1 /* Instruction scheduling pass.  Selective scheduler and pipeliner.
2    Copyright (C) 2006-2016 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "tree.h"
25 #include "rtl.h"
26 #include "df.h"
27 #include "tm_p.h"
28 #include "regs.h"
29 #include "cfgbuild.h"
30 #include "insn-config.h"
31 #include "insn-attr.h"
32 #include "params.h"
33 #include "target.h"
34 #include "sched-int.h"
35 #include "rtlhooks-def.h"
36 #include "ira.h"
37 #include "ira-int.h"
38 #include "rtl-iter.h"
39 
40 #ifdef INSN_SCHEDULING
41 #include "regset.h"
42 #include "cfgloop.h"
43 #include "sel-sched-ir.h"
44 #include "sel-sched-dump.h"
45 #include "sel-sched.h"
46 #include "dbgcnt.h"
47 
48 /* Implementation of selective scheduling approach.
49    The below implementation follows the original approach with the following
50    changes:
51 
52    o the scheduler works after register allocation (but can be also tuned
53    to work before RA);
54    o some instructions are not copied or register renamed;
55    o conditional jumps are not moved with code duplication;
56    o several jumps in one parallel group are not supported;
57    o when pipelining outer loops, code motion through inner loops
58    is not supported;
59    o control and data speculation are supported;
60    o some improvements for better compile time/performance were made.
61 
62    Terminology
63    ===========
64 
65    A vinsn, or virtual insn, is an insn with additional data characterizing
66    insn pattern, such as LHS, RHS, register sets used/set/clobbered, etc.
67    Vinsns also act as smart pointers to save memory by reusing them in
68    different expressions.  A vinsn is described by vinsn_t type.
69 
70    An expression is a vinsn with additional data characterizing its properties
71    at some point in the control flow graph.  The data may be its usefulness,
72    priority, speculative status, whether it was renamed/subsituted, etc.
73    An expression is described by expr_t type.
74 
75    Availability set (av_set) is a set of expressions at a given control flow
76    point. It is represented as av_set_t.  The expressions in av sets are kept
77    sorted in the terms of expr_greater_p function.  It allows to truncate
78    the set while leaving the best expressions.
79 
80    A fence is a point through which code motion is prohibited.  On each step,
81    we gather a parallel group of insns at a fence.  It is possible to have
82    multiple fences. A fence is represented via fence_t.
83 
84    A boundary is the border between the fence group and the rest of the code.
85    Currently, we never have more than one boundary per fence, as we finalize
86    the fence group when a jump is scheduled. A boundary is represented
87    via bnd_t.
88 
89    High-level overview
90    ===================
91 
92    The scheduler finds regions to schedule, schedules each one, and finalizes.
93    The regions are formed starting from innermost loops, so that when the inner
94    loop is pipelined, its prologue can be scheduled together with yet unprocessed
95    outer loop. The rest of acyclic regions are found using extend_rgns:
96    the blocks that are not yet allocated to any regions are traversed in top-down
97    order, and a block is added to a region to which all its predecessors belong;
98    otherwise, the block starts its own region.
99 
100    The main scheduling loop (sel_sched_region_2) consists of just
101    scheduling on each fence and updating fences.  For each fence,
102    we fill a parallel group of insns (fill_insns) until some insns can be added.
103    First, we compute available exprs (av-set) at the boundary of the current
104    group.  Second, we choose the best expression from it.  If the stall is
105    required to schedule any of the expressions, we advance the current cycle
106    appropriately.  So, the final group does not exactly correspond to a VLIW
107    word.  Third, we move the chosen expression to the boundary (move_op)
108    and update the intermediate av sets and liveness sets.  We quit fill_insns
109    when either no insns left for scheduling or we have scheduled enough insns
110    so we feel like advancing a scheduling point.
111 
112    Computing available expressions
113    ===============================
114 
115    The computation (compute_av_set) is a bottom-up traversal.  At each insn,
116    we're moving the union of its successors' sets through it via
117    moveup_expr_set.  The dependent expressions are removed.  Local
118    transformations (substitution, speculation) are applied to move more
119    exprs.  Then the expr corresponding to the current insn is added.
120    The result is saved on each basic block header.
121 
122    When traversing the CFG, we're moving down for no more than max_ws insns.
123    Also, we do not move down to ineligible successors (is_ineligible_successor),
124    which include moving along a back-edge, moving to already scheduled code,
125    and moving to another fence.  The first two restrictions are lifted during
126    pipelining, which allows us to move insns along a back-edge.  We always have
127    an acyclic region for scheduling because we forbid motion through fences.
128 
129    Choosing the best expression
130    ============================
131 
132    We sort the final availability set via sel_rank_for_schedule, then we remove
133    expressions which are not yet ready (tick_check_p) or which dest registers
134    cannot be used.  For some of them, we choose another register via
135    find_best_reg.  To do this, we run find_used_regs to calculate the set of
136    registers which cannot be used.  The find_used_regs function performs
137    a traversal of code motion paths for an expr.  We consider for renaming
138    only registers which are from the same regclass as the original one and
139    using which does not interfere with any live ranges.  Finally, we convert
140    the resulting set to the ready list format and use max_issue and reorder*
141    hooks similarly to the Haifa scheduler.
142 
143    Scheduling the best expression
144    ==============================
145 
146    We run the move_op routine to perform the same type of code motion paths
147    traversal as in find_used_regs.  (These are working via the same driver,
148    code_motion_path_driver.)  When moving down the CFG, we look for original
149    instruction that gave birth to a chosen expression.  We undo
150    the transformations performed on an expression via the history saved in it.
151    When found, we remove the instruction or leave a reg-reg copy/speculation
152    check if needed.  On a way up, we insert bookkeeping copies at each join
153    point.  If a copy is not needed, it will be removed later during this
154    traversal.  We update the saved av sets and liveness sets on the way up, too.
155 
156    Finalizing the schedule
157    =======================
158 
159    When pipelining, we reschedule the blocks from which insns were pipelined
160    to get a tighter schedule.  On Itanium, we also perform bundling via
161    the same routine from ia64.c.
162 
163    Dependence analysis changes
164    ===========================
165 
166    We augmented the sched-deps.c with hooks that get called when a particular
167    dependence is found in a particular part of an insn.  Using these hooks, we
168    can do several actions such as: determine whether an insn can be moved through
169    another (has_dependence_p, moveup_expr); find out whether an insn can be
170    scheduled on the current cycle (tick_check_p); find out registers that
171    are set/used/clobbered by an insn and find out all the strange stuff that
172    restrict its movement, like SCHED_GROUP_P or CANT_MOVE (done in
173    init_global_and_expr_for_insn).
174 
175    Initialization changes
176    ======================
177 
178    There are parts of haifa-sched.c, sched-deps.c, and sched-rgn.c that are
179    reused in all of the schedulers.  We have split up the initialization of data
180    of such parts into different functions prefixed with scheduler type and
181    postfixed with the type of data initialized: {,sel_,haifa_}sched_{init,finish},
182    sched_rgn_init/finish, sched_deps_init/finish, sched_init_{luids/bbs}, etc.
183    The same splitting is done with current_sched_info structure:
184    dependence-related parts are in sched_deps_info, common part is in
185    common_sched_info, and haifa/sel/etc part is in current_sched_info.
186 
187    Target contexts
188    ===============
189 
190    As we now have multiple-point scheduling, this would not work with backends
191    which save some of the scheduler state to use it in the target hooks.
192    For this purpose, we introduce a concept of target contexts, which
193    encapsulate such information.  The backend should implement simple routines
194    of allocating/freeing/setting such a context.  The scheduler calls these
195    as target hooks and handles the target context as an opaque pointer (similar
196    to the DFA state type, state_t).
197 
198    Various speedups
199    ================
200 
201    As the correct data dependence graph is not supported during scheduling (which
202    is to be changed in mid-term), we cache as much of the dependence analysis
203    results as possible to avoid reanalyzing.  This includes: bitmap caches on
204    each insn in stream of the region saying yes/no for a query with a pair of
205    UIDs; hashtables with the previously done transformations on each insn in
206    stream; a vector keeping a history of transformations on each expr.
207 
208    Also, we try to minimize the dependence context used on each fence to check
209    whether the given expression is ready for scheduling by removing from it
210    insns that are definitely completed the execution.  The results of
211    tick_check_p checks are also cached in a vector on each fence.
212 
213    We keep a valid liveness set on each insn in a region to avoid the high
214    cost of recomputation on large basic blocks.
215 
216    Finally, we try to minimize the number of needed updates to the availability
217    sets.  The updates happen in two cases: when fill_insns terminates,
218    we advance all fences and increase the stage number to show that the region
219    has changed and the sets are to be recomputed; and when the next iteration
220    of a loop in fill_insns happens (but this one reuses the saved av sets
221    on bb headers.)  Thus, we try to break the fill_insns loop only when
222    "significant" number of insns from the current scheduling window was
223    scheduled.  This should be made a target param.
224 
225 
226    TODO: correctly support the data dependence graph at all stages and get rid
227    of all caches.  This should speed up the scheduler.
228    TODO: implement moving cond jumps with bookkeeping copies on both targets.
229    TODO: tune the scheduler before RA so it does not create too much pseudos.
230 
231 
232    References:
233    S.-M. Moon and K. Ebcioglu. Parallelizing nonnumerical code with
234    selective scheduling and software pipelining.
235    ACM TOPLAS, Vol 19, No. 6, pages 853--898, Nov. 1997.
236 
237    Andrey Belevantsev, Maxim Kuvyrkov, Vladimir Makarov, Dmitry Melnik,
238    and Dmitry Zhurikhin.  An interblock VLIW-targeted instruction scheduler
239    for GCC. In Proceedings of GCC Developers' Summit 2006.
240 
241    Arutyun Avetisyan, Andrey Belevantsev, and Dmitry Melnik.  GCC Instruction
242    Scheduler and Software Pipeliner on the Itanium Platform.   EPIC-7 Workshop.
243    http://rogue.colorado.edu/EPIC7/.
244 
245 */
246 
247 /* True when pipelining is enabled.  */
248 bool pipelining_p;
249 
250 /* True if bookkeeping is enabled.  */
251 bool bookkeeping_p;
252 
253 /* Maximum number of insns that are eligible for renaming.  */
254 int max_insns_to_rename;
255 
256 
257 /* Definitions of local types and macros.  */
258 
259 /* Represents possible outcomes of moving an expression through an insn.  */
260 enum MOVEUP_EXPR_CODE
261   {
262     /* The expression is not changed.  */
263     MOVEUP_EXPR_SAME,
264 
265     /* Not changed, but requires a new destination register.  */
266     MOVEUP_EXPR_AS_RHS,
267 
268     /* Cannot be moved.  */
269     MOVEUP_EXPR_NULL,
270 
271     /* Changed (substituted or speculated).  */
272     MOVEUP_EXPR_CHANGED
273   };
274 
275 /* The container to be passed into rtx search & replace functions.  */
276 struct rtx_search_arg
277 {
278   /* What we are searching for.  */
279   rtx x;
280 
281   /* The occurrence counter.  */
282   int n;
283 };
284 
285 typedef struct rtx_search_arg *rtx_search_arg_p;
286 
287 /* This struct contains precomputed hard reg sets that are needed when
288    computing registers available for renaming.  */
289 struct hard_regs_data
290 {
291   /* For every mode, this stores registers available for use with
292      that mode.  */
293   HARD_REG_SET regs_for_mode[NUM_MACHINE_MODES];
294 
295   /* True when regs_for_mode[mode] is initialized.  */
296   bool regs_for_mode_ok[NUM_MACHINE_MODES];
297 
298   /* For every register, it has regs that are ok to rename into it.
299      The register in question is always set.  If not, this means
300      that the whole set is not computed yet.  */
301   HARD_REG_SET regs_for_rename[FIRST_PSEUDO_REGISTER];
302 
303   /* For every mode, this stores registers not available due to
304      call clobbering.  */
305   HARD_REG_SET regs_for_call_clobbered[NUM_MACHINE_MODES];
306 
307   /* All registers that are used or call used.  */
308   HARD_REG_SET regs_ever_used;
309 
310 #ifdef STACK_REGS
311   /* Stack registers.  */
312   HARD_REG_SET stack_regs;
313 #endif
314 };
315 
316 /* Holds the results of computation of available for renaming and
317    unavailable hard registers.  */
318 struct reg_rename
319 {
320   /* These are unavailable due to calls crossing, globalness, etc.  */
321   HARD_REG_SET unavailable_hard_regs;
322 
323   /* These are *available* for renaming.  */
324   HARD_REG_SET available_for_renaming;
325 
326   /* Whether this code motion path crosses a call.  */
327   bool crosses_call;
328 };
329 
330 /* A global structure that contains the needed information about harg
331    regs.  */
332 static struct hard_regs_data sel_hrd;
333 
334 
335 /* This structure holds local data used in code_motion_path_driver hooks on
336    the same or adjacent levels of recursion.  Here we keep those parameters
337    that are not used in code_motion_path_driver routine itself, but only in
338    its hooks.  Moreover, all parameters that can be modified in hooks are
339    in this structure, so all other parameters passed explicitly to hooks are
340    read-only.  */
341 struct cmpd_local_params
342 {
343   /* Local params used in move_op_* functions.  */
344 
345   /* Edges for bookkeeping generation.  */
346   edge e1, e2;
347 
348   /* C_EXPR merged from all successors and locally allocated temporary C_EXPR.  */
349   expr_t c_expr_merged, c_expr_local;
350 
351   /* Local params used in fur_* functions.  */
352   /* Copy of the ORIGINAL_INSN list, stores the original insns already
353      found before entering the current level of code_motion_path_driver.  */
354   def_list_t old_original_insns;
355 
356   /* Local params used in move_op_* functions.  */
357   /* True when we have removed last insn in the block which was
358      also a boundary.  Do not update anything or create bookkeeping copies.  */
359   BOOL_BITFIELD removed_last_insn : 1;
360 };
361 
362 /* Stores the static parameters for move_op_* calls.  */
363 struct moveop_static_params
364 {
365   /* Destination register.  */
366   rtx dest;
367 
368   /* Current C_EXPR.  */
369   expr_t c_expr;
370 
371   /* An UID of expr_vliw which is to be moved up.  If we find other exprs,
372      they are to be removed.  */
373   int uid;
374 
375   /* This is initialized to the insn on which the driver stopped its traversal.  */
376   insn_t failed_insn;
377 
378   /* True if we scheduled an insn with different register.  */
379   bool was_renamed;
380 };
381 
382 /* Stores the static parameters for fur_* calls.  */
383 struct fur_static_params
384 {
385   /* Set of registers unavailable on the code motion path.  */
386   regset used_regs;
387 
388   /* Pointer to the list of original insns definitions.  */
389   def_list_t *original_insns;
390 
391   /* True if a code motion path contains a CALL insn.  */
392   bool crosses_call;
393 };
394 
395 typedef struct fur_static_params *fur_static_params_p;
396 typedef struct cmpd_local_params *cmpd_local_params_p;
397 typedef struct moveop_static_params *moveop_static_params_p;
398 
399 /* Set of hooks and parameters that determine behavior specific to
400    move_op or find_used_regs functions.  */
401 struct code_motion_path_driver_info_def
402 {
403   /* Called on enter to the basic block.  */
404   int (*on_enter) (insn_t, cmpd_local_params_p, void *, bool);
405 
406   /* Called when original expr is found.  */
407   void (*orig_expr_found) (insn_t, expr_t, cmpd_local_params_p, void *);
408 
409   /* Called while descending current basic block if current insn is not
410      the original EXPR we're searching for.  */
411   bool (*orig_expr_not_found) (insn_t, av_set_t, void *);
412 
413   /* Function to merge C_EXPRes from different successors.  */
414   void (*merge_succs) (insn_t, insn_t, int, cmpd_local_params_p, void *);
415 
416   /* Function to finalize merge from different successors and possibly
417      deallocate temporary data structures used for merging.  */
418   void (*after_merge_succs) (cmpd_local_params_p, void *);
419 
420   /* Called on the backward stage of recursion to do moveup_expr.
421      Used only with move_op_*.  */
422   void (*ascend) (insn_t, void *);
423 
424   /* Called on the ascending pass, before returning from the current basic
425      block or from the whole traversal.  */
426   void (*at_first_insn) (insn_t, cmpd_local_params_p, void *);
427 
428   /* When processing successors in move_op we need only descend into
429      SUCCS_NORMAL successors, while in find_used_regs we need SUCCS_ALL.  */
430   int succ_flags;
431 
432   /* The routine name to print in dumps ("move_op" of "find_used_regs").  */
433   const char *routine_name;
434 };
435 
436 /* Global pointer to current hooks, either points to MOVE_OP_HOOKS or
437    FUR_HOOKS.  */
438 struct code_motion_path_driver_info_def *code_motion_path_driver_info;
439 
440 /* Set of hooks for performing move_op and find_used_regs routines with
441    code_motion_path_driver.  */
442 extern struct code_motion_path_driver_info_def move_op_hooks, fur_hooks;
443 
444 /* True if/when we want to emulate Haifa scheduler in the common code.
445    This is used in sched_rgn_local_init and in various places in
446    sched-deps.c.  */
447 int sched_emulate_haifa_p;
448 
449 /* GLOBAL_LEVEL is used to discard information stored in basic block headers
450    av_sets.  Av_set of bb header is valid if its (bb header's) level is equal
451    to GLOBAL_LEVEL.  And invalid if lesser.  This is primarily used to advance
452    scheduling window.  */
453 int global_level;
454 
455 /* Current fences.  */
456 flist_t fences;
457 
458 /* True when separable insns should be scheduled as RHSes.  */
459 static bool enable_schedule_as_rhs_p;
460 
461 /* Used in verify_target_availability to assert that target reg is reported
462    unavailabile by both TARGET_UNAVAILABLE and find_used_regs only if
463    we haven't scheduled anything on the previous fence.
464    if scheduled_something_on_previous_fence is true, TARGET_UNAVAILABLE can
465    have more conservative value than the one returned by the
466    find_used_regs, thus we shouldn't assert that these values are equal.  */
467 static bool scheduled_something_on_previous_fence;
468 
469 /* All newly emitted insns will have their uids greater than this value.  */
470 static int first_emitted_uid;
471 
472 /* Set of basic blocks that are forced to start new ebbs.  This is a subset
473    of all the ebb heads.  */
474 static bitmap_head _forced_ebb_heads;
475 bitmap_head *forced_ebb_heads = &_forced_ebb_heads;
476 
477 /* Blocks that need to be rescheduled after pipelining.  */
478 bitmap blocks_to_reschedule = NULL;
479 
480 /* True when the first lv set should be ignored when updating liveness.  */
481 static bool ignore_first = false;
482 
483 /* Number of insns max_issue has initialized data structures for.  */
484 static int max_issue_size = 0;
485 
486 /* Whether we can issue more instructions.  */
487 static int can_issue_more;
488 
489 /* Maximum software lookahead window size, reduced when rescheduling after
490    pipelining.  */
491 static int max_ws;
492 
493 /* Number of insns scheduled in current region.  */
494 static int num_insns_scheduled;
495 
496 /* A vector of expressions is used to be able to sort them.  */
497 static vec<expr_t> vec_av_set = vNULL;
498 
499 /* A vector of vinsns is used to hold temporary lists of vinsns.  */
500 typedef vec<vinsn_t> vinsn_vec_t;
501 
502 /* This vector has the exprs which may still present in av_sets, but actually
503    can't be moved up due to bookkeeping created during code motion to another
504    fence.  See comment near the call to update_and_record_unavailable_insns
505    for the detailed explanations.  */
506 static vinsn_vec_t vec_bookkeeping_blocked_vinsns = vinsn_vec_t ();
507 
508 /* This vector has vinsns which are scheduled with renaming on the first fence
509    and then seen on the second.  For expressions with such vinsns, target
510    availability information may be wrong.  */
511 static vinsn_vec_t vec_target_unavailable_vinsns = vinsn_vec_t ();
512 
513 /* Vector to store temporary nops inserted in move_op to prevent removal
514    of empty bbs.  */
515 static vec<insn_t> vec_temp_moveop_nops = vNULL;
516 
517 /* These bitmaps record original instructions scheduled on the current
518    iteration and bookkeeping copies created by them.  */
519 static bitmap current_originators = NULL;
520 static bitmap current_copies = NULL;
521 
522 /* This bitmap marks the blocks visited by code_motion_path_driver so we don't
523    visit them afterwards.  */
524 static bitmap code_motion_visited_blocks = NULL;
525 
526 /* Variables to accumulate different statistics.  */
527 
528 /* The number of bookkeeping copies created.  */
529 static int stat_bookkeeping_copies;
530 
531 /* The number of insns that required bookkeeiping for their scheduling.  */
532 static int stat_insns_needed_bookkeeping;
533 
534 /* The number of insns that got renamed.  */
535 static int stat_renamed_scheduled;
536 
537 /* The number of substitutions made during scheduling.  */
538 static int stat_substitutions_total;
539 
540 
541 /* Forward declarations of static functions.  */
542 static bool rtx_ok_for_substitution_p (rtx, rtx);
543 static int sel_rank_for_schedule (const void *, const void *);
544 static av_set_t find_sequential_best_exprs (bnd_t, expr_t, bool);
545 static basic_block find_block_for_bookkeeping (edge e1, edge e2, bool lax);
546 
547 static rtx get_dest_from_orig_ops (av_set_t);
548 static basic_block generate_bookkeeping_insn (expr_t, edge, edge);
549 static bool find_used_regs (insn_t, av_set_t, regset, struct reg_rename *,
550                             def_list_t *);
551 static bool move_op (insn_t, av_set_t, expr_t, rtx, expr_t, bool*);
552 static int code_motion_path_driver (insn_t, av_set_t, ilist_t,
553                                     cmpd_local_params_p, void *);
554 static void sel_sched_region_1 (void);
555 static void sel_sched_region_2 (int);
556 static av_set_t compute_av_set_inside_bb (insn_t, ilist_t, int, bool);
557 
558 static void debug_state (state_t);
559 
560 
561 /* Functions that work with fences.  */
562 
563 /* Advance one cycle on FENCE.  */
564 static void
advance_one_cycle(fence_t fence)565 advance_one_cycle (fence_t fence)
566 {
567   unsigned i;
568   int cycle;
569   rtx_insn *insn;
570 
571   advance_state (FENCE_STATE (fence));
572   cycle = ++FENCE_CYCLE (fence);
573   FENCE_ISSUED_INSNS (fence) = 0;
574   FENCE_STARTS_CYCLE_P (fence) = 1;
575   can_issue_more = issue_rate;
576   FENCE_ISSUE_MORE (fence) = can_issue_more;
577 
578   for (i = 0; vec_safe_iterate (FENCE_EXECUTING_INSNS (fence), i, &insn); )
579     {
580       if (INSN_READY_CYCLE (insn) < cycle)
581         {
582           remove_from_deps (FENCE_DC (fence), insn);
583           FENCE_EXECUTING_INSNS (fence)->unordered_remove (i);
584           continue;
585         }
586       i++;
587     }
588   if (sched_verbose >= 2)
589     {
590       sel_print ("Finished a cycle.  Current cycle = %d\n", FENCE_CYCLE (fence));
591       debug_state (FENCE_STATE (fence));
592     }
593 }
594 
595 /* Returns true when SUCC in a fallthru bb of INSN, possibly
596    skipping empty basic blocks.  */
597 static bool
in_fallthru_bb_p(rtx_insn * insn,rtx succ)598 in_fallthru_bb_p (rtx_insn *insn, rtx succ)
599 {
600   basic_block bb = BLOCK_FOR_INSN (insn);
601   edge e;
602 
603   if (bb == BLOCK_FOR_INSN (succ))
604     return true;
605 
606   e = find_fallthru_edge_from (bb);
607   if (e)
608     bb = e->dest;
609   else
610     return false;
611 
612   while (sel_bb_empty_p (bb))
613     bb = bb->next_bb;
614 
615   return bb == BLOCK_FOR_INSN (succ);
616 }
617 
618 /* Construct successor fences from OLD_FENCEs and put them in NEW_FENCES.
619    When a successor will continue a ebb, transfer all parameters of a fence
620    to the new fence.  ORIG_MAX_SEQNO is the maximal seqno before this round
621    of scheduling helping to distinguish between the old and the new code.  */
622 static void
extract_new_fences_from(flist_t old_fences,flist_tail_t new_fences,int orig_max_seqno)623 extract_new_fences_from (flist_t old_fences, flist_tail_t new_fences,
624 			 int orig_max_seqno)
625 {
626   bool was_here_p = false;
627   insn_t insn = NULL;
628   insn_t succ;
629   succ_iterator si;
630   ilist_iterator ii;
631   fence_t fence = FLIST_FENCE (old_fences);
632   basic_block bb;
633 
634   /* Get the only element of FENCE_BNDS (fence).  */
635   FOR_EACH_INSN (insn, ii, FENCE_BNDS (fence))
636     {
637       gcc_assert (!was_here_p);
638       was_here_p = true;
639     }
640   gcc_assert (was_here_p && insn != NULL_RTX);
641 
642   /* When in the "middle" of the block, just move this fence
643      to the new list.  */
644   bb = BLOCK_FOR_INSN (insn);
645   if (! sel_bb_end_p (insn)
646       || (single_succ_p (bb)
647           && single_pred_p (single_succ (bb))))
648     {
649       insn_t succ;
650 
651       succ = (sel_bb_end_p (insn)
652               ? sel_bb_head (single_succ (bb))
653               : NEXT_INSN (insn));
654 
655       if (INSN_SEQNO (succ) > 0
656           && INSN_SEQNO (succ) <= orig_max_seqno
657           && INSN_SCHED_TIMES (succ) <= 0)
658         {
659           FENCE_INSN (fence) = succ;
660           move_fence_to_fences (old_fences, new_fences);
661 
662           if (sched_verbose >= 1)
663             sel_print ("Fence %d continues as %d[%d] (state continue)\n",
664                        INSN_UID (insn), INSN_UID (succ), BLOCK_NUM (succ));
665         }
666       return;
667     }
668 
669   /* Otherwise copy fence's structures to (possibly) multiple successors.  */
670   FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
671     {
672       int seqno = INSN_SEQNO (succ);
673 
674       if (0 < seqno && seqno <= orig_max_seqno
675           && (pipelining_p || INSN_SCHED_TIMES (succ) <= 0))
676         {
677           bool b = (in_same_ebb_p (insn, succ)
678                     || in_fallthru_bb_p (insn, succ));
679 
680           if (sched_verbose >= 1)
681             sel_print ("Fence %d continues as %d[%d] (state %s)\n",
682                        INSN_UID (insn), INSN_UID (succ),
683                        BLOCK_NUM (succ), b ? "continue" : "reset");
684 
685           if (b)
686             add_dirty_fence_to_fences (new_fences, succ, fence);
687           else
688             {
689               /* Mark block of the SUCC as head of the new ebb.  */
690               bitmap_set_bit (forced_ebb_heads, BLOCK_NUM (succ));
691               add_clean_fence_to_fences (new_fences, succ, fence);
692             }
693         }
694     }
695 }
696 
697 
698 /* Functions to support substitution.  */
699 
700 /* Returns whether INSN with dependence status DS is eligible for
701    substitution, i.e. it's a copy operation x := y, and RHS that is
702    moved up through this insn should be substituted.  */
703 static bool
can_substitute_through_p(insn_t insn,ds_t ds)704 can_substitute_through_p (insn_t insn, ds_t ds)
705 {
706   /* We can substitute only true dependencies.  */
707   if ((ds & DEP_OUTPUT)
708       || (ds & DEP_ANTI)
709       || ! INSN_RHS (insn)
710       || ! INSN_LHS (insn))
711     return false;
712 
713   /* Now we just need to make sure the INSN_RHS consists of only one
714      simple REG rtx.  */
715   if (REG_P (INSN_LHS (insn))
716       && REG_P (INSN_RHS (insn)))
717     return true;
718   return false;
719 }
720 
721 /* Substitute all occurrences of INSN's destination in EXPR' vinsn with INSN's
722    source (if INSN is eligible for substitution).  Returns TRUE if
723    substitution was actually performed, FALSE otherwise.  Substitution might
724    be not performed because it's either EXPR' vinsn doesn't contain INSN's
725    destination or the resulting insn is invalid for the target machine.
726    When UNDO is true, perform unsubstitution instead (the difference is in
727    the part of rtx on which validate_replace_rtx is called).  */
728 static bool
substitute_reg_in_expr(expr_t expr,insn_t insn,bool undo)729 substitute_reg_in_expr (expr_t expr, insn_t insn, bool undo)
730 {
731   rtx *where;
732   bool new_insn_valid;
733   vinsn_t *vi = &EXPR_VINSN (expr);
734   bool has_rhs = VINSN_RHS (*vi) != NULL;
735   rtx old, new_rtx;
736 
737   /* Do not try to replace in SET_DEST.  Although we'll choose new
738      register for the RHS, we don't want to change RHS' original reg.
739      If the insn is not SET, we may still be able to substitute something
740      in it, and if we're here (don't have deps), it doesn't write INSN's
741      dest.  */
742   where = (has_rhs
743 	   ? &VINSN_RHS (*vi)
744 	   : &PATTERN (VINSN_INSN_RTX (*vi)));
745   old = undo ? INSN_RHS (insn) : INSN_LHS (insn);
746 
747   /* Substitute if INSN has a form of x:=y and LHS(INSN) occurs in *VI.  */
748   if (rtx_ok_for_substitution_p (old, *where))
749     {
750       rtx_insn *new_insn;
751       rtx *where_replace;
752 
753       /* We should copy these rtxes before substitution.  */
754       new_rtx = copy_rtx (undo ? INSN_LHS (insn) : INSN_RHS (insn));
755       new_insn = create_copy_of_insn_rtx (VINSN_INSN_RTX (*vi));
756 
757       /* Where we'll replace.
758          WHERE_REPLACE should point inside NEW_INSN, so INSN_RHS couldn't be
759 	 used instead of SET_SRC.  */
760       where_replace = (has_rhs
761 		       ? &SET_SRC (PATTERN (new_insn))
762 		       : &PATTERN (new_insn));
763 
764       new_insn_valid
765         = validate_replace_rtx_part_nosimplify (old, new_rtx, where_replace,
766                                                 new_insn);
767 
768       /* ??? Actually, constrain_operands result depends upon choice of
769          destination register.  E.g. if we allow single register to be an rhs,
770 	 and if we try to move dx=ax(as rhs) through ax=dx, we'll result
771 	 in invalid insn dx=dx, so we'll loose this rhs here.
772 	 Just can't come up with significant testcase for this, so just
773 	 leaving it for now.  */
774       if (new_insn_valid)
775 	{
776 	  change_vinsn_in_expr (expr,
777 				create_vinsn_from_insn_rtx (new_insn, false));
778 
779 	  /* Do not allow clobbering the address register of speculative
780              insns.  */
781 	  if ((EXPR_SPEC_DONE_DS (expr) & SPECULATIVE)
782               && register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
783 					 expr_dest_reg (expr)))
784 	    EXPR_TARGET_AVAILABLE (expr) = false;
785 
786 	  return true;
787 	}
788       else
789         return false;
790     }
791   else
792     return false;
793 }
794 
795 /* Return the number of places WHAT appears within WHERE.
796    Bail out when we found a reference occupying several hard registers.  */
797 static int
count_occurrences_equiv(const_rtx what,const_rtx where)798 count_occurrences_equiv (const_rtx what, const_rtx where)
799 {
800   int count = 0;
801   subrtx_iterator::array_type array;
802   FOR_EACH_SUBRTX (iter, array, where, NONCONST)
803     {
804       const_rtx x = *iter;
805       if (REG_P (x) && REGNO (x) == REGNO (what))
806 	{
807 	  /* Bail out if mode is different or more than one register is
808 	     used.  */
809 	  if (GET_MODE (x) != GET_MODE (what) || REG_NREGS (x) > 1)
810 	    return 0;
811 	  count += 1;
812 	}
813       else if (GET_CODE (x) == SUBREG
814 	       && (!REG_P (SUBREG_REG (x))
815 		   || REGNO (SUBREG_REG (x)) == REGNO (what)))
816 	/* ??? Do not support substituting regs inside subregs.  In that case,
817 	   simplify_subreg will be called by validate_replace_rtx, and
818 	   unsubstitution will fail later.  */
819 	return 0;
820     }
821   return count;
822 }
823 
824 /* Returns TRUE if WHAT is found in WHERE rtx tree.  */
825 static bool
rtx_ok_for_substitution_p(rtx what,rtx where)826 rtx_ok_for_substitution_p (rtx what, rtx where)
827 {
828   return (count_occurrences_equiv (what, where) > 0);
829 }
830 
831 
832 /* Functions to support register renaming.  */
833 
834 /* Substitute VI's set source with REGNO.  Returns newly created pattern
835    that has REGNO as its source.  */
836 static rtx_insn *
create_insn_rtx_with_rhs(vinsn_t vi,rtx rhs_rtx)837 create_insn_rtx_with_rhs (vinsn_t vi, rtx rhs_rtx)
838 {
839   rtx lhs_rtx;
840   rtx pattern;
841   rtx_insn *insn_rtx;
842 
843   lhs_rtx = copy_rtx (VINSN_LHS (vi));
844 
845   pattern = gen_rtx_SET (lhs_rtx, rhs_rtx);
846   insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
847 
848   return insn_rtx;
849 }
850 
851 /* Returns whether INSN's src can be replaced with register number
852    NEW_SRC_REG. E.g. the following insn is valid for i386:
853 
854     (insn:HI 2205 6585 2207 727 ../../gcc/libiberty/regex.c:3337
855       (set (mem/s:QI (plus:SI (plus:SI (reg/f:SI 7 sp)
856 			(reg:SI 0 ax [orig:770 c1 ] [770]))
857 		    (const_int 288 [0x120])) [0 str S1 A8])
858 	    (const_int 0 [0x0])) 43 {*movqi_1} (nil)
859 	(nil))
860 
861   But if we change (const_int 0 [0x0]) to (reg:QI 4 si), it will be invalid
862   because of operand constraints:
863 
864     (define_insn "*movqi_1"
865       [(set (match_operand:QI 0 "nonimmediate_operand" "=q,q ,q ,r,r ,?r,m")
866 	    (match_operand:QI 1 "general_operand"      " q,qn,qm,q,rn,qm,qn")
867 	    )]
868 
869   So do constrain_operands here, before choosing NEW_SRC_REG as best
870   reg for rhs.  */
871 
872 static bool
replace_src_with_reg_ok_p(insn_t insn,rtx new_src_reg)873 replace_src_with_reg_ok_p (insn_t insn, rtx new_src_reg)
874 {
875   vinsn_t vi = INSN_VINSN (insn);
876   machine_mode mode;
877   rtx dst_loc;
878   bool res;
879 
880   gcc_assert (VINSN_SEPARABLE_P (vi));
881 
882   get_dest_and_mode (insn, &dst_loc, &mode);
883   gcc_assert (mode == GET_MODE (new_src_reg));
884 
885   if (REG_P (dst_loc) && REGNO (new_src_reg) == REGNO (dst_loc))
886     return true;
887 
888   /* See whether SET_SRC can be replaced with this register.  */
889   validate_change (insn, &SET_SRC (PATTERN (insn)), new_src_reg, 1);
890   res = verify_changes (0);
891   cancel_changes (0);
892 
893   return res;
894 }
895 
896 /* Returns whether INSN still be valid after replacing it's DEST with
897    register NEW_REG.  */
898 static bool
replace_dest_with_reg_ok_p(insn_t insn,rtx new_reg)899 replace_dest_with_reg_ok_p (insn_t insn, rtx new_reg)
900 {
901   vinsn_t vi = INSN_VINSN (insn);
902   bool res;
903 
904   /* We should deal here only with separable insns.  */
905   gcc_assert (VINSN_SEPARABLE_P (vi));
906   gcc_assert (GET_MODE (VINSN_LHS (vi)) == GET_MODE (new_reg));
907 
908   /* See whether SET_DEST can be replaced with this register.  */
909   validate_change (insn, &SET_DEST (PATTERN (insn)), new_reg, 1);
910   res = verify_changes (0);
911   cancel_changes (0);
912 
913   return res;
914 }
915 
916 /* Create a pattern with rhs of VI and lhs of LHS_RTX.  */
917 static rtx_insn *
create_insn_rtx_with_lhs(vinsn_t vi,rtx lhs_rtx)918 create_insn_rtx_with_lhs (vinsn_t vi, rtx lhs_rtx)
919 {
920   rtx rhs_rtx;
921   rtx pattern;
922   rtx_insn *insn_rtx;
923 
924   rhs_rtx = copy_rtx (VINSN_RHS (vi));
925 
926   pattern = gen_rtx_SET (lhs_rtx, rhs_rtx);
927   insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
928 
929   return insn_rtx;
930 }
931 
932 /* Substitute lhs in the given expression EXPR for the register with number
933    NEW_REGNO.  SET_DEST may be arbitrary rtx, not only register.  */
934 static void
replace_dest_with_reg_in_expr(expr_t expr,rtx new_reg)935 replace_dest_with_reg_in_expr (expr_t expr, rtx new_reg)
936 {
937   rtx_insn *insn_rtx;
938   vinsn_t vinsn;
939 
940   insn_rtx = create_insn_rtx_with_lhs (EXPR_VINSN (expr), new_reg);
941   vinsn = create_vinsn_from_insn_rtx (insn_rtx, false);
942 
943   change_vinsn_in_expr (expr, vinsn);
944   EXPR_WAS_RENAMED (expr) = 1;
945   EXPR_TARGET_AVAILABLE (expr) = 1;
946 }
947 
948 /* Returns whether VI writes either one of the USED_REGS registers or,
949    if a register is a hard one, one of the UNAVAILABLE_HARD_REGS registers.  */
950 static bool
vinsn_writes_one_of_regs_p(vinsn_t vi,regset used_regs,HARD_REG_SET unavailable_hard_regs)951 vinsn_writes_one_of_regs_p (vinsn_t vi, regset used_regs,
952                             HARD_REG_SET unavailable_hard_regs)
953 {
954   unsigned regno;
955   reg_set_iterator rsi;
956 
957   EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (vi), 0, regno, rsi)
958     {
959       if (REGNO_REG_SET_P (used_regs, regno))
960         return true;
961       if (HARD_REGISTER_NUM_P (regno)
962           && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
963 	return true;
964     }
965 
966   EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (vi), 0, regno, rsi)
967     {
968       if (REGNO_REG_SET_P (used_regs, regno))
969         return true;
970       if (HARD_REGISTER_NUM_P (regno)
971           && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
972 	return true;
973     }
974 
975   return false;
976 }
977 
978 /* Returns register class of the output register in INSN.
979    Returns NO_REGS for call insns because some targets have constraints on
980    destination register of a call insn.
981 
982    Code adopted from regrename.c::build_def_use.  */
983 static enum reg_class
get_reg_class(rtx_insn * insn)984 get_reg_class (rtx_insn *insn)
985 {
986   int i, n_ops;
987 
988   extract_constrain_insn (insn);
989   preprocess_constraints (insn);
990   n_ops = recog_data.n_operands;
991 
992   const operand_alternative *op_alt = which_op_alt ();
993   if (asm_noperands (PATTERN (insn)) > 0)
994     {
995       for (i = 0; i < n_ops; i++)
996 	if (recog_data.operand_type[i] == OP_OUT)
997 	  {
998 	    rtx *loc = recog_data.operand_loc[i];
999 	    rtx op = *loc;
1000 	    enum reg_class cl = alternative_class (op_alt, i);
1001 
1002 	    if (REG_P (op)
1003 		&& REGNO (op) == ORIGINAL_REGNO (op))
1004 	      continue;
1005 
1006 	    return cl;
1007 	  }
1008     }
1009   else if (!CALL_P (insn))
1010     {
1011       for (i = 0; i < n_ops + recog_data.n_dups; i++)
1012        {
1013 	 int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
1014 	 enum reg_class cl = alternative_class (op_alt, opn);
1015 
1016 	 if (recog_data.operand_type[opn] == OP_OUT ||
1017 	     recog_data.operand_type[opn] == OP_INOUT)
1018 	   return cl;
1019        }
1020     }
1021 
1022 /*  Insns like
1023     (insn (set (reg:CCZ 17 flags) (compare:CCZ ...)))
1024     may result in returning NO_REGS, cause flags is written implicitly through
1025     CMP insn, which has no OP_OUT | OP_INOUT operands.  */
1026   return NO_REGS;
1027 }
1028 
1029 /* Calculate HARD_REGNO_RENAME_OK data for REGNO.  */
1030 static void
init_hard_regno_rename(int regno)1031 init_hard_regno_rename (int regno)
1032 {
1033   int cur_reg;
1034 
1035   SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], regno);
1036 
1037   for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1038     {
1039       /* We are not interested in renaming in other regs.  */
1040       if (!TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg))
1041         continue;
1042 
1043       if (HARD_REGNO_RENAME_OK (regno, cur_reg))
1044         SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], cur_reg);
1045     }
1046 }
1047 
1048 /* A wrapper around HARD_REGNO_RENAME_OK that will look into the hard regs
1049    data first.  */
1050 static inline bool
sel_hard_regno_rename_ok(int from ATTRIBUTE_UNUSED,int to ATTRIBUTE_UNUSED)1051 sel_hard_regno_rename_ok (int from ATTRIBUTE_UNUSED, int to ATTRIBUTE_UNUSED)
1052 {
1053   /* Check whether this is all calculated.  */
1054   if (TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], from))
1055     return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1056 
1057   init_hard_regno_rename (from);
1058 
1059   return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1060 }
1061 
1062 /* Calculate set of registers that are capable of holding MODE.  */
1063 static void
init_regs_for_mode(machine_mode mode)1064 init_regs_for_mode (machine_mode mode)
1065 {
1066   int cur_reg;
1067 
1068   CLEAR_HARD_REG_SET (sel_hrd.regs_for_mode[mode]);
1069   CLEAR_HARD_REG_SET (sel_hrd.regs_for_call_clobbered[mode]);
1070 
1071   for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1072     {
1073       int nregs;
1074       int i;
1075 
1076       /* See whether it accepts all modes that occur in
1077          original insns.  */
1078       if (! HARD_REGNO_MODE_OK (cur_reg, mode))
1079         continue;
1080 
1081       nregs = hard_regno_nregs[cur_reg][mode];
1082 
1083       for (i = nregs - 1; i >= 0; --i)
1084         if (fixed_regs[cur_reg + i]
1085                 || global_regs[cur_reg + i]
1086             /* Can't use regs which aren't saved by
1087                the prologue.  */
1088             || !TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg + i)
1089 	    /* Can't use regs with non-null REG_BASE_VALUE, because adjusting
1090 	       it affects aliasing globally and invalidates all AV sets.  */
1091 	    || get_reg_base_value (cur_reg + i)
1092 #ifdef LEAF_REGISTERS
1093             /* We can't use a non-leaf register if we're in a
1094                leaf function.  */
1095             || (crtl->is_leaf
1096                 && !LEAF_REGISTERS[cur_reg + i])
1097 #endif
1098             )
1099           break;
1100 
1101       if (i >= 0)
1102         continue;
1103 
1104       if (HARD_REGNO_CALL_PART_CLOBBERED (cur_reg, mode))
1105         SET_HARD_REG_BIT (sel_hrd.regs_for_call_clobbered[mode],
1106                           cur_reg);
1107 
1108       /* If the CUR_REG passed all the checks above,
1109          then it's ok.  */
1110       SET_HARD_REG_BIT (sel_hrd.regs_for_mode[mode], cur_reg);
1111     }
1112 
1113   sel_hrd.regs_for_mode_ok[mode] = true;
1114 }
1115 
1116 /* Init all register sets gathered in HRD.  */
1117 static void
init_hard_regs_data(void)1118 init_hard_regs_data (void)
1119 {
1120   int cur_reg = 0;
1121   int cur_mode = 0;
1122 
1123   CLEAR_HARD_REG_SET (sel_hrd.regs_ever_used);
1124   for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1125     if (df_regs_ever_live_p (cur_reg) || call_used_regs[cur_reg])
1126       SET_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg);
1127 
1128   /* Initialize registers that are valid based on mode when this is
1129      really needed.  */
1130   for (cur_mode = 0; cur_mode < NUM_MACHINE_MODES; cur_mode++)
1131     sel_hrd.regs_for_mode_ok[cur_mode] = false;
1132 
1133   /* Mark that all HARD_REGNO_RENAME_OK is not calculated.  */
1134   for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1135     CLEAR_HARD_REG_SET (sel_hrd.regs_for_rename[cur_reg]);
1136 
1137 #ifdef STACK_REGS
1138   CLEAR_HARD_REG_SET (sel_hrd.stack_regs);
1139 
1140   for (cur_reg = FIRST_STACK_REG; cur_reg <= LAST_STACK_REG; cur_reg++)
1141     SET_HARD_REG_BIT (sel_hrd.stack_regs, cur_reg);
1142 #endif
1143 }
1144 
1145 /* Mark hardware regs in REG_RENAME_P that are not suitable
1146    for renaming rhs in INSN due to hardware restrictions (register class,
1147    modes compatibility etc).  This doesn't affect original insn's dest reg,
1148    if it isn't in USED_REGS.  DEF is a definition insn of rhs for which the
1149    destination register is sought.  LHS (DEF->ORIG_INSN) may be REG or MEM.
1150    Registers that are in used_regs are always marked in
1151    unavailable_hard_regs as well.  */
1152 
1153 static void
mark_unavailable_hard_regs(def_t def,struct reg_rename * reg_rename_p,regset used_regs ATTRIBUTE_UNUSED)1154 mark_unavailable_hard_regs (def_t def, struct reg_rename *reg_rename_p,
1155                             regset used_regs ATTRIBUTE_UNUSED)
1156 {
1157   machine_mode mode;
1158   enum reg_class cl = NO_REGS;
1159   rtx orig_dest;
1160   unsigned cur_reg, regno;
1161   hard_reg_set_iterator hrsi;
1162 
1163   gcc_assert (GET_CODE (PATTERN (def->orig_insn)) == SET);
1164   gcc_assert (reg_rename_p);
1165 
1166   orig_dest = SET_DEST (PATTERN (def->orig_insn));
1167 
1168   /* We have decided not to rename 'mem = something;' insns, as 'something'
1169      is usually a register.  */
1170   if (!REG_P (orig_dest))
1171     return;
1172 
1173   regno = REGNO (orig_dest);
1174 
1175   /* If before reload, don't try to work with pseudos.  */
1176   if (!reload_completed && !HARD_REGISTER_NUM_P (regno))
1177     return;
1178 
1179   if (reload_completed)
1180     cl = get_reg_class (def->orig_insn);
1181 
1182   /* Stop if the original register is one of the fixed_regs, global_regs or
1183      frame pointer, or we could not discover its class.  */
1184   if (fixed_regs[regno]
1185       || global_regs[regno]
1186       || (!HARD_FRAME_POINTER_IS_FRAME_POINTER && frame_pointer_needed
1187 	  && regno == HARD_FRAME_POINTER_REGNUM)
1188       || (HARD_FRAME_POINTER_REGNUM && frame_pointer_needed
1189 	  && regno == FRAME_POINTER_REGNUM)
1190       || (reload_completed && cl == NO_REGS))
1191     {
1192       SET_HARD_REG_SET (reg_rename_p->unavailable_hard_regs);
1193 
1194       /* Give a chance for original register, if it isn't in used_regs.  */
1195       if (!def->crosses_call)
1196         CLEAR_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno);
1197 
1198       return;
1199     }
1200 
1201   /* If something allocated on stack in this function, mark frame pointer
1202      register unavailable, considering also modes.
1203      FIXME: it is enough to do this once per all original defs.  */
1204   if (frame_pointer_needed)
1205     {
1206       add_to_hard_reg_set (&reg_rename_p->unavailable_hard_regs,
1207 			   Pmode, FRAME_POINTER_REGNUM);
1208 
1209       if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
1210         add_to_hard_reg_set (&reg_rename_p->unavailable_hard_regs,
1211 			     Pmode, HARD_FRAME_POINTER_REGNUM);
1212     }
1213 
1214 #ifdef STACK_REGS
1215   /* For the stack registers the presence of FIRST_STACK_REG in USED_REGS
1216      is equivalent to as if all stack regs were in this set.
1217      I.e. no stack register can be renamed, and even if it's an original
1218      register here we make sure it won't be lifted over it's previous def
1219      (it's previous def will appear as if it's a FIRST_STACK_REG def.
1220      The HARD_REGNO_RENAME_OK covers other cases in condition below.  */
1221   if (IN_RANGE (REGNO (orig_dest), FIRST_STACK_REG, LAST_STACK_REG)
1222       && REGNO_REG_SET_P (used_regs, FIRST_STACK_REG))
1223     IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
1224                       sel_hrd.stack_regs);
1225 #endif
1226 
1227   /* If there's a call on this path, make regs from call_used_reg_set
1228      unavailable.  */
1229   if (def->crosses_call)
1230     IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
1231                       call_used_reg_set);
1232 
1233   /* Stop here before reload: we need FRAME_REGS, STACK_REGS, and crosses_call,
1234      but not register classes.  */
1235   if (!reload_completed)
1236     return;
1237 
1238   /* Leave regs as 'available' only from the current
1239      register class.  */
1240   COPY_HARD_REG_SET (reg_rename_p->available_for_renaming,
1241                      reg_class_contents[cl]);
1242 
1243   mode = GET_MODE (orig_dest);
1244 
1245   /* Leave only registers available for this mode.  */
1246   if (!sel_hrd.regs_for_mode_ok[mode])
1247     init_regs_for_mode (mode);
1248   AND_HARD_REG_SET (reg_rename_p->available_for_renaming,
1249                     sel_hrd.regs_for_mode[mode]);
1250 
1251   /* Exclude registers that are partially call clobbered.  */
1252   if (def->crosses_call
1253       && ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode))
1254     AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
1255                             sel_hrd.regs_for_call_clobbered[mode]);
1256 
1257   /* Leave only those that are ok to rename.  */
1258   EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1259                                   0, cur_reg, hrsi)
1260     {
1261       int nregs;
1262       int i;
1263 
1264       nregs = hard_regno_nregs[cur_reg][mode];
1265       gcc_assert (nregs > 0);
1266 
1267       for (i = nregs - 1; i >= 0; --i)
1268         if (! sel_hard_regno_rename_ok (regno + i, cur_reg + i))
1269           break;
1270 
1271       if (i >= 0)
1272         CLEAR_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1273                             cur_reg);
1274     }
1275 
1276   AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
1277                           reg_rename_p->unavailable_hard_regs);
1278 
1279   /* Regno is always ok from the renaming part of view, but it really
1280      could be in *unavailable_hard_regs already, so set it here instead
1281      of there.  */
1282   SET_HARD_REG_BIT (reg_rename_p->available_for_renaming, regno);
1283 }
1284 
1285 /* reg_rename_tick[REG1] > reg_rename_tick[REG2] if REG1 was chosen as the
1286    best register more recently than REG2.  */
1287 static int reg_rename_tick[FIRST_PSEUDO_REGISTER];
1288 
1289 /* Indicates the number of times renaming happened before the current one.  */
1290 static int reg_rename_this_tick;
1291 
1292 /* Choose the register among free, that is suitable for storing
1293    the rhs value.
1294 
1295    ORIGINAL_INSNS is the list of insns where the operation (rhs)
1296    originally appears.  There could be multiple original operations
1297    for single rhs since we moving it up and merging along different
1298    paths.
1299 
1300    Some code is adapted from regrename.c (regrename_optimize).
1301    If original register is available, function returns it.
1302    Otherwise it performs the checks, so the new register should
1303    comply with the following:
1304     - it should not violate any live ranges (such registers are in
1305       REG_RENAME_P->available_for_renaming set);
1306     - it should not be in the HARD_REGS_USED regset;
1307     - it should be in the class compatible with original uses;
1308     - it should not be clobbered through reference with different mode;
1309     - if we're in the leaf function, then the new register should
1310       not be in the LEAF_REGISTERS;
1311     - etc.
1312 
1313    If several registers meet the conditions, the register with smallest
1314    tick is returned to achieve more even register allocation.
1315 
1316    If original register seems to be ok, we set *IS_ORIG_REG_P_PTR to true.
1317 
1318    If no register satisfies the above conditions, NULL_RTX is returned.  */
1319 static rtx
choose_best_reg_1(HARD_REG_SET hard_regs_used,struct reg_rename * reg_rename_p,def_list_t original_insns,bool * is_orig_reg_p_ptr)1320 choose_best_reg_1 (HARD_REG_SET hard_regs_used,
1321                    struct reg_rename *reg_rename_p,
1322                    def_list_t original_insns, bool *is_orig_reg_p_ptr)
1323 {
1324   int best_new_reg;
1325   unsigned cur_reg;
1326   machine_mode mode = VOIDmode;
1327   unsigned regno, i, n;
1328   hard_reg_set_iterator hrsi;
1329   def_list_iterator di;
1330   def_t def;
1331 
1332   /* If original register is available, return it.  */
1333   *is_orig_reg_p_ptr = true;
1334 
1335   FOR_EACH_DEF (def, di, original_insns)
1336     {
1337       rtx orig_dest = SET_DEST (PATTERN (def->orig_insn));
1338 
1339       gcc_assert (REG_P (orig_dest));
1340 
1341       /* Check that all original operations have the same mode.
1342          This is done for the next loop; if we'd return from this
1343          loop, we'd check only part of them, but in this case
1344          it doesn't matter.  */
1345       if (mode == VOIDmode)
1346         mode = GET_MODE (orig_dest);
1347       gcc_assert (mode == GET_MODE (orig_dest));
1348 
1349       regno = REGNO (orig_dest);
1350       for (i = 0, n = hard_regno_nregs[regno][mode]; i < n; i++)
1351         if (TEST_HARD_REG_BIT (hard_regs_used, regno + i))
1352           break;
1353 
1354       /* All hard registers are available.  */
1355       if (i == n)
1356         {
1357           gcc_assert (mode != VOIDmode);
1358 
1359           /* Hard registers should not be shared.  */
1360           return gen_rtx_REG (mode, regno);
1361         }
1362     }
1363 
1364   *is_orig_reg_p_ptr = false;
1365   best_new_reg = -1;
1366 
1367   /* Among all available regs choose the register that was
1368      allocated earliest.  */
1369   EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1370                                   0, cur_reg, hrsi)
1371     if (! TEST_HARD_REG_BIT (hard_regs_used, cur_reg))
1372       {
1373 	/* Check that all hard regs for mode are available.  */
1374 	for (i = 1, n = hard_regno_nregs[cur_reg][mode]; i < n; i++)
1375 	  if (TEST_HARD_REG_BIT (hard_regs_used, cur_reg + i)
1376 	      || !TEST_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1377 				     cur_reg + i))
1378 	    break;
1379 
1380 	if (i < n)
1381 	  continue;
1382 
1383         /* All hard registers are available.  */
1384         if (best_new_reg < 0
1385             || reg_rename_tick[cur_reg] < reg_rename_tick[best_new_reg])
1386           {
1387             best_new_reg = cur_reg;
1388 
1389             /* Return immediately when we know there's no better reg.  */
1390             if (! reg_rename_tick[best_new_reg])
1391               break;
1392           }
1393       }
1394 
1395   if (best_new_reg >= 0)
1396     {
1397       /* Use the check from the above loop.  */
1398       gcc_assert (mode != VOIDmode);
1399       return gen_rtx_REG (mode, best_new_reg);
1400     }
1401 
1402   return NULL_RTX;
1403 }
1404 
1405 /* A wrapper around choose_best_reg_1 () to verify that we make correct
1406    assumptions about available registers in the function.  */
1407 static rtx
choose_best_reg(HARD_REG_SET hard_regs_used,struct reg_rename * reg_rename_p,def_list_t original_insns,bool * is_orig_reg_p_ptr)1408 choose_best_reg (HARD_REG_SET hard_regs_used, struct reg_rename *reg_rename_p,
1409                  def_list_t original_insns, bool *is_orig_reg_p_ptr)
1410 {
1411   rtx best_reg = choose_best_reg_1 (hard_regs_used, reg_rename_p,
1412                                     original_insns, is_orig_reg_p_ptr);
1413 
1414   /* FIXME loop over hard_regno_nregs here.  */
1415   gcc_assert (best_reg == NULL_RTX
1416 	      || TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, REGNO (best_reg)));
1417 
1418   return best_reg;
1419 }
1420 
1421 /* Choose the pseudo register for storing rhs value.  As this is supposed
1422    to work before reload, we return either the original register or make
1423    the new one.  The parameters are the same that in choose_nest_reg_1
1424    functions, except that USED_REGS may contain pseudos.
1425    If we work with hard regs, check also REG_RENAME_P->UNAVAILABLE_HARD_REGS.
1426 
1427    TODO: take into account register pressure while doing this.  Up to this
1428    moment, this function would never return NULL for pseudos, but we should
1429    not rely on this.  */
1430 static rtx
choose_best_pseudo_reg(regset used_regs,struct reg_rename * reg_rename_p,def_list_t original_insns,bool * is_orig_reg_p_ptr)1431 choose_best_pseudo_reg (regset used_regs,
1432                         struct reg_rename *reg_rename_p,
1433                         def_list_t original_insns, bool *is_orig_reg_p_ptr)
1434 {
1435   def_list_iterator i;
1436   def_t def;
1437   machine_mode mode = VOIDmode;
1438   bool bad_hard_regs = false;
1439 
1440   /* We should not use this after reload.  */
1441   gcc_assert (!reload_completed);
1442 
1443   /* If original register is available, return it.  */
1444   *is_orig_reg_p_ptr = true;
1445 
1446   FOR_EACH_DEF (def, i, original_insns)
1447     {
1448       rtx dest = SET_DEST (PATTERN (def->orig_insn));
1449       int orig_regno;
1450 
1451       gcc_assert (REG_P (dest));
1452 
1453       /* Check that all original operations have the same mode.  */
1454       if (mode == VOIDmode)
1455         mode = GET_MODE (dest);
1456       else
1457         gcc_assert (mode == GET_MODE (dest));
1458       orig_regno = REGNO (dest);
1459 
1460       /* Check that nothing in used_regs intersects with orig_regno.  When
1461 	 we have a hard reg here, still loop over hard_regno_nregs.  */
1462       if (HARD_REGISTER_NUM_P (orig_regno))
1463 	{
1464 	  int j, n;
1465 	  for (j = 0, n = hard_regno_nregs[orig_regno][mode]; j < n; j++)
1466 	    if (REGNO_REG_SET_P (used_regs, orig_regno + j))
1467 	      break;
1468 	  if (j < n)
1469 	    continue;
1470 	}
1471       else
1472 	{
1473 	  if (REGNO_REG_SET_P (used_regs, orig_regno))
1474 	    continue;
1475 	}
1476       if (HARD_REGISTER_NUM_P (orig_regno))
1477 	{
1478 	  gcc_assert (df_regs_ever_live_p (orig_regno));
1479 
1480 	  /* For hard registers, we have to check hardware imposed
1481 	     limitations (frame/stack registers, calls crossed).  */
1482 	  if (!TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
1483 				  orig_regno))
1484 	    {
1485 	      /* Don't let register cross a call if it doesn't already
1486 		 cross one.  This condition is written in accordance with
1487 		 that in sched-deps.c sched_analyze_reg().  */
1488 	      if (!reg_rename_p->crosses_call
1489 		  || REG_N_CALLS_CROSSED (orig_regno) > 0)
1490 		return gen_rtx_REG (mode, orig_regno);
1491 	    }
1492 
1493 	  bad_hard_regs = true;
1494 	}
1495       else
1496 	return dest;
1497     }
1498 
1499   *is_orig_reg_p_ptr = false;
1500 
1501   /* We had some original hard registers that couldn't be used.
1502      Those were likely special.  Don't try to create a pseudo.  */
1503   if (bad_hard_regs)
1504     return NULL_RTX;
1505 
1506   /* We haven't found a register from original operations.  Get a new one.
1507      FIXME: control register pressure somehow.  */
1508   {
1509     rtx new_reg = gen_reg_rtx (mode);
1510 
1511     gcc_assert (mode != VOIDmode);
1512 
1513     max_regno = max_reg_num ();
1514     maybe_extend_reg_info_p ();
1515     REG_N_CALLS_CROSSED (REGNO (new_reg)) = reg_rename_p->crosses_call ? 1 : 0;
1516 
1517     return new_reg;
1518   }
1519 }
1520 
1521 /* True when target of EXPR is available due to EXPR_TARGET_AVAILABLE,
1522    USED_REGS and REG_RENAME_P->UNAVAILABLE_HARD_REGS.  */
1523 static void
verify_target_availability(expr_t expr,regset used_regs,struct reg_rename * reg_rename_p)1524 verify_target_availability (expr_t expr, regset used_regs,
1525 			    struct reg_rename *reg_rename_p)
1526 {
1527   unsigned n, i, regno;
1528   machine_mode mode;
1529   bool target_available, live_available, hard_available;
1530 
1531   if (!REG_P (EXPR_LHS (expr)) || EXPR_TARGET_AVAILABLE (expr) < 0)
1532     return;
1533 
1534   regno = expr_dest_regno (expr);
1535   mode = GET_MODE (EXPR_LHS (expr));
1536   target_available = EXPR_TARGET_AVAILABLE (expr) == 1;
1537   n = HARD_REGISTER_NUM_P (regno) ? hard_regno_nregs[regno][mode] : 1;
1538 
1539   live_available = hard_available = true;
1540   for (i = 0; i < n; i++)
1541     {
1542       if (bitmap_bit_p (used_regs, regno + i))
1543         live_available = false;
1544       if (TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno + i))
1545         hard_available = false;
1546     }
1547 
1548   /* When target is not available, it may be due to hard register
1549      restrictions, e.g. crosses calls, so we check hard_available too.  */
1550   if (target_available)
1551     gcc_assert (live_available);
1552   else
1553     /* Check only if we haven't scheduled something on the previous fence,
1554        cause due to MAX_SOFTWARE_LOOKAHEAD_WINDOW_SIZE issues
1555        and having more than one fence, we may end having targ_un in a block
1556        in which successors target register is actually available.
1557 
1558        The last condition handles the case when a dependence from a call insn
1559        was created in sched-deps.c for insns with destination registers that
1560        never crossed a call before, but do cross one after our code motion.
1561 
1562        FIXME: in the latter case, we just uselessly called find_used_regs,
1563        because we can't move this expression with any other register
1564        as well.  */
1565     gcc_assert (scheduled_something_on_previous_fence || !live_available
1566 		|| !hard_available
1567 		|| (!reload_completed && reg_rename_p->crosses_call
1568 		    && REG_N_CALLS_CROSSED (regno) == 0));
1569 }
1570 
1571 /* Collect unavailable registers due to liveness for EXPR from BNDS
1572    into USED_REGS.  Save additional information about available
1573    registers and unavailable due to hardware restriction registers
1574    into REG_RENAME_P structure.  Save original insns into ORIGINAL_INSNS
1575    list.  */
1576 static void
collect_unavailable_regs_from_bnds(expr_t expr,blist_t bnds,regset used_regs,struct reg_rename * reg_rename_p,def_list_t * original_insns)1577 collect_unavailable_regs_from_bnds (expr_t expr, blist_t bnds, regset used_regs,
1578 				    struct reg_rename *reg_rename_p,
1579 				    def_list_t *original_insns)
1580 {
1581   for (; bnds; bnds = BLIST_NEXT (bnds))
1582     {
1583       bool res;
1584       av_set_t orig_ops = NULL;
1585       bnd_t bnd = BLIST_BND (bnds);
1586 
1587       /* If the chosen best expr doesn't belong to current boundary,
1588 	 skip it.  */
1589       if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr)))
1590 	continue;
1591 
1592       /* Put in ORIG_OPS all exprs from this boundary that became
1593 	 RES on top.  */
1594       orig_ops = find_sequential_best_exprs (bnd, expr, false);
1595 
1596       /* Compute used regs and OR it into the USED_REGS.  */
1597       res = find_used_regs (BND_TO (bnd), orig_ops, used_regs,
1598 			    reg_rename_p, original_insns);
1599 
1600       /* FIXME: the assert is true until we'd have several boundaries.  */
1601       gcc_assert (res);
1602       av_set_clear (&orig_ops);
1603     }
1604 }
1605 
1606 /* Return TRUE if it is possible to replace LHSes of ORIG_INSNS with BEST_REG.
1607    If BEST_REG is valid, replace LHS of EXPR with it.  */
1608 static bool
try_replace_dest_reg(ilist_t orig_insns,rtx best_reg,expr_t expr)1609 try_replace_dest_reg (ilist_t orig_insns, rtx best_reg, expr_t expr)
1610 {
1611   /* Try whether we'll be able to generate the insn
1612      'dest := best_reg' at the place of the original operation.  */
1613   for (; orig_insns; orig_insns = ILIST_NEXT (orig_insns))
1614     {
1615       insn_t orig_insn = DEF_LIST_DEF (orig_insns)->orig_insn;
1616 
1617       gcc_assert (EXPR_SEPARABLE_P (INSN_EXPR (orig_insn)));
1618 
1619       if (REGNO (best_reg) != REGNO (INSN_LHS (orig_insn))
1620 	  && (! replace_src_with_reg_ok_p (orig_insn, best_reg)
1621 	      || ! replace_dest_with_reg_ok_p (orig_insn, best_reg)))
1622 	return false;
1623     }
1624 
1625   /* Make sure that EXPR has the right destination
1626      register.  */
1627   if (expr_dest_regno (expr) != REGNO (best_reg))
1628     replace_dest_with_reg_in_expr (expr, best_reg);
1629   else
1630     EXPR_TARGET_AVAILABLE (expr) = 1;
1631 
1632   return true;
1633 }
1634 
1635 /* Select and assign best register to EXPR searching from BNDS.
1636    Set *IS_ORIG_REG_P to TRUE if original register was selected.
1637    Return FALSE if no register can be chosen, which could happen when:
1638    * EXPR_SEPARABLE_P is true but we were unable to find suitable register;
1639    * EXPR_SEPARABLE_P is false but the insn sets/clobbers one of the registers
1640      that are used on the moving path.  */
1641 static bool
find_best_reg_for_expr(expr_t expr,blist_t bnds,bool * is_orig_reg_p)1642 find_best_reg_for_expr (expr_t expr, blist_t bnds, bool *is_orig_reg_p)
1643 {
1644   static struct reg_rename reg_rename_data;
1645 
1646   regset used_regs;
1647   def_list_t original_insns = NULL;
1648   bool reg_ok;
1649 
1650   *is_orig_reg_p = false;
1651 
1652   /* Don't bother to do anything if this insn doesn't set any registers.  */
1653   if (bitmap_empty_p (VINSN_REG_SETS (EXPR_VINSN (expr)))
1654       && bitmap_empty_p (VINSN_REG_CLOBBERS (EXPR_VINSN (expr))))
1655     return true;
1656 
1657   used_regs = get_clear_regset_from_pool ();
1658   CLEAR_HARD_REG_SET (reg_rename_data.unavailable_hard_regs);
1659 
1660   collect_unavailable_regs_from_bnds (expr, bnds, used_regs, &reg_rename_data,
1661 				      &original_insns);
1662 
1663   /* If after reload, make sure we're working with hard regs here.  */
1664   if (flag_checking && reload_completed)
1665     {
1666       reg_set_iterator rsi;
1667       unsigned i;
1668 
1669       EXECUTE_IF_SET_IN_REG_SET (used_regs, FIRST_PSEUDO_REGISTER, i, rsi)
1670         gcc_unreachable ();
1671     }
1672 
1673   if (EXPR_SEPARABLE_P (expr))
1674     {
1675       rtx best_reg = NULL_RTX;
1676       /* Check that we have computed availability of a target register
1677 	 correctly.  */
1678       verify_target_availability (expr, used_regs, &reg_rename_data);
1679 
1680       /* Turn everything in hard regs after reload.  */
1681       if (reload_completed)
1682 	{
1683 	  HARD_REG_SET hard_regs_used;
1684 	  REG_SET_TO_HARD_REG_SET (hard_regs_used, used_regs);
1685 
1686 	  /* Join hard registers unavailable due to register class
1687 	     restrictions and live range intersection.  */
1688 	  IOR_HARD_REG_SET (hard_regs_used,
1689 			    reg_rename_data.unavailable_hard_regs);
1690 
1691 	  best_reg = choose_best_reg (hard_regs_used, &reg_rename_data,
1692 				      original_insns, is_orig_reg_p);
1693 	}
1694       else
1695 	best_reg = choose_best_pseudo_reg (used_regs, &reg_rename_data,
1696 					   original_insns, is_orig_reg_p);
1697 
1698       if (!best_reg)
1699 	reg_ok = false;
1700       else if (*is_orig_reg_p)
1701 	{
1702 	  /* In case of unification BEST_REG may be different from EXPR's LHS
1703 	     when EXPR's LHS is unavailable, and there is another LHS among
1704 	     ORIGINAL_INSNS.  */
1705 	  reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1706 	}
1707       else
1708 	{
1709 	  /* Forbid renaming of low-cost insns.  */
1710 	  if (sel_vinsn_cost (EXPR_VINSN (expr)) < 2)
1711 	    reg_ok = false;
1712 	  else
1713 	    reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1714 	}
1715     }
1716   else
1717     {
1718       /* If !EXPR_SCHEDULE_AS_RHS (EXPR), just make sure INSN doesn't set
1719 	 any of the HARD_REGS_USED set.  */
1720       if (vinsn_writes_one_of_regs_p (EXPR_VINSN (expr), used_regs,
1721 				      reg_rename_data.unavailable_hard_regs))
1722 	{
1723 	  reg_ok = false;
1724 	  gcc_assert (EXPR_TARGET_AVAILABLE (expr) <= 0);
1725 	}
1726       else
1727 	{
1728 	  reg_ok = true;
1729 	  gcc_assert (EXPR_TARGET_AVAILABLE (expr) != 0);
1730 	}
1731     }
1732 
1733   ilist_clear (&original_insns);
1734   return_regset_to_pool (used_regs);
1735 
1736   return reg_ok;
1737 }
1738 
1739 
1740 /* Return true if dependence described by DS can be overcomed.  */
1741 static bool
can_speculate_dep_p(ds_t ds)1742 can_speculate_dep_p (ds_t ds)
1743 {
1744   if (spec_info == NULL)
1745     return false;
1746 
1747   /* Leave only speculative data.  */
1748   ds &= SPECULATIVE;
1749 
1750   if (ds == 0)
1751     return false;
1752 
1753   {
1754     /* FIXME: make sched-deps.c produce only those non-hard dependencies,
1755        that we can overcome.  */
1756     ds_t spec_mask = spec_info->mask;
1757 
1758     if ((ds & spec_mask) != ds)
1759       return false;
1760   }
1761 
1762   if (ds_weak (ds) < spec_info->data_weakness_cutoff)
1763     return false;
1764 
1765   return true;
1766 }
1767 
1768 /* Get a speculation check instruction.
1769    C_EXPR is a speculative expression,
1770    CHECK_DS describes speculations that should be checked,
1771    ORIG_INSN is the original non-speculative insn in the stream.  */
1772 static insn_t
create_speculation_check(expr_t c_expr,ds_t check_ds,insn_t orig_insn)1773 create_speculation_check (expr_t c_expr, ds_t check_ds, insn_t orig_insn)
1774 {
1775   rtx check_pattern;
1776   rtx_insn *insn_rtx;
1777   insn_t insn;
1778   basic_block recovery_block;
1779   rtx_insn *label;
1780 
1781   /* Create a recovery block if target is going to emit branchy check, or if
1782      ORIG_INSN was speculative already.  */
1783   if (targetm.sched.needs_block_p (check_ds)
1784       || EXPR_SPEC_DONE_DS (INSN_EXPR (orig_insn)) != 0)
1785     {
1786       recovery_block = sel_create_recovery_block (orig_insn);
1787       label = BB_HEAD (recovery_block);
1788     }
1789   else
1790     {
1791       recovery_block = NULL;
1792       label = NULL;
1793     }
1794 
1795   /* Get pattern of the check.  */
1796   check_pattern = targetm.sched.gen_spec_check (EXPR_INSN_RTX (c_expr), label,
1797 						check_ds);
1798 
1799   gcc_assert (check_pattern != NULL);
1800 
1801   /* Emit check.  */
1802   insn_rtx = create_insn_rtx_from_pattern (check_pattern, label);
1803 
1804   insn = sel_gen_insn_from_rtx_after (insn_rtx, INSN_EXPR (orig_insn),
1805 				      INSN_SEQNO (orig_insn), orig_insn);
1806 
1807   /* Make check to be non-speculative.  */
1808   EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
1809   INSN_SPEC_CHECKED_DS (insn) = check_ds;
1810 
1811   /* Decrease priority of check by difference of load/check instruction
1812      latencies.  */
1813   EXPR_PRIORITY (INSN_EXPR (insn)) -= (sel_vinsn_cost (INSN_VINSN (orig_insn))
1814 				       - sel_vinsn_cost (INSN_VINSN (insn)));
1815 
1816   /* Emit copy of original insn (though with replaced target register,
1817      if needed) to the recovery block.  */
1818   if (recovery_block != NULL)
1819     {
1820       rtx twin_rtx;
1821 
1822       twin_rtx = copy_rtx (PATTERN (EXPR_INSN_RTX (c_expr)));
1823       twin_rtx = create_insn_rtx_from_pattern (twin_rtx, NULL_RTX);
1824       sel_gen_recovery_insn_from_rtx_after (twin_rtx,
1825 					    INSN_EXPR (orig_insn),
1826 					    INSN_SEQNO (insn),
1827 					    bb_note (recovery_block));
1828     }
1829 
1830   /* If we've generated a data speculation check, make sure
1831      that all the bookkeeping instruction we'll create during
1832      this move_op () will allocate an ALAT entry so that the
1833      check won't fail.
1834      In case of control speculation we must convert C_EXPR to control
1835      speculative mode, because failing to do so will bring us an exception
1836      thrown by the non-control-speculative load.  */
1837   check_ds = ds_get_max_dep_weak (check_ds);
1838   speculate_expr (c_expr, check_ds);
1839 
1840   return insn;
1841 }
1842 
1843 /* True when INSN is a "regN = regN" copy.  */
1844 static bool
identical_copy_p(rtx_insn * insn)1845 identical_copy_p (rtx_insn *insn)
1846 {
1847   rtx lhs, rhs, pat;
1848 
1849   pat = PATTERN (insn);
1850 
1851   if (GET_CODE (pat) != SET)
1852     return false;
1853 
1854   lhs = SET_DEST (pat);
1855   if (!REG_P (lhs))
1856     return false;
1857 
1858   rhs = SET_SRC (pat);
1859   if (!REG_P (rhs))
1860     return false;
1861 
1862   return REGNO (lhs) == REGNO (rhs);
1863 }
1864 
1865 /* Undo all transformations on *AV_PTR that were done when
1866    moving through INSN.  */
1867 static void
undo_transformations(av_set_t * av_ptr,rtx_insn * insn)1868 undo_transformations (av_set_t *av_ptr, rtx_insn *insn)
1869 {
1870   av_set_iterator av_iter;
1871   expr_t expr;
1872   av_set_t new_set = NULL;
1873 
1874   /* First, kill any EXPR that uses registers set by an insn.  This is
1875      required for correctness.  */
1876   FOR_EACH_EXPR_1 (expr, av_iter, av_ptr)
1877     if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (expr))
1878         && bitmap_intersect_p (INSN_REG_SETS (insn),
1879                                VINSN_REG_USES (EXPR_VINSN (expr)))
1880         /* When an insn looks like 'r1 = r1', we could substitute through
1881            it, but the above condition will still hold.  This happened with
1882            gcc.c-torture/execute/961125-1.c.  */
1883         && !identical_copy_p (insn))
1884       {
1885         if (sched_verbose >= 6)
1886           sel_print ("Expr %d removed due to use/set conflict\n",
1887                      INSN_UID (EXPR_INSN_RTX (expr)));
1888         av_set_iter_remove (&av_iter);
1889       }
1890 
1891   /* Undo transformations looking at the history vector.  */
1892   FOR_EACH_EXPR (expr, av_iter, *av_ptr)
1893     {
1894       int index = find_in_history_vect (EXPR_HISTORY_OF_CHANGES (expr),
1895                                         insn, EXPR_VINSN (expr), true);
1896 
1897       if (index >= 0)
1898         {
1899           expr_history_def *phist;
1900 
1901           phist = &EXPR_HISTORY_OF_CHANGES (expr)[index];
1902 
1903           switch (phist->type)
1904             {
1905             case TRANS_SPECULATION:
1906               {
1907                 ds_t old_ds, new_ds;
1908 
1909                 /* Compute the difference between old and new speculative
1910                    statuses: that's what we need to check.
1911                    Earlier we used to assert that the status will really
1912                    change.  This no longer works because only the probability
1913                    bits in the status may have changed during compute_av_set,
1914                    and in the case of merging different probabilities of the
1915                    same speculative status along different paths we do not
1916                    record this in the history vector.  */
1917                 old_ds = phist->spec_ds;
1918                 new_ds = EXPR_SPEC_DONE_DS (expr);
1919 
1920                 old_ds &= SPECULATIVE;
1921                 new_ds &= SPECULATIVE;
1922                 new_ds &= ~old_ds;
1923 
1924                 EXPR_SPEC_TO_CHECK_DS (expr) |= new_ds;
1925                 break;
1926               }
1927             case TRANS_SUBSTITUTION:
1928               {
1929                 expr_def _tmp_expr, *tmp_expr = &_tmp_expr;
1930                 vinsn_t new_vi;
1931                 bool add = true;
1932 
1933                 new_vi = phist->old_expr_vinsn;
1934 
1935                 gcc_assert (VINSN_SEPARABLE_P (new_vi)
1936                             == EXPR_SEPARABLE_P (expr));
1937                 copy_expr (tmp_expr, expr);
1938 
1939                 if (vinsn_equal_p (phist->new_expr_vinsn,
1940                                    EXPR_VINSN (tmp_expr)))
1941                   change_vinsn_in_expr (tmp_expr, new_vi);
1942                 else
1943                   /* This happens when we're unsubstituting on a bookkeeping
1944                      copy, which was in turn substituted.  The history is wrong
1945                      in this case.  Do it the hard way.  */
1946                   add = substitute_reg_in_expr (tmp_expr, insn, true);
1947                 if (add)
1948                   av_set_add (&new_set, tmp_expr);
1949                 clear_expr (tmp_expr);
1950                 break;
1951               }
1952             default:
1953               gcc_unreachable ();
1954             }
1955         }
1956 
1957     }
1958 
1959   av_set_union_and_clear (av_ptr, &new_set, NULL);
1960 }
1961 
1962 
1963 /* Moveup_* helpers for code motion and computing av sets.  */
1964 
1965 /* Propagates EXPR inside an insn group through THROUGH_INSN.
1966    The difference from the below function is that only substitution is
1967    performed.  */
1968 static enum MOVEUP_EXPR_CODE
moveup_expr_inside_insn_group(expr_t expr,insn_t through_insn)1969 moveup_expr_inside_insn_group (expr_t expr, insn_t through_insn)
1970 {
1971   vinsn_t vi = EXPR_VINSN (expr);
1972   ds_t *has_dep_p;
1973   ds_t full_ds;
1974 
1975   /* Do this only inside insn group.  */
1976   gcc_assert (INSN_SCHED_CYCLE (through_insn) > 0);
1977 
1978   full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
1979   if (full_ds == 0)
1980     return MOVEUP_EXPR_SAME;
1981 
1982   /* Substitution is the possible choice in this case.  */
1983   if (has_dep_p[DEPS_IN_RHS])
1984     {
1985       /* Can't substitute UNIQUE VINSNs.  */
1986       gcc_assert (!VINSN_UNIQUE_P (vi));
1987 
1988       if (can_substitute_through_p (through_insn,
1989                                     has_dep_p[DEPS_IN_RHS])
1990           && substitute_reg_in_expr (expr, through_insn, false))
1991         {
1992           EXPR_WAS_SUBSTITUTED (expr) = true;
1993           return MOVEUP_EXPR_CHANGED;
1994         }
1995 
1996       /* Don't care about this, as even true dependencies may be allowed
1997          in an insn group.  */
1998       return MOVEUP_EXPR_SAME;
1999     }
2000 
2001   /* This can catch output dependencies in COND_EXECs.  */
2002   if (has_dep_p[DEPS_IN_INSN])
2003     return MOVEUP_EXPR_NULL;
2004 
2005   /* This is either an output or an anti dependence, which usually have
2006      a zero latency.  Allow this here, if we'd be wrong, tick_check_p
2007      will fix this.  */
2008   gcc_assert (has_dep_p[DEPS_IN_LHS]);
2009   return MOVEUP_EXPR_AS_RHS;
2010 }
2011 
2012 /* True when a trapping EXPR cannot be moved through THROUGH_INSN.  */
2013 #define CANT_MOVE_TRAPPING(expr, through_insn)                \
2014   (VINSN_MAY_TRAP_P (EXPR_VINSN (expr))                       \
2015    && !sel_insn_has_single_succ_p ((through_insn), SUCCS_ALL) \
2016    && !sel_insn_is_speculation_check (through_insn))
2017 
2018 /* True when a conflict on a target register was found during moveup_expr.  */
2019 static bool was_target_conflict = false;
2020 
2021 /* Return true when moving a debug INSN across THROUGH_INSN will
2022    create a bookkeeping block.  We don't want to create such blocks,
2023    for they would cause codegen differences between compilations with
2024    and without debug info.  */
2025 
2026 static bool
moving_insn_creates_bookkeeping_block_p(insn_t insn,insn_t through_insn)2027 moving_insn_creates_bookkeeping_block_p (insn_t insn,
2028 					 insn_t through_insn)
2029 {
2030   basic_block bbi, bbt;
2031   edge e1, e2;
2032   edge_iterator ei1, ei2;
2033 
2034   if (!bookkeeping_can_be_created_if_moved_through_p (through_insn))
2035     {
2036       if (sched_verbose >= 9)
2037 	sel_print ("no bookkeeping required: ");
2038       return FALSE;
2039     }
2040 
2041   bbi = BLOCK_FOR_INSN (insn);
2042 
2043   if (EDGE_COUNT (bbi->preds) == 1)
2044     {
2045       if (sched_verbose >= 9)
2046 	sel_print ("only one pred edge: ");
2047       return TRUE;
2048     }
2049 
2050   bbt = BLOCK_FOR_INSN (through_insn);
2051 
2052   FOR_EACH_EDGE (e1, ei1, bbt->succs)
2053     {
2054       FOR_EACH_EDGE (e2, ei2, bbi->preds)
2055 	{
2056 	  if (find_block_for_bookkeeping (e1, e2, TRUE))
2057 	    {
2058 	      if (sched_verbose >= 9)
2059 		sel_print ("found existing block: ");
2060 	      return FALSE;
2061 	    }
2062 	}
2063     }
2064 
2065   if (sched_verbose >= 9)
2066     sel_print ("would create bookkeeping block: ");
2067 
2068   return TRUE;
2069 }
2070 
2071 /* Return true when the conflict with newly created implicit clobbers
2072    between EXPR and THROUGH_INSN is found because of renaming.  */
2073 static bool
implicit_clobber_conflict_p(insn_t through_insn,expr_t expr)2074 implicit_clobber_conflict_p (insn_t through_insn, expr_t expr)
2075 {
2076   HARD_REG_SET temp;
2077   rtx_insn *insn;
2078   rtx reg, rhs, pat;
2079   hard_reg_set_iterator hrsi;
2080   unsigned regno;
2081   bool valid;
2082 
2083   /* Make a new pseudo register.  */
2084   reg = gen_reg_rtx (GET_MODE (EXPR_LHS (expr)));
2085   max_regno = max_reg_num ();
2086   maybe_extend_reg_info_p ();
2087 
2088   /* Validate a change and bail out early.  */
2089   insn = EXPR_INSN_RTX (expr);
2090   validate_change (insn, &SET_DEST (PATTERN (insn)), reg, true);
2091   valid = verify_changes (0);
2092   cancel_changes (0);
2093   if (!valid)
2094     {
2095       if (sched_verbose >= 6)
2096 	sel_print ("implicit clobbers failed validation, ");
2097       return true;
2098     }
2099 
2100   /* Make a new insn with it.  */
2101   rhs = copy_rtx (VINSN_RHS (EXPR_VINSN (expr)));
2102   pat = gen_rtx_SET (reg, rhs);
2103   start_sequence ();
2104   insn = emit_insn (pat);
2105   end_sequence ();
2106 
2107   /* Calculate implicit clobbers.  */
2108   extract_insn (insn);
2109   preprocess_constraints (insn);
2110   alternative_mask prefrred = get_preferred_alternatives (insn);
2111   ira_implicitly_set_insn_hard_regs (&temp, prefrred);
2112   AND_COMPL_HARD_REG_SET (temp, ira_no_alloc_regs);
2113 
2114   /* If any implicit clobber registers intersect with regular ones in
2115      through_insn, we have a dependency and thus bail out.  */
2116   EXECUTE_IF_SET_IN_HARD_REG_SET (temp, 0, regno, hrsi)
2117     {
2118       vinsn_t vi = INSN_VINSN (through_insn);
2119       if (bitmap_bit_p (VINSN_REG_SETS (vi), regno)
2120 	  || bitmap_bit_p (VINSN_REG_CLOBBERS (vi), regno)
2121 	  || bitmap_bit_p (VINSN_REG_USES (vi), regno))
2122 	return true;
2123     }
2124 
2125   return false;
2126 }
2127 
2128 /* Modifies EXPR so it can be moved through the THROUGH_INSN,
2129    performing necessary transformations.  Record the type of transformation
2130    made in PTRANS_TYPE, when it is not NULL.  When INSIDE_INSN_GROUP,
2131    permit all dependencies except true ones, and try to remove those
2132    too via forward substitution.  All cases when a non-eliminable
2133    non-zero cost dependency exists inside an insn group will be fixed
2134    in tick_check_p instead.  */
2135 static enum MOVEUP_EXPR_CODE
moveup_expr(expr_t expr,insn_t through_insn,bool inside_insn_group,enum local_trans_type * ptrans_type)2136 moveup_expr (expr_t expr, insn_t through_insn, bool inside_insn_group,
2137             enum local_trans_type *ptrans_type)
2138 {
2139   vinsn_t vi = EXPR_VINSN (expr);
2140   insn_t insn = VINSN_INSN_RTX (vi);
2141   bool was_changed = false;
2142   bool as_rhs = false;
2143   ds_t *has_dep_p;
2144   ds_t full_ds;
2145 
2146   /* ??? We use dependencies of non-debug insns on debug insns to
2147      indicate that the debug insns need to be reset if the non-debug
2148      insn is pulled ahead of it.  It's hard to figure out how to
2149      introduce such a notion in sel-sched, but it already fails to
2150      support debug insns in other ways, so we just go ahead and
2151      let the deug insns go corrupt for now.  */
2152   if (DEBUG_INSN_P (through_insn) && !DEBUG_INSN_P (insn))
2153     return MOVEUP_EXPR_SAME;
2154 
2155   /* When inside_insn_group, delegate to the helper.  */
2156   if (inside_insn_group)
2157     return moveup_expr_inside_insn_group (expr, through_insn);
2158 
2159   /* Deal with unique insns and control dependencies.  */
2160   if (VINSN_UNIQUE_P (vi))
2161     {
2162       /* We can move jumps without side-effects or jumps that are
2163 	 mutually exclusive with instruction THROUGH_INSN (all in cases
2164 	 dependencies allow to do so and jump is not speculative).  */
2165       if (control_flow_insn_p (insn))
2166         {
2167           basic_block fallthru_bb;
2168 
2169           /* Do not move checks and do not move jumps through other
2170              jumps.  */
2171           if (control_flow_insn_p (through_insn)
2172               || sel_insn_is_speculation_check (insn))
2173             return MOVEUP_EXPR_NULL;
2174 
2175           /* Don't move jumps through CFG joins.  */
2176           if (bookkeeping_can_be_created_if_moved_through_p (through_insn))
2177             return MOVEUP_EXPR_NULL;
2178 
2179           /* The jump should have a clear fallthru block, and
2180              this block should be in the current region.  */
2181           if ((fallthru_bb = fallthru_bb_of_jump (insn)) == NULL
2182               || ! in_current_region_p (fallthru_bb))
2183             return MOVEUP_EXPR_NULL;
2184 
2185           /* And it should be mutually exclusive with through_insn.  */
2186           if (! sched_insns_conditions_mutex_p (insn, through_insn)
2187 	      && ! DEBUG_INSN_P (through_insn))
2188             return MOVEUP_EXPR_NULL;
2189         }
2190 
2191       /* Don't move what we can't move.  */
2192       if (EXPR_CANT_MOVE (expr)
2193 	  && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn))
2194 	return MOVEUP_EXPR_NULL;
2195 
2196       /* Don't move SCHED_GROUP instruction through anything.
2197          If we don't force this, then it will be possible to start
2198          scheduling a sched_group before all its dependencies are
2199          resolved.
2200          ??? Haifa deals with this issue by delaying the SCHED_GROUP
2201          as late as possible through rank_for_schedule.  */
2202       if (SCHED_GROUP_P (insn))
2203 	return MOVEUP_EXPR_NULL;
2204     }
2205   else
2206     gcc_assert (!control_flow_insn_p (insn));
2207 
2208   /* Don't move debug insns if this would require bookkeeping.  */
2209   if (DEBUG_INSN_P (insn)
2210       && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn)
2211       && moving_insn_creates_bookkeeping_block_p (insn, through_insn))
2212     return MOVEUP_EXPR_NULL;
2213 
2214   /* Deal with data dependencies.  */
2215   was_target_conflict = false;
2216   full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
2217   if (full_ds == 0)
2218     {
2219       if (!CANT_MOVE_TRAPPING (expr, through_insn))
2220 	return MOVEUP_EXPR_SAME;
2221     }
2222   else
2223     {
2224       /* We can move UNIQUE insn up only as a whole and unchanged,
2225          so it shouldn't have any dependencies.  */
2226       if (VINSN_UNIQUE_P (vi))
2227 	return MOVEUP_EXPR_NULL;
2228     }
2229 
2230   if (full_ds != 0 && can_speculate_dep_p (full_ds))
2231     {
2232       int res;
2233 
2234       res = speculate_expr (expr, full_ds);
2235       if (res >= 0)
2236 	{
2237           /* Speculation was successful.  */
2238           full_ds = 0;
2239           was_changed = (res > 0);
2240           if (res == 2)
2241             was_target_conflict = true;
2242           if (ptrans_type)
2243             *ptrans_type = TRANS_SPECULATION;
2244 	  sel_clear_has_dependence ();
2245 	}
2246     }
2247 
2248   if (has_dep_p[DEPS_IN_INSN])
2249     /* We have some dependency that cannot be discarded.  */
2250     return MOVEUP_EXPR_NULL;
2251 
2252   if (has_dep_p[DEPS_IN_LHS])
2253     {
2254       /* Only separable insns can be moved up with the new register.
2255          Anyways, we should mark that the original register is
2256          unavailable.  */
2257       if (!enable_schedule_as_rhs_p || !EXPR_SEPARABLE_P (expr))
2258         return MOVEUP_EXPR_NULL;
2259 
2260       /* When renaming a hard register to a pseudo before reload, extra
2261 	 dependencies can occur from the implicit clobbers of the insn.
2262 	 Filter out such cases here.  */
2263       if (!reload_completed && REG_P (EXPR_LHS (expr))
2264 	  && HARD_REGISTER_P (EXPR_LHS (expr))
2265 	  && implicit_clobber_conflict_p (through_insn, expr))
2266 	{
2267 	  if (sched_verbose >= 6)
2268 	    sel_print ("implicit clobbers conflict detected, ");
2269 	  return MOVEUP_EXPR_NULL;
2270 	}
2271       EXPR_TARGET_AVAILABLE (expr) = false;
2272       was_target_conflict = true;
2273       as_rhs = true;
2274     }
2275 
2276   /* At this point we have either separable insns, that will be lifted
2277      up only as RHSes, or non-separable insns with no dependency in lhs.
2278      If dependency is in RHS, then try to perform substitution and move up
2279      substituted RHS:
2280 
2281       Ex. 1:				  Ex.2
2282 	y = x;				    y = x;
2283 	z = y*2;			    y = y*2;
2284 
2285     In Ex.1 y*2 can be substituted for x*2 and the whole operation can be
2286     moved above y=x assignment as z=x*2.
2287 
2288     In Ex.2 y*2 also can be substituted for x*2, but only the right hand
2289     side can be moved because of the output dependency.  The operation was
2290     cropped to its rhs above.  */
2291   if (has_dep_p[DEPS_IN_RHS])
2292     {
2293       ds_t *rhs_dsp = &has_dep_p[DEPS_IN_RHS];
2294 
2295       /* Can't substitute UNIQUE VINSNs.  */
2296       gcc_assert (!VINSN_UNIQUE_P (vi));
2297 
2298       if (can_speculate_dep_p (*rhs_dsp))
2299 	{
2300           int res;
2301 
2302           res = speculate_expr (expr, *rhs_dsp);
2303           if (res >= 0)
2304             {
2305               /* Speculation was successful.  */
2306               *rhs_dsp = 0;
2307               was_changed = (res > 0);
2308               if (res == 2)
2309                 was_target_conflict = true;
2310               if (ptrans_type)
2311                 *ptrans_type = TRANS_SPECULATION;
2312             }
2313 	  else
2314 	    return MOVEUP_EXPR_NULL;
2315 	}
2316       else if (can_substitute_through_p (through_insn,
2317                                          *rhs_dsp)
2318                && substitute_reg_in_expr (expr, through_insn, false))
2319 	{
2320           /* ??? We cannot perform substitution AND speculation on the same
2321              insn.  */
2322           gcc_assert (!was_changed);
2323           was_changed = true;
2324           if (ptrans_type)
2325             *ptrans_type = TRANS_SUBSTITUTION;
2326           EXPR_WAS_SUBSTITUTED (expr) = true;
2327 	}
2328       else
2329 	return MOVEUP_EXPR_NULL;
2330     }
2331 
2332   /* Don't move trapping insns through jumps.
2333      This check should be at the end to give a chance to control speculation
2334      to perform its duties.  */
2335   if (CANT_MOVE_TRAPPING (expr, through_insn))
2336     return MOVEUP_EXPR_NULL;
2337 
2338   return (was_changed
2339           ? MOVEUP_EXPR_CHANGED
2340           : (as_rhs
2341              ? MOVEUP_EXPR_AS_RHS
2342              : MOVEUP_EXPR_SAME));
2343 }
2344 
2345 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2346    if successful.  When INSIDE_INSN_GROUP, also try ignore dependencies
2347    that can exist within a parallel group.  Write to RES the resulting
2348    code for moveup_expr.  */
2349 static bool
try_bitmap_cache(expr_t expr,insn_t insn,bool inside_insn_group,enum MOVEUP_EXPR_CODE * res)2350 try_bitmap_cache (expr_t expr, insn_t insn,
2351                   bool inside_insn_group,
2352                   enum MOVEUP_EXPR_CODE *res)
2353 {
2354   int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2355 
2356   /* First check whether we've analyzed this situation already.  */
2357   if (bitmap_bit_p (INSN_ANALYZED_DEPS (insn), expr_uid))
2358     {
2359       if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2360         {
2361           if (sched_verbose >= 6)
2362             sel_print ("removed (cached)\n");
2363           *res = MOVEUP_EXPR_NULL;
2364           return true;
2365         }
2366       else
2367         {
2368           if (sched_verbose >= 6)
2369             sel_print ("unchanged (cached)\n");
2370           *res = MOVEUP_EXPR_SAME;
2371           return true;
2372         }
2373     }
2374   else if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2375     {
2376       if (inside_insn_group)
2377         {
2378           if (sched_verbose >= 6)
2379             sel_print ("unchanged (as RHS, cached, inside insn group)\n");
2380           *res = MOVEUP_EXPR_SAME;
2381           return true;
2382 
2383         }
2384       else
2385         EXPR_TARGET_AVAILABLE (expr) = false;
2386 
2387       /* This is the only case when propagation result can change over time,
2388          as we can dynamically switch off scheduling as RHS.  In this case,
2389          just check the flag to reach the correct decision.  */
2390       if (enable_schedule_as_rhs_p)
2391         {
2392           if (sched_verbose >= 6)
2393             sel_print ("unchanged (as RHS, cached)\n");
2394           *res = MOVEUP_EXPR_AS_RHS;
2395           return true;
2396         }
2397       else
2398         {
2399           if (sched_verbose >= 6)
2400             sel_print ("removed (cached as RHS, but renaming"
2401                        " is now disabled)\n");
2402           *res = MOVEUP_EXPR_NULL;
2403           return true;
2404         }
2405     }
2406 
2407   return false;
2408 }
2409 
2410 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2411    if successful.  Write to RES the resulting code for moveup_expr.  */
2412 static bool
try_transformation_cache(expr_t expr,insn_t insn,enum MOVEUP_EXPR_CODE * res)2413 try_transformation_cache (expr_t expr, insn_t insn,
2414                           enum MOVEUP_EXPR_CODE *res)
2415 {
2416   struct transformed_insns *pti
2417     = (struct transformed_insns *)
2418     htab_find_with_hash (INSN_TRANSFORMED_INSNS (insn),
2419                          &EXPR_VINSN (expr),
2420                          VINSN_HASH_RTX (EXPR_VINSN (expr)));
2421   if (pti)
2422     {
2423       /* This EXPR was already moved through this insn and was
2424          changed as a result.  Fetch the proper data from
2425          the hashtable.  */
2426       insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2427                               INSN_UID (insn), pti->type,
2428                               pti->vinsn_old, pti->vinsn_new,
2429                               EXPR_SPEC_DONE_DS (expr));
2430 
2431       if (INSN_IN_STREAM_P (VINSN_INSN_RTX (pti->vinsn_new)))
2432         pti->vinsn_new = vinsn_copy (pti->vinsn_new, true);
2433       change_vinsn_in_expr (expr, pti->vinsn_new);
2434       if (pti->was_target_conflict)
2435         EXPR_TARGET_AVAILABLE (expr) = false;
2436       if (pti->type == TRANS_SPECULATION)
2437         {
2438           EXPR_SPEC_DONE_DS (expr) = pti->ds;
2439           EXPR_NEEDS_SPEC_CHECK_P (expr) |= pti->needs_check;
2440         }
2441 
2442       if (sched_verbose >= 6)
2443         {
2444           sel_print ("changed (cached): ");
2445           dump_expr (expr);
2446           sel_print ("\n");
2447         }
2448 
2449       *res = MOVEUP_EXPR_CHANGED;
2450       return true;
2451     }
2452 
2453   return false;
2454 }
2455 
2456 /* Update bitmap caches on INSN with result RES of propagating EXPR.  */
2457 static void
update_bitmap_cache(expr_t expr,insn_t insn,bool inside_insn_group,enum MOVEUP_EXPR_CODE res)2458 update_bitmap_cache (expr_t expr, insn_t insn, bool inside_insn_group,
2459                      enum MOVEUP_EXPR_CODE res)
2460 {
2461   int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2462 
2463   /* Do not cache result of propagating jumps through an insn group,
2464      as it is always true, which is not useful outside the group.  */
2465   if (inside_insn_group)
2466     return;
2467 
2468   if (res == MOVEUP_EXPR_NULL)
2469     {
2470       bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2471       bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2472     }
2473   else if (res == MOVEUP_EXPR_SAME)
2474     {
2475       bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2476       bitmap_clear_bit (INSN_FOUND_DEPS (insn), expr_uid);
2477     }
2478   else if (res == MOVEUP_EXPR_AS_RHS)
2479     {
2480       bitmap_clear_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2481       bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2482     }
2483   else
2484     gcc_unreachable ();
2485 }
2486 
2487 /* Update hashtable on INSN with changed EXPR, old EXPR_OLD_VINSN
2488    and transformation type TRANS_TYPE.  */
2489 static void
update_transformation_cache(expr_t expr,insn_t insn,bool inside_insn_group,enum local_trans_type trans_type,vinsn_t expr_old_vinsn)2490 update_transformation_cache (expr_t expr, insn_t insn,
2491                              bool inside_insn_group,
2492                              enum local_trans_type trans_type,
2493                              vinsn_t expr_old_vinsn)
2494 {
2495   struct transformed_insns *pti;
2496 
2497   if (inside_insn_group)
2498     return;
2499 
2500   pti = XNEW (struct transformed_insns);
2501   pti->vinsn_old = expr_old_vinsn;
2502   pti->vinsn_new = EXPR_VINSN (expr);
2503   pti->type = trans_type;
2504   pti->was_target_conflict = was_target_conflict;
2505   pti->ds = EXPR_SPEC_DONE_DS (expr);
2506   pti->needs_check = EXPR_NEEDS_SPEC_CHECK_P (expr);
2507   vinsn_attach (pti->vinsn_old);
2508   vinsn_attach (pti->vinsn_new);
2509   *((struct transformed_insns **)
2510     htab_find_slot_with_hash (INSN_TRANSFORMED_INSNS (insn),
2511                               pti, VINSN_HASH_RTX (expr_old_vinsn),
2512                               INSERT)) = pti;
2513 }
2514 
2515 /* Same as moveup_expr, but first looks up the result of
2516    transformation in caches.  */
2517 static enum MOVEUP_EXPR_CODE
moveup_expr_cached(expr_t expr,insn_t insn,bool inside_insn_group)2518 moveup_expr_cached (expr_t expr, insn_t insn, bool inside_insn_group)
2519 {
2520   enum MOVEUP_EXPR_CODE res;
2521   bool got_answer = false;
2522 
2523   if (sched_verbose >= 6)
2524     {
2525       sel_print ("Moving ");
2526       dump_expr (expr);
2527       sel_print (" through %d: ", INSN_UID (insn));
2528     }
2529 
2530   if (DEBUG_INSN_P (EXPR_INSN_RTX (expr))
2531       && BLOCK_FOR_INSN (EXPR_INSN_RTX (expr))
2532       && (sel_bb_head (BLOCK_FOR_INSN (EXPR_INSN_RTX (expr)))
2533 	  == EXPR_INSN_RTX (expr)))
2534     /* Don't use cached information for debug insns that are heads of
2535        basic blocks.  */;
2536   else if (try_bitmap_cache (expr, insn, inside_insn_group, &res))
2537     /* When inside insn group, we do not want remove stores conflicting
2538        with previosly issued loads.  */
2539     got_answer = ! inside_insn_group || res != MOVEUP_EXPR_NULL;
2540   else if (try_transformation_cache (expr, insn, &res))
2541     got_answer = true;
2542 
2543   if (! got_answer)
2544     {
2545       /* Invoke moveup_expr and record the results.  */
2546       vinsn_t expr_old_vinsn = EXPR_VINSN (expr);
2547       ds_t expr_old_spec_ds = EXPR_SPEC_DONE_DS (expr);
2548       int expr_uid = INSN_UID (VINSN_INSN_RTX (expr_old_vinsn));
2549       bool unique_p = VINSN_UNIQUE_P (expr_old_vinsn);
2550       enum local_trans_type trans_type = TRANS_SUBSTITUTION;
2551 
2552       /* ??? Invent something better than this.  We can't allow old_vinsn
2553          to go, we need it for the history vector.  */
2554       vinsn_attach (expr_old_vinsn);
2555 
2556       res = moveup_expr (expr, insn, inside_insn_group,
2557                          &trans_type);
2558       switch (res)
2559         {
2560         case MOVEUP_EXPR_NULL:
2561           update_bitmap_cache (expr, insn, inside_insn_group, res);
2562 	  if (sched_verbose >= 6)
2563             sel_print ("removed\n");
2564 	  break;
2565 
2566 	case MOVEUP_EXPR_SAME:
2567           update_bitmap_cache (expr, insn, inside_insn_group, res);
2568           if (sched_verbose >= 6)
2569             sel_print ("unchanged\n");
2570 	  break;
2571 
2572         case MOVEUP_EXPR_AS_RHS:
2573           gcc_assert (!unique_p || inside_insn_group);
2574           update_bitmap_cache (expr, insn, inside_insn_group, res);
2575 	  if (sched_verbose >= 6)
2576             sel_print ("unchanged (as RHS)\n");
2577 	  break;
2578 
2579 	case MOVEUP_EXPR_CHANGED:
2580           gcc_assert (INSN_UID (EXPR_INSN_RTX (expr)) != expr_uid
2581                       || EXPR_SPEC_DONE_DS (expr) != expr_old_spec_ds);
2582           insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2583                                   INSN_UID (insn), trans_type,
2584                                   expr_old_vinsn, EXPR_VINSN (expr),
2585                                   expr_old_spec_ds);
2586           update_transformation_cache (expr, insn, inside_insn_group,
2587                                        trans_type, expr_old_vinsn);
2588           if (sched_verbose >= 6)
2589             {
2590               sel_print ("changed: ");
2591               dump_expr (expr);
2592               sel_print ("\n");
2593             }
2594 	  break;
2595 	default:
2596 	  gcc_unreachable ();
2597         }
2598 
2599       vinsn_detach (expr_old_vinsn);
2600     }
2601 
2602   return res;
2603 }
2604 
2605 /* Moves an av set AVP up through INSN, performing necessary
2606    transformations.  */
2607 static void
moveup_set_expr(av_set_t * avp,insn_t insn,bool inside_insn_group)2608 moveup_set_expr (av_set_t *avp, insn_t insn, bool inside_insn_group)
2609 {
2610   av_set_iterator i;
2611   expr_t expr;
2612 
2613   FOR_EACH_EXPR_1 (expr, i, avp)
2614     {
2615 
2616       switch (moveup_expr_cached (expr, insn, inside_insn_group))
2617 	{
2618 	case MOVEUP_EXPR_SAME:
2619         case MOVEUP_EXPR_AS_RHS:
2620 	  break;
2621 
2622 	case MOVEUP_EXPR_NULL:
2623 	  av_set_iter_remove (&i);
2624 	  break;
2625 
2626 	case MOVEUP_EXPR_CHANGED:
2627           expr = merge_with_other_exprs (avp, &i, expr);
2628 	  break;
2629 
2630 	default:
2631 	  gcc_unreachable ();
2632 	}
2633     }
2634 }
2635 
2636 /* Moves AVP set along PATH.  */
2637 static void
moveup_set_inside_insn_group(av_set_t * avp,ilist_t path)2638 moveup_set_inside_insn_group (av_set_t *avp, ilist_t path)
2639 {
2640   int last_cycle;
2641 
2642   if (sched_verbose >= 6)
2643     sel_print ("Moving expressions up in the insn group...\n");
2644   if (! path)
2645     return;
2646   last_cycle = INSN_SCHED_CYCLE (ILIST_INSN (path));
2647   while (path
2648          && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2649     {
2650       moveup_set_expr (avp, ILIST_INSN (path), true);
2651       path = ILIST_NEXT (path);
2652     }
2653 }
2654 
2655 /* Returns true if after moving EXPR along PATH it equals to EXPR_VLIW.  */
2656 static bool
equal_after_moveup_path_p(expr_t expr,ilist_t path,expr_t expr_vliw)2657 equal_after_moveup_path_p (expr_t expr, ilist_t path, expr_t expr_vliw)
2658 {
2659   expr_def _tmp, *tmp = &_tmp;
2660   int last_cycle;
2661   bool res = true;
2662 
2663   copy_expr_onside (tmp, expr);
2664   last_cycle = path ? INSN_SCHED_CYCLE (ILIST_INSN (path)) : 0;
2665   while (path
2666          && res
2667          && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2668     {
2669       res = (moveup_expr_cached (tmp, ILIST_INSN (path), true)
2670              != MOVEUP_EXPR_NULL);
2671       path = ILIST_NEXT (path);
2672     }
2673 
2674   if (res)
2675     {
2676       vinsn_t tmp_vinsn = EXPR_VINSN (tmp);
2677       vinsn_t expr_vliw_vinsn = EXPR_VINSN (expr_vliw);
2678 
2679       if (tmp_vinsn != expr_vliw_vinsn)
2680 	res = vinsn_equal_p (tmp_vinsn, expr_vliw_vinsn);
2681     }
2682 
2683   clear_expr (tmp);
2684   return res;
2685 }
2686 
2687 
2688 /* Functions that compute av and lv sets.  */
2689 
2690 /* Returns true if INSN is not a downward continuation of the given path P in
2691    the current stage.  */
2692 static bool
is_ineligible_successor(insn_t insn,ilist_t p)2693 is_ineligible_successor (insn_t insn, ilist_t p)
2694 {
2695   insn_t prev_insn;
2696 
2697   /* Check if insn is not deleted.  */
2698   if (PREV_INSN (insn) && NEXT_INSN (PREV_INSN (insn)) != insn)
2699     gcc_unreachable ();
2700   else if (NEXT_INSN (insn) && PREV_INSN (NEXT_INSN (insn)) != insn)
2701     gcc_unreachable ();
2702 
2703   /* If it's the first insn visited, then the successor is ok.  */
2704   if (!p)
2705     return false;
2706 
2707   prev_insn = ILIST_INSN (p);
2708 
2709   if (/* a backward edge.  */
2710       INSN_SEQNO (insn) < INSN_SEQNO (prev_insn)
2711       /* is already visited.  */
2712       || (INSN_SEQNO (insn) == INSN_SEQNO (prev_insn)
2713 	  && (ilist_is_in_p (p, insn)
2714               /* We can reach another fence here and still seqno of insn
2715                  would be equal to seqno of prev_insn.  This is possible
2716                  when prev_insn is a previously created bookkeeping copy.
2717                  In that case it'd get a seqno of insn.  Thus, check here
2718                  whether insn is in current fence too.  */
2719               || IN_CURRENT_FENCE_P (insn)))
2720       /* Was already scheduled on this round.  */
2721       || (INSN_SEQNO (insn) > INSN_SEQNO (prev_insn)
2722 	  && IN_CURRENT_FENCE_P (insn))
2723       /* An insn from another fence could also be
2724 	 scheduled earlier even if this insn is not in
2725 	 a fence list right now.  Check INSN_SCHED_CYCLE instead.  */
2726       || (!pipelining_p
2727           && INSN_SCHED_TIMES (insn) > 0))
2728     return true;
2729   else
2730     return false;
2731 }
2732 
2733 /* Computes the av_set below the last bb insn INSN, doing all the 'dirty work'
2734    of handling multiple successors and properly merging its av_sets.  P is
2735    the current path traversed.  WS is the size of lookahead window.
2736    Return the av set computed.  */
2737 static av_set_t
compute_av_set_at_bb_end(insn_t insn,ilist_t p,int ws)2738 compute_av_set_at_bb_end (insn_t insn, ilist_t p, int ws)
2739 {
2740   struct succs_info *sinfo;
2741   av_set_t expr_in_all_succ_branches = NULL;
2742   int is;
2743   insn_t succ, zero_succ = NULL;
2744   av_set_t av1 = NULL;
2745 
2746   gcc_assert (sel_bb_end_p (insn));
2747 
2748   /* Find different kind of successors needed for correct computing of
2749      SPEC and TARGET_AVAILABLE attributes.  */
2750   sinfo = compute_succs_info (insn, SUCCS_NORMAL);
2751 
2752   /* Debug output.  */
2753   if (sched_verbose >= 6)
2754     {
2755       sel_print ("successors of bb end (%d): ", INSN_UID (insn));
2756       dump_insn_vector (sinfo->succs_ok);
2757       sel_print ("\n");
2758       if (sinfo->succs_ok_n != sinfo->all_succs_n)
2759         sel_print ("real successors num: %d\n", sinfo->all_succs_n);
2760     }
2761 
2762   /* Add insn to the tail of current path.  */
2763   ilist_add (&p, insn);
2764 
2765   FOR_EACH_VEC_ELT (sinfo->succs_ok, is, succ)
2766     {
2767       av_set_t succ_set;
2768 
2769       /* We will edit SUCC_SET and EXPR_SPEC field of its elements.  */
2770       succ_set = compute_av_set_inside_bb (succ, p, ws, true);
2771 
2772       av_set_split_usefulness (succ_set,
2773                                sinfo->probs_ok[is],
2774                                sinfo->all_prob);
2775 
2776       if (sinfo->all_succs_n > 1)
2777 	{
2778           /* Find EXPR'es that came from *all* successors and save them
2779              into expr_in_all_succ_branches.  This set will be used later
2780              for calculating speculation attributes of EXPR'es.  */
2781           if (is == 0)
2782             {
2783               expr_in_all_succ_branches = av_set_copy (succ_set);
2784 
2785               /* Remember the first successor for later. */
2786               zero_succ = succ;
2787             }
2788           else
2789             {
2790               av_set_iterator i;
2791               expr_t expr;
2792 
2793               FOR_EACH_EXPR_1 (expr, i, &expr_in_all_succ_branches)
2794                 if (!av_set_is_in_p (succ_set, EXPR_VINSN (expr)))
2795                   av_set_iter_remove (&i);
2796             }
2797 	}
2798 
2799       /* Union the av_sets.  Check liveness restrictions on target registers
2800          in special case of two successors.  */
2801       if (sinfo->succs_ok_n == 2 && is == 1)
2802         {
2803           basic_block bb0 = BLOCK_FOR_INSN (zero_succ);
2804           basic_block bb1 = BLOCK_FOR_INSN (succ);
2805 
2806           gcc_assert (BB_LV_SET_VALID_P (bb0) && BB_LV_SET_VALID_P (bb1));
2807           av_set_union_and_live (&av1, &succ_set,
2808                                  BB_LV_SET (bb0),
2809                                  BB_LV_SET (bb1),
2810                                  insn);
2811         }
2812       else
2813         av_set_union_and_clear (&av1, &succ_set, insn);
2814     }
2815 
2816   /* Check liveness restrictions via hard way when there are more than
2817      two successors.  */
2818   if (sinfo->succs_ok_n > 2)
2819     FOR_EACH_VEC_ELT (sinfo->succs_ok, is, succ)
2820       {
2821         basic_block succ_bb = BLOCK_FOR_INSN (succ);
2822 
2823         gcc_assert (BB_LV_SET_VALID_P (succ_bb));
2824         mark_unavailable_targets (av1, BB_AV_SET (succ_bb),
2825                                   BB_LV_SET (succ_bb));
2826       }
2827 
2828   /* Finally, check liveness restrictions on paths leaving the region.  */
2829   if (sinfo->all_succs_n > sinfo->succs_ok_n)
2830     FOR_EACH_VEC_ELT (sinfo->succs_other, is, succ)
2831       mark_unavailable_targets
2832         (av1, NULL, BB_LV_SET (BLOCK_FOR_INSN (succ)));
2833 
2834   if (sinfo->all_succs_n > 1)
2835     {
2836       av_set_iterator i;
2837       expr_t expr;
2838 
2839       /* Increase the spec attribute of all EXPR'es that didn't come
2840 	 from all successors.  */
2841       FOR_EACH_EXPR (expr, i, av1)
2842 	if (!av_set_is_in_p (expr_in_all_succ_branches, EXPR_VINSN (expr)))
2843 	  EXPR_SPEC (expr)++;
2844 
2845       av_set_clear (&expr_in_all_succ_branches);
2846 
2847       /* Do not move conditional branches through other
2848 	 conditional branches.  So, remove all conditional
2849 	 branches from av_set if current operator is a conditional
2850 	 branch.  */
2851       av_set_substract_cond_branches (&av1);
2852     }
2853 
2854   ilist_remove (&p);
2855   free_succs_info (sinfo);
2856 
2857   if (sched_verbose >= 6)
2858     {
2859       sel_print ("av_succs (%d): ", INSN_UID (insn));
2860       dump_av_set (av1);
2861       sel_print ("\n");
2862     }
2863 
2864   return av1;
2865 }
2866 
2867 /* This function computes av_set for the FIRST_INSN by dragging valid
2868    av_set through all basic block insns either from the end of basic block
2869    (computed using compute_av_set_at_bb_end) or from the insn on which
2870    MAX_WS was exceeded.  It uses compute_av_set_at_bb_end to compute av_set
2871    below the basic block and handling conditional branches.
2872    FIRST_INSN - the basic block head, P - path consisting of the insns
2873    traversed on the way to the FIRST_INSN (the path is sparse, only bb heads
2874    and bb ends are added to the path), WS - current window size,
2875    NEED_COPY_P - true if we'll make a copy of av_set before returning it.  */
2876 static av_set_t
compute_av_set_inside_bb(insn_t first_insn,ilist_t p,int ws,bool need_copy_p)2877 compute_av_set_inside_bb (insn_t first_insn, ilist_t p, int ws,
2878 			  bool need_copy_p)
2879 {
2880   insn_t cur_insn;
2881   int end_ws = ws;
2882   insn_t bb_end = sel_bb_end (BLOCK_FOR_INSN (first_insn));
2883   insn_t after_bb_end = NEXT_INSN (bb_end);
2884   insn_t last_insn;
2885   av_set_t av = NULL;
2886   basic_block cur_bb = BLOCK_FOR_INSN (first_insn);
2887 
2888   /* Return NULL if insn is not on the legitimate downward path.  */
2889   if (is_ineligible_successor (first_insn, p))
2890     {
2891       if (sched_verbose >= 6)
2892         sel_print ("Insn %d is ineligible_successor\n", INSN_UID (first_insn));
2893 
2894       return NULL;
2895     }
2896 
2897   /* If insn already has valid av(insn) computed, just return it.  */
2898   if (AV_SET_VALID_P (first_insn))
2899     {
2900       av_set_t av_set;
2901 
2902       if (sel_bb_head_p (first_insn))
2903 	av_set = BB_AV_SET (BLOCK_FOR_INSN (first_insn));
2904       else
2905 	av_set = NULL;
2906 
2907       if (sched_verbose >= 6)
2908         {
2909           sel_print ("Insn %d has a valid av set: ", INSN_UID (first_insn));
2910           dump_av_set (av_set);
2911           sel_print ("\n");
2912         }
2913 
2914       return need_copy_p ? av_set_copy (av_set) : av_set;
2915     }
2916 
2917   ilist_add (&p, first_insn);
2918 
2919   /* As the result after this loop have completed, in LAST_INSN we'll
2920      have the insn which has valid av_set to start backward computation
2921      from: it either will be NULL because on it the window size was exceeded
2922      or other valid av_set as returned by compute_av_set for the last insn
2923      of the basic block.  */
2924   for (last_insn = first_insn; last_insn != after_bb_end;
2925        last_insn = NEXT_INSN (last_insn))
2926     {
2927       /* We may encounter valid av_set not only on bb_head, but also on
2928 	 those insns on which previously MAX_WS was exceeded.  */
2929       if (AV_SET_VALID_P (last_insn))
2930 	{
2931           if (sched_verbose >= 6)
2932             sel_print ("Insn %d has a valid empty av set\n", INSN_UID (last_insn));
2933 	  break;
2934 	}
2935 
2936       /* The special case: the last insn of the BB may be an
2937          ineligible_successor due to its SEQ_NO that was set on
2938 	 it as a bookkeeping.  */
2939       if (last_insn != first_insn
2940           && is_ineligible_successor (last_insn, p))
2941 	{
2942           if (sched_verbose >= 6)
2943             sel_print ("Insn %d is ineligible_successor\n", INSN_UID (last_insn));
2944 	  break;
2945 	}
2946 
2947       if (DEBUG_INSN_P (last_insn))
2948 	continue;
2949 
2950       if (end_ws > max_ws)
2951 	{
2952 	  /* We can reach max lookahead size at bb_header, so clean av_set
2953 	     first.  */
2954 	  INSN_WS_LEVEL (last_insn) = global_level;
2955 
2956 	  if (sched_verbose >= 6)
2957             sel_print ("Insn %d is beyond the software lookahead window size\n",
2958                        INSN_UID (last_insn));
2959 	  break;
2960 	}
2961 
2962       end_ws++;
2963     }
2964 
2965   /* Get the valid av_set into AV above the LAST_INSN to start backward
2966      computation from.  It either will be empty av_set or av_set computed from
2967      the successors on the last insn of the current bb.  */
2968   if (last_insn != after_bb_end)
2969     {
2970       av = NULL;
2971 
2972       /* This is needed only to obtain av_sets that are identical to
2973          those computed by the old compute_av_set version.  */
2974       if (last_insn == first_insn && !INSN_NOP_P (last_insn))
2975         av_set_add (&av, INSN_EXPR (last_insn));
2976     }
2977   else
2978     /* END_WS is always already increased by 1 if LAST_INSN == AFTER_BB_END.  */
2979     av = compute_av_set_at_bb_end (bb_end, p, end_ws);
2980 
2981   /* Compute av_set in AV starting from below the LAST_INSN up to
2982      location above the FIRST_INSN.  */
2983   for (cur_insn = PREV_INSN (last_insn); cur_insn != PREV_INSN (first_insn);
2984        cur_insn = PREV_INSN (cur_insn))
2985     if (!INSN_NOP_P (cur_insn))
2986       {
2987         expr_t expr;
2988 
2989         moveup_set_expr (&av, cur_insn, false);
2990 
2991         /* If the expression for CUR_INSN is already in the set,
2992            replace it by the new one.  */
2993         expr = av_set_lookup (av, INSN_VINSN (cur_insn));
2994         if (expr != NULL)
2995           {
2996             clear_expr (expr);
2997             copy_expr (expr, INSN_EXPR (cur_insn));
2998           }
2999         else
3000           av_set_add (&av, INSN_EXPR (cur_insn));
3001       }
3002 
3003   /* Clear stale bb_av_set.  */
3004   if (sel_bb_head_p (first_insn))
3005     {
3006       av_set_clear (&BB_AV_SET (cur_bb));
3007       BB_AV_SET (cur_bb) = need_copy_p ? av_set_copy (av) : av;
3008       BB_AV_LEVEL (cur_bb) = global_level;
3009     }
3010 
3011   if (sched_verbose >= 6)
3012     {
3013       sel_print ("Computed av set for insn %d: ", INSN_UID (first_insn));
3014       dump_av_set (av);
3015       sel_print ("\n");
3016     }
3017 
3018   ilist_remove (&p);
3019   return av;
3020 }
3021 
3022 /* Compute av set before INSN.
3023    INSN - the current operation (actual rtx INSN)
3024    P - the current path, which is list of insns visited so far
3025    WS - software lookahead window size.
3026    UNIQUE_P - TRUE, if returned av_set will be changed, hence
3027    if we want to save computed av_set in s_i_d, we should make a copy of it.
3028 
3029    In the resulting set we will have only expressions that don't have delay
3030    stalls and nonsubstitutable dependences.  */
3031 static av_set_t
compute_av_set(insn_t insn,ilist_t p,int ws,bool unique_p)3032 compute_av_set (insn_t insn, ilist_t p, int ws, bool unique_p)
3033 {
3034   return compute_av_set_inside_bb (insn, p, ws, unique_p);
3035 }
3036 
3037 /* Propagate a liveness set LV through INSN.  */
3038 static void
propagate_lv_set(regset lv,insn_t insn)3039 propagate_lv_set (regset lv, insn_t insn)
3040 {
3041   gcc_assert (INSN_P (insn));
3042 
3043   if (INSN_NOP_P (insn))
3044     return;
3045 
3046   df_simulate_one_insn_backwards (BLOCK_FOR_INSN (insn), insn, lv);
3047 }
3048 
3049 /* Return livness set at the end of BB.  */
3050 static regset
compute_live_after_bb(basic_block bb)3051 compute_live_after_bb (basic_block bb)
3052 {
3053   edge e;
3054   edge_iterator ei;
3055   regset lv = get_clear_regset_from_pool ();
3056 
3057   gcc_assert (!ignore_first);
3058 
3059   FOR_EACH_EDGE (e, ei, bb->succs)
3060     if (sel_bb_empty_p (e->dest))
3061       {
3062         if (! BB_LV_SET_VALID_P (e->dest))
3063           {
3064             gcc_unreachable ();
3065             gcc_assert (BB_LV_SET (e->dest) == NULL);
3066             BB_LV_SET (e->dest) = compute_live_after_bb (e->dest);
3067             BB_LV_SET_VALID_P (e->dest) = true;
3068           }
3069         IOR_REG_SET (lv, BB_LV_SET (e->dest));
3070       }
3071     else
3072       IOR_REG_SET (lv, compute_live (sel_bb_head (e->dest)));
3073 
3074   return lv;
3075 }
3076 
3077 /* Compute the set of all live registers at the point before INSN and save
3078    it at INSN if INSN is bb header.  */
3079 regset
compute_live(insn_t insn)3080 compute_live (insn_t insn)
3081 {
3082   basic_block bb = BLOCK_FOR_INSN (insn);
3083   insn_t final, temp;
3084   regset lv;
3085 
3086   /* Return the valid set if we're already on it.  */
3087   if (!ignore_first)
3088     {
3089       regset src = NULL;
3090 
3091       if (sel_bb_head_p (insn) && BB_LV_SET_VALID_P (bb))
3092         src = BB_LV_SET (bb);
3093       else
3094         {
3095           gcc_assert (in_current_region_p (bb));
3096           if (INSN_LIVE_VALID_P (insn))
3097             src = INSN_LIVE (insn);
3098         }
3099 
3100       if (src)
3101 	{
3102 	  lv = get_regset_from_pool ();
3103 	  COPY_REG_SET (lv, src);
3104 
3105           if (sel_bb_head_p (insn) && ! BB_LV_SET_VALID_P (bb))
3106             {
3107               COPY_REG_SET (BB_LV_SET (bb), lv);
3108               BB_LV_SET_VALID_P (bb) = true;
3109             }
3110 
3111 	  return_regset_to_pool (lv);
3112 	  return lv;
3113 	}
3114     }
3115 
3116   /* We've skipped the wrong lv_set.  Don't skip the right one.  */
3117   ignore_first = false;
3118   gcc_assert (in_current_region_p (bb));
3119 
3120   /* Find a valid LV set in this block or below, if needed.
3121      Start searching from the next insn: either ignore_first is true, or
3122      INSN doesn't have a correct live set.  */
3123   temp = NEXT_INSN (insn);
3124   final = NEXT_INSN (BB_END (bb));
3125   while (temp != final && ! INSN_LIVE_VALID_P (temp))
3126     temp = NEXT_INSN (temp);
3127   if (temp == final)
3128     {
3129       lv = compute_live_after_bb (bb);
3130       temp = PREV_INSN (temp);
3131     }
3132   else
3133     {
3134       lv = get_regset_from_pool ();
3135       COPY_REG_SET (lv, INSN_LIVE (temp));
3136     }
3137 
3138   /* Put correct lv sets on the insns which have bad sets.  */
3139   final = PREV_INSN (insn);
3140   while (temp != final)
3141     {
3142       propagate_lv_set (lv, temp);
3143       COPY_REG_SET (INSN_LIVE (temp), lv);
3144       INSN_LIVE_VALID_P (temp) = true;
3145       temp = PREV_INSN (temp);
3146     }
3147 
3148   /* Also put it in a BB.  */
3149   if (sel_bb_head_p (insn))
3150     {
3151       basic_block bb = BLOCK_FOR_INSN (insn);
3152 
3153       COPY_REG_SET (BB_LV_SET (bb), lv);
3154       BB_LV_SET_VALID_P (bb) = true;
3155     }
3156 
3157   /* We return LV to the pool, but will not clear it there.  Thus we can
3158      legimatelly use LV till the next use of regset_pool_get ().  */
3159   return_regset_to_pool (lv);
3160   return lv;
3161 }
3162 
3163 /* Update liveness sets for INSN.  */
3164 static inline void
update_liveness_on_insn(rtx_insn * insn)3165 update_liveness_on_insn (rtx_insn *insn)
3166 {
3167   ignore_first = true;
3168   compute_live (insn);
3169 }
3170 
3171 /* Compute liveness below INSN and write it into REGS.  */
3172 static inline void
compute_live_below_insn(rtx_insn * insn,regset regs)3173 compute_live_below_insn (rtx_insn *insn, regset regs)
3174 {
3175   rtx_insn *succ;
3176   succ_iterator si;
3177 
3178   FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
3179     IOR_REG_SET (regs, compute_live (succ));
3180 }
3181 
3182 /* Update the data gathered in av and lv sets starting from INSN.  */
3183 static void
update_data_sets(rtx_insn * insn)3184 update_data_sets (rtx_insn *insn)
3185 {
3186   update_liveness_on_insn (insn);
3187   if (sel_bb_head_p (insn))
3188     {
3189       gcc_assert (AV_LEVEL (insn) != 0);
3190       BB_AV_LEVEL (BLOCK_FOR_INSN (insn)) = -1;
3191       compute_av_set (insn, NULL, 0, 0);
3192     }
3193 }
3194 
3195 
3196 /* Helper for move_op () and find_used_regs ().
3197    Return speculation type for which a check should be created on the place
3198    of INSN.  EXPR is one of the original ops we are searching for.  */
3199 static ds_t
get_spec_check_type_for_insn(insn_t insn,expr_t expr)3200 get_spec_check_type_for_insn (insn_t insn, expr_t expr)
3201 {
3202   ds_t to_check_ds;
3203   ds_t already_checked_ds = EXPR_SPEC_DONE_DS (INSN_EXPR (insn));
3204 
3205   to_check_ds = EXPR_SPEC_TO_CHECK_DS (expr);
3206 
3207   if (targetm.sched.get_insn_checked_ds)
3208     already_checked_ds |= targetm.sched.get_insn_checked_ds (insn);
3209 
3210   if (spec_info != NULL
3211       && (spec_info->flags & SEL_SCHED_SPEC_DONT_CHECK_CONTROL))
3212     already_checked_ds |= BEGIN_CONTROL;
3213 
3214   already_checked_ds = ds_get_speculation_types (already_checked_ds);
3215 
3216   to_check_ds &= ~already_checked_ds;
3217 
3218   return to_check_ds;
3219 }
3220 
3221 /* Find the set of registers that are unavailable for storing expres
3222    while moving ORIG_OPS up on the path starting from INSN due to
3223    liveness (USED_REGS) or hardware restrictions (REG_RENAME_P).
3224 
3225    All the original operations found during the traversal are saved in the
3226    ORIGINAL_INSNS list.
3227 
3228    REG_RENAME_P denotes the set of hardware registers that
3229    can not be used with renaming due to the register class restrictions,
3230    mode restrictions and other (the register we'll choose should be
3231    compatible class with the original uses, shouldn't be in call_used_regs,
3232    should be HARD_REGNO_RENAME_OK etc).
3233 
3234    Returns TRUE if we've found all original insns, FALSE otherwise.
3235 
3236    This function utilizes code_motion_path_driver (formerly find_used_regs_1)
3237    to traverse the code motion paths.  This helper function finds registers
3238    that are not available for storing expres while moving ORIG_OPS up on the
3239    path starting from INSN.  A register considered as used on the moving path,
3240    if one of the following conditions is not satisfied:
3241 
3242       (1) a register not set or read on any path from xi to an instance of
3243 	  the original operation,
3244       (2) not among the live registers of the point immediately following the
3245           first original operation on a given downward path, except for the
3246 	  original target register of the operation,
3247       (3) not live on the other path of any conditional branch that is passed
3248 	  by the operation, in case original operations are not present on
3249 	  both paths of the conditional branch.
3250 
3251    All the original operations found during the traversal are saved in the
3252    ORIGINAL_INSNS list.
3253 
3254    REG_RENAME_P->CROSSES_CALL is true, if there is a call insn on the path
3255    from INSN to original insn. In this case CALL_USED_REG_SET will be added
3256    to unavailable hard regs at the point original operation is found.  */
3257 
3258 static bool
find_used_regs(insn_t insn,av_set_t orig_ops,regset used_regs,struct reg_rename * reg_rename_p,def_list_t * original_insns)3259 find_used_regs (insn_t insn, av_set_t orig_ops, regset used_regs,
3260 		struct reg_rename  *reg_rename_p, def_list_t *original_insns)
3261 {
3262   def_list_iterator i;
3263   def_t def;
3264   int res;
3265   bool needs_spec_check_p = false;
3266   expr_t expr;
3267   av_set_iterator expr_iter;
3268   struct fur_static_params sparams;
3269   struct cmpd_local_params lparams;
3270 
3271   /* We haven't visited any blocks yet.  */
3272   bitmap_clear (code_motion_visited_blocks);
3273 
3274   /* Init parameters for code_motion_path_driver.  */
3275   sparams.crosses_call = false;
3276   sparams.original_insns = original_insns;
3277   sparams.used_regs = used_regs;
3278 
3279   /* Set the appropriate hooks and data.  */
3280   code_motion_path_driver_info = &fur_hooks;
3281 
3282   res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
3283 
3284   reg_rename_p->crosses_call |= sparams.crosses_call;
3285 
3286   gcc_assert (res == 1);
3287   gcc_assert (original_insns && *original_insns);
3288 
3289   /* ??? We calculate whether an expression needs a check when computing
3290      av sets.  This information is not as precise as it could be due to
3291      merging this bit in merge_expr.  We can do better in find_used_regs,
3292      but we want to avoid multiple traversals of the same code motion
3293      paths.  */
3294   FOR_EACH_EXPR (expr, expr_iter, orig_ops)
3295     needs_spec_check_p |= EXPR_NEEDS_SPEC_CHECK_P (expr);
3296 
3297   /* Mark hardware regs in REG_RENAME_P that are not suitable
3298      for renaming expr in INSN due to hardware restrictions (register class,
3299      modes compatibility etc).  */
3300   FOR_EACH_DEF (def, i, *original_insns)
3301     {
3302       vinsn_t vinsn = INSN_VINSN (def->orig_insn);
3303 
3304       if (VINSN_SEPARABLE_P (vinsn))
3305 	mark_unavailable_hard_regs (def, reg_rename_p, used_regs);
3306 
3307       /* Do not allow clobbering of ld.[sa] address in case some of the
3308          original operations need a check.  */
3309       if (needs_spec_check_p)
3310 	IOR_REG_SET (used_regs, VINSN_REG_USES (vinsn));
3311     }
3312 
3313   return true;
3314 }
3315 
3316 
3317 /* Functions to choose the best insn from available ones.  */
3318 
3319 /* Adjusts the priority for EXPR using the backend *_adjust_priority hook.  */
3320 static int
sel_target_adjust_priority(expr_t expr)3321 sel_target_adjust_priority (expr_t expr)
3322 {
3323   int priority = EXPR_PRIORITY (expr);
3324   int new_priority;
3325 
3326   if (targetm.sched.adjust_priority)
3327     new_priority = targetm.sched.adjust_priority (EXPR_INSN_RTX (expr), priority);
3328   else
3329     new_priority = priority;
3330 
3331   /* If the priority has changed, adjust EXPR_PRIORITY_ADJ accordingly.  */
3332   EXPR_PRIORITY_ADJ (expr) = new_priority - EXPR_PRIORITY (expr);
3333 
3334   gcc_assert (EXPR_PRIORITY_ADJ (expr) >= 0);
3335 
3336   if (sched_verbose >= 4)
3337     sel_print ("sel_target_adjust_priority: insn %d,  %d+%d = %d.\n",
3338 	       INSN_UID (EXPR_INSN_RTX (expr)), EXPR_PRIORITY (expr),
3339 	       EXPR_PRIORITY_ADJ (expr), new_priority);
3340 
3341   return new_priority;
3342 }
3343 
3344 /* Rank two available exprs for schedule.  Never return 0 here.  */
3345 static int
sel_rank_for_schedule(const void * x,const void * y)3346 sel_rank_for_schedule (const void *x, const void *y)
3347 {
3348   expr_t tmp = *(const expr_t *) y;
3349   expr_t tmp2 = *(const expr_t *) x;
3350   insn_t tmp_insn, tmp2_insn;
3351   vinsn_t tmp_vinsn, tmp2_vinsn;
3352   int val;
3353 
3354   tmp_vinsn = EXPR_VINSN (tmp);
3355   tmp2_vinsn = EXPR_VINSN (tmp2);
3356   tmp_insn = EXPR_INSN_RTX (tmp);
3357   tmp2_insn = EXPR_INSN_RTX (tmp2);
3358 
3359   /* Schedule debug insns as early as possible.  */
3360   if (DEBUG_INSN_P (tmp_insn) && !DEBUG_INSN_P (tmp2_insn))
3361     return -1;
3362   else if (DEBUG_INSN_P (tmp2_insn))
3363     return 1;
3364 
3365   /* Prefer SCHED_GROUP_P insns to any others.  */
3366   if (SCHED_GROUP_P (tmp_insn) != SCHED_GROUP_P (tmp2_insn))
3367     {
3368       if (VINSN_UNIQUE_P (tmp_vinsn) && VINSN_UNIQUE_P (tmp2_vinsn))
3369         return SCHED_GROUP_P (tmp2_insn) ? 1 : -1;
3370 
3371       /* Now uniqueness means SCHED_GROUP_P is set, because schedule groups
3372          cannot be cloned.  */
3373       if (VINSN_UNIQUE_P (tmp2_vinsn))
3374         return 1;
3375       return -1;
3376     }
3377 
3378   /* Discourage scheduling of speculative checks.  */
3379   val = (sel_insn_is_speculation_check (tmp_insn)
3380 	 - sel_insn_is_speculation_check (tmp2_insn));
3381   if (val)
3382     return val;
3383 
3384   /* Prefer not scheduled insn over scheduled one.  */
3385   if (EXPR_SCHED_TIMES (tmp) > 0 || EXPR_SCHED_TIMES (tmp2) > 0)
3386     {
3387       val = EXPR_SCHED_TIMES (tmp) - EXPR_SCHED_TIMES (tmp2);
3388       if (val)
3389 	return val;
3390     }
3391 
3392   /* Prefer jump over non-jump instruction.  */
3393   if (control_flow_insn_p (tmp_insn) && !control_flow_insn_p (tmp2_insn))
3394     return -1;
3395   else if (control_flow_insn_p (tmp2_insn) && !control_flow_insn_p (tmp_insn))
3396     return 1;
3397 
3398   /* Prefer an expr with greater priority.  */
3399   if (EXPR_USEFULNESS (tmp) != 0 && EXPR_USEFULNESS (tmp2) != 0)
3400     {
3401       int p2 = EXPR_PRIORITY (tmp2) + EXPR_PRIORITY_ADJ (tmp2),
3402           p1 = EXPR_PRIORITY (tmp) + EXPR_PRIORITY_ADJ (tmp);
3403 
3404       val = p2 * EXPR_USEFULNESS (tmp2) - p1 * EXPR_USEFULNESS (tmp);
3405     }
3406   else
3407     val = EXPR_PRIORITY (tmp2) - EXPR_PRIORITY (tmp)
3408 	  + EXPR_PRIORITY_ADJ (tmp2) - EXPR_PRIORITY_ADJ (tmp);
3409   if (val)
3410     return val;
3411 
3412   if (spec_info != NULL && spec_info->mask != 0)
3413     /* This code was taken from haifa-sched.c: rank_for_schedule ().  */
3414     {
3415       ds_t ds1, ds2;
3416       dw_t dw1, dw2;
3417       int dw;
3418 
3419       ds1 = EXPR_SPEC_DONE_DS (tmp);
3420       if (ds1)
3421 	dw1 = ds_weak (ds1);
3422       else
3423 	dw1 = NO_DEP_WEAK;
3424 
3425       ds2 = EXPR_SPEC_DONE_DS (tmp2);
3426       if (ds2)
3427 	dw2 = ds_weak (ds2);
3428       else
3429 	dw2 = NO_DEP_WEAK;
3430 
3431       dw = dw2 - dw1;
3432       if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
3433 	return dw;
3434     }
3435 
3436   /* Prefer an old insn to a bookkeeping insn.  */
3437   if (INSN_UID (tmp_insn) < first_emitted_uid
3438       && INSN_UID (tmp2_insn) >= first_emitted_uid)
3439     return -1;
3440   if (INSN_UID (tmp_insn) >= first_emitted_uid
3441       && INSN_UID (tmp2_insn) < first_emitted_uid)
3442     return 1;
3443 
3444   /* Prefer an insn with smaller UID, as a last resort.
3445      We can't safely use INSN_LUID as it is defined only for those insns
3446      that are in the stream.  */
3447   return INSN_UID (tmp_insn) - INSN_UID (tmp2_insn);
3448 }
3449 
3450 /* Filter out expressions from av set pointed to by AV_PTR
3451    that are pipelined too many times.  */
3452 static void
process_pipelined_exprs(av_set_t * av_ptr)3453 process_pipelined_exprs (av_set_t *av_ptr)
3454 {
3455   expr_t expr;
3456   av_set_iterator si;
3457 
3458   /* Don't pipeline already pipelined code as that would increase
3459      number of unnecessary register moves.  */
3460   FOR_EACH_EXPR_1 (expr, si, av_ptr)
3461     {
3462       if (EXPR_SCHED_TIMES (expr)
3463 	  >= PARAM_VALUE (PARAM_SELSCHED_MAX_SCHED_TIMES))
3464 	av_set_iter_remove (&si);
3465     }
3466 }
3467 
3468 /* Filter speculative insns from AV_PTR if we don't want them.  */
3469 static void
process_spec_exprs(av_set_t * av_ptr)3470 process_spec_exprs (av_set_t *av_ptr)
3471 {
3472   expr_t expr;
3473   av_set_iterator si;
3474 
3475   if (spec_info == NULL)
3476     return;
3477 
3478   /* Scan *AV_PTR to find out if we want to consider speculative
3479      instructions for scheduling.  */
3480   FOR_EACH_EXPR_1 (expr, si, av_ptr)
3481     {
3482       ds_t ds;
3483 
3484       ds = EXPR_SPEC_DONE_DS (expr);
3485 
3486       /* The probability of a success is too low - don't speculate.  */
3487       if ((ds & SPECULATIVE)
3488           && (ds_weak (ds) < spec_info->data_weakness_cutoff
3489               || EXPR_USEFULNESS (expr) < spec_info->control_weakness_cutoff
3490 	      || (pipelining_p && false
3491 		  && (ds & DATA_SPEC)
3492 		  && (ds & CONTROL_SPEC))))
3493         {
3494           av_set_iter_remove (&si);
3495           continue;
3496         }
3497     }
3498 }
3499 
3500 /* Search for any use-like insns in AV_PTR and decide on scheduling
3501    them.  Return one when found, and NULL otherwise.
3502    Note that we check here whether a USE could be scheduled to avoid
3503    an infinite loop later.  */
3504 static expr_t
process_use_exprs(av_set_t * av_ptr)3505 process_use_exprs (av_set_t *av_ptr)
3506 {
3507   expr_t expr;
3508   av_set_iterator si;
3509   bool uses_present_p = false;
3510   bool try_uses_p = true;
3511 
3512   FOR_EACH_EXPR_1 (expr, si, av_ptr)
3513     {
3514       /* This will also initialize INSN_CODE for later use.  */
3515       if (recog_memoized (EXPR_INSN_RTX (expr)) < 0)
3516         {
3517           /* If we have a USE in *AV_PTR that was not scheduled yet,
3518              do so because it will do good only.  */
3519           if (EXPR_SCHED_TIMES (expr) <= 0)
3520             {
3521               if (EXPR_TARGET_AVAILABLE (expr) == 1)
3522                 return expr;
3523 
3524               av_set_iter_remove (&si);
3525             }
3526           else
3527             {
3528               gcc_assert (pipelining_p);
3529 
3530               uses_present_p = true;
3531             }
3532         }
3533       else
3534         try_uses_p = false;
3535     }
3536 
3537   if (uses_present_p)
3538     {
3539       /* If we don't want to schedule any USEs right now and we have some
3540            in *AV_PTR, remove them, else just return the first one found.  */
3541       if (!try_uses_p)
3542         {
3543           FOR_EACH_EXPR_1 (expr, si, av_ptr)
3544             if (INSN_CODE (EXPR_INSN_RTX (expr)) < 0)
3545               av_set_iter_remove (&si);
3546         }
3547       else
3548         {
3549           FOR_EACH_EXPR_1 (expr, si, av_ptr)
3550             {
3551               gcc_assert (INSN_CODE (EXPR_INSN_RTX (expr)) < 0);
3552 
3553               if (EXPR_TARGET_AVAILABLE (expr) == 1)
3554                 return expr;
3555 
3556               av_set_iter_remove (&si);
3557             }
3558         }
3559     }
3560 
3561   return NULL;
3562 }
3563 
3564 /* Lookup EXPR in VINSN_VEC and return TRUE if found.  Also check patterns from
3565    EXPR's history of changes.  */
3566 static bool
vinsn_vec_has_expr_p(vinsn_vec_t vinsn_vec,expr_t expr)3567 vinsn_vec_has_expr_p (vinsn_vec_t vinsn_vec, expr_t expr)
3568 {
3569   vinsn_t vinsn, expr_vinsn;
3570   int n;
3571   unsigned i;
3572 
3573   /* Start with checking expr itself and then proceed with all the old forms
3574      of expr taken from its history vector.  */
3575   for (i = 0, expr_vinsn = EXPR_VINSN (expr);
3576        expr_vinsn;
3577        expr_vinsn = (i < EXPR_HISTORY_OF_CHANGES (expr).length ()
3578 		     ? EXPR_HISTORY_OF_CHANGES (expr)[i++].old_expr_vinsn
3579 		     : NULL))
3580     FOR_EACH_VEC_ELT (vinsn_vec, n, vinsn)
3581       if (VINSN_SEPARABLE_P (vinsn))
3582 	{
3583 	  if (vinsn_equal_p (vinsn, expr_vinsn))
3584 	    return true;
3585 	}
3586       else
3587 	{
3588 	  /* For non-separable instructions, the blocking insn can have
3589 	     another pattern due to substitution, and we can't choose
3590 	     different register as in the above case.  Check all registers
3591 	     being written instead.  */
3592 	  if (bitmap_intersect_p (VINSN_REG_SETS (vinsn),
3593 				  VINSN_REG_SETS (expr_vinsn)))
3594 	    return true;
3595 	}
3596 
3597   return false;
3598 }
3599 
3600 /* Return true if either of expressions from ORIG_OPS can be blocked
3601    by previously created bookkeeping code.  STATIC_PARAMS points to static
3602    parameters of move_op.  */
3603 static bool
av_set_could_be_blocked_by_bookkeeping_p(av_set_t orig_ops,void * static_params)3604 av_set_could_be_blocked_by_bookkeeping_p (av_set_t orig_ops, void *static_params)
3605 {
3606   expr_t expr;
3607   av_set_iterator iter;
3608   moveop_static_params_p sparams;
3609 
3610   /* This checks that expressions in ORIG_OPS are not blocked by bookkeeping
3611      created while scheduling on another fence.  */
3612   FOR_EACH_EXPR (expr, iter, orig_ops)
3613     if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3614       return true;
3615 
3616   gcc_assert (code_motion_path_driver_info == &move_op_hooks);
3617   sparams = (moveop_static_params_p) static_params;
3618 
3619   /* Expressions can be also blocked by bookkeeping created during current
3620      move_op.  */
3621   if (bitmap_bit_p (current_copies, INSN_UID (sparams->failed_insn)))
3622     FOR_EACH_EXPR (expr, iter, orig_ops)
3623       if (moveup_expr_cached (expr, sparams->failed_insn, false) != MOVEUP_EXPR_NULL)
3624         return true;
3625 
3626   /* Expressions in ORIG_OPS may have wrong destination register due to
3627      renaming.  Check with the right register instead.  */
3628   if (sparams->dest && REG_P (sparams->dest))
3629     {
3630       rtx reg = sparams->dest;
3631       vinsn_t failed_vinsn = INSN_VINSN (sparams->failed_insn);
3632 
3633       if (register_unavailable_p (VINSN_REG_SETS (failed_vinsn), reg)
3634 	  || register_unavailable_p (VINSN_REG_USES (failed_vinsn), reg)
3635 	  || register_unavailable_p (VINSN_REG_CLOBBERS (failed_vinsn), reg))
3636 	return true;
3637     }
3638 
3639   return false;
3640 }
3641 
3642 /* Clear VINSN_VEC and detach vinsns.  */
3643 static void
vinsn_vec_clear(vinsn_vec_t * vinsn_vec)3644 vinsn_vec_clear (vinsn_vec_t *vinsn_vec)
3645 {
3646   unsigned len = vinsn_vec->length ();
3647   if (len > 0)
3648     {
3649       vinsn_t vinsn;
3650       int n;
3651 
3652       FOR_EACH_VEC_ELT (*vinsn_vec, n, vinsn)
3653         vinsn_detach (vinsn);
3654       vinsn_vec->block_remove (0, len);
3655     }
3656 }
3657 
3658 /* Add the vinsn of EXPR to the VINSN_VEC.  */
3659 static void
vinsn_vec_add(vinsn_vec_t * vinsn_vec,expr_t expr)3660 vinsn_vec_add (vinsn_vec_t *vinsn_vec, expr_t expr)
3661 {
3662   vinsn_attach (EXPR_VINSN (expr));
3663   vinsn_vec->safe_push (EXPR_VINSN (expr));
3664 }
3665 
3666 /* Free the vector representing blocked expressions.  */
3667 static void
vinsn_vec_free(vinsn_vec_t & vinsn_vec)3668 vinsn_vec_free (vinsn_vec_t &vinsn_vec)
3669 {
3670   vinsn_vec.release ();
3671 }
3672 
3673 /* Increase EXPR_PRIORITY_ADJ for INSN by AMOUNT.  */
3674 
sel_add_to_insn_priority(rtx insn,int amount)3675 void sel_add_to_insn_priority (rtx insn, int amount)
3676 {
3677   EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) += amount;
3678 
3679   if (sched_verbose >= 2)
3680     sel_print ("sel_add_to_insn_priority: insn %d, by %d (now %d+%d).\n",
3681 	       INSN_UID (insn), amount, EXPR_PRIORITY (INSN_EXPR (insn)),
3682 	       EXPR_PRIORITY_ADJ (INSN_EXPR (insn)));
3683 }
3684 
3685 /* Turn AV into a vector, filter inappropriate insns and sort it.  Return
3686    true if there is something to schedule.  BNDS and FENCE are current
3687    boundaries and fence, respectively.  If we need to stall for some cycles
3688    before an expr from AV would become available, write this number to
3689    *PNEED_STALL.  */
3690 static bool
fill_vec_av_set(av_set_t av,blist_t bnds,fence_t fence,int * pneed_stall)3691 fill_vec_av_set (av_set_t av, blist_t bnds, fence_t fence,
3692                  int *pneed_stall)
3693 {
3694   av_set_iterator si;
3695   expr_t expr;
3696   int sched_next_worked = 0, stalled, n;
3697   static int av_max_prio, est_ticks_till_branch;
3698   int min_need_stall = -1;
3699   deps_t dc = BND_DC (BLIST_BND (bnds));
3700 
3701   /* Bail out early when the ready list contained only USEs/CLOBBERs that are
3702      already scheduled.  */
3703   if (av == NULL)
3704     return false;
3705 
3706   /* Empty vector from the previous stuff.  */
3707   if (vec_av_set.length () > 0)
3708     vec_av_set.block_remove (0, vec_av_set.length ());
3709 
3710   /* Turn the set into a vector for sorting and call sel_target_adjust_priority
3711      for each insn.  */
3712   gcc_assert (vec_av_set.is_empty ());
3713   FOR_EACH_EXPR (expr, si, av)
3714     {
3715       vec_av_set.safe_push (expr);
3716 
3717       gcc_assert (EXPR_PRIORITY_ADJ (expr) == 0 || *pneed_stall);
3718 
3719       /* Adjust priority using target backend hook.  */
3720       sel_target_adjust_priority (expr);
3721     }
3722 
3723   /* Sort the vector.  */
3724   vec_av_set.qsort (sel_rank_for_schedule);
3725 
3726   /* We record maximal priority of insns in av set for current instruction
3727      group.  */
3728   if (FENCE_STARTS_CYCLE_P (fence))
3729     av_max_prio = est_ticks_till_branch = INT_MIN;
3730 
3731   /* Filter out inappropriate expressions.  Loop's direction is reversed to
3732      visit "best" instructions first.  We assume that vec::unordered_remove
3733      moves last element in place of one being deleted.  */
3734   for (n = vec_av_set.length () - 1, stalled = 0; n >= 0; n--)
3735     {
3736       expr_t expr = vec_av_set[n];
3737       insn_t insn = EXPR_INSN_RTX (expr);
3738       signed char target_available;
3739       bool is_orig_reg_p = true;
3740       int need_cycles, new_prio;
3741       bool fence_insn_p = INSN_UID (insn) == INSN_UID (FENCE_INSN (fence));
3742 
3743       /* Don't allow any insns other than from SCHED_GROUP if we have one.  */
3744       if (FENCE_SCHED_NEXT (fence) && insn != FENCE_SCHED_NEXT (fence))
3745         {
3746           vec_av_set.unordered_remove (n);
3747           continue;
3748         }
3749 
3750       /* Set number of sched_next insns (just in case there
3751          could be several).  */
3752       if (FENCE_SCHED_NEXT (fence))
3753         sched_next_worked++;
3754 
3755       /* Check all liveness requirements and try renaming.
3756          FIXME: try to minimize calls to this.  */
3757       target_available = EXPR_TARGET_AVAILABLE (expr);
3758 
3759       /* If insn was already scheduled on the current fence,
3760 	 set TARGET_AVAILABLE to -1 no matter what expr's attribute says.  */
3761       if (vinsn_vec_has_expr_p (vec_target_unavailable_vinsns, expr)
3762 	  && !fence_insn_p)
3763 	target_available = -1;
3764 
3765       /* If the availability of the EXPR is invalidated by the insertion of
3766 	 bookkeeping earlier, make sure that we won't choose this expr for
3767 	 scheduling if it's not separable, and if it is separable, then
3768 	 we have to recompute the set of available registers for it.  */
3769       if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3770 	{
3771           vec_av_set.unordered_remove (n);
3772           if (sched_verbose >= 4)
3773             sel_print ("Expr %d is blocked by bookkeeping inserted earlier\n",
3774                        INSN_UID (insn));
3775           continue;
3776         }
3777 
3778       if (target_available == true)
3779 	{
3780           /* Do nothing -- we can use an existing register.  */
3781 	  is_orig_reg_p = EXPR_SEPARABLE_P (expr);
3782         }
3783       else if (/* Non-separable instruction will never
3784                   get another register. */
3785                (target_available == false
3786                 && !EXPR_SEPARABLE_P (expr))
3787                /* Don't try to find a register for low-priority expression.  */
3788                || (int) vec_av_set.length () - 1 - n >= max_insns_to_rename
3789                /* ??? FIXME: Don't try to rename data speculation.  */
3790                || (EXPR_SPEC_DONE_DS (expr) & BEGIN_DATA)
3791                || ! find_best_reg_for_expr (expr, bnds, &is_orig_reg_p))
3792         {
3793           vec_av_set.unordered_remove (n);
3794           if (sched_verbose >= 4)
3795             sel_print ("Expr %d has no suitable target register\n",
3796                        INSN_UID (insn));
3797 
3798 	  /* A fence insn should not get here.  */
3799 	  gcc_assert (!fence_insn_p);
3800 	  continue;
3801         }
3802 
3803       /* At this point a fence insn should always be available.  */
3804       gcc_assert (!fence_insn_p
3805 		  || INSN_UID (FENCE_INSN (fence)) == INSN_UID (EXPR_INSN_RTX (expr)));
3806 
3807       /* Filter expressions that need to be renamed or speculated when
3808 	 pipelining, because compensating register copies or speculation
3809 	 checks are likely to be placed near the beginning of the loop,
3810 	 causing a stall.  */
3811       if (pipelining_p && EXPR_ORIG_SCHED_CYCLE (expr) > 0
3812 	  && (!is_orig_reg_p || EXPR_SPEC_DONE_DS (expr) != 0))
3813 	{
3814 	  /* Estimation of number of cycles until loop branch for
3815 	     renaming/speculation to be successful.  */
3816 	  int need_n_ticks_till_branch = sel_vinsn_cost (EXPR_VINSN (expr));
3817 
3818 	  if ((int) current_loop_nest->ninsns < 9)
3819 	    {
3820 	      vec_av_set.unordered_remove (n);
3821 	      if (sched_verbose >= 4)
3822 		sel_print ("Pipelining expr %d will likely cause stall\n",
3823 			   INSN_UID (insn));
3824 	      continue;
3825 	    }
3826 
3827 	  if ((int) current_loop_nest->ninsns - num_insns_scheduled
3828 	      < need_n_ticks_till_branch * issue_rate / 2
3829 	      && est_ticks_till_branch < need_n_ticks_till_branch)
3830 	     {
3831 	       vec_av_set.unordered_remove (n);
3832 	       if (sched_verbose >= 4)
3833 		 sel_print ("Pipelining expr %d will likely cause stall\n",
3834 			    INSN_UID (insn));
3835 	       continue;
3836 	     }
3837 	}
3838 
3839       /* We want to schedule speculation checks as late as possible.  Discard
3840 	 them from av set if there are instructions with higher priority.  */
3841       if (sel_insn_is_speculation_check (insn)
3842 	  && EXPR_PRIORITY (expr) < av_max_prio)
3843 	{
3844           stalled++;
3845           min_need_stall = min_need_stall < 0 ? 1 : MIN (min_need_stall, 1);
3846           vec_av_set.unordered_remove (n);
3847 	  if (sched_verbose >= 4)
3848 	    sel_print ("Delaying speculation check %d until its first use\n",
3849 		       INSN_UID (insn));
3850 	  continue;
3851 	}
3852 
3853       /* Ignore EXPRs available from pipelining to update AV_MAX_PRIO.  */
3854       if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3855 	av_max_prio = MAX (av_max_prio, EXPR_PRIORITY (expr));
3856 
3857       /* Don't allow any insns whose data is not yet ready.
3858          Check first whether we've already tried them and failed.  */
3859       if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
3860 	{
3861           need_cycles = (FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3862 			 - FENCE_CYCLE (fence));
3863 	  if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3864 	    est_ticks_till_branch = MAX (est_ticks_till_branch,
3865 					 EXPR_PRIORITY (expr) + need_cycles);
3866 
3867 	  if (need_cycles > 0)
3868 	    {
3869 	      stalled++;
3870 	      min_need_stall = (min_need_stall < 0
3871 				? need_cycles
3872 				: MIN (min_need_stall, need_cycles));
3873 	      vec_av_set.unordered_remove (n);
3874 
3875 	      if (sched_verbose >= 4)
3876 		sel_print ("Expr %d is not ready until cycle %d (cached)\n",
3877 			   INSN_UID (insn),
3878 			   FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3879 	      continue;
3880 	    }
3881 	}
3882 
3883       /* Now resort to dependence analysis to find whether EXPR might be
3884          stalled due to dependencies from FENCE's context.  */
3885       need_cycles = tick_check_p (expr, dc, fence);
3886       new_prio = EXPR_PRIORITY (expr) + EXPR_PRIORITY_ADJ (expr) + need_cycles;
3887 
3888       if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3889 	est_ticks_till_branch = MAX (est_ticks_till_branch,
3890 				     new_prio);
3891 
3892       if (need_cycles > 0)
3893         {
3894           if (INSN_UID (insn) >= FENCE_READY_TICKS_SIZE (fence))
3895             {
3896               int new_size = INSN_UID (insn) * 3 / 2;
3897 
3898               FENCE_READY_TICKS (fence)
3899                 = (int *) xrecalloc (FENCE_READY_TICKS (fence),
3900                                      new_size, FENCE_READY_TICKS_SIZE (fence),
3901                                      sizeof (int));
3902             }
3903           FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3904             = FENCE_CYCLE (fence) + need_cycles;
3905 
3906           stalled++;
3907           min_need_stall = (min_need_stall < 0
3908                             ? need_cycles
3909                             : MIN (min_need_stall, need_cycles));
3910 
3911           vec_av_set.unordered_remove (n);
3912 
3913           if (sched_verbose >= 4)
3914             sel_print ("Expr %d is not ready yet until cycle %d\n",
3915                        INSN_UID (insn),
3916                        FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3917           continue;
3918         }
3919 
3920       if (sched_verbose >= 4)
3921         sel_print ("Expr %d is ok\n", INSN_UID (insn));
3922       min_need_stall = 0;
3923     }
3924 
3925   /* Clear SCHED_NEXT.  */
3926   if (FENCE_SCHED_NEXT (fence))
3927     {
3928       gcc_assert (sched_next_worked == 1);
3929       FENCE_SCHED_NEXT (fence) = NULL;
3930     }
3931 
3932   /* No need to stall if this variable was not initialized.  */
3933   if (min_need_stall < 0)
3934     min_need_stall = 0;
3935 
3936   if (vec_av_set.is_empty ())
3937     {
3938       /* We need to set *pneed_stall here, because later we skip this code
3939          when ready list is empty.  */
3940       *pneed_stall = min_need_stall;
3941       return false;
3942     }
3943   else
3944     gcc_assert (min_need_stall == 0);
3945 
3946   /* Sort the vector.  */
3947   vec_av_set.qsort (sel_rank_for_schedule);
3948 
3949   if (sched_verbose >= 4)
3950     {
3951       sel_print ("Total ready exprs: %d, stalled: %d\n",
3952                  vec_av_set.length (), stalled);
3953       sel_print ("Sorted av set (%d): ", vec_av_set.length ());
3954       FOR_EACH_VEC_ELT (vec_av_set, n, expr)
3955         dump_expr (expr);
3956       sel_print ("\n");
3957     }
3958 
3959   *pneed_stall = 0;
3960   return true;
3961 }
3962 
3963 /* Convert a vectored and sorted av set to the ready list that
3964    the rest of the backend wants to see.  */
3965 static void
convert_vec_av_set_to_ready(void)3966 convert_vec_av_set_to_ready (void)
3967 {
3968   int n;
3969   expr_t expr;
3970 
3971   /* Allocate and fill the ready list from the sorted vector.  */
3972   ready.n_ready = vec_av_set.length ();
3973   ready.first = ready.n_ready - 1;
3974 
3975   gcc_assert (ready.n_ready > 0);
3976 
3977   if (ready.n_ready > max_issue_size)
3978     {
3979       max_issue_size = ready.n_ready;
3980       sched_extend_ready_list (ready.n_ready);
3981     }
3982 
3983   FOR_EACH_VEC_ELT (vec_av_set, n, expr)
3984     {
3985       vinsn_t vi = EXPR_VINSN (expr);
3986       insn_t insn = VINSN_INSN_RTX (vi);
3987 
3988       ready_try[n] = 0;
3989       ready.vec[n] = insn;
3990     }
3991 }
3992 
3993 /* Initialize ready list from *AV_PTR for the max_issue () call.
3994    If any unrecognizable insn found in *AV_PTR, return it (and skip
3995    max_issue).  BND and FENCE are current boundary and fence,
3996    respectively.  If we need to stall for some cycles before an expr
3997    from *AV_PTR would become available, write this number to *PNEED_STALL.  */
3998 static expr_t
fill_ready_list(av_set_t * av_ptr,blist_t bnds,fence_t fence,int * pneed_stall)3999 fill_ready_list (av_set_t *av_ptr, blist_t bnds, fence_t fence,
4000                  int *pneed_stall)
4001 {
4002   expr_t expr;
4003 
4004   /* We do not support multiple boundaries per fence.  */
4005   gcc_assert (BLIST_NEXT (bnds) == NULL);
4006 
4007   /* Process expressions required special handling, i.e.  pipelined,
4008      speculative and recog() < 0 expressions first.  */
4009   process_pipelined_exprs (av_ptr);
4010   process_spec_exprs (av_ptr);
4011 
4012   /* A USE could be scheduled immediately.  */
4013   expr = process_use_exprs (av_ptr);
4014   if (expr)
4015     {
4016       *pneed_stall = 0;
4017       return expr;
4018     }
4019 
4020   /* Turn the av set to a vector for sorting.  */
4021   if (! fill_vec_av_set (*av_ptr, bnds, fence, pneed_stall))
4022     {
4023       ready.n_ready = 0;
4024       return NULL;
4025     }
4026 
4027   /* Build the final ready list.  */
4028   convert_vec_av_set_to_ready ();
4029   return NULL;
4030 }
4031 
4032 /* Wrapper for dfa_new_cycle ().  Returns TRUE if cycle was advanced.  */
4033 static bool
sel_dfa_new_cycle(insn_t insn,fence_t fence)4034 sel_dfa_new_cycle (insn_t insn, fence_t fence)
4035 {
4036   int last_scheduled_cycle = FENCE_LAST_SCHEDULED_INSN (fence)
4037                              ? INSN_SCHED_CYCLE (FENCE_LAST_SCHEDULED_INSN (fence))
4038                              : FENCE_CYCLE (fence) - 1;
4039   bool res = false;
4040   int sort_p = 0;
4041 
4042   if (!targetm.sched.dfa_new_cycle)
4043     return false;
4044 
4045   memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4046 
4047   while (!sort_p && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
4048                                                  insn, last_scheduled_cycle,
4049                                                  FENCE_CYCLE (fence), &sort_p))
4050     {
4051       memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4052       advance_one_cycle (fence);
4053       memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4054       res = true;
4055     }
4056 
4057   return res;
4058 }
4059 
4060 /* Invoke reorder* target hooks on the ready list.  Return the number of insns
4061    we can issue.  FENCE is the current fence.  */
4062 static int
invoke_reorder_hooks(fence_t fence)4063 invoke_reorder_hooks (fence_t fence)
4064 {
4065   int issue_more;
4066   bool ran_hook = false;
4067 
4068   /* Call the reorder hook at the beginning of the cycle, and call
4069      the reorder2 hook in the middle of the cycle.  */
4070   if (FENCE_ISSUED_INSNS (fence) == 0)
4071     {
4072       if (targetm.sched.reorder
4073           && !SCHED_GROUP_P (ready_element (&ready, 0))
4074           && ready.n_ready > 1)
4075         {
4076           /* Don't give reorder the most prioritized insn as it can break
4077              pipelining.  */
4078           if (pipelining_p)
4079             --ready.n_ready;
4080 
4081           issue_more
4082             = targetm.sched.reorder (sched_dump, sched_verbose,
4083                                      ready_lastpos (&ready),
4084                                      &ready.n_ready, FENCE_CYCLE (fence));
4085 
4086           if (pipelining_p)
4087             ++ready.n_ready;
4088 
4089           ran_hook = true;
4090         }
4091       else
4092         /* Initialize can_issue_more for variable_issue.  */
4093         issue_more = issue_rate;
4094     }
4095   else if (targetm.sched.reorder2
4096            && !SCHED_GROUP_P (ready_element (&ready, 0)))
4097     {
4098       if (ready.n_ready == 1)
4099         issue_more =
4100           targetm.sched.reorder2 (sched_dump, sched_verbose,
4101                                   ready_lastpos (&ready),
4102                                   &ready.n_ready, FENCE_CYCLE (fence));
4103       else
4104         {
4105           if (pipelining_p)
4106             --ready.n_ready;
4107 
4108           issue_more =
4109             targetm.sched.reorder2 (sched_dump, sched_verbose,
4110                                     ready.n_ready
4111                                     ? ready_lastpos (&ready) : NULL,
4112                                     &ready.n_ready, FENCE_CYCLE (fence));
4113 
4114           if (pipelining_p)
4115             ++ready.n_ready;
4116         }
4117 
4118       ran_hook = true;
4119     }
4120   else
4121     issue_more = FENCE_ISSUE_MORE (fence);
4122 
4123   /* Ensure that ready list and vec_av_set are in line with each other,
4124      i.e. vec_av_set[i] == ready_element (&ready, i).  */
4125   if (issue_more && ran_hook)
4126     {
4127       int i, j, n;
4128       rtx_insn **arr = ready.vec;
4129       expr_t *vec = vec_av_set.address ();
4130 
4131       for (i = 0, n = ready.n_ready; i < n; i++)
4132         if (EXPR_INSN_RTX (vec[i]) != arr[i])
4133           {
4134             for (j = i; j < n; j++)
4135               if (EXPR_INSN_RTX (vec[j]) == arr[i])
4136                 break;
4137             gcc_assert (j < n);
4138 
4139 	    std::swap (vec[i], vec[j]);
4140           }
4141     }
4142 
4143   return issue_more;
4144 }
4145 
4146 /* Return an EXPR corresponding to INDEX element of ready list, if
4147    FOLLOW_READY_ELEMENT is true (i.e., an expr of
4148    ready_element (&ready, INDEX) will be returned), and to INDEX element of
4149    ready.vec otherwise.  */
4150 static inline expr_t
find_expr_for_ready(int index,bool follow_ready_element)4151 find_expr_for_ready (int index, bool follow_ready_element)
4152 {
4153   expr_t expr;
4154   int real_index;
4155 
4156   real_index = follow_ready_element ? ready.first - index : index;
4157 
4158   expr = vec_av_set[real_index];
4159   gcc_assert (ready.vec[real_index] == EXPR_INSN_RTX (expr));
4160 
4161   return expr;
4162 }
4163 
4164 /* Calculate insns worth trying via lookahead_guard hook.  Return a number
4165    of such insns found.  */
4166 static int
invoke_dfa_lookahead_guard(void)4167 invoke_dfa_lookahead_guard (void)
4168 {
4169   int i, n;
4170   bool have_hook
4171     = targetm.sched.first_cycle_multipass_dfa_lookahead_guard != NULL;
4172 
4173   if (sched_verbose >= 2)
4174     sel_print ("ready after reorder: ");
4175 
4176   for (i = 0, n = 0; i < ready.n_ready; i++)
4177     {
4178       expr_t expr;
4179       insn_t insn;
4180       int r;
4181 
4182       /* In this loop insn is Ith element of the ready list given by
4183          ready_element, not Ith element of ready.vec.  */
4184       insn = ready_element (&ready, i);
4185 
4186       if (! have_hook || i == 0)
4187         r = 0;
4188       else
4189         r = targetm.sched.first_cycle_multipass_dfa_lookahead_guard (insn, i);
4190 
4191       gcc_assert (INSN_CODE (insn) >= 0);
4192 
4193       /* Only insns with ready_try = 0 can get here
4194          from fill_ready_list.  */
4195       gcc_assert (ready_try [i] == 0);
4196       ready_try[i] = r;
4197       if (!r)
4198         n++;
4199 
4200       expr = find_expr_for_ready (i, true);
4201 
4202       if (sched_verbose >= 2)
4203         {
4204           dump_vinsn (EXPR_VINSN (expr));
4205           sel_print (":%d; ", ready_try[i]);
4206         }
4207     }
4208 
4209   if (sched_verbose >= 2)
4210     sel_print ("\n");
4211   return n;
4212 }
4213 
4214 /* Calculate the number of privileged insns and return it.  */
4215 static int
calculate_privileged_insns(void)4216 calculate_privileged_insns (void)
4217 {
4218   expr_t cur_expr, min_spec_expr = NULL;
4219   int privileged_n = 0, i;
4220 
4221   for (i = 0; i < ready.n_ready; i++)
4222     {
4223       if (ready_try[i])
4224         continue;
4225 
4226       if (! min_spec_expr)
4227 	min_spec_expr = find_expr_for_ready (i, true);
4228 
4229       cur_expr = find_expr_for_ready (i, true);
4230 
4231       if (EXPR_SPEC (cur_expr) > EXPR_SPEC (min_spec_expr))
4232         break;
4233 
4234       ++privileged_n;
4235     }
4236 
4237   if (i == ready.n_ready)
4238     privileged_n = 0;
4239 
4240   if (sched_verbose >= 2)
4241     sel_print ("privileged_n: %d insns with SPEC %d\n",
4242                privileged_n, privileged_n ? EXPR_SPEC (min_spec_expr) : -1);
4243   return privileged_n;
4244 }
4245 
4246 /* Call the rest of the hooks after the choice was made.  Return
4247    the number of insns that still can be issued given that the current
4248    number is ISSUE_MORE.  FENCE and BEST_INSN are the current fence
4249    and the insn chosen for scheduling, respectively.  */
4250 static int
invoke_aftermath_hooks(fence_t fence,rtx_insn * best_insn,int issue_more)4251 invoke_aftermath_hooks (fence_t fence, rtx_insn *best_insn, int issue_more)
4252 {
4253   gcc_assert (INSN_P (best_insn));
4254 
4255   /* First, call dfa_new_cycle, and then variable_issue, if available.  */
4256   sel_dfa_new_cycle (best_insn, fence);
4257 
4258   if (targetm.sched.variable_issue)
4259     {
4260       memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4261       issue_more =
4262         targetm.sched.variable_issue (sched_dump, sched_verbose, best_insn,
4263                                       issue_more);
4264       memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4265     }
4266   else if (!DEBUG_INSN_P (best_insn)
4267 	   && GET_CODE (PATTERN (best_insn)) != USE
4268 	   && GET_CODE (PATTERN (best_insn)) != CLOBBER)
4269     issue_more--;
4270 
4271   return issue_more;
4272 }
4273 
4274 /* Estimate the cost of issuing INSN on DFA state STATE.  */
4275 static int
estimate_insn_cost(rtx_insn * insn,state_t state)4276 estimate_insn_cost (rtx_insn *insn, state_t state)
4277 {
4278   static state_t temp = NULL;
4279   int cost;
4280 
4281   if (!temp)
4282     temp = xmalloc (dfa_state_size);
4283 
4284   memcpy (temp, state, dfa_state_size);
4285   cost = state_transition (temp, insn);
4286 
4287   if (cost < 0)
4288     return 0;
4289   else if (cost == 0)
4290     return 1;
4291   return cost;
4292 }
4293 
4294 /* Return the cost of issuing EXPR on the FENCE as estimated by DFA.
4295    This function properly handles ASMs, USEs etc.  */
4296 static int
get_expr_cost(expr_t expr,fence_t fence)4297 get_expr_cost (expr_t expr, fence_t fence)
4298 {
4299   rtx_insn *insn = EXPR_INSN_RTX (expr);
4300 
4301   if (recog_memoized (insn) < 0)
4302     {
4303       if (!FENCE_STARTS_CYCLE_P (fence)
4304 	  && INSN_ASM_P (insn))
4305 	/* This is asm insn which is tryed to be issued on the
4306 	   cycle not first.  Issue it on the next cycle.  */
4307 	return 1;
4308       else
4309 	/* A USE insn, or something else we don't need to
4310 	   understand.  We can't pass these directly to
4311 	   state_transition because it will trigger a
4312 	   fatal error for unrecognizable insns.  */
4313 	return 0;
4314     }
4315   else
4316     return estimate_insn_cost (insn, FENCE_STATE (fence));
4317 }
4318 
4319 /* Find the best insn for scheduling, either via max_issue or just take
4320    the most prioritized available.  */
4321 static int
choose_best_insn(fence_t fence,int privileged_n,int * index)4322 choose_best_insn (fence_t fence, int privileged_n, int *index)
4323 {
4324   int can_issue = 0;
4325 
4326   if (dfa_lookahead > 0)
4327     {
4328       cycle_issued_insns = FENCE_ISSUED_INSNS (fence);
4329       /* TODO: pass equivalent of first_cycle_insn_p to max_issue ().  */
4330       can_issue = max_issue (&ready, privileged_n,
4331                              FENCE_STATE (fence), true, index);
4332       if (sched_verbose >= 2)
4333         sel_print ("max_issue: we can issue %d insns, already did %d insns\n",
4334                    can_issue, FENCE_ISSUED_INSNS (fence));
4335     }
4336   else
4337     {
4338       /* We can't use max_issue; just return the first available element.  */
4339       int i;
4340 
4341       for (i = 0; i < ready.n_ready; i++)
4342 	{
4343 	  expr_t expr = find_expr_for_ready (i, true);
4344 
4345 	  if (get_expr_cost (expr, fence) < 1)
4346 	    {
4347 	      can_issue = can_issue_more;
4348 	      *index = i;
4349 
4350 	      if (sched_verbose >= 2)
4351 		sel_print ("using %dth insn from the ready list\n", i + 1);
4352 
4353 	      break;
4354 	    }
4355 	}
4356 
4357       if (i == ready.n_ready)
4358 	{
4359 	  can_issue = 0;
4360 	  *index = -1;
4361 	}
4362     }
4363 
4364   return can_issue;
4365 }
4366 
4367 /* Choose the best expr from *AV_VLIW_PTR and a suitable register for it.
4368    BNDS and FENCE are current boundaries and scheduling fence respectively.
4369    Return the expr found and NULL if nothing can be issued atm.
4370    Write to PNEED_STALL the number of cycles to stall if no expr was found.  */
4371 static expr_t
find_best_expr(av_set_t * av_vliw_ptr,blist_t bnds,fence_t fence,int * pneed_stall)4372 find_best_expr (av_set_t *av_vliw_ptr, blist_t bnds, fence_t fence,
4373                 int *pneed_stall)
4374 {
4375   expr_t best;
4376 
4377   /* Choose the best insn for scheduling via:
4378      1) sorting the ready list based on priority;
4379      2) calling the reorder hook;
4380      3) calling max_issue.  */
4381   best = fill_ready_list (av_vliw_ptr, bnds, fence, pneed_stall);
4382   if (best == NULL && ready.n_ready > 0)
4383     {
4384       int privileged_n, index;
4385 
4386       can_issue_more = invoke_reorder_hooks (fence);
4387       if (can_issue_more > 0)
4388         {
4389           /* Try choosing the best insn until we find one that is could be
4390              scheduled due to liveness restrictions on its destination register.
4391              In the future, we'd like to choose once and then just probe insns
4392              in the order of their priority.  */
4393           invoke_dfa_lookahead_guard ();
4394           privileged_n = calculate_privileged_insns ();
4395           can_issue_more = choose_best_insn (fence, privileged_n, &index);
4396           if (can_issue_more)
4397             best = find_expr_for_ready (index, true);
4398         }
4399       /* We had some available insns, so if we can't issue them,
4400          we have a stall.  */
4401       if (can_issue_more == 0)
4402         {
4403           best = NULL;
4404           *pneed_stall = 1;
4405         }
4406     }
4407 
4408   if (best != NULL)
4409     {
4410       can_issue_more = invoke_aftermath_hooks (fence, EXPR_INSN_RTX (best),
4411                                                can_issue_more);
4412       if (targetm.sched.variable_issue
4413 	  && can_issue_more == 0)
4414         *pneed_stall = 1;
4415     }
4416 
4417   if (sched_verbose >= 2)
4418     {
4419       if (best != NULL)
4420         {
4421           sel_print ("Best expression (vliw form): ");
4422           dump_expr (best);
4423           sel_print ("; cycle %d\n", FENCE_CYCLE (fence));
4424         }
4425       else
4426         sel_print ("No best expr found!\n");
4427     }
4428 
4429   return best;
4430 }
4431 
4432 
4433 /* Functions that implement the core of the scheduler.  */
4434 
4435 
4436 /* Emit an instruction from EXPR with SEQNO and VINSN after
4437    PLACE_TO_INSERT.  */
4438 static insn_t
emit_insn_from_expr_after(expr_t expr,vinsn_t vinsn,int seqno,insn_t place_to_insert)4439 emit_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
4440                            insn_t place_to_insert)
4441 {
4442   /* This assert fails when we have identical instructions
4443      one of which dominates the other.  In this case move_op ()
4444      finds the first instruction and doesn't search for second one.
4445      The solution would be to compute av_set after the first found
4446      insn and, if insn present in that set, continue searching.
4447      For now we workaround this issue in move_op.  */
4448   gcc_assert (!INSN_IN_STREAM_P (EXPR_INSN_RTX (expr)));
4449 
4450   if (EXPR_WAS_RENAMED (expr))
4451     {
4452       unsigned regno = expr_dest_regno (expr);
4453 
4454       if (HARD_REGISTER_NUM_P (regno))
4455 	{
4456 	  df_set_regs_ever_live (regno, true);
4457 	  reg_rename_tick[regno] = ++reg_rename_this_tick;
4458 	}
4459     }
4460 
4461   return sel_gen_insn_from_expr_after (expr, vinsn, seqno,
4462                                        place_to_insert);
4463 }
4464 
4465 /* Return TRUE if BB can hold bookkeeping code.  */
4466 static bool
block_valid_for_bookkeeping_p(basic_block bb)4467 block_valid_for_bookkeeping_p (basic_block bb)
4468 {
4469   insn_t bb_end = BB_END (bb);
4470 
4471   if (!in_current_region_p (bb) || EDGE_COUNT (bb->succs) > 1)
4472     return false;
4473 
4474   if (INSN_P (bb_end))
4475     {
4476       if (INSN_SCHED_TIMES (bb_end) > 0)
4477 	return false;
4478     }
4479   else
4480     gcc_assert (NOTE_INSN_BASIC_BLOCK_P (bb_end));
4481 
4482   return true;
4483 }
4484 
4485 /* Attempt to find a block that can hold bookkeeping code for path(s) incoming
4486    into E2->dest, except from E1->src (there may be a sequence of empty basic
4487    blocks between E1->src and E2->dest).  Return found block, or NULL if new
4488    one must be created.  If LAX holds, don't assume there is a simple path
4489    from E1->src to E2->dest.  */
4490 static basic_block
find_block_for_bookkeeping(edge e1,edge e2,bool lax)4491 find_block_for_bookkeeping (edge e1, edge e2, bool lax)
4492 {
4493   basic_block candidate_block = NULL;
4494   edge e;
4495 
4496   /* Loop over edges from E1 to E2, inclusive.  */
4497   for (e = e1; !lax || e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun); e =
4498        EDGE_SUCC (e->dest, 0))
4499     {
4500       if (EDGE_COUNT (e->dest->preds) == 2)
4501 	{
4502 	  if (candidate_block == NULL)
4503 	    candidate_block = (EDGE_PRED (e->dest, 0) == e
4504 			       ? EDGE_PRED (e->dest, 1)->src
4505 			       : EDGE_PRED (e->dest, 0)->src);
4506 	  else
4507 	    /* Found additional edge leading to path from e1 to e2
4508 	       from aside.  */
4509 	    return NULL;
4510 	}
4511       else if (EDGE_COUNT (e->dest->preds) > 2)
4512 	/* Several edges leading to path from e1 to e2 from aside.  */
4513 	return NULL;
4514 
4515       if (e == e2)
4516 	return ((!lax || candidate_block)
4517 		&& block_valid_for_bookkeeping_p (candidate_block)
4518 		? candidate_block
4519 		: NULL);
4520 
4521       if (lax && EDGE_COUNT (e->dest->succs) != 1)
4522 	return NULL;
4523     }
4524 
4525   if (lax)
4526     return NULL;
4527 
4528   gcc_unreachable ();
4529 }
4530 
4531 /* Create new basic block for bookkeeping code for path(s) incoming into
4532    E2->dest, except from E1->src.  Return created block.  */
4533 static basic_block
create_block_for_bookkeeping(edge e1,edge e2)4534 create_block_for_bookkeeping (edge e1, edge e2)
4535 {
4536   basic_block new_bb, bb = e2->dest;
4537 
4538   /* Check that we don't spoil the loop structure.  */
4539   if (current_loop_nest)
4540     {
4541       basic_block latch = current_loop_nest->latch;
4542 
4543       /* We do not split header.  */
4544       gcc_assert (e2->dest != current_loop_nest->header);
4545 
4546       /* We do not redirect the only edge to the latch block.  */
4547       gcc_assert (e1->dest != latch
4548 		  || !single_pred_p (latch)
4549 		  || e1 != single_pred_edge (latch));
4550     }
4551 
4552   /* Split BB to insert BOOK_INSN there.  */
4553   new_bb = sched_split_block (bb, NULL);
4554 
4555   /* Move note_list from the upper bb.  */
4556   gcc_assert (BB_NOTE_LIST (new_bb) == NULL_RTX);
4557   BB_NOTE_LIST (new_bb) = BB_NOTE_LIST (bb);
4558   BB_NOTE_LIST (bb) = NULL;
4559 
4560   gcc_assert (e2->dest == bb);
4561 
4562   /* Skip block for bookkeeping copy when leaving E1->src.  */
4563   if (e1->flags & EDGE_FALLTHRU)
4564     sel_redirect_edge_and_branch_force (e1, new_bb);
4565   else
4566     sel_redirect_edge_and_branch (e1, new_bb);
4567 
4568   gcc_assert (e1->dest == new_bb);
4569   gcc_assert (sel_bb_empty_p (bb));
4570 
4571   /* To keep basic block numbers in sync between debug and non-debug
4572      compilations, we have to rotate blocks here.  Consider that we
4573      started from (a,b)->d, (c,d)->e, and d contained only debug
4574      insns.  It would have been removed before if the debug insns
4575      weren't there, so we'd have split e rather than d.  So what we do
4576      now is to swap the block numbers of new_bb and
4577      single_succ(new_bb) == e, so that the insns that were in e before
4578      get the new block number.  */
4579 
4580   if (MAY_HAVE_DEBUG_INSNS)
4581     {
4582       basic_block succ;
4583       insn_t insn = sel_bb_head (new_bb);
4584       insn_t last;
4585 
4586       if (DEBUG_INSN_P (insn)
4587 	  && single_succ_p (new_bb)
4588 	  && (succ = single_succ (new_bb))
4589 	  && succ != EXIT_BLOCK_PTR_FOR_FN (cfun)
4590 	  && DEBUG_INSN_P ((last = sel_bb_end (new_bb))))
4591 	{
4592 	  while (insn != last && (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4593 	    insn = NEXT_INSN (insn);
4594 
4595 	  if (insn == last)
4596 	    {
4597 	      sel_global_bb_info_def gbi;
4598 	      sel_region_bb_info_def rbi;
4599 
4600 	      if (sched_verbose >= 2)
4601 		sel_print ("Swapping block ids %i and %i\n",
4602 			   new_bb->index, succ->index);
4603 
4604 	      std::swap (new_bb->index, succ->index);
4605 
4606 	      SET_BASIC_BLOCK_FOR_FN (cfun, new_bb->index, new_bb);
4607 	      SET_BASIC_BLOCK_FOR_FN (cfun, succ->index, succ);
4608 
4609 	      memcpy (&gbi, SEL_GLOBAL_BB_INFO (new_bb), sizeof (gbi));
4610 	      memcpy (SEL_GLOBAL_BB_INFO (new_bb), SEL_GLOBAL_BB_INFO (succ),
4611 		      sizeof (gbi));
4612 	      memcpy (SEL_GLOBAL_BB_INFO (succ), &gbi, sizeof (gbi));
4613 
4614 	      memcpy (&rbi, SEL_REGION_BB_INFO (new_bb), sizeof (rbi));
4615 	      memcpy (SEL_REGION_BB_INFO (new_bb), SEL_REGION_BB_INFO (succ),
4616 		      sizeof (rbi));
4617 	      memcpy (SEL_REGION_BB_INFO (succ), &rbi, sizeof (rbi));
4618 
4619 	      std::swap (BLOCK_TO_BB (new_bb->index),
4620 			 BLOCK_TO_BB (succ->index));
4621 
4622 	      std::swap (CONTAINING_RGN (new_bb->index),
4623 			 CONTAINING_RGN (succ->index));
4624 
4625 	      for (int i = 0; i < current_nr_blocks; i++)
4626 		if (BB_TO_BLOCK (i) == succ->index)
4627 		  BB_TO_BLOCK (i) = new_bb->index;
4628 		else if (BB_TO_BLOCK (i) == new_bb->index)
4629 		  BB_TO_BLOCK (i) = succ->index;
4630 
4631 	      FOR_BB_INSNS (new_bb, insn)
4632 		if (INSN_P (insn))
4633 		  EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
4634 
4635 	      FOR_BB_INSNS (succ, insn)
4636 		if (INSN_P (insn))
4637 		  EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = succ->index;
4638 
4639 	      if (bitmap_clear_bit (code_motion_visited_blocks, new_bb->index))
4640 		bitmap_set_bit (code_motion_visited_blocks, succ->index);
4641 
4642 	      gcc_assert (LABEL_P (BB_HEAD (new_bb))
4643 			  && LABEL_P (BB_HEAD (succ)));
4644 
4645 	      if (sched_verbose >= 4)
4646 		sel_print ("Swapping code labels %i and %i\n",
4647 			   CODE_LABEL_NUMBER (BB_HEAD (new_bb)),
4648 			   CODE_LABEL_NUMBER (BB_HEAD (succ)));
4649 
4650 	      std::swap (CODE_LABEL_NUMBER (BB_HEAD (new_bb)),
4651 			 CODE_LABEL_NUMBER (BB_HEAD (succ)));
4652 	    }
4653 	}
4654     }
4655 
4656   return bb;
4657 }
4658 
4659 /* Return insn after which we must insert bookkeeping code for path(s) incoming
4660    into E2->dest, except from E1->src.  If the returned insn immediately
4661    precedes a fence, assign that fence to *FENCE_TO_REWIND.  */
4662 static insn_t
find_place_for_bookkeeping(edge e1,edge e2,fence_t * fence_to_rewind)4663 find_place_for_bookkeeping (edge e1, edge e2, fence_t *fence_to_rewind)
4664 {
4665   insn_t place_to_insert;
4666   /* Find a basic block that can hold bookkeeping.  If it can be found, do not
4667      create new basic block, but insert bookkeeping there.  */
4668   basic_block book_block = find_block_for_bookkeeping (e1, e2, FALSE);
4669 
4670   if (book_block)
4671     {
4672       place_to_insert = BB_END (book_block);
4673 
4674       /* Don't use a block containing only debug insns for
4675 	 bookkeeping, this causes scheduling differences between debug
4676 	 and non-debug compilations, for the block would have been
4677 	 removed already.  */
4678       if (DEBUG_INSN_P (place_to_insert))
4679 	{
4680 	  rtx_insn *insn = sel_bb_head (book_block);
4681 
4682 	  while (insn != place_to_insert &&
4683 		 (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4684 	    insn = NEXT_INSN (insn);
4685 
4686 	  if (insn == place_to_insert)
4687 	    book_block = NULL;
4688 	}
4689     }
4690 
4691   if (!book_block)
4692     {
4693       book_block = create_block_for_bookkeeping (e1, e2);
4694       place_to_insert = BB_END (book_block);
4695       if (sched_verbose >= 9)
4696 	sel_print ("New block is %i, split from bookkeeping block %i\n",
4697 		   EDGE_SUCC (book_block, 0)->dest->index, book_block->index);
4698     }
4699   else
4700     {
4701       if (sched_verbose >= 9)
4702 	sel_print ("Pre-existing bookkeeping block is %i\n", book_block->index);
4703     }
4704 
4705   *fence_to_rewind = NULL;
4706   /* If basic block ends with a jump, insert bookkeeping code right before it.
4707      Notice if we are crossing a fence when taking PREV_INSN.  */
4708   if (INSN_P (place_to_insert) && control_flow_insn_p (place_to_insert))
4709     {
4710       *fence_to_rewind = flist_lookup (fences, place_to_insert);
4711       place_to_insert = PREV_INSN (place_to_insert);
4712     }
4713 
4714   return place_to_insert;
4715 }
4716 
4717 /* Find a proper seqno for bookkeeing insn inserted at PLACE_TO_INSERT
4718    for JOIN_POINT.   */
4719 static int
find_seqno_for_bookkeeping(insn_t place_to_insert,insn_t join_point)4720 find_seqno_for_bookkeeping (insn_t place_to_insert, insn_t join_point)
4721 {
4722   int seqno;
4723 
4724   /* Check if we are about to insert bookkeeping copy before a jump, and use
4725      jump's seqno for the copy; otherwise, use JOIN_POINT's seqno.  */
4726   rtx_insn *next = NEXT_INSN (place_to_insert);
4727   if (INSN_P (next)
4728       && JUMP_P (next)
4729       && BLOCK_FOR_INSN (next) == BLOCK_FOR_INSN (place_to_insert))
4730     {
4731       gcc_assert (INSN_SCHED_TIMES (next) == 0);
4732       seqno = INSN_SEQNO (next);
4733     }
4734   else if (INSN_SEQNO (join_point) > 0)
4735     seqno = INSN_SEQNO (join_point);
4736   else
4737     {
4738       seqno = get_seqno_by_preds (place_to_insert);
4739 
4740       /* Sometimes the fences can move in such a way that there will be
4741          no instructions with positive seqno around this bookkeeping.
4742          This means that there will be no way to get to it by a regular
4743          fence movement.  Never mind because we pick up such pieces for
4744          rescheduling anyways, so any positive value will do for now.  */
4745       if (seqno < 0)
4746         {
4747           gcc_assert (pipelining_p);
4748           seqno = 1;
4749         }
4750     }
4751 
4752   gcc_assert (seqno > 0);
4753   return seqno;
4754 }
4755 
4756 /* Insert bookkeeping copy of C_EXPS's insn after PLACE_TO_INSERT, assigning
4757    NEW_SEQNO to it.  Return created insn.  */
4758 static insn_t
emit_bookkeeping_insn(insn_t place_to_insert,expr_t c_expr,int new_seqno)4759 emit_bookkeeping_insn (insn_t place_to_insert, expr_t c_expr, int new_seqno)
4760 {
4761   rtx_insn *new_insn_rtx = create_copy_of_insn_rtx (EXPR_INSN_RTX (c_expr));
4762 
4763   vinsn_t new_vinsn
4764     = create_vinsn_from_insn_rtx (new_insn_rtx,
4765 				  VINSN_UNIQUE_P (EXPR_VINSN (c_expr)));
4766 
4767   insn_t new_insn = emit_insn_from_expr_after (c_expr, new_vinsn, new_seqno,
4768 					       place_to_insert);
4769 
4770   INSN_SCHED_TIMES (new_insn) = 0;
4771   bitmap_set_bit (current_copies, INSN_UID (new_insn));
4772 
4773   return new_insn;
4774 }
4775 
4776 /* Generate a bookkeeping copy of C_EXPR's insn for path(s) incoming into to
4777    E2->dest, except from E1->src (there may be a sequence of empty blocks
4778    between E1->src and E2->dest).  Return block containing the copy.
4779    All scheduler data is initialized for the newly created insn.  */
4780 static basic_block
generate_bookkeeping_insn(expr_t c_expr,edge e1,edge e2)4781 generate_bookkeeping_insn (expr_t c_expr, edge e1, edge e2)
4782 {
4783   insn_t join_point, place_to_insert, new_insn;
4784   int new_seqno;
4785   bool need_to_exchange_data_sets;
4786   fence_t fence_to_rewind;
4787 
4788   if (sched_verbose >= 4)
4789     sel_print ("Generating bookkeeping insn (%d->%d)\n", e1->src->index,
4790 	       e2->dest->index);
4791 
4792   join_point = sel_bb_head (e2->dest);
4793   place_to_insert = find_place_for_bookkeeping (e1, e2, &fence_to_rewind);
4794   new_seqno = find_seqno_for_bookkeeping (place_to_insert, join_point);
4795   need_to_exchange_data_sets
4796     = sel_bb_empty_p (BLOCK_FOR_INSN (place_to_insert));
4797 
4798   new_insn = emit_bookkeeping_insn (place_to_insert, c_expr, new_seqno);
4799 
4800   if (fence_to_rewind)
4801     FENCE_INSN (fence_to_rewind) = new_insn;
4802 
4803   /* When inserting bookkeeping insn in new block, av sets should be
4804      following: old basic block (that now holds bookkeeping) data sets are
4805      the same as was before generation of bookkeeping, and new basic block
4806      (that now hold all other insns of old basic block) data sets are
4807      invalid.  So exchange data sets for these basic blocks as sel_split_block
4808      mistakenly exchanges them in this case.  Cannot do it earlier because
4809      when single instruction is added to new basic block it should hold NULL
4810      lv_set.  */
4811   if (need_to_exchange_data_sets)
4812     exchange_data_sets (BLOCK_FOR_INSN (new_insn),
4813 			BLOCK_FOR_INSN (join_point));
4814 
4815   stat_bookkeeping_copies++;
4816   return BLOCK_FOR_INSN (new_insn);
4817 }
4818 
4819 /* Remove from AV_PTR all insns that may need bookkeeping when scheduling
4820    on FENCE, but we are unable to copy them.  */
4821 static void
remove_insns_that_need_bookkeeping(fence_t fence,av_set_t * av_ptr)4822 remove_insns_that_need_bookkeeping (fence_t fence, av_set_t *av_ptr)
4823 {
4824   expr_t expr;
4825   av_set_iterator i;
4826 
4827   /*  An expression does not need bookkeeping if it is available on all paths
4828       from current block to original block and current block dominates
4829       original block.  We check availability on all paths by examining
4830       EXPR_SPEC; this is not equivalent, because it may be positive even
4831       if expr is available on all paths (but if expr is not available on
4832       any path, EXPR_SPEC will be positive).  */
4833 
4834   FOR_EACH_EXPR_1 (expr, i, av_ptr)
4835     {
4836       if (!control_flow_insn_p (EXPR_INSN_RTX (expr))
4837 	  && (!bookkeeping_p || VINSN_UNIQUE_P (EXPR_VINSN (expr)))
4838 	  && (EXPR_SPEC (expr)
4839 	      || !EXPR_ORIG_BB_INDEX (expr)
4840 	      || !dominated_by_p (CDI_DOMINATORS,
4841 				  BASIC_BLOCK_FOR_FN (cfun,
4842 						      EXPR_ORIG_BB_INDEX (expr)),
4843 				  BLOCK_FOR_INSN (FENCE_INSN (fence)))))
4844 	{
4845           if (sched_verbose >= 4)
4846             sel_print ("Expr %d removed because it would need bookkeeping, which "
4847                        "cannot be created\n", INSN_UID (EXPR_INSN_RTX (expr)));
4848 	  av_set_iter_remove (&i);
4849 	}
4850     }
4851 }
4852 
4853 /* Moving conditional jump through some instructions.
4854 
4855    Consider example:
4856 
4857        ...                     <- current scheduling point
4858        NOTE BASIC BLOCK:       <- bb header
4859        (p8)  add r14=r14+0x9;;
4860        (p8)  mov [r14]=r23
4861        (!p8) jump L1;;
4862        NOTE BASIC BLOCK:
4863        ...
4864 
4865    We can schedule jump one cycle earlier, than mov, because they cannot be
4866    executed together as their predicates are mutually exclusive.
4867 
4868    This is done in this way: first, new fallthrough basic block is created
4869    after jump (it is always can be done, because there already should be a
4870    fallthrough block, where control flow goes in case of predicate being true -
4871    in our example; otherwise there should be a dependence between those
4872    instructions and jump and we cannot schedule jump right now);
4873    next, all instructions between jump and current scheduling point are moved
4874    to this new block.  And the result is this:
4875 
4876       NOTE BASIC BLOCK:
4877       (!p8) jump L1           <- current scheduling point
4878       NOTE BASIC BLOCK:       <- bb header
4879       (p8)  add r14=r14+0x9;;
4880       (p8)  mov [r14]=r23
4881       NOTE BASIC BLOCK:
4882       ...
4883 */
4884 static void
move_cond_jump(rtx_insn * insn,bnd_t bnd)4885 move_cond_jump (rtx_insn *insn, bnd_t bnd)
4886 {
4887   edge ft_edge;
4888   basic_block block_from, block_next, block_new, block_bnd, bb;
4889   rtx_insn *next, *prev, *link, *head;
4890 
4891   block_from = BLOCK_FOR_INSN (insn);
4892   block_bnd = BLOCK_FOR_INSN (BND_TO (bnd));
4893   prev = BND_TO (bnd);
4894 
4895   /* Moving of jump should not cross any other jumps or beginnings of new
4896      basic blocks.  The only exception is when we move a jump through
4897      mutually exclusive insns along fallthru edges.  */
4898   if (flag_checking && block_from != block_bnd)
4899     {
4900       bb = block_from;
4901       for (link = PREV_INSN (insn); link != PREV_INSN (prev);
4902            link = PREV_INSN (link))
4903         {
4904           if (INSN_P (link))
4905             gcc_assert (sched_insns_conditions_mutex_p (insn, link));
4906           if (BLOCK_FOR_INSN (link) && BLOCK_FOR_INSN (link) != bb)
4907             {
4908               gcc_assert (single_pred (bb) == BLOCK_FOR_INSN (link));
4909               bb = BLOCK_FOR_INSN (link);
4910             }
4911         }
4912     }
4913 
4914   /* Jump is moved to the boundary.  */
4915   next = PREV_INSN (insn);
4916   BND_TO (bnd) = insn;
4917 
4918   ft_edge = find_fallthru_edge_from (block_from);
4919   block_next = ft_edge->dest;
4920   /* There must be a fallthrough block (or where should go
4921   control flow in case of false jump predicate otherwise?).  */
4922   gcc_assert (block_next);
4923 
4924   /* Create new empty basic block after source block.  */
4925   block_new = sel_split_edge (ft_edge);
4926   gcc_assert (block_new->next_bb == block_next
4927               && block_from->next_bb == block_new);
4928 
4929   /* Move all instructions except INSN to BLOCK_NEW.  */
4930   bb = block_bnd;
4931   head = BB_HEAD (block_new);
4932   while (bb != block_from->next_bb)
4933     {
4934       rtx_insn *from, *to;
4935       from = bb == block_bnd ? prev : sel_bb_head (bb);
4936       to = bb == block_from ? next : sel_bb_end (bb);
4937 
4938       /* The jump being moved can be the first insn in the block.
4939          In this case we don't have to move anything in this block.  */
4940       if (NEXT_INSN (to) != from)
4941         {
4942           reorder_insns (from, to, head);
4943 
4944           for (link = to; link != head; link = PREV_INSN (link))
4945             EXPR_ORIG_BB_INDEX (INSN_EXPR (link)) = block_new->index;
4946           head = to;
4947         }
4948 
4949       /* Cleanup possibly empty blocks left.  */
4950       block_next = bb->next_bb;
4951       if (bb != block_from)
4952 	tidy_control_flow (bb, false);
4953       bb = block_next;
4954     }
4955 
4956   /* Assert there is no jump to BLOCK_NEW, only fallthrough edge.  */
4957   gcc_assert (NOTE_INSN_BASIC_BLOCK_P (BB_HEAD (block_new)));
4958 
4959   gcc_assert (!sel_bb_empty_p (block_from)
4960               && !sel_bb_empty_p (block_new));
4961 
4962   /* Update data sets for BLOCK_NEW to represent that INSN and
4963      instructions from the other branch of INSN is no longer
4964      available at BLOCK_NEW.  */
4965   BB_AV_LEVEL (block_new) = global_level;
4966   gcc_assert (BB_LV_SET (block_new) == NULL);
4967   BB_LV_SET (block_new) = get_clear_regset_from_pool ();
4968   update_data_sets (sel_bb_head (block_new));
4969 
4970   /* INSN is a new basic block header - so prepare its data
4971      structures and update availability and liveness sets.  */
4972   update_data_sets (insn);
4973 
4974   if (sched_verbose >= 4)
4975     sel_print ("Moving jump %d\n", INSN_UID (insn));
4976 }
4977 
4978 /* Remove nops generated during move_op for preventing removal of empty
4979    basic blocks.  */
4980 static void
remove_temp_moveop_nops(bool full_tidying)4981 remove_temp_moveop_nops (bool full_tidying)
4982 {
4983   int i;
4984   insn_t insn;
4985 
4986   FOR_EACH_VEC_ELT (vec_temp_moveop_nops, i, insn)
4987     {
4988       gcc_assert (INSN_NOP_P (insn));
4989       return_nop_to_pool (insn, full_tidying);
4990     }
4991 
4992   /* Empty the vector.  */
4993   if (vec_temp_moveop_nops.length () > 0)
4994     vec_temp_moveop_nops.block_remove (0, vec_temp_moveop_nops.length ());
4995 }
4996 
4997 /* Records the maximal UID before moving up an instruction.  Used for
4998    distinguishing between bookkeeping copies and original insns.  */
4999 static int max_uid_before_move_op = 0;
5000 
5001 /* Remove from AV_VLIW_P all instructions but next when debug counter
5002    tells us so.  Next instruction is fetched from BNDS.  */
5003 static void
remove_insns_for_debug(blist_t bnds,av_set_t * av_vliw_p)5004 remove_insns_for_debug (blist_t bnds, av_set_t *av_vliw_p)
5005 {
5006   if (! dbg_cnt (sel_sched_insn_cnt))
5007     /* Leave only the next insn in av_vliw.  */
5008     {
5009       av_set_iterator av_it;
5010       expr_t expr;
5011       bnd_t bnd = BLIST_BND (bnds);
5012       insn_t next = BND_TO (bnd);
5013 
5014       gcc_assert (BLIST_NEXT (bnds) == NULL);
5015 
5016       FOR_EACH_EXPR_1 (expr, av_it, av_vliw_p)
5017         if (EXPR_INSN_RTX (expr) != next)
5018           av_set_iter_remove (&av_it);
5019     }
5020 }
5021 
5022 /* Compute available instructions on BNDS.  FENCE is the current fence.  Write
5023    the computed set to *AV_VLIW_P.  */
5024 static void
compute_av_set_on_boundaries(fence_t fence,blist_t bnds,av_set_t * av_vliw_p)5025 compute_av_set_on_boundaries (fence_t fence, blist_t bnds, av_set_t *av_vliw_p)
5026 {
5027   if (sched_verbose >= 2)
5028     {
5029       sel_print ("Boundaries: ");
5030       dump_blist (bnds);
5031       sel_print ("\n");
5032     }
5033 
5034   for (; bnds; bnds = BLIST_NEXT (bnds))
5035     {
5036       bnd_t bnd = BLIST_BND (bnds);
5037       av_set_t av1_copy;
5038       insn_t bnd_to = BND_TO (bnd);
5039 
5040       /* Rewind BND->TO to the basic block header in case some bookkeeping
5041          instructions were inserted before BND->TO and it needs to be
5042          adjusted.  */
5043       if (sel_bb_head_p (bnd_to))
5044         gcc_assert (INSN_SCHED_TIMES (bnd_to) == 0);
5045       else
5046         while (INSN_SCHED_TIMES (PREV_INSN (bnd_to)) == 0)
5047           {
5048             bnd_to = PREV_INSN (bnd_to);
5049             if (sel_bb_head_p (bnd_to))
5050               break;
5051           }
5052 
5053       if (BND_TO (bnd) != bnd_to)
5054 	{
5055   	  gcc_assert (FENCE_INSN (fence) == BND_TO (bnd));
5056 	  FENCE_INSN (fence) = bnd_to;
5057 	  BND_TO (bnd) = bnd_to;
5058 	}
5059 
5060       av_set_clear (&BND_AV (bnd));
5061       BND_AV (bnd) = compute_av_set (BND_TO (bnd), NULL, 0, true);
5062 
5063       av_set_clear (&BND_AV1 (bnd));
5064       BND_AV1 (bnd) = av_set_copy (BND_AV (bnd));
5065 
5066       moveup_set_inside_insn_group (&BND_AV1 (bnd), NULL);
5067 
5068       av1_copy = av_set_copy (BND_AV1 (bnd));
5069       av_set_union_and_clear (av_vliw_p, &av1_copy, NULL);
5070     }
5071 
5072   if (sched_verbose >= 2)
5073     {
5074       sel_print ("Available exprs (vliw form): ");
5075       dump_av_set (*av_vliw_p);
5076       sel_print ("\n");
5077     }
5078 }
5079 
5080 /* Calculate the sequential av set on BND corresponding to the EXPR_VLIW
5081    expression.  When FOR_MOVEOP is true, also replace the register of
5082    expressions found with the register from EXPR_VLIW.  */
5083 static av_set_t
find_sequential_best_exprs(bnd_t bnd,expr_t expr_vliw,bool for_moveop)5084 find_sequential_best_exprs (bnd_t bnd, expr_t expr_vliw, bool for_moveop)
5085 {
5086   av_set_t expr_seq = NULL;
5087   expr_t expr;
5088   av_set_iterator i;
5089 
5090   FOR_EACH_EXPR (expr, i, BND_AV (bnd))
5091     {
5092       if (equal_after_moveup_path_p (expr, NULL, expr_vliw))
5093         {
5094           if (for_moveop)
5095             {
5096               /* The sequential expression has the right form to pass
5097                  to move_op except when renaming happened.  Put the
5098                  correct register in EXPR then.  */
5099               if (EXPR_SEPARABLE_P (expr) && REG_P (EXPR_LHS (expr)))
5100 		{
5101                   if (expr_dest_regno (expr) != expr_dest_regno (expr_vliw))
5102 		    {
5103 		      replace_dest_with_reg_in_expr (expr, EXPR_LHS (expr_vliw));
5104 		      stat_renamed_scheduled++;
5105 		    }
5106 		  /* Also put the correct TARGET_AVAILABLE bit on the expr.
5107                      This is needed when renaming came up with original
5108                      register.  */
5109                   else if (EXPR_TARGET_AVAILABLE (expr)
5110                            != EXPR_TARGET_AVAILABLE (expr_vliw))
5111 		    {
5112 		      gcc_assert (EXPR_TARGET_AVAILABLE (expr_vliw) == 1);
5113 		      EXPR_TARGET_AVAILABLE (expr) = 1;
5114 		    }
5115 		}
5116               if (EXPR_WAS_SUBSTITUTED (expr))
5117                 stat_substitutions_total++;
5118             }
5119 
5120           av_set_add (&expr_seq, expr);
5121 
5122           /* With substitution inside insn group, it is possible
5123              that more than one expression in expr_seq will correspond
5124              to expr_vliw.  In this case, choose one as the attempt to
5125              move both leads to miscompiles.  */
5126           break;
5127         }
5128     }
5129 
5130   if (for_moveop && sched_verbose >= 2)
5131     {
5132       sel_print ("Best expression(s) (sequential form): ");
5133       dump_av_set (expr_seq);
5134       sel_print ("\n");
5135     }
5136 
5137   return expr_seq;
5138 }
5139 
5140 
5141 /* Move nop to previous block.  */
5142 static void ATTRIBUTE_UNUSED
move_nop_to_previous_block(insn_t nop,basic_block prev_bb)5143 move_nop_to_previous_block (insn_t nop, basic_block prev_bb)
5144 {
5145   insn_t prev_insn, next_insn;
5146 
5147   gcc_assert (sel_bb_head_p (nop)
5148               && prev_bb == BLOCK_FOR_INSN (nop)->prev_bb);
5149   rtx_note *note = bb_note (BLOCK_FOR_INSN (nop));
5150   prev_insn = sel_bb_end (prev_bb);
5151   next_insn = NEXT_INSN (nop);
5152   gcc_assert (prev_insn != NULL_RTX
5153               && PREV_INSN (note) == prev_insn);
5154 
5155   SET_NEXT_INSN (prev_insn) = nop;
5156   SET_PREV_INSN (nop) = prev_insn;
5157 
5158   SET_PREV_INSN (note) = nop;
5159   SET_NEXT_INSN (note) = next_insn;
5160 
5161   SET_NEXT_INSN (nop) = note;
5162   SET_PREV_INSN (next_insn) = note;
5163 
5164   BB_END (prev_bb) = nop;
5165   BLOCK_FOR_INSN (nop) = prev_bb;
5166 }
5167 
5168 /* Prepare a place to insert the chosen expression on BND.  */
5169 static insn_t
prepare_place_to_insert(bnd_t bnd)5170 prepare_place_to_insert (bnd_t bnd)
5171 {
5172   insn_t place_to_insert;
5173 
5174   /* Init place_to_insert before calling move_op, as the later
5175      can possibly remove BND_TO (bnd).  */
5176   if (/* If this is not the first insn scheduled.  */
5177       BND_PTR (bnd))
5178     {
5179       /* Add it after last scheduled.  */
5180       place_to_insert = ILIST_INSN (BND_PTR (bnd));
5181       if (DEBUG_INSN_P (place_to_insert))
5182 	{
5183 	  ilist_t l = BND_PTR (bnd);
5184 	  while ((l = ILIST_NEXT (l)) &&
5185 		 DEBUG_INSN_P (ILIST_INSN (l)))
5186 	    ;
5187 	  if (!l)
5188 	    place_to_insert = NULL;
5189 	}
5190     }
5191   else
5192     place_to_insert = NULL;
5193 
5194   if (!place_to_insert)
5195     {
5196       /* Add it before BND_TO.  The difference is in the
5197          basic block, where INSN will be added.  */
5198       place_to_insert = get_nop_from_pool (BND_TO (bnd));
5199       gcc_assert (BLOCK_FOR_INSN (place_to_insert)
5200                   == BLOCK_FOR_INSN (BND_TO (bnd)));
5201     }
5202 
5203   return place_to_insert;
5204 }
5205 
5206 /* Find original instructions for EXPR_SEQ and move it to BND boundary.
5207    Return the expression to emit in C_EXPR.  */
5208 static bool
move_exprs_to_boundary(bnd_t bnd,expr_t expr_vliw,av_set_t expr_seq,expr_t c_expr)5209 move_exprs_to_boundary (bnd_t bnd, expr_t expr_vliw,
5210                         av_set_t expr_seq, expr_t c_expr)
5211 {
5212   bool b, should_move;
5213   unsigned book_uid;
5214   bitmap_iterator bi;
5215   int n_bookkeeping_copies_before_moveop;
5216 
5217   /* Make a move.  This call will remove the original operation,
5218      insert all necessary bookkeeping instructions and update the
5219      data sets.  After that all we have to do is add the operation
5220      at before BND_TO (BND).  */
5221   n_bookkeeping_copies_before_moveop = stat_bookkeeping_copies;
5222   max_uid_before_move_op = get_max_uid ();
5223   bitmap_clear (current_copies);
5224   bitmap_clear (current_originators);
5225 
5226   b = move_op (BND_TO (bnd), expr_seq, expr_vliw,
5227                get_dest_from_orig_ops (expr_seq), c_expr, &should_move);
5228 
5229   /* We should be able to find the expression we've chosen for
5230      scheduling.  */
5231   gcc_assert (b);
5232 
5233   if (stat_bookkeeping_copies > n_bookkeeping_copies_before_moveop)
5234     stat_insns_needed_bookkeeping++;
5235 
5236   EXECUTE_IF_SET_IN_BITMAP (current_copies, 0, book_uid, bi)
5237     {
5238       unsigned uid;
5239       bitmap_iterator bi;
5240 
5241       /* We allocate these bitmaps lazily.  */
5242       if (! INSN_ORIGINATORS_BY_UID (book_uid))
5243         INSN_ORIGINATORS_BY_UID (book_uid) = BITMAP_ALLOC (NULL);
5244 
5245       bitmap_copy (INSN_ORIGINATORS_BY_UID (book_uid),
5246                    current_originators);
5247 
5248       /* Transitively add all originators' originators.  */
5249       EXECUTE_IF_SET_IN_BITMAP (current_originators, 0, uid, bi)
5250        if (INSN_ORIGINATORS_BY_UID (uid))
5251 	 bitmap_ior_into (INSN_ORIGINATORS_BY_UID (book_uid),
5252 			  INSN_ORIGINATORS_BY_UID (uid));
5253     }
5254 
5255   return should_move;
5256 }
5257 
5258 
5259 /* Debug a DFA state as an array of bytes.  */
5260 static void
debug_state(state_t state)5261 debug_state (state_t state)
5262 {
5263   unsigned char *p;
5264   unsigned int i, size = dfa_state_size;
5265 
5266   sel_print ("state (%u):", size);
5267   for (i = 0, p = (unsigned char *) state; i < size; i++)
5268     sel_print (" %d", p[i]);
5269   sel_print ("\n");
5270 }
5271 
5272 /* Advance state on FENCE with INSN.  Return true if INSN is
5273    an ASM, and we should advance state once more.  */
5274 static bool
advance_state_on_fence(fence_t fence,insn_t insn)5275 advance_state_on_fence (fence_t fence, insn_t insn)
5276 {
5277   bool asm_p;
5278 
5279   if (recog_memoized (insn) >= 0)
5280     {
5281       int res;
5282       state_t temp_state = alloca (dfa_state_size);
5283 
5284       gcc_assert (!INSN_ASM_P (insn));
5285       asm_p = false;
5286 
5287       memcpy (temp_state, FENCE_STATE (fence), dfa_state_size);
5288       res = state_transition (FENCE_STATE (fence), insn);
5289       gcc_assert (res < 0);
5290 
5291       if (memcmp (temp_state, FENCE_STATE (fence), dfa_state_size))
5292         {
5293           FENCE_ISSUED_INSNS (fence)++;
5294 
5295           /* We should never issue more than issue_rate insns.  */
5296           if (FENCE_ISSUED_INSNS (fence) > issue_rate)
5297             gcc_unreachable ();
5298         }
5299     }
5300   else
5301     {
5302       /* This could be an ASM insn which we'd like to schedule
5303          on the next cycle.  */
5304       asm_p = INSN_ASM_P (insn);
5305       if (!FENCE_STARTS_CYCLE_P (fence) && asm_p)
5306         advance_one_cycle (fence);
5307     }
5308 
5309   if (sched_verbose >= 2)
5310     debug_state (FENCE_STATE (fence));
5311   if (!DEBUG_INSN_P (insn))
5312     FENCE_STARTS_CYCLE_P (fence) = 0;
5313   FENCE_ISSUE_MORE (fence) = can_issue_more;
5314   return asm_p;
5315 }
5316 
5317 /* Update FENCE on which INSN was scheduled and this INSN, too.  NEED_STALL
5318    is nonzero if we need to stall after issuing INSN.  */
5319 static void
update_fence_and_insn(fence_t fence,insn_t insn,int need_stall)5320 update_fence_and_insn (fence_t fence, insn_t insn, int need_stall)
5321 {
5322   bool asm_p;
5323 
5324   /* First, reflect that something is scheduled on this fence.  */
5325   asm_p = advance_state_on_fence (fence, insn);
5326   FENCE_LAST_SCHEDULED_INSN (fence) = insn;
5327   vec_safe_push (FENCE_EXECUTING_INSNS (fence), insn);
5328   if (SCHED_GROUP_P (insn))
5329     {
5330       FENCE_SCHED_NEXT (fence) = INSN_SCHED_NEXT (insn);
5331       SCHED_GROUP_P (insn) = 0;
5332     }
5333   else
5334     FENCE_SCHED_NEXT (fence) = NULL;
5335   if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
5336     FENCE_READY_TICKS (fence) [INSN_UID (insn)] = 0;
5337 
5338   /* Set instruction scheduling info.  This will be used in bundling,
5339      pipelining, tick computations etc.  */
5340   ++INSN_SCHED_TIMES (insn);
5341   EXPR_TARGET_AVAILABLE (INSN_EXPR (insn)) = true;
5342   EXPR_ORIG_SCHED_CYCLE (INSN_EXPR (insn)) = FENCE_CYCLE (fence);
5343   INSN_AFTER_STALL_P (insn) = FENCE_AFTER_STALL_P (fence);
5344   INSN_SCHED_CYCLE (insn) = FENCE_CYCLE (fence);
5345 
5346   /* This does not account for adjust_cost hooks, just add the biggest
5347      constant the hook may add to the latency.  TODO: make this
5348      a target dependent constant.  */
5349   INSN_READY_CYCLE (insn)
5350     = INSN_SCHED_CYCLE (insn) + (INSN_CODE (insn) < 0
5351                                  ? 1
5352                                  : maximal_insn_latency (insn) + 1);
5353 
5354   /* Change these fields last, as they're used above.  */
5355   FENCE_AFTER_STALL_P (fence) = 0;
5356   if (asm_p || need_stall)
5357     advance_one_cycle (fence);
5358 
5359   /* Indicate that we've scheduled something on this fence.  */
5360   FENCE_SCHEDULED_P (fence) = true;
5361   scheduled_something_on_previous_fence = true;
5362 
5363   /* Print debug information when insn's fields are updated.  */
5364   if (sched_verbose >= 2)
5365     {
5366       sel_print ("Scheduling insn: ");
5367       dump_insn_1 (insn, 1);
5368       sel_print ("\n");
5369     }
5370 }
5371 
5372 /* Update boundary BND (and, if needed, FENCE) with INSN, remove the
5373    old boundary from BNDSP, add new boundaries to BNDS_TAIL_P and
5374    return it.  */
5375 static blist_t *
update_boundaries(fence_t fence,bnd_t bnd,insn_t insn,blist_t * bndsp,blist_t * bnds_tailp)5376 update_boundaries (fence_t fence, bnd_t bnd, insn_t insn, blist_t *bndsp,
5377                    blist_t *bnds_tailp)
5378 {
5379   succ_iterator si;
5380   insn_t succ;
5381 
5382   advance_deps_context (BND_DC (bnd), insn);
5383   FOR_EACH_SUCC_1 (succ, si, insn,
5384                    SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
5385     {
5386       ilist_t ptr = ilist_copy (BND_PTR (bnd));
5387 
5388       ilist_add (&ptr, insn);
5389 
5390       if (DEBUG_INSN_P (insn) && sel_bb_end_p (insn)
5391 	  && is_ineligible_successor (succ, ptr))
5392 	{
5393 	  ilist_clear (&ptr);
5394 	  continue;
5395 	}
5396 
5397       if (FENCE_INSN (fence) == insn && !sel_bb_end_p (insn))
5398 	{
5399 	  if (sched_verbose >= 9)
5400 	    sel_print ("Updating fence insn from %i to %i\n",
5401 		       INSN_UID (insn), INSN_UID (succ));
5402 	  FENCE_INSN (fence) = succ;
5403 	}
5404       blist_add (bnds_tailp, succ, ptr, BND_DC (bnd));
5405       bnds_tailp = &BLIST_NEXT (*bnds_tailp);
5406     }
5407 
5408   blist_remove (bndsp);
5409   return bnds_tailp;
5410 }
5411 
5412 /* Schedule EXPR_VLIW on BND.  Return the insn emitted.  */
5413 static insn_t
schedule_expr_on_boundary(bnd_t bnd,expr_t expr_vliw,int seqno)5414 schedule_expr_on_boundary (bnd_t bnd, expr_t expr_vliw, int seqno)
5415 {
5416   av_set_t expr_seq;
5417   expr_t c_expr = XALLOCA (expr_def);
5418   insn_t place_to_insert;
5419   insn_t insn;
5420   bool should_move;
5421 
5422   expr_seq = find_sequential_best_exprs (bnd, expr_vliw, true);
5423 
5424   /* In case of scheduling a jump skipping some other instructions,
5425      prepare CFG.  After this, jump is at the boundary and can be
5426      scheduled as usual insn by MOVE_OP.  */
5427   if (vinsn_cond_branch_p (EXPR_VINSN (expr_vliw)))
5428     {
5429       insn = EXPR_INSN_RTX (expr_vliw);
5430 
5431       /* Speculative jumps are not handled.  */
5432       if (insn != BND_TO (bnd)
5433           && !sel_insn_is_speculation_check (insn))
5434         move_cond_jump (insn, bnd);
5435     }
5436 
5437   /* Find a place for C_EXPR to schedule.  */
5438   place_to_insert = prepare_place_to_insert (bnd);
5439   should_move = move_exprs_to_boundary (bnd, expr_vliw, expr_seq, c_expr);
5440   clear_expr (c_expr);
5441 
5442   /* Add the instruction.  The corner case to care about is when
5443      the expr_seq set has more than one expr, and we chose the one that
5444      is not equal to expr_vliw.  Then expr_vliw may be insn in stream, and
5445      we can't use it.  Generate the new vinsn.  */
5446   if (INSN_IN_STREAM_P (EXPR_INSN_RTX (expr_vliw)))
5447     {
5448       vinsn_t vinsn_new;
5449 
5450       vinsn_new = vinsn_copy (EXPR_VINSN (expr_vliw), false);
5451       change_vinsn_in_expr (expr_vliw, vinsn_new);
5452       should_move = false;
5453     }
5454   if (should_move)
5455     insn = sel_move_insn (expr_vliw, seqno, place_to_insert);
5456   else
5457     insn = emit_insn_from_expr_after (expr_vliw, NULL, seqno,
5458                                       place_to_insert);
5459 
5460   /* Return the nops generated for preserving of data sets back
5461      into pool.  */
5462   if (INSN_NOP_P (place_to_insert))
5463     return_nop_to_pool (place_to_insert, !DEBUG_INSN_P (insn));
5464   remove_temp_moveop_nops (!DEBUG_INSN_P (insn));
5465 
5466   av_set_clear (&expr_seq);
5467 
5468   /* Save the expression scheduled so to reset target availability if we'll
5469      meet it later on the same fence.  */
5470   if (EXPR_WAS_RENAMED (expr_vliw))
5471     vinsn_vec_add (&vec_target_unavailable_vinsns, INSN_EXPR (insn));
5472 
5473   /* Check that the recent movement didn't destroyed loop
5474      structure.  */
5475   gcc_assert (!pipelining_p
5476               || current_loop_nest == NULL
5477               || loop_latch_edge (current_loop_nest));
5478   return insn;
5479 }
5480 
5481 /* Stall for N cycles on FENCE.  */
5482 static void
stall_for_cycles(fence_t fence,int n)5483 stall_for_cycles (fence_t fence, int n)
5484 {
5485   int could_more;
5486 
5487   could_more = n > 1 || FENCE_ISSUED_INSNS (fence) < issue_rate;
5488   while (n--)
5489     advance_one_cycle (fence);
5490   if (could_more)
5491     FENCE_AFTER_STALL_P (fence) = 1;
5492 }
5493 
5494 /* Gather a parallel group of insns at FENCE and assign their seqno
5495    to SEQNO.  All scheduled insns are gathered in SCHEDULED_INSNS_TAILPP
5496    list for later recalculation of seqnos.  */
5497 static void
fill_insns(fence_t fence,int seqno,ilist_t ** scheduled_insns_tailpp)5498 fill_insns (fence_t fence, int seqno, ilist_t **scheduled_insns_tailpp)
5499 {
5500   blist_t bnds = NULL, *bnds_tailp;
5501   av_set_t av_vliw = NULL;
5502   insn_t insn = FENCE_INSN (fence);
5503 
5504   if (sched_verbose >= 2)
5505     sel_print ("Starting fill_insns for insn %d, cycle %d\n",
5506                INSN_UID (insn), FENCE_CYCLE (fence));
5507 
5508   blist_add (&bnds, insn, NULL, FENCE_DC (fence));
5509   bnds_tailp = &BLIST_NEXT (bnds);
5510   set_target_context (FENCE_TC (fence));
5511   can_issue_more = FENCE_ISSUE_MORE (fence);
5512   target_bb = INSN_BB (insn);
5513 
5514   /* Do while we can add any operation to the current group.  */
5515   do
5516     {
5517       blist_t *bnds_tailp1, *bndsp;
5518       expr_t expr_vliw;
5519       int need_stall = false;
5520       int was_stall = 0, scheduled_insns = 0;
5521       int max_insns = pipelining_p ? issue_rate : 2 * issue_rate;
5522       int max_stall = pipelining_p ? 1 : 3;
5523       bool last_insn_was_debug = false;
5524       bool was_debug_bb_end_p = false;
5525 
5526       compute_av_set_on_boundaries (fence, bnds, &av_vliw);
5527       remove_insns_that_need_bookkeeping (fence, &av_vliw);
5528       remove_insns_for_debug (bnds, &av_vliw);
5529 
5530       /* Return early if we have nothing to schedule.  */
5531       if (av_vliw == NULL)
5532         break;
5533 
5534       /* Choose the best expression and, if needed, destination register
5535 	 for it.  */
5536       do
5537         {
5538           expr_vliw = find_best_expr (&av_vliw, bnds, fence, &need_stall);
5539           if (! expr_vliw && need_stall)
5540             {
5541               /* All expressions required a stall.  Do not recompute av sets
5542                  as we'll get the same answer (modulo the insns between
5543                  the fence and its boundary, which will not be available for
5544                  pipelining).
5545 		 If we are going to stall for too long, break to recompute av
5546 		 sets and bring more insns for pipelining.  */
5547               was_stall++;
5548 	      if (need_stall <= 3)
5549 		stall_for_cycles (fence, need_stall);
5550 	      else
5551 		{
5552 		  stall_for_cycles (fence, 1);
5553 		  break;
5554 		}
5555             }
5556         }
5557       while (! expr_vliw && need_stall);
5558 
5559       /* Now either we've selected expr_vliw or we have nothing to schedule.  */
5560       if (!expr_vliw)
5561         {
5562 	  av_set_clear (&av_vliw);
5563           break;
5564         }
5565 
5566       bndsp = &bnds;
5567       bnds_tailp1 = bnds_tailp;
5568 
5569       do
5570 	/* This code will be executed only once until we'd have several
5571            boundaries per fence.  */
5572         {
5573 	  bnd_t bnd = BLIST_BND (*bndsp);
5574 
5575 	  if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr_vliw)))
5576 	    {
5577 	      bndsp = &BLIST_NEXT (*bndsp);
5578 	      continue;
5579 	    }
5580 
5581           insn = schedule_expr_on_boundary (bnd, expr_vliw, seqno);
5582 	  last_insn_was_debug = DEBUG_INSN_P (insn);
5583 	  if (last_insn_was_debug)
5584 	    was_debug_bb_end_p = (insn == BND_TO (bnd) && sel_bb_end_p (insn));
5585           update_fence_and_insn (fence, insn, need_stall);
5586           bnds_tailp = update_boundaries (fence, bnd, insn, bndsp, bnds_tailp);
5587 
5588 	  /* Add insn to the list of scheduled on this cycle instructions.  */
5589 	  ilist_add (*scheduled_insns_tailpp, insn);
5590 	  *scheduled_insns_tailpp = &ILIST_NEXT (**scheduled_insns_tailpp);
5591         }
5592       while (*bndsp != *bnds_tailp1);
5593 
5594       av_set_clear (&av_vliw);
5595       if (!last_insn_was_debug)
5596 	scheduled_insns++;
5597 
5598       /* We currently support information about candidate blocks only for
5599 	 one 'target_bb' block.  Hence we can't schedule after jump insn,
5600 	 as this will bring two boundaries and, hence, necessity to handle
5601 	 information for two or more blocks concurrently.  */
5602       if ((last_insn_was_debug ? was_debug_bb_end_p : sel_bb_end_p (insn))
5603           || (was_stall
5604               && (was_stall >= max_stall
5605                   || scheduled_insns >= max_insns)))
5606         break;
5607     }
5608   while (bnds);
5609 
5610   gcc_assert (!FENCE_BNDS (fence));
5611 
5612   /* Update boundaries of the FENCE.  */
5613   while (bnds)
5614     {
5615       ilist_t ptr = BND_PTR (BLIST_BND (bnds));
5616 
5617       if (ptr)
5618 	{
5619 	  insn = ILIST_INSN (ptr);
5620 
5621 	  if (!ilist_is_in_p (FENCE_BNDS (fence), insn))
5622 	    ilist_add (&FENCE_BNDS (fence), insn);
5623 	}
5624 
5625       blist_remove (&bnds);
5626     }
5627 
5628   /* Update target context on the fence.  */
5629   reset_target_context (FENCE_TC (fence), false);
5630 }
5631 
5632 /* All exprs in ORIG_OPS must have the same destination register or memory.
5633    Return that destination.  */
5634 static rtx
get_dest_from_orig_ops(av_set_t orig_ops)5635 get_dest_from_orig_ops (av_set_t orig_ops)
5636 {
5637   rtx dest = NULL_RTX;
5638   av_set_iterator av_it;
5639   expr_t expr;
5640   bool first_p = true;
5641 
5642   FOR_EACH_EXPR (expr, av_it, orig_ops)
5643     {
5644       rtx x = EXPR_LHS (expr);
5645 
5646       if (first_p)
5647 	{
5648 	  first_p = false;
5649 	  dest = x;
5650 	}
5651       else
5652 	gcc_assert (dest == x
5653 		    || (dest != NULL_RTX && x != NULL_RTX
5654 			&& rtx_equal_p (dest, x)));
5655     }
5656 
5657   return dest;
5658 }
5659 
5660 /* Update data sets for the bookkeeping block and record those expressions
5661    which become no longer available after inserting this bookkeeping.  */
5662 static void
update_and_record_unavailable_insns(basic_block book_block)5663 update_and_record_unavailable_insns (basic_block book_block)
5664 {
5665   av_set_iterator i;
5666   av_set_t old_av_set = NULL;
5667   expr_t cur_expr;
5668   rtx_insn *bb_end = sel_bb_end (book_block);
5669 
5670   /* First, get correct liveness in the bookkeeping block.  The problem is
5671      the range between the bookeeping insn and the end of block.  */
5672   update_liveness_on_insn (bb_end);
5673   if (control_flow_insn_p (bb_end))
5674     update_liveness_on_insn (PREV_INSN (bb_end));
5675 
5676   /* If there's valid av_set on BOOK_BLOCK, then there might exist another
5677      fence above, where we may choose to schedule an insn which is
5678      actually blocked from moving up with the bookkeeping we create here.  */
5679   if (AV_SET_VALID_P (sel_bb_head (book_block)))
5680     {
5681       old_av_set = av_set_copy (BB_AV_SET (book_block));
5682       update_data_sets (sel_bb_head (book_block));
5683 
5684       /* Traverse all the expressions in the old av_set and check whether
5685 	 CUR_EXPR is in new AV_SET.  */
5686       FOR_EACH_EXPR (cur_expr, i, old_av_set)
5687         {
5688           expr_t new_expr = av_set_lookup (BB_AV_SET (book_block),
5689 					   EXPR_VINSN (cur_expr));
5690 
5691           if (! new_expr
5692               /* In this case, we can just turn off the E_T_A bit, but we can't
5693                  represent this information with the current vector.  */
5694               || EXPR_TARGET_AVAILABLE (new_expr)
5695 		 != EXPR_TARGET_AVAILABLE (cur_expr))
5696 	    /* Unfortunately, the below code could be also fired up on
5697 	       separable insns, e.g. when moving insns through the new
5698 	       speculation check as in PR 53701.  */
5699             vinsn_vec_add (&vec_bookkeeping_blocked_vinsns, cur_expr);
5700         }
5701 
5702       av_set_clear (&old_av_set);
5703     }
5704 }
5705 
5706 /* The main effect of this function is that sparams->c_expr is merged
5707    with (or copied to) lparams->c_expr_merged.  If there's only one successor,
5708    we avoid merging anything by copying sparams->c_expr to lparams->c_expr_merged.
5709    lparams->c_expr_merged is copied back to sparams->c_expr after all
5710    successors has been traversed.  lparams->c_expr_local is an expr allocated
5711    on stack in the caller function, and is used if there is more than one
5712    successor.
5713 
5714    SUCC is one of the SUCCS_NORMAL successors of INSN,
5715    MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ,
5716    LPARAMS and STATIC_PARAMS contain the parameters described above.  */
5717 static void
move_op_merge_succs(insn_t insn ATTRIBUTE_UNUSED,insn_t succ ATTRIBUTE_UNUSED,int moveop_drv_call_res,cmpd_local_params_p lparams,void * static_params)5718 move_op_merge_succs (insn_t insn ATTRIBUTE_UNUSED,
5719                      insn_t succ ATTRIBUTE_UNUSED,
5720 		     int moveop_drv_call_res,
5721 		     cmpd_local_params_p lparams, void *static_params)
5722 {
5723   moveop_static_params_p sparams = (moveop_static_params_p) static_params;
5724 
5725   /* Nothing to do, if original expr wasn't found below.  */
5726   if (moveop_drv_call_res != 1)
5727     return;
5728 
5729   /* If this is a first successor.  */
5730   if (!lparams->c_expr_merged)
5731     {
5732       lparams->c_expr_merged = sparams->c_expr;
5733       sparams->c_expr = lparams->c_expr_local;
5734     }
5735   else
5736     {
5737       /* We must merge all found expressions to get reasonable
5738 	 EXPR_SPEC_DONE_DS for the resulting insn.  If we don't
5739 	 do so then we can first find the expr with epsilon
5740 	 speculation success probability and only then with the
5741 	 good probability.  As a result the insn will get epsilon
5742 	 probability and will never be scheduled because of
5743 	 weakness_cutoff in find_best_expr.
5744 
5745 	 We call merge_expr_data here instead of merge_expr
5746 	 because due to speculation C_EXPR and X may have the
5747 	 same insns with different speculation types.  And as of
5748 	 now such insns are considered non-equal.
5749 
5750 	 However, EXPR_SCHED_TIMES is different -- we must get
5751 	 SCHED_TIMES from a real insn, not a bookkeeping copy.
5752 	 We force this here.  Instead, we may consider merging
5753 	 SCHED_TIMES to the maximum instead of minimum in the
5754 	 below function.  */
5755       int old_times = EXPR_SCHED_TIMES (lparams->c_expr_merged);
5756 
5757       merge_expr_data (lparams->c_expr_merged, sparams->c_expr, NULL);
5758       if (EXPR_SCHED_TIMES (sparams->c_expr) == 0)
5759 	EXPR_SCHED_TIMES (lparams->c_expr_merged) = old_times;
5760 
5761       clear_expr (sparams->c_expr);
5762     }
5763 }
5764 
5765 /*  Add used regs for the successor SUCC into SPARAMS->USED_REGS.
5766 
5767    SUCC is one of the SUCCS_NORMAL successors of INSN,
5768    MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ or 0,
5769      if SUCC is one of SUCCS_BACK or SUCCS_OUT.
5770    STATIC_PARAMS contain USED_REGS set.  */
5771 static void
fur_merge_succs(insn_t insn ATTRIBUTE_UNUSED,insn_t succ,int moveop_drv_call_res,cmpd_local_params_p lparams ATTRIBUTE_UNUSED,void * static_params)5772 fur_merge_succs (insn_t insn ATTRIBUTE_UNUSED, insn_t succ,
5773 		 int moveop_drv_call_res,
5774 		 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5775 		 void *static_params)
5776 {
5777   regset succ_live;
5778   fur_static_params_p sparams = (fur_static_params_p) static_params;
5779 
5780   /* Here we compute live regsets only for branches that do not lie
5781      on the code motion paths.  These branches correspond to value
5782      MOVEOP_DRV_CALL_RES==0 and include SUCCS_BACK and SUCCS_OUT, though
5783      for such branches code_motion_path_driver is not called.  */
5784   if (moveop_drv_call_res != 0)
5785     return;
5786 
5787   /* Mark all registers that do not meet the following condition:
5788      (3) not live on the other path of any conditional branch
5789      that is passed by the operation, in case original
5790      operations are not present on both paths of the
5791      conditional branch.  */
5792   succ_live = compute_live (succ);
5793   IOR_REG_SET (sparams->used_regs, succ_live);
5794 }
5795 
5796 /* This function is called after the last successor.  Copies LP->C_EXPR_MERGED
5797    into SP->CEXPR.  */
5798 static void
move_op_after_merge_succs(cmpd_local_params_p lp,void * sparams)5799 move_op_after_merge_succs (cmpd_local_params_p lp, void *sparams)
5800 {
5801   moveop_static_params_p sp = (moveop_static_params_p) sparams;
5802 
5803   sp->c_expr = lp->c_expr_merged;
5804 }
5805 
5806 /* Track bookkeeping copies created, insns scheduled, and blocks for
5807    rescheduling when INSN is found by move_op.  */
5808 static void
track_scheduled_insns_and_blocks(rtx_insn * insn)5809 track_scheduled_insns_and_blocks (rtx_insn *insn)
5810 {
5811   /* Even if this insn can be a copy that will be removed during current move_op,
5812      we still need to count it as an originator.  */
5813   bitmap_set_bit (current_originators, INSN_UID (insn));
5814 
5815   if (!bitmap_clear_bit (current_copies, INSN_UID (insn)))
5816     {
5817       /* Note that original block needs to be rescheduled, as we pulled an
5818 	 instruction out of it.  */
5819       if (INSN_SCHED_TIMES (insn) > 0)
5820 	bitmap_set_bit (blocks_to_reschedule, BLOCK_FOR_INSN (insn)->index);
5821       else if (INSN_UID (insn) < first_emitted_uid && !DEBUG_INSN_P (insn))
5822 	num_insns_scheduled++;
5823     }
5824 
5825   /* For instructions we must immediately remove insn from the
5826      stream, so subsequent update_data_sets () won't include this
5827      insn into av_set.
5828      For expr we must make insn look like "INSN_REG (insn) := c_expr".  */
5829   if (INSN_UID (insn) > max_uid_before_move_op)
5830     stat_bookkeeping_copies--;
5831 }
5832 
5833 /* Emit a register-register copy for INSN if needed.  Return true if
5834    emitted one.  PARAMS is the move_op static parameters.  */
5835 static bool
maybe_emit_renaming_copy(rtx_insn * insn,moveop_static_params_p params)5836 maybe_emit_renaming_copy (rtx_insn *insn,
5837                           moveop_static_params_p params)
5838 {
5839   bool insn_emitted  = false;
5840   rtx cur_reg;
5841 
5842   /* Bail out early when expression can not be renamed at all.  */
5843   if (!EXPR_SEPARABLE_P (params->c_expr))
5844     return false;
5845 
5846   cur_reg = expr_dest_reg (params->c_expr);
5847   gcc_assert (cur_reg && params->dest && REG_P (params->dest));
5848 
5849   /* If original operation has expr and the register chosen for
5850      that expr is not original operation's dest reg, substitute
5851      operation's right hand side with the register chosen.  */
5852   if (REGNO (params->dest) != REGNO (cur_reg))
5853     {
5854       insn_t reg_move_insn, reg_move_insn_rtx;
5855 
5856       reg_move_insn_rtx = create_insn_rtx_with_rhs (INSN_VINSN (insn),
5857                                                     params->dest);
5858       reg_move_insn = sel_gen_insn_from_rtx_after (reg_move_insn_rtx,
5859                                                    INSN_EXPR (insn),
5860                                                    INSN_SEQNO (insn),
5861                                                    insn);
5862       EXPR_SPEC_DONE_DS (INSN_EXPR (reg_move_insn)) = 0;
5863       replace_dest_with_reg_in_expr (params->c_expr, params->dest);
5864 
5865       insn_emitted = true;
5866       params->was_renamed = true;
5867     }
5868 
5869   return insn_emitted;
5870 }
5871 
5872 /* Emit a speculative check for INSN speculated as EXPR if needed.
5873    Return true if we've  emitted one.  PARAMS is the move_op static
5874    parameters.  */
5875 static bool
maybe_emit_speculative_check(rtx_insn * insn,expr_t expr,moveop_static_params_p params)5876 maybe_emit_speculative_check (rtx_insn *insn, expr_t expr,
5877                               moveop_static_params_p params)
5878 {
5879   bool insn_emitted = false;
5880   insn_t x;
5881   ds_t check_ds;
5882 
5883   check_ds = get_spec_check_type_for_insn (insn, expr);
5884   if (check_ds != 0)
5885     {
5886       /* A speculation check should be inserted.  */
5887       x = create_speculation_check (params->c_expr, check_ds, insn);
5888       insn_emitted = true;
5889     }
5890   else
5891     {
5892       EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
5893       x = insn;
5894     }
5895 
5896   gcc_assert (EXPR_SPEC_DONE_DS (INSN_EXPR (x)) == 0
5897               && EXPR_SPEC_TO_CHECK_DS (INSN_EXPR (x)) == 0);
5898   return insn_emitted;
5899 }
5900 
5901 /* Handle transformations that leave an insn in place of original
5902    insn such as renaming/speculation.  Return true if one of such
5903    transformations actually happened, and we have emitted this insn.  */
5904 static bool
handle_emitting_transformations(rtx_insn * insn,expr_t expr,moveop_static_params_p params)5905 handle_emitting_transformations (rtx_insn *insn, expr_t expr,
5906                                  moveop_static_params_p params)
5907 {
5908   bool insn_emitted = false;
5909 
5910   insn_emitted = maybe_emit_renaming_copy (insn, params);
5911   insn_emitted |= maybe_emit_speculative_check (insn, expr, params);
5912 
5913   return insn_emitted;
5914 }
5915 
5916 /* If INSN is the only insn in the basic block (not counting JUMP,
5917    which may be a jump to next insn, and DEBUG_INSNs), we want to
5918    leave a NOP there till the return to fill_insns.  */
5919 
5920 static bool
need_nop_to_preserve_insn_bb(rtx_insn * insn)5921 need_nop_to_preserve_insn_bb (rtx_insn *insn)
5922 {
5923   insn_t bb_head, bb_end, bb_next, in_next;
5924   basic_block bb = BLOCK_FOR_INSN (insn);
5925 
5926   bb_head = sel_bb_head (bb);
5927   bb_end = sel_bb_end (bb);
5928 
5929   if (bb_head == bb_end)
5930     return true;
5931 
5932   while (bb_head != bb_end && DEBUG_INSN_P (bb_head))
5933     bb_head = NEXT_INSN (bb_head);
5934 
5935   if (bb_head == bb_end)
5936     return true;
5937 
5938   while (bb_head != bb_end && DEBUG_INSN_P (bb_end))
5939     bb_end = PREV_INSN (bb_end);
5940 
5941   if (bb_head == bb_end)
5942     return true;
5943 
5944   bb_next = NEXT_INSN (bb_head);
5945   while (bb_next != bb_end && DEBUG_INSN_P (bb_next))
5946     bb_next = NEXT_INSN (bb_next);
5947 
5948   if (bb_next == bb_end && JUMP_P (bb_end))
5949     return true;
5950 
5951   in_next = NEXT_INSN (insn);
5952   while (DEBUG_INSN_P (in_next))
5953     in_next = NEXT_INSN (in_next);
5954 
5955   if (IN_CURRENT_FENCE_P (in_next))
5956     return true;
5957 
5958   return false;
5959 }
5960 
5961 /* Remove INSN from stream.  When ONLY_DISCONNECT is true, its data
5962    is not removed but reused when INSN is re-emitted.  */
5963 static void
remove_insn_from_stream(rtx_insn * insn,bool only_disconnect)5964 remove_insn_from_stream (rtx_insn *insn, bool only_disconnect)
5965 {
5966   /* If there's only one insn in the BB, make sure that a nop is
5967      inserted into it, so the basic block won't disappear when we'll
5968      delete INSN below with sel_remove_insn. It should also survive
5969      till the return to fill_insns.  */
5970   if (need_nop_to_preserve_insn_bb (insn))
5971     {
5972       insn_t nop = get_nop_from_pool (insn);
5973       gcc_assert (INSN_NOP_P (nop));
5974       vec_temp_moveop_nops.safe_push (nop);
5975     }
5976 
5977   sel_remove_insn (insn, only_disconnect, false);
5978 }
5979 
5980 /* This function is called when original expr is found.
5981    INSN - current insn traversed, EXPR - the corresponding expr found.
5982    LPARAMS is the local parameters of code modion driver, STATIC_PARAMS
5983    is static parameters of move_op.  */
5984 static void
move_op_orig_expr_found(insn_t insn,expr_t expr,cmpd_local_params_p lparams ATTRIBUTE_UNUSED,void * static_params)5985 move_op_orig_expr_found (insn_t insn, expr_t expr,
5986                          cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5987                          void *static_params)
5988 {
5989   bool only_disconnect;
5990   moveop_static_params_p params = (moveop_static_params_p) static_params;
5991 
5992   copy_expr_onside (params->c_expr, INSN_EXPR (insn));
5993   track_scheduled_insns_and_blocks (insn);
5994   handle_emitting_transformations (insn, expr, params);
5995   only_disconnect = params->uid == INSN_UID (insn);
5996 
5997   /* Mark that we've disconnected an insn.  */
5998   if (only_disconnect)
5999     params->uid = -1;
6000   remove_insn_from_stream (insn, only_disconnect);
6001 }
6002 
6003 /* The function is called when original expr is found.
6004    INSN - current insn traversed, EXPR - the corresponding expr found,
6005    crosses_call and original_insns in STATIC_PARAMS are updated.  */
6006 static void
fur_orig_expr_found(insn_t insn,expr_t expr ATTRIBUTE_UNUSED,cmpd_local_params_p lparams ATTRIBUTE_UNUSED,void * static_params)6007 fur_orig_expr_found (insn_t insn, expr_t expr ATTRIBUTE_UNUSED,
6008                      cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6009                      void *static_params)
6010 {
6011   fur_static_params_p params = (fur_static_params_p) static_params;
6012   regset tmp;
6013 
6014   if (CALL_P (insn))
6015     params->crosses_call = true;
6016 
6017   def_list_add (params->original_insns, insn, params->crosses_call);
6018 
6019   /* Mark the registers that do not meet the following condition:
6020     (2) not among the live registers of the point
6021 	immediately following the first original operation on
6022 	a given downward path, except for the original target
6023 	register of the operation.  */
6024   tmp = get_clear_regset_from_pool ();
6025   compute_live_below_insn (insn, tmp);
6026   AND_COMPL_REG_SET (tmp, INSN_REG_SETS (insn));
6027   AND_COMPL_REG_SET (tmp, INSN_REG_CLOBBERS (insn));
6028   IOR_REG_SET (params->used_regs, tmp);
6029   return_regset_to_pool (tmp);
6030 
6031   /* (*1) We need to add to USED_REGS registers that are read by
6032      INSN's lhs. This may lead to choosing wrong src register.
6033      E.g. (scheduling const expr enabled):
6034 
6035 	429: ax=0x0	<- Can't use AX for this expr (0x0)
6036 	433: dx=[bp-0x18]
6037 	427: [ax+dx+0x1]=ax
6038 	  REG_DEAD: ax
6039 	168: di=dx
6040 	  REG_DEAD: dx
6041      */
6042   /* FIXME: see comment above and enable MEM_P
6043      in vinsn_separable_p.  */
6044   gcc_assert (!VINSN_SEPARABLE_P (INSN_VINSN (insn))
6045 	      || !MEM_P (INSN_LHS (insn)));
6046 }
6047 
6048 /* This function is called on the ascending pass, before returning from
6049    current basic block.  */
6050 static void
move_op_at_first_insn(insn_t insn,cmpd_local_params_p lparams,void * static_params)6051 move_op_at_first_insn (insn_t insn, cmpd_local_params_p lparams,
6052                        void *static_params)
6053 {
6054   moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6055   basic_block book_block = NULL;
6056 
6057   /* When we have removed the boundary insn for scheduling, which also
6058      happened to be the end insn in its bb, we don't need to update sets.  */
6059   if (!lparams->removed_last_insn
6060       && lparams->e1
6061       && sel_bb_head_p (insn))
6062     {
6063       /* We should generate bookkeeping code only if we are not at the
6064          top level of the move_op.  */
6065       if (sel_num_cfg_preds_gt_1 (insn))
6066         book_block = generate_bookkeeping_insn (sparams->c_expr,
6067                                                 lparams->e1, lparams->e2);
6068       /* Update data sets for the current insn.  */
6069       update_data_sets (insn);
6070     }
6071 
6072   /* If bookkeeping code was inserted, we need to update av sets of basic
6073      block that received bookkeeping.  After generation of bookkeeping insn,
6074      bookkeeping block does not contain valid av set because we are not following
6075      the original algorithm in every detail with regards to e.g. renaming
6076      simple reg-reg copies.  Consider example:
6077 
6078      bookkeeping block           scheduling fence
6079      \            /
6080       \    join  /
6081        ----------
6082        |        |
6083        ----------
6084       /           \
6085      /             \
6086      r1 := r2          r1 := r3
6087 
6088      We try to schedule insn "r1 := r3" on the current
6089      scheduling fence.  Also, note that av set of bookkeeping block
6090      contain both insns "r1 := r2" and "r1 := r3".  When the insn has
6091      been scheduled, the CFG is as follows:
6092 
6093      r1 := r3               r1 := r3
6094      bookkeeping block           scheduling fence
6095      \            /
6096       \    join  /
6097        ----------
6098        |        |
6099        ----------
6100       /          \
6101      /            \
6102      r1 := r2
6103 
6104      Here, insn "r1 := r3" was scheduled at the current scheduling point
6105      and bookkeeping code was generated at the bookeeping block.  This
6106      way insn "r1 := r2" is no longer available as a whole instruction
6107      (but only as expr) ahead of insn "r1 := r3" in bookkeeping block.
6108      This situation is handled by calling update_data_sets.
6109 
6110      Since update_data_sets is called only on the bookkeeping block, and
6111      it also may have predecessors with av_sets, containing instructions that
6112      are no longer available, we save all such expressions that become
6113      unavailable during data sets update on the bookkeeping block in
6114      VEC_BOOKKEEPING_BLOCKED_VINSNS.  Later we avoid selecting such
6115      expressions for scheduling.  This allows us to avoid recomputation of
6116      av_sets outside the code motion path.  */
6117 
6118   if (book_block)
6119     update_and_record_unavailable_insns (book_block);
6120 
6121   /* If INSN was previously marked for deletion, it's time to do it.  */
6122   if (lparams->removed_last_insn)
6123     insn = PREV_INSN (insn);
6124 
6125   /* Do not tidy control flow at the topmost moveop, as we can erroneously
6126      kill a block with a single nop in which the insn should be emitted.  */
6127   if (lparams->e1)
6128     tidy_control_flow (BLOCK_FOR_INSN (insn), true);
6129 }
6130 
6131 /* This function is called on the ascending pass, before returning from the
6132    current basic block.  */
6133 static void
fur_at_first_insn(insn_t insn,cmpd_local_params_p lparams ATTRIBUTE_UNUSED,void * static_params ATTRIBUTE_UNUSED)6134 fur_at_first_insn (insn_t insn,
6135                    cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6136                    void *static_params ATTRIBUTE_UNUSED)
6137 {
6138   gcc_assert (!sel_bb_head_p (insn) || AV_SET_VALID_P (insn)
6139 	      || AV_LEVEL (insn) == -1);
6140 }
6141 
6142 /* Called on the backward stage of recursion to call moveup_expr for insn
6143    and sparams->c_expr.  */
6144 static void
move_op_ascend(insn_t insn,void * static_params)6145 move_op_ascend (insn_t insn, void *static_params)
6146 {
6147   enum MOVEUP_EXPR_CODE res;
6148   moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6149 
6150   if (! INSN_NOP_P (insn))
6151     {
6152       res = moveup_expr_cached (sparams->c_expr, insn, false);
6153       gcc_assert (res != MOVEUP_EXPR_NULL);
6154     }
6155 
6156   /* Update liveness for this insn as it was invalidated.  */
6157   update_liveness_on_insn (insn);
6158 }
6159 
6160 /* This function is called on enter to the basic block.
6161    Returns TRUE if this block already have been visited and
6162    code_motion_path_driver should return 1, FALSE otherwise.  */
6163 static int
fur_on_enter(insn_t insn ATTRIBUTE_UNUSED,cmpd_local_params_p local_params,void * static_params,bool visited_p)6164 fur_on_enter (insn_t insn ATTRIBUTE_UNUSED, cmpd_local_params_p local_params,
6165 	      void *static_params, bool visited_p)
6166 {
6167   fur_static_params_p sparams = (fur_static_params_p) static_params;
6168 
6169   if (visited_p)
6170     {
6171       /* If we have found something below this block, there should be at
6172 	 least one insn in ORIGINAL_INSNS.  */
6173       gcc_assert (*sparams->original_insns);
6174 
6175       /* Adjust CROSSES_CALL, since we may have come to this block along
6176 	 different path.  */
6177       DEF_LIST_DEF (*sparams->original_insns)->crosses_call
6178 	  |= sparams->crosses_call;
6179     }
6180   else
6181     local_params->old_original_insns = *sparams->original_insns;
6182 
6183   return 1;
6184 }
6185 
6186 /* Same as above but for move_op.   */
6187 static int
move_op_on_enter(insn_t insn ATTRIBUTE_UNUSED,cmpd_local_params_p local_params ATTRIBUTE_UNUSED,void * static_params ATTRIBUTE_UNUSED,bool visited_p)6188 move_op_on_enter (insn_t insn ATTRIBUTE_UNUSED,
6189                   cmpd_local_params_p local_params ATTRIBUTE_UNUSED,
6190                   void *static_params ATTRIBUTE_UNUSED, bool visited_p)
6191 {
6192   if (visited_p)
6193     return -1;
6194   return 1;
6195 }
6196 
6197 /* This function is called while descending current basic block if current
6198    insn is not the original EXPR we're searching for.
6199 
6200    Return value: FALSE, if code_motion_path_driver should perform a local
6201 			cleanup and return 0 itself;
6202 		 TRUE, if code_motion_path_driver should continue.  */
6203 static bool
move_op_orig_expr_not_found(insn_t insn,av_set_t orig_ops ATTRIBUTE_UNUSED,void * static_params)6204 move_op_orig_expr_not_found (insn_t insn, av_set_t orig_ops ATTRIBUTE_UNUSED,
6205 			    void *static_params)
6206 {
6207   moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6208 
6209   sparams->failed_insn = insn;
6210 
6211   /* If we're scheduling separate expr, in order to generate correct code
6212      we need to stop the search at bookkeeping code generated with the
6213      same destination register or memory.  */
6214   if (lhs_of_insn_equals_to_dest_p (insn, sparams->dest))
6215     return false;
6216   return true;
6217 }
6218 
6219 /* This function is called while descending current basic block if current
6220    insn is not the original EXPR we're searching for.
6221 
6222    Return value: TRUE (code_motion_path_driver should continue).  */
6223 static bool
fur_orig_expr_not_found(insn_t insn,av_set_t orig_ops,void * static_params)6224 fur_orig_expr_not_found (insn_t insn, av_set_t orig_ops, void *static_params)
6225 {
6226   bool mutexed;
6227   expr_t r;
6228   av_set_iterator avi;
6229   fur_static_params_p sparams = (fur_static_params_p) static_params;
6230 
6231   if (CALL_P (insn))
6232     sparams->crosses_call = true;
6233   else if (DEBUG_INSN_P (insn))
6234     return true;
6235 
6236   /* If current insn we are looking at cannot be executed together
6237      with original insn, then we can skip it safely.
6238 
6239      Example: ORIG_OPS = { (p6) r14 = sign_extend (r15); }
6240 	      INSN = (!p6) r14 = r14 + 1;
6241 
6242      Here we can schedule ORIG_OP with lhs = r14, though only
6243      looking at the set of used and set registers of INSN we must
6244      forbid it.  So, add set/used in INSN registers to the
6245      untouchable set only if there is an insn in ORIG_OPS that can
6246      affect INSN.  */
6247   mutexed = true;
6248   FOR_EACH_EXPR (r, avi, orig_ops)
6249     if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (r)))
6250       {
6251 	mutexed = false;
6252 	break;
6253       }
6254 
6255   /* Mark all registers that do not meet the following condition:
6256      (1) Not set or read on any path from xi to an instance of the
6257 	 original operation.  */
6258   if (!mutexed)
6259     {
6260       IOR_REG_SET (sparams->used_regs, INSN_REG_SETS (insn));
6261       IOR_REG_SET (sparams->used_regs, INSN_REG_USES (insn));
6262       IOR_REG_SET (sparams->used_regs, INSN_REG_CLOBBERS (insn));
6263     }
6264 
6265   return true;
6266 }
6267 
6268 /* Hooks and data to perform move_op operations with code_motion_path_driver.  */
6269 struct code_motion_path_driver_info_def move_op_hooks = {
6270   move_op_on_enter,
6271   move_op_orig_expr_found,
6272   move_op_orig_expr_not_found,
6273   move_op_merge_succs,
6274   move_op_after_merge_succs,
6275   move_op_ascend,
6276   move_op_at_first_insn,
6277   SUCCS_NORMAL,
6278   "move_op"
6279 };
6280 
6281 /* Hooks and data to perform find_used_regs operations
6282    with code_motion_path_driver.  */
6283 struct code_motion_path_driver_info_def fur_hooks = {
6284   fur_on_enter,
6285   fur_orig_expr_found,
6286   fur_orig_expr_not_found,
6287   fur_merge_succs,
6288   NULL, /* fur_after_merge_succs */
6289   NULL, /* fur_ascend */
6290   fur_at_first_insn,
6291   SUCCS_ALL,
6292   "find_used_regs"
6293 };
6294 
6295 /* Traverse all successors of INSN.  For each successor that is SUCCS_NORMAL
6296    code_motion_path_driver is called recursively.  Original operation
6297    was found at least on one path that is starting with one of INSN's
6298    successors (this fact is asserted).  ORIG_OPS is expressions we're looking
6299    for, PATH is the path we've traversed, STATIC_PARAMS is the parameters
6300    of either move_op or find_used_regs depending on the caller.
6301 
6302    Return 0 if we haven't found expression, 1 if we found it, -1 if we don't
6303    know for sure at this point.  */
6304 static int
code_motion_process_successors(insn_t insn,av_set_t orig_ops,ilist_t path,void * static_params)6305 code_motion_process_successors (insn_t insn, av_set_t orig_ops,
6306                                 ilist_t path, void *static_params)
6307 {
6308   int res = 0;
6309   succ_iterator succ_i;
6310   insn_t succ;
6311   basic_block bb;
6312   int old_index;
6313   unsigned old_succs;
6314 
6315   struct cmpd_local_params lparams;
6316   expr_def _x;
6317 
6318   lparams.c_expr_local = &_x;
6319   lparams.c_expr_merged = NULL;
6320 
6321   /* We need to process only NORMAL succs for move_op, and collect live
6322      registers from ALL branches (including those leading out of the
6323      region) for find_used_regs.
6324 
6325      In move_op, there can be a case when insn's bb number has changed
6326      due to created bookkeeping.  This happens very rare, as we need to
6327      move expression from the beginning to the end of the same block.
6328      Rescan successors in this case.  */
6329 
6330  rescan:
6331   bb = BLOCK_FOR_INSN (insn);
6332   old_index = bb->index;
6333   old_succs = EDGE_COUNT (bb->succs);
6334 
6335   FOR_EACH_SUCC_1 (succ, succ_i, insn, code_motion_path_driver_info->succ_flags)
6336     {
6337       int b;
6338 
6339       lparams.e1 = succ_i.e1;
6340       lparams.e2 = succ_i.e2;
6341 
6342       /* Go deep into recursion only for NORMAL edges (non-backedges within the
6343 	 current region).  */
6344       if (succ_i.current_flags == SUCCS_NORMAL)
6345 	b = code_motion_path_driver (succ, orig_ops, path, &lparams,
6346 				     static_params);
6347       else
6348 	b = 0;
6349 
6350       /* Merge c_expres found or unify live register sets from different
6351 	 successors.  */
6352       code_motion_path_driver_info->merge_succs (insn, succ, b, &lparams,
6353 						 static_params);
6354       if (b == 1)
6355         res = b;
6356       else if (b == -1 && res != 1)
6357         res = b;
6358 
6359       /* We have simplified the control flow below this point.  In this case,
6360          the iterator becomes invalid.  We need to try again.
6361 	 If we have removed the insn itself, it could be only an
6362 	 unconditional jump.  Thus, do not rescan but break immediately --
6363 	 we have already visited the only successor block.  */
6364       if (!BLOCK_FOR_INSN (insn))
6365 	{
6366 	  if (sched_verbose >= 6)
6367 	    sel_print ("Not doing rescan: already visited the only successor"
6368 		       " of block %d\n", old_index);
6369 	  break;
6370 	}
6371       if (BLOCK_FOR_INSN (insn)->index != old_index
6372           || EDGE_COUNT (bb->succs) != old_succs)
6373         {
6374 	  if (sched_verbose >= 6)
6375 	    sel_print ("Rescan: CFG was simplified below insn %d, block %d\n",
6376 		       INSN_UID (insn), BLOCK_FOR_INSN (insn)->index);
6377           insn = sel_bb_end (BLOCK_FOR_INSN (insn));
6378           goto rescan;
6379         }
6380     }
6381 
6382   /* Here, RES==1 if original expr was found at least for one of the
6383      successors.  After the loop, RES may happen to have zero value
6384      only if at some point the expr searched is present in av_set, but is
6385      not found below.  In most cases, this situation is an error.
6386      The exception is when the original operation is blocked by
6387      bookkeeping generated for another fence or for another path in current
6388      move_op.  */
6389   gcc_checking_assert (res == 1
6390 		       || (res == 0
6391 			    && av_set_could_be_blocked_by_bookkeeping_p (orig_ops, static_params))
6392 		       || res == -1);
6393 
6394   /* Merge data, clean up, etc.  */
6395   if (res != -1 && code_motion_path_driver_info->after_merge_succs)
6396     code_motion_path_driver_info->after_merge_succs (&lparams, static_params);
6397 
6398   return res;
6399 }
6400 
6401 
6402 /* Perform a cleanup when the driver is about to terminate.  ORIG_OPS_P
6403    is the pointer to the av set with expressions we were looking for,
6404    PATH_P is the pointer to the traversed path.  */
6405 static inline void
code_motion_path_driver_cleanup(av_set_t * orig_ops_p,ilist_t * path_p)6406 code_motion_path_driver_cleanup (av_set_t *orig_ops_p, ilist_t *path_p)
6407 {
6408   ilist_remove (path_p);
6409   av_set_clear (orig_ops_p);
6410 }
6411 
6412 /* The driver function that implements move_op or find_used_regs
6413    functionality dependent whether code_motion_path_driver_INFO is set to
6414    &MOVE_OP_HOOKS or &FUR_HOOKS.  This function implements the common parts
6415    of code (CFG traversal etc) that are shared among both functions.  INSN
6416    is the insn we're starting the search from, ORIG_OPS are the expressions
6417    we're searching for, PATH is traversed path, LOCAL_PARAMS_IN are local
6418    parameters of the driver, and STATIC_PARAMS are static parameters of
6419    the caller.
6420 
6421    Returns whether original instructions were found.  Note that top-level
6422    code_motion_path_driver always returns true.  */
6423 static int
code_motion_path_driver(insn_t insn,av_set_t orig_ops,ilist_t path,cmpd_local_params_p local_params_in,void * static_params)6424 code_motion_path_driver (insn_t insn, av_set_t orig_ops, ilist_t path,
6425 			 cmpd_local_params_p local_params_in,
6426 			 void *static_params)
6427 {
6428   expr_t expr = NULL;
6429   basic_block bb = BLOCK_FOR_INSN (insn);
6430   insn_t first_insn, bb_tail, before_first;
6431   bool removed_last_insn = false;
6432 
6433   if (sched_verbose >= 6)
6434     {
6435       sel_print ("%s (", code_motion_path_driver_info->routine_name);
6436       dump_insn (insn);
6437       sel_print (",");
6438       dump_av_set (orig_ops);
6439       sel_print (")\n");
6440     }
6441 
6442   gcc_assert (orig_ops);
6443 
6444   /* If no original operations exist below this insn, return immediately.  */
6445   if (is_ineligible_successor (insn, path))
6446     {
6447       if (sched_verbose >= 6)
6448         sel_print ("Insn %d is ineligible successor\n", INSN_UID (insn));
6449       return false;
6450     }
6451 
6452   /* The block can have invalid av set, in which case it was created earlier
6453      during move_op.  Return immediately.  */
6454   if (sel_bb_head_p (insn))
6455     {
6456       if (! AV_SET_VALID_P (insn))
6457         {
6458           if (sched_verbose >= 6)
6459             sel_print ("Returned from block %d as it had invalid av set\n",
6460                        bb->index);
6461           return false;
6462         }
6463 
6464       if (bitmap_bit_p (code_motion_visited_blocks, bb->index))
6465         {
6466           /* We have already found an original operation on this branch, do not
6467              go any further and just return TRUE here.  If we don't stop here,
6468              function can have exponential behavior even on the small code
6469              with many different paths (e.g. with data speculation and
6470              recovery blocks).  */
6471           if (sched_verbose >= 6)
6472             sel_print ("Block %d already visited in this traversal\n", bb->index);
6473           if (code_motion_path_driver_info->on_enter)
6474             return code_motion_path_driver_info->on_enter (insn,
6475                                                            local_params_in,
6476                                                            static_params,
6477                                                            true);
6478         }
6479     }
6480 
6481   if (code_motion_path_driver_info->on_enter)
6482     code_motion_path_driver_info->on_enter (insn, local_params_in,
6483                                             static_params, false);
6484   orig_ops = av_set_copy (orig_ops);
6485 
6486   /* Filter the orig_ops set.  */
6487   if (AV_SET_VALID_P (insn))
6488     av_set_code_motion_filter (&orig_ops, AV_SET (insn));
6489 
6490   /* If no more original ops, return immediately.  */
6491   if (!orig_ops)
6492     {
6493       if (sched_verbose >= 6)
6494         sel_print ("No intersection with av set of block %d\n", bb->index);
6495       return false;
6496     }
6497 
6498   /* For non-speculative insns we have to leave only one form of the
6499      original operation, because if we don't, we may end up with
6500      different C_EXPRes and, consequently, with bookkeepings for different
6501      expression forms along the same code motion path.  That may lead to
6502      generation of incorrect code.  So for each code motion we stick to
6503      the single form of the instruction,  except for speculative insns
6504      which we need to keep in different forms with all speculation
6505      types.  */
6506   av_set_leave_one_nonspec (&orig_ops);
6507 
6508   /* It is not possible that all ORIG_OPS are filtered out.  */
6509   gcc_assert (orig_ops);
6510 
6511   /* It is enough to place only heads and tails of visited basic blocks into
6512      the PATH.  */
6513   ilist_add (&path, insn);
6514   first_insn = insn;
6515   bb_tail = sel_bb_end (bb);
6516 
6517   /* Descend the basic block in search of the original expr; this part
6518      corresponds to the part of the original move_op procedure executed
6519      before the recursive call.  */
6520   for (;;)
6521     {
6522       /* Look at the insn and decide if it could be an ancestor of currently
6523 	 scheduling operation.  If it is so, then the insn "dest = op" could
6524 	 either be replaced with "dest = reg", because REG now holds the result
6525 	 of OP, or just removed, if we've scheduled the insn as a whole.
6526 
6527 	 If this insn doesn't contain currently scheduling OP, then proceed
6528 	 with searching and look at its successors.  Operations we're searching
6529 	 for could have changed when moving up through this insn via
6530 	 substituting.  In this case, perform unsubstitution on them first.
6531 
6532 	 When traversing the DAG below this insn is finished, insert
6533 	 bookkeeping code, if the insn is a joint point, and remove
6534 	 leftovers.  */
6535 
6536       expr = av_set_lookup (orig_ops, INSN_VINSN (insn));
6537       if (expr)
6538 	{
6539 	  insn_t last_insn = PREV_INSN (insn);
6540 
6541 	  /* We have found the original operation.   */
6542           if (sched_verbose >= 6)
6543             sel_print ("Found original operation at insn %d\n", INSN_UID (insn));
6544 
6545 	  code_motion_path_driver_info->orig_expr_found
6546             (insn, expr, local_params_in, static_params);
6547 
6548 	  /* Step back, so on the way back we'll start traversing from the
6549 	     previous insn (or we'll see that it's bb_note and skip that
6550 	     loop).  */
6551           if (insn == first_insn)
6552             {
6553               first_insn = NEXT_INSN (last_insn);
6554               removed_last_insn = sel_bb_end_p (last_insn);
6555             }
6556 	  insn = last_insn;
6557 	  break;
6558 	}
6559       else
6560 	{
6561 	  /* We haven't found the original expr, continue descending the basic
6562 	     block.  */
6563 	  if (code_motion_path_driver_info->orig_expr_not_found
6564               (insn, orig_ops, static_params))
6565 	    {
6566 	      /* Av set ops could have been changed when moving through this
6567 	         insn.  To find them below it, we have to un-substitute them.  */
6568 	      undo_transformations (&orig_ops, insn);
6569 	    }
6570 	  else
6571 	    {
6572 	      /* Clean up and return, if the hook tells us to do so.  It may
6573 		 happen if we've encountered the previously created
6574 		 bookkeeping.  */
6575 	      code_motion_path_driver_cleanup (&orig_ops, &path);
6576 	      return -1;
6577 	    }
6578 
6579 	  gcc_assert (orig_ops);
6580         }
6581 
6582       /* Stop at insn if we got to the end of BB.  */
6583       if (insn == bb_tail)
6584 	break;
6585 
6586       insn = NEXT_INSN (insn);
6587     }
6588 
6589   /* Here INSN either points to the insn before the original insn (may be
6590      bb_note, if original insn was a bb_head) or to the bb_end.  */
6591   if (!expr)
6592     {
6593       int res;
6594       rtx_insn *last_insn = PREV_INSN (insn);
6595       bool added_to_path;
6596 
6597       gcc_assert (insn == sel_bb_end (bb));
6598 
6599       /* Add bb tail to PATH (but it doesn't make any sense if it's a bb_head -
6600 	 it's already in PATH then).  */
6601       if (insn != first_insn)
6602 	{
6603 	  ilist_add (&path, insn);
6604 	  added_to_path = true;
6605 	}
6606       else
6607         added_to_path = false;
6608 
6609       /* Process_successors should be able to find at least one
6610 	 successor for which code_motion_path_driver returns TRUE.  */
6611       res = code_motion_process_successors (insn, orig_ops,
6612                                             path, static_params);
6613 
6614       /* Jump in the end of basic block could have been removed or replaced
6615          during code_motion_process_successors, so recompute insn as the
6616          last insn in bb.  */
6617       if (NEXT_INSN (last_insn) != insn)
6618         {
6619           insn = sel_bb_end (bb);
6620           first_insn = sel_bb_head (bb);
6621         }
6622 
6623       /* Remove bb tail from path.  */
6624       if (added_to_path)
6625 	ilist_remove (&path);
6626 
6627       if (res != 1)
6628 	{
6629 	  /* This is the case when one of the original expr is no longer available
6630 	     due to bookkeeping created on this branch with the same register.
6631 	     In the original algorithm, which doesn't have update_data_sets call
6632 	     on a bookkeeping block, it would simply result in returning
6633 	     FALSE when we've encountered a previously generated bookkeeping
6634 	     insn in moveop_orig_expr_not_found.  */
6635 	  code_motion_path_driver_cleanup (&orig_ops, &path);
6636 	  return res;
6637 	}
6638     }
6639 
6640   /* Don't need it any more.  */
6641   av_set_clear (&orig_ops);
6642 
6643   /* Backward pass: now, when we have C_EXPR computed, we'll drag it to
6644      the beginning of the basic block.  */
6645   before_first = PREV_INSN (first_insn);
6646   while (insn != before_first)
6647     {
6648       if (code_motion_path_driver_info->ascend)
6649 	code_motion_path_driver_info->ascend (insn, static_params);
6650 
6651       insn = PREV_INSN (insn);
6652     }
6653 
6654   /* Now we're at the bb head.  */
6655   insn = first_insn;
6656   ilist_remove (&path);
6657   local_params_in->removed_last_insn = removed_last_insn;
6658   code_motion_path_driver_info->at_first_insn (insn, local_params_in, static_params);
6659 
6660   /* This should be the very last operation as at bb head we could change
6661      the numbering by creating bookkeeping blocks.  */
6662   if (removed_last_insn)
6663     insn = PREV_INSN (insn);
6664 
6665   /* If we have simplified the control flow and removed the first jump insn,
6666      there's no point in marking this block in the visited blocks bitmap.  */
6667   if (BLOCK_FOR_INSN (insn))
6668     bitmap_set_bit (code_motion_visited_blocks, BLOCK_FOR_INSN (insn)->index);
6669   return true;
6670 }
6671 
6672 /* Move up the operations from ORIG_OPS set traversing the dag starting
6673    from INSN.  PATH represents the edges traversed so far.
6674    DEST is the register chosen for scheduling the current expr.  Insert
6675    bookkeeping code in the join points.  EXPR_VLIW is the chosen expression,
6676    C_EXPR is how it looks like at the given cfg point.
6677    Set *SHOULD_MOVE to indicate whether we have only disconnected
6678    one of the insns found.
6679 
6680    Returns whether original instructions were found, which is asserted
6681    to be true in the caller.  */
6682 static bool
move_op(insn_t insn,av_set_t orig_ops,expr_t expr_vliw,rtx dest,expr_t c_expr,bool * should_move)6683 move_op (insn_t insn, av_set_t orig_ops, expr_t expr_vliw,
6684          rtx dest, expr_t c_expr, bool *should_move)
6685 {
6686   struct moveop_static_params sparams;
6687   struct cmpd_local_params lparams;
6688   int res;
6689 
6690   /* Init params for code_motion_path_driver.  */
6691   sparams.dest = dest;
6692   sparams.c_expr = c_expr;
6693   sparams.uid = INSN_UID (EXPR_INSN_RTX (expr_vliw));
6694   sparams.failed_insn = NULL;
6695   sparams.was_renamed = false;
6696   lparams.e1 = NULL;
6697 
6698   /* We haven't visited any blocks yet.  */
6699   bitmap_clear (code_motion_visited_blocks);
6700 
6701   /* Set appropriate hooks and data.  */
6702   code_motion_path_driver_info = &move_op_hooks;
6703   res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
6704 
6705   gcc_assert (res != -1);
6706 
6707   if (sparams.was_renamed)
6708     EXPR_WAS_RENAMED (expr_vliw) = true;
6709 
6710   *should_move = (sparams.uid == -1);
6711 
6712   return res;
6713 }
6714 
6715 
6716 /* Functions that work with regions.  */
6717 
6718 /* Current number of seqno used in init_seqno and init_seqno_1.  */
6719 static int cur_seqno;
6720 
6721 /* A helper for init_seqno.  Traverse the region starting from BB and
6722    compute seqnos for visited insns, marking visited bbs in VISITED_BBS.
6723    Clear visited blocks from BLOCKS_TO_RESCHEDULE.  */
6724 static void
init_seqno_1(basic_block bb,sbitmap visited_bbs,bitmap blocks_to_reschedule)6725 init_seqno_1 (basic_block bb, sbitmap visited_bbs, bitmap blocks_to_reschedule)
6726 {
6727   int bbi = BLOCK_TO_BB (bb->index);
6728   insn_t insn;
6729   insn_t succ_insn;
6730   succ_iterator si;
6731 
6732   rtx_note *note = bb_note (bb);
6733   bitmap_set_bit (visited_bbs, bbi);
6734   if (blocks_to_reschedule)
6735     bitmap_clear_bit (blocks_to_reschedule, bb->index);
6736 
6737   FOR_EACH_SUCC_1 (succ_insn, si, BB_END (bb),
6738 		   SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
6739     {
6740       basic_block succ = BLOCK_FOR_INSN (succ_insn);
6741       int succ_bbi = BLOCK_TO_BB (succ->index);
6742 
6743       gcc_assert (in_current_region_p (succ));
6744 
6745       if (!bitmap_bit_p (visited_bbs, succ_bbi))
6746 	{
6747 	  gcc_assert (succ_bbi > bbi);
6748 
6749 	  init_seqno_1 (succ, visited_bbs, blocks_to_reschedule);
6750 	}
6751       else if (blocks_to_reschedule)
6752         bitmap_set_bit (forced_ebb_heads, succ->index);
6753     }
6754 
6755   for (insn = BB_END (bb); insn != note; insn = PREV_INSN (insn))
6756     INSN_SEQNO (insn) = cur_seqno--;
6757 }
6758 
6759 /* Initialize seqnos for the current region.  BLOCKS_TO_RESCHEDULE contains
6760    blocks on which we're rescheduling when pipelining, FROM is the block where
6761    traversing region begins (it may not be the head of the region when
6762    pipelining, but the head of the loop instead).
6763 
6764    Returns the maximal seqno found.  */
6765 static int
init_seqno(bitmap blocks_to_reschedule,basic_block from)6766 init_seqno (bitmap blocks_to_reschedule, basic_block from)
6767 {
6768   sbitmap visited_bbs;
6769   bitmap_iterator bi;
6770   unsigned bbi;
6771 
6772   visited_bbs = sbitmap_alloc (current_nr_blocks);
6773 
6774   if (blocks_to_reschedule)
6775     {
6776       bitmap_ones (visited_bbs);
6777       EXECUTE_IF_SET_IN_BITMAP (blocks_to_reschedule, 0, bbi, bi)
6778         {
6779 	  gcc_assert (BLOCK_TO_BB (bbi) < current_nr_blocks);
6780           bitmap_clear_bit (visited_bbs, BLOCK_TO_BB (bbi));
6781 	}
6782     }
6783   else
6784     {
6785       bitmap_clear (visited_bbs);
6786       from = EBB_FIRST_BB (0);
6787     }
6788 
6789   cur_seqno = sched_max_luid - 1;
6790   init_seqno_1 (from, visited_bbs, blocks_to_reschedule);
6791 
6792   /* cur_seqno may be positive if the number of instructions is less than
6793      sched_max_luid - 1 (when rescheduling or if some instructions have been
6794      removed by the call to purge_empty_blocks in sel_sched_region_1).  */
6795   gcc_assert (cur_seqno >= 0);
6796 
6797   sbitmap_free (visited_bbs);
6798   return sched_max_luid - 1;
6799 }
6800 
6801 /* Initialize scheduling parameters for current region.  */
6802 static void
sel_setup_region_sched_flags(void)6803 sel_setup_region_sched_flags (void)
6804 {
6805   enable_schedule_as_rhs_p = 1;
6806   bookkeeping_p = 1;
6807   pipelining_p = (bookkeeping_p
6808                   && (flag_sel_sched_pipelining != 0)
6809 		  && current_loop_nest != NULL
6810 		  && loop_has_exit_edges (current_loop_nest));
6811   max_insns_to_rename = PARAM_VALUE (PARAM_SELSCHED_INSNS_TO_RENAME);
6812   max_ws = MAX_WS;
6813 }
6814 
6815 /* Return true if all basic blocks of current region are empty.  */
6816 static bool
current_region_empty_p(void)6817 current_region_empty_p (void)
6818 {
6819   int i;
6820   for (i = 0; i < current_nr_blocks; i++)
6821     if (! sel_bb_empty_p (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i))))
6822       return false;
6823 
6824   return true;
6825 }
6826 
6827 /* Prepare and verify loop nest for pipelining.  */
6828 static void
setup_current_loop_nest(int rgn,bb_vec_t * bbs)6829 setup_current_loop_nest (int rgn, bb_vec_t *bbs)
6830 {
6831   current_loop_nest = get_loop_nest_for_rgn (rgn);
6832 
6833   if (!current_loop_nest)
6834     return;
6835 
6836   /* If this loop has any saved loop preheaders from nested loops,
6837      add these basic blocks to the current region.  */
6838   sel_add_loop_preheaders (bbs);
6839 
6840   /* Check that we're starting with a valid information.  */
6841   gcc_assert (loop_latch_edge (current_loop_nest));
6842   gcc_assert (LOOP_MARKED_FOR_PIPELINING_P (current_loop_nest));
6843 }
6844 
6845 /* Compute instruction priorities for current region.  */
6846 static void
sel_compute_priorities(int rgn)6847 sel_compute_priorities (int rgn)
6848 {
6849   sched_rgn_compute_dependencies (rgn);
6850 
6851   /* Compute insn priorities in haifa style.  Then free haifa style
6852      dependencies that we've calculated for this.  */
6853   compute_priorities ();
6854 
6855   if (sched_verbose >= 5)
6856     debug_rgn_dependencies (0);
6857 
6858   free_rgn_deps ();
6859 }
6860 
6861 /* Init scheduling data for RGN.  Returns true when this region should not
6862    be scheduled.  */
6863 static bool
sel_region_init(int rgn)6864 sel_region_init (int rgn)
6865 {
6866   int i;
6867   bb_vec_t bbs;
6868 
6869   rgn_setup_region (rgn);
6870 
6871   /* Even if sched_is_disabled_for_current_region_p() is true, we still
6872      do region initialization here so the region can be bundled correctly,
6873      but we'll skip the scheduling in sel_sched_region ().  */
6874   if (current_region_empty_p ())
6875     return true;
6876 
6877   bbs.create (current_nr_blocks);
6878 
6879   for (i = 0; i < current_nr_blocks; i++)
6880     bbs.quick_push (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i)));
6881 
6882   sel_init_bbs (bbs);
6883 
6884   if (flag_sel_sched_pipelining)
6885     setup_current_loop_nest (rgn, &bbs);
6886 
6887   sel_setup_region_sched_flags ();
6888 
6889   /* Initialize luids and dependence analysis which both sel-sched and haifa
6890      need.  */
6891   sched_init_luids (bbs);
6892   sched_deps_init (false);
6893 
6894   /* Initialize haifa data.  */
6895   rgn_setup_sched_infos ();
6896   sel_set_sched_flags ();
6897   haifa_init_h_i_d (bbs);
6898 
6899   sel_compute_priorities (rgn);
6900   init_deps_global ();
6901 
6902   /* Main initialization.  */
6903   sel_setup_sched_infos ();
6904   sel_init_global_and_expr (bbs);
6905 
6906   bbs.release ();
6907 
6908   blocks_to_reschedule = BITMAP_ALLOC (NULL);
6909 
6910   /* Init correct liveness sets on each instruction of a single-block loop.
6911      This is the only situation when we can't update liveness when calling
6912      compute_live for the first insn of the loop.  */
6913   if (current_loop_nest)
6914     {
6915       int header =
6916 	(sel_is_loop_preheader_p (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (0)))
6917 	 ? 1
6918 	 : 0);
6919 
6920       if (current_nr_blocks == header + 1)
6921         update_liveness_on_insn
6922           (sel_bb_head (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (header))));
6923     }
6924 
6925   /* Set hooks so that no newly generated insn will go out unnoticed.  */
6926   sel_register_cfg_hooks ();
6927 
6928   /* !!! We call target.sched.init () for the whole region, but we invoke
6929      targetm.sched.finish () for every ebb.  */
6930   if (targetm.sched.init)
6931     /* None of the arguments are actually used in any target.  */
6932     targetm.sched.init (sched_dump, sched_verbose, -1);
6933 
6934   first_emitted_uid = get_max_uid () + 1;
6935   preheader_removed = false;
6936 
6937   /* Reset register allocation ticks array.  */
6938   memset (reg_rename_tick, 0, sizeof reg_rename_tick);
6939   reg_rename_this_tick = 0;
6940 
6941   bitmap_initialize (forced_ebb_heads, 0);
6942   bitmap_clear (forced_ebb_heads);
6943 
6944   setup_nop_vinsn ();
6945   current_copies = BITMAP_ALLOC (NULL);
6946   current_originators = BITMAP_ALLOC (NULL);
6947   code_motion_visited_blocks = BITMAP_ALLOC (NULL);
6948 
6949   return false;
6950 }
6951 
6952 /* Simplify insns after the scheduling.  */
6953 static void
simplify_changed_insns(void)6954 simplify_changed_insns (void)
6955 {
6956   int i;
6957 
6958   for (i = 0; i < current_nr_blocks; i++)
6959     {
6960       basic_block bb = BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i));
6961       rtx_insn *insn;
6962 
6963       FOR_BB_INSNS (bb, insn)
6964 	if (INSN_P (insn))
6965 	  {
6966 	    expr_t expr = INSN_EXPR (insn);
6967 
6968 	    if (EXPR_WAS_SUBSTITUTED (expr))
6969 	      validate_simplify_insn (insn);
6970 	  }
6971     }
6972 }
6973 
6974 /* Find boundaries of the EBB starting from basic block BB, marking blocks of
6975    this EBB in SCHEDULED_BLOCKS and appropriately filling in HEAD, TAIL,
6976    PREV_HEAD, and NEXT_TAIL fields of CURRENT_SCHED_INFO structure.  */
6977 static void
find_ebb_boundaries(basic_block bb,bitmap scheduled_blocks)6978 find_ebb_boundaries (basic_block bb, bitmap scheduled_blocks)
6979 {
6980   rtx_insn *head, *tail;
6981   basic_block bb1 = bb;
6982   if (sched_verbose >= 2)
6983     sel_print ("Finishing schedule in bbs: ");
6984 
6985   do
6986     {
6987       bitmap_set_bit (scheduled_blocks, BLOCK_TO_BB (bb1->index));
6988 
6989       if (sched_verbose >= 2)
6990 	sel_print ("%d; ", bb1->index);
6991     }
6992   while (!bb_ends_ebb_p (bb1) && (bb1 = bb_next_bb (bb1)));
6993 
6994   if (sched_verbose >= 2)
6995     sel_print ("\n");
6996 
6997   get_ebb_head_tail (bb, bb1, &head, &tail);
6998 
6999   current_sched_info->head = head;
7000   current_sched_info->tail = tail;
7001   current_sched_info->prev_head = PREV_INSN (head);
7002   current_sched_info->next_tail = NEXT_INSN (tail);
7003 }
7004 
7005 /* Regenerate INSN_SCHED_CYCLEs for insns of current EBB.  */
7006 static void
reset_sched_cycles_in_current_ebb(void)7007 reset_sched_cycles_in_current_ebb (void)
7008 {
7009   int last_clock = 0;
7010   int haifa_last_clock = -1;
7011   int haifa_clock = 0;
7012   int issued_insns = 0;
7013   insn_t insn;
7014 
7015   if (targetm.sched.init)
7016     {
7017       /* None of the arguments are actually used in any target.
7018 	 NB: We should have md_reset () hook for cases like this.  */
7019       targetm.sched.init (sched_dump, sched_verbose, -1);
7020     }
7021 
7022   state_reset (curr_state);
7023   advance_state (curr_state);
7024 
7025   for (insn = current_sched_info->head;
7026        insn != current_sched_info->next_tail;
7027        insn = NEXT_INSN (insn))
7028     {
7029       int cost, haifa_cost;
7030       int sort_p;
7031       bool asm_p, real_insn, after_stall, all_issued;
7032       int clock;
7033 
7034       if (!INSN_P (insn))
7035 	continue;
7036 
7037       asm_p = false;
7038       real_insn = recog_memoized (insn) >= 0;
7039       clock = INSN_SCHED_CYCLE (insn);
7040 
7041       cost = clock - last_clock;
7042 
7043       /* Initialize HAIFA_COST.  */
7044       if (! real_insn)
7045 	{
7046 	  asm_p = INSN_ASM_P (insn);
7047 
7048 	  if (asm_p)
7049 	    /* This is asm insn which *had* to be scheduled first
7050 	       on the cycle.  */
7051 	    haifa_cost = 1;
7052 	  else
7053 	    /* This is a use/clobber insn.  It should not change
7054 	       cost.  */
7055 	    haifa_cost = 0;
7056 	}
7057       else
7058         haifa_cost = estimate_insn_cost (insn, curr_state);
7059 
7060       /* Stall for whatever cycles we've stalled before.  */
7061       after_stall = 0;
7062       if (INSN_AFTER_STALL_P (insn) && cost > haifa_cost)
7063         {
7064           haifa_cost = cost;
7065           after_stall = 1;
7066         }
7067       all_issued = issued_insns == issue_rate;
7068       if (haifa_cost == 0 && all_issued)
7069 	haifa_cost = 1;
7070       if (haifa_cost > 0)
7071 	{
7072 	  int i = 0;
7073 
7074 	  while (haifa_cost--)
7075 	    {
7076 	      advance_state (curr_state);
7077 	      issued_insns = 0;
7078               i++;
7079 
7080 	      if (sched_verbose >= 2)
7081                 {
7082                   sel_print ("advance_state (state_transition)\n");
7083                   debug_state (curr_state);
7084                 }
7085 
7086               /* The DFA may report that e.g. insn requires 2 cycles to be
7087                  issued, but on the next cycle it says that insn is ready
7088                  to go.  Check this here.  */
7089               if (!after_stall
7090                   && real_insn
7091                   && haifa_cost > 0
7092                   && estimate_insn_cost (insn, curr_state) == 0)
7093                 break;
7094 
7095               /* When the data dependency stall is longer than the DFA stall,
7096                  and when we have issued exactly issue_rate insns and stalled,
7097                  it could be that after this longer stall the insn will again
7098                  become unavailable  to the DFA restrictions.  Looks strange
7099                  but happens e.g. on x86-64.  So recheck DFA on the last
7100                  iteration.  */
7101               if ((after_stall || all_issued)
7102                   && real_insn
7103                   && haifa_cost == 0)
7104                 haifa_cost = estimate_insn_cost (insn, curr_state);
7105             }
7106 
7107 	  haifa_clock += i;
7108           if (sched_verbose >= 2)
7109             sel_print ("haifa clock: %d\n", haifa_clock);
7110 	}
7111       else
7112 	gcc_assert (haifa_cost == 0);
7113 
7114       if (sched_verbose >= 2)
7115 	sel_print ("Haifa cost for insn %d: %d\n", INSN_UID (insn), haifa_cost);
7116 
7117       if (targetm.sched.dfa_new_cycle)
7118 	while (targetm.sched.dfa_new_cycle (sched_dump, sched_verbose, insn,
7119 					    haifa_last_clock, haifa_clock,
7120 					    &sort_p))
7121 	  {
7122 	    advance_state (curr_state);
7123 	    issued_insns = 0;
7124 	    haifa_clock++;
7125 	    if (sched_verbose >= 2)
7126               {
7127                 sel_print ("advance_state (dfa_new_cycle)\n");
7128                 debug_state (curr_state);
7129 		sel_print ("haifa clock: %d\n", haifa_clock + 1);
7130               }
7131           }
7132 
7133       if (real_insn)
7134 	{
7135 	  static state_t temp = NULL;
7136 
7137 	  if (!temp)
7138 	    temp = xmalloc (dfa_state_size);
7139 	  memcpy (temp, curr_state, dfa_state_size);
7140 
7141 	  cost = state_transition (curr_state, insn);
7142 	  if (memcmp (temp, curr_state, dfa_state_size))
7143 	    issued_insns++;
7144 
7145           if (sched_verbose >= 2)
7146 	    {
7147 	      sel_print ("scheduled insn %d, clock %d\n", INSN_UID (insn),
7148 			 haifa_clock + 1);
7149               debug_state (curr_state);
7150 	    }
7151 	  gcc_assert (cost < 0);
7152 	}
7153 
7154       if (targetm.sched.variable_issue)
7155 	targetm.sched.variable_issue (sched_dump, sched_verbose, insn, 0);
7156 
7157       INSN_SCHED_CYCLE (insn) = haifa_clock;
7158 
7159       last_clock = clock;
7160       haifa_last_clock = haifa_clock;
7161     }
7162 }
7163 
7164 /* Put TImode markers on insns starting a new issue group.  */
7165 static void
put_TImodes(void)7166 put_TImodes (void)
7167 {
7168   int last_clock = -1;
7169   insn_t insn;
7170 
7171   for (insn = current_sched_info->head; insn != current_sched_info->next_tail;
7172        insn = NEXT_INSN (insn))
7173     {
7174       int cost, clock;
7175 
7176       if (!INSN_P (insn))
7177 	continue;
7178 
7179       clock = INSN_SCHED_CYCLE (insn);
7180       cost = (last_clock == -1) ? 1 : clock - last_clock;
7181 
7182       gcc_assert (cost >= 0);
7183 
7184       if (issue_rate > 1
7185 	  && GET_CODE (PATTERN (insn)) != USE
7186 	  && GET_CODE (PATTERN (insn)) != CLOBBER)
7187 	{
7188 	  if (reload_completed && cost > 0)
7189 	    PUT_MODE (insn, TImode);
7190 
7191 	  last_clock = clock;
7192 	}
7193 
7194       if (sched_verbose >= 2)
7195 	sel_print ("Cost for insn %d is %d\n", INSN_UID (insn), cost);
7196     }
7197 }
7198 
7199 /* Perform MD_FINISH on EBBs comprising current region.  When
7200    RESET_SCHED_CYCLES_P is true, run a pass emulating the scheduler
7201    to produce correct sched cycles on insns.  */
7202 static void
sel_region_target_finish(bool reset_sched_cycles_p)7203 sel_region_target_finish (bool reset_sched_cycles_p)
7204 {
7205   int i;
7206   bitmap scheduled_blocks = BITMAP_ALLOC (NULL);
7207 
7208   for (i = 0; i < current_nr_blocks; i++)
7209     {
7210       if (bitmap_bit_p (scheduled_blocks, i))
7211 	continue;
7212 
7213       /* While pipelining outer loops, skip bundling for loop
7214 	 preheaders.  Those will be rescheduled in the outer loop.  */
7215       if (sel_is_loop_preheader_p (EBB_FIRST_BB (i)))
7216 	continue;
7217 
7218       find_ebb_boundaries (EBB_FIRST_BB (i), scheduled_blocks);
7219 
7220       if (no_real_insns_p (current_sched_info->head, current_sched_info->tail))
7221 	continue;
7222 
7223       if (reset_sched_cycles_p)
7224 	reset_sched_cycles_in_current_ebb ();
7225 
7226       if (targetm.sched.init)
7227 	targetm.sched.init (sched_dump, sched_verbose, -1);
7228 
7229       put_TImodes ();
7230 
7231       if (targetm.sched.finish)
7232 	{
7233 	  targetm.sched.finish (sched_dump, sched_verbose);
7234 
7235 	  /* Extend luids so that insns generated by the target will
7236 	     get zero luid.  */
7237 	  sched_extend_luids ();
7238 	}
7239     }
7240 
7241   BITMAP_FREE (scheduled_blocks);
7242 }
7243 
7244 /* Free the scheduling data for the current region.  When RESET_SCHED_CYCLES_P
7245    is true, make an additional pass emulating scheduler to get correct insn
7246    cycles for md_finish calls.  */
7247 static void
sel_region_finish(bool reset_sched_cycles_p)7248 sel_region_finish (bool reset_sched_cycles_p)
7249 {
7250   simplify_changed_insns ();
7251   sched_finish_ready_list ();
7252   free_nop_pool ();
7253 
7254   /* Free the vectors.  */
7255   vec_av_set.release ();
7256   BITMAP_FREE (current_copies);
7257   BITMAP_FREE (current_originators);
7258   BITMAP_FREE (code_motion_visited_blocks);
7259   vinsn_vec_free (vec_bookkeeping_blocked_vinsns);
7260   vinsn_vec_free (vec_target_unavailable_vinsns);
7261 
7262   /* If LV_SET of the region head should be updated, do it now because
7263      there will be no other chance.  */
7264   {
7265     succ_iterator si;
7266     insn_t insn;
7267 
7268     FOR_EACH_SUCC_1 (insn, si, bb_note (EBB_FIRST_BB (0)),
7269                      SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
7270       {
7271 	basic_block bb = BLOCK_FOR_INSN (insn);
7272 
7273 	if (!BB_LV_SET_VALID_P (bb))
7274 	  compute_live (insn);
7275       }
7276   }
7277 
7278   /* Emulate the Haifa scheduler for bundling.  */
7279   if (reload_completed)
7280     sel_region_target_finish (reset_sched_cycles_p);
7281 
7282   sel_finish_global_and_expr ();
7283 
7284   bitmap_clear (forced_ebb_heads);
7285 
7286   free_nop_vinsn ();
7287 
7288   finish_deps_global ();
7289   sched_finish_luids ();
7290   h_d_i_d.release ();
7291 
7292   sel_finish_bbs ();
7293   BITMAP_FREE (blocks_to_reschedule);
7294 
7295   sel_unregister_cfg_hooks ();
7296 
7297   max_issue_size = 0;
7298 }
7299 
7300 
7301 /* Functions that implement the scheduler driver.  */
7302 
7303 /* Schedule a parallel instruction group on each of FENCES.  MAX_SEQNO
7304    is the current maximum seqno.  SCHEDULED_INSNS_TAILPP is the list
7305    of insns scheduled -- these would be postprocessed later.  */
7306 static void
schedule_on_fences(flist_t fences,int max_seqno,ilist_t ** scheduled_insns_tailpp)7307 schedule_on_fences (flist_t fences, int max_seqno,
7308                     ilist_t **scheduled_insns_tailpp)
7309 {
7310   flist_t old_fences = fences;
7311 
7312   if (sched_verbose >= 1)
7313     {
7314       sel_print ("\nScheduling on fences: ");
7315       dump_flist (fences);
7316       sel_print ("\n");
7317     }
7318 
7319   scheduled_something_on_previous_fence = false;
7320   for (; fences; fences = FLIST_NEXT (fences))
7321     {
7322       fence_t fence = NULL;
7323       int seqno = 0;
7324       flist_t fences2;
7325       bool first_p = true;
7326 
7327       /* Choose the next fence group to schedule.
7328          The fact that insn can be scheduled only once
7329          on the cycle is guaranteed by two properties:
7330          1. seqnos of parallel groups decrease with each iteration.
7331          2. If is_ineligible_successor () sees the larger seqno, it
7332          checks if candidate insn is_in_current_fence_p ().  */
7333       for (fences2 = old_fences; fences2; fences2 = FLIST_NEXT (fences2))
7334         {
7335           fence_t f = FLIST_FENCE (fences2);
7336 
7337           if (!FENCE_PROCESSED_P (f))
7338             {
7339               int i = INSN_SEQNO (FENCE_INSN (f));
7340 
7341               if (first_p || i > seqno)
7342                 {
7343                   seqno = i;
7344                   fence = f;
7345                   first_p = false;
7346                 }
7347               else
7348                 /* ??? Seqnos of different groups should be different.  */
7349                 gcc_assert (1 || i != seqno);
7350             }
7351         }
7352 
7353       gcc_assert (fence);
7354 
7355       /* As FENCE is nonnull, SEQNO is initialized.  */
7356       seqno -= max_seqno + 1;
7357       fill_insns (fence, seqno, scheduled_insns_tailpp);
7358       FENCE_PROCESSED_P (fence) = true;
7359     }
7360 
7361   /* All av_sets are invalidated by GLOBAL_LEVEL increase, thus we
7362      don't need to keep bookkeeping-invalidated and target-unavailable
7363      vinsns any more.  */
7364   vinsn_vec_clear (&vec_bookkeeping_blocked_vinsns);
7365   vinsn_vec_clear (&vec_target_unavailable_vinsns);
7366 }
7367 
7368 /* Calculate MIN_SEQNO and MAX_SEQNO.  */
7369 static void
find_min_max_seqno(flist_t fences,int * min_seqno,int * max_seqno)7370 find_min_max_seqno (flist_t fences, int *min_seqno, int *max_seqno)
7371 {
7372   *min_seqno = *max_seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7373 
7374   /* The first element is already processed.  */
7375   while ((fences = FLIST_NEXT (fences)))
7376     {
7377       int seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7378 
7379       if (*min_seqno > seqno)
7380         *min_seqno = seqno;
7381       else if (*max_seqno < seqno)
7382         *max_seqno = seqno;
7383     }
7384 }
7385 
7386 /* Calculate new fences from FENCES.  Write the current time to PTIME.  */
7387 static flist_t
calculate_new_fences(flist_t fences,int orig_max_seqno,int * ptime)7388 calculate_new_fences (flist_t fences, int orig_max_seqno, int *ptime)
7389 {
7390   flist_t old_fences = fences;
7391   struct flist_tail_def _new_fences, *new_fences = &_new_fences;
7392   int max_time = 0;
7393 
7394   flist_tail_init (new_fences);
7395   for (; fences; fences = FLIST_NEXT (fences))
7396     {
7397       fence_t fence = FLIST_FENCE (fences);
7398       insn_t insn;
7399 
7400       if (!FENCE_BNDS (fence))
7401         {
7402           /* This fence doesn't have any successors.  */
7403           if (!FENCE_SCHEDULED_P (fence))
7404             {
7405               /* Nothing was scheduled on this fence.  */
7406               int seqno;
7407 
7408               insn = FENCE_INSN (fence);
7409               seqno = INSN_SEQNO (insn);
7410               gcc_assert (seqno > 0 && seqno <= orig_max_seqno);
7411 
7412               if (sched_verbose >= 1)
7413                 sel_print ("Fence %d[%d] has not changed\n",
7414                            INSN_UID (insn),
7415                            BLOCK_NUM (insn));
7416               move_fence_to_fences (fences, new_fences);
7417             }
7418         }
7419       else
7420         extract_new_fences_from (fences, new_fences, orig_max_seqno);
7421       max_time = MAX (max_time, FENCE_CYCLE (fence));
7422     }
7423 
7424   flist_clear (&old_fences);
7425   *ptime = max_time;
7426   return FLIST_TAIL_HEAD (new_fences);
7427 }
7428 
7429 /* Update seqnos of insns given by PSCHEDULED_INSNS.  MIN_SEQNO and MAX_SEQNO
7430    are the miminum and maximum seqnos of the group, HIGHEST_SEQNO_IN_USE is
7431    the highest seqno used in a region.  Return the updated highest seqno.  */
7432 static int
update_seqnos_and_stage(int min_seqno,int max_seqno,int highest_seqno_in_use,ilist_t * pscheduled_insns)7433 update_seqnos_and_stage (int min_seqno, int max_seqno,
7434                          int highest_seqno_in_use,
7435                          ilist_t *pscheduled_insns)
7436 {
7437   int new_hs;
7438   ilist_iterator ii;
7439   insn_t insn;
7440 
7441   /* Actually, new_hs is the seqno of the instruction, that was
7442      scheduled first (i.e. it is the first one in SCHEDULED_INSNS).  */
7443   if (*pscheduled_insns)
7444     {
7445       new_hs = (INSN_SEQNO (ILIST_INSN (*pscheduled_insns))
7446                 + highest_seqno_in_use + max_seqno - min_seqno + 2);
7447       gcc_assert (new_hs > highest_seqno_in_use);
7448     }
7449   else
7450     new_hs = highest_seqno_in_use;
7451 
7452   FOR_EACH_INSN (insn, ii, *pscheduled_insns)
7453     {
7454       gcc_assert (INSN_SEQNO (insn) < 0);
7455       INSN_SEQNO (insn) += highest_seqno_in_use + max_seqno - min_seqno + 2;
7456       gcc_assert (INSN_SEQNO (insn) <= new_hs);
7457 
7458       /* When not pipelining, purge unneeded insn info on the scheduled insns.
7459          For example, having reg_last array of INSN_DEPS_CONTEXT in memory may
7460          require > 1GB of memory e.g. on limit-fnargs.c.  */
7461       if (! pipelining_p)
7462         free_data_for_scheduled_insn (insn);
7463     }
7464 
7465   ilist_clear (pscheduled_insns);
7466   global_level++;
7467 
7468   return new_hs;
7469 }
7470 
7471 /* The main driver for scheduling a region.  This function is responsible
7472    for correct propagation of fences (i.e. scheduling points) and creating
7473    a group of parallel insns at each of them.  It also supports
7474    pipelining.  ORIG_MAX_SEQNO is the maximal seqno before this pass
7475    of scheduling.  */
7476 static void
sel_sched_region_2(int orig_max_seqno)7477 sel_sched_region_2 (int orig_max_seqno)
7478 {
7479   int highest_seqno_in_use = orig_max_seqno;
7480   int max_time = 0;
7481 
7482   stat_bookkeeping_copies = 0;
7483   stat_insns_needed_bookkeeping = 0;
7484   stat_renamed_scheduled = 0;
7485   stat_substitutions_total = 0;
7486   num_insns_scheduled = 0;
7487 
7488   while (fences)
7489     {
7490       int min_seqno, max_seqno;
7491       ilist_t scheduled_insns = NULL;
7492       ilist_t *scheduled_insns_tailp = &scheduled_insns;
7493 
7494       find_min_max_seqno (fences, &min_seqno, &max_seqno);
7495       schedule_on_fences (fences, max_seqno, &scheduled_insns_tailp);
7496       fences = calculate_new_fences (fences, orig_max_seqno, &max_time);
7497       highest_seqno_in_use = update_seqnos_and_stage (min_seqno, max_seqno,
7498                                                       highest_seqno_in_use,
7499                                                       &scheduled_insns);
7500     }
7501 
7502   if (sched_verbose >= 1)
7503     {
7504       sel_print ("Total scheduling time: %d cycles\n", max_time);
7505       sel_print ("Scheduled %d bookkeeping copies, %d insns needed "
7506 		 "bookkeeping, %d insns renamed, %d insns substituted\n",
7507 		 stat_bookkeeping_copies,
7508 		 stat_insns_needed_bookkeeping,
7509 		 stat_renamed_scheduled,
7510 		 stat_substitutions_total);
7511     }
7512 }
7513 
7514 /* Schedule a region.  When pipelining, search for possibly never scheduled
7515    bookkeeping code and schedule it.  Reschedule pipelined code without
7516    pipelining after.  */
7517 static void
sel_sched_region_1(void)7518 sel_sched_region_1 (void)
7519 {
7520   int orig_max_seqno;
7521 
7522   /* Remove empty blocks that might be in the region from the beginning.  */
7523   purge_empty_blocks ();
7524 
7525   orig_max_seqno = init_seqno (NULL, NULL);
7526   gcc_assert (orig_max_seqno >= 1);
7527 
7528   /* When pipelining outer loops, create fences on the loop header,
7529      not preheader.  */
7530   fences = NULL;
7531   if (current_loop_nest)
7532     init_fences (BB_END (EBB_FIRST_BB (0)));
7533   else
7534     init_fences (bb_note (EBB_FIRST_BB (0)));
7535   global_level = 1;
7536 
7537   sel_sched_region_2 (orig_max_seqno);
7538 
7539   gcc_assert (fences == NULL);
7540 
7541   if (pipelining_p)
7542     {
7543       int i;
7544       basic_block bb;
7545       struct flist_tail_def _new_fences;
7546       flist_tail_t new_fences = &_new_fences;
7547       bool do_p = true;
7548 
7549       pipelining_p = false;
7550       max_ws = MIN (max_ws, issue_rate * 3 / 2);
7551       bookkeeping_p = false;
7552       enable_schedule_as_rhs_p = false;
7553 
7554       /* Schedule newly created code, that has not been scheduled yet.  */
7555       do_p = true;
7556 
7557       while (do_p)
7558         {
7559           do_p = false;
7560 
7561           for (i = 0; i < current_nr_blocks; i++)
7562             {
7563               basic_block bb = EBB_FIRST_BB (i);
7564 
7565               if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7566                 {
7567                   if (! bb_ends_ebb_p (bb))
7568                     bitmap_set_bit (blocks_to_reschedule, bb_next_bb (bb)->index);
7569                   if (sel_bb_empty_p (bb))
7570                     {
7571                       bitmap_clear_bit (blocks_to_reschedule, bb->index);
7572                       continue;
7573                     }
7574                   clear_outdated_rtx_info (bb);
7575                   if (sel_insn_is_speculation_check (BB_END (bb))
7576                       && JUMP_P (BB_END (bb)))
7577                     bitmap_set_bit (blocks_to_reschedule,
7578                                     BRANCH_EDGE (bb)->dest->index);
7579                 }
7580               else if (! sel_bb_empty_p (bb)
7581                        && INSN_SCHED_TIMES (sel_bb_head (bb)) <= 0)
7582                 bitmap_set_bit (blocks_to_reschedule, bb->index);
7583             }
7584 
7585           for (i = 0; i < current_nr_blocks; i++)
7586             {
7587               bb = EBB_FIRST_BB (i);
7588 
7589               /* While pipelining outer loops, skip bundling for loop
7590                  preheaders.  Those will be rescheduled in the outer
7591                  loop.  */
7592               if (sel_is_loop_preheader_p (bb))
7593                 {
7594                   clear_outdated_rtx_info (bb);
7595                   continue;
7596                 }
7597 
7598               if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7599                 {
7600                   flist_tail_init (new_fences);
7601 
7602                   orig_max_seqno = init_seqno (blocks_to_reschedule, bb);
7603 
7604                   /* Mark BB as head of the new ebb.  */
7605                   bitmap_set_bit (forced_ebb_heads, bb->index);
7606 
7607                   gcc_assert (fences == NULL);
7608 
7609                   init_fences (bb_note (bb));
7610 
7611                   sel_sched_region_2 (orig_max_seqno);
7612 
7613                   do_p = true;
7614                   break;
7615                 }
7616             }
7617         }
7618     }
7619 }
7620 
7621 /* Schedule the RGN region.  */
7622 void
sel_sched_region(int rgn)7623 sel_sched_region (int rgn)
7624 {
7625   bool schedule_p;
7626   bool reset_sched_cycles_p;
7627 
7628   if (sel_region_init (rgn))
7629     return;
7630 
7631   if (sched_verbose >= 1)
7632     sel_print ("Scheduling region %d\n", rgn);
7633 
7634   schedule_p = (!sched_is_disabled_for_current_region_p ()
7635                 && dbg_cnt (sel_sched_region_cnt));
7636   reset_sched_cycles_p = pipelining_p;
7637   if (schedule_p)
7638     sel_sched_region_1 ();
7639   else
7640     /* Force initialization of INSN_SCHED_CYCLEs for correct bundling.  */
7641     reset_sched_cycles_p = true;
7642 
7643   sel_region_finish (reset_sched_cycles_p);
7644 }
7645 
7646 /* Perform global init for the scheduler.  */
7647 static void
sel_global_init(void)7648 sel_global_init (void)
7649 {
7650   calculate_dominance_info (CDI_DOMINATORS);
7651   alloc_sched_pools ();
7652 
7653   /* Setup the infos for sched_init.  */
7654   sel_setup_sched_infos ();
7655   setup_sched_dump ();
7656 
7657   sched_rgn_init (false);
7658   sched_init ();
7659 
7660   sched_init_bbs ();
7661   /* Reset AFTER_RECOVERY if it has been set by the 1st scheduler pass.  */
7662   after_recovery = 0;
7663   can_issue_more = issue_rate;
7664 
7665   sched_extend_target ();
7666   sched_deps_init (true);
7667   setup_nop_and_exit_insns ();
7668   sel_extend_global_bb_info ();
7669   init_lv_sets ();
7670   init_hard_regs_data ();
7671 }
7672 
7673 /* Free the global data of the scheduler.  */
7674 static void
sel_global_finish(void)7675 sel_global_finish (void)
7676 {
7677   free_bb_note_pool ();
7678   free_lv_sets ();
7679   sel_finish_global_bb_info ();
7680 
7681   free_regset_pool ();
7682   free_nop_and_exit_insns ();
7683 
7684   sched_rgn_finish ();
7685   sched_deps_finish ();
7686   sched_finish ();
7687 
7688   if (current_loops)
7689     sel_finish_pipelining ();
7690 
7691   free_sched_pools ();
7692   free_dominance_info (CDI_DOMINATORS);
7693 }
7694 
7695 /* Return true when we need to skip selective scheduling.  Used for debugging.  */
7696 bool
maybe_skip_selective_scheduling(void)7697 maybe_skip_selective_scheduling (void)
7698 {
7699   return ! dbg_cnt (sel_sched_cnt);
7700 }
7701 
7702 /* The entry point.  */
7703 void
run_selective_scheduling(void)7704 run_selective_scheduling (void)
7705 {
7706   int rgn;
7707 
7708   if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
7709     return;
7710 
7711   sel_global_init ();
7712 
7713   for (rgn = 0; rgn < nr_regions; rgn++)
7714     sel_sched_region (rgn);
7715 
7716   sel_global_finish ();
7717 }
7718 
7719 #endif
7720