1// run
2
3// Copyright 2009 The Go Authors. All rights reserved.
4// Use of this source code is governed by a BSD-style
5// license that can be found in the LICENSE file.
6
7// Test concurrency primitives: power series.
8
9// Like powser1.go but uses channels of interfaces.
10// Has not been cleaned up as much as powser1.go, to keep
11// it distinct and therefore a different test.
12
13// Power series package
14// A power series is a channel, along which flow rational
15// coefficients.  A denominator of zero signifies the end.
16// Original code in Newsqueak by Doug McIlroy.
17// See Squinting at Power Series by Doug McIlroy,
18//   http://www.cs.bell-labs.com/who/rsc/thread/squint.pdf
19
20package main
21
22import "os"
23
24type rat struct  {
25	num, den  int64	// numerator, denominator
26}
27
28type item interface {
29	pr()
30	eq(c item) bool
31}
32
33func (u *rat) pr(){
34	if u.den==1 {
35		print(u.num)
36	} else {
37		print(u.num, "/", u.den)
38	}
39	print(" ")
40}
41
42func (u *rat) eq(c item) bool {
43	c1 := c.(*rat)
44	return u.num == c1.num && u.den == c1.den
45}
46
47type dch struct {
48	req chan  int
49	dat chan  item
50	nam int
51}
52
53type dch2 [2] *dch
54
55var chnames string
56var chnameserial int
57var seqno int
58
59func mkdch() *dch {
60	c := chnameserial % len(chnames)
61	chnameserial++
62	d := new(dch)
63	d.req = make(chan int)
64	d.dat = make(chan item)
65	d.nam = c
66	return d
67}
68
69func mkdch2() *dch2 {
70	d2 := new(dch2)
71	d2[0] = mkdch()
72	d2[1] = mkdch()
73	return d2
74}
75
76// split reads a single demand channel and replicates its
77// output onto two, which may be read at different rates.
78// A process is created at first demand for an item and dies
79// after the item has been sent to both outputs.
80
81// When multiple generations of split exist, the newest
82// will service requests on one channel, which is
83// always renamed to be out[0]; the oldest will service
84// requests on the other channel, out[1].  All generations but the
85// newest hold queued data that has already been sent to
86// out[0].  When data has finally been sent to out[1],
87// a signal on the release-wait channel tells the next newer
88// generation to begin servicing out[1].
89
90func dosplit(in *dch, out *dch2, wait chan int ){
91	both := false	// do not service both channels
92
93	select {
94	case <-out[0].req:
95
96	case <-wait:
97		both = true
98		select {
99		case <-out[0].req:
100
101		case <-out[1].req:
102			out[0],out[1] = out[1], out[0]
103		}
104	}
105
106	seqno++
107	in.req <- seqno
108	release := make(chan  int)
109	go dosplit(in, out, release)
110	dat := <-in.dat
111	out[0].dat <- dat
112	if !both {
113		<-wait
114	}
115	<-out[1].req
116	out[1].dat <- dat
117	release <- 0
118}
119
120func split(in *dch, out *dch2){
121	release := make(chan int)
122	go dosplit(in, out, release)
123	release <- 0
124}
125
126func put(dat item, out *dch){
127	<-out.req
128	out.dat <- dat
129}
130
131func get(in *dch) *rat {
132	seqno++
133	in.req <- seqno
134	return (<-in.dat).(*rat)
135}
136
137// Get one item from each of n demand channels
138
139func getn(in []*dch) []item {
140	n:=len(in)
141	if n != 2 { panic("bad n in getn") }
142	req := make([] chan int, 2)
143	dat := make([] chan item, 2)
144	out := make([]item, 2)
145	var i int
146	var it item
147	for i=0; i<n; i++ {
148		req[i] = in[i].req
149		dat[i] = nil
150	}
151	for n=2*n; n>0; n-- {
152		seqno++
153
154		select{
155		case req[0] <- seqno:
156			dat[0] = in[0].dat
157			req[0] = nil
158		case req[1] <- seqno:
159			dat[1] = in[1].dat
160			req[1] = nil
161		case it = <-dat[0]:
162			out[0] = it
163			dat[0] = nil
164		case it = <-dat[1]:
165			out[1] = it
166			dat[1] = nil
167		}
168	}
169	return out
170}
171
172// Get one item from each of 2 demand channels
173
174func get2(in0 *dch, in1 *dch)  []item {
175	return getn([]*dch{in0, in1})
176}
177
178func copy(in *dch, out *dch){
179	for {
180		<-out.req
181		out.dat <- get(in)
182	}
183}
184
185func repeat(dat item, out *dch){
186	for {
187		put(dat, out)
188	}
189}
190
191type PS *dch	// power series
192type PS2 *[2] PS // pair of power series
193
194var Ones PS
195var Twos PS
196
197func mkPS() *dch {
198	return mkdch()
199}
200
201func mkPS2() *dch2 {
202	return mkdch2()
203}
204
205// Conventions
206// Upper-case for power series.
207// Lower-case for rationals.
208// Input variables: U,V,...
209// Output variables: ...,Y,Z
210
211// Integer gcd; needed for rational arithmetic
212
213func gcd (u, v int64) int64{
214	if u < 0 { return gcd(-u, v) }
215	if u == 0 { return v }
216	return gcd(v%u, u)
217}
218
219// Make a rational from two ints and from one int
220
221func i2tor(u, v int64) *rat{
222	g := gcd(u,v)
223	r := new(rat)
224	if v > 0 {
225		r.num = u/g
226		r.den = v/g
227	} else {
228		r.num = -u/g
229		r.den = -v/g
230	}
231	return r
232}
233
234func itor(u int64) *rat{
235	return i2tor(u, 1)
236}
237
238var zero *rat
239var one *rat
240
241
242// End mark and end test
243
244var finis *rat
245
246func end(u *rat) int64 {
247	if u.den==0 { return 1 }
248	return 0
249}
250
251// Operations on rationals
252
253func add(u, v *rat) *rat {
254	g := gcd(u.den,v.den)
255	return  i2tor(u.num*(v.den/g)+v.num*(u.den/g),u.den*(v.den/g))
256}
257
258func mul(u, v *rat) *rat{
259	g1 := gcd(u.num,v.den)
260	g2 := gcd(u.den,v.num)
261	r := new(rat)
262	r.num =(u.num/g1)*(v.num/g2)
263	r.den = (u.den/g2)*(v.den/g1)
264	return r
265}
266
267func neg(u *rat) *rat{
268	return i2tor(-u.num, u.den)
269}
270
271func sub(u, v *rat) *rat{
272	return add(u, neg(v))
273}
274
275func inv(u *rat) *rat{	// invert a rat
276	if u.num == 0 { panic("zero divide in inv") }
277	return i2tor(u.den, u.num)
278}
279
280// print eval in floating point of PS at x=c to n terms
281func Evaln(c *rat, U PS, n int) {
282	xn := float64(1)
283	x := float64(c.num)/float64(c.den)
284	val := float64(0)
285	for i:=0; i<n; i++ {
286		u := get(U)
287		if end(u) != 0 {
288			break
289		}
290		val = val + x * float64(u.num)/float64(u.den)
291		xn = xn*x
292	}
293	print(val, "\n")
294}
295
296// Print n terms of a power series
297func Printn(U PS, n int){
298	done := false
299	for ; !done && n>0; n-- {
300		u := get(U)
301		if end(u) != 0 {
302			done = true
303		} else {
304			u.pr()
305		}
306	}
307	print(("\n"))
308}
309
310func Print(U PS){
311	Printn(U,1000000000)
312}
313
314// Evaluate n terms of power series U at x=c
315func eval(c *rat, U PS, n int) *rat{
316	if n==0 { return zero }
317	y := get(U)
318	if end(y) != 0 { return zero }
319	return add(y,mul(c,eval(c,U,n-1)))
320}
321
322// Power-series constructors return channels on which power
323// series flow.  They start an encapsulated generator that
324// puts the terms of the series on the channel.
325
326// Make a pair of power series identical to a given power series
327
328func Split(U PS) *dch2{
329	UU := mkdch2()
330	go split(U,UU)
331	return UU
332}
333
334// Add two power series
335func Add(U, V PS) PS{
336	Z := mkPS()
337	go func(U, V, Z PS){
338		var uv [] item
339		for {
340			<-Z.req
341			uv = get2(U,V)
342			switch end(uv[0].(*rat))+2*end(uv[1].(*rat)) {
343			case 0:
344				Z.dat <- add(uv[0].(*rat), uv[1].(*rat))
345			case 1:
346				Z.dat <- uv[1]
347				copy(V,Z)
348			case 2:
349				Z.dat <- uv[0]
350				copy(U,Z)
351			case 3:
352				Z.dat <- finis
353			}
354		}
355	}(U, V, Z)
356	return Z
357}
358
359// Multiply a power series by a constant
360func Cmul(c *rat,U PS) PS{
361	Z := mkPS()
362	go func(c *rat, U, Z PS){
363		done := false
364		for !done {
365			<-Z.req
366			u := get(U)
367			if end(u) != 0 {
368				done = true
369			} else {
370				Z.dat <- mul(c,u)
371			}
372		}
373		Z.dat <- finis
374	}(c, U, Z)
375	return Z
376}
377
378// Subtract
379
380func Sub(U, V PS) PS{
381	return Add(U, Cmul(neg(one), V))
382}
383
384// Multiply a power series by the monomial x^n
385
386func Monmul(U PS, n int) PS{
387	Z := mkPS()
388	go func(n int, U PS, Z PS){
389		for ; n>0; n-- { put(zero,Z) }
390		copy(U,Z)
391	}(n, U, Z)
392	return Z
393}
394
395// Multiply by x
396
397func Xmul(U PS) PS{
398	return Monmul(U,1)
399}
400
401func Rep(c *rat) PS{
402	Z := mkPS()
403	go repeat(c,Z)
404	return Z
405}
406
407// Monomial c*x^n
408
409func Mon(c *rat, n int) PS{
410	Z:=mkPS()
411	go func(c *rat, n int, Z PS){
412		if(c.num!=0) {
413			for ; n>0; n=n-1 { put(zero,Z) }
414			put(c,Z)
415		}
416		put(finis,Z)
417	}(c, n, Z)
418	return Z
419}
420
421func Shift(c *rat, U PS) PS{
422	Z := mkPS()
423	go func(c *rat, U, Z PS){
424		put(c,Z)
425		copy(U,Z)
426	}(c, U, Z)
427	return Z
428}
429
430// simple pole at 1: 1/(1-x) = 1 1 1 1 1 ...
431
432// Convert array of coefficients, constant term first
433// to a (finite) power series
434
435/*
436func Poly(a [] *rat) PS{
437	Z:=mkPS()
438	begin func(a [] *rat, Z PS){
439		j:=0
440		done:=0
441		for j=len(a); !done&&j>0; j=j-1)
442			if(a[j-1].num!=0) done=1
443		i:=0
444		for(; i<j; i=i+1) put(a[i],Z)
445		put(finis,Z)
446	}()
447	return Z
448}
449*/
450
451// Multiply. The algorithm is
452//	let U = u + x*UU
453//	let V = v + x*VV
454//	then UV = u*v + x*(u*VV+v*UU) + x*x*UU*VV
455
456func Mul(U, V PS) PS{
457	Z:=mkPS()
458	go func(U, V, Z PS){
459		<-Z.req
460		uv := get2(U,V)
461		if end(uv[0].(*rat))!=0 || end(uv[1].(*rat)) != 0 {
462			Z.dat <- finis
463		} else {
464			Z.dat <- mul(uv[0].(*rat),uv[1].(*rat))
465			UU := Split(U)
466			VV := Split(V)
467			W := Add(Cmul(uv[0].(*rat),VV[0]),Cmul(uv[1].(*rat),UU[0]))
468			<-Z.req
469			Z.dat <- get(W)
470			copy(Add(W,Mul(UU[1],VV[1])),Z)
471		}
472	}(U, V, Z)
473	return Z
474}
475
476// Differentiate
477
478func Diff(U PS) PS{
479	Z:=mkPS()
480	go func(U, Z PS){
481		<-Z.req
482		u := get(U)
483		if end(u) == 0 {
484			done:=false
485			for i:=1; !done; i++ {
486				u = get(U)
487				if end(u) != 0 {
488					done=true
489				} else {
490					Z.dat <- mul(itor(int64(i)),u)
491					<-Z.req
492				}
493			}
494		}
495		Z.dat <- finis
496	}(U, Z)
497	return Z
498}
499
500// Integrate, with const of integration
501func Integ(c *rat,U PS) PS{
502	Z:=mkPS()
503	go func(c *rat, U, Z PS){
504		put(c,Z)
505		done:=false
506		for i:=1; !done; i++ {
507			<-Z.req
508			u := get(U)
509			if end(u) != 0 { done= true }
510			Z.dat <- mul(i2tor(1,int64(i)),u)
511		}
512		Z.dat <- finis
513	}(c, U, Z)
514	return Z
515}
516
517// Binomial theorem (1+x)^c
518
519func Binom(c *rat) PS{
520	Z:=mkPS()
521	go func(c *rat, Z PS){
522		n := 1
523		t := itor(1)
524		for c.num!=0 {
525			put(t,Z)
526			t = mul(mul(t,c),i2tor(1,int64(n)))
527			c = sub(c,one)
528			n++
529		}
530		put(finis,Z)
531	}(c, Z)
532	return Z
533}
534
535// Reciprocal of a power series
536//	let U = u + x*UU
537//	let Z = z + x*ZZ
538//	(u+x*UU)*(z+x*ZZ) = 1
539//	z = 1/u
540//	u*ZZ + z*UU +x*UU*ZZ = 0
541//	ZZ = -UU*(z+x*ZZ)/u
542
543func Recip(U PS) PS{
544	Z:=mkPS()
545	go func(U, Z PS){
546		ZZ:=mkPS2()
547		<-Z.req
548		z := inv(get(U))
549		Z.dat <- z
550		split(Mul(Cmul(neg(z),U),Shift(z,ZZ[0])),ZZ)
551		copy(ZZ[1],Z)
552	}(U, Z)
553	return Z
554}
555
556// Exponential of a power series with constant term 0
557// (nonzero constant term would make nonrational coefficients)
558// bug: the constant term is simply ignored
559//	Z = exp(U)
560//	DZ = Z*DU
561//	integrate to get Z
562
563func Exp(U PS) PS{
564	ZZ := mkPS2()
565	split(Integ(one,Mul(ZZ[0],Diff(U))),ZZ)
566	return ZZ[1]
567}
568
569// Substitute V for x in U, where the leading term of V is zero
570//	let U = u + x*UU
571//	let V = v + x*VV
572//	then S(U,V) = u + VV*S(V,UU)
573// bug: a nonzero constant term is ignored
574
575func Subst(U, V PS) PS {
576	Z:= mkPS()
577	go func(U, V, Z PS) {
578		VV := Split(V)
579		<-Z.req
580		u := get(U)
581		Z.dat <- u
582		if end(u) == 0 {
583			if end(get(VV[0])) != 0 {
584				put(finis,Z)
585			} else {
586				copy(Mul(VV[0],Subst(U,VV[1])),Z)
587			}
588		}
589	}(U, V, Z)
590	return Z
591}
592
593// Monomial Substition: U(c x^n)
594// Each Ui is multiplied by c^i and followed by n-1 zeros
595
596func MonSubst(U PS, c0 *rat, n int) PS {
597	Z:= mkPS()
598	go func(U, Z PS, c0 *rat, n int) {
599		c := one
600		for {
601			<-Z.req
602			u := get(U)
603			Z.dat <- mul(u, c)
604			c = mul(c, c0)
605			if end(u) != 0 {
606				Z.dat <- finis
607				break
608			}
609			for i := 1; i < n; i++ {
610				<-Z.req
611				Z.dat <- zero
612			}
613		}
614	}(U, Z, c0, n)
615	return Z
616}
617
618
619func Init() {
620	chnameserial = -1
621	seqno = 0
622	chnames = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"
623	zero = itor(0)
624	one = itor(1)
625	finis = i2tor(1,0)
626	Ones = Rep(one)
627	Twos = Rep(itor(2))
628}
629
630func check(U PS, c *rat, count int, str string) {
631	for i := 0; i < count; i++ {
632		r := get(U)
633		if !r.eq(c) {
634			print("got: ")
635			r.pr()
636			print("should get ")
637			c.pr()
638			print("\n")
639			panic(str)
640		}
641	}
642}
643
644const N=10
645func checka(U PS, a []*rat, str string) {
646	for i := 0; i < N; i++ {
647		check(U, a[i], 1, str)
648	}
649}
650
651func main() {
652	Init()
653	if len(os.Args) > 1 {  // print
654		print("Ones: "); Printn(Ones, 10)
655		print("Twos: "); Printn(Twos, 10)
656		print("Add: "); Printn(Add(Ones, Twos), 10)
657		print("Diff: "); Printn(Diff(Ones), 10)
658		print("Integ: "); Printn(Integ(zero, Ones), 10)
659		print("CMul: "); Printn(Cmul(neg(one), Ones), 10)
660		print("Sub: "); Printn(Sub(Ones, Twos), 10)
661		print("Mul: "); Printn(Mul(Ones, Ones), 10)
662		print("Exp: "); Printn(Exp(Ones), 15)
663		print("MonSubst: "); Printn(MonSubst(Ones, neg(one), 2), 10)
664		print("ATan: "); Printn(Integ(zero, MonSubst(Ones, neg(one), 2)), 10)
665	} else {  // test
666		check(Ones, one, 5, "Ones")
667		check(Add(Ones, Ones), itor(2), 0, "Add Ones Ones")  // 1 1 1 1 1
668		check(Add(Ones, Twos), itor(3), 0, "Add Ones Twos") // 3 3 3 3 3
669		a := make([]*rat, N)
670		d := Diff(Ones)
671		for i:=0; i < N; i++ {
672			a[i] = itor(int64(i+1))
673		}
674		checka(d, a, "Diff")  // 1 2 3 4 5
675		in := Integ(zero, Ones)
676		a[0] = zero  // integration constant
677		for i:=1; i < N; i++ {
678			a[i] = i2tor(1, int64(i))
679		}
680		checka(in, a, "Integ")  // 0 1 1/2 1/3 1/4 1/5
681		check(Cmul(neg(one), Twos), itor(-2), 10, "CMul")  // -1 -1 -1 -1 -1
682		check(Sub(Ones, Twos), itor(-1), 0, "Sub Ones Twos")  // -1 -1 -1 -1 -1
683		m := Mul(Ones, Ones)
684		for i:=0; i < N; i++ {
685			a[i] = itor(int64(i+1))
686		}
687		checka(m, a, "Mul")  // 1 2 3 4 5
688		e := Exp(Ones)
689		a[0] = itor(1)
690		a[1] = itor(1)
691		a[2] = i2tor(3,2)
692		a[3] = i2tor(13,6)
693		a[4] = i2tor(73,24)
694		a[5] = i2tor(167,40)
695		a[6] = i2tor(4051,720)
696		a[7] = i2tor(37633,5040)
697		a[8] = i2tor(43817,4480)
698		a[9] = i2tor(4596553,362880)
699		checka(e, a, "Exp")  // 1 1 3/2 13/6 73/24
700		at := Integ(zero, MonSubst(Ones, neg(one), 2))
701		for c, i := 1, 0; i < N; i++ {
702			if i%2 == 0 {
703				a[i] = zero
704			} else {
705				a[i] = i2tor(int64(c), int64(i))
706				c *= -1
707			}
708		}
709		checka(at, a, "ATan");  // 0 -1 0 -1/3 0 -1/5
710/*
711		t := Revert(Integ(zero, MonSubst(Ones, neg(one), 2)))
712		a[0] = zero
713		a[1] = itor(1)
714		a[2] = zero
715		a[3] = i2tor(1,3)
716		a[4] = zero
717		a[5] = i2tor(2,15)
718		a[6] = zero
719		a[7] = i2tor(17,315)
720		a[8] = zero
721		a[9] = i2tor(62,2835)
722		checka(t, a, "Tan")  // 0 1 0 1/3 0 2/15
723*/
724	}
725}
726