 for the offset of MIN_LAB.  If MIN_LAB is after REL_LAB,
1310 		 its offset is positive, and we have to be wary of code shrink;
1311 		 otherwise, it is negative, and we have to be vary of code
1312 		 size increase.  */
1313 	      if (flags.min_after_base)
1314 		{
1315 		  /* If INSN is between REL_LAB and MIN_LAB, the size
1316 		     changes we are about to make can change the alignment
1317 		     within the observed offset, therefore we have to break
1318 		     it up into two parts that are independent.  */
1319 		  if (! flags.base_after_vec && flags.min_after_vec)
1320 		    {
1321 		      min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1322 		      min_addr -= align_fuzz (insn, min_lab, 0, 0);
1323 		    }
1324 		  else
1325 		    min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1326 		}
1327 	      else
1328 		{
1329 		  if (flags.base_after_vec && ! flags.min_after_vec)
1330 		    {
1331 		      min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1332 		      min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1333 		    }
1334 		  else
1335 		    min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1336 		}
1337 	      /* Likewise, determine the highest lowest possible value
1338 		 for the offset of MAX_LAB.  */
1339 	      if (flags.max_after_base)
1340 		{
1341 		  if (! flags.base_after_vec && flags.max_after_vec)
1342 		    {
1343 		      max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1344 		      max_addr += align_fuzz (insn, max_lab, 0, ~0);
1345 		    }
1346 		  else
1347 		    max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1348 		}
1349 	      else
1350 		{
1351 		  if (flags.base_after_vec && ! flags.max_after_vec)
1352 		    {
1353 		      max_addr += align_fuzz (max_lab, insn, 0, 0);
1354 		      max_addr += align_fuzz (insn, rel_lab, 0, 0);
1355 		    }
1356 		  else
1357 		    max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1358 		}
1359 	      vec_mode = CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1360 						   max_addr - rel_addr, body);
1361 	      if (!increasing
1362 		  || (GET_MODE_SIZE (vec_mode)
1363 		      >= GET_MODE_SIZE (GET_MODE (body))))
1364 		PUT_MODE (body, vec_mode);
1365 	      if (JUMP_TABLES_IN_TEXT_SECTION
1366 		  || readonly_data_section == text_section)
1367 		{
1368 		  insn_lengths[uid]
1369 		    = (XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body)));
1370 		  insn_current_address += insn_lengths[uid];
1371 		  if (insn_lengths[uid] != old_length)
1372 		    something_changed = 1;
1373 		}
1374 
1375 	      continue;
1376 	    }
1377 #endif /* CASE_VECTOR_SHORTEN_MODE */
1378 
1379 	  if (! (varying_length[uid]))
1380 	    {
1381 	      if (NONJUMP_INSN_P (insn)
1382 		  && GET_CODE (PATTERN (insn)) == SEQUENCE)
1383 		{
1384 		  int i;
1385 
1386 		  body = PATTERN (insn);
1387 		  for (i = 0; i < XVECLEN (body, 0); i++)
1388 		    {
1389 		      rtx inner_insn = XVECEXP (body, 0, i);
1390 		      int inner_uid = INSN_UID (inner_insn);
1391 
1392 		      INSN_ADDRESSES (inner_uid) = insn_current_address;
1393 
1394 		      insn_current_address += insn_lengths[inner_uid];
1395 		    }
1396 		}
1397 	      else
1398 		insn_current_address += insn_lengths[uid];
1399 
1400 	      continue;
1401 	    }
1402 
1403 	  if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1404 	    {
1405 	      rtx_sequence *seqn = as_a <rtx_sequence *> (PATTERN (insn));
1406 	      int i;
1407 
1408 	      body = PATTERN (insn);
1409 	      new_length = 0;
1410 	      for (i = 0; i < seqn->len (); i++)
1411 		{
1412 		  rtx_insn *inner_insn = seqn->insn (i);
1413 		  int inner_uid = INSN_UID (inner_insn);
1414 		  int inner_length;
1415 
1416 		  INSN_ADDRESSES (inner_uid) = insn_current_address;
1417 
1418 		  /* insn_current_length returns 0 for insns with a
1419 		     non-varying length.  */
1420 		  if (! varying_length[inner_uid])
1421 		    inner_length = insn_lengths[inner_uid];
1422 		  else
1423 		    inner_length = insn_current_length (inner_insn);
1424 
1425 		  if (inner_length != insn_lengths[inner_uid])
1426 		    {
1427 		      if (!increasing || inner_length > insn_lengths[inner_uid])
1428 			{
1429 			  insn_lengths[inner_uid] = inner_length;
1430 			  something_changed = 1;
1431 			}
1432 		      else
1433 			inner_length = insn_lengths[inner_uid];
1434 		    }
1435 		  insn_current_address += inner_length;
1436 		  new_length += inner_length;
1437 		}
1438 	    }
1439 	  else
1440 	    {
1441 	      new_length = insn_current_length (insn);
1442 	      insn_current_address += new_length;
1443 	    }
1444 
1445 #ifdef ADJUST_INSN_LENGTH
1446 	  /* If needed, do any adjustment.  */
1447 	  tmp_length = new_length;
1448 	  ADJUST_INSN_LENGTH (insn, new_length);
1449 	  insn_current_address += (new_length - tmp_length);
1450 #endif
1451 
1452 	  if (new_length != insn_lengths[uid]
1453 	      && (!increasing || new_length > insn_lengths[uid]))
1454 	    {
1455 	      insn_lengths[uid] = new_length;
1456 	      something_changed = 1;
1457 	    }
1458 	  else
1459 	    insn_current_address += insn_lengths[uid] - new_length;
1460 	}
1461       /* For a non-optimizing compile, do only a single pass.  */
1462       if (!increasing)
1463 	break;
1464     }
1465 
1466   free (varying_length);
1467 }
1468 
1469 /* Given the body of an INSN known to be generated by an ASM statement, return
1470    the number of machine instructions likely to be generated for this insn.
1471    This is used to compute its length.  */
1472 
1473 static int
asm_insn_count(rtx body)1474 asm_insn_count (rtx body)
1475 {
1476   const char *templ;
1477 
1478   if (GET_CODE (body) == ASM_INPUT)
1479     templ = XSTR (body, 0);
1480   else
1481     templ = decode_asm_operands (body, NULL, NULL, NULL, NULL, NULL);
1482 
1483   return asm_str_count (templ);
1484 }
1485 
1486 /* Return the number of machine instructions likely to be generated for the
1487    inline-asm template. */
1488 int
asm_str_count(const char * templ)1489 asm_str_count (const char *templ)
1490 {
1491   int count = 1;
1492 
1493   if (!*templ)
1494     return 0;
1495 
1496   for (; *templ; templ++)
1497     if (IS_ASM_LOGICAL_LINE_SEPARATOR (*templ, templ)
1498 	|| *templ == '\n')
1499       count++;
1500 
1501   return count;
1502 }
1503 
1504 /* ??? This is probably the wrong place for these.  */
1505 /* Structure recording the mapping from source file and directory
1506    names at compile time to those to be embedded in debug
1507    information.  */
1508 struct debug_prefix_map
1509 {
1510   const char *old_prefix;
1511   const char *new_prefix;
1512   size_t old_len;
1513   size_t new_len;
1514   struct debug_prefix_map *next;
1515 };
1516 
1517 /* Linked list of such structures.  */
1518 static debug_prefix_map *debug_prefix_maps;
1519 
1520 
1521 /* Record a debug file prefix mapping.  ARG is the argument to
1522    -fdebug-prefix-map and must be of the form OLD=NEW.  */
1523 
1524 void
add_debug_prefix_map(const char * arg)1525 add_debug_prefix_map (const char *arg)
1526 {
1527   debug_prefix_map *map;
1528   const char *p;
1529 
1530   p = strchr (arg, '=');
1531   if (!p)
1532     {
1533       error ("invalid argument %qs to -fdebug-prefix-map", arg);
1534       return;
1535     }
1536   map = XNEW (debug_prefix_map);
1537   map->old_prefix = xstrndup (arg, p - arg);
1538   map->old_len = p - arg;
1539   p++;
1540   map->new_prefix = xstrdup (p);
1541   map->new_len = strlen (p);
1542   map->next = debug_prefix_maps;
1543   debug_prefix_maps = map;
1544 }
1545 
1546 /* Perform user-specified mapping of debug filename prefixes.  Return
1547    the new name corresponding to FILENAME.  */
1548 
1549 const char *
remap_debug_filename(const char * filename)1550 remap_debug_filename (const char *filename)
1551 {
1552   debug_prefix_map *map;
1553   char *s;
1554   const char *name;
1555   size_t name_len;
1556 
1557   for (map = debug_prefix_maps; map; map = map->next)
1558     if (filename_ncmp (filename, map->old_prefix, map->old_len) == 0)
1559       break;
1560   if (!map)
1561     return filename;
1562   name = filename + map->old_len;
1563   name_len = strlen (name) + 1;
1564   s = (char *) alloca (name_len + map->new_len);
1565   memcpy (s, map->new_prefix, map->new_len);
1566   memcpy (s + map->new_len, name, name_len);
1567   return ggc_strdup (s);
1568 }
1569 
1570 /* Return true if DWARF2 debug info can be emitted for DECL.  */
1571 
1572 static bool
dwarf2_debug_info_emitted_p(tree decl)1573 dwarf2_debug_info_emitted_p (tree decl)
1574 {
1575   if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG)
1576     return false;
1577 
1578   if (DECL_IGNORED_P (decl))
1579     return false;
1580 
1581   return true;
1582 }
1583 
1584 /* Return scope resulting from combination of S1 and S2.  */
1585 static tree
choose_inner_scope(tree s1,tree s2)1586 choose_inner_scope (tree s1, tree s2)
1587 {
1588    if (!s1)
1589      return s2;
1590    if (!s2)
1591      return s1;
1592    if (BLOCK_NUMBER (s1) > BLOCK_NUMBER (s2))
1593      return s1;
1594    return s2;
1595 }
1596 
1597 /* Emit lexical block notes needed to change scope from S1 to S2.  */
1598 
1599 static void
change_scope(rtx_insn * orig_insn,tree s1,tree s2)1600 change_scope (rtx_insn *orig_insn, tree s1, tree s2)
1601 {
1602   rtx_insn *insn = orig_insn;
1603   tree com = NULL_TREE;
1604   tree ts1 = s1, ts2 = s2;
1605   tree s;
1606 
1607   while (ts1 != ts2)
1608     {
1609       gcc_assert (ts1 && ts2);
1610       if (BLOCK_NUMBER (ts1) > BLOCK_NUMBER (ts2))
1611 	ts1 = BLOCK_SUPERCONTEXT (ts1);
1612       else if (BLOCK_NUMBER (ts1) < BLOCK_NUMBER (ts2))
1613 	ts2 = BLOCK_SUPERCONTEXT (ts2);
1614       else
1615 	{
1616 	  ts1 = BLOCK_SUPERCONTEXT (ts1);
1617 	  ts2 = BLOCK_SUPERCONTEXT (ts2);
1618 	}
1619     }
1620   com = ts1;
1621 
1622   /* Close scopes.  */
1623   s = s1;
1624   while (s != com)
1625     {
1626       rtx_note *note = emit_note_before (NOTE_INSN_BLOCK_END, insn);
1627       NOTE_BLOCK (note) = s;
1628       s = BLOCK_SUPERCONTEXT (s);
1629     }
1630 
1631   /* Open scopes.  */
1632   s = s2;
1633   while (s != com)
1634     {
1635       insn = emit_note_before (NOTE_INSN_BLOCK_BEG, insn);
1636       NOTE_BLOCK (insn) = s;
1637       s = BLOCK_SUPERCONTEXT (s);
1638     }
1639 }
1640 
1641 /* Rebuild all the NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes based
1642    on the scope tree and the newly reordered instructions.  */
1643 
1644 static void
reemit_insn_block_notes(void)1645 reemit_insn_block_notes (void)
1646 {
1647   tree cur_block = DECL_INITIAL (cfun->decl);
1648   rtx_insn *insn;
1649   rtx_note *note;
1650 
1651   insn = get_insns ();
1652   for (; insn; insn = NEXT_INSN (insn))
1653     {
1654       tree this_block;
1655 
1656       /* Prevent lexical blocks from straddling section boundaries.  */
1657       if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_SWITCH_TEXT_SECTIONS)
1658         {
1659           for (tree s = cur_block; s != DECL_INITIAL (cfun->decl);
1660                s = BLOCK_SUPERCONTEXT (s))
1661             {
1662               rtx_note *note = emit_note_before (NOTE_INSN_BLOCK_END, insn);
1663               NOTE_BLOCK (note) = s;
1664               note = emit_note_after (NOTE_INSN_BLOCK_BEG, insn);
1665               NOTE_BLOCK (note) = s;
1666             }
1667         }
1668 
1669       if (!active_insn_p (insn))
1670         continue;
1671 
1672       /* Avoid putting scope notes between jump table and its label.  */
1673       if (JUMP_TABLE_DATA_P (insn))
1674 	continue;
1675 
1676       this_block = insn_scope (insn);
1677       /* For sequences compute scope resulting from merging all scopes
1678 	 of instructions nested inside.  */
1679       if (rtx_sequence *body = dyn_cast <rtx_sequence *> (PATTERN (insn)))
1680 	{
1681 	  int i;
1682 
1683 	  this_block = NULL;
1684 	  for (i = 0; i < body->len (); i++)
1685 	    this_block = choose_inner_scope (this_block,
1686 					     insn_scope (body->insn (i)));
1687 	}
1688       if (! this_block)
1689 	{
1690 	  if (INSN_LOCATION (insn) == UNKNOWN_LOCATION)
1691 	    continue;
1692 	  else
1693 	    this_block = DECL_INITIAL (cfun->decl);
1694 	}
1695 
1696       if (this_block != cur_block)
1697 	{
1698 	  change_scope (insn, cur_block, this_block);
1699 	  cur_block = this_block;
1700 	}
1701     }
1702 
1703   /* change_scope emits before the insn, not after.  */
1704   note = emit_note (NOTE_INSN_DELETED);
1705   change_scope (note, cur_block, DECL_INITIAL (cfun->decl));
1706   delete_insn (note);
1707 
1708   reorder_blocks ();
1709 }
1710 
1711 static const char *some_local_dynamic_name;
1712 
1713 /* Locate some local-dynamic symbol still in use by this function
1714    so that we can print its name in local-dynamic base patterns.
1715    Return null if there are no local-dynamic references.  */
1716 
1717 const char *
get_some_local_dynamic_name()1718 get_some_local_dynamic_name ()
1719 {
1720   subrtx_iterator::array_type array;
1721   rtx_insn *insn;
1722 
1723   if (some_local_dynamic_name)
1724     return some_local_dynamic_name;
1725 
1726   for (insn = get_insns (); insn ; insn = NEXT_INSN (insn))
1727     if (NONDEBUG_INSN_P (insn))
1728       FOR_EACH_SUBRTX (iter, array, PATTERN (insn), ALL)
1729 	{
1730 	  const_rtx x = *iter;
1731 	  if (GET_CODE (x) == SYMBOL_REF)
1732 	    {
1733 	      if (SYMBOL_REF_TLS_MODEL (x) == TLS_MODEL_LOCAL_DYNAMIC)
1734 		return some_local_dynamic_name = XSTR (x, 0);
1735 	      if (CONSTANT_POOL_ADDRESS_P (x))
1736 		iter.substitute (get_pool_constant (x));
1737 	    }
1738 	}
1739 
1740   return 0;
1741 }
1742 
1743 /* Output assembler code for the start of a function,
1744    and initialize some of the variables in this file
1745    for the new function.  The label for the function and associated
1746    assembler pseudo-ops have already been output in `assemble_start_function'.
1747 
1748    FIRST is the first insn of the rtl for the function being compiled.
1749    FILE is the file to write assembler code to.
1750    OPTIMIZE_P is nonzero if we should eliminate redundant
1751      test and compare insns.  */
1752 
1753 void
final_start_function(rtx_insn * first,FILE * file,int optimize_p ATTRIBUTE_UNUSED)1754 final_start_function (rtx_insn *first, FILE *file,
1755 		      int optimize_p ATTRIBUTE_UNUSED)
1756 {
1757   block_depth = 0;
1758 
1759   this_is_asm_operands = 0;
1760 
1761   need_profile_function = false;
1762 
1763   last_filename = LOCATION_FILE (prologue_location);
1764   last_linenum = LOCATION_LINE (prologue_location);
1765   last_discriminator = discriminator = 0;
1766 
1767   high_block_linenum = high_function_linenum = last_linenum;
1768 
1769   if (flag_sanitize & SANITIZE_ADDRESS)
1770     asan_function_start ();
1771 
1772   if (!DECL_IGNORED_P (current_function_decl))
1773     debug_hooks->begin_prologue (last_linenum, last_filename);
1774 
1775   if (!dwarf2_debug_info_emitted_p (current_function_decl))
1776     dwarf2out_begin_prologue (0, NULL);
1777 
1778 #ifdef LEAF_REG_REMAP
1779   if (crtl->uses_only_leaf_regs)
1780     leaf_renumber_regs (first);
1781 #endif
1782 
1783   /* The Sun386i and perhaps other machines don't work right
1784      if the profiling code comes after the prologue.  */
1785   if (targetm.profile_before_prologue () && crtl->profile)
1786     {
1787       if (targetm.asm_out.function_prologue == default_function_pro_epilogue
1788 	  && targetm.have_prologue ())
1789 	{
1790 	  rtx_insn *insn;
1791 	  for (insn = first; insn; insn = NEXT_INSN (insn))
1792 	    if (!NOTE_P (insn))
1793 	      {
1794 		insn = NULL;
1795 		break;
1796 	      }
1797 	    else if (NOTE_KIND (insn) == NOTE_INSN_BASIC_BLOCK
1798 		     || NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
1799 	      break;
1800 	    else if (NOTE_KIND (insn) == NOTE_INSN_DELETED
1801 		     || NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION)
1802 	      continue;
1803 	    else
1804 	      {
1805 		insn = NULL;
1806 		break;
1807 	      }
1808 
1809 	  if (insn)
1810 	    need_profile_function = true;
1811 	  else
1812 	    profile_function (file);
1813 	}
1814       else
1815 	profile_function (file);
1816     }
1817 
1818   /* If debugging, assign block numbers to all of the blocks in this
1819      function.  */
1820   if (write_symbols)
1821     {
1822       reemit_insn_block_notes ();
1823       number_blocks (current_function_decl);
1824       /* We never actually put out begin/end notes for the top-level
1825 	 block in the function.  But, conceptually, that block is
1826 	 always needed.  */
1827       TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1828     }
1829 
1830   if (warn_frame_larger_than
1831     && get_frame_size () > frame_larger_than_size)
1832   {
1833       /* Issue a warning */
1834       warning (OPT_Wframe_larger_than_,
1835                "the frame size of %wd bytes is larger than %wd bytes",
1836                get_frame_size (), frame_larger_than_size);
1837   }
1838 
1839   /* First output the function prologue: code to set up the stack frame.  */
1840   targetm.asm_out.function_prologue (file, get_frame_size ());
1841 
1842   /* If the machine represents the prologue as RTL, the profiling code must
1843      be emitted when NOTE_INSN_PROLOGUE_END is scanned.  */
1844   if (! targetm.have_prologue ())
1845     profile_after_prologue (file);
1846 }
1847 
1848 static void
profile_after_prologue(FILE * file ATTRIBUTE_UNUSED)1849 profile_after_prologue (FILE *file ATTRIBUTE_UNUSED)
1850 {
1851   if (!targetm.profile_before_prologue () && crtl->profile)
1852     profile_function (file);
1853 }
1854 
1855 static void
profile_function(FILE * file ATTRIBUTE_UNUSED)1856 profile_function (FILE *file ATTRIBUTE_UNUSED)
1857 {
1858 #ifndef NO_PROFILE_COUNTERS
1859 # define NO_PROFILE_COUNTERS	0
1860 #endif
1861 #ifdef ASM_OUTPUT_REG_PUSH
1862   rtx sval = NULL, chain = NULL;
1863 
1864   if (cfun->returns_struct)
1865     sval = targetm.calls.struct_value_rtx (TREE_TYPE (current_function_decl),
1866 					   true);
1867   if (cfun->static_chain_decl)
1868     chain = targetm.calls.static_chain (current_function_decl, true);
1869 #endif /* ASM_OUTPUT_REG_PUSH */
1870 
1871   if (! NO_PROFILE_COUNTERS)
1872     {
1873       int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1874       switch_to_section (data_section);
1875       ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1876       targetm.asm_out.internal_label (file, "LP", current_function_funcdef_no);
1877       assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
1878     }
1879 
1880   switch_to_section (current_function_section ());
1881 
1882 #ifdef ASM_OUTPUT_REG_PUSH
1883   if (sval && REG_P (sval))
1884     ASM_OUTPUT_REG_PUSH (file, REGNO (sval));
1885   if (chain && REG_P (chain))
1886     ASM_OUTPUT_REG_PUSH (file, REGNO (chain));
1887 #endif
1888 
1889   FUNCTION_PROFILER (file, current_function_funcdef_no);
1890 
1891 #ifdef ASM_OUTPUT_REG_PUSH
1892   if (chain && REG_P (chain))
1893     ASM_OUTPUT_REG_POP (file, REGNO (chain));
1894   if (sval && REG_P (sval))
1895     ASM_OUTPUT_REG_POP (file, REGNO (sval));
1896 #endif
1897 }
1898 
1899 /* Output assembler code for the end of a function.
1900    For clarity, args are same as those of `final_start_function'
1901    even though not all of them are needed.  */
1902 
1903 void
final_end_function(void)1904 final_end_function (void)
1905 {
1906   app_disable ();
1907 
1908   if (!DECL_IGNORED_P (current_function_decl))
1909     debug_hooks->end_function (high_function_linenum);
1910 
1911   /* Finally, output the function epilogue:
1912      code to restore the stack frame and return to the caller.  */
1913   targetm.asm_out.function_epilogue (asm_out_file, get_frame_size ());
1914 
1915   /* And debug output.  */
1916   if (!DECL_IGNORED_P (current_function_decl))
1917     debug_hooks->end_epilogue (last_linenum, last_filename);
1918 
1919   if (!dwarf2_debug_info_emitted_p (current_function_decl)
1920       && dwarf2out_do_frame ())
1921     dwarf2out_end_epilogue (last_linenum, last_filename);
1922 
1923   some_local_dynamic_name = 0;
1924 }
1925 
1926 
1927 /* Dumper helper for basic block information. FILE is the assembly
1928    output file, and INSN is the instruction being emitted.  */
1929 
1930 static void
dump_basic_block_info(FILE * file,rtx_insn * insn,basic_block * start_to_bb,basic_block * end_to_bb,int bb_map_size,int * bb_seqn)1931 dump_basic_block_info (FILE *file, rtx_insn *insn, basic_block *start_to_bb,
1932                        basic_block *end_to_bb, int bb_map_size, int *bb_seqn)
1933 {
1934   basic_block bb;
1935 
1936   if (!flag_debug_asm)
1937     return;
1938 
1939   if (INSN_UID (insn) < bb_map_size
1940       && (bb = start_to_bb[INSN_UID (insn)]) != NULL)
1941     {
1942       edge e;
1943       edge_iterator ei;
1944 
1945       fprintf (file, "%s BLOCK %d", ASM_COMMENT_START, bb->index);
1946       if (bb->frequency)
1947         fprintf (file, " freq:%d", bb->frequency);
1948       if (bb->count)
1949         fprintf (file, " count:%" PRId64,
1950                  bb->count);
1951       fprintf (file, " seq:%d", (*bb_seqn)++);
1952       fprintf (file, "\n%s PRED:", ASM_COMMENT_START);
1953       FOR_EACH_EDGE (e, ei, bb->preds)
1954         {
1955           dump_edge_info (file, e, TDF_DETAILS, 0);
1956         }
1957       fprintf (file, "\n");
1958     }
1959   if (INSN_UID (insn) < bb_map_size
1960       && (bb = end_to_bb[INSN_UID (insn)]) != NULL)
1961     {
1962       edge e;
1963       edge_iterator ei;
1964 
1965       fprintf (asm_out_file, "%s SUCC:", ASM_COMMENT_START);
1966       FOR_EACH_EDGE (e, ei, bb->succs)
1967        {
1968          dump_edge_info (asm_out_file, e, TDF_DETAILS, 1);
1969        }
1970       fprintf (file, "\n");
1971     }
1972 }
1973 
1974 /* Output assembler code for some insns: all or part of a function.
1975    For description of args, see `final_start_function', above.  */
1976 
1977 void
final(rtx_insn * first,FILE * file,int optimize_p)1978 final (rtx_insn *first, FILE *file, int optimize_p)
1979 {
1980   rtx_insn *insn, *next;
1981   int seen = 0;
1982 
1983   /* Used for -dA dump.  */
1984   basic_block *start_to_bb = NULL;
1985   basic_block *end_to_bb = NULL;
1986   int bb_map_size = 0;
1987   int bb_seqn = 0;
1988 
1989   last_ignored_compare = 0;
1990 
1991   if (HAVE_cc0)
1992     for (insn = first; insn; insn = NEXT_INSN (insn))
1993       {
1994 	/* If CC tracking across branches is enabled, record the insn which
1995 	   jumps to each branch only reached from one place.  */
1996 	if (optimize_p && JUMP_P (insn))
1997 	  {
1998 	    rtx lab = JUMP_LABEL (insn);
1999 	    if (lab && LABEL_P (lab) && LABEL_NUSES (lab) == 1)
2000 	      {
2001 		LABEL_REFS (lab) = insn;
2002 	      }
2003 	  }
2004       }
2005 
2006   init_recog ();
2007 
2008   CC_STATUS_INIT;
2009 
2010   if (flag_debug_asm)
2011     {
2012       basic_block bb;
2013 
2014       bb_map_size = get_max_uid () + 1;
2015       start_to_bb = XCNEWVEC (basic_block, bb_map_size);
2016       end_to_bb = XCNEWVEC (basic_block, bb_map_size);
2017 
2018       /* There is no cfg for a thunk.  */
2019       if (!cfun->is_thunk)
2020 	FOR_EACH_BB_REVERSE_FN (bb, cfun)
2021 	  {
2022 	    start_to_bb[INSN_UID (BB_HEAD (bb))] = bb;
2023 	    end_to_bb[INSN_UID (BB_END (bb))] = bb;
2024 	  }
2025     }
2026 
2027   /* Output the insns.  */
2028   for (insn = first; insn;)
2029     {
2030       if (HAVE_ATTR_length)
2031 	{
2032 	  if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
2033 	    {
2034 	      /* This can be triggered by bugs elsewhere in the compiler if
2035 		 new insns are created after init_insn_lengths is called.  */
2036 	      gcc_assert (NOTE_P (insn));
2037 	      insn_current_address = -1;
2038 	    }
2039 	  else
2040 	    insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
2041 	}
2042 
2043       dump_basic_block_info (file, insn, start_to_bb, end_to_bb,
2044                              bb_map_size, &bb_seqn);
2045       insn = final_scan_insn (insn, file, optimize_p, 0, &seen);
2046     }
2047 
2048   if (flag_debug_asm)
2049     {
2050       free (start_to_bb);
2051       free (end_to_bb);
2052     }
2053 
2054   /* Remove CFI notes, to avoid compare-debug failures.  */
2055   for (insn = first; insn; insn = next)
2056     {
2057       next = NEXT_INSN (insn);
2058       if (NOTE_P (insn)
2059 	  && (NOTE_KIND (insn) == NOTE_INSN_CFI
2060 	      || NOTE_KIND (insn) == NOTE_INSN_CFI_LABEL))
2061 	delete_insn (insn);
2062     }
2063 }
2064 
2065 const char *
get_insn_template(int code,rtx insn)2066 get_insn_template (int code, rtx insn)
2067 {
2068   switch (insn_data[code].output_format)
2069     {
2070     case INSN_OUTPUT_FORMAT_SINGLE:
2071       return insn_data[code].output.single;
2072     case INSN_OUTPUT_FORMAT_MULTI:
2073       return insn_data[code].output.multi[which_alternative];
2074     case INSN_OUTPUT_FORMAT_FUNCTION:
2075       gcc_assert (insn);
2076       return (*insn_data[code].output.function) (recog_data.operand,
2077 						 as_a <rtx_insn *> (insn));
2078 
2079     default:
2080       gcc_unreachable ();
2081     }
2082 }
2083 
2084 /* Emit the appropriate declaration for an alternate-entry-point
2085    symbol represented by INSN, to FILE.  INSN is a CODE_LABEL with
2086    LABEL_KIND != LABEL_NORMAL.
2087 
2088    The case fall-through in this function is intentional.  */
2089 static void
output_alternate_entry_point(FILE * file,rtx_insn * insn)2090 output_alternate_entry_point (FILE *file, rtx_insn *insn)
2091 {
2092   const char *name = LABEL_NAME (insn);
2093 
2094   switch (LABEL_KIND (insn))
2095     {
2096     case LABEL_WEAK_ENTRY:
2097 #ifdef ASM_WEAKEN_LABEL
2098       ASM_WEAKEN_LABEL (file, name);
2099 #endif
2100     case LABEL_GLOBAL_ENTRY:
2101       targetm.asm_out.globalize_label (file, name);
2102     case LABEL_STATIC_ENTRY:
2103 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
2104       ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
2105 #endif
2106       ASM_OUTPUT_LABEL (file, name);
2107       break;
2108 
2109     case LABEL_NORMAL:
2110     default:
2111       gcc_unreachable ();
2112     }
2113 }
2114 
2115 /* Given a CALL_INSN, find and return the nested CALL. */
2116 static rtx
call_from_call_insn(rtx_call_insn * insn)2117 call_from_call_insn (rtx_call_insn *insn)
2118 {
2119   rtx x;
2120   gcc_assert (CALL_P (insn));
2121   x = PATTERN (insn);
2122 
2123   while (GET_CODE (x) != CALL)
2124     {
2125       switch (GET_CODE (x))
2126 	{
2127 	default:
2128 	  gcc_unreachable ();
2129 	case COND_EXEC:
2130 	  x = COND_EXEC_CODE (x);
2131 	  break;
2132 	case PARALLEL:
2133 	  x = XVECEXP (x, 0, 0);
2134 	  break;
2135 	case SET:
2136 	  x = XEXP (x, 1);
2137 	  break;
2138 	}
2139     }
2140   return x;
2141 }
2142 
2143 /* The final scan for one insn, INSN.
2144    Args are same as in `final', except that INSN
2145    is the insn being scanned.
2146    Value returned is the next insn to be scanned.
2147 
2148    NOPEEPHOLES is the flag to disallow peephole processing (currently
2149    used for within delayed branch sequence output).
2150 
2151    SEEN is used to track the end of the prologue, for emitting
2152    debug information.  We force the emission of a line note after
2153    both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG.  */
2154 
2155 rtx_insn *
final_scan_insn(rtx_insn * insn,FILE * file,int optimize_p ATTRIBUTE_UNUSED,int nopeepholes ATTRIBUTE_UNUSED,int * seen)2156 final_scan_insn (rtx_insn *insn, FILE *file, int optimize_p ATTRIBUTE_UNUSED,
2157 		 int nopeepholes ATTRIBUTE_UNUSED, int *seen)
2158 {
2159 #if HAVE_cc0
2160   rtx set;
2161 #endif
2162   rtx_insn *next;
2163 
2164   insn_counter++;
2165 
2166   /* Ignore deleted insns.  These can occur when we split insns (due to a
2167      template of "#") while not optimizing.  */
2168   if (insn->deleted ())
2169     return NEXT_INSN (insn);
2170 
2171   switch (GET_CODE (insn))
2172     {
2173     case NOTE:
2174       switch (NOTE_KIND (insn))
2175 	{
2176 	case NOTE_INSN_DELETED:
2177 	case NOTE_INSN_UPDATE_SJLJ_CONTEXT:
2178 	  break;
2179 
2180 	case NOTE_INSN_SWITCH_TEXT_SECTIONS:
2181 	  in_cold_section_p = !in_cold_section_p;
2182 
2183 	  if (dwarf2out_do_frame ())
2184 	    dwarf2out_switch_text_section ();
2185 	  else if (!DECL_IGNORED_P (current_function_decl))
2186 	    debug_hooks->switch_text_section ();
2187 
2188 	  switch_to_section (current_function_section ());
2189 	  targetm.asm_out.function_switched_text_sections (asm_out_file,
2190 							   current_function_decl,
2191 							   in_cold_section_p);
2192 	  /* Emit a label for the split cold section.  Form label name by
2193 	     suffixing "cold" to the original function's name.  */
2194 	  if (in_cold_section_p)
2195 	    {
2196 	      cold_function_name
2197 		= clone_function_name (current_function_decl, "cold");
2198 #ifdef ASM_DECLARE_COLD_FUNCTION_NAME
2199 	      ASM_DECLARE_COLD_FUNCTION_NAME (asm_out_file,
2200 					      IDENTIFIER_POINTER
2201 					          (cold_function_name),
2202 					      current_function_decl);
2203 #else
2204 	      ASM_OUTPUT_LABEL (asm_out_file,
2205 				IDENTIFIER_POINTER (cold_function_name));
2206 #endif
2207 	    }
2208 	  break;
2209 
2210 	case NOTE_INSN_BASIC_BLOCK:
2211 	  if (need_profile_function)
2212 	    {
2213 	      profile_function (asm_out_file);
2214 	      need_profile_function = false;
2215 	    }
2216 
2217 	  if (targetm.asm_out.unwind_emit)
2218 	    targetm.asm_out.unwind_emit (asm_out_file, insn);
2219 
2220           discriminator = NOTE_BASIC_BLOCK (insn)->discriminator;
2221 
2222 	  break;
2223 
2224 	case NOTE_INSN_EH_REGION_BEG:
2225 	  ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
2226 				  NOTE_EH_HANDLER (insn));
2227 	  break;
2228 
2229 	case NOTE_INSN_EH_REGION_END:
2230 	  ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
2231 				  NOTE_EH_HANDLER (insn));
2232 	  break;
2233 
2234 	case NOTE_INSN_PROLOGUE_END:
2235 	  targetm.asm_out.function_end_prologue (file);
2236 	  profile_after_prologue (file);
2237 
2238 	  if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
2239 	    {
2240 	      *seen |= SEEN_EMITTED;
2241 	      force_source_line = true;
2242 	    }
2243 	  else
2244 	    *seen |= SEEN_NOTE;
2245 
2246 	  break;
2247 
2248 	case NOTE_INSN_EPILOGUE_BEG:
2249           if (!DECL_IGNORED_P (current_function_decl))
2250             (*debug_hooks->begin_epilogue) (last_linenum, last_filename);
2251 	  targetm.asm_out.function_begin_epilogue (file);
2252 	  break;
2253 
2254 	case NOTE_INSN_CFI:
2255 	  dwarf2out_emit_cfi (NOTE_CFI (insn));
2256 	  break;
2257 
2258 	case NOTE_INSN_CFI_LABEL:
2259 	  ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LCFI",
2260 				  NOTE_LABEL_NUMBER (insn));
2261 	  break;
2262 
2263 	case NOTE_INSN_FUNCTION_BEG:
2264 	  if (need_profile_function)
2265 	    {
2266 	      profile_function (asm_out_file);
2267 	      need_profile_function = false;
2268 	    }
2269 
2270 	  app_disable ();
2271 	  if (!DECL_IGNORED_P (current_function_decl))
2272 	    debug_hooks->end_prologue (last_linenum, last_filename);
2273 
2274 	  if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
2275 	    {
2276 	      *seen |= SEEN_EMITTED;
2277 	      force_source_line = true;
2278 	    }
2279 	  else
2280 	    *seen |= SEEN_NOTE;
2281 
2282 	  break;
2283 
2284 	case NOTE_INSN_BLOCK_BEG:
2285 	  if (debug_info_level == DINFO_LEVEL_NORMAL
2286 	      || debug_info_level == DINFO_LEVEL_VERBOSE
2287 	      || write_symbols == DWARF2_DEBUG
2288 	      || write_symbols == VMS_AND_DWARF2_DEBUG
2289 	      || write_symbols == VMS_DEBUG)
2290 	    {
2291 	      int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
2292 
2293 	      app_disable ();
2294 	      ++block_depth;
2295 	      high_block_linenum = last_linenum;
2296 
2297 	      /* Output debugging info about the symbol-block beginning.  */
2298 	      if (!DECL_IGNORED_P (current_function_decl))
2299 		debug_hooks->begin_block (last_linenum, n);
2300 
2301 	      /* Mark this block as output.  */
2302 	      TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
2303 	    }
2304 	  if (write_symbols == DBX_DEBUG
2305 	      || write_symbols == SDB_DEBUG)
2306 	    {
2307 	      location_t *locus_ptr
2308 		= block_nonartificial_location (NOTE_BLOCK (insn));
2309 
2310 	      if (locus_ptr != NULL)
2311 		{
2312 		  override_filename = LOCATION_FILE (*locus_ptr);
2313 		  override_linenum = LOCATION_LINE (*locus_ptr);
2314 		}
2315 	    }
2316 	  break;
2317 
2318 	case NOTE_INSN_BLOCK_END:
2319 	  if (debug_info_level == DINFO_LEVEL_NORMAL
2320 	      || debug_info_level == DINFO_LEVEL_VERBOSE
2321 	      || write_symbols == DWARF2_DEBUG
2322 	      || write_symbols == VMS_AND_DWARF2_DEBUG
2323 	      || write_symbols == VMS_DEBUG)
2324 	    {
2325 	      int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
2326 
2327 	      app_disable ();
2328 
2329 	      /* End of a symbol-block.  */
2330 	      --block_depth;
2331 	      gcc_assert (block_depth >= 0);
2332 
2333 	      if (!DECL_IGNORED_P (current_function_decl))
2334 		debug_hooks->end_block (high_block_linenum, n);
2335 	    }
2336 	  if (write_symbols == DBX_DEBUG
2337 	      || write_symbols == SDB_DEBUG)
2338 	    {
2339 	      tree outer_block = BLOCK_SUPERCONTEXT (NOTE_BLOCK (insn));
2340 	      location_t *locus_ptr
2341 		= block_nonartificial_location (outer_block);
2342 
2343 	      if (locus_ptr != NULL)
2344 		{
2345 		  override_filename = LOCATION_FILE (*locus_ptr);
2346 		  override_linenum = LOCATION_LINE (*locus_ptr);
2347 		}
2348 	      else
2349 		{
2350 		  override_filename = NULL;
2351 		  override_linenum = 0;
2352 		}
2353 	    }
2354 	  break;
2355 
2356 	case NOTE_INSN_DELETED_LABEL:
2357 	  /* Emit the label.  We may have deleted the CODE_LABEL because
2358 	     the label could be proved to be unreachable, though still
2359 	     referenced (in the form of having its address taken.  */
2360 	  ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
2361 	  break;
2362 
2363 	case NOTE_INSN_DELETED_DEBUG_LABEL:
2364 	  /* Similarly, but need to use different namespace for it.  */
2365 	  if (CODE_LABEL_NUMBER (insn) != -1)
2366 	    ASM_OUTPUT_DEBUG_LABEL (file, "LDL", CODE_LABEL_NUMBER (insn));
2367 	  break;
2368 
2369 	case NOTE_INSN_VAR_LOCATION:
2370 	case NOTE_INSN_CALL_ARG_LOCATION:
2371 	  if (!DECL_IGNORED_P (current_function_decl))
2372 	    debug_hooks->var_location (insn);
2373 	  break;
2374 
2375 	default:
2376 	  gcc_unreachable ();
2377 	  break;
2378 	}
2379       break;
2380 
2381     case BARRIER:
2382       break;
2383 
2384     case CODE_LABEL:
2385       /* The target port might emit labels in the output function for
2386 	 some insn, e.g. sh.c output_branchy_insn.  */
2387       if (CODE_LABEL_NUMBER (insn) <= max_labelno)
2388 	{
2389 	  int align = LABEL_TO_ALIGNMENT (insn);
2390 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2391 	  int max_skip = LABEL_TO_MAX_SKIP (insn);
2392 #endif
2393 
2394 	  if (align && NEXT_INSN (insn))
2395 	    {
2396 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2397 	      ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
2398 #else
2399 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
2400               ASM_OUTPUT_ALIGN_WITH_NOP (file, align);
2401 #else
2402 	      ASM_OUTPUT_ALIGN (file, align);
2403 #endif
2404 #endif
2405 	    }
2406 	}
2407       CC_STATUS_INIT;
2408 
2409       if (!DECL_IGNORED_P (current_function_decl) && LABEL_NAME (insn))
2410 	debug_hooks->label (as_a <rtx_code_label *> (insn));
2411 
2412       app_disable ();
2413 
2414       next = next_nonnote_insn (insn);
2415       /* If this label is followed by a jump-table, make sure we put
2416 	 the label in the read-only section.  Also possibly write the
2417 	 label and jump table together.  */
2418       if (next != 0 && JUMP_TABLE_DATA_P (next))
2419 	{
2420 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2421 	  /* In this case, the case vector is being moved by the
2422 	     target, so don't output the label at all.  Leave that
2423 	     to the back end macros.  */
2424 #else
2425 	  if (! JUMP_TABLES_IN_TEXT_SECTION)
2426 	    {
2427 	      int log_align;
2428 
2429 	      switch_to_section (targetm.asm_out.function_rodata_section
2430 				 (current_function_decl));
2431 
2432 #ifdef ADDR_VEC_ALIGN
2433 	      log_align = ADDR_VEC_ALIGN (next);
2434 #else
2435 	      log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
2436 #endif
2437 	      ASM_OUTPUT_ALIGN (file, log_align);
2438 	    }
2439 	  else
2440 	    switch_to_section (current_function_section ());
2441 
2442 #ifdef ASM_OUTPUT_CASE_LABEL
2443 	  ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn),
2444 				 next);
2445 #else
2446 	  targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
2447 #endif
2448 #endif
2449 	  break;
2450 	}
2451       if (LABEL_ALT_ENTRY_P (insn))
2452 	output_alternate_entry_point (file, insn);
2453       else
2454 	targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
2455       break;
2456 
2457     default:
2458       {
2459 	rtx body = PATTERN (insn);
2460 	int insn_code_number;
2461 	const char *templ;
2462 	bool is_stmt;
2463 
2464 	/* Reset this early so it is correct for ASM statements.  */
2465 	current_insn_predicate = NULL_RTX;
2466 
2467 	/* An INSN, JUMP_INSN or CALL_INSN.
2468 	   First check for special kinds that recog doesn't recognize.  */
2469 
2470 	if (GET_CODE (body) == USE /* These are just declarations.  */
2471 	    || GET_CODE (body) == CLOBBER)
2472 	  break;
2473 
2474 #if HAVE_cc0
2475 	{
2476 	  /* If there is a REG_CC_SETTER note on this insn, it means that
2477 	     the setting of the condition code was done in the delay slot
2478 	     of the insn that branched here.  So recover the cc status
2479 	     from the insn that set it.  */
2480 
2481 	  rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2482 	  if (note)
2483 	    {
2484 	      rtx_insn *other = as_a <rtx_insn *> (XEXP (note, 0));
2485 	      NOTICE_UPDATE_CC (PATTERN (other), other);
2486 	      cc_prev_status = cc_status;
2487 	    }
2488 	}
2489 #endif
2490 
2491 	/* Detect insns that are really jump-tables
2492 	   and output them as such.  */
2493 
2494         if (JUMP_TABLE_DATA_P (insn))
2495 	  {
2496 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2497 	    int vlen, idx;
2498 #endif
2499 
2500 	    if (! JUMP_TABLES_IN_TEXT_SECTION)
2501 	      switch_to_section (targetm.asm_out.function_rodata_section
2502 				 (current_function_decl));
2503 	    else
2504 	      switch_to_section (current_function_section ());
2505 
2506 	    app_disable ();
2507 
2508 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2509 	    if (GET_CODE (body) == ADDR_VEC)
2510 	      {
2511 #ifdef ASM_OUTPUT_ADDR_VEC
2512 		ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
2513 #else
2514 		gcc_unreachable ();
2515 #endif
2516 	      }
2517 	    else
2518 	      {
2519 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2520 		ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
2521 #else
2522 		gcc_unreachable ();
2523 #endif
2524 	      }
2525 #else
2526 	    vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
2527 	    for (idx = 0; idx < vlen; idx++)
2528 	      {
2529 		if (GET_CODE (body) == ADDR_VEC)
2530 		  {
2531 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2532 		    ASM_OUTPUT_ADDR_VEC_ELT
2533 		      (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
2534 #else
2535 		    gcc_unreachable ();
2536 #endif
2537 		  }
2538 		else
2539 		  {
2540 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2541 		    ASM_OUTPUT_ADDR_DIFF_ELT
2542 		      (file,
2543 		       body,
2544 		       CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2545 		       CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2546 #else
2547 		    gcc_unreachable ();
2548 #endif
2549 		  }
2550 	      }
2551 #ifdef ASM_OUTPUT_CASE_END
2552 	    ASM_OUTPUT_CASE_END (file,
2553 				 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2554 				 insn);
2555 #endif
2556 #endif
2557 
2558 	    switch_to_section (current_function_section ());
2559 
2560 	    break;
2561 	  }
2562 	/* Output this line note if it is the first or the last line
2563 	   note in a row.  */
2564 	if (!DECL_IGNORED_P (current_function_decl)
2565 	    && notice_source_line (insn, &is_stmt))
2566 	  (*debug_hooks->source_line) (last_linenum, last_filename,
2567 				       last_discriminator, is_stmt);
2568 
2569 	if (GET_CODE (body) == ASM_INPUT)
2570 	  {
2571 	    const char *string = XSTR (body, 0);
2572 
2573 	    /* There's no telling what that did to the condition codes.  */
2574 	    CC_STATUS_INIT;
2575 
2576 	    if (string[0])
2577 	      {
2578 		expanded_location loc;
2579 
2580 		app_enable ();
2581 		loc = expand_location (ASM_INPUT_SOURCE_LOCATION (body));
2582 		if (*loc.file && loc.line)
2583 		  fprintf (asm_out_file, "%s %i \"%s\" 1\n",
2584 			   ASM_COMMENT_START, loc.line, loc.file);
2585 		fprintf (asm_out_file, "\t%s\n", string);
2586 #if HAVE_AS_LINE_ZERO
2587 		if (*loc.file && loc.line)
2588 		  fprintf (asm_out_file, "%s 0 \"\" 2\n", ASM_COMMENT_START);
2589 #endif
2590 	      }
2591 	    break;
2592 	  }
2593 
2594 	/* Detect `asm' construct with operands.  */
2595 	if (asm_noperands (body) >= 0)
2596 	  {
2597 	    unsigned int noperands = asm_noperands (body);
2598 	    rtx *ops = XALLOCAVEC (rtx, noperands);
2599 	    const char *string;
2600 	    location_t loc;
2601 	    expanded_location expanded;
2602 
2603 	    /* There's no telling what that did to the condition codes.  */
2604 	    CC_STATUS_INIT;
2605 
2606 	    /* Get out the operand values.  */
2607 	    string = decode_asm_operands (body, ops, NULL, NULL, NULL, &loc);
2608 	    /* Inhibit dying on what would otherwise be compiler bugs.  */
2609 	    insn_noperands = noperands;
2610 	    this_is_asm_operands = insn;
2611 	    expanded = expand_location (loc);
2612 
2613 #ifdef FINAL_PRESCAN_INSN
2614 	    FINAL_PRESCAN_INSN (insn, ops, insn_noperands);
2615 #endif
2616 
2617 	    /* Output the insn using them.  */
2618 	    if (string[0])
2619 	      {
2620 		app_enable ();
2621 		if (expanded.file && expanded.line)
2622 		  fprintf (asm_out_file, "%s %i \"%s\" 1\n",
2623 			   ASM_COMMENT_START, expanded.line, expanded.file);
2624 	        output_asm_insn (string, ops);
2625 #if HAVE_AS_LINE_ZERO
2626 		if (expanded.file && expanded.line)
2627 		  fprintf (asm_out_file, "%s 0 \"\" 2\n", ASM_COMMENT_START);
2628 #endif
2629 	      }
2630 
2631 	    if (targetm.asm_out.final_postscan_insn)
2632 	      targetm.asm_out.final_postscan_insn (file, insn, ops,
2633 						   insn_noperands);
2634 
2635 	    this_is_asm_operands = 0;
2636 	    break;
2637 	  }
2638 
2639 	app_disable ();
2640 
2641 	if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (body))
2642 	  {
2643 	    /* A delayed-branch sequence */
2644 	    int i;
2645 
2646 	    final_sequence = seq;
2647 
2648 	    /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2649 	       force the restoration of a comparison that was previously
2650 	       thought unnecessary.  If that happens, cancel this sequence
2651 	       and cause that insn to be restored.  */
2652 
2653 	    next = final_scan_insn (seq->insn (0), file, 0, 1, seen);
2654 	    if (next != seq->insn (1))
2655 	      {
2656 		final_sequence = 0;
2657 		return next;
2658 	      }
2659 
2660 	    for (i = 1; i < seq->len (); i++)
2661 	      {
2662 		rtx_insn *insn = seq->insn (i);
2663 		rtx_insn *next = NEXT_INSN (insn);
2664 		/* We loop in case any instruction in a delay slot gets
2665 		   split.  */
2666 		do
2667 		  insn = final_scan_insn (insn, file, 0, 1, seen);
2668 		while (insn != next);
2669 	      }
2670 #ifdef DBR_OUTPUT_SEQEND
2671 	    DBR_OUTPUT_SEQEND (file);
2672 #endif
2673 	    final_sequence = 0;
2674 
2675 	    /* If the insn requiring the delay slot was a CALL_INSN, the
2676 	       insns in the delay slot are actually executed before the
2677 	       called function.  Hence we don't preserve any CC-setting
2678 	       actions in these insns and the CC must be marked as being
2679 	       clobbered by the function.  */
2680 	    if (CALL_P (seq->insn (0)))
2681 	      {
2682 		CC_STATUS_INIT;
2683 	      }
2684 	    break;
2685 	  }
2686 
2687 	/* We have a real machine instruction as rtl.  */
2688 
2689 	body = PATTERN (insn);
2690 
2691 #if HAVE_cc0
2692 	set = single_set (insn);
2693 
2694 	/* Check for redundant test and compare instructions
2695 	   (when the condition codes are already set up as desired).
2696 	   This is done only when optimizing; if not optimizing,
2697 	   it should be possible for the user to alter a variable
2698 	   with the debugger in between statements
2699 	   and the next statement should reexamine the variable
2700 	   to compute the condition codes.  */
2701 
2702 	if (optimize_p)
2703 	  {
2704 	    if (set
2705 		&& GET_CODE (SET_DEST (set)) == CC0
2706 		&& insn != last_ignored_compare)
2707 	      {
2708 		rtx src1, src2;
2709 		if (GET_CODE (SET_SRC (set)) == SUBREG)
2710 		  SET_SRC (set) = alter_subreg (&SET_SRC (set), true);
2711 
2712 		src1 = SET_SRC (set);
2713 		src2 = NULL_RTX;
2714 		if (GET_CODE (SET_SRC (set)) == COMPARE)
2715 		  {
2716 		    if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2717 		      XEXP (SET_SRC (set), 0)
2718 			= alter_subreg (&XEXP (SET_SRC (set), 0), true);
2719 		    if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2720 		      XEXP (SET_SRC (set), 1)
2721 			= alter_subreg (&XEXP (SET_SRC (set), 1), true);
2722 		    if (XEXP (SET_SRC (set), 1)
2723 			== CONST0_RTX (GET_MODE (XEXP (SET_SRC (set), 0))))
2724 		      src2 = XEXP (SET_SRC (set), 0);
2725 		  }
2726 		if ((cc_status.value1 != 0
2727 		     && rtx_equal_p (src1, cc_status.value1))
2728 		    || (cc_status.value2 != 0
2729 			&& rtx_equal_p (src1, cc_status.value2))
2730 		    || (src2 != 0 && cc_status.value1 != 0
2731 		        && rtx_equal_p (src2, cc_status.value1))
2732 		    || (src2 != 0 && cc_status.value2 != 0
2733 			&& rtx_equal_p (src2, cc_status.value2)))
2734 		  {
2735 		    /* Don't delete insn if it has an addressing side-effect.  */
2736 		    if (! FIND_REG_INC_NOTE (insn, NULL_RTX)
2737 			/* or if anything in it is volatile.  */
2738 			&& ! volatile_refs_p (PATTERN (insn)))
2739 		      {
2740 			/* We don't really delete the insn; just ignore it.  */
2741 			last_ignored_compare = insn;
2742 			break;
2743 		      }
2744 		  }
2745 	      }
2746 	  }
2747 
2748 	/* If this is a conditional branch, maybe modify it
2749 	   if the cc's are in a nonstandard state
2750 	   so that it accomplishes the same thing that it would
2751 	   do straightforwardly if the cc's were set up normally.  */
2752 
2753 	if (cc_status.flags != 0
2754 	    && JUMP_P (insn)
2755 	    && GET_CODE (body) == SET
2756 	    && SET_DEST (body) == pc_rtx
2757 	    && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2758 	    && COMPARISON_P (XEXP (SET_SRC (body), 0))
2759 	    && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx)
2760 	  {
2761 	    /* This function may alter the contents of its argument
2762 	       and clear some of the cc_status.flags bits.
2763 	       It may also return 1 meaning condition now always true
2764 	       or -1 meaning condition now always false
2765 	       or 2 meaning condition nontrivial but altered.  */
2766 	    int result = alter_cond (XEXP (SET_SRC (body), 0));
2767 	    /* If condition now has fixed value, replace the IF_THEN_ELSE
2768 	       with its then-operand or its else-operand.  */
2769 	    if (result == 1)
2770 	      SET_SRC (body) = XEXP (SET_SRC (body), 1);
2771 	    if (result == -1)
2772 	      SET_SRC (body) = XEXP (SET_SRC (body), 2);
2773 
2774 	    /* The jump is now either unconditional or a no-op.
2775 	       If it has become a no-op, don't try to output it.
2776 	       (It would not be recognized.)  */
2777 	    if (SET_SRC (body) == pc_rtx)
2778 	      {
2779 	        delete_insn (insn);
2780 		break;
2781 	      }
2782 	    else if (ANY_RETURN_P (SET_SRC (body)))
2783 	      /* Replace (set (pc) (return)) with (return).  */
2784 	      PATTERN (insn) = body = SET_SRC (body);
2785 
2786 	    /* Rerecognize the instruction if it has changed.  */
2787 	    if (result != 0)
2788 	      INSN_CODE (insn) = -1;
2789 	  }
2790 
2791 	/* If this is a conditional trap, maybe modify it if the cc's
2792 	   are in a nonstandard state so that it accomplishes the same
2793 	   thing that it would do straightforwardly if the cc's were
2794 	   set up normally.  */
2795 	if (cc_status.flags != 0
2796 	    && NONJUMP_INSN_P (insn)
2797 	    && GET_CODE (body) == TRAP_IF
2798 	    && COMPARISON_P (TRAP_CONDITION (body))
2799 	    && XEXP (TRAP_CONDITION (body), 0) == cc0_rtx)
2800 	  {
2801 	    /* This function may alter the contents of its argument
2802 	       and clear some of the cc_status.flags bits.
2803 	       It may also return 1 meaning condition now always true
2804 	       or -1 meaning condition now always false
2805 	       or 2 meaning condition nontrivial but altered.  */
2806 	    int result = alter_cond (TRAP_CONDITION (body));
2807 
2808 	    /* If TRAP_CONDITION has become always false, delete the
2809 	       instruction.  */
2810 	    if (result == -1)
2811 	      {
2812 		delete_insn (insn);
2813 		break;
2814 	      }
2815 
2816 	    /* If TRAP_CONDITION has become always true, replace
2817 	       TRAP_CONDITION with const_true_rtx.  */
2818 	    if (result == 1)
2819 	      TRAP_CONDITION (body) = const_true_rtx;
2820 
2821 	    /* Rerecognize the instruction if it has changed.  */
2822 	    if (result != 0)
2823 	      INSN_CODE (insn) = -1;
2824 	  }
2825 
2826 	/* Make same adjustments to instructions that examine the
2827 	   condition codes without jumping and instructions that
2828 	   handle conditional moves (if this machine has either one).  */
2829 
2830 	if (cc_status.flags != 0
2831 	    && set != 0)
2832 	  {
2833 	    rtx cond_rtx, then_rtx, else_rtx;
2834 
2835 	    if (!JUMP_P (insn)
2836 		&& GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2837 	      {
2838 		cond_rtx = XEXP (SET_SRC (set), 0);
2839 		then_rtx = XEXP (SET_SRC (set), 1);
2840 		else_rtx = XEXP (SET_SRC (set), 2);
2841 	      }
2842 	    else
2843 	      {
2844 		cond_rtx = SET_SRC (set);
2845 		then_rtx = const_true_rtx;
2846 		else_rtx = const0_rtx;
2847 	      }
2848 
2849 	    if (COMPARISON_P (cond_rtx)
2850 		&& XEXP (cond_rtx, 0) == cc0_rtx)
2851 	      {
2852 		int result;
2853 		result = alter_cond (cond_rtx);
2854 		if (result == 1)
2855 		  validate_change (insn, &SET_SRC (set), then_rtx, 0);
2856 		else if (result == -1)
2857 		  validate_change (insn, &SET_SRC (set), else_rtx, 0);
2858 		else if (result == 2)
2859 		  INSN_CODE (insn) = -1;
2860 		if (SET_DEST (set) == SET_SRC (set))
2861 		  delete_insn (insn);
2862 	      }
2863 	  }
2864 
2865 #endif
2866 
2867 	/* Do machine-specific peephole optimizations if desired.  */
2868 
2869 	if (HAVE_peephole && optimize_p && !flag_no_peephole && !nopeepholes)
2870 	  {
2871 	    rtx_insn *next = peephole (insn);
2872 	    /* When peepholing, if there were notes within the peephole,
2873 	       emit them before the peephole.  */
2874 	    if (next != 0 && next != NEXT_INSN (insn))
2875 	      {
2876 		rtx_insn *note, *prev = PREV_INSN (insn);
2877 
2878 		for (note = NEXT_INSN (insn); note != next;
2879 		     note = NEXT_INSN (note))
2880 		  final_scan_insn (note, file, optimize_p, nopeepholes, seen);
2881 
2882 		/* Put the notes in the proper position for a later
2883 		   rescan.  For example, the SH target can do this
2884 		   when generating a far jump in a delayed branch
2885 		   sequence.  */
2886 		note = NEXT_INSN (insn);
2887 		SET_PREV_INSN (note) = prev;
2888 		SET_NEXT_INSN (prev) = note;
2889 		SET_NEXT_INSN (PREV_INSN (next)) = insn;
2890 		SET_PREV_INSN (insn) = PREV_INSN (next);
2891 		SET_NEXT_INSN (insn) = next;
2892 		SET_PREV_INSN (next) = insn;
2893 	      }
2894 
2895 	    /* PEEPHOLE might have changed this.  */
2896 	    body = PATTERN (insn);
2897 	  }
2898 
2899 	/* Try to recognize the instruction.
2900 	   If successful, verify that the operands satisfy the
2901 	   constraints for the instruction.  Crash if they don't,
2902 	   since `reload' should have changed them so that they do.  */
2903 
2904 	insn_code_number = recog_memoized (insn);
2905 	cleanup_subreg_operands (insn);
2906 
2907 	/* Dump the insn in the assembly for debugging (-dAP).
2908 	   If the final dump is requested as slim RTL, dump slim
2909 	   RTL to the assembly file also.  */
2910 	if (flag_dump_rtl_in_asm)
2911 	  {
2912 	    print_rtx_head = ASM_COMMENT_START;
2913 	    if (! (dump_flags & TDF_SLIM))
2914 	      print_rtl_single (asm_out_file, insn);
2915 	    else
2916 	      dump_insn_slim (asm_out_file, insn);
2917 	    print_rtx_head = "";
2918 	  }
2919 
2920 	if (! constrain_operands_cached (insn, 1))
2921 	  fatal_insn_not_found (insn);
2922 
2923 	/* Some target machines need to prescan each insn before
2924 	   it is output.  */
2925 
2926 #ifdef FINAL_PRESCAN_INSN
2927 	FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
2928 #endif
2929 
2930 	if (targetm.have_conditional_execution ()
2931 	    && GET_CODE (PATTERN (insn)) == COND_EXEC)
2932 	  current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
2933 
2934 #if HAVE_cc0
2935 	cc_prev_status = cc_status;
2936 
2937 	/* Update `cc_status' for this instruction.
2938 	   The instruction's output routine may change it further.
2939 	   If the output routine for a jump insn needs to depend
2940 	   on the cc status, it should look at cc_prev_status.  */
2941 
2942 	NOTICE_UPDATE_CC (body, insn);
2943 #endif
2944 
2945 	current_output_insn = debug_insn = insn;
2946 
2947 	/* Find the proper template for this insn.  */
2948 	templ = get_insn_template (insn_code_number, insn);
2949 
2950 	/* If the C code returns 0, it means that it is a jump insn
2951 	   which follows a deleted test insn, and that test insn
2952 	   needs to be reinserted.  */
2953 	if (templ == 0)
2954 	  {
2955 	    rtx_insn *prev;
2956 
2957 	    gcc_assert (prev_nonnote_insn (insn) == last_ignored_compare);
2958 
2959 	    /* We have already processed the notes between the setter and
2960 	       the user.  Make sure we don't process them again, this is
2961 	       particularly important if one of the notes is a block
2962 	       scope note or an EH note.  */
2963 	    for (prev = insn;
2964 		 prev != last_ignored_compare;
2965 		 prev = PREV_INSN (prev))
2966 	      {
2967 		if (NOTE_P (prev))
2968 		  delete_insn (prev);	/* Use delete_note.  */
2969 	      }
2970 
2971 	    return prev;
2972 	  }
2973 
2974 	/* If the template is the string "#", it means that this insn must
2975 	   be split.  */
2976 	if (templ[0] == '#' && templ[1] == '\0')
2977 	  {
2978 	    rtx_insn *new_rtx = try_split (body, insn, 0);
2979 
2980 	    /* If we didn't split the insn, go away.  */
2981 	    if (new_rtx == insn && PATTERN (new_rtx) == body)
2982 	      fatal_insn ("could not split insn", insn);
2983 
2984 	    /* If we have a length attribute, this instruction should have
2985 	       been split in shorten_branches, to ensure that we would have
2986 	       valid length info for the splitees.  */
2987 	    gcc_assert (!HAVE_ATTR_length);
2988 
2989 	    return new_rtx;
2990 	  }
2991 
2992 	/* ??? This will put the directives in the wrong place if
2993 	   get_insn_template outputs assembly directly.  However calling it
2994 	   before get_insn_template breaks if the insns is split.  */
2995 	if (targetm.asm_out.unwind_emit_before_insn
2996 	    && targetm.asm_out.unwind_emit)
2997 	  targetm.asm_out.unwind_emit (asm_out_file, insn);
2998 
2999 	rtx_call_insn *call_insn = dyn_cast <rtx_call_insn *> (insn);
3000 	if (call_insn != NULL)
3001 	  {
3002 	    rtx x = call_from_call_insn (call_insn);
3003 	    x = XEXP (x, 0);
3004 	    if (x && MEM_P (x) && GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
3005 	      {
3006 		tree t;
3007 		x = XEXP (x, 0);
3008 		t = SYMBOL_REF_DECL (x);
3009 		if (t)
3010 		  assemble_external (t);
3011 	      }
3012 	  }
3013 
3014 	/* Output assembler code from the template.  */
3015 	output_asm_insn (templ, recog_data.operand);
3016 
3017 	/* Some target machines need to postscan each insn after
3018 	   it is output.  */
3019 	if (targetm.asm_out.final_postscan_insn)
3020 	  targetm.asm_out.final_postscan_insn (file, insn, recog_data.operand,
3021 					       recog_data.n_operands);
3022 
3023 	if (!targetm.asm_out.unwind_emit_before_insn
3024 	    && targetm.asm_out.unwind_emit)
3025 	  targetm.asm_out.unwind_emit (asm_out_file, insn);
3026 
3027 	/* Let the debug info back-end know about this call.  We do this only
3028 	   after the instruction has been emitted because labels that may be
3029 	   created to reference the call instruction must appear after it.  */
3030 	if (call_insn != NULL && !DECL_IGNORED_P (current_function_decl))
3031 	  debug_hooks->var_location (insn);
3032 
3033 	current_output_insn = debug_insn = 0;
3034       }
3035     }
3036   return NEXT_INSN (insn);
3037 }
3038 
3039 /* Return whether a source line note needs to be emitted before INSN.
3040    Sets IS_STMT to TRUE if the line should be marked as a possible
3041    breakpoint location.  */
3042 
3043 static bool
notice_source_line(rtx_insn * insn,bool * is_stmt)3044 notice_source_line (rtx_insn *insn, bool *is_stmt)
3045 {
3046   const char *filename;
3047   int linenum;
3048 
3049   if (override_filename)
3050     {
3051       filename = override_filename;
3052       linenum = override_linenum;
3053     }
3054   else if (INSN_HAS_LOCATION (insn))
3055     {
3056       expanded_location xloc = insn_location (insn);
3057       filename = xloc.file;
3058       linenum = xloc.line;
3059     }
3060   else
3061     {
3062       filename = NULL;
3063       linenum = 0;
3064     }
3065 
3066   if (filename == NULL)
3067     return false;
3068 
3069   if (force_source_line
3070       || filename != last_filename
3071       || last_linenum != linenum)
3072     {
3073       force_source_line = false;
3074       last_filename = filename;
3075       last_linenum = linenum;
3076       last_discriminator = discriminator;
3077       *is_stmt = true;
3078       high_block_linenum = MAX (last_linenum, high_block_linenum);
3079       high_function_linenum = MAX (last_linenum, high_function_linenum);
3080       return true;
3081     }
3082 
3083   if (SUPPORTS_DISCRIMINATOR && last_discriminator != discriminator)
3084     {
3085       /* If the discriminator changed, but the line number did not,
3086          output the line table entry with is_stmt false so the
3087          debugger does not treat this as a breakpoint location.  */
3088       last_discriminator = discriminator;
3089       *is_stmt = false;
3090       return true;
3091     }
3092 
3093   return false;
3094 }
3095 
3096 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
3097    directly to the desired hard register.  */
3098 
3099 void
cleanup_subreg_operands(rtx_insn * insn)3100 cleanup_subreg_operands (rtx_insn *insn)
3101 {
3102   int i;
3103   bool changed = false;
3104   extract_insn_cached (insn);
3105   for (i = 0; i < recog_data.n_operands; i++)
3106     {
3107       /* The following test cannot use recog_data.operand when testing
3108 	 for a SUBREG: the underlying object might have been changed
3109 	 already if we are inside a match_operator expression that
3110 	 matches the else clause.  Instead we test the underlying
3111 	 expression directly.  */
3112       if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
3113 	{
3114 	  recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i], true);
3115 	  changed = true;
3116 	}
3117       else if (GET_CODE (recog_data.operand[i]) == PLUS
3118 	       || GET_CODE (recog_data.operand[i]) == MULT
3119 	       || MEM_P (recog_data.operand[i]))
3120 	recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i], &changed);
3121     }
3122 
3123   for (i = 0; i < recog_data.n_dups; i++)
3124     {
3125       if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
3126 	{
3127 	  *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i], true);
3128 	  changed = true;
3129 	}
3130       else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
3131 	       || GET_CODE (*recog_data.dup_loc[i]) == MULT
3132 	       || MEM_P (*recog_data.dup_loc[i]))
3133 	*recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i], &changed);
3134     }
3135   if (changed)
3136     df_insn_rescan (insn);
3137 }
3138 
3139 /* If X is a SUBREG, try to replace it with a REG or a MEM, based on
3140    the thing it is a subreg of.  Do it anyway if FINAL_P.  */
3141 
3142 rtx
alter_subreg(rtx * xp,bool final_p)3143 alter_subreg (rtx *xp, bool final_p)
3144 {
3145   rtx x = *xp;
3146   rtx y = SUBREG_REG (x);
3147 
3148   /* simplify_subreg does not remove subreg from volatile references.
3149      We are required to.  */
3150   if (MEM_P (y))
3151     {
3152       int offset = SUBREG_BYTE (x);
3153 
3154       /* For paradoxical subregs on big-endian machines, SUBREG_BYTE
3155 	 contains 0 instead of the proper offset.  See simplify_subreg.  */
3156       if (offset == 0
3157 	  && GET_MODE_SIZE (GET_MODE (y)) < GET_MODE_SIZE (GET_MODE (x)))
3158         {
3159           int difference = GET_MODE_SIZE (GET_MODE (y))
3160 			   - GET_MODE_SIZE (GET_MODE (x));
3161           if (WORDS_BIG_ENDIAN)
3162             offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
3163           if (BYTES_BIG_ENDIAN)
3164             offset += difference % UNITS_PER_WORD;
3165         }
3166 
3167       if (final_p)
3168 	*xp = adjust_address (y, GET_MODE (x), offset);
3169       else
3170 	*xp = adjust_address_nv (y, GET_MODE (x), offset);
3171     }
3172   else if (REG_P (y) && HARD_REGISTER_P (y))
3173     {
3174       rtx new_rtx = simplify_subreg (GET_MODE (x), y, GET_MODE (y),
3175 				     SUBREG_BYTE (x));
3176 
3177       if (new_rtx != 0)
3178 	*xp = new_rtx;
3179       else if (final_p && REG_P (y))
3180 	{
3181 	  /* Simplify_subreg can't handle some REG cases, but we have to.  */
3182 	  unsigned int regno;
3183 	  HOST_WIDE_INT offset;
3184 
3185 	  regno = subreg_regno (x);
3186 	  if (subreg_lowpart_p (x))
3187 	    offset = byte_lowpart_offset (GET_MODE (x), GET_MODE (y));
3188 	  else
3189 	    offset = SUBREG_BYTE (x);
3190 	  *xp = gen_rtx_REG_offset (y, GET_MODE (x), regno, offset);
3191 	}
3192     }
3193 
3194   return *xp;
3195 }
3196 
3197 /* Do alter_subreg on all the SUBREGs contained in X.  */
3198 
3199 static rtx
walk_alter_subreg(rtx * xp,bool * changed)3200 walk_alter_subreg (rtx *xp, bool *changed)
3201 {
3202   rtx x = *xp;
3203   switch (GET_CODE (x))
3204     {
3205     case PLUS:
3206     case MULT:
3207     case AND:
3208       XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0), changed);
3209       XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1), changed);
3210       break;
3211 
3212     case MEM:
3213     case ZERO_EXTEND:
3214       XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0), changed);
3215       break;
3216 
3217     case SUBREG:
3218       *changed = true;
3219       return alter_subreg (xp, true);
3220 
3221     default:
3222       break;
3223     }
3224 
3225   return *xp;
3226 }
3227 
3228 #if HAVE_cc0
3229 
3230 /* Given BODY, the body of a jump instruction, alter the jump condition
3231    as required by the bits that are set in cc_status.flags.
3232    Not all of the bits there can be handled at this level in all cases.
3233 
3234    The value is normally 0.
3235    1 means that the condition has become always true.
3236    -1 means that the condition has become always false.
3237    2 means that COND has been altered.  */
3238 
3239 static int
alter_cond(rtx cond)3240 alter_cond (rtx cond)
3241 {
3242   int value = 0;
3243 
3244   if (cc_status.flags & CC_REVERSED)
3245     {
3246       value = 2;
3247       PUT_CODE (cond, swap_condition (GET_CODE (cond)));
3248     }
3249 
3250   if (cc_status.flags & CC_INVERTED)
3251     {
3252       value = 2;
3253       PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
3254     }
3255 
3256   if (cc_status.flags & CC_NOT_POSITIVE)
3257     switch (GET_CODE (cond))
3258       {
3259       case LE:
3260       case LEU:
3261       case GEU:
3262 	/* Jump becomes unconditional.  */
3263 	return 1;
3264 
3265       case GT:
3266       case GTU:
3267       case LTU:
3268 	/* Jump becomes no-op.  */
3269 	return -1;
3270 
3271       case GE:
3272 	PUT_CODE (cond, EQ);
3273 	value = 2;
3274 	break;
3275 
3276       case LT:
3277 	PUT_CODE (cond, NE);
3278 	value = 2;
3279 	break;
3280 
3281       default:
3282 	break;
3283       }
3284 
3285   if (cc_status.flags & CC_NOT_NEGATIVE)
3286     switch (GET_CODE (cond))
3287       {
3288       case GE:
3289       case GEU:
3290 	/* Jump becomes unconditional.  */
3291 	return 1;
3292 
3293       case LT:
3294       case LTU:
3295 	/* Jump becomes no-op.  */
3296 	return -1;
3297 
3298       case LE:
3299       case LEU:
3300 	PUT_CODE (cond, EQ);
3301 	value = 2;
3302 	break;
3303 
3304       case GT:
3305       case GTU:
3306 	PUT_CODE (cond, NE);
3307 	value = 2;
3308 	break;
3309 
3310       default:
3311 	break;
3312       }
3313 
3314   if (cc_status.flags & CC_NO_OVERFLOW)
3315     switch (GET_CODE (cond))
3316       {
3317       case GEU:
3318 	/* Jump becomes unconditional.  */
3319 	return 1;
3320 
3321       case LEU:
3322 	PUT_CODE (cond, EQ);
3323 	value = 2;
3324 	break;
3325 
3326       case GTU:
3327 	PUT_CODE (cond, NE);
3328 	value = 2;
3329 	break;
3330 
3331       case LTU:
3332 	/* Jump becomes no-op.  */
3333 	return -1;
3334 
3335       default:
3336 	break;
3337       }
3338 
3339   if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
3340     switch (GET_CODE (cond))
3341       {
3342       default:
3343 	gcc_unreachable ();
3344 
3345       case NE:
3346 	PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
3347 	value = 2;
3348 	break;
3349 
3350       case EQ:
3351 	PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
3352 	value = 2;
3353 	break;
3354       }
3355 
3356   if (cc_status.flags & CC_NOT_SIGNED)
3357     /* The flags are valid if signed condition operators are converted
3358        to unsigned.  */
3359     switch (GET_CODE (cond))
3360       {
3361       case LE:
3362 	PUT_CODE (cond, LEU);
3363 	value = 2;
3364 	break;
3365 
3366       case LT:
3367 	PUT_CODE (cond, LTU);
3368 	value = 2;
3369 	break;
3370 
3371       case GT:
3372 	PUT_CODE (cond, GTU);
3373 	value = 2;
3374 	break;
3375 
3376       case GE:
3377 	PUT_CODE (cond, GEU);
3378 	value = 2;
3379 	break;
3380 
3381       default:
3382 	break;
3383       }
3384 
3385   return value;
3386 }
3387 #endif
3388 
3389 /* Report inconsistency between the assembler template and the operands.
3390    In an `asm', it's the user's fault; otherwise, the compiler's fault.  */
3391 
3392 void
output_operand_lossage(const char * cmsgid,...)3393 output_operand_lossage (const char *cmsgid, ...)
3394 {
3395   char *fmt_string;
3396   char *new_message;
3397   const char *pfx_str;
3398   va_list ap;
3399 
3400   va_start (ap, cmsgid);
3401 
3402   pfx_str = this_is_asm_operands ? _("invalid 'asm': ") : "output_operand: ";
3403   fmt_string = xasprintf ("%s%s", pfx_str, _(cmsgid));
3404   new_message = xvasprintf (fmt_string, ap);
3405 
3406   if (this_is_asm_operands)
3407     error_for_asm (this_is_asm_operands, "%s", new_message);
3408   else
3409     internal_error ("%s", new_message);
3410 
3411   free (fmt_string);
3412   free (new_message);
3413   va_end (ap);
3414 }
3415 
3416 /* Output of assembler code from a template, and its subroutines.  */
3417 
3418 /* Annotate the assembly with a comment describing the pattern and
3419    alternative used.  */
3420 
3421 static void
output_asm_name(void)3422 output_asm_name (void)
3423 {
3424   if (debug_insn)
3425     {
3426       int num = INSN_CODE (debug_insn);
3427       fprintf (asm_out_file, "\t%s %d\t%s",
3428 	       ASM_COMMENT_START, INSN_UID (debug_insn),
3429 	       insn_data[num].name);
3430       if (insn_data[num].n_alternatives > 1)
3431 	fprintf (asm_out_file, "/%d", which_alternative + 1);
3432 
3433       if (HAVE_ATTR_length)
3434 	fprintf (asm_out_file, "\t[length = %d]",
3435 		 get_attr_length (debug_insn));
3436 
3437       /* Clear this so only the first assembler insn
3438 	 of any rtl insn will get the special comment for -dp.  */
3439       debug_insn = 0;
3440     }
3441 }
3442 
3443 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
3444    or its address, return that expr .  Set *PADDRESSP to 1 if the expr
3445    corresponds to the address of the object and 0 if to the object.  */
3446 
3447 static tree
get_mem_expr_from_op(rtx op,int * paddressp)3448 get_mem_expr_from_op (rtx op, int *paddressp)
3449 {
3450   tree expr;
3451   int inner_addressp;
3452 
3453   *paddressp = 0;
3454 
3455   if (REG_P (op))
3456     return REG_EXPR (op);
3457   else if (!MEM_P (op))
3458     return 0;
3459 
3460   if (MEM_EXPR (op) != 0)
3461     return MEM_EXPR (op);
3462 
3463   /* Otherwise we have an address, so indicate it and look at the address.  */
3464   *paddressp = 1;
3465   op = XEXP (op, 0);
3466 
3467   /* First check if we have a decl for the address, then look at the right side
3468      if it is a PLUS.  Otherwise, strip off arithmetic and keep looking.
3469      But don't allow the address to itself be indirect.  */
3470   if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp)
3471     return expr;
3472   else if (GET_CODE (op) == PLUS
3473 	   && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp)))
3474     return expr;
3475 
3476   while (UNARY_P (op)
3477 	 || GET_RTX_CLASS (GET_CODE (op)) == RTX_BIN_ARITH)
3478     op = XEXP (op, 0);
3479 
3480   expr = get_mem_expr_from_op (op, &inner_addressp);
3481   return inner_addressp ? 0 : expr;
3482 }
3483 
3484 /* Output operand names for assembler instructions.  OPERANDS is the
3485    operand vector, OPORDER is the order to write the operands, and NOPS
3486    is the number of operands to write.  */
3487 
3488 static void
output_asm_operand_names(rtx * operands,int * oporder,int nops)3489 output_asm_operand_names (rtx *operands, int *oporder, int nops)
3490 {
3491   int wrote = 0;
3492   int i;
3493 
3494   for (i = 0; i < nops; i++)
3495     {
3496       int addressp;
3497       rtx op = operands[oporder[i]];
3498       tree expr = get_mem_expr_from_op (op, &addressp);
3499 
3500       fprintf (asm_out_file, "%c%s",
3501 	       wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START);
3502       wrote = 1;
3503       if (expr)
3504 	{
3505 	  fprintf (asm_out_file, "%s",
3506 		   addressp ? "*" : "");
3507 	  print_mem_expr (asm_out_file, expr);
3508 	  wrote = 1;
3509 	}
3510       else if (REG_P (op) && ORIGINAL_REGNO (op)
3511 	       && ORIGINAL_REGNO (op) != REGNO (op))
3512 	fprintf (asm_out_file, " tmp%i", ORIGINAL_REGNO (op));
3513     }
3514 }
3515 
3516 #ifdef ASSEMBLER_DIALECT
3517 /* Helper function to parse assembler dialects in the asm string.
3518    This is called from output_asm_insn and asm_fprintf.  */
3519 static const char *
do_assembler_dialects(const char * p,int * dialect)3520 do_assembler_dialects (const char *p, int *dialect)
3521 {
3522   char c = *(p - 1);
3523 
3524   switch (c)
3525     {
3526     case '{':
3527       {
3528         int i;
3529 
3530         if (*dialect)
3531           output_operand_lossage ("nested assembly dialect alternatives");
3532         else
3533           *dialect = 1;
3534 
3535         /* If we want the first dialect, do nothing.  Otherwise, skip
3536            DIALECT_NUMBER of strings ending with '|'.  */
3537         for (i = 0; i < dialect_number; i++)
3538           {
3539             while (*p && *p != '}')
3540 	      {
3541 		if (*p == '|')
3542 		  {
3543 		    p++;
3544 		    break;
3545 		  }
3546 
3547 		/* Skip over any character after a percent sign.  */
3548 		if (*p == '%')
3549 		  p++;
3550 		if (*p)
3551 		  p++;
3552 	      }
3553 
3554             if (*p == '}')
3555 	      break;
3556           }
3557 
3558         if (*p == '\0')
3559           output_operand_lossage ("unterminated assembly dialect alternative");
3560       }
3561       break;
3562 
3563     case '|':
3564       if (*dialect)
3565         {
3566           /* Skip to close brace.  */
3567           do
3568             {
3569 	      if (*p == '\0')
3570 		{
3571 		  output_operand_lossage ("unterminated assembly dialect alternative");
3572 		  break;
3573 		}
3574 
3575 	      /* Skip over any character after a percent sign.  */
3576 	      if (*p == '%' && p[1])
3577 		{
3578 		  p += 2;
3579 		  continue;
3580 		}
3581 
3582 	      if (*p++ == '}')
3583 		break;
3584             }
3585           while (1);
3586 
3587           *dialect = 0;
3588         }
3589       else
3590         putc (c, asm_out_file);
3591       break;
3592 
3593     case '}':
3594       if (! *dialect)
3595         putc (c, asm_out_file);
3596       *dialect = 0;
3597       break;
3598     default:
3599       gcc_unreachable ();
3600     }
3601 
3602   return p;
3603 }
3604 #endif
3605 
3606 /* Output text from TEMPLATE to the assembler output file,
3607    obeying %-directions to substitute operands taken from
3608    the vector OPERANDS.
3609 
3610    %N (for N a digit) means print operand N in usual manner.
3611    %lN means require operand N to be a CODE_LABEL or LABEL_REF
3612       and print the label name with no punctuation.
3613    %cN means require operand N to be a constant
3614       and print the constant expression with no punctuation.
3615    %aN means expect operand N to be a memory address
3616       (not a memory reference!) and print a reference
3617       to that address.
3618    %nN means expect operand N to be a constant
3619       and print a constant expression for minus the value
3620       of the operand, with no other punctuation.  */
3621 
3622 void
output_asm_insn(const char * templ,rtx * operands)3623 output_asm_insn (const char *templ, rtx *operands)
3624 {
3625   const char *p;
3626   int c;
3627 #ifdef ASSEMBLER_DIALECT
3628   int dialect = 0;
3629 #endif
3630   int oporder[MAX_RECOG_OPERANDS];
3631   char opoutput[MAX_RECOG_OPERANDS];
3632   int ops = 0;
3633 
3634   /* An insn may return a null string template
3635      in a case where no assembler code is needed.  */
3636   if (*templ == 0)
3637     return;
3638 
3639   memset (opoutput, 0, sizeof opoutput);
3640   p = templ;
3641   putc ('\t', asm_out_file);
3642 
3643 #ifdef ASM_OUTPUT_OPCODE
3644   ASM_OUTPUT_OPCODE (asm_out_file, p);
3645 #endif
3646 
3647   while ((c = *p++))
3648     switch (c)
3649       {
3650       case '\n':
3651 	if (flag_verbose_asm)
3652 	  output_asm_operand_names (operands, oporder, ops);
3653 	if (flag_print_asm_name)
3654 	  output_asm_name ();
3655 
3656 	ops = 0;
3657 	memset (opoutput, 0, sizeof opoutput);
3658 
3659 	putc (c, asm_out_file);
3660 #ifdef ASM_OUTPUT_OPCODE
3661 	while ((c = *p) == '\t')
3662 	  {
3663 	    putc (c, asm_out_file);
3664 	    p++;
3665 	  }
3666 	ASM_OUTPUT_OPCODE (asm_out_file, p);
3667 #endif
3668 	break;
3669 
3670 #ifdef ASSEMBLER_DIALECT
3671       case '{':
3672       case '}':
3673       case '|':
3674 	p = do_assembler_dialects (p, &dialect);
3675 	break;
3676 #endif
3677 
3678       case '%':
3679 	/* %% outputs a single %.  %{, %} and %| print {, } and | respectively
3680 	   if ASSEMBLER_DIALECT defined and these characters have a special
3681 	   meaning as dialect delimiters.*/
3682 	if (*p == '%'
3683 #ifdef ASSEMBLER_DIALECT
3684 	    || *p == '{' || *p == '}' || *p == '|'
3685 #endif
3686 	    )
3687 	  {
3688 	    putc (*p, asm_out_file);
3689 	    p++;
3690 	  }
3691 	/* %= outputs a number which is unique to each insn in the entire
3692 	   compilation.  This is useful for making local labels that are
3693 	   referred to more than once in a given insn.  */
3694 	else if (*p == '=')
3695 	  {
3696 	    p++;
3697 	    fprintf (asm_out_file, "%d", insn_counter);
3698 	  }
3699 	/* % followed by a letter and some digits
3700 	   outputs an operand in a special way depending on the letter.
3701 	   Letters `acln' are implemented directly.
3702 	   Other letters are passed to `output_operand' so that
3703 	   the TARGET_PRINT_OPERAND hook can define them.  */
3704 	else if (ISALPHA (*p))
3705 	  {
3706 	    int letter = *p++;
3707 	    unsigned long opnum;
3708 	    char *endptr;
3709 
3710 	    opnum = strtoul (p, &endptr, 10);
3711 
3712 	    if (endptr == p)
3713 	      output_operand_lossage ("operand number missing "
3714 				      "after %%-letter");
3715 	    else if (this_is_asm_operands && opnum >= insn_noperands)
3716 	      output_operand_lossage ("operand number out of range");
3717 	    else if (letter == 'l')
3718 	      output_asm_label (operands[opnum]);
3719 	    else if (letter == 'a')
3720 	      output_address (VOIDmode, operands[opnum]);
3721 	    else if (letter == 'c')
3722 	      {
3723 		if (CONSTANT_ADDRESS_P (operands[opnum]))
3724 		  output_addr_const (asm_out_file, operands[opnum]);
3725 		else
3726 		  output_operand (operands[opnum], 'c');
3727 	      }
3728 	    else if (letter == 'n')
3729 	      {
3730 		if (CONST_INT_P (operands[opnum]))
3731 		  fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3732 			   - INTVAL (operands[opnum]));
3733 		else
3734 		  {
3735 		    putc ('-', asm_out_file);
3736 		    output_addr_const (asm_out_file, operands[opnum]);
3737 		  }
3738 	      }
3739 	    else
3740 	      output_operand (operands[opnum], letter);
3741 
3742 	    if (!opoutput[opnum])
3743 	      oporder[ops++] = opnum;
3744 	    opoutput[opnum] = 1;
3745 
3746 	    p = endptr;
3747 	    c = *p;
3748 	  }
3749 	/* % followed by a digit outputs an operand the default way.  */
3750 	else if (ISDIGIT (*p))
3751 	  {
3752 	    unsigned long opnum;
3753 	    char *endptr;
3754 
3755 	    opnum = strtoul (p, &endptr, 10);
3756 	    if (this_is_asm_operands && opnum >= insn_noperands)
3757 	      output_operand_lossage ("operand number out of range");
3758 	    else
3759 	      output_operand (operands[opnum], 0);
3760 
3761 	    if (!opoutput[opnum])
3762 	      oporder[ops++] = opnum;
3763 	    opoutput[opnum] = 1;
3764 
3765 	    p = endptr;
3766 	    c = *p;
3767 	  }
3768 	/* % followed by punctuation: output something for that
3769 	   punctuation character alone, with no operand.  The
3770 	   TARGET_PRINT_OPERAND hook decides what is actually done.  */
3771 	else if (targetm.asm_out.print_operand_punct_valid_p ((unsigned char) *p))
3772 	  output_operand (NULL_RTX, *p++);
3773 	else
3774 	  output_operand_lossage ("invalid %%-code");
3775 	break;
3776 
3777       default:
3778 	putc (c, asm_out_file);
3779       }
3780 
3781   /* Write out the variable names for operands, if we know them.  */
3782   if (flag_verbose_asm)
3783     output_asm_operand_names (operands, oporder, ops);
3784   if (flag_print_asm_name)
3785     output_asm_name ();
3786 
3787   putc ('\n', asm_out_file);
3788 }
3789 
3790 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol.  */
3791 
3792 void
output_asm_label(rtx x)3793 output_asm_label (rtx x)
3794 {
3795   char buf[256];
3796 
3797   if (GET_CODE (x) == LABEL_REF)
3798     x = LABEL_REF_LABEL (x);
3799   if (LABEL_P (x)
3800       || (NOTE_P (x)
3801 	  && NOTE_KIND (x) == NOTE_INSN_DELETED_LABEL))
3802     ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3803   else
3804     output_operand_lossage ("'%%l' operand isn't a label");
3805 
3806   assemble_name (asm_out_file, buf);
3807 }
3808 
3809 /* Marks SYMBOL_REFs in x as referenced through use of assemble_external.  */
3810 
3811 void
mark_symbol_refs_as_used(rtx x)3812 mark_symbol_refs_as_used (rtx x)
3813 {
3814   subrtx_iterator::array_type array;
3815   FOR_EACH_SUBRTX (iter, array, x, ALL)
3816     {
3817       const_rtx x = *iter;
3818       if (GET_CODE (x) == SYMBOL_REF)
3819 	if (tree t = SYMBOL_REF_DECL (x))
3820 	  assemble_external (t);
3821     }
3822 }
3823 
3824 /* Print operand X using machine-dependent assembler syntax.
3825    CODE is a non-digit that preceded the operand-number in the % spec,
3826    such as 'z' if the spec was `%z3'.  CODE is 0 if there was no char
3827    between the % and the digits.
3828    When CODE is a non-letter, X is 0.
3829 
3830    The meanings of the letters are machine-dependent and controlled
3831    by TARGET_PRINT_OPERAND.  */
3832 
3833 void
output_operand(rtx x,int code ATTRIBUTE_UNUSED)3834 output_operand (rtx x, int code ATTRIBUTE_UNUSED)
3835 {
3836   if (x && GET_CODE (x) == SUBREG)
3837     x = alter_subreg (&x, true);
3838 
3839   /* X must not be a pseudo reg.  */
3840   if (!targetm.no_register_allocation)
3841     gcc_assert (!x || !REG_P (x) || REGNO (x) < FIRST_PSEUDO_REGISTER);
3842 
3843   targetm.asm_out.print_operand (asm_out_file, x, code);
3844 
3845   if (x == NULL_RTX)
3846     return;
3847 
3848   mark_symbol_refs_as_used (x);
3849 }
3850 
3851 /* Print a memory reference operand for address X using
3852    machine-dependent assembler syntax.  */
3853 
3854 void
output_address(machine_mode mode,rtx x)3855 output_address (machine_mode mode, rtx x)
3856 {
3857   bool changed = false;
3858   walk_alter_subreg (&x, &changed);
3859   targetm.asm_out.print_operand_address (asm_out_file, mode, x);
3860 }
3861 
3862 /* Print an integer constant expression in assembler syntax.
3863    Addition and subtraction are the only arithmetic
3864    that may appear in these expressions.  */
3865 
3866 void
output_addr_const(FILE * file,rtx x)3867 output_addr_const (FILE *file, rtx x)
3868 {
3869   char buf[256];
3870 
3871  restart:
3872   switch (GET_CODE (x))
3873     {
3874     case PC:
3875       putc ('.', file);
3876       break;
3877 
3878     case SYMBOL_REF:
3879       if (SYMBOL_REF_DECL (x))
3880 	assemble_external (SYMBOL_REF_DECL (x));
3881 #ifdef ASM_OUTPUT_SYMBOL_REF
3882       ASM_OUTPUT_SYMBOL_REF (file, x);
3883 #else
3884       assemble_name (file, XSTR (x, 0));
3885 #endif
3886       break;
3887 
3888     case LABEL_REF:
3889       x = LABEL_REF_LABEL (x);
3890       /* Fall through.  */
3891     case CODE_LABEL:
3892       ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3893 #ifdef ASM_OUTPUT_LABEL_REF
3894       ASM_OUTPUT_LABEL_REF (file, buf);
3895 #else
3896       assemble_name (file, buf);
3897 #endif
3898       break;
3899 
3900     case CONST_INT:
3901       fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
3902       break;
3903 
3904     case CONST:
3905       /* This used to output parentheses around the expression,
3906 	 but that does not work on the 386 (either ATT or BSD assembler).  */
3907       output_addr_const (file, XEXP (x, 0));
3908       break;
3909 
3910     case CONST_WIDE_INT:
3911       /* We do not know the mode here so we have to use a round about
3912 	 way to build a wide-int to get it printed properly.  */
3913       {
3914 	wide_int w = wide_int::from_array (&CONST_WIDE_INT_ELT (x, 0),
3915 					   CONST_WIDE_INT_NUNITS (x),
3916 					   CONST_WIDE_INT_NUNITS (x)
3917 					   * HOST_BITS_PER_WIDE_INT,
3918 					   false);
3919 	print_decs (w, file);
3920       }
3921       break;
3922 
3923     case CONST_DOUBLE:
3924       if (CONST_DOUBLE_AS_INT_P (x))
3925 	{
3926 	  /* We can use %d if the number is one word and positive.  */
3927 	  if (CONST_DOUBLE_HIGH (x))
3928 	    fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
3929 		     (unsigned HOST_WIDE_INT) CONST_DOUBLE_HIGH (x),
3930 		     (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (x));
3931 	  else if (CONST_DOUBLE_LOW (x) < 0)
3932 	    fprintf (file, HOST_WIDE_INT_PRINT_HEX,
3933 		     (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (x));
3934 	  else
3935 	    fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
3936 	}
3937       else
3938 	/* We can't handle floating point constants;
3939 	   PRINT_OPERAND must handle them.  */
3940 	output_operand_lossage ("floating constant misused");
3941       break;
3942 
3943     case CONST_FIXED:
3944       fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_FIXED_VALUE_LOW (x));
3945       break;
3946 
3947     case PLUS:
3948       /* Some assemblers need integer constants to appear last (eg masm).  */
3949       if (CONST_INT_P (XEXP (x, 0)))
3950 	{
3951 	  output_addr_const (file, XEXP (x, 1));
3952 	  if (INTVAL (XEXP (x, 0)) >= 0)
3953 	    fprintf (file, "+");
3954 	  output_addr_const (file, XEXP (x, 0));
3955 	}
3956       else
3957 	{
3958 	  output_addr_const (file, XEXP (x, 0));
3959 	  if (!CONST_INT_P (XEXP (x, 1))
3960 	      || INTVAL (XEXP (x, 1)) >= 0)
3961 	    fprintf (file, "+");
3962 	  output_addr_const (file, XEXP (x, 1));
3963 	}
3964       break;
3965 
3966     case MINUS:
3967       /* Avoid outputting things like x-x or x+5-x,
3968 	 since some assemblers can't handle that.  */
3969       x = simplify_subtraction (x);
3970       if (GET_CODE (x) != MINUS)
3971 	goto restart;
3972 
3973       output_addr_const (file, XEXP (x, 0));
3974       fprintf (file, "-");
3975       if ((CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0)
3976 	  || GET_CODE (XEXP (x, 1)) == PC
3977 	  || GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
3978 	output_addr_const (file, XEXP (x, 1));
3979       else
3980 	{
3981 	  fputs (targetm.asm_out.open_paren, file);
3982 	  output_addr_const (file, XEXP (x, 1));
3983 	  fputs (targetm.asm_out.close_paren, file);
3984 	}
3985       break;
3986 
3987     case ZERO_EXTEND:
3988     case SIGN_EXTEND:
3989     case SUBREG:
3990     case TRUNCATE:
3991       output_addr_const (file, XEXP (x, 0));
3992       break;
3993 
3994     default:
3995       if (targetm.asm_out.output_addr_const_extra (file, x))
3996 	break;
3997 
3998       output_operand_lossage ("invalid expression as operand");
3999     }
4000 }
4001 
4002 /* Output a quoted string.  */
4003 
4004 void
output_quoted_string(FILE * asm_file,const char * string)4005 output_quoted_string (FILE *asm_file, const char *string)
4006 {
4007 #ifdef OUTPUT_QUOTED_STRING
4008   OUTPUT_QUOTED_STRING (asm_file, string);
4009 #else
4010   char c;
4011 
4012   putc ('\"', asm_file);
4013   while ((c = *string++) != 0)
4014     {
4015       if (ISPRINT (c))
4016 	{
4017 	  if (c == '\"' || c == '\\')
4018 	    putc ('\\', asm_file);
4019 	  putc (c, asm_file);
4020 	}
4021       else
4022 	fprintf (asm_file, "\\%03o", (unsigned char) c);
4023     }
4024   putc ('\"', asm_file);
4025 #endif
4026 }
4027 
4028 /* Write a HOST_WIDE_INT number in hex form 0x1234, fast. */
4029 
4030 void
fprint_whex(FILE * f,unsigned HOST_WIDE_INT value)4031 fprint_whex (FILE *f, unsigned HOST_WIDE_INT value)
4032 {
4033   char buf[2 + CHAR_BIT * sizeof (value) / 4];
4034   if (value == 0)
4035     putc ('0', f);
4036   else
4037     {
4038       char *p = buf + sizeof (buf);
4039       do
4040         *--p = "0123456789abcdef"[value % 16];
4041       while ((value /= 16) != 0);
4042       *--p = 'x';
4043       *--p = '0';
4044       fwrite (p, 1, buf + sizeof (buf) - p, f);
4045     }
4046 }
4047 
4048 /* Internal function that prints an unsigned long in decimal in reverse.
4049    The output string IS NOT null-terminated. */
4050 
4051 static int
sprint_ul_rev(char * s,unsigned long value)4052 sprint_ul_rev (char *s, unsigned long value)
4053 {
4054   int i = 0;
4055   do
4056     {
4057       s[i] = "0123456789"[value % 10];
4058       value /= 10;
4059       i++;
4060       /* alternate version, without modulo */
4061       /* oldval = value; */
4062       /* value /= 10; */
4063       /* s[i] = "0123456789" [oldval - 10*value]; */
4064       /* i++ */
4065     }
4066   while (value != 0);
4067   return i;
4068 }
4069 
4070 /* Write an unsigned long as decimal to a file, fast. */
4071 
4072 void
fprint_ul(FILE * f,unsigned long value)4073 fprint_ul (FILE *f, unsigned long value)
4074 {
4075   /* python says: len(str(2**64)) == 20 */
4076   char s[20];
4077   int i;
4078 
4079   i = sprint_ul_rev (s, value);
4080 
4081   /* It's probably too small to bother with string reversal and fputs. */
4082   do
4083     {
4084       i--;
4085       putc (s[i], f);
4086     }
4087   while (i != 0);
4088 }
4089 
4090 /* Write an unsigned long as decimal to a string, fast.
4091    s must be wide enough to not overflow, at least 21 chars.
4092    Returns the length of the string (without terminating '\0'). */
4093 
4094 int
sprint_ul(char * s,unsigned long value)4095 sprint_ul (char *s, unsigned long value)
4096 {
4097   int len = sprint_ul_rev (s, value);
4098   s[len] = '\0';
4099 
4100   std::reverse (s, s + len);
4101   return len;
4102 }
4103 
4104 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
4105    %R prints the value of REGISTER_PREFIX.
4106    %L prints the value of LOCAL_LABEL_PREFIX.
4107    %U prints the value of USER_LABEL_PREFIX.
4108    %I prints the value of IMMEDIATE_PREFIX.
4109    %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
4110    Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
4111 
4112    We handle alternate assembler dialects here, just like output_asm_insn.  */
4113 
4114 void
asm_fprintf(FILE * file,const char * p,...)4115 asm_fprintf (FILE *file, const char *p, ...)
4116 {
4117   char buf[10];
4118   char *q, c;
4119 #ifdef ASSEMBLER_DIALECT
4120   int dialect = 0;
4121 #endif
4122   va_list argptr;
4123 
4124   va_start (argptr, p);
4125 
4126   buf[0] = '%';
4127 
4128   while ((c = *p++))
4129     switch (c)
4130       {
4131 #ifdef ASSEMBLER_DIALECT
4132       case '{':
4133       case '}':
4134       case '|':
4135 	p = do_assembler_dialects (p, &dialect);
4136 	break;
4137 #endif
4138 
4139       case '%':
4140 	c = *p++;
4141 	q = &buf[1];
4142 	while (strchr ("-+ #0", c))
4143 	  {
4144 	    *q++ = c;
4145 	    c = *p++;
4146 	  }
4147 	while (ISDIGIT (c) || c == '.')
4148 	  {
4149 	    *q++ = c;
4150 	    c = *p++;
4151 	  }
4152 	switch (c)
4153 	  {
4154 	  case '%':
4155 	    putc ('%', file);
4156 	    break;
4157 
4158 	  case 'd':  case 'i':  case 'u':
4159 	  case 'x':  case 'X':  case 'o':
4160 	  case 'c':
4161 	    *q++ = c;
4162 	    *q = 0;
4163 	    fprintf (file, buf, va_arg (argptr, int));
4164 	    break;
4165 
4166 	  case 'w':
4167 	    /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
4168 	       'o' cases, but we do not check for those cases.  It
4169 	       means that the value is a HOST_WIDE_INT, which may be
4170 	       either `long' or `long long'.  */
4171 	    memcpy (q, HOST_WIDE_INT_PRINT, strlen (HOST_WIDE_INT_PRINT));
4172 	    q += strlen (HOST_WIDE_INT_PRINT);
4173 	    *q++ = *p++;
4174 	    *q = 0;
4175 	    fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
4176 	    break;
4177 
4178 	  case 'l':
4179 	    *q++ = c;
4180 #ifdef HAVE_LONG_LONG
4181 	    if (*p == 'l')
4182 	      {
4183 		*q++ = *p++;
4184 		*q++ = *p++;
4185 		*q = 0;
4186 		fprintf (file, buf, va_arg (argptr, long long));
4187 	      }
4188 	    else
4189 #endif
4190 	      {
4191 		*q++ = *p++;
4192 		*q = 0;
4193 		fprintf (file, buf, va_arg (argptr, long));
4194 	      }
4195 
4196 	    break;
4197 
4198 	  case 's':
4199 	    *q++ = c;
4200 	    *q = 0;
4201 	    fprintf (file, buf, va_arg (argptr, char *));
4202 	    break;
4203 
4204 	  case 'O':
4205 #ifdef ASM_OUTPUT_OPCODE
4206 	    ASM_OUTPUT_OPCODE (asm_out_file, p);
4207 #endif
4208 	    break;
4209 
4210 	  case 'R':
4211 #ifdef REGISTER_PREFIX
4212 	    fprintf (file, "%s", REGISTER_PREFIX);
4213 #endif
4214 	    break;
4215 
4216 	  case 'I':
4217 #ifdef IMMEDIATE_PREFIX
4218 	    fprintf (file, "%s", IMMEDIATE_PREFIX);
4219 #endif
4220 	    break;
4221 
4222 	  case 'L':
4223 #ifdef LOCAL_LABEL_PREFIX
4224 	    fprintf (file, "%s", LOCAL_LABEL_PREFIX);
4225 #endif
4226 	    break;
4227 
4228 	  case 'U':
4229 	    fputs (user_label_prefix, file);
4230 	    break;
4231 
4232 #ifdef ASM_FPRINTF_EXTENSIONS
4233 	    /* Uppercase letters are reserved for general use by asm_fprintf
4234 	       and so are not available to target specific code.  In order to
4235 	       prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
4236 	       they are defined here.  As they get turned into real extensions
4237 	       to asm_fprintf they should be removed from this list.  */
4238 	  case 'A': case 'B': case 'C': case 'D': case 'E':
4239 	  case 'F': case 'G': case 'H': case 'J': case 'K':
4240 	  case 'M': case 'N': case 'P': case 'Q': case 'S':
4241 	  case 'T': case 'V': case 'W': case 'Y': case 'Z':
4242 	    break;
4243 
4244 	  ASM_FPRINTF_EXTENSIONS (file, argptr, p)
4245 #endif
4246 	  default:
4247 	    gcc_unreachable ();
4248 	  }
4249 	break;
4250 
4251       default:
4252 	putc (c, file);
4253       }
4254   va_end (argptr);
4255 }
4256 
4257 /* Return nonzero if this function has no function calls.  */
4258 
4259 int
leaf_function_p(void)4260 leaf_function_p (void)
4261 {
4262   rtx_insn *insn;
4263 
4264   /* Some back-ends (e.g. s390) want leaf functions to stay leaf
4265      functions even if they call mcount.  */
4266   if (crtl->profile && !targetm.keep_leaf_when_profiled ())
4267     return 0;
4268 
4269   for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4270     {
4271       if (CALL_P (insn)
4272 	  && ! SIBLING_CALL_P (insn))
4273 	return 0;
4274       if (NONJUMP_INSN_P (insn)
4275 	  && GET_CODE (PATTERN (insn)) == SEQUENCE
4276 	  && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
4277 	  && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
4278 	return 0;
4279     }
4280 
4281   return 1;
4282 }
4283 
4284 /* Return 1 if branch is a forward branch.
4285    Uses insn_shuid array, so it works only in the final pass.  May be used by
4286    output templates to customary add branch prediction hints.
4287  */
4288 int
final_forward_branch_p(rtx_insn * insn)4289 final_forward_branch_p (rtx_insn *insn)
4290 {
4291   int insn_id, label_id;
4292 
4293   gcc_assert (uid_shuid);
4294   insn_id = INSN_SHUID (insn);
4295   label_id = INSN_SHUID (JUMP_LABEL (insn));
4296   /* We've hit some insns that does not have id information available.  */
4297   gcc_assert (insn_id && label_id);
4298   return insn_id < label_id;
4299 }
4300 
4301 /* On some machines, a function with no call insns
4302    can run faster if it doesn't create its own register window.
4303    When output, the leaf function should use only the "output"
4304    registers.  Ordinarily, the function would be compiled to use
4305    the "input" registers to find its arguments; it is a candidate
4306    for leaf treatment if it uses only the "input" registers.
4307    Leaf function treatment means renumbering so the function
4308    uses the "output" registers instead.  */
4309 
4310 #ifdef LEAF_REGISTERS
4311 
4312 /* Return 1 if this function uses only the registers that can be
4313    safely renumbered.  */
4314 
4315 int
only_leaf_regs_used(void)4316 only_leaf_regs_used (void)
4317 {
4318   int i;
4319   const char *const permitted_reg_in_leaf_functions = LEAF_REGISTERS;
4320 
4321   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4322     if ((df_regs_ever_live_p (i) || global_regs[i])
4323 	&& ! permitted_reg_in_leaf_functions[i])
4324       return 0;
4325 
4326   if (crtl->uses_pic_offset_table
4327       && pic_offset_table_rtx != 0
4328       && REG_P (pic_offset_table_rtx)
4329       && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
4330     return 0;
4331 
4332   return 1;
4333 }
4334 
4335 /* Scan all instructions and renumber all registers into those
4336    available in leaf functions.  */
4337 
4338 static void
leaf_renumber_regs(rtx_insn * first)4339 leaf_renumber_regs (rtx_insn *first)
4340 {
4341   rtx_insn *insn;
4342 
4343   /* Renumber only the actual patterns.
4344      The reg-notes can contain frame pointer refs,
4345      and renumbering them could crash, and should not be needed.  */
4346   for (insn = first; insn; insn = NEXT_INSN (insn))
4347     if (INSN_P (insn))
4348       leaf_renumber_regs_insn (PATTERN (insn));
4349 }
4350 
4351 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
4352    available in leaf functions.  */
4353 
4354 void
leaf_renumber_regs_insn(rtx in_rtx)4355 leaf_renumber_regs_insn (rtx in_rtx)
4356 {
4357   int i, j;
4358   const char *format_ptr;
4359 
4360   if (in_rtx == 0)
4361     return;
4362 
4363   /* Renumber all input-registers into output-registers.
4364      renumbered_regs would be 1 for an output-register;
4365      they  */
4366 
4367   if (REG_P (in_rtx))
4368     {
4369       int newreg;
4370 
4371       /* Don't renumber the same reg twice.  */
4372       if (in_rtx->used)
4373 	return;
4374 
4375       newreg = REGNO (in_rtx);
4376       /* Don't try to renumber pseudo regs.  It is possible for a pseudo reg
4377 	 to reach here as part of a REG_NOTE.  */
4378       if (newreg >= FIRST_PSEUDO_REGISTER)
4379 	{
4380 	  in_rtx->used = 1;
4381 	  return;
4382 	}
4383       newreg = LEAF_REG_REMAP (newreg);
4384       gcc_assert (newreg >= 0);
4385       df_set_regs_ever_live (REGNO (in_rtx), false);
4386       df_set_regs_ever_live (newreg, true);
4387       SET_REGNO (in_rtx, newreg);
4388       in_rtx->used = 1;
4389       return;
4390     }
4391 
4392   if (INSN_P (in_rtx))
4393     {
4394       /* Inside a SEQUENCE, we find insns.
4395 	 Renumber just the patterns of these insns,
4396 	 just as we do for the top-level insns.  */
4397       leaf_renumber_regs_insn (PATTERN (in_rtx));
4398       return;
4399     }
4400 
4401   format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
4402 
4403   for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
4404     switch (*format_ptr++)
4405       {
4406       case 'e':
4407 	leaf_renumber_regs_insn (XEXP (in_rtx, i));
4408 	break;
4409 
4410       case 'E':
4411 	if (NULL != XVEC (in_rtx, i))
4412 	  {
4413 	    for (j = 0; j < XVECLEN (in_rtx, i); j++)
4414 	      leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
4415 	  }
4416 	break;
4417 
4418       case 'S':
4419       case 's':
4420       case '0':
4421       case 'i':
4422       case 'w':
4423       case 'n':
4424       case 'u':
4425 	break;
4426 
4427       default:
4428 	gcc_unreachable ();
4429       }
4430 }
4431 #endif
4432 
4433 /* Turn the RTL into assembly.  */
4434 static unsigned int
rest_of_handle_final(void)4435 rest_of_handle_final (void)
4436 {
4437   const char *fnname = get_fnname_from_decl (current_function_decl);
4438 
4439   assemble_start_function (current_function_decl, fnname);
4440   final_start_function (get_insns (), asm_out_file, optimize);
4441   final (get_insns (), asm_out_file, optimize);
4442   if (flag_ipa_ra)
4443     collect_fn_hard_reg_usage ();
4444   final_end_function ();
4445 
4446   /* The IA-64 ".handlerdata" directive must be issued before the ".endp"
4447      directive that closes the procedure descriptor.  Similarly, for x64 SEH.
4448      Otherwise it's not strictly necessary, but it doesn't hurt either.  */
4449   output_function_exception_table (fnname);
4450 
4451   assemble_end_function (current_function_decl, fnname);
4452 
4453   user_defined_section_attribute = false;
4454 
4455   /* Free up reg info memory.  */
4456   free_reg_info ();
4457 
4458   if (! quiet_flag)
4459     fflush (asm_out_file);
4460 
4461   /* Write DBX symbols if requested.  */
4462 
4463   /* Note that for those inline functions where we don't initially
4464      know for certain that we will be generating an out-of-line copy,
4465      the first invocation of this routine (rest_of_compilation) will
4466      skip over this code by doing a `goto exit_rest_of_compilation;'.
4467      Later on, wrapup_global_declarations will (indirectly) call
4468      rest_of_compilation again for those inline functions that need
4469      to have out-of-line copies generated.  During that call, we
4470      *will* be routed past here.  */
4471 
4472   timevar_push (TV_SYMOUT);
4473   if (!DECL_IGNORED_P (current_function_decl))
4474     debug_hooks->function_decl (current_function_decl);
4475   timevar_pop (TV_SYMOUT);
4476 
4477   /* Release the blocks that are linked to DECL_INITIAL() to free the memory.  */
4478   DECL_INITIAL (current_function_decl) = error_mark_node;
4479 
4480   if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
4481       && targetm.have_ctors_dtors)
4482     targetm.asm_out.constructor (XEXP (DECL_RTL (current_function_decl), 0),
4483 				 decl_init_priority_lookup
4484 				   (current_function_decl));
4485   if (DECL_STATIC_DESTRUCTOR (current_function_decl)
4486       && targetm.have_ctors_dtors)
4487     targetm.asm_out.destructor (XEXP (DECL_RTL (current_function_decl), 0),
4488 				decl_fini_priority_lookup
4489 				  (current_function_decl));
4490   return 0;
4491 }
4492 
4493 namespace {
4494 
4495 const pass_data pass_data_final =
4496 {
4497   RTL_PASS, /* type */
4498   "final", /* name */
4499   OPTGROUP_NONE, /* optinfo_flags */
4500   TV_FINAL, /* tv_id */
4501   0, /* properties_required */
4502   0, /* properties_provided */
4503   0, /* properties_destroyed */
4504   0, /* todo_flags_start */
4505   0, /* todo_flags_finish */
4506 };
4507 
4508 class pass_final : public rtl_opt_pass
4509 {
4510 public:
pass_final(gcc::context * ctxt)4511   pass_final (gcc::context *ctxt)
4512     : rtl_opt_pass (pass_data_final, ctxt)
4513   {}
4514 
4515   /* opt_pass methods: */
execute(function *)4516   virtual unsigned int execute (function *) { return rest_of_handle_final (); }
4517 
4518 }; // class pass_final
4519 
4520 } // anon namespace
4521 
4522 rtl_opt_pass *
make_pass_final(gcc::context * ctxt)4523 make_pass_final (gcc::context *ctxt)
4524 {
4525   return new pass_final (ctxt);
4526 }
4527 
4528 
4529 static unsigned int
rest_of_handle_shorten_branches(void)4530 rest_of_handle_shorten_branches (void)
4531 {
4532   /* Shorten branches.  */
4533   shorten_branches (get_insns ());
4534   return 0;
4535 }
4536 
4537 namespace {
4538 
4539 const pass_data pass_data_shorten_branches =
4540 {
4541   RTL_PASS, /* type */
4542   "shorten", /* name */
4543   OPTGROUP_NONE, /* optinfo_flags */
4544   TV_SHORTEN_BRANCH, /* tv_id */
4545   0, /* properties_required */
4546   0, /* properties_provided */
4547   0, /* properties_destroyed */
4548   0, /* todo_flags_start */
4549   0, /* todo_flags_finish */
4550 };
4551 
4552 class pass_shorten_branches : public rtl_opt_pass
4553 {
4554 public:
pass_shorten_branches(gcc::context * ctxt)4555   pass_shorten_branches (gcc::context *ctxt)
4556     : rtl_opt_pass (pass_data_shorten_branches, ctxt)
4557   {}
4558 
4559   /* opt_pass methods: */
execute(function *)4560   virtual unsigned int execute (function *)
4561     {
4562       return rest_of_handle_shorten_branches ();
4563     }
4564 
4565 }; // class pass_shorten_branches
4566 
4567 } // anon namespace
4568 
4569 rtl_opt_pass *
make_pass_shorten_branches(gcc::context * ctxt)4570 make_pass_shorten_branches (gcc::context *ctxt)
4571 {
4572   return new pass_shorten_branches (ctxt);
4573 }
4574 
4575 
4576 static unsigned int
rest_of_clean_state(void)4577 rest_of_clean_state (void)
4578 {
4579   rtx_insn *insn, *next;
4580   FILE *final_output = NULL;
4581   int save_unnumbered = flag_dump_unnumbered;
4582   int save_noaddr = flag_dump_noaddr;
4583 
4584   if (flag_dump_final_insns)
4585     {
4586       final_output = fopen (flag_dump_final_insns, "a");
4587       if (!final_output)
4588 	{
4589 	  error ("could not open final insn dump file %qs: %m",
4590 		 flag_dump_final_insns);
4591 	  flag_dump_final_insns = NULL;
4592 	}
4593       else
4594 	{
4595 	  flag_dump_noaddr = flag_dump_unnumbered = 1;
4596 	  if (flag_compare_debug_opt || flag_compare_debug)
4597 	    dump_flags |= TDF_NOUID;
4598 	  dump_function_header (final_output, current_function_decl,
4599 				dump_flags);
4600 	  final_insns_dump_p = true;
4601 
4602 	  for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4603 	    if (LABEL_P (insn))
4604 	      INSN_UID (insn) = CODE_LABEL_NUMBER (insn);
4605 	    else
4606 	      {
4607 		if (NOTE_P (insn))
4608 		  set_block_for_insn (insn, NULL);
4609 		INSN_UID (insn) = 0;
4610 	      }
4611 	}
4612     }
4613 
4614   /* It is very important to decompose the RTL instruction chain here:
4615      debug information keeps pointing into CODE_LABEL insns inside the function
4616      body.  If these remain pointing to the other insns, we end up preserving
4617      whole RTL chain and attached detailed debug info in memory.  */
4618   for (insn = get_insns (); insn; insn = next)
4619     {
4620       next = NEXT_INSN (insn);
4621       SET_NEXT_INSN (insn) = NULL;
4622       SET_PREV_INSN (insn) = NULL;
4623 
4624       if (final_output
4625 	  && (!NOTE_P (insn) ||
4626 	      (NOTE_KIND (insn) != NOTE_INSN_VAR_LOCATION
4627 	       && NOTE_KIND (insn) != NOTE_INSN_CALL_ARG_LOCATION
4628 	       && NOTE_KIND (insn) != NOTE_INSN_BLOCK_BEG
4629 	       && NOTE_KIND (insn) != NOTE_INSN_BLOCK_END
4630 	       && NOTE_KIND (insn) != NOTE_INSN_DELETED_DEBUG_LABEL)))
4631 	print_rtl_single (final_output, insn);
4632     }
4633 
4634   if (final_output)
4635     {
4636       flag_dump_noaddr = save_noaddr;
4637       flag_dump_unnumbered = save_unnumbered;
4638       final_insns_dump_p = false;
4639 
4640       if (fclose (final_output))
4641 	{
4642 	  error ("could not close final insn dump file %qs: %m",
4643 		 flag_dump_final_insns);
4644 	  flag_dump_final_insns = NULL;
4645 	}
4646     }
4647 
4648   /* In case the function was not output,
4649      don't leave any temporary anonymous types
4650      queued up for sdb output.  */
4651   if (SDB_DEBUGGING_INFO && write_symbols == SDB_DEBUG)
4652     sdbout_types (NULL_TREE);
4653 
4654   flag_rerun_cse_after_global_opts = 0;
4655   reload_completed = 0;
4656   epilogue_completed = 0;
4657 #ifdef STACK_REGS
4658   regstack_completed = 0;
4659 #endif
4660 
4661   /* Clear out the insn_length contents now that they are no
4662      longer valid.  */
4663   init_insn_lengths ();
4664 
4665   /* Show no temporary slots allocated.  */
4666   init_temp_slots ();
4667 
4668   free_bb_for_insn ();
4669 
4670   delete_tree_ssa (cfun);
4671 
4672   /* We can reduce stack alignment on call site only when we are sure that
4673      the function body just produced will be actually used in the final
4674      executable.  */
4675   if (decl_binds_to_current_def_p (current_function_decl))
4676     {
4677       unsigned int pref = crtl->preferred_stack_boundary;
4678       if (crtl->stack_alignment_needed > crtl->preferred_stack_boundary)
4679         pref = crtl->stack_alignment_needed;
4680       cgraph_node::rtl_info (current_function_decl)
4681 	->preferred_incoming_stack_boundary = pref;
4682     }
4683 
4684   /* Make sure volatile mem refs aren't considered valid operands for
4685      arithmetic insns.  We must call this here if this is a nested inline
4686      function, since the above code leaves us in the init_recog state,
4687      and the function context push/pop code does not save/restore volatile_ok.
4688 
4689      ??? Maybe it isn't necessary for expand_start_function to call this
4690      anymore if we do it here?  */
4691 
4692   init_recog_no_volatile ();
4693 
4694   /* We're done with this function.  Free up memory if we can.  */
4695   free_after_parsing (cfun);
4696   free_after_compilation (cfun);
4697   return 0;
4698 }
4699 
4700 namespace {
4701 
4702 const pass_data pass_data_clean_state =
4703 {
4704   RTL_PASS, /* type */
4705   "*clean_state", /* name */
4706   OPTGROUP_NONE, /* optinfo_flags */
4707   TV_FINAL, /* tv_id */
4708   0, /* properties_required */
4709   0, /* properties_provided */
4710   PROP_rtl, /* properties_destroyed */
4711   0, /* todo_flags_start */
4712   0, /* todo_flags_finish */
4713 };
4714 
4715 class pass_clean_state : public rtl_opt_pass
4716 {
4717 public:
pass_clean_state(gcc::context * ctxt)4718   pass_clean_state (gcc::context *ctxt)
4719     : rtl_opt_pass (pass_data_clean_state, ctxt)
4720   {}
4721 
4722   /* opt_pass methods: */
execute(function *)4723   virtual unsigned int execute (function *)
4724     {
4725       return rest_of_clean_state ();
4726     }
4727 
4728 }; // class pass_clean_state
4729 
4730 } // anon namespace
4731 
4732 rtl_opt_pass *
make_pass_clean_state(gcc::context * ctxt)4733 make_pass_clean_state (gcc::context *ctxt)
4734 {
4735   return new pass_clean_state (ctxt);
4736 }
4737 
4738 /* Return true if INSN is a call to the current function.  */
4739 
4740 static bool
self_recursive_call_p(rtx_insn * insn)4741 self_recursive_call_p (rtx_insn *insn)
4742 {
4743   tree fndecl = get_call_fndecl (insn);
4744   return (fndecl == current_function_decl
4745 	  && decl_binds_to_current_def_p (fndecl));
4746 }
4747 
4748 /* Collect hard register usage for the current function.  */
4749 
4750 static void
collect_fn_hard_reg_usage(void)4751 collect_fn_hard_reg_usage (void)
4752 {
4753   rtx_insn *insn;
4754 #ifdef STACK_REGS
4755   int i;
4756 #endif
4757   struct cgraph_rtl_info *node;
4758   HARD_REG_SET function_used_regs;
4759 
4760   /* ??? To be removed when all the ports have been fixed.  */
4761   if (!targetm.call_fusage_contains_non_callee_clobbers)
4762     return;
4763 
4764   CLEAR_HARD_REG_SET (function_used_regs);
4765 
4766   for (insn = get_insns (); insn != NULL_RTX; insn = next_insn (insn))
4767     {
4768       HARD_REG_SET insn_used_regs;
4769 
4770       if (!NONDEBUG_INSN_P (insn))
4771 	continue;
4772 
4773       if (CALL_P (insn)
4774 	  && !self_recursive_call_p (insn))
4775 	{
4776 	  if (!get_call_reg_set_usage (insn, &insn_used_regs,
4777 				       call_used_reg_set))
4778 	    return;
4779 
4780 	  IOR_HARD_REG_SET (function_used_regs, insn_used_regs);
4781 	}
4782 
4783       find_all_hard_reg_sets (insn, &insn_used_regs, false);
4784       IOR_HARD_REG_SET (function_used_regs, insn_used_regs);
4785     }
4786 
4787   /* Be conservative - mark fixed and global registers as used.  */
4788   IOR_HARD_REG_SET (function_used_regs, fixed_reg_set);
4789 
4790 #ifdef STACK_REGS
4791   /* Handle STACK_REGS conservatively, since the df-framework does not
4792      provide accurate information for them.  */
4793 
4794   for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
4795     SET_HARD_REG_BIT (function_used_regs, i);
4796 #endif
4797 
4798   /* The information we have gathered is only interesting if it exposes a
4799      register from the call_used_regs that is not used in this function.  */
4800   if (hard_reg_set_subset_p (call_used_reg_set, function_used_regs))
4801     return;
4802 
4803   node = cgraph_node::rtl_info (current_function_decl);
4804   gcc_assert (node != NULL);
4805 
4806   COPY_HARD_REG_SET (node->function_used_regs, function_used_regs);
4807   node->function_used_regs_valid = 1;
4808 }
4809 
4810 /* Get the declaration of the function called by INSN.  */
4811 
4812 static tree
get_call_fndecl(rtx_insn * insn)4813 get_call_fndecl (rtx_insn *insn)
4814 {
4815   rtx note, datum;
4816 
4817   note = find_reg_note (insn, REG_CALL_DECL, NULL_RTX);
4818   if (note == NULL_RTX)
4819     return NULL_TREE;
4820 
4821   datum = XEXP (note, 0);
4822   if (datum != NULL_RTX)
4823     return SYMBOL_REF_DECL (datum);
4824 
4825   return NULL_TREE;
4826 }
4827 
4828 /* Return the cgraph_rtl_info of the function called by INSN.  Returns NULL for
4829    call targets that can be overwritten.  */
4830 
4831 static struct cgraph_rtl_info *
get_call_cgraph_rtl_info(rtx_insn * insn)4832 get_call_cgraph_rtl_info (rtx_insn *insn)
4833 {
4834   tree fndecl;
4835 
4836   if (insn == NULL_RTX)
4837     return NULL;
4838 
4839   fndecl = get_call_fndecl (insn);
4840   if (fndecl == NULL_TREE
4841       || !decl_binds_to_current_def_p (fndecl))
4842     return NULL;
4843 
4844   return cgraph_node::rtl_info (fndecl);
4845 }
4846 
4847 /* Find hard registers used by function call instruction INSN, and return them
4848    in REG_SET.  Return DEFAULT_SET in REG_SET if not found.  */
4849 
4850 bool
get_call_reg_set_usage(rtx_insn * insn,HARD_REG_SET * reg_set,HARD_REG_SET default_set)4851 get_call_reg_set_usage (rtx_insn *insn, HARD_REG_SET *reg_set,
4852 			HARD_REG_SET default_set)
4853 {
4854   if (flag_ipa_ra)
4855     {
4856       struct cgraph_rtl_info *node = get_call_cgraph_rtl_info (insn);
4857       if (node != NULL
4858 	  && node->function_used_regs_valid)
4859 	{
4860 	  COPY_HARD_REG_SET (*reg_set, node->function_used_regs);
4861 	  AND_HARD_REG_SET (*reg_set, default_set);
4862 	  return true;
4863 	}
4864     }
4865 
4866   COPY_HARD_REG_SET (*reg_set, default_set);
4867   return false;
4868 }
4869