1 /* Tree based points-to analysis
2    Copyright (C) 2005-2016 Free Software Foundation, Inc.
3    Contributed by Daniel Berlin <dberlin@dberlin.org>
4 
5    This file is part of GCC.
6 
7    GCC is free software; you can redistribute it and/or modify
8    under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    GCC is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with GCC; see the file COPYING3.  If not see
19    <http://www.gnu.org/licenses/>.  */
20 
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "alloc-pool.h"
29 #include "tree-pass.h"
30 #include "ssa.h"
31 #include "cgraph.h"
32 #include "tree-pretty-print.h"
33 #include "diagnostic-core.h"
34 #include "fold-const.h"
35 #include "stor-layout.h"
36 #include "stmt.h"
37 #include "gimple-iterator.h"
38 #include "tree-into-ssa.h"
39 #include "tree-dfa.h"
40 #include "params.h"
41 #include "gimple-walk.h"
42 
43 /* The idea behind this analyzer is to generate set constraints from the
44    program, then solve the resulting constraints in order to generate the
45    points-to sets.
46 
47    Set constraints are a way of modeling program analysis problems that
48    involve sets.  They consist of an inclusion constraint language,
49    describing the variables (each variable is a set) and operations that
50    are involved on the variables, and a set of rules that derive facts
51    from these operations.  To solve a system of set constraints, you derive
52    all possible facts under the rules, which gives you the correct sets
53    as a consequence.
54 
55    See  "Efficient Field-sensitive pointer analysis for C" by "David
56    J. Pearce and Paul H. J. Kelly and Chris Hankin, at
57    http://citeseer.ist.psu.edu/pearce04efficient.html
58 
59    Also see "Ultra-fast Aliasing Analysis using CLA: A Million Lines
60    of C Code in a Second" by ""Nevin Heintze and Olivier Tardieu" at
61    http://citeseer.ist.psu.edu/heintze01ultrafast.html
62 
63    There are three types of real constraint expressions, DEREF,
64    ADDRESSOF, and SCALAR.  Each constraint expression consists
65    of a constraint type, a variable, and an offset.
66 
67    SCALAR is a constraint expression type used to represent x, whether
68    it appears on the LHS or the RHS of a statement.
69    DEREF is a constraint expression type used to represent *x, whether
70    it appears on the LHS or the RHS of a statement.
71    ADDRESSOF is a constraint expression used to represent &x, whether
72    it appears on the LHS or the RHS of a statement.
73 
74    Each pointer variable in the program is assigned an integer id, and
75    each field of a structure variable is assigned an integer id as well.
76 
77    Structure variables are linked to their list of fields through a "next
78    field" in each variable that points to the next field in offset
79    order.
80    Each variable for a structure field has
81 
82    1. "size", that tells the size in bits of that field.
83    2. "fullsize, that tells the size in bits of the entire structure.
84    3. "offset", that tells the offset in bits from the beginning of the
85    structure to this field.
86 
87    Thus,
88    struct f
89    {
90      int a;
91      int b;
92    } foo;
93    int *bar;
94 
95    looks like
96 
97    foo.a -> id 1, size 32, offset 0, fullsize 64, next foo.b
98    foo.b -> id 2, size 32, offset 32, fullsize 64, next NULL
99    bar -> id 3, size 32, offset 0, fullsize 32, next NULL
100 
101 
102   In order to solve the system of set constraints, the following is
103   done:
104 
105   1. Each constraint variable x has a solution set associated with it,
106   Sol(x).
107 
108   2. Constraints are separated into direct, copy, and complex.
109   Direct constraints are ADDRESSOF constraints that require no extra
110   processing, such as P = &Q
111   Copy constraints are those of the form P = Q.
112   Complex constraints are all the constraints involving dereferences
113   and offsets (including offsetted copies).
114 
115   3. All direct constraints of the form P = &Q are processed, such
116   that Q is added to Sol(P)
117 
118   4. All complex constraints for a given constraint variable are stored in a
119   linked list attached to that variable's node.
120 
121   5. A directed graph is built out of the copy constraints. Each
122   constraint variable is a node in the graph, and an edge from
123   Q to P is added for each copy constraint of the form P = Q
124 
125   6. The graph is then walked, and solution sets are
126   propagated along the copy edges, such that an edge from Q to P
127   causes Sol(P) <- Sol(P) union Sol(Q).
128 
129   7.  As we visit each node, all complex constraints associated with
130   that node are processed by adding appropriate copy edges to the graph, or the
131   appropriate variables to the solution set.
132 
133   8. The process of walking the graph is iterated until no solution
134   sets change.
135 
136   Prior to walking the graph in steps 6 and 7, We perform static
137   cycle elimination on the constraint graph, as well
138   as off-line variable substitution.
139 
140   TODO: Adding offsets to pointer-to-structures can be handled (IE not punted
141   on and turned into anything), but isn't.  You can just see what offset
142   inside the pointed-to struct it's going to access.
143 
144   TODO: Constant bounded arrays can be handled as if they were structs of the
145   same number of elements.
146 
147   TODO: Modeling heap and incoming pointers becomes much better if we
148   add fields to them as we discover them, which we could do.
149 
150   TODO: We could handle unions, but to be honest, it's probably not
151   worth the pain or slowdown.  */
152 
153 /* IPA-PTA optimizations possible.
154 
155    When the indirect function called is ANYTHING we can add disambiguation
156    based on the function signatures (or simply the parameter count which
157    is the varinfo size).  We also do not need to consider functions that
158    do not have their address taken.
159 
160    The is_global_var bit which marks escape points is overly conservative
161    in IPA mode.  Split it to is_escape_point and is_global_var - only
162    externally visible globals are escape points in IPA mode.
163    There is now is_ipa_escape_point but this is only used in a few
164    selected places.
165 
166    The way we introduce DECL_PT_UID to avoid fixing up all points-to
167    sets in the translation unit when we copy a DECL during inlining
168    pessimizes precision.  The advantage is that the DECL_PT_UID keeps
169    compile-time and memory usage overhead low - the points-to sets
170    do not grow or get unshared as they would during a fixup phase.
171    An alternative solution is to delay IPA PTA until after all
172    inlining transformations have been applied.
173 
174    The way we propagate clobber/use information isn't optimized.
175    It should use a new complex constraint that properly filters
176    out local variables of the callee (though that would make
177    the sets invalid after inlining).  OTOH we might as well
178    admit defeat to WHOPR and simply do all the clobber/use analysis
179    and propagation after PTA finished but before we threw away
180    points-to information for memory variables.  WHOPR and PTA
181    do not play along well anyway - the whole constraint solving
182    would need to be done in WPA phase and it will be very interesting
183    to apply the results to local SSA names during LTRANS phase.
184 
185    We probably should compute a per-function unit-ESCAPE solution
186    propagating it simply like the clobber / uses solutions.  The
187    solution can go alongside the non-IPA espaced solution and be
188    used to query which vars escape the unit through a function.
189    This is also required to make the escaped-HEAP trick work in IPA mode.
190 
191    We never put function decls in points-to sets so we do not
192    keep the set of called functions for indirect calls.
193 
194    And probably more.  */
195 
196 static bool use_field_sensitive = true;
197 static int in_ipa_mode = 0;
198 
199 /* Used for predecessor bitmaps. */
200 static bitmap_obstack predbitmap_obstack;
201 
202 /* Used for points-to sets.  */
203 static bitmap_obstack pta_obstack;
204 
205 /* Used for oldsolution members of variables. */
206 static bitmap_obstack oldpta_obstack;
207 
208 /* Used for per-solver-iteration bitmaps.  */
209 static bitmap_obstack iteration_obstack;
210 
211 static unsigned int create_variable_info_for (tree, const char *, bool);
212 typedef struct constraint_graph *constraint_graph_t;
213 static void unify_nodes (constraint_graph_t, unsigned int, unsigned int, bool);
214 
215 struct constraint;
216 typedef struct constraint *constraint_t;
217 
218 
219 #define EXECUTE_IF_IN_NONNULL_BITMAP(a, b, c, d)	\
220   if (a)						\
221     EXECUTE_IF_SET_IN_BITMAP (a, b, c, d)
222 
223 static struct constraint_stats
224 {
225   unsigned int total_vars;
226   unsigned int nonpointer_vars;
227   unsigned int unified_vars_static;
228   unsigned int unified_vars_dynamic;
229   unsigned int iterations;
230   unsigned int num_edges;
231   unsigned int num_implicit_edges;
232   unsigned int points_to_sets_created;
233 } stats;
234 
235 struct variable_info
236 {
237   /* ID of this variable  */
238   unsigned int id;
239 
240   /* True if this is a variable created by the constraint analysis, such as
241      heap variables and constraints we had to break up.  */
242   unsigned int is_artificial_var : 1;
243 
244   /* True if this is a special variable whose solution set should not be
245      changed.  */
246   unsigned int is_special_var : 1;
247 
248   /* True for variables whose size is not known or variable.  */
249   unsigned int is_unknown_size_var : 1;
250 
251   /* True for (sub-)fields that represent a whole variable.  */
252   unsigned int is_full_var : 1;
253 
254   /* True if this is a heap variable.  */
255   unsigned int is_heap_var : 1;
256 
257   /* True if this field may contain pointers.  */
258   unsigned int may_have_pointers : 1;
259 
260   /* True if this field has only restrict qualified pointers.  */
261   unsigned int only_restrict_pointers : 1;
262 
263   /* True if this represents a heap var created for a restrict qualified
264      pointer.  */
265   unsigned int is_restrict_var : 1;
266 
267   /* True if this represents a global variable.  */
268   unsigned int is_global_var : 1;
269 
270   /* True if this represents a module escape point for IPA analysis.  */
271   unsigned int is_ipa_escape_point : 1;
272 
273   /* True if this represents a IPA function info.  */
274   unsigned int is_fn_info : 1;
275 
276   /* ???  Store somewhere better.  */
277   unsigned short ruid;
278 
279   /* The ID of the variable for the next field in this structure
280      or zero for the last field in this structure.  */
281   unsigned next;
282 
283   /* The ID of the variable for the first field in this structure.  */
284   unsigned head;
285 
286   /* Offset of this variable, in bits, from the base variable  */
287   unsigned HOST_WIDE_INT offset;
288 
289   /* Size of the variable, in bits.  */
290   unsigned HOST_WIDE_INT size;
291 
292   /* Full size of the base variable, in bits.  */
293   unsigned HOST_WIDE_INT fullsize;
294 
295   /* Name of this variable */
296   const char *name;
297 
298   /* Tree that this variable is associated with.  */
299   tree decl;
300 
301   /* Points-to set for this variable.  */
302   bitmap solution;
303 
304   /* Old points-to set for this variable.  */
305   bitmap oldsolution;
306 };
307 typedef struct variable_info *varinfo_t;
308 
309 static varinfo_t first_vi_for_offset (varinfo_t, unsigned HOST_WIDE_INT);
310 static varinfo_t first_or_preceding_vi_for_offset (varinfo_t,
311 						   unsigned HOST_WIDE_INT);
312 static varinfo_t lookup_vi_for_tree (tree);
313 static inline bool type_can_have_subvars (const_tree);
314 static void make_param_constraints (varinfo_t);
315 
316 /* Pool of variable info structures.  */
317 static object_allocator<variable_info> variable_info_pool
318   ("Variable info pool");
319 
320 /* Map varinfo to final pt_solution.  */
321 static hash_map<varinfo_t, pt_solution *> *final_solutions;
322 struct obstack final_solutions_obstack;
323 
324 /* Table of variable info structures for constraint variables.
325    Indexed directly by variable info id.  */
326 static vec<varinfo_t> varmap;
327 
328 /* Return the varmap element N */
329 
330 static inline varinfo_t
get_varinfo(unsigned int n)331 get_varinfo (unsigned int n)
332 {
333   return varmap[n];
334 }
335 
336 /* Return the next variable in the list of sub-variables of VI
337    or NULL if VI is the last sub-variable.  */
338 
339 static inline varinfo_t
vi_next(varinfo_t vi)340 vi_next (varinfo_t vi)
341 {
342   return get_varinfo (vi->next);
343 }
344 
345 /* Static IDs for the special variables.  Variable ID zero is unused
346    and used as terminator for the sub-variable chain.  */
347 enum { nothing_id = 1, anything_id = 2, string_id = 3,
348        escaped_id = 4, nonlocal_id = 5,
349        storedanything_id = 6, integer_id = 7 };
350 
351 /* Return a new variable info structure consisting for a variable
352    named NAME, and using constraint graph node NODE.  Append it
353    to the vector of variable info structures.  */
354 
355 static varinfo_t
new_var_info(tree t,const char * name,bool add_id)356 new_var_info (tree t, const char *name, bool add_id)
357 {
358   unsigned index = varmap.length ();
359   varinfo_t ret = variable_info_pool.allocate ();
360 
361   if (dump_file && add_id)
362     {
363       char *tempname = xasprintf ("%s(%d)", name, index);
364       name = ggc_strdup (tempname);
365       free (tempname);
366     }
367 
368   ret->id = index;
369   ret->name = name;
370   ret->decl = t;
371   /* Vars without decl are artificial and do not have sub-variables.  */
372   ret->is_artificial_var = (t == NULL_TREE);
373   ret->is_special_var = false;
374   ret->is_unknown_size_var = false;
375   ret->is_full_var = (t == NULL_TREE);
376   ret->is_heap_var = false;
377   ret->may_have_pointers = true;
378   ret->only_restrict_pointers = false;
379   ret->is_restrict_var = false;
380   ret->ruid = 0;
381   ret->is_global_var = (t == NULL_TREE);
382   ret->is_ipa_escape_point = false;
383   ret->is_fn_info = false;
384   if (t && DECL_P (t))
385     ret->is_global_var = (is_global_var (t)
386 			  /* We have to treat even local register variables
387 			     as escape points.  */
388 			  || (TREE_CODE (t) == VAR_DECL
389 			      && DECL_HARD_REGISTER (t)));
390   ret->solution = BITMAP_ALLOC (&pta_obstack);
391   ret->oldsolution = NULL;
392   ret->next = 0;
393   ret->head = ret->id;
394 
395   stats.total_vars++;
396 
397   varmap.safe_push (ret);
398 
399   return ret;
400 }
401 
402 /* A map mapping call statements to per-stmt variables for uses
403    and clobbers specific to the call.  */
404 static hash_map<gimple *, varinfo_t> *call_stmt_vars;
405 
406 /* Lookup or create the variable for the call statement CALL.  */
407 
408 static varinfo_t
get_call_vi(gcall * call)409 get_call_vi (gcall *call)
410 {
411   varinfo_t vi, vi2;
412 
413   bool existed;
414   varinfo_t *slot_p = &call_stmt_vars->get_or_insert (call, &existed);
415   if (existed)
416     return *slot_p;
417 
418   vi = new_var_info (NULL_TREE, "CALLUSED", true);
419   vi->offset = 0;
420   vi->size = 1;
421   vi->fullsize = 2;
422   vi->is_full_var = true;
423 
424   vi2 = new_var_info (NULL_TREE, "CALLCLOBBERED", true);
425   vi2->offset = 1;
426   vi2->size = 1;
427   vi2->fullsize = 2;
428   vi2->is_full_var = true;
429 
430   vi->next = vi2->id;
431 
432   *slot_p = vi;
433   return vi;
434 }
435 
436 /* Lookup the variable for the call statement CALL representing
437    the uses.  Returns NULL if there is nothing special about this call.  */
438 
439 static varinfo_t
lookup_call_use_vi(gcall * call)440 lookup_call_use_vi (gcall *call)
441 {
442   varinfo_t *slot_p = call_stmt_vars->get (call);
443   if (slot_p)
444     return *slot_p;
445 
446   return NULL;
447 }
448 
449 /* Lookup the variable for the call statement CALL representing
450    the clobbers.  Returns NULL if there is nothing special about this call.  */
451 
452 static varinfo_t
lookup_call_clobber_vi(gcall * call)453 lookup_call_clobber_vi (gcall *call)
454 {
455   varinfo_t uses = lookup_call_use_vi (call);
456   if (!uses)
457     return NULL;
458 
459   return vi_next (uses);
460 }
461 
462 /* Lookup or create the variable for the call statement CALL representing
463    the uses.  */
464 
465 static varinfo_t
get_call_use_vi(gcall * call)466 get_call_use_vi (gcall *call)
467 {
468   return get_call_vi (call);
469 }
470 
471 /* Lookup or create the variable for the call statement CALL representing
472    the clobbers.  */
473 
474 static varinfo_t ATTRIBUTE_UNUSED
get_call_clobber_vi(gcall * call)475 get_call_clobber_vi (gcall *call)
476 {
477   return vi_next (get_call_vi (call));
478 }
479 
480 
481 enum constraint_expr_type {SCALAR, DEREF, ADDRESSOF};
482 
483 /* An expression that appears in a constraint.  */
484 
485 struct constraint_expr
486 {
487   /* Constraint type.  */
488   constraint_expr_type type;
489 
490   /* Variable we are referring to in the constraint.  */
491   unsigned int var;
492 
493   /* Offset, in bits, of this constraint from the beginning of
494      variables it ends up referring to.
495 
496      IOW, in a deref constraint, we would deref, get the result set,
497      then add OFFSET to each member.   */
498   HOST_WIDE_INT offset;
499 };
500 
501 /* Use 0x8000... as special unknown offset.  */
502 #define UNKNOWN_OFFSET HOST_WIDE_INT_MIN
503 
504 typedef struct constraint_expr ce_s;
505 static void get_constraint_for_1 (tree, vec<ce_s> *, bool, bool);
506 static void get_constraint_for (tree, vec<ce_s> *);
507 static void get_constraint_for_rhs (tree, vec<ce_s> *);
508 static void do_deref (vec<ce_s> *);
509 
510 /* Our set constraints are made up of two constraint expressions, one
511    LHS, and one RHS.
512 
513    As described in the introduction, our set constraints each represent an
514    operation between set valued variables.
515 */
516 struct constraint
517 {
518   struct constraint_expr lhs;
519   struct constraint_expr rhs;
520 };
521 
522 /* List of constraints that we use to build the constraint graph from.  */
523 
524 static vec<constraint_t> constraints;
525 static object_allocator<constraint> constraint_pool ("Constraint pool");
526 
527 /* The constraint graph is represented as an array of bitmaps
528    containing successor nodes.  */
529 
530 struct constraint_graph
531 {
532   /* Size of this graph, which may be different than the number of
533      nodes in the variable map.  */
534   unsigned int size;
535 
536   /* Explicit successors of each node. */
537   bitmap *succs;
538 
539   /* Implicit predecessors of each node (Used for variable
540      substitution). */
541   bitmap *implicit_preds;
542 
543   /* Explicit predecessors of each node (Used for variable substitution).  */
544   bitmap *preds;
545 
546   /* Indirect cycle representatives, or -1 if the node has no indirect
547      cycles.  */
548   int *indirect_cycles;
549 
550   /* Representative node for a node.  rep[a] == a unless the node has
551      been unified. */
552   unsigned int *rep;
553 
554   /* Equivalence class representative for a label.  This is used for
555      variable substitution.  */
556   int *eq_rep;
557 
558   /* Pointer equivalence label for a node.  All nodes with the same
559      pointer equivalence label can be unified together at some point
560      (either during constraint optimization or after the constraint
561      graph is built).  */
562   unsigned int *pe;
563 
564   /* Pointer equivalence representative for a label.  This is used to
565      handle nodes that are pointer equivalent but not location
566      equivalent.  We can unite these once the addressof constraints
567      are transformed into initial points-to sets.  */
568   int *pe_rep;
569 
570   /* Pointer equivalence label for each node, used during variable
571      substitution.  */
572   unsigned int *pointer_label;
573 
574   /* Location equivalence label for each node, used during location
575      equivalence finding.  */
576   unsigned int *loc_label;
577 
578   /* Pointed-by set for each node, used during location equivalence
579      finding.  This is pointed-by rather than pointed-to, because it
580      is constructed using the predecessor graph.  */
581   bitmap *pointed_by;
582 
583   /* Points to sets for pointer equivalence.  This is *not* the actual
584      points-to sets for nodes.  */
585   bitmap *points_to;
586 
587   /* Bitmap of nodes where the bit is set if the node is a direct
588      node.  Used for variable substitution.  */
589   sbitmap direct_nodes;
590 
591   /* Bitmap of nodes where the bit is set if the node is address
592      taken.  Used for variable substitution.  */
593   bitmap address_taken;
594 
595   /* Vector of complex constraints for each graph node.  Complex
596      constraints are those involving dereferences or offsets that are
597      not 0.  */
598   vec<constraint_t> *complex;
599 };
600 
601 static constraint_graph_t graph;
602 
603 /* During variable substitution and the offline version of indirect
604    cycle finding, we create nodes to represent dereferences and
605    address taken constraints.  These represent where these start and
606    end.  */
607 #define FIRST_REF_NODE (varmap).length ()
608 #define LAST_REF_NODE (FIRST_REF_NODE + (FIRST_REF_NODE - 1))
609 
610 /* Return the representative node for NODE, if NODE has been unioned
611    with another NODE.
612    This function performs path compression along the way to finding
613    the representative.  */
614 
615 static unsigned int
find(unsigned int node)616 find (unsigned int node)
617 {
618   gcc_checking_assert (node < graph->size);
619   if (graph->rep[node] != node)
620     return graph->rep[node] = find (graph->rep[node]);
621   return node;
622 }
623 
624 /* Union the TO and FROM nodes to the TO nodes.
625    Note that at some point in the future, we may want to do
626    union-by-rank, in which case we are going to have to return the
627    node we unified to.  */
628 
629 static bool
unite(unsigned int to,unsigned int from)630 unite (unsigned int to, unsigned int from)
631 {
632   gcc_checking_assert (to < graph->size && from < graph->size);
633   if (to != from && graph->rep[from] != to)
634     {
635       graph->rep[from] = to;
636       return true;
637     }
638   return false;
639 }
640 
641 /* Create a new constraint consisting of LHS and RHS expressions.  */
642 
643 static constraint_t
new_constraint(const struct constraint_expr lhs,const struct constraint_expr rhs)644 new_constraint (const struct constraint_expr lhs,
645 		const struct constraint_expr rhs)
646 {
647   constraint_t ret = constraint_pool.allocate ();
648   ret->lhs = lhs;
649   ret->rhs = rhs;
650   return ret;
651 }
652 
653 /* Print out constraint C to FILE.  */
654 
655 static void
dump_constraint(FILE * file,constraint_t c)656 dump_constraint (FILE *file, constraint_t c)
657 {
658   if (c->lhs.type == ADDRESSOF)
659     fprintf (file, "&");
660   else if (c->lhs.type == DEREF)
661     fprintf (file, "*");
662   fprintf (file, "%s", get_varinfo (c->lhs.var)->name);
663   if (c->lhs.offset == UNKNOWN_OFFSET)
664     fprintf (file, " + UNKNOWN");
665   else if (c->lhs.offset != 0)
666     fprintf (file, " + " HOST_WIDE_INT_PRINT_DEC, c->lhs.offset);
667   fprintf (file, " = ");
668   if (c->rhs.type == ADDRESSOF)
669     fprintf (file, "&");
670   else if (c->rhs.type == DEREF)
671     fprintf (file, "*");
672   fprintf (file, "%s", get_varinfo (c->rhs.var)->name);
673   if (c->rhs.offset == UNKNOWN_OFFSET)
674     fprintf (file, " + UNKNOWN");
675   else if (c->rhs.offset != 0)
676     fprintf (file, " + " HOST_WIDE_INT_PRINT_DEC, c->rhs.offset);
677 }
678 
679 
680 void debug_constraint (constraint_t);
681 void debug_constraints (void);
682 void debug_constraint_graph (void);
683 void debug_solution_for_var (unsigned int);
684 void debug_sa_points_to_info (void);
685 
686 /* Print out constraint C to stderr.  */
687 
688 DEBUG_FUNCTION void
debug_constraint(constraint_t c)689 debug_constraint (constraint_t c)
690 {
691   dump_constraint (stderr, c);
692   fprintf (stderr, "\n");
693 }
694 
695 /* Print out all constraints to FILE */
696 
697 static void
dump_constraints(FILE * file,int from)698 dump_constraints (FILE *file, int from)
699 {
700   int i;
701   constraint_t c;
702   for (i = from; constraints.iterate (i, &c); i++)
703     if (c)
704       {
705 	dump_constraint (file, c);
706 	fprintf (file, "\n");
707       }
708 }
709 
710 /* Print out all constraints to stderr.  */
711 
712 DEBUG_FUNCTION void
debug_constraints(void)713 debug_constraints (void)
714 {
715   dump_constraints (stderr, 0);
716 }
717 
718 /* Print the constraint graph in dot format.  */
719 
720 static void
dump_constraint_graph(FILE * file)721 dump_constraint_graph (FILE *file)
722 {
723   unsigned int i;
724 
725   /* Only print the graph if it has already been initialized:  */
726   if (!graph)
727     return;
728 
729   /* Prints the header of the dot file:  */
730   fprintf (file, "strict digraph {\n");
731   fprintf (file, "  node [\n    shape = box\n  ]\n");
732   fprintf (file, "  edge [\n    fontsize = \"12\"\n  ]\n");
733   fprintf (file, "\n  // List of nodes and complex constraints in "
734 	   "the constraint graph:\n");
735 
736   /* The next lines print the nodes in the graph together with the
737      complex constraints attached to them.  */
738   for (i = 1; i < graph->size; i++)
739     {
740       if (i == FIRST_REF_NODE)
741 	continue;
742       if (find (i) != i)
743 	continue;
744       if (i < FIRST_REF_NODE)
745 	fprintf (file, "\"%s\"", get_varinfo (i)->name);
746       else
747 	fprintf (file, "\"*%s\"", get_varinfo (i - FIRST_REF_NODE)->name);
748       if (graph->complex[i].exists ())
749 	{
750 	  unsigned j;
751 	  constraint_t c;
752 	  fprintf (file, " [label=\"\\N\\n");
753 	  for (j = 0; graph->complex[i].iterate (j, &c); ++j)
754 	    {
755 	      dump_constraint (file, c);
756 	      fprintf (file, "\\l");
757 	    }
758 	  fprintf (file, "\"]");
759 	}
760       fprintf (file, ";\n");
761     }
762 
763   /* Go over the edges.  */
764   fprintf (file, "\n  // Edges in the constraint graph:\n");
765   for (i = 1; i < graph->size; i++)
766     {
767       unsigned j;
768       bitmap_iterator bi;
769       if (find (i) != i)
770 	continue;
771       EXECUTE_IF_IN_NONNULL_BITMAP (graph->succs[i], 0, j, bi)
772 	{
773 	  unsigned to = find (j);
774 	  if (i == to)
775 	    continue;
776 	  if (i < FIRST_REF_NODE)
777 	    fprintf (file, "\"%s\"", get_varinfo (i)->name);
778 	  else
779 	    fprintf (file, "\"*%s\"", get_varinfo (i - FIRST_REF_NODE)->name);
780 	  fprintf (file, " -> ");
781 	  if (to < FIRST_REF_NODE)
782 	    fprintf (file, "\"%s\"", get_varinfo (to)->name);
783 	  else
784 	    fprintf (file, "\"*%s\"", get_varinfo (to - FIRST_REF_NODE)->name);
785 	  fprintf (file, ";\n");
786 	}
787     }
788 
789   /* Prints the tail of the dot file.  */
790   fprintf (file, "}\n");
791 }
792 
793 /* Print out the constraint graph to stderr.  */
794 
795 DEBUG_FUNCTION void
debug_constraint_graph(void)796 debug_constraint_graph (void)
797 {
798   dump_constraint_graph (stderr);
799 }
800 
801 /* SOLVER FUNCTIONS
802 
803    The solver is a simple worklist solver, that works on the following
804    algorithm:
805 
806    sbitmap changed_nodes = all zeroes;
807    changed_count = 0;
808    For each node that is not already collapsed:
809        changed_count++;
810        set bit in changed nodes
811 
812    while (changed_count > 0)
813    {
814      compute topological ordering for constraint graph
815 
816      find and collapse cycles in the constraint graph (updating
817      changed if necessary)
818 
819      for each node (n) in the graph in topological order:
820        changed_count--;
821 
822        Process each complex constraint associated with the node,
823        updating changed if necessary.
824 
825        For each outgoing edge from n, propagate the solution from n to
826        the destination of the edge, updating changed as necessary.
827 
828    }  */
829 
830 /* Return true if two constraint expressions A and B are equal.  */
831 
832 static bool
constraint_expr_equal(struct constraint_expr a,struct constraint_expr b)833 constraint_expr_equal (struct constraint_expr a, struct constraint_expr b)
834 {
835   return a.type == b.type && a.var == b.var && a.offset == b.offset;
836 }
837 
838 /* Return true if constraint expression A is less than constraint expression
839    B.  This is just arbitrary, but consistent, in order to give them an
840    ordering.  */
841 
842 static bool
constraint_expr_less(struct constraint_expr a,struct constraint_expr b)843 constraint_expr_less (struct constraint_expr a, struct constraint_expr b)
844 {
845   if (a.type == b.type)
846     {
847       if (a.var == b.var)
848 	return a.offset < b.offset;
849       else
850 	return a.var < b.var;
851     }
852   else
853     return a.type < b.type;
854 }
855 
856 /* Return true if constraint A is less than constraint B.  This is just
857    arbitrary, but consistent, in order to give them an ordering.  */
858 
859 static bool
constraint_less(const constraint_t & a,const constraint_t & b)860 constraint_less (const constraint_t &a, const constraint_t &b)
861 {
862   if (constraint_expr_less (a->lhs, b->lhs))
863     return true;
864   else if (constraint_expr_less (b->lhs, a->lhs))
865     return false;
866   else
867     return constraint_expr_less (a->rhs, b->rhs);
868 }
869 
870 /* Return true if two constraints A and B are equal.  */
871 
872 static bool
constraint_equal(struct constraint a,struct constraint b)873 constraint_equal (struct constraint a, struct constraint b)
874 {
875   return constraint_expr_equal (a.lhs, b.lhs)
876     && constraint_expr_equal (a.rhs, b.rhs);
877 }
878 
879 
880 /* Find a constraint LOOKFOR in the sorted constraint vector VEC */
881 
882 static constraint_t
constraint_vec_find(vec<constraint_t> vec,struct constraint lookfor)883 constraint_vec_find (vec<constraint_t> vec,
884 		     struct constraint lookfor)
885 {
886   unsigned int place;
887   constraint_t found;
888 
889   if (!vec.exists ())
890     return NULL;
891 
892   place = vec.lower_bound (&lookfor, constraint_less);
893   if (place >= vec.length ())
894     return NULL;
895   found = vec[place];
896   if (!constraint_equal (*found, lookfor))
897     return NULL;
898   return found;
899 }
900 
901 /* Union two constraint vectors, TO and FROM.  Put the result in TO.
902    Returns true of TO set is changed.  */
903 
904 static bool
constraint_set_union(vec<constraint_t> * to,vec<constraint_t> * from)905 constraint_set_union (vec<constraint_t> *to,
906 		      vec<constraint_t> *from)
907 {
908   int i;
909   constraint_t c;
910   bool any_change = false;
911 
912   FOR_EACH_VEC_ELT (*from, i, c)
913     {
914       if (constraint_vec_find (*to, *c) == NULL)
915 	{
916 	  unsigned int place = to->lower_bound (c, constraint_less);
917 	  to->safe_insert (place, c);
918           any_change = true;
919 	}
920     }
921   return any_change;
922 }
923 
924 /* Expands the solution in SET to all sub-fields of variables included.  */
925 
926 static bitmap
solution_set_expand(bitmap set,bitmap * expanded)927 solution_set_expand (bitmap set, bitmap *expanded)
928 {
929   bitmap_iterator bi;
930   unsigned j;
931 
932   if (*expanded)
933     return *expanded;
934 
935   *expanded = BITMAP_ALLOC (&iteration_obstack);
936 
937   /* In a first pass expand to the head of the variables we need to
938      add all sub-fields off.  This avoids quadratic behavior.  */
939   EXECUTE_IF_SET_IN_BITMAP (set, 0, j, bi)
940     {
941       varinfo_t v = get_varinfo (j);
942       if (v->is_artificial_var
943 	  || v->is_full_var)
944 	continue;
945       bitmap_set_bit (*expanded, v->head);
946     }
947 
948   /* In the second pass now expand all head variables with subfields.  */
949   EXECUTE_IF_SET_IN_BITMAP (*expanded, 0, j, bi)
950     {
951       varinfo_t v = get_varinfo (j);
952       if (v->head != j)
953 	continue;
954       for (v = vi_next (v); v != NULL; v = vi_next (v))
955 	bitmap_set_bit (*expanded, v->id);
956     }
957 
958   /* And finally set the rest of the bits from SET.  */
959   bitmap_ior_into (*expanded, set);
960 
961   return *expanded;
962 }
963 
964 /* Union solution sets TO and DELTA, and add INC to each member of DELTA in the
965    process.  */
966 
967 static bool
set_union_with_increment(bitmap to,bitmap delta,HOST_WIDE_INT inc,bitmap * expanded_delta)968 set_union_with_increment  (bitmap to, bitmap delta, HOST_WIDE_INT inc,
969 			   bitmap *expanded_delta)
970 {
971   bool changed = false;
972   bitmap_iterator bi;
973   unsigned int i;
974 
975   /* If the solution of DELTA contains anything it is good enough to transfer
976      this to TO.  */
977   if (bitmap_bit_p (delta, anything_id))
978     return bitmap_set_bit (to, anything_id);
979 
980   /* If the offset is unknown we have to expand the solution to
981      all subfields.  */
982   if (inc == UNKNOWN_OFFSET)
983     {
984       delta = solution_set_expand (delta, expanded_delta);
985       changed |= bitmap_ior_into (to, delta);
986       return changed;
987     }
988 
989   /* For non-zero offset union the offsetted solution into the destination.  */
990   EXECUTE_IF_SET_IN_BITMAP (delta, 0, i, bi)
991     {
992       varinfo_t vi = get_varinfo (i);
993 
994       /* If this is a variable with just one field just set its bit
995          in the result.  */
996       if (vi->is_artificial_var
997 	  || vi->is_unknown_size_var
998 	  || vi->is_full_var)
999 	changed |= bitmap_set_bit (to, i);
1000       else
1001 	{
1002 	  HOST_WIDE_INT fieldoffset = vi->offset + inc;
1003 	  unsigned HOST_WIDE_INT size = vi->size;
1004 
1005 	  /* If the offset makes the pointer point to before the
1006 	     variable use offset zero for the field lookup.  */
1007 	  if (fieldoffset < 0)
1008 	    vi = get_varinfo (vi->head);
1009 	  else
1010 	    vi = first_or_preceding_vi_for_offset (vi, fieldoffset);
1011 
1012 	  do
1013 	    {
1014 	      changed |= bitmap_set_bit (to, vi->id);
1015 	      if (vi->is_full_var
1016 		  || vi->next == 0)
1017 		break;
1018 
1019 	      /* We have to include all fields that overlap the current field
1020 	         shifted by inc.  */
1021 	      vi = vi_next (vi);
1022 	    }
1023 	  while (vi->offset < fieldoffset + size);
1024 	}
1025     }
1026 
1027   return changed;
1028 }
1029 
1030 /* Insert constraint C into the list of complex constraints for graph
1031    node VAR.  */
1032 
1033 static void
insert_into_complex(constraint_graph_t graph,unsigned int var,constraint_t c)1034 insert_into_complex (constraint_graph_t graph,
1035 		     unsigned int var, constraint_t c)
1036 {
1037   vec<constraint_t> complex = graph->complex[var];
1038   unsigned int place = complex.lower_bound (c, constraint_less);
1039 
1040   /* Only insert constraints that do not already exist.  */
1041   if (place >= complex.length ()
1042       || !constraint_equal (*c, *complex[place]))
1043     graph->complex[var].safe_insert (place, c);
1044 }
1045 
1046 
1047 /* Condense two variable nodes into a single variable node, by moving
1048    all associated info from FROM to TO. Returns true if TO node's
1049    constraint set changes after the merge.  */
1050 
1051 static bool
merge_node_constraints(constraint_graph_t graph,unsigned int to,unsigned int from)1052 merge_node_constraints (constraint_graph_t graph, unsigned int to,
1053 			unsigned int from)
1054 {
1055   unsigned int i;
1056   constraint_t c;
1057   bool any_change = false;
1058 
1059   gcc_checking_assert (find (from) == to);
1060 
1061   /* Move all complex constraints from src node into to node  */
1062   FOR_EACH_VEC_ELT (graph->complex[from], i, c)
1063     {
1064       /* In complex constraints for node FROM, we may have either
1065 	 a = *FROM, and *FROM = a, or an offseted constraint which are
1066 	 always added to the rhs node's constraints.  */
1067 
1068       if (c->rhs.type == DEREF)
1069 	c->rhs.var = to;
1070       else if (c->lhs.type == DEREF)
1071 	c->lhs.var = to;
1072       else
1073 	c->rhs.var = to;
1074 
1075     }
1076   any_change = constraint_set_union (&graph->complex[to],
1077 				     &graph->complex[from]);
1078   graph->complex[from].release ();
1079   return any_change;
1080 }
1081 
1082 
1083 /* Remove edges involving NODE from GRAPH.  */
1084 
1085 static void
clear_edges_for_node(constraint_graph_t graph,unsigned int node)1086 clear_edges_for_node (constraint_graph_t graph, unsigned int node)
1087 {
1088   if (graph->succs[node])
1089     BITMAP_FREE (graph->succs[node]);
1090 }
1091 
1092 /* Merge GRAPH nodes FROM and TO into node TO.  */
1093 
1094 static void
merge_graph_nodes(constraint_graph_t graph,unsigned int to,unsigned int from)1095 merge_graph_nodes (constraint_graph_t graph, unsigned int to,
1096 		   unsigned int from)
1097 {
1098   if (graph->indirect_cycles[from] != -1)
1099     {
1100       /* If we have indirect cycles with the from node, and we have
1101 	 none on the to node, the to node has indirect cycles from the
1102 	 from node now that they are unified.
1103 	 If indirect cycles exist on both, unify the nodes that they
1104 	 are in a cycle with, since we know they are in a cycle with
1105 	 each other.  */
1106       if (graph->indirect_cycles[to] == -1)
1107 	graph->indirect_cycles[to] = graph->indirect_cycles[from];
1108     }
1109 
1110   /* Merge all the successor edges.  */
1111   if (graph->succs[from])
1112     {
1113       if (!graph->succs[to])
1114 	graph->succs[to] = BITMAP_ALLOC (&pta_obstack);
1115       bitmap_ior_into (graph->succs[to],
1116 		       graph->succs[from]);
1117     }
1118 
1119   clear_edges_for_node (graph, from);
1120 }
1121 
1122 
1123 /* Add an indirect graph edge to GRAPH, going from TO to FROM if
1124    it doesn't exist in the graph already.  */
1125 
1126 static void
add_implicit_graph_edge(constraint_graph_t graph,unsigned int to,unsigned int from)1127 add_implicit_graph_edge (constraint_graph_t graph, unsigned int to,
1128 			 unsigned int from)
1129 {
1130   if (to == from)
1131     return;
1132 
1133   if (!graph->implicit_preds[to])
1134     graph->implicit_preds[to] = BITMAP_ALLOC (&predbitmap_obstack);
1135 
1136   if (bitmap_set_bit (graph->implicit_preds[to], from))
1137     stats.num_implicit_edges++;
1138 }
1139 
1140 /* Add a predecessor graph edge to GRAPH, going from TO to FROM if
1141    it doesn't exist in the graph already.
1142    Return false if the edge already existed, true otherwise.  */
1143 
1144 static void
add_pred_graph_edge(constraint_graph_t graph,unsigned int to,unsigned int from)1145 add_pred_graph_edge (constraint_graph_t graph, unsigned int to,
1146 		     unsigned int from)
1147 {
1148   if (!graph->preds[to])
1149     graph->preds[to] = BITMAP_ALLOC (&predbitmap_obstack);
1150   bitmap_set_bit (graph->preds[to], from);
1151 }
1152 
1153 /* Add a graph edge to GRAPH, going from FROM to TO if
1154    it doesn't exist in the graph already.
1155    Return false if the edge already existed, true otherwise.  */
1156 
1157 static bool
add_graph_edge(constraint_graph_t graph,unsigned int to,unsigned int from)1158 add_graph_edge (constraint_graph_t graph, unsigned int to,
1159 		unsigned int from)
1160 {
1161   if (to == from)
1162     {
1163       return false;
1164     }
1165   else
1166     {
1167       bool r = false;
1168 
1169       if (!graph->succs[from])
1170 	graph->succs[from] = BITMAP_ALLOC (&pta_obstack);
1171       if (bitmap_set_bit (graph->succs[from], to))
1172 	{
1173 	  r = true;
1174 	  if (to < FIRST_REF_NODE && from < FIRST_REF_NODE)
1175 	    stats.num_edges++;
1176 	}
1177       return r;
1178     }
1179 }
1180 
1181 
1182 /* Initialize the constraint graph structure to contain SIZE nodes.  */
1183 
1184 static void
init_graph(unsigned int size)1185 init_graph (unsigned int size)
1186 {
1187   unsigned int j;
1188 
1189   graph = XCNEW (struct constraint_graph);
1190   graph->size = size;
1191   graph->succs = XCNEWVEC (bitmap, graph->size);
1192   graph->indirect_cycles = XNEWVEC (int, graph->size);
1193   graph->rep = XNEWVEC (unsigned int, graph->size);
1194   /* ??? Macros do not support template types with multiple arguments,
1195      so we use a typedef to work around it.  */
1196   typedef vec<constraint_t> vec_constraint_t_heap;
1197   graph->complex = XCNEWVEC (vec_constraint_t_heap, size);
1198   graph->pe = XCNEWVEC (unsigned int, graph->size);
1199   graph->pe_rep = XNEWVEC (int, graph->size);
1200 
1201   for (j = 0; j < graph->size; j++)
1202     {
1203       graph->rep[j] = j;
1204       graph->pe_rep[j] = -1;
1205       graph->indirect_cycles[j] = -1;
1206     }
1207 }
1208 
1209 /* Build the constraint graph, adding only predecessor edges right now.  */
1210 
1211 static void
build_pred_graph(void)1212 build_pred_graph (void)
1213 {
1214   int i;
1215   constraint_t c;
1216   unsigned int j;
1217 
1218   graph->implicit_preds = XCNEWVEC (bitmap, graph->size);
1219   graph->preds = XCNEWVEC (bitmap, graph->size);
1220   graph->pointer_label = XCNEWVEC (unsigned int, graph->size);
1221   graph->loc_label = XCNEWVEC (unsigned int, graph->size);
1222   graph->pointed_by = XCNEWVEC (bitmap, graph->size);
1223   graph->points_to = XCNEWVEC (bitmap, graph->size);
1224   graph->eq_rep = XNEWVEC (int, graph->size);
1225   graph->direct_nodes = sbitmap_alloc (graph->size);
1226   graph->address_taken = BITMAP_ALLOC (&predbitmap_obstack);
1227   bitmap_clear (graph->direct_nodes);
1228 
1229   for (j = 1; j < FIRST_REF_NODE; j++)
1230     {
1231       if (!get_varinfo (j)->is_special_var)
1232 	bitmap_set_bit (graph->direct_nodes, j);
1233     }
1234 
1235   for (j = 0; j < graph->size; j++)
1236     graph->eq_rep[j] = -1;
1237 
1238   for (j = 0; j < varmap.length (); j++)
1239     graph->indirect_cycles[j] = -1;
1240 
1241   FOR_EACH_VEC_ELT (constraints, i, c)
1242     {
1243       struct constraint_expr lhs = c->lhs;
1244       struct constraint_expr rhs = c->rhs;
1245       unsigned int lhsvar = lhs.var;
1246       unsigned int rhsvar = rhs.var;
1247 
1248       if (lhs.type == DEREF)
1249 	{
1250 	  /* *x = y.  */
1251 	  if (rhs.offset == 0 && lhs.offset == 0 && rhs.type == SCALAR)
1252 	    add_pred_graph_edge (graph, FIRST_REF_NODE + lhsvar, rhsvar);
1253 	}
1254       else if (rhs.type == DEREF)
1255 	{
1256 	  /* x = *y */
1257 	  if (rhs.offset == 0 && lhs.offset == 0 && lhs.type == SCALAR)
1258 	    add_pred_graph_edge (graph, lhsvar, FIRST_REF_NODE + rhsvar);
1259 	  else
1260 	    bitmap_clear_bit (graph->direct_nodes, lhsvar);
1261 	}
1262       else if (rhs.type == ADDRESSOF)
1263 	{
1264 	  varinfo_t v;
1265 
1266 	  /* x = &y */
1267 	  if (graph->points_to[lhsvar] == NULL)
1268 	    graph->points_to[lhsvar] = BITMAP_ALLOC (&predbitmap_obstack);
1269 	  bitmap_set_bit (graph->points_to[lhsvar], rhsvar);
1270 
1271 	  if (graph->pointed_by[rhsvar] == NULL)
1272 	    graph->pointed_by[rhsvar] = BITMAP_ALLOC (&predbitmap_obstack);
1273 	  bitmap_set_bit (graph->pointed_by[rhsvar], lhsvar);
1274 
1275 	  /* Implicitly, *x = y */
1276 	  add_implicit_graph_edge (graph, FIRST_REF_NODE + lhsvar, rhsvar);
1277 
1278 	  /* All related variables are no longer direct nodes.  */
1279 	  bitmap_clear_bit (graph->direct_nodes, rhsvar);
1280           v = get_varinfo (rhsvar);
1281           if (!v->is_full_var)
1282             {
1283               v = get_varinfo (v->head);
1284               do
1285                 {
1286                   bitmap_clear_bit (graph->direct_nodes, v->id);
1287                   v = vi_next (v);
1288                 }
1289               while (v != NULL);
1290             }
1291 	  bitmap_set_bit (graph->address_taken, rhsvar);
1292 	}
1293       else if (lhsvar > anything_id
1294 	       && lhsvar != rhsvar && lhs.offset == 0 && rhs.offset == 0)
1295 	{
1296 	  /* x = y */
1297 	  add_pred_graph_edge (graph, lhsvar, rhsvar);
1298 	  /* Implicitly, *x = *y */
1299 	  add_implicit_graph_edge (graph, FIRST_REF_NODE + lhsvar,
1300 				   FIRST_REF_NODE + rhsvar);
1301 	}
1302       else if (lhs.offset != 0 || rhs.offset != 0)
1303 	{
1304 	  if (rhs.offset != 0)
1305 	    bitmap_clear_bit (graph->direct_nodes, lhs.var);
1306 	  else if (lhs.offset != 0)
1307 	    bitmap_clear_bit (graph->direct_nodes, rhs.var);
1308 	}
1309     }
1310 }
1311 
1312 /* Build the constraint graph, adding successor edges.  */
1313 
1314 static void
build_succ_graph(void)1315 build_succ_graph (void)
1316 {
1317   unsigned i, t;
1318   constraint_t c;
1319 
1320   FOR_EACH_VEC_ELT (constraints, i, c)
1321     {
1322       struct constraint_expr lhs;
1323       struct constraint_expr rhs;
1324       unsigned int lhsvar;
1325       unsigned int rhsvar;
1326 
1327       if (!c)
1328 	continue;
1329 
1330       lhs = c->lhs;
1331       rhs = c->rhs;
1332       lhsvar = find (lhs.var);
1333       rhsvar = find (rhs.var);
1334 
1335       if (lhs.type == DEREF)
1336 	{
1337 	  if (rhs.offset == 0 && lhs.offset == 0 && rhs.type == SCALAR)
1338 	    add_graph_edge (graph, FIRST_REF_NODE + lhsvar, rhsvar);
1339 	}
1340       else if (rhs.type == DEREF)
1341 	{
1342 	  if (rhs.offset == 0 && lhs.offset == 0 && lhs.type == SCALAR)
1343 	    add_graph_edge (graph, lhsvar, FIRST_REF_NODE + rhsvar);
1344 	}
1345       else if (rhs.type == ADDRESSOF)
1346 	{
1347 	  /* x = &y */
1348 	  gcc_checking_assert (find (rhs.var) == rhs.var);
1349 	  bitmap_set_bit (get_varinfo (lhsvar)->solution, rhsvar);
1350 	}
1351       else if (lhsvar > anything_id
1352 	       && lhsvar != rhsvar && lhs.offset == 0 && rhs.offset == 0)
1353 	{
1354 	  add_graph_edge (graph, lhsvar, rhsvar);
1355 	}
1356     }
1357 
1358   /* Add edges from STOREDANYTHING to all non-direct nodes that can
1359      receive pointers.  */
1360   t = find (storedanything_id);
1361   for (i = integer_id + 1; i < FIRST_REF_NODE; ++i)
1362     {
1363       if (!bitmap_bit_p (graph->direct_nodes, i)
1364 	  && get_varinfo (i)->may_have_pointers)
1365 	add_graph_edge (graph, find (i), t);
1366     }
1367 
1368   /* Everything stored to ANYTHING also potentially escapes.  */
1369   add_graph_edge (graph, find (escaped_id), t);
1370 }
1371 
1372 
1373 /* Changed variables on the last iteration.  */
1374 static bitmap changed;
1375 
1376 /* Strongly Connected Component visitation info.  */
1377 
1378 struct scc_info
1379 {
1380   sbitmap visited;
1381   sbitmap deleted;
1382   unsigned int *dfs;
1383   unsigned int *node_mapping;
1384   int current_index;
1385   vec<unsigned> scc_stack;
1386 };
1387 
1388 
1389 /* Recursive routine to find strongly connected components in GRAPH.
1390    SI is the SCC info to store the information in, and N is the id of current
1391    graph node we are processing.
1392 
1393    This is Tarjan's strongly connected component finding algorithm, as
1394    modified by Nuutila to keep only non-root nodes on the stack.
1395    The algorithm can be found in "On finding the strongly connected
1396    connected components in a directed graph" by Esko Nuutila and Eljas
1397    Soisalon-Soininen, in Information Processing Letters volume 49,
1398    number 1, pages 9-14.  */
1399 
1400 static void
scc_visit(constraint_graph_t graph,struct scc_info * si,unsigned int n)1401 scc_visit (constraint_graph_t graph, struct scc_info *si, unsigned int n)
1402 {
1403   unsigned int i;
1404   bitmap_iterator bi;
1405   unsigned int my_dfs;
1406 
1407   bitmap_set_bit (si->visited, n);
1408   si->dfs[n] = si->current_index ++;
1409   my_dfs = si->dfs[n];
1410 
1411   /* Visit all the successors.  */
1412   EXECUTE_IF_IN_NONNULL_BITMAP (graph->succs[n], 0, i, bi)
1413     {
1414       unsigned int w;
1415 
1416       if (i > LAST_REF_NODE)
1417 	break;
1418 
1419       w = find (i);
1420       if (bitmap_bit_p (si->deleted, w))
1421 	continue;
1422 
1423       if (!bitmap_bit_p (si->visited, w))
1424 	scc_visit (graph, si, w);
1425 
1426       unsigned int t = find (w);
1427       gcc_checking_assert (find (n) == n);
1428       if (si->dfs[t] < si->dfs[n])
1429 	si->dfs[n] = si->dfs[t];
1430     }
1431 
1432   /* See if any components have been identified.  */
1433   if (si->dfs[n] == my_dfs)
1434     {
1435       if (si->scc_stack.length () > 0
1436 	  && si->dfs[si->scc_stack.last ()] >= my_dfs)
1437 	{
1438 	  bitmap scc = BITMAP_ALLOC (NULL);
1439 	  unsigned int lowest_node;
1440 	  bitmap_iterator bi;
1441 
1442 	  bitmap_set_bit (scc, n);
1443 
1444 	  while (si->scc_stack.length () != 0
1445 		 && si->dfs[si->scc_stack.last ()] >= my_dfs)
1446 	    {
1447 	      unsigned int w = si->scc_stack.pop ();
1448 
1449 	      bitmap_set_bit (scc, w);
1450 	    }
1451 
1452 	  lowest_node = bitmap_first_set_bit (scc);
1453 	  gcc_assert (lowest_node < FIRST_REF_NODE);
1454 
1455 	  /* Collapse the SCC nodes into a single node, and mark the
1456 	     indirect cycles.  */
1457 	  EXECUTE_IF_SET_IN_BITMAP (scc, 0, i, bi)
1458 	    {
1459 	      if (i < FIRST_REF_NODE)
1460 		{
1461 		  if (unite (lowest_node, i))
1462 		    unify_nodes (graph, lowest_node, i, false);
1463 		}
1464 	      else
1465 		{
1466 		  unite (lowest_node, i);
1467 		  graph->indirect_cycles[i - FIRST_REF_NODE] = lowest_node;
1468 		}
1469 	    }
1470 	}
1471       bitmap_set_bit (si->deleted, n);
1472     }
1473   else
1474     si->scc_stack.safe_push (n);
1475 }
1476 
1477 /* Unify node FROM into node TO, updating the changed count if
1478    necessary when UPDATE_CHANGED is true.  */
1479 
1480 static void
unify_nodes(constraint_graph_t graph,unsigned int to,unsigned int from,bool update_changed)1481 unify_nodes (constraint_graph_t graph, unsigned int to, unsigned int from,
1482 	     bool update_changed)
1483 {
1484   gcc_checking_assert (to != from && find (to) == to);
1485 
1486   if (dump_file && (dump_flags & TDF_DETAILS))
1487     fprintf (dump_file, "Unifying %s to %s\n",
1488 	     get_varinfo (from)->name,
1489 	     get_varinfo (to)->name);
1490 
1491   if (update_changed)
1492     stats.unified_vars_dynamic++;
1493   else
1494     stats.unified_vars_static++;
1495 
1496   merge_graph_nodes (graph, to, from);
1497   if (merge_node_constraints (graph, to, from))
1498     {
1499       if (update_changed)
1500 	bitmap_set_bit (changed, to);
1501     }
1502 
1503   /* Mark TO as changed if FROM was changed. If TO was already marked
1504      as changed, decrease the changed count.  */
1505 
1506   if (update_changed
1507       && bitmap_clear_bit (changed, from))
1508     bitmap_set_bit (changed, to);
1509   varinfo_t fromvi = get_varinfo (from);
1510   if (fromvi->solution)
1511     {
1512       /* If the solution changes because of the merging, we need to mark
1513 	 the variable as changed.  */
1514       varinfo_t tovi = get_varinfo (to);
1515       if (bitmap_ior_into (tovi->solution, fromvi->solution))
1516 	{
1517 	  if (update_changed)
1518 	    bitmap_set_bit (changed, to);
1519 	}
1520 
1521       BITMAP_FREE (fromvi->solution);
1522       if (fromvi->oldsolution)
1523 	BITMAP_FREE (fromvi->oldsolution);
1524 
1525       if (stats.iterations > 0
1526 	  && tovi->oldsolution)
1527 	BITMAP_FREE (tovi->oldsolution);
1528     }
1529   if (graph->succs[to])
1530     bitmap_clear_bit (graph->succs[to], to);
1531 }
1532 
1533 /* Information needed to compute the topological ordering of a graph.  */
1534 
1535 struct topo_info
1536 {
1537   /* sbitmap of visited nodes.  */
1538   sbitmap visited;
1539   /* Array that stores the topological order of the graph, *in
1540      reverse*.  */
1541   vec<unsigned> topo_order;
1542 };
1543 
1544 
1545 /* Initialize and return a topological info structure.  */
1546 
1547 static struct topo_info *
init_topo_info(void)1548 init_topo_info (void)
1549 {
1550   size_t size = graph->size;
1551   struct topo_info *ti = XNEW (struct topo_info);
1552   ti->visited = sbitmap_alloc (size);
1553   bitmap_clear (ti->visited);
1554   ti->topo_order.create (1);
1555   return ti;
1556 }
1557 
1558 
1559 /* Free the topological sort info pointed to by TI.  */
1560 
1561 static void
free_topo_info(struct topo_info * ti)1562 free_topo_info (struct topo_info *ti)
1563 {
1564   sbitmap_free (ti->visited);
1565   ti->topo_order.release ();
1566   free (ti);
1567 }
1568 
1569 /* Visit the graph in topological order, and store the order in the
1570    topo_info structure.  */
1571 
1572 static void
topo_visit(constraint_graph_t graph,struct topo_info * ti,unsigned int n)1573 topo_visit (constraint_graph_t graph, struct topo_info *ti,
1574 	    unsigned int n)
1575 {
1576   bitmap_iterator bi;
1577   unsigned int j;
1578 
1579   bitmap_set_bit (ti->visited, n);
1580 
1581   if (graph->succs[n])
1582     EXECUTE_IF_SET_IN_BITMAP (graph->succs[n], 0, j, bi)
1583       {
1584 	if (!bitmap_bit_p (ti->visited, j))
1585 	  topo_visit (graph, ti, j);
1586       }
1587 
1588   ti->topo_order.safe_push (n);
1589 }
1590 
1591 /* Process a constraint C that represents x = *(y + off), using DELTA as the
1592    starting solution for y.  */
1593 
1594 static void
do_sd_constraint(constraint_graph_t graph,constraint_t c,bitmap delta,bitmap * expanded_delta)1595 do_sd_constraint (constraint_graph_t graph, constraint_t c,
1596 		  bitmap delta, bitmap *expanded_delta)
1597 {
1598   unsigned int lhs = c->lhs.var;
1599   bool flag = false;
1600   bitmap sol = get_varinfo (lhs)->solution;
1601   unsigned int j;
1602   bitmap_iterator bi;
1603   HOST_WIDE_INT roffset = c->rhs.offset;
1604 
1605   /* Our IL does not allow this.  */
1606   gcc_checking_assert (c->lhs.offset == 0);
1607 
1608   /* If the solution of Y contains anything it is good enough to transfer
1609      this to the LHS.  */
1610   if (bitmap_bit_p (delta, anything_id))
1611     {
1612       flag |= bitmap_set_bit (sol, anything_id);
1613       goto done;
1614     }
1615 
1616   /* If we do not know at with offset the rhs is dereferenced compute
1617      the reachability set of DELTA, conservatively assuming it is
1618      dereferenced at all valid offsets.  */
1619   if (roffset == UNKNOWN_OFFSET)
1620     {
1621       delta = solution_set_expand (delta, expanded_delta);
1622       /* No further offset processing is necessary.  */
1623       roffset = 0;
1624     }
1625 
1626   /* For each variable j in delta (Sol(y)), add
1627      an edge in the graph from j to x, and union Sol(j) into Sol(x).  */
1628   EXECUTE_IF_SET_IN_BITMAP (delta, 0, j, bi)
1629     {
1630       varinfo_t v = get_varinfo (j);
1631       HOST_WIDE_INT fieldoffset = v->offset + roffset;
1632       unsigned HOST_WIDE_INT size = v->size;
1633       unsigned int t;
1634 
1635       if (v->is_full_var)
1636 	;
1637       else if (roffset != 0)
1638 	{
1639 	  if (fieldoffset < 0)
1640 	    v = get_varinfo (v->head);
1641 	  else
1642 	    v = first_or_preceding_vi_for_offset (v, fieldoffset);
1643 	}
1644 
1645       /* We have to include all fields that overlap the current field
1646 	 shifted by roffset.  */
1647       do
1648 	{
1649 	  t = find (v->id);
1650 
1651 	  /* Adding edges from the special vars is pointless.
1652 	     They don't have sets that can change.  */
1653 	  if (get_varinfo (t)->is_special_var)
1654 	    flag |= bitmap_ior_into (sol, get_varinfo (t)->solution);
1655 	  /* Merging the solution from ESCAPED needlessly increases
1656 	     the set.  Use ESCAPED as representative instead.  */
1657 	  else if (v->id == escaped_id)
1658 	    flag |= bitmap_set_bit (sol, escaped_id);
1659 	  else if (v->may_have_pointers
1660 		   && add_graph_edge (graph, lhs, t))
1661 	    flag |= bitmap_ior_into (sol, get_varinfo (t)->solution);
1662 
1663 	  if (v->is_full_var
1664 	      || v->next == 0)
1665 	    break;
1666 
1667 	  v = vi_next (v);
1668 	}
1669       while (v->offset < fieldoffset + size);
1670     }
1671 
1672 done:
1673   /* If the LHS solution changed, mark the var as changed.  */
1674   if (flag)
1675     {
1676       get_varinfo (lhs)->solution = sol;
1677       bitmap_set_bit (changed, lhs);
1678     }
1679 }
1680 
1681 /* Process a constraint C that represents *(x + off) = y using DELTA
1682    as the starting solution for x.  */
1683 
1684 static void
do_ds_constraint(constraint_t c,bitmap delta,bitmap * expanded_delta)1685 do_ds_constraint (constraint_t c, bitmap delta, bitmap *expanded_delta)
1686 {
1687   unsigned int rhs = c->rhs.var;
1688   bitmap sol = get_varinfo (rhs)->solution;
1689   unsigned int j;
1690   bitmap_iterator bi;
1691   HOST_WIDE_INT loff = c->lhs.offset;
1692   bool escaped_p = false;
1693 
1694   /* Our IL does not allow this.  */
1695   gcc_checking_assert (c->rhs.offset == 0);
1696 
1697   /* If the solution of y contains ANYTHING simply use the ANYTHING
1698      solution.  This avoids needlessly increasing the points-to sets.  */
1699   if (bitmap_bit_p (sol, anything_id))
1700     sol = get_varinfo (find (anything_id))->solution;
1701 
1702   /* If the solution for x contains ANYTHING we have to merge the
1703      solution of y into all pointer variables which we do via
1704      STOREDANYTHING.  */
1705   if (bitmap_bit_p (delta, anything_id))
1706     {
1707       unsigned t = find (storedanything_id);
1708       if (add_graph_edge (graph, t, rhs))
1709 	{
1710 	  if (bitmap_ior_into (get_varinfo (t)->solution, sol))
1711 	    bitmap_set_bit (changed, t);
1712 	}
1713       return;
1714     }
1715 
1716   /* If we do not know at with offset the rhs is dereferenced compute
1717      the reachability set of DELTA, conservatively assuming it is
1718      dereferenced at all valid offsets.  */
1719   if (loff == UNKNOWN_OFFSET)
1720     {
1721       delta = solution_set_expand (delta, expanded_delta);
1722       loff = 0;
1723     }
1724 
1725   /* For each member j of delta (Sol(x)), add an edge from y to j and
1726      union Sol(y) into Sol(j) */
1727   EXECUTE_IF_SET_IN_BITMAP (delta, 0, j, bi)
1728     {
1729       varinfo_t v = get_varinfo (j);
1730       unsigned int t;
1731       HOST_WIDE_INT fieldoffset = v->offset + loff;
1732       unsigned HOST_WIDE_INT size = v->size;
1733 
1734       if (v->is_full_var)
1735 	;
1736       else if (loff != 0)
1737 	{
1738 	  if (fieldoffset < 0)
1739 	    v = get_varinfo (v->head);
1740 	  else
1741 	    v = first_or_preceding_vi_for_offset (v, fieldoffset);
1742 	}
1743 
1744       /* We have to include all fields that overlap the current field
1745 	 shifted by loff.  */
1746       do
1747 	{
1748 	  if (v->may_have_pointers)
1749 	    {
1750 	      /* If v is a global variable then this is an escape point.  */
1751 	      if (v->is_global_var
1752 		  && !escaped_p)
1753 		{
1754 		  t = find (escaped_id);
1755 		  if (add_graph_edge (graph, t, rhs)
1756 		      && bitmap_ior_into (get_varinfo (t)->solution, sol))
1757 		    bitmap_set_bit (changed, t);
1758 		  /* Enough to let rhs escape once.  */
1759 		  escaped_p = true;
1760 		}
1761 
1762 	      if (v->is_special_var)
1763 		break;
1764 
1765 	      t = find (v->id);
1766 	      if (add_graph_edge (graph, t, rhs)
1767 		  && bitmap_ior_into (get_varinfo (t)->solution, sol))
1768 		bitmap_set_bit (changed, t);
1769 	    }
1770 
1771 	  if (v->is_full_var
1772 	      || v->next == 0)
1773 	    break;
1774 
1775 	  v = vi_next (v);
1776 	}
1777       while (v->offset < fieldoffset + size);
1778     }
1779 }
1780 
1781 /* Handle a non-simple (simple meaning requires no iteration),
1782    constraint (IE *x = &y, x = *y, *x = y, and x = y with offsets involved).  */
1783 
1784 static void
do_complex_constraint(constraint_graph_t graph,constraint_t c,bitmap delta,bitmap * expanded_delta)1785 do_complex_constraint (constraint_graph_t graph, constraint_t c, bitmap delta,
1786 		       bitmap *expanded_delta)
1787 {
1788   if (c->lhs.type == DEREF)
1789     {
1790       if (c->rhs.type == ADDRESSOF)
1791 	{
1792 	  gcc_unreachable ();
1793 	}
1794       else
1795 	{
1796 	  /* *x = y */
1797 	  do_ds_constraint (c, delta, expanded_delta);
1798 	}
1799     }
1800   else if (c->rhs.type == DEREF)
1801     {
1802       /* x = *y */
1803       if (!(get_varinfo (c->lhs.var)->is_special_var))
1804 	do_sd_constraint (graph, c, delta, expanded_delta);
1805     }
1806   else
1807     {
1808       bitmap tmp;
1809       bool flag = false;
1810 
1811       gcc_checking_assert (c->rhs.type == SCALAR && c->lhs.type == SCALAR
1812 			   && c->rhs.offset != 0 && c->lhs.offset == 0);
1813       tmp = get_varinfo (c->lhs.var)->solution;
1814 
1815       flag = set_union_with_increment (tmp, delta, c->rhs.offset,
1816 				       expanded_delta);
1817 
1818       if (flag)
1819 	bitmap_set_bit (changed, c->lhs.var);
1820     }
1821 }
1822 
1823 /* Initialize and return a new SCC info structure.  */
1824 
1825 static struct scc_info *
init_scc_info(size_t size)1826 init_scc_info (size_t size)
1827 {
1828   struct scc_info *si = XNEW (struct scc_info);
1829   size_t i;
1830 
1831   si->current_index = 0;
1832   si->visited = sbitmap_alloc (size);
1833   bitmap_clear (si->visited);
1834   si->deleted = sbitmap_alloc (size);
1835   bitmap_clear (si->deleted);
1836   si->node_mapping = XNEWVEC (unsigned int, size);
1837   si->dfs = XCNEWVEC (unsigned int, size);
1838 
1839   for (i = 0; i < size; i++)
1840     si->node_mapping[i] = i;
1841 
1842   si->scc_stack.create (1);
1843   return si;
1844 }
1845 
1846 /* Free an SCC info structure pointed to by SI */
1847 
1848 static void
free_scc_info(struct scc_info * si)1849 free_scc_info (struct scc_info *si)
1850 {
1851   sbitmap_free (si->visited);
1852   sbitmap_free (si->deleted);
1853   free (si->node_mapping);
1854   free (si->dfs);
1855   si->scc_stack.release ();
1856   free (si);
1857 }
1858 
1859 
1860 /* Find indirect cycles in GRAPH that occur, using strongly connected
1861    components, and note them in the indirect cycles map.
1862 
1863    This technique comes from Ben Hardekopf and Calvin Lin,
1864    "It Pays to be Lazy: Fast and Accurate Pointer Analysis for Millions of
1865    Lines of Code", submitted to PLDI 2007.  */
1866 
1867 static void
find_indirect_cycles(constraint_graph_t graph)1868 find_indirect_cycles (constraint_graph_t graph)
1869 {
1870   unsigned int i;
1871   unsigned int size = graph->size;
1872   struct scc_info *si = init_scc_info (size);
1873 
1874   for (i = 0; i < MIN (LAST_REF_NODE, size); i ++ )
1875     if (!bitmap_bit_p (si->visited, i) && find (i) == i)
1876       scc_visit (graph, si, i);
1877 
1878   free_scc_info (si);
1879 }
1880 
1881 /* Compute a topological ordering for GRAPH, and store the result in the
1882    topo_info structure TI.  */
1883 
1884 static void
compute_topo_order(constraint_graph_t graph,struct topo_info * ti)1885 compute_topo_order (constraint_graph_t graph,
1886 		    struct topo_info *ti)
1887 {
1888   unsigned int i;
1889   unsigned int size = graph->size;
1890 
1891   for (i = 0; i != size; ++i)
1892     if (!bitmap_bit_p (ti->visited, i) && find (i) == i)
1893       topo_visit (graph, ti, i);
1894 }
1895 
1896 /* Structure used to for hash value numbering of pointer equivalence
1897    classes.  */
1898 
1899 typedef struct equiv_class_label
1900 {
1901   hashval_t hashcode;
1902   unsigned int equivalence_class;
1903   bitmap labels;
1904 } *equiv_class_label_t;
1905 typedef const struct equiv_class_label *const_equiv_class_label_t;
1906 
1907 /* Equiv_class_label hashtable helpers.  */
1908 
1909 struct equiv_class_hasher : free_ptr_hash <equiv_class_label>
1910 {
1911   static inline hashval_t hash (const equiv_class_label *);
1912   static inline bool equal (const equiv_class_label *,
1913 			    const equiv_class_label *);
1914 };
1915 
1916 /* Hash function for a equiv_class_label_t */
1917 
1918 inline hashval_t
hash(const equiv_class_label * ecl)1919 equiv_class_hasher::hash (const equiv_class_label *ecl)
1920 {
1921   return ecl->hashcode;
1922 }
1923 
1924 /* Equality function for two equiv_class_label_t's.  */
1925 
1926 inline bool
equal(const equiv_class_label * eql1,const equiv_class_label * eql2)1927 equiv_class_hasher::equal (const equiv_class_label *eql1,
1928 			   const equiv_class_label *eql2)
1929 {
1930   return (eql1->hashcode == eql2->hashcode
1931 	  && bitmap_equal_p (eql1->labels, eql2->labels));
1932 }
1933 
1934 /* A hashtable for mapping a bitmap of labels->pointer equivalence
1935    classes.  */
1936 static hash_table<equiv_class_hasher> *pointer_equiv_class_table;
1937 
1938 /* A hashtable for mapping a bitmap of labels->location equivalence
1939    classes.  */
1940 static hash_table<equiv_class_hasher> *location_equiv_class_table;
1941 
1942 /* Lookup a equivalence class in TABLE by the bitmap of LABELS with
1943    hash HAS it contains.  Sets *REF_LABELS to the bitmap LABELS
1944    is equivalent to.  */
1945 
1946 static equiv_class_label *
equiv_class_lookup_or_add(hash_table<equiv_class_hasher> * table,bitmap labels)1947 equiv_class_lookup_or_add (hash_table<equiv_class_hasher> *table,
1948 			   bitmap labels)
1949 {
1950   equiv_class_label **slot;
1951   equiv_class_label ecl;
1952 
1953   ecl.labels = labels;
1954   ecl.hashcode = bitmap_hash (labels);
1955   slot = table->find_slot (&ecl, INSERT);
1956   if (!*slot)
1957     {
1958       *slot = XNEW (struct equiv_class_label);
1959       (*slot)->labels = labels;
1960       (*slot)->hashcode = ecl.hashcode;
1961       (*slot)->equivalence_class = 0;
1962     }
1963 
1964   return *slot;
1965 }
1966 
1967 /* Perform offline variable substitution.
1968 
1969    This is a worst case quadratic time way of identifying variables
1970    that must have equivalent points-to sets, including those caused by
1971    static cycles, and single entry subgraphs, in the constraint graph.
1972 
1973    The technique is described in "Exploiting Pointer and Location
1974    Equivalence to Optimize Pointer Analysis. In the 14th International
1975    Static Analysis Symposium (SAS), August 2007."  It is known as the
1976    "HU" algorithm, and is equivalent to value numbering the collapsed
1977    constraint graph including evaluating unions.
1978 
1979    The general method of finding equivalence classes is as follows:
1980    Add fake nodes (REF nodes) and edges for *a = b and a = *b constraints.
1981    Initialize all non-REF nodes to be direct nodes.
1982    For each constraint a = a U {b}, we set pts(a) = pts(a) u {fresh
1983    variable}
1984    For each constraint containing the dereference, we also do the same
1985    thing.
1986 
1987    We then compute SCC's in the graph and unify nodes in the same SCC,
1988    including pts sets.
1989 
1990    For each non-collapsed node x:
1991     Visit all unvisited explicit incoming edges.
1992     Ignoring all non-pointers, set pts(x) = Union of pts(a) for y
1993     where y->x.
1994     Lookup the equivalence class for pts(x).
1995      If we found one, equivalence_class(x) = found class.
1996      Otherwise, equivalence_class(x) = new class, and new_class is
1997     added to the lookup table.
1998 
1999    All direct nodes with the same equivalence class can be replaced
2000    with a single representative node.
2001    All unlabeled nodes (label == 0) are not pointers and all edges
2002    involving them can be eliminated.
2003    We perform these optimizations during rewrite_constraints
2004 
2005    In addition to pointer equivalence class finding, we also perform
2006    location equivalence class finding.  This is the set of variables
2007    that always appear together in points-to sets.  We use this to
2008    compress the size of the points-to sets.  */
2009 
2010 /* Current maximum pointer equivalence class id.  */
2011 static int pointer_equiv_class;
2012 
2013 /* Current maximum location equivalence class id.  */
2014 static int location_equiv_class;
2015 
2016 /* Recursive routine to find strongly connected components in GRAPH,
2017    and label it's nodes with DFS numbers.  */
2018 
2019 static void
condense_visit(constraint_graph_t graph,struct scc_info * si,unsigned int n)2020 condense_visit (constraint_graph_t graph, struct scc_info *si, unsigned int n)
2021 {
2022   unsigned int i;
2023   bitmap_iterator bi;
2024   unsigned int my_dfs;
2025 
2026   gcc_checking_assert (si->node_mapping[n] == n);
2027   bitmap_set_bit (si->visited, n);
2028   si->dfs[n] = si->current_index ++;
2029   my_dfs = si->dfs[n];
2030 
2031   /* Visit all the successors.  */
2032   EXECUTE_IF_IN_NONNULL_BITMAP (graph->preds[n], 0, i, bi)
2033     {
2034       unsigned int w = si->node_mapping[i];
2035 
2036       if (bitmap_bit_p (si->deleted, w))
2037 	continue;
2038 
2039       if (!bitmap_bit_p (si->visited, w))
2040 	condense_visit (graph, si, w);
2041 
2042       unsigned int t = si->node_mapping[w];
2043       gcc_checking_assert (si->node_mapping[n] == n);
2044       if (si->dfs[t] < si->dfs[n])
2045 	si->dfs[n] = si->dfs[t];
2046     }
2047 
2048   /* Visit all the implicit predecessors.  */
2049   EXECUTE_IF_IN_NONNULL_BITMAP (graph->implicit_preds[n], 0, i, bi)
2050     {
2051       unsigned int w = si->node_mapping[i];
2052 
2053       if (bitmap_bit_p (si->deleted, w))
2054 	continue;
2055 
2056       if (!bitmap_bit_p (si->visited, w))
2057 	condense_visit (graph, si, w);
2058 
2059       unsigned int t = si->node_mapping[w];
2060       gcc_assert (si->node_mapping[n] == n);
2061       if (si->dfs[t] < si->dfs[n])
2062 	si->dfs[n] = si->dfs[t];
2063     }
2064 
2065   /* See if any components have been identified.  */
2066   if (si->dfs[n] == my_dfs)
2067     {
2068       while (si->scc_stack.length () != 0
2069 	     && si->dfs[si->scc_stack.last ()] >= my_dfs)
2070 	{
2071 	  unsigned int w = si->scc_stack.pop ();
2072 	  si->node_mapping[w] = n;
2073 
2074 	  if (!bitmap_bit_p (graph->direct_nodes, w))
2075 	    bitmap_clear_bit (graph->direct_nodes, n);
2076 
2077 	  /* Unify our nodes.  */
2078 	  if (graph->preds[w])
2079 	    {
2080 	      if (!graph->preds[n])
2081 		graph->preds[n] = BITMAP_ALLOC (&predbitmap_obstack);
2082 	      bitmap_ior_into (graph->preds[n], graph->preds[w]);
2083 	    }
2084 	  if (graph->implicit_preds[w])
2085 	    {
2086 	      if (!graph->implicit_preds[n])
2087 		graph->implicit_preds[n] = BITMAP_ALLOC (&predbitmap_obstack);
2088 	      bitmap_ior_into (graph->implicit_preds[n],
2089 			       graph->implicit_preds[w]);
2090 	    }
2091 	  if (graph->points_to[w])
2092 	    {
2093 	      if (!graph->points_to[n])
2094 		graph->points_to[n] = BITMAP_ALLOC (&predbitmap_obstack);
2095 	      bitmap_ior_into (graph->points_to[n],
2096 			       graph->points_to[w]);
2097 	    }
2098 	}
2099       bitmap_set_bit (si->deleted, n);
2100     }
2101   else
2102     si->scc_stack.safe_push (n);
2103 }
2104 
2105 /* Label pointer equivalences.
2106 
2107    This performs a value numbering of the constraint graph to
2108    discover which variables will always have the same points-to sets
2109    under the current set of constraints.
2110 
2111    The way it value numbers is to store the set of points-to bits
2112    generated by the constraints and graph edges.  This is just used as a
2113    hash and equality comparison.  The *actual set of points-to bits* is
2114    completely irrelevant, in that we don't care about being able to
2115    extract them later.
2116 
2117    The equality values (currently bitmaps) just have to satisfy a few
2118    constraints, the main ones being:
2119    1. The combining operation must be order independent.
2120    2. The end result of a given set of operations must be unique iff the
2121       combination of input values is unique
2122    3. Hashable.  */
2123 
2124 static void
label_visit(constraint_graph_t graph,struct scc_info * si,unsigned int n)2125 label_visit (constraint_graph_t graph, struct scc_info *si, unsigned int n)
2126 {
2127   unsigned int i, first_pred;
2128   bitmap_iterator bi;
2129 
2130   bitmap_set_bit (si->visited, n);
2131 
2132   /* Label and union our incoming edges's points to sets.  */
2133   first_pred = -1U;
2134   EXECUTE_IF_IN_NONNULL_BITMAP (graph->preds[n], 0, i, bi)
2135     {
2136       unsigned int w = si->node_mapping[i];
2137       if (!bitmap_bit_p (si->visited, w))
2138 	label_visit (graph, si, w);
2139 
2140       /* Skip unused edges  */
2141       if (w == n || graph->pointer_label[w] == 0)
2142 	continue;
2143 
2144       if (graph->points_to[w])
2145 	{
2146 	  if (!graph->points_to[n])
2147 	    {
2148 	      if (first_pred == -1U)
2149 		first_pred = w;
2150 	      else
2151 		{
2152 		  graph->points_to[n] = BITMAP_ALLOC (&predbitmap_obstack);
2153 		  bitmap_ior (graph->points_to[n],
2154 			      graph->points_to[first_pred],
2155 			      graph->points_to[w]);
2156 		}
2157 	    }
2158 	  else
2159 	    bitmap_ior_into (graph->points_to[n], graph->points_to[w]);
2160 	}
2161     }
2162 
2163   /* Indirect nodes get fresh variables and a new pointer equiv class.  */
2164   if (!bitmap_bit_p (graph->direct_nodes, n))
2165     {
2166       if (!graph->points_to[n])
2167 	{
2168 	  graph->points_to[n] = BITMAP_ALLOC (&predbitmap_obstack);
2169 	  if (first_pred != -1U)
2170 	    bitmap_copy (graph->points_to[n], graph->points_to[first_pred]);
2171 	}
2172       bitmap_set_bit (graph->points_to[n], FIRST_REF_NODE + n);
2173       graph->pointer_label[n] = pointer_equiv_class++;
2174       equiv_class_label_t ecl;
2175       ecl = equiv_class_lookup_or_add (pointer_equiv_class_table,
2176 				       graph->points_to[n]);
2177       ecl->equivalence_class = graph->pointer_label[n];
2178       return;
2179     }
2180 
2181   /* If there was only a single non-empty predecessor the pointer equiv
2182      class is the same.  */
2183   if (!graph->points_to[n])
2184     {
2185       if (first_pred != -1U)
2186 	{
2187 	  graph->pointer_label[n] = graph->pointer_label[first_pred];
2188 	  graph->points_to[n] = graph->points_to[first_pred];
2189 	}
2190       return;
2191     }
2192 
2193   if (!bitmap_empty_p (graph->points_to[n]))
2194     {
2195       equiv_class_label_t ecl;
2196       ecl = equiv_class_lookup_or_add (pointer_equiv_class_table,
2197 				       graph->points_to[n]);
2198       if (ecl->equivalence_class == 0)
2199 	ecl->equivalence_class = pointer_equiv_class++;
2200       else
2201 	{
2202 	  BITMAP_FREE (graph->points_to[n]);
2203 	  graph->points_to[n] = ecl->labels;
2204 	}
2205       graph->pointer_label[n] = ecl->equivalence_class;
2206     }
2207 }
2208 
2209 /* Print the pred graph in dot format.  */
2210 
2211 static void
dump_pred_graph(struct scc_info * si,FILE * file)2212 dump_pred_graph (struct scc_info *si, FILE *file)
2213 {
2214   unsigned int i;
2215 
2216   /* Only print the graph if it has already been initialized:  */
2217   if (!graph)
2218     return;
2219 
2220   /* Prints the header of the dot file:  */
2221   fprintf (file, "strict digraph {\n");
2222   fprintf (file, "  node [\n    shape = box\n  ]\n");
2223   fprintf (file, "  edge [\n    fontsize = \"12\"\n  ]\n");
2224   fprintf (file, "\n  // List of nodes and complex constraints in "
2225 	   "the constraint graph:\n");
2226 
2227   /* The next lines print the nodes in the graph together with the
2228      complex constraints attached to them.  */
2229   for (i = 1; i < graph->size; i++)
2230     {
2231       if (i == FIRST_REF_NODE)
2232 	continue;
2233       if (si->node_mapping[i] != i)
2234 	continue;
2235       if (i < FIRST_REF_NODE)
2236 	fprintf (file, "\"%s\"", get_varinfo (i)->name);
2237       else
2238 	fprintf (file, "\"*%s\"", get_varinfo (i - FIRST_REF_NODE)->name);
2239       if (graph->points_to[i]
2240 	  && !bitmap_empty_p (graph->points_to[i]))
2241 	{
2242 	  fprintf (file, "[label=\"%s = {", get_varinfo (i)->name);
2243 	  unsigned j;
2244 	  bitmap_iterator bi;
2245 	  EXECUTE_IF_SET_IN_BITMAP (graph->points_to[i], 0, j, bi)
2246 	    fprintf (file, " %d", j);
2247 	  fprintf (file, " }\"]");
2248 	}
2249       fprintf (file, ";\n");
2250     }
2251 
2252   /* Go over the edges.  */
2253   fprintf (file, "\n  // Edges in the constraint graph:\n");
2254   for (i = 1; i < graph->size; i++)
2255     {
2256       unsigned j;
2257       bitmap_iterator bi;
2258       if (si->node_mapping[i] != i)
2259 	continue;
2260       EXECUTE_IF_IN_NONNULL_BITMAP (graph->preds[i], 0, j, bi)
2261 	{
2262 	  unsigned from = si->node_mapping[j];
2263 	  if (from < FIRST_REF_NODE)
2264 	    fprintf (file, "\"%s\"", get_varinfo (from)->name);
2265 	  else
2266 	    fprintf (file, "\"*%s\"", get_varinfo (from - FIRST_REF_NODE)->name);
2267 	  fprintf (file, " -> ");
2268 	  if (i < FIRST_REF_NODE)
2269 	    fprintf (file, "\"%s\"", get_varinfo (i)->name);
2270 	  else
2271 	    fprintf (file, "\"*%s\"", get_varinfo (i - FIRST_REF_NODE)->name);
2272 	  fprintf (file, ";\n");
2273 	}
2274     }
2275 
2276   /* Prints the tail of the dot file.  */
2277   fprintf (file, "}\n");
2278 }
2279 
2280 /* Perform offline variable substitution, discovering equivalence
2281    classes, and eliminating non-pointer variables.  */
2282 
2283 static struct scc_info *
perform_var_substitution(constraint_graph_t graph)2284 perform_var_substitution (constraint_graph_t graph)
2285 {
2286   unsigned int i;
2287   unsigned int size = graph->size;
2288   struct scc_info *si = init_scc_info (size);
2289 
2290   bitmap_obstack_initialize (&iteration_obstack);
2291   pointer_equiv_class_table = new hash_table<equiv_class_hasher> (511);
2292   location_equiv_class_table
2293     = new hash_table<equiv_class_hasher> (511);
2294   pointer_equiv_class = 1;
2295   location_equiv_class = 1;
2296 
2297   /* Condense the nodes, which means to find SCC's, count incoming
2298      predecessors, and unite nodes in SCC's.  */
2299   for (i = 1; i < FIRST_REF_NODE; i++)
2300     if (!bitmap_bit_p (si->visited, si->node_mapping[i]))
2301       condense_visit (graph, si, si->node_mapping[i]);
2302 
2303   if (dump_file && (dump_flags & TDF_GRAPH))
2304     {
2305       fprintf (dump_file, "\n\n// The constraint graph before var-substitution "
2306 	       "in dot format:\n");
2307       dump_pred_graph (si, dump_file);
2308       fprintf (dump_file, "\n\n");
2309     }
2310 
2311   bitmap_clear (si->visited);
2312   /* Actually the label the nodes for pointer equivalences  */
2313   for (i = 1; i < FIRST_REF_NODE; i++)
2314     if (!bitmap_bit_p (si->visited, si->node_mapping[i]))
2315       label_visit (graph, si, si->node_mapping[i]);
2316 
2317   /* Calculate location equivalence labels.  */
2318   for (i = 1; i < FIRST_REF_NODE; i++)
2319     {
2320       bitmap pointed_by;
2321       bitmap_iterator bi;
2322       unsigned int j;
2323 
2324       if (!graph->pointed_by[i])
2325 	continue;
2326       pointed_by = BITMAP_ALLOC (&iteration_obstack);
2327 
2328       /* Translate the pointed-by mapping for pointer equivalence
2329 	 labels.  */
2330       EXECUTE_IF_SET_IN_BITMAP (graph->pointed_by[i], 0, j, bi)
2331 	{
2332 	  bitmap_set_bit (pointed_by,
2333 			  graph->pointer_label[si->node_mapping[j]]);
2334 	}
2335       /* The original pointed_by is now dead.  */
2336       BITMAP_FREE (graph->pointed_by[i]);
2337 
2338       /* Look up the location equivalence label if one exists, or make
2339 	 one otherwise.  */
2340       equiv_class_label_t ecl;
2341       ecl = equiv_class_lookup_or_add (location_equiv_class_table, pointed_by);
2342       if (ecl->equivalence_class == 0)
2343 	ecl->equivalence_class = location_equiv_class++;
2344       else
2345 	{
2346 	  if (dump_file && (dump_flags & TDF_DETAILS))
2347 	    fprintf (dump_file, "Found location equivalence for node %s\n",
2348 		     get_varinfo (i)->name);
2349 	  BITMAP_FREE (pointed_by);
2350 	}
2351       graph->loc_label[i] = ecl->equivalence_class;
2352 
2353     }
2354 
2355   if (dump_file && (dump_flags & TDF_DETAILS))
2356     for (i = 1; i < FIRST_REF_NODE; i++)
2357       {
2358 	unsigned j = si->node_mapping[i];
2359 	if (j != i)
2360 	  {
2361 	    fprintf (dump_file, "%s node id %d ",
2362 		     bitmap_bit_p (graph->direct_nodes, i)
2363 		     ? "Direct" : "Indirect", i);
2364 	    if (i < FIRST_REF_NODE)
2365 	      fprintf (dump_file, "\"%s\"", get_varinfo (i)->name);
2366 	    else
2367 	      fprintf (dump_file, "\"*%s\"",
2368 		       get_varinfo (i - FIRST_REF_NODE)->name);
2369 	    fprintf (dump_file, " mapped to SCC leader node id %d ", j);
2370 	    if (j < FIRST_REF_NODE)
2371 	      fprintf (dump_file, "\"%s\"\n", get_varinfo (j)->name);
2372 	    else
2373 	      fprintf (dump_file, "\"*%s\"\n",
2374 		       get_varinfo (j - FIRST_REF_NODE)->name);
2375 	  }
2376 	else
2377 	  {
2378 	    fprintf (dump_file,
2379 		     "Equivalence classes for %s node id %d ",
2380 		     bitmap_bit_p (graph->direct_nodes, i)
2381 		     ? "direct" : "indirect", i);
2382 	    if (i < FIRST_REF_NODE)
2383 	      fprintf (dump_file, "\"%s\"", get_varinfo (i)->name);
2384 	    else
2385 	      fprintf (dump_file, "\"*%s\"",
2386 		       get_varinfo (i - FIRST_REF_NODE)->name);
2387 	    fprintf (dump_file,
2388 		     ": pointer %d, location %d\n",
2389 		     graph->pointer_label[i], graph->loc_label[i]);
2390 	  }
2391       }
2392 
2393   /* Quickly eliminate our non-pointer variables.  */
2394 
2395   for (i = 1; i < FIRST_REF_NODE; i++)
2396     {
2397       unsigned int node = si->node_mapping[i];
2398 
2399       if (graph->pointer_label[node] == 0)
2400 	{
2401 	  if (dump_file && (dump_flags & TDF_DETAILS))
2402 	    fprintf (dump_file,
2403 		     "%s is a non-pointer variable, eliminating edges.\n",
2404 		     get_varinfo (node)->name);
2405 	  stats.nonpointer_vars++;
2406 	  clear_edges_for_node (graph, node);
2407 	}
2408     }
2409 
2410   return si;
2411 }
2412 
2413 /* Free information that was only necessary for variable
2414    substitution.  */
2415 
2416 static void
free_var_substitution_info(struct scc_info * si)2417 free_var_substitution_info (struct scc_info *si)
2418 {
2419   free_scc_info (si);
2420   free (graph->pointer_label);
2421   free (graph->loc_label);
2422   free (graph->pointed_by);
2423   free (graph->points_to);
2424   free (graph->eq_rep);
2425   sbitmap_free (graph->direct_nodes);
2426   delete pointer_equiv_class_table;
2427   pointer_equiv_class_table = NULL;
2428   delete location_equiv_class_table;
2429   location_equiv_class_table = NULL;
2430   bitmap_obstack_release (&iteration_obstack);
2431 }
2432 
2433 /* Return an existing node that is equivalent to NODE, which has
2434    equivalence class LABEL, if one exists.  Return NODE otherwise.  */
2435 
2436 static unsigned int
find_equivalent_node(constraint_graph_t graph,unsigned int node,unsigned int label)2437 find_equivalent_node (constraint_graph_t graph,
2438 		      unsigned int node, unsigned int label)
2439 {
2440   /* If the address version of this variable is unused, we can
2441      substitute it for anything else with the same label.
2442      Otherwise, we know the pointers are equivalent, but not the
2443      locations, and we can unite them later.  */
2444 
2445   if (!bitmap_bit_p (graph->address_taken, node))
2446     {
2447       gcc_checking_assert (label < graph->size);
2448 
2449       if (graph->eq_rep[label] != -1)
2450 	{
2451 	  /* Unify the two variables since we know they are equivalent.  */
2452 	  if (unite (graph->eq_rep[label], node))
2453 	    unify_nodes (graph, graph->eq_rep[label], node, false);
2454 	  return graph->eq_rep[label];
2455 	}
2456       else
2457 	{
2458 	  graph->eq_rep[label] = node;
2459 	  graph->pe_rep[label] = node;
2460 	}
2461     }
2462   else
2463     {
2464       gcc_checking_assert (label < graph->size);
2465       graph->pe[node] = label;
2466       if (graph->pe_rep[label] == -1)
2467 	graph->pe_rep[label] = node;
2468     }
2469 
2470   return node;
2471 }
2472 
2473 /* Unite pointer equivalent but not location equivalent nodes in
2474    GRAPH.  This may only be performed once variable substitution is
2475    finished.  */
2476 
2477 static void
unite_pointer_equivalences(constraint_graph_t graph)2478 unite_pointer_equivalences (constraint_graph_t graph)
2479 {
2480   unsigned int i;
2481 
2482   /* Go through the pointer equivalences and unite them to their
2483      representative, if they aren't already.  */
2484   for (i = 1; i < FIRST_REF_NODE; i++)
2485     {
2486       unsigned int label = graph->pe[i];
2487       if (label)
2488 	{
2489 	  int label_rep = graph->pe_rep[label];
2490 
2491 	  if (label_rep == -1)
2492 	    continue;
2493 
2494 	  label_rep = find (label_rep);
2495 	  if (label_rep >= 0 && unite (label_rep, find (i)))
2496 	    unify_nodes (graph, label_rep, i, false);
2497 	}
2498     }
2499 }
2500 
2501 /* Move complex constraints to the GRAPH nodes they belong to.  */
2502 
2503 static void
move_complex_constraints(constraint_graph_t graph)2504 move_complex_constraints (constraint_graph_t graph)
2505 {
2506   int i;
2507   constraint_t c;
2508 
2509   FOR_EACH_VEC_ELT (constraints, i, c)
2510     {
2511       if (c)
2512 	{
2513 	  struct constraint_expr lhs = c->lhs;
2514 	  struct constraint_expr rhs = c->rhs;
2515 
2516 	  if (lhs.type == DEREF)
2517 	    {
2518 	      insert_into_complex (graph, lhs.var, c);
2519 	    }
2520 	  else if (rhs.type == DEREF)
2521 	    {
2522 	      if (!(get_varinfo (lhs.var)->is_special_var))
2523 		insert_into_complex (graph, rhs.var, c);
2524 	    }
2525 	  else if (rhs.type != ADDRESSOF && lhs.var > anything_id
2526 		   && (lhs.offset != 0 || rhs.offset != 0))
2527 	    {
2528 	      insert_into_complex (graph, rhs.var, c);
2529 	    }
2530 	}
2531     }
2532 }
2533 
2534 
2535 /* Optimize and rewrite complex constraints while performing
2536    collapsing of equivalent nodes.  SI is the SCC_INFO that is the
2537    result of perform_variable_substitution.  */
2538 
2539 static void
rewrite_constraints(constraint_graph_t graph,struct scc_info * si)2540 rewrite_constraints (constraint_graph_t graph,
2541 		     struct scc_info *si)
2542 {
2543   int i;
2544   constraint_t c;
2545 
2546   if (flag_checking)
2547     {
2548       for (unsigned int j = 0; j < graph->size; j++)
2549 	gcc_assert (find (j) == j);
2550     }
2551 
2552   FOR_EACH_VEC_ELT (constraints, i, c)
2553     {
2554       struct constraint_expr lhs = c->lhs;
2555       struct constraint_expr rhs = c->rhs;
2556       unsigned int lhsvar = find (lhs.var);
2557       unsigned int rhsvar = find (rhs.var);
2558       unsigned int lhsnode, rhsnode;
2559       unsigned int lhslabel, rhslabel;
2560 
2561       lhsnode = si->node_mapping[lhsvar];
2562       rhsnode = si->node_mapping[rhsvar];
2563       lhslabel = graph->pointer_label[lhsnode];
2564       rhslabel = graph->pointer_label[rhsnode];
2565 
2566       /* See if it is really a non-pointer variable, and if so, ignore
2567 	 the constraint.  */
2568       if (lhslabel == 0)
2569 	{
2570 	  if (dump_file && (dump_flags & TDF_DETAILS))
2571 	    {
2572 
2573 	      fprintf (dump_file, "%s is a non-pointer variable,"
2574 		       "ignoring constraint:",
2575 		       get_varinfo (lhs.var)->name);
2576 	      dump_constraint (dump_file, c);
2577 	      fprintf (dump_file, "\n");
2578 	    }
2579 	  constraints[i] = NULL;
2580 	  continue;
2581 	}
2582 
2583       if (rhslabel == 0)
2584 	{
2585 	  if (dump_file && (dump_flags & TDF_DETAILS))
2586 	    {
2587 
2588 	      fprintf (dump_file, "%s is a non-pointer variable,"
2589 		       "ignoring constraint:",
2590 		       get_varinfo (rhs.var)->name);
2591 	      dump_constraint (dump_file, c);
2592 	      fprintf (dump_file, "\n");
2593 	    }
2594 	  constraints[i] = NULL;
2595 	  continue;
2596 	}
2597 
2598       lhsvar = find_equivalent_node (graph, lhsvar, lhslabel);
2599       rhsvar = find_equivalent_node (graph, rhsvar, rhslabel);
2600       c->lhs.var = lhsvar;
2601       c->rhs.var = rhsvar;
2602     }
2603 }
2604 
2605 /* Eliminate indirect cycles involving NODE.  Return true if NODE was
2606    part of an SCC, false otherwise.  */
2607 
2608 static bool
eliminate_indirect_cycles(unsigned int node)2609 eliminate_indirect_cycles (unsigned int node)
2610 {
2611   if (graph->indirect_cycles[node] != -1
2612       && !bitmap_empty_p (get_varinfo (node)->solution))
2613     {
2614       unsigned int i;
2615       auto_vec<unsigned> queue;
2616       int queuepos;
2617       unsigned int to = find (graph->indirect_cycles[node]);
2618       bitmap_iterator bi;
2619 
2620       /* We can't touch the solution set and call unify_nodes
2621 	 at the same time, because unify_nodes is going to do
2622 	 bitmap unions into it. */
2623 
2624       EXECUTE_IF_SET_IN_BITMAP (get_varinfo (node)->solution, 0, i, bi)
2625 	{
2626 	  if (find (i) == i && i != to)
2627 	    {
2628 	      if (unite (to, i))
2629 		queue.safe_push (i);
2630 	    }
2631 	}
2632 
2633       for (queuepos = 0;
2634 	   queue.iterate (queuepos, &i);
2635 	   queuepos++)
2636 	{
2637 	  unify_nodes (graph, to, i, true);
2638 	}
2639       return true;
2640     }
2641   return false;
2642 }
2643 
2644 /* Solve the constraint graph GRAPH using our worklist solver.
2645    This is based on the PW* family of solvers from the "Efficient Field
2646    Sensitive Pointer Analysis for C" paper.
2647    It works by iterating over all the graph nodes, processing the complex
2648    constraints and propagating the copy constraints, until everything stops
2649    changed.  This corresponds to steps 6-8 in the solving list given above.  */
2650 
2651 static void
solve_graph(constraint_graph_t graph)2652 solve_graph (constraint_graph_t graph)
2653 {
2654   unsigned int size = graph->size;
2655   unsigned int i;
2656   bitmap pts;
2657 
2658   changed = BITMAP_ALLOC (NULL);
2659 
2660   /* Mark all initial non-collapsed nodes as changed.  */
2661   for (i = 1; i < size; i++)
2662     {
2663       varinfo_t ivi = get_varinfo (i);
2664       if (find (i) == i && !bitmap_empty_p (ivi->solution)
2665 	  && ((graph->succs[i] && !bitmap_empty_p (graph->succs[i]))
2666 	      || graph->complex[i].length () > 0))
2667 	bitmap_set_bit (changed, i);
2668     }
2669 
2670   /* Allocate a bitmap to be used to store the changed bits.  */
2671   pts = BITMAP_ALLOC (&pta_obstack);
2672 
2673   while (!bitmap_empty_p (changed))
2674     {
2675       unsigned int i;
2676       struct topo_info *ti = init_topo_info ();
2677       stats.iterations++;
2678 
2679       bitmap_obstack_initialize (&iteration_obstack);
2680 
2681       compute_topo_order (graph, ti);
2682 
2683       while (ti->topo_order.length () != 0)
2684 	{
2685 
2686 	  i = ti->topo_order.pop ();
2687 
2688 	  /* If this variable is not a representative, skip it.  */
2689 	  if (find (i) != i)
2690 	    continue;
2691 
2692 	  /* In certain indirect cycle cases, we may merge this
2693 	     variable to another.  */
2694 	  if (eliminate_indirect_cycles (i) && find (i) != i)
2695 	    continue;
2696 
2697 	  /* If the node has changed, we need to process the
2698 	     complex constraints and outgoing edges again.  */
2699 	  if (bitmap_clear_bit (changed, i))
2700 	    {
2701 	      unsigned int j;
2702 	      constraint_t c;
2703 	      bitmap solution;
2704 	      vec<constraint_t> complex = graph->complex[i];
2705 	      varinfo_t vi = get_varinfo (i);
2706 	      bool solution_empty;
2707 
2708 	      /* Compute the changed set of solution bits.  If anything
2709 	         is in the solution just propagate that.  */
2710 	      if (bitmap_bit_p (vi->solution, anything_id))
2711 		{
2712 		  /* If anything is also in the old solution there is
2713 		     nothing to do.
2714 		     ???  But we shouldn't ended up with "changed" set ...  */
2715 		  if (vi->oldsolution
2716 		      && bitmap_bit_p (vi->oldsolution, anything_id))
2717 		    continue;
2718 		  bitmap_copy (pts, get_varinfo (find (anything_id))->solution);
2719 		}
2720 	      else if (vi->oldsolution)
2721 		bitmap_and_compl (pts, vi->solution, vi->oldsolution);
2722 	      else
2723 		bitmap_copy (pts, vi->solution);
2724 
2725 	      if (bitmap_empty_p (pts))
2726 		continue;
2727 
2728 	      if (vi->oldsolution)
2729 		bitmap_ior_into (vi->oldsolution, pts);
2730 	      else
2731 		{
2732 		  vi->oldsolution = BITMAP_ALLOC (&oldpta_obstack);
2733 		  bitmap_copy (vi->oldsolution, pts);
2734 		}
2735 
2736 	      solution = vi->solution;
2737 	      solution_empty = bitmap_empty_p (solution);
2738 
2739 	      /* Process the complex constraints */
2740 	      bitmap expanded_pts = NULL;
2741 	      FOR_EACH_VEC_ELT (complex, j, c)
2742 		{
2743 		  /* XXX: This is going to unsort the constraints in
2744 		     some cases, which will occasionally add duplicate
2745 		     constraints during unification.  This does not
2746 		     affect correctness.  */
2747 		  c->lhs.var = find (c->lhs.var);
2748 		  c->rhs.var = find (c->rhs.var);
2749 
2750 		  /* The only complex constraint that can change our
2751 		     solution to non-empty, given an empty solution,
2752 		     is a constraint where the lhs side is receiving
2753 		     some set from elsewhere.  */
2754 		  if (!solution_empty || c->lhs.type != DEREF)
2755 		    do_complex_constraint (graph, c, pts, &expanded_pts);
2756 		}
2757 	      BITMAP_FREE (expanded_pts);
2758 
2759 	      solution_empty = bitmap_empty_p (solution);
2760 
2761 	      if (!solution_empty)
2762 		{
2763 		  bitmap_iterator bi;
2764 		  unsigned eff_escaped_id = find (escaped_id);
2765 
2766 		  /* Propagate solution to all successors.  */
2767 		  EXECUTE_IF_IN_NONNULL_BITMAP (graph->succs[i],
2768 						0, j, bi)
2769 		    {
2770 		      bitmap tmp;
2771 		      bool flag;
2772 
2773 		      unsigned int to = find (j);
2774 		      tmp = get_varinfo (to)->solution;
2775 		      flag = false;
2776 
2777 		      /* Don't try to propagate to ourselves.  */
2778 		      if (to == i)
2779 			continue;
2780 
2781 		      /* If we propagate from ESCAPED use ESCAPED as
2782 		         placeholder.  */
2783 		      if (i == eff_escaped_id)
2784 			flag = bitmap_set_bit (tmp, escaped_id);
2785 		      else
2786 			flag = bitmap_ior_into (tmp, pts);
2787 
2788 		      if (flag)
2789 			bitmap_set_bit (changed, to);
2790 		    }
2791 		}
2792 	    }
2793 	}
2794       free_topo_info (ti);
2795       bitmap_obstack_release (&iteration_obstack);
2796     }
2797 
2798   BITMAP_FREE (pts);
2799   BITMAP_FREE (changed);
2800   bitmap_obstack_release (&oldpta_obstack);
2801 }
2802 
2803 /* Map from trees to variable infos.  */
2804 static hash_map<tree, varinfo_t> *vi_for_tree;
2805 
2806 
2807 /* Insert ID as the variable id for tree T in the vi_for_tree map.  */
2808 
2809 static void
insert_vi_for_tree(tree t,varinfo_t vi)2810 insert_vi_for_tree (tree t, varinfo_t vi)
2811 {
2812   gcc_assert (vi);
2813   gcc_assert (!vi_for_tree->put (t, vi));
2814 }
2815 
2816 /* Find the variable info for tree T in VI_FOR_TREE.  If T does not
2817    exist in the map, return NULL, otherwise, return the varinfo we found.  */
2818 
2819 static varinfo_t
lookup_vi_for_tree(tree t)2820 lookup_vi_for_tree (tree t)
2821 {
2822   varinfo_t *slot = vi_for_tree->get (t);
2823   if (slot == NULL)
2824     return NULL;
2825 
2826   return *slot;
2827 }
2828 
2829 /* Return a printable name for DECL  */
2830 
2831 static const char *
alias_get_name(tree decl)2832 alias_get_name (tree decl)
2833 {
2834   const char *res = NULL;
2835   char *temp;
2836 
2837   if (!dump_file)
2838     return "NULL";
2839 
2840   if (TREE_CODE (decl) == SSA_NAME)
2841     {
2842       res = get_name (decl);
2843       if (res)
2844 	temp = xasprintf ("%s_%u", res, SSA_NAME_VERSION (decl));
2845       else
2846 	temp = xasprintf ("_%u", SSA_NAME_VERSION (decl));
2847       res = ggc_strdup (temp);
2848       free (temp);
2849     }
2850   else if (DECL_P (decl))
2851     {
2852       if (DECL_ASSEMBLER_NAME_SET_P (decl))
2853 	res = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
2854       else
2855 	{
2856 	  res = get_name (decl);
2857 	  if (!res)
2858 	    {
2859 	      temp = xasprintf ("D.%u", DECL_UID (decl));
2860 	      res = ggc_strdup (temp);
2861 	      free (temp);
2862 	    }
2863 	}
2864     }
2865   if (res != NULL)
2866     return res;
2867 
2868   return "NULL";
2869 }
2870 
2871 /* Find the variable id for tree T in the map.
2872    If T doesn't exist in the map, create an entry for it and return it.  */
2873 
2874 static varinfo_t
get_vi_for_tree(tree t)2875 get_vi_for_tree (tree t)
2876 {
2877   varinfo_t *slot = vi_for_tree->get (t);
2878   if (slot == NULL)
2879     {
2880       unsigned int id = create_variable_info_for (t, alias_get_name (t), false);
2881       return get_varinfo (id);
2882     }
2883 
2884   return *slot;
2885 }
2886 
2887 /* Get a scalar constraint expression for a new temporary variable.  */
2888 
2889 static struct constraint_expr
new_scalar_tmp_constraint_exp(const char * name,bool add_id)2890 new_scalar_tmp_constraint_exp (const char *name, bool add_id)
2891 {
2892   struct constraint_expr tmp;
2893   varinfo_t vi;
2894 
2895   vi = new_var_info (NULL_TREE, name, add_id);
2896   vi->offset = 0;
2897   vi->size = -1;
2898   vi->fullsize = -1;
2899   vi->is_full_var = 1;
2900 
2901   tmp.var = vi->id;
2902   tmp.type = SCALAR;
2903   tmp.offset = 0;
2904 
2905   return tmp;
2906 }
2907 
2908 /* Get a constraint expression vector from an SSA_VAR_P node.
2909    If address_p is true, the result will be taken its address of.  */
2910 
2911 static void
get_constraint_for_ssa_var(tree t,vec<ce_s> * results,bool address_p)2912 get_constraint_for_ssa_var (tree t, vec<ce_s> *results, bool address_p)
2913 {
2914   struct constraint_expr cexpr;
2915   varinfo_t vi;
2916 
2917   /* We allow FUNCTION_DECLs here even though it doesn't make much sense.  */
2918   gcc_assert (TREE_CODE (t) == SSA_NAME || DECL_P (t));
2919 
2920   /* For parameters, get at the points-to set for the actual parm
2921      decl.  */
2922   if (TREE_CODE (t) == SSA_NAME
2923       && SSA_NAME_IS_DEFAULT_DEF (t)
2924       && (TREE_CODE (SSA_NAME_VAR (t)) == PARM_DECL
2925 	  || TREE_CODE (SSA_NAME_VAR (t)) == RESULT_DECL))
2926     {
2927       get_constraint_for_ssa_var (SSA_NAME_VAR (t), results, address_p);
2928       return;
2929     }
2930 
2931   /* For global variables resort to the alias target.  */
2932   if (TREE_CODE (t) == VAR_DECL
2933       && (TREE_STATIC (t) || DECL_EXTERNAL (t)))
2934     {
2935       varpool_node *node = varpool_node::get (t);
2936       if (node && node->alias && node->analyzed)
2937 	{
2938 	  node = node->ultimate_alias_target ();
2939 	  /* Canonicalize the PT uid of all aliases to the ultimate target.
2940 	     ???  Hopefully the set of aliases can't change in a way that
2941 	     changes the ultimate alias target.  */
2942 	  gcc_assert ((! DECL_PT_UID_SET_P (node->decl)
2943 		       || DECL_PT_UID (node->decl) == DECL_UID (node->decl))
2944 		      && (! DECL_PT_UID_SET_P (t)
2945 			  || DECL_PT_UID (t) == DECL_UID (node->decl)));
2946 	  DECL_PT_UID (t) = DECL_UID (node->decl);
2947 	  t = node->decl;
2948 	}
2949     }
2950 
2951   vi = get_vi_for_tree (t);
2952   cexpr.var = vi->id;
2953   cexpr.type = SCALAR;
2954   cexpr.offset = 0;
2955 
2956   /* If we are not taking the address of the constraint expr, add all
2957      sub-fiels of the variable as well.  */
2958   if (!address_p
2959       && !vi->is_full_var)
2960     {
2961       for (; vi; vi = vi_next (vi))
2962 	{
2963 	  cexpr.var = vi->id;
2964 	  results->safe_push (cexpr);
2965 	}
2966       return;
2967     }
2968 
2969   results->safe_push (cexpr);
2970 }
2971 
2972 /* Process constraint T, performing various simplifications and then
2973    adding it to our list of overall constraints.  */
2974 
2975 static void
process_constraint(constraint_t t)2976 process_constraint (constraint_t t)
2977 {
2978   struct constraint_expr rhs = t->rhs;
2979   struct constraint_expr lhs = t->lhs;
2980 
2981   gcc_assert (rhs.var < varmap.length ());
2982   gcc_assert (lhs.var < varmap.length ());
2983 
2984   /* If we didn't get any useful constraint from the lhs we get
2985      &ANYTHING as fallback from get_constraint_for.  Deal with
2986      it here by turning it into *ANYTHING.  */
2987   if (lhs.type == ADDRESSOF
2988       && lhs.var == anything_id)
2989     lhs.type = DEREF;
2990 
2991   /* ADDRESSOF on the lhs is invalid.  */
2992   gcc_assert (lhs.type != ADDRESSOF);
2993 
2994   /* We shouldn't add constraints from things that cannot have pointers.
2995      It's not completely trivial to avoid in the callers, so do it here.  */
2996   if (rhs.type != ADDRESSOF
2997       && !get_varinfo (rhs.var)->may_have_pointers)
2998     return;
2999 
3000   /* Likewise adding to the solution of a non-pointer var isn't useful.  */
3001   if (!get_varinfo (lhs.var)->may_have_pointers)
3002     return;
3003 
3004   /* This can happen in our IR with things like n->a = *p */
3005   if (rhs.type == DEREF && lhs.type == DEREF && rhs.var != anything_id)
3006     {
3007       /* Split into tmp = *rhs, *lhs = tmp */
3008       struct constraint_expr tmplhs;
3009       tmplhs = new_scalar_tmp_constraint_exp ("doubledereftmp", true);
3010       process_constraint (new_constraint (tmplhs, rhs));
3011       process_constraint (new_constraint (lhs, tmplhs));
3012     }
3013   else if ((rhs.type != SCALAR || rhs.offset != 0) && lhs.type == DEREF)
3014     {
3015       /* Split into tmp = &rhs, *lhs = tmp */
3016       struct constraint_expr tmplhs;
3017       tmplhs = new_scalar_tmp_constraint_exp ("derefaddrtmp", true);
3018       process_constraint (new_constraint (tmplhs, rhs));
3019       process_constraint (new_constraint (lhs, tmplhs));
3020     }
3021   else
3022     {
3023       gcc_assert (rhs.type != ADDRESSOF || rhs.offset == 0);
3024       constraints.safe_push (t);
3025     }
3026 }
3027 
3028 
3029 /* Return the position, in bits, of FIELD_DECL from the beginning of its
3030    structure.  */
3031 
3032 static HOST_WIDE_INT
bitpos_of_field(const tree fdecl)3033 bitpos_of_field (const tree fdecl)
3034 {
3035   if (!tree_fits_shwi_p (DECL_FIELD_OFFSET (fdecl))
3036       || !tree_fits_shwi_p (DECL_FIELD_BIT_OFFSET (fdecl)))
3037     return -1;
3038 
3039   return (tree_to_shwi (DECL_FIELD_OFFSET (fdecl)) * BITS_PER_UNIT
3040 	  + tree_to_shwi (DECL_FIELD_BIT_OFFSET (fdecl)));
3041 }
3042 
3043 
3044 /* Get constraint expressions for offsetting PTR by OFFSET.  Stores the
3045    resulting constraint expressions in *RESULTS.  */
3046 
3047 static void
get_constraint_for_ptr_offset(tree ptr,tree offset,vec<ce_s> * results)3048 get_constraint_for_ptr_offset (tree ptr, tree offset,
3049 			       vec<ce_s> *results)
3050 {
3051   struct constraint_expr c;
3052   unsigned int j, n;
3053   HOST_WIDE_INT rhsoffset;
3054 
3055   /* If we do not do field-sensitive PTA adding offsets to pointers
3056      does not change the points-to solution.  */
3057   if (!use_field_sensitive)
3058     {
3059       get_constraint_for_rhs (ptr, results);
3060       return;
3061     }
3062 
3063   /* If the offset is not a non-negative integer constant that fits
3064      in a HOST_WIDE_INT, we have to fall back to a conservative
3065      solution which includes all sub-fields of all pointed-to
3066      variables of ptr.  */
3067   if (offset == NULL_TREE
3068       || TREE_CODE (offset) != INTEGER_CST)
3069     rhsoffset = UNKNOWN_OFFSET;
3070   else
3071     {
3072       /* Sign-extend the offset.  */
3073       offset_int soffset = offset_int::from (offset, SIGNED);
3074       if (!wi::fits_shwi_p (soffset))
3075 	rhsoffset = UNKNOWN_OFFSET;
3076       else
3077 	{
3078 	  /* Make sure the bit-offset also fits.  */
3079 	  HOST_WIDE_INT rhsunitoffset = soffset.to_shwi ();
3080 	  rhsoffset = rhsunitoffset * BITS_PER_UNIT;
3081 	  if (rhsunitoffset != rhsoffset / BITS_PER_UNIT)
3082 	    rhsoffset = UNKNOWN_OFFSET;
3083 	}
3084     }
3085 
3086   get_constraint_for_rhs (ptr, results);
3087   if (rhsoffset == 0)
3088     return;
3089 
3090   /* As we are eventually appending to the solution do not use
3091      vec::iterate here.  */
3092   n = results->length ();
3093   for (j = 0; j < n; j++)
3094     {
3095       varinfo_t curr;
3096       c = (*results)[j];
3097       curr = get_varinfo (c.var);
3098 
3099       if (c.type == ADDRESSOF
3100 	  /* If this varinfo represents a full variable just use it.  */
3101 	  && curr->is_full_var)
3102 	;
3103       else if (c.type == ADDRESSOF
3104 	       /* If we do not know the offset add all subfields.  */
3105 	       && rhsoffset == UNKNOWN_OFFSET)
3106 	{
3107 	  varinfo_t temp = get_varinfo (curr->head);
3108 	  do
3109 	    {
3110 	      struct constraint_expr c2;
3111 	      c2.var = temp->id;
3112 	      c2.type = ADDRESSOF;
3113 	      c2.offset = 0;
3114 	      if (c2.var != c.var)
3115 		results->safe_push (c2);
3116 	      temp = vi_next (temp);
3117 	    }
3118 	  while (temp);
3119 	}
3120       else if (c.type == ADDRESSOF)
3121 	{
3122 	  varinfo_t temp;
3123 	  unsigned HOST_WIDE_INT offset = curr->offset + rhsoffset;
3124 
3125 	  /* If curr->offset + rhsoffset is less than zero adjust it.  */
3126 	  if (rhsoffset < 0
3127 	      && curr->offset < offset)
3128 	    offset = 0;
3129 
3130 	  /* We have to include all fields that overlap the current
3131 	     field shifted by rhsoffset.  And we include at least
3132 	     the last or the first field of the variable to represent
3133 	     reachability of off-bound addresses, in particular &object + 1,
3134 	     conservatively correct.  */
3135 	  temp = first_or_preceding_vi_for_offset (curr, offset);
3136 	  c.var = temp->id;
3137 	  c.offset = 0;
3138 	  temp = vi_next (temp);
3139 	  while (temp
3140 		 && temp->offset < offset + curr->size)
3141 	    {
3142 	      struct constraint_expr c2;
3143 	      c2.var = temp->id;
3144 	      c2.type = ADDRESSOF;
3145 	      c2.offset = 0;
3146 	      results->safe_push (c2);
3147 	      temp = vi_next (temp);
3148 	    }
3149 	}
3150       else if (c.type == SCALAR)
3151 	{
3152 	  gcc_assert (c.offset == 0);
3153 	  c.offset = rhsoffset;
3154 	}
3155       else
3156 	/* We shouldn't get any DEREFs here.  */
3157 	gcc_unreachable ();
3158 
3159       (*results)[j] = c;
3160     }
3161 }
3162 
3163 
3164 /* Given a COMPONENT_REF T, return the constraint_expr vector for it.
3165    If address_p is true the result will be taken its address of.
3166    If lhs_p is true then the constraint expression is assumed to be used
3167    as the lhs.  */
3168 
3169 static void
get_constraint_for_component_ref(tree t,vec<ce_s> * results,bool address_p,bool lhs_p)3170 get_constraint_for_component_ref (tree t, vec<ce_s> *results,
3171 				  bool address_p, bool lhs_p)
3172 {
3173   tree orig_t = t;
3174   HOST_WIDE_INT bitsize = -1;
3175   HOST_WIDE_INT bitmaxsize = -1;
3176   HOST_WIDE_INT bitpos;
3177   bool reverse;
3178   tree forzero;
3179 
3180   /* Some people like to do cute things like take the address of
3181      &0->a.b */
3182   forzero = t;
3183   while (handled_component_p (forzero)
3184 	 || INDIRECT_REF_P (forzero)
3185 	 || TREE_CODE (forzero) == MEM_REF)
3186     forzero = TREE_OPERAND (forzero, 0);
3187 
3188   if (CONSTANT_CLASS_P (forzero) && integer_zerop (forzero))
3189     {
3190       struct constraint_expr temp;
3191 
3192       temp.offset = 0;
3193       temp.var = integer_id;
3194       temp.type = SCALAR;
3195       results->safe_push (temp);
3196       return;
3197     }
3198 
3199   t = get_ref_base_and_extent (t, &bitpos, &bitsize, &bitmaxsize, &reverse);
3200 
3201   /* Pretend to take the address of the base, we'll take care of
3202      adding the required subset of sub-fields below.  */
3203   get_constraint_for_1 (t, results, true, lhs_p);
3204   gcc_assert (results->length () == 1);
3205   struct constraint_expr &result = results->last ();
3206 
3207   if (result.type == SCALAR
3208       && get_varinfo (result.var)->is_full_var)
3209     /* For single-field vars do not bother about the offset.  */
3210     result.offset = 0;
3211   else if (result.type == SCALAR)
3212     {
3213       /* In languages like C, you can access one past the end of an
3214 	 array.  You aren't allowed to dereference it, so we can
3215 	 ignore this constraint. When we handle pointer subtraction,
3216 	 we may have to do something cute here.  */
3217 
3218       if ((unsigned HOST_WIDE_INT)bitpos < get_varinfo (result.var)->fullsize
3219 	  && bitmaxsize != 0)
3220 	{
3221 	  /* It's also not true that the constraint will actually start at the
3222 	     right offset, it may start in some padding.  We only care about
3223 	     setting the constraint to the first actual field it touches, so
3224 	     walk to find it.  */
3225 	  struct constraint_expr cexpr = result;
3226 	  varinfo_t curr;
3227 	  results->pop ();
3228 	  cexpr.offset = 0;
3229 	  for (curr = get_varinfo (cexpr.var); curr; curr = vi_next (curr))
3230 	    {
3231 	      if (ranges_overlap_p (curr->offset, curr->size,
3232 				    bitpos, bitmaxsize))
3233 		{
3234 		  cexpr.var = curr->id;
3235 		  results->safe_push (cexpr);
3236 		  if (address_p)
3237 		    break;
3238 		}
3239 	    }
3240 	  /* If we are going to take the address of this field then
3241 	     to be able to compute reachability correctly add at least
3242 	     the last field of the variable.  */
3243 	  if (address_p && results->length () == 0)
3244 	    {
3245 	      curr = get_varinfo (cexpr.var);
3246 	      while (curr->next != 0)
3247 		curr = vi_next (curr);
3248 	      cexpr.var = curr->id;
3249 	      results->safe_push (cexpr);
3250 	    }
3251 	  else if (results->length () == 0)
3252 	    /* Assert that we found *some* field there. The user couldn't be
3253 	       accessing *only* padding.  */
3254 	    /* Still the user could access one past the end of an array
3255 	       embedded in a struct resulting in accessing *only* padding.  */
3256 	    /* Or accessing only padding via type-punning to a type
3257 	       that has a filed just in padding space.  */
3258 	    {
3259 	      cexpr.type = SCALAR;
3260 	      cexpr.var = anything_id;
3261 	      cexpr.offset = 0;
3262 	      results->safe_push (cexpr);
3263 	    }
3264 	}
3265       else if (bitmaxsize == 0)
3266 	{
3267 	  if (dump_file && (dump_flags & TDF_DETAILS))
3268 	    fprintf (dump_file, "Access to zero-sized part of variable,"
3269 		     "ignoring\n");
3270 	}
3271       else
3272 	if (dump_file && (dump_flags & TDF_DETAILS))
3273 	  fprintf (dump_file, "Access to past the end of variable, ignoring\n");
3274     }
3275   else if (result.type == DEREF)
3276     {
3277       /* If we do not know exactly where the access goes say so.  Note
3278 	 that only for non-structure accesses we know that we access
3279 	 at most one subfiled of any variable.  */
3280       if (bitpos == -1
3281 	  || bitsize != bitmaxsize
3282 	  || AGGREGATE_TYPE_P (TREE_TYPE (orig_t))
3283 	  || result.offset == UNKNOWN_OFFSET)
3284 	result.offset = UNKNOWN_OFFSET;
3285       else
3286 	result.offset += bitpos;
3287     }
3288   else if (result.type == ADDRESSOF)
3289     {
3290       /* We can end up here for component references on a
3291          VIEW_CONVERT_EXPR <>(&foobar).  */
3292       result.type = SCALAR;
3293       result.var = anything_id;
3294       result.offset = 0;
3295     }
3296   else
3297     gcc_unreachable ();
3298 }
3299 
3300 
3301 /* Dereference the constraint expression CONS, and return the result.
3302    DEREF (ADDRESSOF) = SCALAR
3303    DEREF (SCALAR) = DEREF
3304    DEREF (DEREF) = (temp = DEREF1; result = DEREF(temp))
3305    This is needed so that we can handle dereferencing DEREF constraints.  */
3306 
3307 static void
do_deref(vec<ce_s> * constraints)3308 do_deref (vec<ce_s> *constraints)
3309 {
3310   struct constraint_expr *c;
3311   unsigned int i = 0;
3312 
3313   FOR_EACH_VEC_ELT (*constraints, i, c)
3314     {
3315       if (c->type == SCALAR)
3316 	c->type = DEREF;
3317       else if (c->type == ADDRESSOF)
3318 	c->type = SCALAR;
3319       else if (c->type == DEREF)
3320 	{
3321 	  struct constraint_expr tmplhs;
3322 	  tmplhs = new_scalar_tmp_constraint_exp ("dereftmp", true);
3323 	  process_constraint (new_constraint (tmplhs, *c));
3324 	  c->var = tmplhs.var;
3325 	}
3326       else
3327 	gcc_unreachable ();
3328     }
3329 }
3330 
3331 /* Given a tree T, return the constraint expression for taking the
3332    address of it.  */
3333 
3334 static void
get_constraint_for_address_of(tree t,vec<ce_s> * results)3335 get_constraint_for_address_of (tree t, vec<ce_s> *results)
3336 {
3337   struct constraint_expr *c;
3338   unsigned int i;
3339 
3340   get_constraint_for_1 (t, results, true, true);
3341 
3342   FOR_EACH_VEC_ELT (*results, i, c)
3343     {
3344       if (c->type == DEREF)
3345 	c->type = SCALAR;
3346       else
3347 	c->type = ADDRESSOF;
3348     }
3349 }
3350 
3351 /* Given a tree T, return the constraint expression for it.  */
3352 
3353 static void
get_constraint_for_1(tree t,vec<ce_s> * results,bool address_p,bool lhs_p)3354 get_constraint_for_1 (tree t, vec<ce_s> *results, bool address_p,
3355 		      bool lhs_p)
3356 {
3357   struct constraint_expr temp;
3358 
3359   /* x = integer is all glommed to a single variable, which doesn't
3360      point to anything by itself.  That is, of course, unless it is an
3361      integer constant being treated as a pointer, in which case, we
3362      will return that this is really the addressof anything.  This
3363      happens below, since it will fall into the default case. The only
3364      case we know something about an integer treated like a pointer is
3365      when it is the NULL pointer, and then we just say it points to
3366      NULL.
3367 
3368      Do not do that if -fno-delete-null-pointer-checks though, because
3369      in that case *NULL does not fail, so it _should_ alias *anything.
3370      It is not worth adding a new option or renaming the existing one,
3371      since this case is relatively obscure.  */
3372   if ((TREE_CODE (t) == INTEGER_CST
3373        && integer_zerop (t))
3374       /* The only valid CONSTRUCTORs in gimple with pointer typed
3375 	 elements are zero-initializer.  But in IPA mode we also
3376 	 process global initializers, so verify at least.  */
3377       || (TREE_CODE (t) == CONSTRUCTOR
3378 	  && CONSTRUCTOR_NELTS (t) == 0))
3379     {
3380       if (flag_delete_null_pointer_checks)
3381 	temp.var = nothing_id;
3382       else
3383 	temp.var = nonlocal_id;
3384       temp.type = ADDRESSOF;
3385       temp.offset = 0;
3386       results->safe_push (temp);
3387       return;
3388     }
3389 
3390   /* String constants are read-only, ideally we'd have a CONST_DECL
3391      for those.  */
3392   if (TREE_CODE (t) == STRING_CST)
3393     {
3394       temp.var = string_id;
3395       temp.type = SCALAR;
3396       temp.offset = 0;
3397       results->safe_push (temp);
3398       return;
3399     }
3400 
3401   switch (TREE_CODE_CLASS (TREE_CODE (t)))
3402     {
3403     case tcc_expression:
3404       {
3405 	switch (TREE_CODE (t))
3406 	  {
3407 	  case ADDR_EXPR:
3408 	    get_constraint_for_address_of (TREE_OPERAND (t, 0), results);
3409 	    return;
3410 	  default:;
3411 	  }
3412 	break;
3413       }
3414     case tcc_reference:
3415       {
3416 	switch (TREE_CODE (t))
3417 	  {
3418 	  case MEM_REF:
3419 	    {
3420 	      struct constraint_expr cs;
3421 	      varinfo_t vi, curr;
3422 	      get_constraint_for_ptr_offset (TREE_OPERAND (t, 0),
3423 					     TREE_OPERAND (t, 1), results);
3424 	      do_deref (results);
3425 
3426 	      /* If we are not taking the address then make sure to process
3427 		 all subvariables we might access.  */
3428 	      if (address_p)
3429 		return;
3430 
3431 	      cs = results->last ();
3432 	      if (cs.type == DEREF
3433 		  && type_can_have_subvars (TREE_TYPE (t)))
3434 		{
3435 		  /* For dereferences this means we have to defer it
3436 		     to solving time.  */
3437 		  results->last ().offset = UNKNOWN_OFFSET;
3438 		  return;
3439 		}
3440 	      if (cs.type != SCALAR)
3441 		return;
3442 
3443 	      vi = get_varinfo (cs.var);
3444 	      curr = vi_next (vi);
3445 	      if (!vi->is_full_var
3446 		  && curr)
3447 		{
3448 		  unsigned HOST_WIDE_INT size;
3449 		  if (tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (t))))
3450 		    size = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (t)));
3451 		  else
3452 		    size = -1;
3453 		  for (; curr; curr = vi_next (curr))
3454 		    {
3455 		      if (curr->offset - vi->offset < size)
3456 			{
3457 			  cs.var = curr->id;
3458 			  results->safe_push (cs);
3459 			}
3460 		      else
3461 			break;
3462 		    }
3463 		}
3464 	      return;
3465 	    }
3466 	  case ARRAY_REF:
3467 	  case ARRAY_RANGE_REF:
3468 	  case COMPONENT_REF:
3469 	  case IMAGPART_EXPR:
3470 	  case REALPART_EXPR:
3471 	  case BIT_FIELD_REF:
3472 	    get_constraint_for_component_ref (t, results, address_p, lhs_p);
3473 	    return;
3474 	  case VIEW_CONVERT_EXPR:
3475 	    get_constraint_for_1 (TREE_OPERAND (t, 0), results, address_p,
3476 				  lhs_p);
3477 	    return;
3478 	  /* We are missing handling for TARGET_MEM_REF here.  */
3479 	  default:;
3480 	  }
3481 	break;
3482       }
3483     case tcc_exceptional:
3484       {
3485 	switch (TREE_CODE (t))
3486 	  {
3487 	  case SSA_NAME:
3488 	    {
3489 	      get_constraint_for_ssa_var (t, results, address_p);
3490 	      return;
3491 	    }
3492 	  case CONSTRUCTOR:
3493 	    {
3494 	      unsigned int i;
3495 	      tree val;
3496 	      auto_vec<ce_s> tmp;
3497 	      FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (t), i, val)
3498 		{
3499 		  struct constraint_expr *rhsp;
3500 		  unsigned j;
3501 		  get_constraint_for_1 (val, &tmp, address_p, lhs_p);
3502 		  FOR_EACH_VEC_ELT (tmp, j, rhsp)
3503 		    results->safe_push (*rhsp);
3504 		  tmp.truncate (0);
3505 		}
3506 	      /* We do not know whether the constructor was complete,
3507 	         so technically we have to add &NOTHING or &ANYTHING
3508 		 like we do for an empty constructor as well.  */
3509 	      return;
3510 	    }
3511 	  default:;
3512 	  }
3513 	break;
3514       }
3515     case tcc_declaration:
3516       {
3517 	get_constraint_for_ssa_var (t, results, address_p);
3518 	return;
3519       }
3520     case tcc_constant:
3521       {
3522 	/* We cannot refer to automatic variables through constants.  */
3523 	temp.type = ADDRESSOF;
3524 	temp.var = nonlocal_id;
3525 	temp.offset = 0;
3526 	results->safe_push (temp);
3527 	return;
3528       }
3529     default:;
3530     }
3531 
3532   /* The default fallback is a constraint from anything.  */
3533   temp.type = ADDRESSOF;
3534   temp.var = anything_id;
3535   temp.offset = 0;
3536   results->safe_push (temp);
3537 }
3538 
3539 /* Given a gimple tree T, return the constraint expression vector for it.  */
3540 
3541 static void
get_constraint_for(tree t,vec<ce_s> * results)3542 get_constraint_for (tree t, vec<ce_s> *results)
3543 {
3544   gcc_assert (results->length () == 0);
3545 
3546   get_constraint_for_1 (t, results, false, true);
3547 }
3548 
3549 /* Given a gimple tree T, return the constraint expression vector for it
3550    to be used as the rhs of a constraint.  */
3551 
3552 static void
get_constraint_for_rhs(tree t,vec<ce_s> * results)3553 get_constraint_for_rhs (tree t, vec<ce_s> *results)
3554 {
3555   gcc_assert (results->length () == 0);
3556 
3557   get_constraint_for_1 (t, results, false, false);
3558 }
3559 
3560 
3561 /* Efficiently generates constraints from all entries in *RHSC to all
3562    entries in *LHSC.  */
3563 
3564 static void
process_all_all_constraints(vec<ce_s> lhsc,vec<ce_s> rhsc)3565 process_all_all_constraints (vec<ce_s> lhsc,
3566 			     vec<ce_s> rhsc)
3567 {
3568   struct constraint_expr *lhsp, *rhsp;
3569   unsigned i, j;
3570 
3571   if (lhsc.length () <= 1 || rhsc.length () <= 1)
3572     {
3573       FOR_EACH_VEC_ELT (lhsc, i, lhsp)
3574 	FOR_EACH_VEC_ELT (rhsc, j, rhsp)
3575 	  process_constraint (new_constraint (*lhsp, *rhsp));
3576     }
3577   else
3578     {
3579       struct constraint_expr tmp;
3580       tmp = new_scalar_tmp_constraint_exp ("allalltmp", true);
3581       FOR_EACH_VEC_ELT (rhsc, i, rhsp)
3582 	process_constraint (new_constraint (tmp, *rhsp));
3583       FOR_EACH_VEC_ELT (lhsc, i, lhsp)
3584 	process_constraint (new_constraint (*lhsp, tmp));
3585     }
3586 }
3587 
3588 /* Handle aggregate copies by expanding into copies of the respective
3589    fields of the structures.  */
3590 
3591 static void
do_structure_copy(tree lhsop,tree rhsop)3592 do_structure_copy (tree lhsop, tree rhsop)
3593 {
3594   struct constraint_expr *lhsp, *rhsp;
3595   auto_vec<ce_s> lhsc;
3596   auto_vec<ce_s> rhsc;
3597   unsigned j;
3598 
3599   get_constraint_for (lhsop, &lhsc);
3600   get_constraint_for_rhs (rhsop, &rhsc);
3601   lhsp = &lhsc[0];
3602   rhsp = &rhsc[0];
3603   if (lhsp->type == DEREF
3604       || (lhsp->type == ADDRESSOF && lhsp->var == anything_id)
3605       || rhsp->type == DEREF)
3606     {
3607       if (lhsp->type == DEREF)
3608 	{
3609 	  gcc_assert (lhsc.length () == 1);
3610 	  lhsp->offset = UNKNOWN_OFFSET;
3611 	}
3612       if (rhsp->type == DEREF)
3613 	{
3614 	  gcc_assert (rhsc.length () == 1);
3615 	  rhsp->offset = UNKNOWN_OFFSET;
3616 	}
3617       process_all_all_constraints (lhsc, rhsc);
3618     }
3619   else if (lhsp->type == SCALAR
3620 	   && (rhsp->type == SCALAR
3621 	       || rhsp->type == ADDRESSOF))
3622     {
3623       HOST_WIDE_INT lhssize, lhsmaxsize, lhsoffset;
3624       HOST_WIDE_INT rhssize, rhsmaxsize, rhsoffset;
3625       bool reverse;
3626       unsigned k = 0;
3627       get_ref_base_and_extent (lhsop, &lhsoffset, &lhssize, &lhsmaxsize,
3628 			       &reverse);
3629       get_ref_base_and_extent (rhsop, &rhsoffset, &rhssize, &rhsmaxsize,
3630 			       &reverse);
3631       for (j = 0; lhsc.iterate (j, &lhsp);)
3632 	{
3633 	  varinfo_t lhsv, rhsv;
3634 	  rhsp = &rhsc[k];
3635 	  lhsv = get_varinfo (lhsp->var);
3636 	  rhsv = get_varinfo (rhsp->var);
3637 	  if (lhsv->may_have_pointers
3638 	      && (lhsv->is_full_var
3639 		  || rhsv->is_full_var
3640 		  || ranges_overlap_p (lhsv->offset + rhsoffset, lhsv->size,
3641 				       rhsv->offset + lhsoffset, rhsv->size)))
3642 	    process_constraint (new_constraint (*lhsp, *rhsp));
3643 	  if (!rhsv->is_full_var
3644 	      && (lhsv->is_full_var
3645 		  || (lhsv->offset + rhsoffset + lhsv->size
3646 		      > rhsv->offset + lhsoffset + rhsv->size)))
3647 	    {
3648 	      ++k;
3649 	      if (k >= rhsc.length ())
3650 		break;
3651 	    }
3652 	  else
3653 	    ++j;
3654 	}
3655     }
3656   else
3657     gcc_unreachable ();
3658 }
3659 
3660 /* Create constraints ID = { rhsc }.  */
3661 
3662 static void
make_constraints_to(unsigned id,vec<ce_s> rhsc)3663 make_constraints_to (unsigned id, vec<ce_s> rhsc)
3664 {
3665   struct constraint_expr *c;
3666   struct constraint_expr includes;
3667   unsigned int j;
3668 
3669   includes.var = id;
3670   includes.offset = 0;
3671   includes.type = SCALAR;
3672 
3673   FOR_EACH_VEC_ELT (rhsc, j, c)
3674     process_constraint (new_constraint (includes, *c));
3675 }
3676 
3677 /* Create a constraint ID = OP.  */
3678 
3679 static void
make_constraint_to(unsigned id,tree op)3680 make_constraint_to (unsigned id, tree op)
3681 {
3682   auto_vec<ce_s> rhsc;
3683   get_constraint_for_rhs (op, &rhsc);
3684   make_constraints_to (id, rhsc);
3685 }
3686 
3687 /* Create a constraint ID = &FROM.  */
3688 
3689 static void
make_constraint_from(varinfo_t vi,int from)3690 make_constraint_from (varinfo_t vi, int from)
3691 {
3692   struct constraint_expr lhs, rhs;
3693 
3694   lhs.var = vi->id;
3695   lhs.offset = 0;
3696   lhs.type = SCALAR;
3697 
3698   rhs.var = from;
3699   rhs.offset = 0;
3700   rhs.type = ADDRESSOF;
3701   process_constraint (new_constraint (lhs, rhs));
3702 }
3703 
3704 /* Create a constraint ID = FROM.  */
3705 
3706 static void
make_copy_constraint(varinfo_t vi,int from)3707 make_copy_constraint (varinfo_t vi, int from)
3708 {
3709   struct constraint_expr lhs, rhs;
3710 
3711   lhs.var = vi->id;
3712   lhs.offset = 0;
3713   lhs.type = SCALAR;
3714 
3715   rhs.var = from;
3716   rhs.offset = 0;
3717   rhs.type = SCALAR;
3718   process_constraint (new_constraint (lhs, rhs));
3719 }
3720 
3721 /* Make constraints necessary to make OP escape.  */
3722 
3723 static void
make_escape_constraint(tree op)3724 make_escape_constraint (tree op)
3725 {
3726   make_constraint_to (escaped_id, op);
3727 }
3728 
3729 /* Add constraints to that the solution of VI is transitively closed.  */
3730 
3731 static void
make_transitive_closure_constraints(varinfo_t vi)3732 make_transitive_closure_constraints (varinfo_t vi)
3733 {
3734   struct constraint_expr lhs, rhs;
3735 
3736   /* VAR = *(VAR + UNKNOWN);  */
3737   lhs.type = SCALAR;
3738   lhs.var = vi->id;
3739   lhs.offset = 0;
3740   rhs.type = DEREF;
3741   rhs.var = vi->id;
3742   rhs.offset = UNKNOWN_OFFSET;
3743   process_constraint (new_constraint (lhs, rhs));
3744 }
3745 
3746 /* Add constraints to that the solution of VI has all subvariables added.  */
3747 
3748 static void
make_any_offset_constraints(varinfo_t vi)3749 make_any_offset_constraints (varinfo_t vi)
3750 {
3751   struct constraint_expr lhs, rhs;
3752 
3753   /* VAR = VAR + UNKNOWN;  */
3754   lhs.type = SCALAR;
3755   lhs.var = vi->id;
3756   lhs.offset = 0;
3757   rhs.type = SCALAR;
3758   rhs.var = vi->id;
3759   rhs.offset = UNKNOWN_OFFSET;
3760   process_constraint (new_constraint (lhs, rhs));
3761 }
3762 
3763 /* Temporary storage for fake var decls.  */
3764 struct obstack fake_var_decl_obstack;
3765 
3766 /* Build a fake VAR_DECL acting as referrer to a DECL_UID.  */
3767 
3768 static tree
build_fake_var_decl(tree type)3769 build_fake_var_decl (tree type)
3770 {
3771   tree decl = (tree) XOBNEW (&fake_var_decl_obstack, struct tree_var_decl);
3772   memset (decl, 0, sizeof (struct tree_var_decl));
3773   TREE_SET_CODE (decl, VAR_DECL);
3774   TREE_TYPE (decl) = type;
3775   DECL_UID (decl) = allocate_decl_uid ();
3776   SET_DECL_PT_UID (decl, -1);
3777   layout_decl (decl, 0);
3778   return decl;
3779 }
3780 
3781 /* Create a new artificial heap variable with NAME.
3782    Return the created variable.  */
3783 
3784 static varinfo_t
make_heapvar(const char * name,bool add_id)3785 make_heapvar (const char *name, bool add_id)
3786 {
3787   varinfo_t vi;
3788   tree heapvar;
3789 
3790   heapvar = build_fake_var_decl (ptr_type_node);
3791   DECL_EXTERNAL (heapvar) = 1;
3792 
3793   vi = new_var_info (heapvar, name, add_id);
3794   vi->is_artificial_var = true;
3795   vi->is_heap_var = true;
3796   vi->is_unknown_size_var = true;
3797   vi->offset = 0;
3798   vi->fullsize = ~0;
3799   vi->size = ~0;
3800   vi->is_full_var = true;
3801   insert_vi_for_tree (heapvar, vi);
3802 
3803   return vi;
3804 }
3805 
3806 /* Create a new artificial heap variable with NAME and make a
3807    constraint from it to LHS.  Set flags according to a tag used
3808    for tracking restrict pointers.  */
3809 
3810 static varinfo_t
make_constraint_from_restrict(varinfo_t lhs,const char * name,bool add_id)3811 make_constraint_from_restrict (varinfo_t lhs, const char *name, bool add_id)
3812 {
3813   varinfo_t vi = make_heapvar (name, add_id);
3814   vi->is_restrict_var = 1;
3815   vi->is_global_var = 1;
3816   vi->may_have_pointers = 1;
3817   make_constraint_from (lhs, vi->id);
3818   return vi;
3819 }
3820 
3821 /* Create a new artificial heap variable with NAME and make a
3822    constraint from it to LHS.  Set flags according to a tag used
3823    for tracking restrict pointers and make the artificial heap
3824    point to global memory.  */
3825 
3826 static varinfo_t
make_constraint_from_global_restrict(varinfo_t lhs,const char * name,bool add_id)3827 make_constraint_from_global_restrict (varinfo_t lhs, const char *name,
3828 				      bool add_id)
3829 {
3830   varinfo_t vi = make_constraint_from_restrict (lhs, name, add_id);
3831   make_copy_constraint (vi, nonlocal_id);
3832   return vi;
3833 }
3834 
3835 /* In IPA mode there are varinfos for different aspects of reach
3836    function designator.  One for the points-to set of the return
3837    value, one for the variables that are clobbered by the function,
3838    one for its uses and one for each parameter (including a single
3839    glob for remaining variadic arguments).  */
3840 
3841 enum { fi_clobbers = 1, fi_uses = 2,
3842        fi_static_chain = 3, fi_result = 4, fi_parm_base = 5 };
3843 
3844 /* Get a constraint for the requested part of a function designator FI
3845    when operating in IPA mode.  */
3846 
3847 static struct constraint_expr
get_function_part_constraint(varinfo_t fi,unsigned part)3848 get_function_part_constraint (varinfo_t fi, unsigned part)
3849 {
3850   struct constraint_expr c;
3851 
3852   gcc_assert (in_ipa_mode);
3853 
3854   if (fi->id == anything_id)
3855     {
3856       /* ???  We probably should have a ANYFN special variable.  */
3857       c.var = anything_id;
3858       c.offset = 0;
3859       c.type = SCALAR;
3860     }
3861   else if (TREE_CODE (fi->decl) == FUNCTION_DECL)
3862     {
3863       varinfo_t ai = first_vi_for_offset (fi, part);
3864       if (ai)
3865 	c.var = ai->id;
3866       else
3867 	c.var = anything_id;
3868       c.offset = 0;
3869       c.type = SCALAR;
3870     }
3871   else
3872     {
3873       c.var = fi->id;
3874       c.offset = part;
3875       c.type = DEREF;
3876     }
3877 
3878   return c;
3879 }
3880 
3881 /* For non-IPA mode, generate constraints necessary for a call on the
3882    RHS.  */
3883 
3884 static void
handle_rhs_call(gcall * stmt,vec<ce_s> * results)3885 handle_rhs_call (gcall *stmt, vec<ce_s> *results)
3886 {
3887   struct constraint_expr rhsc;
3888   unsigned i;
3889   bool returns_uses = false;
3890 
3891   for (i = 0; i < gimple_call_num_args (stmt); ++i)
3892     {
3893       tree arg = gimple_call_arg (stmt, i);
3894       int flags = gimple_call_arg_flags (stmt, i);
3895 
3896       /* If the argument is not used we can ignore it.  */
3897       if (flags & EAF_UNUSED)
3898 	continue;
3899 
3900       /* As we compute ESCAPED context-insensitive we do not gain
3901          any precision with just EAF_NOCLOBBER but not EAF_NOESCAPE
3902 	 set.  The argument would still get clobbered through the
3903 	 escape solution.  */
3904       if ((flags & EAF_NOCLOBBER)
3905 	   && (flags & EAF_NOESCAPE))
3906 	{
3907 	  varinfo_t uses = get_call_use_vi (stmt);
3908 	  varinfo_t tem = new_var_info (NULL_TREE, "callarg", true);
3909 	  make_constraint_to (tem->id, arg);
3910 	  make_any_offset_constraints (tem);
3911 	  if (!(flags & EAF_DIRECT))
3912 	    make_transitive_closure_constraints (tem);
3913 	  make_copy_constraint (uses, tem->id);
3914 	  returns_uses = true;
3915 	}
3916       else if (flags & EAF_NOESCAPE)
3917 	{
3918 	  struct constraint_expr lhs, rhs;
3919 	  varinfo_t uses = get_call_use_vi (stmt);
3920 	  varinfo_t clobbers = get_call_clobber_vi (stmt);
3921 	  varinfo_t tem = new_var_info (NULL_TREE, "callarg", true);
3922 	  make_constraint_to (tem->id, arg);
3923 	  make_any_offset_constraints (tem);
3924 	  if (!(flags & EAF_DIRECT))
3925 	    make_transitive_closure_constraints (tem);
3926 	  make_copy_constraint (uses, tem->id);
3927 	  make_copy_constraint (clobbers, tem->id);
3928 	  /* Add *tem = nonlocal, do not add *tem = callused as
3929 	     EAF_NOESCAPE parameters do not escape to other parameters
3930 	     and all other uses appear in NONLOCAL as well.  */
3931 	  lhs.type = DEREF;
3932 	  lhs.var = tem->id;
3933 	  lhs.offset = 0;
3934 	  rhs.type = SCALAR;
3935 	  rhs.var = nonlocal_id;
3936 	  rhs.offset = 0;
3937 	  process_constraint (new_constraint (lhs, rhs));
3938 	  returns_uses = true;
3939 	}
3940       else
3941 	make_escape_constraint (arg);
3942     }
3943 
3944   /* If we added to the calls uses solution make sure we account for
3945      pointers to it to be returned.  */
3946   if (returns_uses)
3947     {
3948       rhsc.var = get_call_use_vi (stmt)->id;
3949       rhsc.offset = UNKNOWN_OFFSET;
3950       rhsc.type = SCALAR;
3951       results->safe_push (rhsc);
3952     }
3953 
3954   /* The static chain escapes as well.  */
3955   if (gimple_call_chain (stmt))
3956     make_escape_constraint (gimple_call_chain (stmt));
3957 
3958   /* And if we applied NRV the address of the return slot escapes as well.  */
3959   if (gimple_call_return_slot_opt_p (stmt)
3960       && gimple_call_lhs (stmt) != NULL_TREE
3961       && TREE_ADDRESSABLE (TREE_TYPE (gimple_call_lhs (stmt))))
3962     {
3963       auto_vec<ce_s> tmpc;
3964       struct constraint_expr lhsc, *c;
3965       get_constraint_for_address_of (gimple_call_lhs (stmt), &tmpc);
3966       lhsc.var = escaped_id;
3967       lhsc.offset = 0;
3968       lhsc.type = SCALAR;
3969       FOR_EACH_VEC_ELT (tmpc, i, c)
3970 	process_constraint (new_constraint (lhsc, *c));
3971     }
3972 
3973   /* Regular functions return nonlocal memory.  */
3974   rhsc.var = nonlocal_id;
3975   rhsc.offset = 0;
3976   rhsc.type = SCALAR;
3977   results->safe_push (rhsc);
3978 }
3979 
3980 /* For non-IPA mode, generate constraints necessary for a call
3981    that returns a pointer and assigns it to LHS.  This simply makes
3982    the LHS point to global and escaped variables.  */
3983 
3984 static void
handle_lhs_call(gcall * stmt,tree lhs,int flags,vec<ce_s> rhsc,tree fndecl)3985 handle_lhs_call (gcall *stmt, tree lhs, int flags, vec<ce_s> rhsc,
3986 		 tree fndecl)
3987 {
3988   auto_vec<ce_s> lhsc;
3989 
3990   get_constraint_for (lhs, &lhsc);
3991   /* If the store is to a global decl make sure to
3992      add proper escape constraints.  */
3993   lhs = get_base_address (lhs);
3994   if (lhs
3995       && DECL_P (lhs)
3996       && is_global_var (lhs))
3997     {
3998       struct constraint_expr tmpc;
3999       tmpc.var = escaped_id;
4000       tmpc.offset = 0;
4001       tmpc.type = SCALAR;
4002       lhsc.safe_push (tmpc);
4003     }
4004 
4005   /* If the call returns an argument unmodified override the rhs
4006      constraints.  */
4007   if (flags & ERF_RETURNS_ARG
4008       && (flags & ERF_RETURN_ARG_MASK) < gimple_call_num_args (stmt))
4009     {
4010       tree arg;
4011       rhsc.create (0);
4012       arg = gimple_call_arg (stmt, flags & ERF_RETURN_ARG_MASK);
4013       get_constraint_for (arg, &rhsc);
4014       process_all_all_constraints (lhsc, rhsc);
4015       rhsc.release ();
4016     }
4017   else if (flags & ERF_NOALIAS)
4018     {
4019       varinfo_t vi;
4020       struct constraint_expr tmpc;
4021       rhsc.create (0);
4022       vi = make_heapvar ("HEAP", true);
4023       /* We are marking allocated storage local, we deal with it becoming
4024          global by escaping and setting of vars_contains_escaped_heap.  */
4025       DECL_EXTERNAL (vi->decl) = 0;
4026       vi->is_global_var = 0;
4027       /* If this is not a real malloc call assume the memory was
4028 	 initialized and thus may point to global memory.  All
4029 	 builtin functions with the malloc attribute behave in a sane way.  */
4030       if (!fndecl
4031 	  || DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_NORMAL)
4032 	make_constraint_from (vi, nonlocal_id);
4033       tmpc.var = vi->id;
4034       tmpc.offset = 0;
4035       tmpc.type = ADDRESSOF;
4036       rhsc.safe_push (tmpc);
4037       process_all_all_constraints (lhsc, rhsc);
4038       rhsc.release ();
4039     }
4040   else
4041     process_all_all_constraints (lhsc, rhsc);
4042 }
4043 
4044 /* For non-IPA mode, generate constraints necessary for a call of a
4045    const function that returns a pointer in the statement STMT.  */
4046 
4047 static void
handle_const_call(gcall * stmt,vec<ce_s> * results)4048 handle_const_call (gcall *stmt, vec<ce_s> *results)
4049 {
4050   struct constraint_expr rhsc;
4051   unsigned int k;
4052   bool need_uses = false;
4053 
4054   /* Treat nested const functions the same as pure functions as far
4055      as the static chain is concerned.  */
4056   if (gimple_call_chain (stmt))
4057     {
4058       varinfo_t uses = get_call_use_vi (stmt);
4059       make_constraint_to (uses->id, gimple_call_chain (stmt));
4060       need_uses = true;
4061     }
4062 
4063   /* And if we applied NRV the address of the return slot escapes as well.  */
4064   if (gimple_call_return_slot_opt_p (stmt)
4065       && gimple_call_lhs (stmt) != NULL_TREE
4066       && TREE_ADDRESSABLE (TREE_TYPE (gimple_call_lhs (stmt))))
4067     {
4068       varinfo_t uses = get_call_use_vi (stmt);
4069       auto_vec<ce_s> tmpc;
4070       get_constraint_for_address_of (gimple_call_lhs (stmt), &tmpc);
4071       make_constraints_to (uses->id, tmpc);
4072       need_uses = true;
4073     }
4074 
4075   if (need_uses)
4076     {
4077       varinfo_t uses = get_call_use_vi (stmt);
4078       make_any_offset_constraints (uses);
4079       make_transitive_closure_constraints (uses);
4080       rhsc.var = uses->id;
4081       rhsc.offset = 0;
4082       rhsc.type = SCALAR;
4083       results->safe_push (rhsc);
4084     }
4085 
4086   /* May return offsetted arguments.  */
4087   varinfo_t tem = NULL;
4088   if (gimple_call_num_args (stmt) != 0)
4089     tem = new_var_info (NULL_TREE, "callarg", true);
4090   for (k = 0; k < gimple_call_num_args (stmt); ++k)
4091     {
4092       tree arg = gimple_call_arg (stmt, k);
4093       auto_vec<ce_s> argc;
4094       get_constraint_for_rhs (arg, &argc);
4095       make_constraints_to (tem->id, argc);
4096     }
4097   if (tem)
4098     {
4099       ce_s ce;
4100       ce.type = SCALAR;
4101       ce.var = tem->id;
4102       ce.offset = UNKNOWN_OFFSET;
4103       results->safe_push (ce);
4104     }
4105 
4106   /* May return addresses of globals.  */
4107   rhsc.var = nonlocal_id;
4108   rhsc.offset = 0;
4109   rhsc.type = ADDRESSOF;
4110   results->safe_push (rhsc);
4111 }
4112 
4113 /* For non-IPA mode, generate constraints necessary for a call to a
4114    pure function in statement STMT.  */
4115 
4116 static void
handle_pure_call(gcall * stmt,vec<ce_s> * results)4117 handle_pure_call (gcall *stmt, vec<ce_s> *results)
4118 {
4119   struct constraint_expr rhsc;
4120   unsigned i;
4121   varinfo_t uses = NULL;
4122 
4123   /* Memory reached from pointer arguments is call-used.  */
4124   for (i = 0; i < gimple_call_num_args (stmt); ++i)
4125     {
4126       tree arg = gimple_call_arg (stmt, i);
4127       if (!uses)
4128 	{
4129 	  uses = get_call_use_vi (stmt);
4130 	  make_any_offset_constraints (uses);
4131 	  make_transitive_closure_constraints (uses);
4132 	}
4133       make_constraint_to (uses->id, arg);
4134     }
4135 
4136   /* The static chain is used as well.  */
4137   if (gimple_call_chain (stmt))
4138     {
4139       if (!uses)
4140 	{
4141 	  uses = get_call_use_vi (stmt);
4142 	  make_any_offset_constraints (uses);
4143 	  make_transitive_closure_constraints (uses);
4144 	}
4145       make_constraint_to (uses->id, gimple_call_chain (stmt));
4146     }
4147 
4148   /* And if we applied NRV the address of the return slot.  */
4149   if (gimple_call_return_slot_opt_p (stmt)
4150       && gimple_call_lhs (stmt) != NULL_TREE
4151       && TREE_ADDRESSABLE (TREE_TYPE (gimple_call_lhs (stmt))))
4152     {
4153       if (!uses)
4154 	{
4155 	  uses = get_call_use_vi (stmt);
4156 	  make_any_offset_constraints (uses);
4157 	  make_transitive_closure_constraints (uses);
4158 	}
4159       auto_vec<ce_s> tmpc;
4160       get_constraint_for_address_of (gimple_call_lhs (stmt), &tmpc);
4161       make_constraints_to (uses->id, tmpc);
4162     }
4163 
4164   /* Pure functions may return call-used and nonlocal memory.  */
4165   if (uses)
4166     {
4167       rhsc.var = uses->id;
4168       rhsc.offset = 0;
4169       rhsc.type = SCALAR;
4170       results->safe_push (rhsc);
4171     }
4172   rhsc.var = nonlocal_id;
4173   rhsc.offset = 0;
4174   rhsc.type = SCALAR;
4175   results->safe_push (rhsc);
4176 }
4177 
4178 
4179 /* Return the varinfo for the callee of CALL.  */
4180 
4181 static varinfo_t
get_fi_for_callee(gcall * call)4182 get_fi_for_callee (gcall *call)
4183 {
4184   tree decl, fn = gimple_call_fn (call);
4185 
4186   if (fn && TREE_CODE (fn) == OBJ_TYPE_REF)
4187     fn = OBJ_TYPE_REF_EXPR (fn);
4188 
4189   /* If we can directly resolve the function being called, do so.
4190      Otherwise, it must be some sort of indirect expression that
4191      we should still be able to handle.  */
4192   decl = gimple_call_addr_fndecl (fn);
4193   if (decl)
4194     return get_vi_for_tree (decl);
4195 
4196   /* If the function is anything other than a SSA name pointer we have no
4197      clue and should be getting ANYFN (well, ANYTHING for now).  */
4198   if (!fn || TREE_CODE (fn) != SSA_NAME)
4199     return get_varinfo (anything_id);
4200 
4201   if (SSA_NAME_IS_DEFAULT_DEF (fn)
4202       && (TREE_CODE (SSA_NAME_VAR (fn)) == PARM_DECL
4203 	  || TREE_CODE (SSA_NAME_VAR (fn)) == RESULT_DECL))
4204     fn = SSA_NAME_VAR (fn);
4205 
4206   return get_vi_for_tree (fn);
4207 }
4208 
4209 /* Create constraints for assigning call argument ARG to the incoming parameter
4210    INDEX of function FI.  */
4211 
4212 static void
find_func_aliases_for_call_arg(varinfo_t fi,unsigned index,tree arg)4213 find_func_aliases_for_call_arg (varinfo_t fi, unsigned index, tree arg)
4214 {
4215   struct constraint_expr lhs;
4216   lhs = get_function_part_constraint (fi, fi_parm_base + index);
4217 
4218   auto_vec<ce_s, 2> rhsc;
4219   get_constraint_for_rhs (arg, &rhsc);
4220 
4221   unsigned j;
4222   struct constraint_expr *rhsp;
4223   FOR_EACH_VEC_ELT (rhsc, j, rhsp)
4224     process_constraint (new_constraint (lhs, *rhsp));
4225 }
4226 
4227 /* Return true if FNDECL may be part of another lto partition.  */
4228 
4229 static bool
fndecl_maybe_in_other_partition(tree fndecl)4230 fndecl_maybe_in_other_partition (tree fndecl)
4231 {
4232   cgraph_node *fn_node = cgraph_node::get (fndecl);
4233   if (fn_node == NULL)
4234     return true;
4235 
4236   return fn_node->in_other_partition;
4237 }
4238 
4239 /* Create constraints for the builtin call T.  Return true if the call
4240    was handled, otherwise false.  */
4241 
4242 static bool
find_func_aliases_for_builtin_call(struct function * fn,gcall * t)4243 find_func_aliases_for_builtin_call (struct function *fn, gcall *t)
4244 {
4245   tree fndecl = gimple_call_fndecl (t);
4246   auto_vec<ce_s, 2> lhsc;
4247   auto_vec<ce_s, 4> rhsc;
4248   varinfo_t fi;
4249 
4250   if (gimple_call_builtin_p (t, BUILT_IN_NORMAL))
4251     /* ???  All builtins that are handled here need to be handled
4252        in the alias-oracle query functions explicitly!  */
4253     switch (DECL_FUNCTION_CODE (fndecl))
4254       {
4255       /* All the following functions return a pointer to the same object
4256 	 as their first argument points to.  The functions do not add
4257 	 to the ESCAPED solution.  The functions make the first argument
4258 	 pointed to memory point to what the second argument pointed to
4259 	 memory points to.  */
4260       case BUILT_IN_STRCPY:
4261       case BUILT_IN_STRNCPY:
4262       case BUILT_IN_BCOPY:
4263       case BUILT_IN_MEMCPY:
4264       case BUILT_IN_MEMMOVE:
4265       case BUILT_IN_MEMPCPY:
4266       case BUILT_IN_STPCPY:
4267       case BUILT_IN_STPNCPY:
4268       case BUILT_IN_STRCAT:
4269       case BUILT_IN_STRNCAT:
4270       case BUILT_IN_STRCPY_CHK:
4271       case BUILT_IN_STRNCPY_CHK:
4272       case BUILT_IN_MEMCPY_CHK:
4273       case BUILT_IN_MEMMOVE_CHK:
4274       case BUILT_IN_MEMPCPY_CHK:
4275       case BUILT_IN_STPCPY_CHK:
4276       case BUILT_IN_STPNCPY_CHK:
4277       case BUILT_IN_STRCAT_CHK:
4278       case BUILT_IN_STRNCAT_CHK:
4279       case BUILT_IN_TM_MEMCPY:
4280       case BUILT_IN_TM_MEMMOVE:
4281 	{
4282 	  tree res = gimple_call_lhs (t);
4283 	  tree dest = gimple_call_arg (t, (DECL_FUNCTION_CODE (fndecl)
4284 					   == BUILT_IN_BCOPY ? 1 : 0));
4285 	  tree src = gimple_call_arg (t, (DECL_FUNCTION_CODE (fndecl)
4286 					  == BUILT_IN_BCOPY ? 0 : 1));
4287 	  if (res != NULL_TREE)
4288 	    {
4289 	      get_constraint_for (res, &lhsc);
4290 	      if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_MEMPCPY
4291 		  || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STPCPY
4292 		  || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STPNCPY
4293 		  || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_MEMPCPY_CHK
4294 		  || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STPCPY_CHK
4295 		  || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STPNCPY_CHK)
4296 		get_constraint_for_ptr_offset (dest, NULL_TREE, &rhsc);
4297 	      else
4298 		get_constraint_for (dest, &rhsc);
4299 	      process_all_all_constraints (lhsc, rhsc);
4300 	      lhsc.truncate (0);
4301 	      rhsc.truncate (0);
4302 	    }
4303 	  get_constraint_for_ptr_offset (dest, NULL_TREE, &lhsc);
4304 	  get_constraint_for_ptr_offset (src, NULL_TREE, &rhsc);
4305 	  do_deref (&lhsc);
4306 	  do_deref (&rhsc);
4307 	  process_all_all_constraints (lhsc, rhsc);
4308 	  return true;
4309 	}
4310       case BUILT_IN_MEMSET:
4311       case BUILT_IN_MEMSET_CHK:
4312       case BUILT_IN_TM_MEMSET:
4313 	{
4314 	  tree res = gimple_call_lhs (t);
4315 	  tree dest = gimple_call_arg (t, 0);
4316 	  unsigned i;
4317 	  ce_s *lhsp;
4318 	  struct constraint_expr ac;
4319 	  if (res != NULL_TREE)
4320 	    {
4321 	      get_constraint_for (res, &lhsc);
4322 	      get_constraint_for (dest, &rhsc);
4323 	      process_all_all_constraints (lhsc, rhsc);
4324 	      lhsc.truncate (0);
4325 	    }
4326 	  get_constraint_for_ptr_offset (dest, NULL_TREE, &lhsc);
4327 	  do_deref (&lhsc);
4328 	  if (flag_delete_null_pointer_checks
4329 	      && integer_zerop (gimple_call_arg (t, 1)))
4330 	    {
4331 	      ac.type = ADDRESSOF;
4332 	      ac.var = nothing_id;
4333 	    }
4334 	  else
4335 	    {
4336 	      ac.type = SCALAR;
4337 	      ac.var = integer_id;
4338 	    }
4339 	  ac.offset = 0;
4340 	  FOR_EACH_VEC_ELT (lhsc, i, lhsp)
4341 	      process_constraint (new_constraint (*lhsp, ac));
4342 	  return true;
4343 	}
4344       case BUILT_IN_POSIX_MEMALIGN:
4345         {
4346 	  tree ptrptr = gimple_call_arg (t, 0);
4347 	  get_constraint_for (ptrptr, &lhsc);
4348 	  do_deref (&lhsc);
4349 	  varinfo_t vi = make_heapvar ("HEAP", true);
4350 	  /* We are marking allocated storage local, we deal with it becoming
4351 	     global by escaping and setting of vars_contains_escaped_heap.  */
4352 	  DECL_EXTERNAL (vi->decl) = 0;
4353 	  vi->is_global_var = 0;
4354 	  struct constraint_expr tmpc;
4355 	  tmpc.var = vi->id;
4356 	  tmpc.offset = 0;
4357 	  tmpc.type = ADDRESSOF;
4358 	  rhsc.safe_push (tmpc);
4359 	  process_all_all_constraints (lhsc, rhsc);
4360 	  return true;
4361 	}
4362       case BUILT_IN_ASSUME_ALIGNED:
4363 	{
4364 	  tree res = gimple_call_lhs (t);
4365 	  tree dest = gimple_call_arg (t, 0);
4366 	  if (res != NULL_TREE)
4367 	    {
4368 	      get_constraint_for (res, &lhsc);
4369 	      get_constraint_for (dest, &rhsc);
4370 	      process_all_all_constraints (lhsc, rhsc);
4371 	    }
4372 	  return true;
4373 	}
4374       /* All the following functions do not return pointers, do not
4375 	 modify the points-to sets of memory reachable from their
4376 	 arguments and do not add to the ESCAPED solution.  */
4377       case BUILT_IN_SINCOS:
4378       case BUILT_IN_SINCOSF:
4379       case BUILT_IN_SINCOSL:
4380       case BUILT_IN_FREXP:
4381       case BUILT_IN_FREXPF:
4382       case BUILT_IN_FREXPL:
4383       case BUILT_IN_GAMMA_R:
4384       case BUILT_IN_GAMMAF_R:
4385       case BUILT_IN_GAMMAL_R:
4386       case BUILT_IN_LGAMMA_R:
4387       case BUILT_IN_LGAMMAF_R:
4388       case BUILT_IN_LGAMMAL_R:
4389       case BUILT_IN_MODF:
4390       case BUILT_IN_MODFF:
4391       case BUILT_IN_MODFL:
4392       case BUILT_IN_REMQUO:
4393       case BUILT_IN_REMQUOF:
4394       case BUILT_IN_REMQUOL:
4395       case BUILT_IN_FREE:
4396 	return true;
4397       case BUILT_IN_STRDUP:
4398       case BUILT_IN_STRNDUP:
4399       case BUILT_IN_REALLOC:
4400 	if (gimple_call_lhs (t))
4401 	  {
4402 	    handle_lhs_call (t, gimple_call_lhs (t),
4403 			     gimple_call_return_flags (t) | ERF_NOALIAS,
4404 			     vNULL, fndecl);
4405 	    get_constraint_for_ptr_offset (gimple_call_lhs (t),
4406 					   NULL_TREE, &lhsc);
4407 	    get_constraint_for_ptr_offset (gimple_call_arg (t, 0),
4408 					   NULL_TREE, &rhsc);
4409 	    do_deref (&lhsc);
4410 	    do_deref (&rhsc);
4411 	    process_all_all_constraints (lhsc, rhsc);
4412 	    lhsc.truncate (0);
4413 	    rhsc.truncate (0);
4414 	    /* For realloc the resulting pointer can be equal to the
4415 	       argument as well.  But only doing this wouldn't be
4416 	       correct because with ptr == 0 realloc behaves like malloc.  */
4417 	    if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_REALLOC)
4418 	      {
4419 		get_constraint_for (gimple_call_lhs (t), &lhsc);
4420 		get_constraint_for (gimple_call_arg (t, 0), &rhsc);
4421 		process_all_all_constraints (lhsc, rhsc);
4422 	      }
4423 	    return true;
4424 	  }
4425 	break;
4426       /* String / character search functions return a pointer into the
4427          source string or NULL.  */
4428       case BUILT_IN_INDEX:
4429       case BUILT_IN_STRCHR:
4430       case BUILT_IN_STRRCHR:
4431       case BUILT_IN_MEMCHR:
4432       case BUILT_IN_STRSTR:
4433       case BUILT_IN_STRPBRK:
4434 	if (gimple_call_lhs (t))
4435 	  {
4436 	    tree src = gimple_call_arg (t, 0);
4437 	    get_constraint_for_ptr_offset (src, NULL_TREE, &rhsc);
4438 	    constraint_expr nul;
4439 	    nul.var = nothing_id;
4440 	    nul.offset = 0;
4441 	    nul.type = ADDRESSOF;
4442 	    rhsc.safe_push (nul);
4443 	    get_constraint_for (gimple_call_lhs (t), &lhsc);
4444 	    process_all_all_constraints (lhsc, rhsc);
4445 	  }
4446 	return true;
4447       /* Trampolines are special - they set up passing the static
4448 	 frame.  */
4449       case BUILT_IN_INIT_TRAMPOLINE:
4450 	{
4451 	  tree tramp = gimple_call_arg (t, 0);
4452 	  tree nfunc = gimple_call_arg (t, 1);
4453 	  tree frame = gimple_call_arg (t, 2);
4454 	  unsigned i;
4455 	  struct constraint_expr lhs, *rhsp;
4456 	  if (in_ipa_mode)
4457 	    {
4458 	      varinfo_t nfi = NULL;
4459 	      gcc_assert (TREE_CODE (nfunc) == ADDR_EXPR);
4460 	      nfi = lookup_vi_for_tree (TREE_OPERAND (nfunc, 0));
4461 	      if (nfi)
4462 		{
4463 		  lhs = get_function_part_constraint (nfi, fi_static_chain);
4464 		  get_constraint_for (frame, &rhsc);
4465 		  FOR_EACH_VEC_ELT (rhsc, i, rhsp)
4466 		    process_constraint (new_constraint (lhs, *rhsp));
4467 		  rhsc.truncate (0);
4468 
4469 		  /* Make the frame point to the function for
4470 		     the trampoline adjustment call.  */
4471 		  get_constraint_for (tramp, &lhsc);
4472 		  do_deref (&lhsc);
4473 		  get_constraint_for (nfunc, &rhsc);
4474 		  process_all_all_constraints (lhsc, rhsc);
4475 
4476 		  return true;
4477 		}
4478 	    }
4479 	  /* Else fallthru to generic handling which will let
4480 	     the frame escape.  */
4481 	  break;
4482 	}
4483       case BUILT_IN_ADJUST_TRAMPOLINE:
4484 	{
4485 	  tree tramp = gimple_call_arg (t, 0);
4486 	  tree res = gimple_call_lhs (t);
4487 	  if (in_ipa_mode && res)
4488 	    {
4489 	      get_constraint_for (res, &lhsc);
4490 	      get_constraint_for (tramp, &rhsc);
4491 	      do_deref (&rhsc);
4492 	      process_all_all_constraints (lhsc, rhsc);
4493 	    }
4494 	  return true;
4495 	}
4496       CASE_BUILT_IN_TM_STORE (1):
4497       CASE_BUILT_IN_TM_STORE (2):
4498       CASE_BUILT_IN_TM_STORE (4):
4499       CASE_BUILT_IN_TM_STORE (8):
4500       CASE_BUILT_IN_TM_STORE (FLOAT):
4501       CASE_BUILT_IN_TM_STORE (DOUBLE):
4502       CASE_BUILT_IN_TM_STORE (LDOUBLE):
4503       CASE_BUILT_IN_TM_STORE (M64):
4504       CASE_BUILT_IN_TM_STORE (M128):
4505       CASE_BUILT_IN_TM_STORE (M256):
4506 	{
4507 	  tree addr = gimple_call_arg (t, 0);
4508 	  tree src = gimple_call_arg (t, 1);
4509 
4510 	  get_constraint_for (addr, &lhsc);
4511 	  do_deref (&lhsc);
4512 	  get_constraint_for (src, &rhsc);
4513 	  process_all_all_constraints (lhsc, rhsc);
4514 	  return true;
4515 	}
4516       CASE_BUILT_IN_TM_LOAD (1):
4517       CASE_BUILT_IN_TM_LOAD (2):
4518       CASE_BUILT_IN_TM_LOAD (4):
4519       CASE_BUILT_IN_TM_LOAD (8):
4520       CASE_BUILT_IN_TM_LOAD (FLOAT):
4521       CASE_BUILT_IN_TM_LOAD (DOUBLE):
4522       CASE_BUILT_IN_TM_LOAD (LDOUBLE):
4523       CASE_BUILT_IN_TM_LOAD (M64):
4524       CASE_BUILT_IN_TM_LOAD (M128):
4525       CASE_BUILT_IN_TM_LOAD (M256):
4526 	{
4527 	  tree dest = gimple_call_lhs (t);
4528 	  tree addr = gimple_call_arg (t, 0);
4529 
4530 	  get_constraint_for (dest, &lhsc);
4531 	  get_constraint_for (addr, &rhsc);
4532 	  do_deref (&rhsc);
4533 	  process_all_all_constraints (lhsc, rhsc);
4534 	  return true;
4535 	}
4536       /* Variadic argument handling needs to be handled in IPA
4537 	 mode as well.  */
4538       case BUILT_IN_VA_START:
4539 	{
4540 	  tree valist = gimple_call_arg (t, 0);
4541 	  struct constraint_expr rhs, *lhsp;
4542 	  unsigned i;
4543 	  get_constraint_for (valist, &lhsc);
4544 	  do_deref (&lhsc);
4545 	  /* The va_list gets access to pointers in variadic
4546 	     arguments.  Which we know in the case of IPA analysis
4547 	     and otherwise are just all nonlocal variables.  */
4548 	  if (in_ipa_mode)
4549 	    {
4550 	      fi = lookup_vi_for_tree (fn->decl);
4551 	      rhs = get_function_part_constraint (fi, ~0);
4552 	      rhs.type = ADDRESSOF;
4553 	    }
4554 	  else
4555 	    {
4556 	      rhs.var = nonlocal_id;
4557 	      rhs.type = ADDRESSOF;
4558 	      rhs.offset = 0;
4559 	    }
4560 	  FOR_EACH_VEC_ELT (lhsc, i, lhsp)
4561 	    process_constraint (new_constraint (*lhsp, rhs));
4562 	  /* va_list is clobbered.  */
4563 	  make_constraint_to (get_call_clobber_vi (t)->id, valist);
4564 	  return true;
4565 	}
4566       /* va_end doesn't have any effect that matters.  */
4567       case BUILT_IN_VA_END:
4568 	return true;
4569       /* Alternate return.  Simply give up for now.  */
4570       case BUILT_IN_RETURN:
4571 	{
4572 	  fi = NULL;
4573 	  if (!in_ipa_mode
4574 	      || !(fi = get_vi_for_tree (fn->decl)))
4575 	    make_constraint_from (get_varinfo (escaped_id), anything_id);
4576 	  else if (in_ipa_mode
4577 		   && fi != NULL)
4578 	    {
4579 	      struct constraint_expr lhs, rhs;
4580 	      lhs = get_function_part_constraint (fi, fi_result);
4581 	      rhs.var = anything_id;
4582 	      rhs.offset = 0;
4583 	      rhs.type = SCALAR;
4584 	      process_constraint (new_constraint (lhs, rhs));
4585 	    }
4586 	  return true;
4587 	}
4588       case BUILT_IN_GOMP_PARALLEL:
4589       case BUILT_IN_GOACC_PARALLEL:
4590 	{
4591 	  if (in_ipa_mode)
4592 	    {
4593 	      unsigned int fnpos, argpos;
4594 	      switch (DECL_FUNCTION_CODE (fndecl))
4595 		{
4596 		case BUILT_IN_GOMP_PARALLEL:
4597 		  /* __builtin_GOMP_parallel (fn, data, num_threads, flags).  */
4598 		  fnpos = 0;
4599 		  argpos = 1;
4600 		  break;
4601 		case BUILT_IN_GOACC_PARALLEL:
4602 		  /* __builtin_GOACC_parallel (device, fn, mapnum, hostaddrs,
4603 					       sizes, kinds, ...).  */
4604 		  fnpos = 1;
4605 		  argpos = 3;
4606 		  break;
4607 		default:
4608 		  gcc_unreachable ();
4609 		}
4610 
4611 	      tree fnarg = gimple_call_arg (t, fnpos);
4612 	      gcc_assert (TREE_CODE (fnarg) == ADDR_EXPR);
4613 	      tree fndecl = TREE_OPERAND (fnarg, 0);
4614 	      if (fndecl_maybe_in_other_partition (fndecl))
4615 		/* Fallthru to general call handling.  */
4616 		break;
4617 
4618 	      tree arg = gimple_call_arg (t, argpos);
4619 
4620 	      varinfo_t fi = get_vi_for_tree (fndecl);
4621 	      find_func_aliases_for_call_arg (fi, 0, arg);
4622 	      return true;
4623 	    }
4624 	  /* Else fallthru to generic call handling.  */
4625 	  break;
4626 	}
4627       /* printf-style functions may have hooks to set pointers to
4628 	 point to somewhere into the generated string.  Leave them
4629 	 for a later exercise...  */
4630       default:
4631 	/* Fallthru to general call handling.  */;
4632       }
4633 
4634   return false;
4635 }
4636 
4637 /* Create constraints for the call T.  */
4638 
4639 static void
find_func_aliases_for_call(struct function * fn,gcall * t)4640 find_func_aliases_for_call (struct function *fn, gcall *t)
4641 {
4642   tree fndecl = gimple_call_fndecl (t);
4643   varinfo_t fi;
4644 
4645   if (fndecl != NULL_TREE
4646       && DECL_BUILT_IN (fndecl)
4647       && find_func_aliases_for_builtin_call (fn, t))
4648     return;
4649 
4650   fi = get_fi_for_callee (t);
4651   if (!in_ipa_mode
4652       || (fndecl && !fi->is_fn_info))
4653     {
4654       auto_vec<ce_s, 16> rhsc;
4655       int flags = gimple_call_flags (t);
4656 
4657       /* Const functions can return their arguments and addresses
4658 	 of global memory but not of escaped memory.  */
4659       if (flags & (ECF_CONST|ECF_NOVOPS))
4660 	{
4661 	  if (gimple_call_lhs (t))
4662 	    handle_const_call (t, &rhsc);
4663 	}
4664       /* Pure functions can return addresses in and of memory
4665 	 reachable from their arguments, but they are not an escape
4666 	 point for reachable memory of their arguments.  */
4667       else if (flags & (ECF_PURE|ECF_LOOPING_CONST_OR_PURE))
4668 	handle_pure_call (t, &rhsc);
4669       else
4670 	handle_rhs_call (t, &rhsc);
4671       if (gimple_call_lhs (t))
4672 	handle_lhs_call (t, gimple_call_lhs (t),
4673 			 gimple_call_return_flags (t), rhsc, fndecl);
4674     }
4675   else
4676     {
4677       auto_vec<ce_s, 2> rhsc;
4678       tree lhsop;
4679       unsigned j;
4680 
4681       /* Assign all the passed arguments to the appropriate incoming
4682 	 parameters of the function.  */
4683       for (j = 0; j < gimple_call_num_args (t); j++)
4684 	{
4685 	  tree arg = gimple_call_arg (t, j);
4686 	  find_func_aliases_for_call_arg (fi, j, arg);
4687 	}
4688 
4689       /* If we are returning a value, assign it to the result.  */
4690       lhsop = gimple_call_lhs (t);
4691       if (lhsop)
4692 	{
4693 	  auto_vec<ce_s, 2> lhsc;
4694 	  struct constraint_expr rhs;
4695 	  struct constraint_expr *lhsp;
4696 	  bool aggr_p = aggregate_value_p (lhsop, gimple_call_fntype (t));
4697 
4698 	  get_constraint_for (lhsop, &lhsc);
4699 	  rhs = get_function_part_constraint (fi, fi_result);
4700 	  if (aggr_p)
4701 	    {
4702 	      auto_vec<ce_s, 2> tem;
4703 	      tem.quick_push (rhs);
4704 	      do_deref (&tem);
4705 	      gcc_checking_assert (tem.length () == 1);
4706 	      rhs = tem[0];
4707 	    }
4708 	  FOR_EACH_VEC_ELT (lhsc, j, lhsp)
4709 	    process_constraint (new_constraint (*lhsp, rhs));
4710 
4711 	  /* If we pass the result decl by reference, honor that.  */
4712 	  if (aggr_p)
4713 	    {
4714 	      struct constraint_expr lhs;
4715 	      struct constraint_expr *rhsp;
4716 
4717 	      get_constraint_for_address_of (lhsop, &rhsc);
4718 	      lhs = get_function_part_constraint (fi, fi_result);
4719 	      FOR_EACH_VEC_ELT (rhsc, j, rhsp)
4720 		  process_constraint (new_constraint (lhs, *rhsp));
4721 	      rhsc.truncate (0);
4722 	    }
4723 	}
4724 
4725       /* If we use a static chain, pass it along.  */
4726       if (gimple_call_chain (t))
4727 	{
4728 	  struct constraint_expr lhs;
4729 	  struct constraint_expr *rhsp;
4730 
4731 	  get_constraint_for (gimple_call_chain (t), &rhsc);
4732 	  lhs = get_function_part_constraint (fi, fi_static_chain);
4733 	  FOR_EACH_VEC_ELT (rhsc, j, rhsp)
4734 	    process_constraint (new_constraint (lhs, *rhsp));
4735 	}
4736     }
4737 }
4738 
4739 /* Walk statement T setting up aliasing constraints according to the
4740    references found in T.  This function is the main part of the
4741    constraint builder.  AI points to auxiliary alias information used
4742    when building alias sets and computing alias grouping heuristics.  */
4743 
4744 static void
find_func_aliases(struct function * fn,gimple * origt)4745 find_func_aliases (struct function *fn, gimple *origt)
4746 {
4747   gimple *t = origt;
4748   auto_vec<ce_s, 16> lhsc;
4749   auto_vec<ce_s, 16> rhsc;
4750   struct constraint_expr *c;
4751   varinfo_t fi;
4752 
4753   /* Now build constraints expressions.  */
4754   if (gimple_code (t) == GIMPLE_PHI)
4755     {
4756       size_t i;
4757       unsigned int j;
4758 
4759       /* For a phi node, assign all the arguments to
4760 	 the result.  */
4761       get_constraint_for (gimple_phi_result (t), &lhsc);
4762       for (i = 0; i < gimple_phi_num_args (t); i++)
4763 	{
4764 	  tree strippedrhs = PHI_ARG_DEF (t, i);
4765 
4766 	  STRIP_NOPS (strippedrhs);
4767 	  get_constraint_for_rhs (gimple_phi_arg_def (t, i), &rhsc);
4768 
4769 	  FOR_EACH_VEC_ELT (lhsc, j, c)
4770 	    {
4771 	      struct constraint_expr *c2;
4772 	      while (rhsc.length () > 0)
4773 		{
4774 		  c2 = &rhsc.last ();
4775 		  process_constraint (new_constraint (*c, *c2));
4776 		  rhsc.pop ();
4777 		}
4778 	    }
4779 	}
4780     }
4781   /* In IPA mode, we need to generate constraints to pass call
4782      arguments through their calls.   There are two cases,
4783      either a GIMPLE_CALL returning a value, or just a plain
4784      GIMPLE_CALL when we are not.
4785 
4786      In non-ipa mode, we need to generate constraints for each
4787      pointer passed by address.  */
4788   else if (is_gimple_call (t))
4789     find_func_aliases_for_call (fn, as_a <gcall *> (t));
4790 
4791   /* Otherwise, just a regular assignment statement.  Only care about
4792      operations with pointer result, others are dealt with as escape
4793      points if they have pointer operands.  */
4794   else if (is_gimple_assign (t))
4795     {
4796       /* Otherwise, just a regular assignment statement.  */
4797       tree lhsop = gimple_assign_lhs (t);
4798       tree rhsop = (gimple_num_ops (t) == 2) ? gimple_assign_rhs1 (t) : NULL;
4799 
4800       if (rhsop && TREE_CLOBBER_P (rhsop))
4801 	/* Ignore clobbers, they don't actually store anything into
4802 	   the LHS.  */
4803 	;
4804       else if (rhsop && AGGREGATE_TYPE_P (TREE_TYPE (lhsop)))
4805 	do_structure_copy (lhsop, rhsop);
4806       else
4807 	{
4808 	  enum tree_code code = gimple_assign_rhs_code (t);
4809 
4810 	  get_constraint_for (lhsop, &lhsc);
4811 
4812 	  if (code == POINTER_PLUS_EXPR)
4813 	    get_constraint_for_ptr_offset (gimple_assign_rhs1 (t),
4814 					   gimple_assign_rhs2 (t), &rhsc);
4815 	  else if (code == BIT_AND_EXPR
4816 		   && TREE_CODE (gimple_assign_rhs2 (t)) == INTEGER_CST)
4817 	    {
4818 	      /* Aligning a pointer via a BIT_AND_EXPR is offsetting
4819 		 the pointer.  Handle it by offsetting it by UNKNOWN.  */
4820 	      get_constraint_for_ptr_offset (gimple_assign_rhs1 (t),
4821 					     NULL_TREE, &rhsc);
4822 	    }
4823 	  else if ((CONVERT_EXPR_CODE_P (code)
4824 		    && !(POINTER_TYPE_P (gimple_expr_type (t))
4825 			 && !POINTER_TYPE_P (TREE_TYPE (rhsop))))
4826 		   || gimple_assign_single_p (t))
4827 	    get_constraint_for_rhs (rhsop, &rhsc);
4828 	  else if (code == COND_EXPR)
4829 	    {
4830 	      /* The result is a merge of both COND_EXPR arms.  */
4831 	      auto_vec<ce_s, 2> tmp;
4832 	      struct constraint_expr *rhsp;
4833 	      unsigned i;
4834 	      get_constraint_for_rhs (gimple_assign_rhs2 (t), &rhsc);
4835 	      get_constraint_for_rhs (gimple_assign_rhs3 (t), &tmp);
4836 	      FOR_EACH_VEC_ELT (tmp, i, rhsp)
4837 		rhsc.safe_push (*rhsp);
4838 	    }
4839 	  else if (truth_value_p (code))
4840 	    /* Truth value results are not pointer (parts).  Or at least
4841 	       very unreasonable obfuscation of a part.  */
4842 	    ;
4843 	  else
4844 	    {
4845 	      /* All other operations are merges.  */
4846 	      auto_vec<ce_s, 4> tmp;
4847 	      struct constraint_expr *rhsp;
4848 	      unsigned i, j;
4849 	      get_constraint_for_rhs (gimple_assign_rhs1 (t), &rhsc);
4850 	      for (i = 2; i < gimple_num_ops (t); ++i)
4851 		{
4852 		  get_constraint_for_rhs (gimple_op (t, i), &tmp);
4853 		  FOR_EACH_VEC_ELT (tmp, j, rhsp)
4854 		    rhsc.safe_push (*rhsp);
4855 		  tmp.truncate (0);
4856 		}
4857 	    }
4858 	  process_all_all_constraints (lhsc, rhsc);
4859 	}
4860       /* If there is a store to a global variable the rhs escapes.  */
4861       if ((lhsop = get_base_address (lhsop)) != NULL_TREE
4862 	  && DECL_P (lhsop))
4863 	{
4864 	  varinfo_t vi = get_vi_for_tree (lhsop);
4865 	  if ((! in_ipa_mode && vi->is_global_var)
4866 	      || vi->is_ipa_escape_point)
4867 	    make_escape_constraint (rhsop);
4868 	}
4869     }
4870   /* Handle escapes through return.  */
4871   else if (gimple_code (t) == GIMPLE_RETURN
4872 	   && gimple_return_retval (as_a <greturn *> (t)) != NULL_TREE)
4873     {
4874       greturn *return_stmt = as_a <greturn *> (t);
4875       fi = NULL;
4876       if (!in_ipa_mode
4877 	  || !(fi = get_vi_for_tree (fn->decl)))
4878 	make_escape_constraint (gimple_return_retval (return_stmt));
4879       else if (in_ipa_mode)
4880 	{
4881 	  struct constraint_expr lhs ;
4882 	  struct constraint_expr *rhsp;
4883 	  unsigned i;
4884 
4885 	  lhs = get_function_part_constraint (fi, fi_result);
4886 	  get_constraint_for_rhs (gimple_return_retval (return_stmt), &rhsc);
4887 	  FOR_EACH_VEC_ELT (rhsc, i, rhsp)
4888 	    process_constraint (new_constraint (lhs, *rhsp));
4889 	}
4890     }
4891   /* Handle asms conservatively by adding escape constraints to everything.  */
4892   else if (gasm *asm_stmt = dyn_cast <gasm *> (t))
4893     {
4894       unsigned i, noutputs;
4895       const char **oconstraints;
4896       const char *constraint;
4897       bool allows_mem, allows_reg, is_inout;
4898 
4899       noutputs = gimple_asm_noutputs (asm_stmt);
4900       oconstraints = XALLOCAVEC (const char *, noutputs);
4901 
4902       for (i = 0; i < noutputs; ++i)
4903 	{
4904 	  tree link = gimple_asm_output_op (asm_stmt, i);
4905 	  tree op = TREE_VALUE (link);
4906 
4907 	  constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
4908 	  oconstraints[i] = constraint;
4909 	  parse_output_constraint (&constraint, i, 0, 0, &allows_mem,
4910 				   &allows_reg, &is_inout);
4911 
4912 	  /* A memory constraint makes the address of the operand escape.  */
4913 	  if (!allows_reg && allows_mem)
4914 	    make_escape_constraint (build_fold_addr_expr (op));
4915 
4916 	  /* The asm may read global memory, so outputs may point to
4917 	     any global memory.  */
4918 	  if (op)
4919 	    {
4920 	      auto_vec<ce_s, 2> lhsc;
4921 	      struct constraint_expr rhsc, *lhsp;
4922 	      unsigned j;
4923 	      get_constraint_for (op, &lhsc);
4924 	      rhsc.var = nonlocal_id;
4925 	      rhsc.offset = 0;
4926 	      rhsc.type = SCALAR;
4927 	      FOR_EACH_VEC_ELT (lhsc, j, lhsp)
4928 		process_constraint (new_constraint (*lhsp, rhsc));
4929 	    }
4930 	}
4931       for (i = 0; i < gimple_asm_ninputs (asm_stmt); ++i)
4932 	{
4933 	  tree link = gimple_asm_input_op (asm_stmt, i);
4934 	  tree op = TREE_VALUE (link);
4935 
4936 	  constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
4937 
4938 	  parse_input_constraint (&constraint, 0, 0, noutputs, 0, oconstraints,
4939 				  &allows_mem, &allows_reg);
4940 
4941 	  /* A memory constraint makes the address of the operand escape.  */
4942 	  if (!allows_reg && allows_mem)
4943 	    make_escape_constraint (build_fold_addr_expr (op));
4944 	  /* Strictly we'd only need the constraint to ESCAPED if
4945 	     the asm clobbers memory, otherwise using something
4946 	     along the lines of per-call clobbers/uses would be enough.  */
4947 	  else if (op)
4948 	    make_escape_constraint (op);
4949 	}
4950     }
4951 }
4952 
4953 
4954 /* Create a constraint adding to the clobber set of FI the memory
4955    pointed to by PTR.  */
4956 
4957 static void
process_ipa_clobber(varinfo_t fi,tree ptr)4958 process_ipa_clobber (varinfo_t fi, tree ptr)
4959 {
4960   vec<ce_s> ptrc = vNULL;
4961   struct constraint_expr *c, lhs;
4962   unsigned i;
4963   get_constraint_for_rhs (ptr, &ptrc);
4964   lhs = get_function_part_constraint (fi, fi_clobbers);
4965   FOR_EACH_VEC_ELT (ptrc, i, c)
4966     process_constraint (new_constraint (lhs, *c));
4967   ptrc.release ();
4968 }
4969 
4970 /* Walk statement T setting up clobber and use constraints according to the
4971    references found in T.  This function is a main part of the
4972    IPA constraint builder.  */
4973 
4974 static void
find_func_clobbers(struct function * fn,gimple * origt)4975 find_func_clobbers (struct function *fn, gimple *origt)
4976 {
4977   gimple *t = origt;
4978   auto_vec<ce_s, 16> lhsc;
4979   auto_vec<ce_s, 16> rhsc;
4980   varinfo_t fi;
4981 
4982   /* Add constraints for clobbered/used in IPA mode.
4983      We are not interested in what automatic variables are clobbered
4984      or used as we only use the information in the caller to which
4985      they do not escape.  */
4986   gcc_assert (in_ipa_mode);
4987 
4988   /* If the stmt refers to memory in any way it better had a VUSE.  */
4989   if (gimple_vuse (t) == NULL_TREE)
4990     return;
4991 
4992   /* We'd better have function information for the current function.  */
4993   fi = lookup_vi_for_tree (fn->decl);
4994   gcc_assert (fi != NULL);
4995 
4996   /* Account for stores in assignments and calls.  */
4997   if (gimple_vdef (t) != NULL_TREE
4998       && gimple_has_lhs (t))
4999     {
5000       tree lhs = gimple_get_lhs (t);
5001       tree tem = lhs;
5002       while (handled_component_p (tem))
5003 	tem = TREE_OPERAND (tem, 0);
5004       if ((DECL_P (tem)
5005 	   && !auto_var_in_fn_p (tem, fn->decl))
5006 	  || INDIRECT_REF_P (tem)
5007 	  || (TREE_CODE (tem) == MEM_REF
5008 	      && !(TREE_CODE (TREE_OPERAND (tem, 0)) == ADDR_EXPR
5009 		   && auto_var_in_fn_p
5010 		        (TREE_OPERAND (TREE_OPERAND (tem, 0), 0), fn->decl))))
5011 	{
5012 	  struct constraint_expr lhsc, *rhsp;
5013 	  unsigned i;
5014 	  lhsc = get_function_part_constraint (fi, fi_clobbers);
5015 	  get_constraint_for_address_of (lhs, &rhsc);
5016 	  FOR_EACH_VEC_ELT (rhsc, i, rhsp)
5017 	    process_constraint (new_constraint (lhsc, *rhsp));
5018 	  rhsc.truncate (0);
5019 	}
5020     }
5021 
5022   /* Account for uses in assigments and returns.  */
5023   if (gimple_assign_single_p (t)
5024       || (gimple_code (t) == GIMPLE_RETURN
5025 	  && gimple_return_retval (as_a <greturn *> (t)) != NULL_TREE))
5026     {
5027       tree rhs = (gimple_assign_single_p (t)
5028 		  ? gimple_assign_rhs1 (t)
5029 		  : gimple_return_retval (as_a <greturn *> (t)));
5030       tree tem = rhs;
5031       while (handled_component_p (tem))
5032 	tem = TREE_OPERAND (tem, 0);
5033       if ((DECL_P (tem)
5034 	   && !auto_var_in_fn_p (tem, fn->decl))
5035 	  || INDIRECT_REF_P (tem)
5036 	  || (TREE_CODE (tem) == MEM_REF
5037 	      && !(TREE_CODE (TREE_OPERAND (tem, 0)) == ADDR_EXPR
5038 		   && auto_var_in_fn_p
5039 		        (TREE_OPERAND (TREE_OPERAND (tem, 0), 0), fn->decl))))
5040 	{
5041 	  struct constraint_expr lhs, *rhsp;
5042 	  unsigned i;
5043 	  lhs = get_function_part_constraint (fi, fi_uses);
5044 	  get_constraint_for_address_of (rhs, &rhsc);
5045 	  FOR_EACH_VEC_ELT (rhsc, i, rhsp)
5046 	    process_constraint (new_constraint (lhs, *rhsp));
5047 	  rhsc.truncate (0);
5048 	}
5049     }
5050 
5051   if (gcall *call_stmt = dyn_cast <gcall *> (t))
5052     {
5053       varinfo_t cfi = NULL;
5054       tree decl = gimple_call_fndecl (t);
5055       struct constraint_expr lhs, rhs;
5056       unsigned i, j;
5057 
5058       /* For builtins we do not have separate function info.  For those
5059 	 we do not generate escapes for we have to generate clobbers/uses.  */
5060       if (gimple_call_builtin_p (t, BUILT_IN_NORMAL))
5061 	switch (DECL_FUNCTION_CODE (decl))
5062 	  {
5063 	  /* The following functions use and clobber memory pointed to
5064 	     by their arguments.  */
5065 	  case BUILT_IN_STRCPY:
5066 	  case BUILT_IN_STRNCPY:
5067 	  case BUILT_IN_BCOPY:
5068 	  case BUILT_IN_MEMCPY:
5069 	  case BUILT_IN_MEMMOVE:
5070 	  case BUILT_IN_MEMPCPY:
5071 	  case BUILT_IN_STPCPY:
5072 	  case BUILT_IN_STPNCPY:
5073 	  case BUILT_IN_STRCAT:
5074 	  case BUILT_IN_STRNCAT:
5075 	  case BUILT_IN_STRCPY_CHK:
5076 	  case BUILT_IN_STRNCPY_CHK:
5077 	  case BUILT_IN_MEMCPY_CHK:
5078 	  case BUILT_IN_MEMMOVE_CHK:
5079 	  case BUILT_IN_MEMPCPY_CHK:
5080 	  case BUILT_IN_STPCPY_CHK:
5081 	  case BUILT_IN_STPNCPY_CHK:
5082 	  case BUILT_IN_STRCAT_CHK:
5083 	  case BUILT_IN_STRNCAT_CHK:
5084 	    {
5085 	      tree dest = gimple_call_arg (t, (DECL_FUNCTION_CODE (decl)
5086 					       == BUILT_IN_BCOPY ? 1 : 0));
5087 	      tree src = gimple_call_arg (t, (DECL_FUNCTION_CODE (decl)
5088 					      == BUILT_IN_BCOPY ? 0 : 1));
5089 	      unsigned i;
5090 	      struct constraint_expr *rhsp, *lhsp;
5091 	      get_constraint_for_ptr_offset (dest, NULL_TREE, &lhsc);
5092 	      lhs = get_function_part_constraint (fi, fi_clobbers);
5093 	      FOR_EACH_VEC_ELT (lhsc, i, lhsp)
5094 		process_constraint (new_constraint (lhs, *lhsp));
5095 	      get_constraint_for_ptr_offset (src, NULL_TREE, &rhsc);
5096 	      lhs = get_function_part_constraint (fi, fi_uses);
5097 	      FOR_EACH_VEC_ELT (rhsc, i, rhsp)
5098 		process_constraint (new_constraint (lhs, *rhsp));
5099 	      return;
5100 	    }
5101 	  /* The following function clobbers memory pointed to by
5102 	     its argument.  */
5103 	  case BUILT_IN_MEMSET:
5104 	  case BUILT_IN_MEMSET_CHK:
5105 	  case BUILT_IN_POSIX_MEMALIGN:
5106 	    {
5107 	      tree dest = gimple_call_arg (t, 0);
5108 	      unsigned i;
5109 	      ce_s *lhsp;
5110 	      get_constraint_for_ptr_offset (dest, NULL_TREE, &lhsc);
5111 	      lhs = get_function_part_constraint (fi, fi_clobbers);
5112 	      FOR_EACH_VEC_ELT (lhsc, i, lhsp)
5113 		process_constraint (new_constraint (lhs, *lhsp));
5114 	      return;
5115 	    }
5116 	  /* The following functions clobber their second and third
5117 	     arguments.  */
5118 	  case BUILT_IN_SINCOS:
5119 	  case BUILT_IN_SINCOSF:
5120 	  case BUILT_IN_SINCOSL:
5121 	    {
5122 	      process_ipa_clobber (fi, gimple_call_arg (t, 1));
5123 	      process_ipa_clobber (fi, gimple_call_arg (t, 2));
5124 	      return;
5125 	    }
5126 	  /* The following functions clobber their second argument.  */
5127 	  case BUILT_IN_FREXP:
5128 	  case BUILT_IN_FREXPF:
5129 	  case BUILT_IN_FREXPL:
5130 	  case BUILT_IN_LGAMMA_R:
5131 	  case BUILT_IN_LGAMMAF_R:
5132 	  case BUILT_IN_LGAMMAL_R:
5133 	  case BUILT_IN_GAMMA_R:
5134 	  case BUILT_IN_GAMMAF_R:
5135 	  case BUILT_IN_GAMMAL_R:
5136 	  case BUILT_IN_MODF:
5137 	  case BUILT_IN_MODFF:
5138 	  case BUILT_IN_MODFL:
5139 	    {
5140 	      process_ipa_clobber (fi, gimple_call_arg (t, 1));
5141 	      return;
5142 	    }
5143 	  /* The following functions clobber their third argument.  */
5144 	  case BUILT_IN_REMQUO:
5145 	  case BUILT_IN_REMQUOF:
5146 	  case BUILT_IN_REMQUOL:
5147 	    {
5148 	      process_ipa_clobber (fi, gimple_call_arg (t, 2));
5149 	      return;
5150 	    }
5151 	  /* The following functions neither read nor clobber memory.  */
5152 	  case BUILT_IN_ASSUME_ALIGNED:
5153 	  case BUILT_IN_FREE:
5154 	    return;
5155 	  /* Trampolines are of no interest to us.  */
5156 	  case BUILT_IN_INIT_TRAMPOLINE:
5157 	  case BUILT_IN_ADJUST_TRAMPOLINE:
5158 	    return;
5159 	  case BUILT_IN_VA_START:
5160 	  case BUILT_IN_VA_END:
5161 	    return;
5162 	  case BUILT_IN_GOMP_PARALLEL:
5163 	  case BUILT_IN_GOACC_PARALLEL:
5164 	    {
5165 	      unsigned int fnpos, argpos;
5166 	      unsigned int implicit_use_args[2];
5167 	      unsigned int num_implicit_use_args = 0;
5168 	      switch (DECL_FUNCTION_CODE (decl))
5169 		{
5170 		case BUILT_IN_GOMP_PARALLEL:
5171 		  /* __builtin_GOMP_parallel (fn, data, num_threads, flags).  */
5172 		  fnpos = 0;
5173 		  argpos = 1;
5174 		  break;
5175 		case BUILT_IN_GOACC_PARALLEL:
5176 		  /* __builtin_GOACC_parallel (device, fn, mapnum, hostaddrs,
5177 					       sizes, kinds, ...).  */
5178 		  fnpos = 1;
5179 		  argpos = 3;
5180 		  implicit_use_args[num_implicit_use_args++] = 4;
5181 		  implicit_use_args[num_implicit_use_args++] = 5;
5182 		  break;
5183 		default:
5184 		  gcc_unreachable ();
5185 		}
5186 
5187 	      tree fnarg = gimple_call_arg (t, fnpos);
5188 	      gcc_assert (TREE_CODE (fnarg) == ADDR_EXPR);
5189 	      tree fndecl = TREE_OPERAND (fnarg, 0);
5190 	      if (fndecl_maybe_in_other_partition (fndecl))
5191 		/* Fallthru to general call handling.  */
5192 		break;
5193 
5194 	      varinfo_t cfi = get_vi_for_tree (fndecl);
5195 
5196 	      tree arg = gimple_call_arg (t, argpos);
5197 
5198 	      /* Parameter passed by value is used.  */
5199 	      lhs = get_function_part_constraint (fi, fi_uses);
5200 	      struct constraint_expr *rhsp;
5201 	      get_constraint_for (arg, &rhsc);
5202 	      FOR_EACH_VEC_ELT (rhsc, j, rhsp)
5203 		process_constraint (new_constraint (lhs, *rhsp));
5204 	      rhsc.truncate (0);
5205 
5206 	      /* Handle parameters used by the call, but not used in cfi, as
5207 		 implicitly used by cfi.  */
5208 	      lhs = get_function_part_constraint (cfi, fi_uses);
5209 	      for (unsigned i = 0; i < num_implicit_use_args; ++i)
5210 		{
5211 		  tree arg = gimple_call_arg (t, implicit_use_args[i]);
5212 		  get_constraint_for (arg, &rhsc);
5213 		  FOR_EACH_VEC_ELT (rhsc, j, rhsp)
5214 		    process_constraint (new_constraint (lhs, *rhsp));
5215 		  rhsc.truncate (0);
5216 		}
5217 
5218 	      /* The caller clobbers what the callee does.  */
5219 	      lhs = get_function_part_constraint (fi, fi_clobbers);
5220 	      rhs = get_function_part_constraint (cfi, fi_clobbers);
5221 	      process_constraint (new_constraint (lhs, rhs));
5222 
5223 	      /* The caller uses what the callee does.  */
5224 	      lhs = get_function_part_constraint (fi, fi_uses);
5225 	      rhs = get_function_part_constraint (cfi, fi_uses);
5226 	      process_constraint (new_constraint (lhs, rhs));
5227 
5228 	      return;
5229 	    }
5230 	  /* printf-style functions may have hooks to set pointers to
5231 	     point to somewhere into the generated string.  Leave them
5232 	     for a later exercise...  */
5233 	  default:
5234 	    /* Fallthru to general call handling.  */;
5235 	  }
5236 
5237       /* Parameters passed by value are used.  */
5238       lhs = get_function_part_constraint (fi, fi_uses);
5239       for (i = 0; i < gimple_call_num_args (t); i++)
5240 	{
5241 	  struct constraint_expr *rhsp;
5242 	  tree arg = gimple_call_arg (t, i);
5243 
5244 	  if (TREE_CODE (arg) == SSA_NAME
5245 	      || is_gimple_min_invariant (arg))
5246 	    continue;
5247 
5248 	  get_constraint_for_address_of (arg, &rhsc);
5249 	  FOR_EACH_VEC_ELT (rhsc, j, rhsp)
5250 	    process_constraint (new_constraint (lhs, *rhsp));
5251 	  rhsc.truncate (0);
5252 	}
5253 
5254       /* Build constraints for propagating clobbers/uses along the
5255 	 callgraph edges.  */
5256       cfi = get_fi_for_callee (call_stmt);
5257       if (cfi->id == anything_id)
5258 	{
5259 	  if (gimple_vdef (t))
5260 	    make_constraint_from (first_vi_for_offset (fi, fi_clobbers),
5261 				  anything_id);
5262 	  make_constraint_from (first_vi_for_offset (fi, fi_uses),
5263 				anything_id);
5264 	  return;
5265 	}
5266 
5267       /* For callees without function info (that's external functions),
5268 	 ESCAPED is clobbered and used.  */
5269       if (gimple_call_fndecl (t)
5270 	  && !cfi->is_fn_info)
5271 	{
5272 	  varinfo_t vi;
5273 
5274 	  if (gimple_vdef (t))
5275 	    make_copy_constraint (first_vi_for_offset (fi, fi_clobbers),
5276 				  escaped_id);
5277 	  make_copy_constraint (first_vi_for_offset (fi, fi_uses), escaped_id);
5278 
5279 	  /* Also honor the call statement use/clobber info.  */
5280 	  if ((vi = lookup_call_clobber_vi (call_stmt)) != NULL)
5281 	    make_copy_constraint (first_vi_for_offset (fi, fi_clobbers),
5282 				  vi->id);
5283 	  if ((vi = lookup_call_use_vi (call_stmt)) != NULL)
5284 	    make_copy_constraint (first_vi_for_offset (fi, fi_uses),
5285 				  vi->id);
5286 	  return;
5287 	}
5288 
5289       /* Otherwise the caller clobbers and uses what the callee does.
5290 	 ???  This should use a new complex constraint that filters
5291 	 local variables of the callee.  */
5292       if (gimple_vdef (t))
5293 	{
5294 	  lhs = get_function_part_constraint (fi, fi_clobbers);
5295 	  rhs = get_function_part_constraint (cfi, fi_clobbers);
5296 	  process_constraint (new_constraint (lhs, rhs));
5297 	}
5298       lhs = get_function_part_constraint (fi, fi_uses);
5299       rhs = get_function_part_constraint (cfi, fi_uses);
5300       process_constraint (new_constraint (lhs, rhs));
5301     }
5302   else if (gimple_code (t) == GIMPLE_ASM)
5303     {
5304       /* ???  Ick.  We can do better.  */
5305       if (gimple_vdef (t))
5306 	make_constraint_from (first_vi_for_offset (fi, fi_clobbers),
5307 			      anything_id);
5308       make_constraint_from (first_vi_for_offset (fi, fi_uses),
5309 			    anything_id);
5310     }
5311 }
5312 
5313 
5314 /* Find the first varinfo in the same variable as START that overlaps with
5315    OFFSET.  Return NULL if we can't find one.  */
5316 
5317 static varinfo_t
first_vi_for_offset(varinfo_t start,unsigned HOST_WIDE_INT offset)5318 first_vi_for_offset (varinfo_t start, unsigned HOST_WIDE_INT offset)
5319 {
5320   /* If the offset is outside of the variable, bail out.  */
5321   if (offset >= start->fullsize)
5322     return NULL;
5323 
5324   /* If we cannot reach offset from start, lookup the first field
5325      and start from there.  */
5326   if (start->offset > offset)
5327     start = get_varinfo (start->head);
5328 
5329   while (start)
5330     {
5331       /* We may not find a variable in the field list with the actual
5332 	 offset when we have glommed a structure to a variable.
5333 	 In that case, however, offset should still be within the size
5334 	 of the variable. */
5335       if (offset >= start->offset
5336 	  && (offset - start->offset) < start->size)
5337 	return start;
5338 
5339       start = vi_next (start);
5340     }
5341 
5342   return NULL;
5343 }
5344 
5345 /* Find the first varinfo in the same variable as START that overlaps with
5346    OFFSET.  If there is no such varinfo the varinfo directly preceding
5347    OFFSET is returned.  */
5348 
5349 static varinfo_t
first_or_preceding_vi_for_offset(varinfo_t start,unsigned HOST_WIDE_INT offset)5350 first_or_preceding_vi_for_offset (varinfo_t start,
5351 				  unsigned HOST_WIDE_INT offset)
5352 {
5353   /* If we cannot reach offset from start, lookup the first field
5354      and start from there.  */
5355   if (start->offset > offset)
5356     start = get_varinfo (start->head);
5357 
5358   /* We may not find a variable in the field list with the actual
5359      offset when we have glommed a structure to a variable.
5360      In that case, however, offset should still be within the size
5361      of the variable.
5362      If we got beyond the offset we look for return the field
5363      directly preceding offset which may be the last field.  */
5364   while (start->next
5365 	 && offset >= start->offset
5366 	 && !((offset - start->offset) < start->size))
5367     start = vi_next (start);
5368 
5369   return start;
5370 }
5371 
5372 
5373 /* This structure is used during pushing fields onto the fieldstack
5374    to track the offset of the field, since bitpos_of_field gives it
5375    relative to its immediate containing type, and we want it relative
5376    to the ultimate containing object.  */
5377 
5378 struct fieldoff
5379 {
5380   /* Offset from the base of the base containing object to this field.  */
5381   HOST_WIDE_INT offset;
5382 
5383   /* Size, in bits, of the field.  */
5384   unsigned HOST_WIDE_INT size;
5385 
5386   unsigned has_unknown_size : 1;
5387 
5388   unsigned must_have_pointers : 1;
5389 
5390   unsigned may_have_pointers : 1;
5391 
5392   unsigned only_restrict_pointers : 1;
5393 
5394   tree restrict_pointed_type;
5395 };
5396 typedef struct fieldoff fieldoff_s;
5397 
5398 
5399 /* qsort comparison function for two fieldoff's PA and PB */
5400 
5401 static int
fieldoff_compare(const void * pa,const void * pb)5402 fieldoff_compare (const void *pa, const void *pb)
5403 {
5404   const fieldoff_s *foa = (const fieldoff_s *)pa;
5405   const fieldoff_s *fob = (const fieldoff_s *)pb;
5406   unsigned HOST_WIDE_INT foasize, fobsize;
5407 
5408   if (foa->offset < fob->offset)
5409     return -1;
5410   else if (foa->offset > fob->offset)
5411     return 1;
5412 
5413   foasize = foa->size;
5414   fobsize = fob->size;
5415   if (foasize < fobsize)
5416     return -1;
5417   else if (foasize > fobsize)
5418     return 1;
5419   return 0;
5420 }
5421 
5422 /* Sort a fieldstack according to the field offset and sizes.  */
5423 static void
sort_fieldstack(vec<fieldoff_s> fieldstack)5424 sort_fieldstack (vec<fieldoff_s> fieldstack)
5425 {
5426   fieldstack.qsort (fieldoff_compare);
5427 }
5428 
5429 /* Return true if T is a type that can have subvars.  */
5430 
5431 static inline bool
type_can_have_subvars(const_tree t)5432 type_can_have_subvars (const_tree t)
5433 {
5434   /* Aggregates without overlapping fields can have subvars.  */
5435   return TREE_CODE (t) == RECORD_TYPE;
5436 }
5437 
5438 /* Return true if V is a tree that we can have subvars for.
5439    Normally, this is any aggregate type.  Also complex
5440    types which are not gimple registers can have subvars.  */
5441 
5442 static inline bool
var_can_have_subvars(const_tree v)5443 var_can_have_subvars (const_tree v)
5444 {
5445   /* Volatile variables should never have subvars.  */
5446   if (TREE_THIS_VOLATILE (v))
5447     return false;
5448 
5449   /* Non decls or memory tags can never have subvars.  */
5450   if (!DECL_P (v))
5451     return false;
5452 
5453   return type_can_have_subvars (TREE_TYPE (v));
5454 }
5455 
5456 /* Return true if T is a type that does contain pointers.  */
5457 
5458 static bool
type_must_have_pointers(tree type)5459 type_must_have_pointers (tree type)
5460 {
5461   if (POINTER_TYPE_P (type))
5462     return true;
5463 
5464   if (TREE_CODE (type) == ARRAY_TYPE)
5465     return type_must_have_pointers (TREE_TYPE (type));
5466 
5467   /* A function or method can have pointers as arguments, so track
5468      those separately.  */
5469   if (TREE_CODE (type) == FUNCTION_TYPE
5470       || TREE_CODE (type) == METHOD_TYPE)
5471     return true;
5472 
5473   return false;
5474 }
5475 
5476 static bool
field_must_have_pointers(tree t)5477 field_must_have_pointers (tree t)
5478 {
5479   return type_must_have_pointers (TREE_TYPE (t));
5480 }
5481 
5482 /* Given a TYPE, and a vector of field offsets FIELDSTACK, push all
5483    the fields of TYPE onto fieldstack, recording their offsets along
5484    the way.
5485 
5486    OFFSET is used to keep track of the offset in this entire
5487    structure, rather than just the immediately containing structure.
5488    Returns false if the caller is supposed to handle the field we
5489    recursed for.  */
5490 
5491 static bool
push_fields_onto_fieldstack(tree type,vec<fieldoff_s> * fieldstack,HOST_WIDE_INT offset)5492 push_fields_onto_fieldstack (tree type, vec<fieldoff_s> *fieldstack,
5493 			     HOST_WIDE_INT offset)
5494 {
5495   tree field;
5496   bool empty_p = true;
5497 
5498   if (TREE_CODE (type) != RECORD_TYPE)
5499     return false;
5500 
5501   /* If the vector of fields is growing too big, bail out early.
5502      Callers check for vec::length <= MAX_FIELDS_FOR_FIELD_SENSITIVE, make
5503      sure this fails.  */
5504   if (fieldstack->length () > MAX_FIELDS_FOR_FIELD_SENSITIVE)
5505     return false;
5506 
5507   for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
5508     if (TREE_CODE (field) == FIELD_DECL)
5509       {
5510 	bool push = false;
5511 	HOST_WIDE_INT foff = bitpos_of_field (field);
5512 	tree field_type = TREE_TYPE (field);
5513 
5514 	if (!var_can_have_subvars (field)
5515 	    || TREE_CODE (field_type) == QUAL_UNION_TYPE
5516 	    || TREE_CODE (field_type) == UNION_TYPE)
5517 	  push = true;
5518 	else if (!push_fields_onto_fieldstack
5519 		    (field_type, fieldstack, offset + foff)
5520 		 && (DECL_SIZE (field)
5521 		     && !integer_zerop (DECL_SIZE (field))))
5522 	  /* Empty structures may have actual size, like in C++.  So
5523 	     see if we didn't push any subfields and the size is
5524 	     nonzero, push the field onto the stack.  */
5525 	  push = true;
5526 
5527 	if (push)
5528 	  {
5529 	    fieldoff_s *pair = NULL;
5530 	    bool has_unknown_size = false;
5531 	    bool must_have_pointers_p;
5532 
5533 	    if (!fieldstack->is_empty ())
5534 	      pair = &fieldstack->last ();
5535 
5536 	    /* If there isn't anything at offset zero, create sth.  */
5537 	    if (!pair
5538 		&& offset + foff != 0)
5539 	      {
5540 		fieldoff_s e
5541 		  = {0, offset + foff, false, false, true, false, NULL_TREE};
5542 		pair = fieldstack->safe_push (e);
5543 	      }
5544 
5545 	    if (!DECL_SIZE (field)
5546 		|| !tree_fits_uhwi_p (DECL_SIZE (field)))
5547 	      has_unknown_size = true;
5548 
5549 	    /* If adjacent fields do not contain pointers merge them.  */
5550 	    must_have_pointers_p = field_must_have_pointers (field);
5551 	    if (pair
5552 		&& !has_unknown_size
5553 		&& !must_have_pointers_p
5554 		&& !pair->must_have_pointers
5555 		&& !pair->has_unknown_size
5556 		&& pair->offset + (HOST_WIDE_INT)pair->size == offset + foff)
5557 	      {
5558 		pair->size += tree_to_uhwi (DECL_SIZE (field));
5559 	      }
5560 	    else
5561 	      {
5562 		fieldoff_s e;
5563 		e.offset = offset + foff;
5564 		e.has_unknown_size = has_unknown_size;
5565 		if (!has_unknown_size)
5566 		  e.size = tree_to_uhwi (DECL_SIZE (field));
5567 		else
5568 		  e.size = -1;
5569 		e.must_have_pointers = must_have_pointers_p;
5570 		e.may_have_pointers = true;
5571 		e.only_restrict_pointers
5572 		  = (!has_unknown_size
5573 		     && POINTER_TYPE_P (field_type)
5574 		     && TYPE_RESTRICT (field_type));
5575 		if (e.only_restrict_pointers)
5576 		  e.restrict_pointed_type = TREE_TYPE (field_type);
5577 		fieldstack->safe_push (e);
5578 	      }
5579 	  }
5580 
5581 	empty_p = false;
5582       }
5583 
5584   return !empty_p;
5585 }
5586 
5587 /* Count the number of arguments DECL has, and set IS_VARARGS to true
5588    if it is a varargs function.  */
5589 
5590 static unsigned int
count_num_arguments(tree decl,bool * is_varargs)5591 count_num_arguments (tree decl, bool *is_varargs)
5592 {
5593   unsigned int num = 0;
5594   tree t;
5595 
5596   /* Capture named arguments for K&R functions.  They do not
5597      have a prototype and thus no TYPE_ARG_TYPES.  */
5598   for (t = DECL_ARGUMENTS (decl); t; t = DECL_CHAIN (t))
5599     ++num;
5600 
5601   /* Check if the function has variadic arguments.  */
5602   for (t = TYPE_ARG_TYPES (TREE_TYPE (decl)); t; t = TREE_CHAIN (t))
5603     if (TREE_VALUE (t) == void_type_node)
5604       break;
5605   if (!t)
5606     *is_varargs = true;
5607 
5608   return num;
5609 }
5610 
5611 /* Creation function node for DECL, using NAME, and return the index
5612    of the variable we've created for the function.  If NONLOCAL_p, create
5613    initial constraints.  */
5614 
5615 static varinfo_t
create_function_info_for(tree decl,const char * name,bool add_id,bool nonlocal_p)5616 create_function_info_for (tree decl, const char *name, bool add_id,
5617 			  bool nonlocal_p)
5618 {
5619   struct function *fn = DECL_STRUCT_FUNCTION (decl);
5620   varinfo_t vi, prev_vi;
5621   tree arg;
5622   unsigned int i;
5623   bool is_varargs = false;
5624   unsigned int num_args = count_num_arguments (decl, &is_varargs);
5625 
5626   /* Create the variable info.  */
5627 
5628   vi = new_var_info (decl, name, add_id);
5629   vi->offset = 0;
5630   vi->size = 1;
5631   vi->fullsize = fi_parm_base + num_args;
5632   vi->is_fn_info = 1;
5633   vi->may_have_pointers = false;
5634   if (is_varargs)
5635     vi->fullsize = ~0;
5636   insert_vi_for_tree (vi->decl, vi);
5637 
5638   prev_vi = vi;
5639 
5640   /* Create a variable for things the function clobbers and one for
5641      things the function uses.  */
5642     {
5643       varinfo_t clobbervi, usevi;
5644       const char *newname;
5645       char *tempname;
5646 
5647       tempname = xasprintf ("%s.clobber", name);
5648       newname = ggc_strdup (tempname);
5649       free (tempname);
5650 
5651       clobbervi = new_var_info (NULL, newname, false);
5652       clobbervi->offset = fi_clobbers;
5653       clobbervi->size = 1;
5654       clobbervi->fullsize = vi->fullsize;
5655       clobbervi->is_full_var = true;
5656       clobbervi->is_global_var = false;
5657 
5658       gcc_assert (prev_vi->offset < clobbervi->offset);
5659       prev_vi->next = clobbervi->id;
5660       prev_vi = clobbervi;
5661 
5662       tempname = xasprintf ("%s.use", name);
5663       newname = ggc_strdup (tempname);
5664       free (tempname);
5665 
5666       usevi = new_var_info (NULL, newname, false);
5667       usevi->offset = fi_uses;
5668       usevi->size = 1;
5669       usevi->fullsize = vi->fullsize;
5670       usevi->is_full_var = true;
5671       usevi->is_global_var = false;
5672 
5673       gcc_assert (prev_vi->offset < usevi->offset);
5674       prev_vi->next = usevi->id;
5675       prev_vi = usevi;
5676     }
5677 
5678   /* And one for the static chain.  */
5679   if (fn->static_chain_decl != NULL_TREE)
5680     {
5681       varinfo_t chainvi;
5682       const char *newname;
5683       char *tempname;
5684 
5685       tempname = xasprintf ("%s.chain", name);
5686       newname = ggc_strdup (tempname);
5687       free (tempname);
5688 
5689       chainvi = new_var_info (fn->static_chain_decl, newname, false);
5690       chainvi->offset = fi_static_chain;
5691       chainvi->size = 1;
5692       chainvi->fullsize = vi->fullsize;
5693       chainvi->is_full_var = true;
5694       chainvi->is_global_var = false;
5695 
5696       insert_vi_for_tree (fn->static_chain_decl, chainvi);
5697 
5698       if (nonlocal_p
5699 	  && chainvi->may_have_pointers)
5700 	make_constraint_from (chainvi, nonlocal_id);
5701 
5702       gcc_assert (prev_vi->offset < chainvi->offset);
5703       prev_vi->next = chainvi->id;
5704       prev_vi = chainvi;
5705     }
5706 
5707   /* Create a variable for the return var.  */
5708   if (DECL_RESULT (decl) != NULL
5709       || !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (decl))))
5710     {
5711       varinfo_t resultvi;
5712       const char *newname;
5713       char *tempname;
5714       tree resultdecl = decl;
5715 
5716       if (DECL_RESULT (decl))
5717 	resultdecl = DECL_RESULT (decl);
5718 
5719       tempname = xasprintf ("%s.result", name);
5720       newname = ggc_strdup (tempname);
5721       free (tempname);
5722 
5723       resultvi = new_var_info (resultdecl, newname, false);
5724       resultvi->offset = fi_result;
5725       resultvi->size = 1;
5726       resultvi->fullsize = vi->fullsize;
5727       resultvi->is_full_var = true;
5728       if (DECL_RESULT (decl))
5729 	resultvi->may_have_pointers = true;
5730 
5731       if (DECL_RESULT (decl))
5732 	insert_vi_for_tree (DECL_RESULT (decl), resultvi);
5733 
5734       if (nonlocal_p
5735 	  && DECL_RESULT (decl)
5736 	  && DECL_BY_REFERENCE (DECL_RESULT (decl)))
5737 	make_constraint_from (resultvi, nonlocal_id);
5738 
5739       gcc_assert (prev_vi->offset < resultvi->offset);
5740       prev_vi->next = resultvi->id;
5741       prev_vi = resultvi;
5742     }
5743 
5744   /* We also need to make function return values escape.  Nothing
5745      escapes by returning from main though.  */
5746   if (nonlocal_p
5747       && !MAIN_NAME_P (DECL_NAME (decl)))
5748     {
5749       varinfo_t fi, rvi;
5750       fi = lookup_vi_for_tree (decl);
5751       rvi = first_vi_for_offset (fi, fi_result);
5752       if (rvi && rvi->offset == fi_result)
5753 	make_copy_constraint (get_varinfo (escaped_id), rvi->id);
5754     }
5755 
5756   /* Set up variables for each argument.  */
5757   arg = DECL_ARGUMENTS (decl);
5758   for (i = 0; i < num_args; i++)
5759     {
5760       varinfo_t argvi;
5761       const char *newname;
5762       char *tempname;
5763       tree argdecl = decl;
5764 
5765       if (arg)
5766 	argdecl = arg;
5767 
5768       tempname = xasprintf ("%s.arg%d", name, i);
5769       newname = ggc_strdup (tempname);
5770       free (tempname);
5771 
5772       argvi = new_var_info (argdecl, newname, false);
5773       argvi->offset = fi_parm_base + i;
5774       argvi->size = 1;
5775       argvi->is_full_var = true;
5776       argvi->fullsize = vi->fullsize;
5777       if (arg)
5778 	argvi->may_have_pointers = true;
5779 
5780       if (arg)
5781 	insert_vi_for_tree (arg, argvi);
5782 
5783       if (nonlocal_p
5784 	  && argvi->may_have_pointers)
5785 	make_constraint_from (argvi, nonlocal_id);
5786 
5787       gcc_assert (prev_vi->offset < argvi->offset);
5788       prev_vi->next = argvi->id;
5789       prev_vi = argvi;
5790       if (arg)
5791 	arg = DECL_CHAIN (arg);
5792     }
5793 
5794   /* Add one representative for all further args.  */
5795   if (is_varargs)
5796     {
5797       varinfo_t argvi;
5798       const char *newname;
5799       char *tempname;
5800       tree decl;
5801 
5802       tempname = xasprintf ("%s.varargs", name);
5803       newname = ggc_strdup (tempname);
5804       free (tempname);
5805 
5806       /* We need sth that can be pointed to for va_start.  */
5807       decl = build_fake_var_decl (ptr_type_node);
5808 
5809       argvi = new_var_info (decl, newname, false);
5810       argvi->offset = fi_parm_base + num_args;
5811       argvi->size = ~0;
5812       argvi->is_full_var = true;
5813       argvi->is_heap_var = true;
5814       argvi->fullsize = vi->fullsize;
5815 
5816       if (nonlocal_p
5817 	  && argvi->may_have_pointers)
5818 	make_constraint_from (argvi, nonlocal_id);
5819 
5820       gcc_assert (prev_vi->offset < argvi->offset);
5821       prev_vi->next = argvi->id;
5822       prev_vi = argvi;
5823     }
5824 
5825   return vi;
5826 }
5827 
5828 
5829 /* Return true if FIELDSTACK contains fields that overlap.
5830    FIELDSTACK is assumed to be sorted by offset.  */
5831 
5832 static bool
check_for_overlaps(vec<fieldoff_s> fieldstack)5833 check_for_overlaps (vec<fieldoff_s> fieldstack)
5834 {
5835   fieldoff_s *fo = NULL;
5836   unsigned int i;
5837   HOST_WIDE_INT lastoffset = -1;
5838 
5839   FOR_EACH_VEC_ELT (fieldstack, i, fo)
5840     {
5841       if (fo->offset == lastoffset)
5842 	return true;
5843       lastoffset = fo->offset;
5844     }
5845   return false;
5846 }
5847 
5848 /* Create a varinfo structure for NAME and DECL, and add it to VARMAP.
5849    This will also create any varinfo structures necessary for fields
5850    of DECL.  DECL is a function parameter if HANDLE_PARAM is set.
5851    HANDLED_STRUCT_TYPE is used to register struct types reached by following
5852    restrict pointers.  This is needed to prevent infinite recursion.  */
5853 
5854 static varinfo_t
create_variable_info_for_1(tree decl,const char * name,bool add_id,bool handle_param,bitmap handled_struct_type)5855 create_variable_info_for_1 (tree decl, const char *name, bool add_id,
5856 			    bool handle_param, bitmap handled_struct_type)
5857 {
5858   varinfo_t vi, newvi;
5859   tree decl_type = TREE_TYPE (decl);
5860   tree declsize = DECL_P (decl) ? DECL_SIZE (decl) : TYPE_SIZE (decl_type);
5861   auto_vec<fieldoff_s> fieldstack;
5862   fieldoff_s *fo;
5863   unsigned int i;
5864 
5865   if (!declsize
5866       || !tree_fits_uhwi_p (declsize))
5867     {
5868       vi = new_var_info (decl, name, add_id);
5869       vi->offset = 0;
5870       vi->size = ~0;
5871       vi->fullsize = ~0;
5872       vi->is_unknown_size_var = true;
5873       vi->is_full_var = true;
5874       vi->may_have_pointers = true;
5875       return vi;
5876     }
5877 
5878   /* Collect field information.  */
5879   if (use_field_sensitive
5880       && var_can_have_subvars (decl)
5881       /* ???  Force us to not use subfields for globals in IPA mode.
5882 	 Else we'd have to parse arbitrary initializers.  */
5883       && !(in_ipa_mode
5884 	   && is_global_var (decl)))
5885     {
5886       fieldoff_s *fo = NULL;
5887       bool notokay = false;
5888       unsigned int i;
5889 
5890       push_fields_onto_fieldstack (decl_type, &fieldstack, 0);
5891 
5892       for (i = 0; !notokay && fieldstack.iterate (i, &fo); i++)
5893 	if (fo->has_unknown_size
5894 	    || fo->offset < 0)
5895 	  {
5896 	    notokay = true;
5897 	    break;
5898 	  }
5899 
5900       /* We can't sort them if we have a field with a variable sized type,
5901 	 which will make notokay = true.  In that case, we are going to return
5902 	 without creating varinfos for the fields anyway, so sorting them is a
5903 	 waste to boot.  */
5904       if (!notokay)
5905 	{
5906 	  sort_fieldstack (fieldstack);
5907 	  /* Due to some C++ FE issues, like PR 22488, we might end up
5908 	     what appear to be overlapping fields even though they,
5909 	     in reality, do not overlap.  Until the C++ FE is fixed,
5910 	     we will simply disable field-sensitivity for these cases.  */
5911 	  notokay = check_for_overlaps (fieldstack);
5912 	}
5913 
5914       if (notokay)
5915 	fieldstack.release ();
5916     }
5917 
5918   /* If we didn't end up collecting sub-variables create a full
5919      variable for the decl.  */
5920   if (fieldstack.length () == 0
5921       || fieldstack.length () > MAX_FIELDS_FOR_FIELD_SENSITIVE)
5922     {
5923       vi = new_var_info (decl, name, add_id);
5924       vi->offset = 0;
5925       vi->may_have_pointers = true;
5926       vi->fullsize = tree_to_uhwi (declsize);
5927       vi->size = vi->fullsize;
5928       vi->is_full_var = true;
5929       if (POINTER_TYPE_P (decl_type)
5930 	  && TYPE_RESTRICT (decl_type))
5931 	vi->only_restrict_pointers = 1;
5932       if (vi->only_restrict_pointers
5933 	  && !type_contains_placeholder_p (TREE_TYPE (decl_type))
5934 	  && handle_param
5935 	  && !bitmap_bit_p (handled_struct_type,
5936 			    TYPE_UID (TREE_TYPE (decl_type))))
5937 	{
5938 	  varinfo_t rvi;
5939 	  tree heapvar = build_fake_var_decl (TREE_TYPE (decl_type));
5940 	  DECL_EXTERNAL (heapvar) = 1;
5941 	  if (var_can_have_subvars (heapvar))
5942 	    bitmap_set_bit (handled_struct_type,
5943 			    TYPE_UID (TREE_TYPE (decl_type)));
5944 	  rvi = create_variable_info_for_1 (heapvar, "PARM_NOALIAS", true,
5945 					    true, handled_struct_type);
5946 	  if (var_can_have_subvars (heapvar))
5947 	    bitmap_clear_bit (handled_struct_type,
5948 			      TYPE_UID (TREE_TYPE (decl_type)));
5949 	  rvi->is_restrict_var = 1;
5950 	  insert_vi_for_tree (heapvar, rvi);
5951 	  make_constraint_from (vi, rvi->id);
5952 	  make_param_constraints (rvi);
5953 	}
5954       fieldstack.release ();
5955       return vi;
5956     }
5957 
5958   vi = new_var_info (decl, name, add_id);
5959   vi->fullsize = tree_to_uhwi (declsize);
5960   if (fieldstack.length () == 1)
5961     vi->is_full_var = true;
5962   for (i = 0, newvi = vi;
5963        fieldstack.iterate (i, &fo);
5964        ++i, newvi = vi_next (newvi))
5965     {
5966       const char *newname = NULL;
5967       char *tempname;
5968 
5969       if (dump_file)
5970 	{
5971 	  if (fieldstack.length () != 1)
5972 	    {
5973 	      tempname
5974 		= xasprintf ("%s." HOST_WIDE_INT_PRINT_DEC
5975 			     "+" HOST_WIDE_INT_PRINT_DEC, name,
5976 			     fo->offset, fo->size);
5977 	      newname = ggc_strdup (tempname);
5978 	      free (tempname);
5979 	    }
5980 	}
5981       else
5982 	newname = "NULL";
5983 
5984       if (newname)
5985 	  newvi->name = newname;
5986       newvi->offset = fo->offset;
5987       newvi->size = fo->size;
5988       newvi->fullsize = vi->fullsize;
5989       newvi->may_have_pointers = fo->may_have_pointers;
5990       newvi->only_restrict_pointers = fo->only_restrict_pointers;
5991       if (handle_param
5992 	  && newvi->only_restrict_pointers
5993 	  && !type_contains_placeholder_p (fo->restrict_pointed_type)
5994 	  && !bitmap_bit_p (handled_struct_type,
5995 			    TYPE_UID (fo->restrict_pointed_type)))
5996 	{
5997 	  varinfo_t rvi;
5998 	  tree heapvar = build_fake_var_decl (fo->restrict_pointed_type);
5999 	  DECL_EXTERNAL (heapvar) = 1;
6000 	  if (var_can_have_subvars (heapvar))
6001 	    bitmap_set_bit (handled_struct_type,
6002 			    TYPE_UID (fo->restrict_pointed_type));
6003 	  rvi = create_variable_info_for_1 (heapvar, "PARM_NOALIAS", true,
6004 					    true, handled_struct_type);
6005 	  if (var_can_have_subvars (heapvar))
6006 	    bitmap_clear_bit (handled_struct_type,
6007 			      TYPE_UID (fo->restrict_pointed_type));
6008 	  rvi->is_restrict_var = 1;
6009 	  insert_vi_for_tree (heapvar, rvi);
6010 	  make_constraint_from (newvi, rvi->id);
6011 	  make_param_constraints (rvi);
6012 	}
6013       if (i + 1 < fieldstack.length ())
6014 	{
6015 	  varinfo_t tem = new_var_info (decl, name, false);
6016 	  newvi->next = tem->id;
6017 	  tem->head = vi->id;
6018 	}
6019     }
6020 
6021   return vi;
6022 }
6023 
6024 static unsigned int
create_variable_info_for(tree decl,const char * name,bool add_id)6025 create_variable_info_for (tree decl, const char *name, bool add_id)
6026 {
6027   varinfo_t vi = create_variable_info_for_1 (decl, name, add_id, false, NULL);
6028   unsigned int id = vi->id;
6029 
6030   insert_vi_for_tree (decl, vi);
6031 
6032   if (TREE_CODE (decl) != VAR_DECL)
6033     return id;
6034 
6035   /* Create initial constraints for globals.  */
6036   for (; vi; vi = vi_next (vi))
6037     {
6038       if (!vi->may_have_pointers
6039 	  || !vi->is_global_var)
6040 	continue;
6041 
6042       /* Mark global restrict qualified pointers.  */
6043       if ((POINTER_TYPE_P (TREE_TYPE (decl))
6044 	   && TYPE_RESTRICT (TREE_TYPE (decl)))
6045 	  || vi->only_restrict_pointers)
6046 	{
6047 	  varinfo_t rvi
6048 	    = make_constraint_from_global_restrict (vi, "GLOBAL_RESTRICT",
6049 						    true);
6050 	  /* ???  For now exclude reads from globals as restrict sources
6051 	     if those are not (indirectly) from incoming parameters.  */
6052 	  rvi->is_restrict_var = false;
6053 	  continue;
6054 	}
6055 
6056       /* In non-IPA mode the initializer from nonlocal is all we need.  */
6057       if (!in_ipa_mode
6058 	  || DECL_HARD_REGISTER (decl))
6059 	make_copy_constraint (vi, nonlocal_id);
6060 
6061       /* In IPA mode parse the initializer and generate proper constraints
6062 	 for it.  */
6063       else
6064 	{
6065 	  varpool_node *vnode = varpool_node::get (decl);
6066 
6067 	  /* For escaped variables initialize them from nonlocal.  */
6068 	  if (!vnode->all_refs_explicit_p ())
6069 	    make_copy_constraint (vi, nonlocal_id);
6070 
6071 	  /* If this is a global variable with an initializer and we are in
6072 	     IPA mode generate constraints for it.  */
6073 	  ipa_ref *ref;
6074 	  for (unsigned idx = 0; vnode->iterate_reference (idx, ref); ++idx)
6075 	    {
6076 	      auto_vec<ce_s> rhsc;
6077 	      struct constraint_expr lhs, *rhsp;
6078 	      unsigned i;
6079 	      get_constraint_for_address_of (ref->referred->decl, &rhsc);
6080 	      lhs.var = vi->id;
6081 	      lhs.offset = 0;
6082 	      lhs.type = SCALAR;
6083 	      FOR_EACH_VEC_ELT (rhsc, i, rhsp)
6084 		process_constraint (new_constraint (lhs, *rhsp));
6085 	      /* If this is a variable that escapes from the unit
6086 		 the initializer escapes as well.  */
6087 	      if (!vnode->all_refs_explicit_p ())
6088 		{
6089 		  lhs.var = escaped_id;
6090 		  lhs.offset = 0;
6091 		  lhs.type = SCALAR;
6092 		  FOR_EACH_VEC_ELT (rhsc, i, rhsp)
6093 		    process_constraint (new_constraint (lhs, *rhsp));
6094 		}
6095 	    }
6096 	}
6097     }
6098 
6099   return id;
6100 }
6101 
6102 /* Print out the points-to solution for VAR to FILE.  */
6103 
6104 static void
dump_solution_for_var(FILE * file,unsigned int var)6105 dump_solution_for_var (FILE *file, unsigned int var)
6106 {
6107   varinfo_t vi = get_varinfo (var);
6108   unsigned int i;
6109   bitmap_iterator bi;
6110 
6111   /* Dump the solution for unified vars anyway, this avoids difficulties
6112      in scanning dumps in the testsuite.  */
6113   fprintf (file, "%s = { ", vi->name);
6114   vi = get_varinfo (find (var));
6115   EXECUTE_IF_SET_IN_BITMAP (vi->solution, 0, i, bi)
6116     fprintf (file, "%s ", get_varinfo (i)->name);
6117   fprintf (file, "}");
6118 
6119   /* But note when the variable was unified.  */
6120   if (vi->id != var)
6121     fprintf (file, " same as %s", vi->name);
6122 
6123   fprintf (file, "\n");
6124 }
6125 
6126 /* Print the points-to solution for VAR to stderr.  */
6127 
6128 DEBUG_FUNCTION void
debug_solution_for_var(unsigned int var)6129 debug_solution_for_var (unsigned int var)
6130 {
6131   dump_solution_for_var (stderr, var);
6132 }
6133 
6134 /* Register the constraints for function parameter related VI.  */
6135 
6136 static void
make_param_constraints(varinfo_t vi)6137 make_param_constraints (varinfo_t vi)
6138 {
6139   for (; vi; vi = vi_next (vi))
6140     {
6141       if (vi->only_restrict_pointers)
6142 	;
6143       else if (vi->may_have_pointers)
6144 	make_constraint_from (vi, nonlocal_id);
6145 
6146       if (vi->is_full_var)
6147 	break;
6148     }
6149 }
6150 
6151 /* Create varinfo structures for all of the variables in the
6152    function for intraprocedural mode.  */
6153 
6154 static void
intra_create_variable_infos(struct function * fn)6155 intra_create_variable_infos (struct function *fn)
6156 {
6157   tree t;
6158   bitmap handled_struct_type = NULL;
6159 
6160   /* For each incoming pointer argument arg, create the constraint ARG
6161      = NONLOCAL or a dummy variable if it is a restrict qualified
6162      passed-by-reference argument.  */
6163   for (t = DECL_ARGUMENTS (fn->decl); t; t = DECL_CHAIN (t))
6164     {
6165       if (handled_struct_type == NULL)
6166 	handled_struct_type = BITMAP_ALLOC (NULL);
6167 
6168       varinfo_t p
6169 	= create_variable_info_for_1 (t, alias_get_name (t), false, true,
6170 				      handled_struct_type);
6171       insert_vi_for_tree (t, p);
6172 
6173       make_param_constraints (p);
6174     }
6175 
6176   if (handled_struct_type != NULL)
6177     BITMAP_FREE (handled_struct_type);
6178 
6179   /* Add a constraint for a result decl that is passed by reference.  */
6180   if (DECL_RESULT (fn->decl)
6181       && DECL_BY_REFERENCE (DECL_RESULT (fn->decl)))
6182     {
6183       varinfo_t p, result_vi = get_vi_for_tree (DECL_RESULT (fn->decl));
6184 
6185       for (p = result_vi; p; p = vi_next (p))
6186 	make_constraint_from (p, nonlocal_id);
6187     }
6188 
6189   /* Add a constraint for the incoming static chain parameter.  */
6190   if (fn->static_chain_decl != NULL_TREE)
6191     {
6192       varinfo_t p, chain_vi = get_vi_for_tree (fn->static_chain_decl);
6193 
6194       for (p = chain_vi; p; p = vi_next (p))
6195 	make_constraint_from (p, nonlocal_id);
6196     }
6197 }
6198 
6199 /* Structure used to put solution bitmaps in a hashtable so they can
6200    be shared among variables with the same points-to set.  */
6201 
6202 typedef struct shared_bitmap_info
6203 {
6204   bitmap pt_vars;
6205   hashval_t hashcode;
6206 } *shared_bitmap_info_t;
6207 typedef const struct shared_bitmap_info *const_shared_bitmap_info_t;
6208 
6209 /* Shared_bitmap hashtable helpers.  */
6210 
6211 struct shared_bitmap_hasher : free_ptr_hash <shared_bitmap_info>
6212 {
6213   static inline hashval_t hash (const shared_bitmap_info *);
6214   static inline bool equal (const shared_bitmap_info *,
6215 			    const shared_bitmap_info *);
6216 };
6217 
6218 /* Hash function for a shared_bitmap_info_t */
6219 
6220 inline hashval_t
hash(const shared_bitmap_info * bi)6221 shared_bitmap_hasher::hash (const shared_bitmap_info *bi)
6222 {
6223   return bi->hashcode;
6224 }
6225 
6226 /* Equality function for two shared_bitmap_info_t's. */
6227 
6228 inline bool
equal(const shared_bitmap_info * sbi1,const shared_bitmap_info * sbi2)6229 shared_bitmap_hasher::equal (const shared_bitmap_info *sbi1,
6230 			     const shared_bitmap_info *sbi2)
6231 {
6232   return bitmap_equal_p (sbi1->pt_vars, sbi2->pt_vars);
6233 }
6234 
6235 /* Shared_bitmap hashtable.  */
6236 
6237 static hash_table<shared_bitmap_hasher> *shared_bitmap_table;
6238 
6239 /* Lookup a bitmap in the shared bitmap hashtable, and return an already
6240    existing instance if there is one, NULL otherwise.  */
6241 
6242 static bitmap
shared_bitmap_lookup(bitmap pt_vars)6243 shared_bitmap_lookup (bitmap pt_vars)
6244 {
6245   shared_bitmap_info **slot;
6246   struct shared_bitmap_info sbi;
6247 
6248   sbi.pt_vars = pt_vars;
6249   sbi.hashcode = bitmap_hash (pt_vars);
6250 
6251   slot = shared_bitmap_table->find_slot (&sbi, NO_INSERT);
6252   if (!slot)
6253     return NULL;
6254   else
6255     return (*slot)->pt_vars;
6256 }
6257 
6258 
6259 /* Add a bitmap to the shared bitmap hashtable.  */
6260 
6261 static void
shared_bitmap_add(bitmap pt_vars)6262 shared_bitmap_add (bitmap pt_vars)
6263 {
6264   shared_bitmap_info **slot;
6265   shared_bitmap_info_t sbi = XNEW (struct shared_bitmap_info);
6266 
6267   sbi->pt_vars = pt_vars;
6268   sbi->hashcode = bitmap_hash (pt_vars);
6269 
6270   slot = shared_bitmap_table->find_slot (sbi, INSERT);
6271   gcc_assert (!*slot);
6272   *slot = sbi;
6273 }
6274 
6275 
6276 /* Set bits in INTO corresponding to the variable uids in solution set FROM.  */
6277 
6278 static void
set_uids_in_ptset(bitmap into,bitmap from,struct pt_solution * pt,tree fndecl)6279 set_uids_in_ptset (bitmap into, bitmap from, struct pt_solution *pt,
6280 		   tree fndecl)
6281 {
6282   unsigned int i;
6283   bitmap_iterator bi;
6284   varinfo_t escaped_vi = get_varinfo (find (escaped_id));
6285   bool everything_escaped
6286     = escaped_vi->solution && bitmap_bit_p (escaped_vi->solution, anything_id);
6287 
6288   EXECUTE_IF_SET_IN_BITMAP (from, 0, i, bi)
6289     {
6290       varinfo_t vi = get_varinfo (i);
6291 
6292       /* The only artificial variables that are allowed in a may-alias
6293 	 set are heap variables.  */
6294       if (vi->is_artificial_var && !vi->is_heap_var)
6295 	continue;
6296 
6297       if (everything_escaped
6298 	  || (escaped_vi->solution
6299 	      && bitmap_bit_p (escaped_vi->solution, i)))
6300 	{
6301 	  pt->vars_contains_escaped = true;
6302 	  pt->vars_contains_escaped_heap = vi->is_heap_var;
6303 	}
6304 
6305       if (TREE_CODE (vi->decl) == VAR_DECL
6306 	  || TREE_CODE (vi->decl) == PARM_DECL
6307 	  || TREE_CODE (vi->decl) == RESULT_DECL)
6308 	{
6309 	  /* If we are in IPA mode we will not recompute points-to
6310 	     sets after inlining so make sure they stay valid.  */
6311 	  if (in_ipa_mode
6312 	      && !DECL_PT_UID_SET_P (vi->decl))
6313 	    SET_DECL_PT_UID (vi->decl, DECL_UID (vi->decl));
6314 
6315 	  /* Add the decl to the points-to set.  Note that the points-to
6316 	     set contains global variables.  */
6317 	  bitmap_set_bit (into, DECL_PT_UID (vi->decl));
6318 	  if (vi->is_global_var
6319 	      /* In IPA mode the escaped_heap trick doesn't work as
6320 		 ESCAPED is escaped from the unit but
6321 		 pt_solution_includes_global needs to answer true for
6322 		 all variables not automatic within a function.
6323 		 For the same reason is_global_var is not the
6324 		 correct flag to track - local variables from other
6325 		 functions also need to be considered global.
6326 		 Conveniently all HEAP vars are not put in function
6327 		 scope.  */
6328 	      || (in_ipa_mode
6329 		  && fndecl
6330 		  && ! auto_var_in_fn_p (vi->decl, fndecl)))
6331 	    pt->vars_contains_nonlocal = true;
6332 	}
6333 
6334       else if (TREE_CODE (vi->decl) == FUNCTION_DECL
6335 	       || TREE_CODE (vi->decl) == LABEL_DECL)
6336 	{
6337 	  /* Nothing should read/write from/to code so we can
6338 	     save bits by not including them in the points-to bitmaps.
6339 	     Still mark the points-to set as containing global memory
6340 	     to make code-patching possible - see PR70128.  */
6341 	  pt->vars_contains_nonlocal = true;
6342 	}
6343     }
6344 }
6345 
6346 
6347 /* Compute the points-to solution *PT for the variable VI.  */
6348 
6349 static struct pt_solution
find_what_var_points_to(tree fndecl,varinfo_t orig_vi)6350 find_what_var_points_to (tree fndecl, varinfo_t orig_vi)
6351 {
6352   unsigned int i;
6353   bitmap_iterator bi;
6354   bitmap finished_solution;
6355   bitmap result;
6356   varinfo_t vi;
6357   struct pt_solution *pt;
6358 
6359   /* This variable may have been collapsed, let's get the real
6360      variable.  */
6361   vi = get_varinfo (find (orig_vi->id));
6362 
6363   /* See if we have already computed the solution and return it.  */
6364   pt_solution **slot = &final_solutions->get_or_insert (vi);
6365   if (*slot != NULL)
6366     return **slot;
6367 
6368   *slot = pt = XOBNEW (&final_solutions_obstack, struct pt_solution);
6369   memset (pt, 0, sizeof (struct pt_solution));
6370 
6371   /* Translate artificial variables into SSA_NAME_PTR_INFO
6372      attributes.  */
6373   EXECUTE_IF_SET_IN_BITMAP (vi->solution, 0, i, bi)
6374     {
6375       varinfo_t vi = get_varinfo (i);
6376 
6377       if (vi->is_artificial_var)
6378 	{
6379 	  if (vi->id == nothing_id)
6380 	    pt->null = 1;
6381 	  else if (vi->id == escaped_id)
6382 	    {
6383 	      if (in_ipa_mode)
6384 		pt->ipa_escaped = 1;
6385 	      else
6386 		pt->escaped = 1;
6387 	      /* Expand some special vars of ESCAPED in-place here.  */
6388 	      varinfo_t evi = get_varinfo (find (escaped_id));
6389 	      if (bitmap_bit_p (evi->solution, nonlocal_id))
6390 		pt->nonlocal = 1;
6391 	    }
6392 	  else if (vi->id == nonlocal_id)
6393 	    pt->nonlocal = 1;
6394 	  else if (vi->is_heap_var)
6395 	    /* We represent heapvars in the points-to set properly.  */
6396 	    ;
6397 	  else if (vi->id == string_id)
6398 	    /* Nobody cares - STRING_CSTs are read-only entities.  */
6399 	    ;
6400 	  else if (vi->id == anything_id
6401 		   || vi->id == integer_id)
6402 	    pt->anything = 1;
6403 	}
6404     }
6405 
6406   /* Instead of doing extra work, simply do not create
6407      elaborate points-to information for pt_anything pointers.  */
6408   if (pt->anything)
6409     return *pt;
6410 
6411   /* Share the final set of variables when possible.  */
6412   finished_solution = BITMAP_GGC_ALLOC ();
6413   stats.points_to_sets_created++;
6414 
6415   set_uids_in_ptset (finished_solution, vi->solution, pt, fndecl);
6416   result = shared_bitmap_lookup (finished_solution);
6417   if (!result)
6418     {
6419       shared_bitmap_add (finished_solution);
6420       pt->vars = finished_solution;
6421     }
6422   else
6423     {
6424       pt->vars = result;
6425       bitmap_clear (finished_solution);
6426     }
6427 
6428   return *pt;
6429 }
6430 
6431 /* Given a pointer variable P, fill in its points-to set.  */
6432 
6433 static void
find_what_p_points_to(tree fndecl,tree p)6434 find_what_p_points_to (tree fndecl, tree p)
6435 {
6436   struct ptr_info_def *pi;
6437   tree lookup_p = p;
6438   varinfo_t vi;
6439 
6440   /* For parameters, get at the points-to set for the actual parm
6441      decl.  */
6442   if (TREE_CODE (p) == SSA_NAME
6443       && SSA_NAME_IS_DEFAULT_DEF (p)
6444       && (TREE_CODE (SSA_NAME_VAR (p)) == PARM_DECL
6445 	  || TREE_CODE (SSA_NAME_VAR (p)) == RESULT_DECL))
6446     lookup_p = SSA_NAME_VAR (p);
6447 
6448   vi = lookup_vi_for_tree (lookup_p);
6449   if (!vi)
6450     return;
6451 
6452   pi = get_ptr_info (p);
6453   pi->pt = find_what_var_points_to (fndecl, vi);
6454 }
6455 
6456 
6457 /* Query statistics for points-to solutions.  */
6458 
6459 static struct {
6460   unsigned HOST_WIDE_INT pt_solution_includes_may_alias;
6461   unsigned HOST_WIDE_INT pt_solution_includes_no_alias;
6462   unsigned HOST_WIDE_INT pt_solutions_intersect_may_alias;
6463   unsigned HOST_WIDE_INT pt_solutions_intersect_no_alias;
6464 } pta_stats;
6465 
6466 void
dump_pta_stats(FILE * s)6467 dump_pta_stats (FILE *s)
6468 {
6469   fprintf (s, "\nPTA query stats:\n");
6470   fprintf (s, "  pt_solution_includes: "
6471 	   HOST_WIDE_INT_PRINT_DEC" disambiguations, "
6472 	   HOST_WIDE_INT_PRINT_DEC" queries\n",
6473 	   pta_stats.pt_solution_includes_no_alias,
6474 	   pta_stats.pt_solution_includes_no_alias
6475 	   + pta_stats.pt_solution_includes_may_alias);
6476   fprintf (s, "  pt_solutions_intersect: "
6477 	   HOST_WIDE_INT_PRINT_DEC" disambiguations, "
6478 	   HOST_WIDE_INT_PRINT_DEC" queries\n",
6479 	   pta_stats.pt_solutions_intersect_no_alias,
6480 	   pta_stats.pt_solutions_intersect_no_alias
6481 	   + pta_stats.pt_solutions_intersect_may_alias);
6482 }
6483 
6484 
6485 /* Reset the points-to solution *PT to a conservative default
6486    (point to anything).  */
6487 
6488 void
pt_solution_reset(struct pt_solution * pt)6489 pt_solution_reset (struct pt_solution *pt)
6490 {
6491   memset (pt, 0, sizeof (struct pt_solution));
6492   pt->anything = true;
6493 }
6494 
6495 /* Set the points-to solution *PT to point only to the variables
6496    in VARS.  VARS_CONTAINS_GLOBAL specifies whether that contains
6497    global variables and VARS_CONTAINS_RESTRICT specifies whether
6498    it contains restrict tag variables.  */
6499 
6500 void
pt_solution_set(struct pt_solution * pt,bitmap vars,bool vars_contains_nonlocal)6501 pt_solution_set (struct pt_solution *pt, bitmap vars,
6502 		 bool vars_contains_nonlocal)
6503 {
6504   memset (pt, 0, sizeof (struct pt_solution));
6505   pt->vars = vars;
6506   pt->vars_contains_nonlocal = vars_contains_nonlocal;
6507   pt->vars_contains_escaped
6508     = (cfun->gimple_df->escaped.anything
6509        || bitmap_intersect_p (cfun->gimple_df->escaped.vars, vars));
6510 }
6511 
6512 /* Set the points-to solution *PT to point only to the variable VAR.  */
6513 
6514 void
pt_solution_set_var(struct pt_solution * pt,tree var)6515 pt_solution_set_var (struct pt_solution *pt, tree var)
6516 {
6517   memset (pt, 0, sizeof (struct pt_solution));
6518   pt->vars = BITMAP_GGC_ALLOC ();
6519   bitmap_set_bit (pt->vars, DECL_PT_UID (var));
6520   pt->vars_contains_nonlocal = is_global_var (var);
6521   pt->vars_contains_escaped
6522     = (cfun->gimple_df->escaped.anything
6523        || bitmap_bit_p (cfun->gimple_df->escaped.vars, DECL_PT_UID (var)));
6524 }
6525 
6526 /* Computes the union of the points-to solutions *DEST and *SRC and
6527    stores the result in *DEST.  This changes the points-to bitmap
6528    of *DEST and thus may not be used if that might be shared.
6529    The points-to bitmap of *SRC and *DEST will not be shared after
6530    this function if they were not before.  */
6531 
6532 static void
pt_solution_ior_into(struct pt_solution * dest,struct pt_solution * src)6533 pt_solution_ior_into (struct pt_solution *dest, struct pt_solution *src)
6534 {
6535   dest->anything |= src->anything;
6536   if (dest->anything)
6537     {
6538       pt_solution_reset (dest);
6539       return;
6540     }
6541 
6542   dest->nonlocal |= src->nonlocal;
6543   dest->escaped |= src->escaped;
6544   dest->ipa_escaped |= src->ipa_escaped;
6545   dest->null |= src->null;
6546   dest->vars_contains_nonlocal |= src->vars_contains_nonlocal;
6547   dest->vars_contains_escaped |= src->vars_contains_escaped;
6548   dest->vars_contains_escaped_heap |= src->vars_contains_escaped_heap;
6549   if (!src->vars)
6550     return;
6551 
6552   if (!dest->vars)
6553     dest->vars = BITMAP_GGC_ALLOC ();
6554   bitmap_ior_into (dest->vars, src->vars);
6555 }
6556 
6557 /* Return true if the points-to solution *PT is empty.  */
6558 
6559 bool
pt_solution_empty_p(struct pt_solution * pt)6560 pt_solution_empty_p (struct pt_solution *pt)
6561 {
6562   if (pt->anything
6563       || pt->nonlocal)
6564     return false;
6565 
6566   if (pt->vars
6567       && !bitmap_empty_p (pt->vars))
6568     return false;
6569 
6570   /* If the solution includes ESCAPED, check if that is empty.  */
6571   if (pt->escaped
6572       && !pt_solution_empty_p (&cfun->gimple_df->escaped))
6573     return false;
6574 
6575   /* If the solution includes ESCAPED, check if that is empty.  */
6576   if (pt->ipa_escaped
6577       && !pt_solution_empty_p (&ipa_escaped_pt))
6578     return false;
6579 
6580   return true;
6581 }
6582 
6583 /* Return true if the points-to solution *PT only point to a single var, and
6584    return the var uid in *UID.  */
6585 
6586 bool
pt_solution_singleton_p(struct pt_solution * pt,unsigned * uid)6587 pt_solution_singleton_p (struct pt_solution *pt, unsigned *uid)
6588 {
6589   if (pt->anything || pt->nonlocal || pt->escaped || pt->ipa_escaped
6590       || pt->null || pt->vars == NULL
6591       || !bitmap_single_bit_set_p (pt->vars))
6592     return false;
6593 
6594   *uid = bitmap_first_set_bit (pt->vars);
6595   return true;
6596 }
6597 
6598 /* Return true if the points-to solution *PT includes global memory.  */
6599 
6600 bool
pt_solution_includes_global(struct pt_solution * pt)6601 pt_solution_includes_global (struct pt_solution *pt)
6602 {
6603   if (pt->anything
6604       || pt->nonlocal
6605       || pt->vars_contains_nonlocal
6606       /* The following is a hack to make the malloc escape hack work.
6607          In reality we'd need different sets for escaped-through-return
6608 	 and escaped-to-callees and passes would need to be updated.  */
6609       || pt->vars_contains_escaped_heap)
6610     return true;
6611 
6612   /* 'escaped' is also a placeholder so we have to look into it.  */
6613   if (pt->escaped)
6614     return pt_solution_includes_global (&cfun->gimple_df->escaped);
6615 
6616   if (pt->ipa_escaped)
6617     return pt_solution_includes_global (&ipa_escaped_pt);
6618 
6619   return false;
6620 }
6621 
6622 /* Return true if the points-to solution *PT includes the variable
6623    declaration DECL.  */
6624 
6625 static bool
pt_solution_includes_1(struct pt_solution * pt,const_tree decl)6626 pt_solution_includes_1 (struct pt_solution *pt, const_tree decl)
6627 {
6628   if (pt->anything)
6629     return true;
6630 
6631   if (pt->nonlocal
6632       && is_global_var (decl))
6633     return true;
6634 
6635   if (pt->vars
6636       && bitmap_bit_p (pt->vars, DECL_PT_UID (decl)))
6637     return true;
6638 
6639   /* If the solution includes ESCAPED, check it.  */
6640   if (pt->escaped
6641       && pt_solution_includes_1 (&cfun->gimple_df->escaped, decl))
6642     return true;
6643 
6644   /* If the solution includes ESCAPED, check it.  */
6645   if (pt->ipa_escaped
6646       && pt_solution_includes_1 (&ipa_escaped_pt, decl))
6647     return true;
6648 
6649   return false;
6650 }
6651 
6652 bool
pt_solution_includes(struct pt_solution * pt,const_tree decl)6653 pt_solution_includes (struct pt_solution *pt, const_tree decl)
6654 {
6655   bool res = pt_solution_includes_1 (pt, decl);
6656   if (res)
6657     ++pta_stats.pt_solution_includes_may_alias;
6658   else
6659     ++pta_stats.pt_solution_includes_no_alias;
6660   return res;
6661 }
6662 
6663 /* Return true if both points-to solutions PT1 and PT2 have a non-empty
6664    intersection.  */
6665 
6666 static bool
pt_solutions_intersect_1(struct pt_solution * pt1,struct pt_solution * pt2)6667 pt_solutions_intersect_1 (struct pt_solution *pt1, struct pt_solution *pt2)
6668 {
6669   if (pt1->anything || pt2->anything)
6670     return true;
6671 
6672   /* If either points to unknown global memory and the other points to
6673      any global memory they alias.  */
6674   if ((pt1->nonlocal
6675        && (pt2->nonlocal
6676 	   || pt2->vars_contains_nonlocal))
6677       || (pt2->nonlocal
6678 	  && pt1->vars_contains_nonlocal))
6679     return true;
6680 
6681   /* If either points to all escaped memory and the other points to
6682      any escaped memory they alias.  */
6683   if ((pt1->escaped
6684        && (pt2->escaped
6685 	   || pt2->vars_contains_escaped))
6686       || (pt2->escaped
6687 	  && pt1->vars_contains_escaped))
6688     return true;
6689 
6690   /* Check the escaped solution if required.
6691      ???  Do we need to check the local against the IPA escaped sets?  */
6692   if ((pt1->ipa_escaped || pt2->ipa_escaped)
6693       && !pt_solution_empty_p (&ipa_escaped_pt))
6694     {
6695       /* If both point to escaped memory and that solution
6696 	 is not empty they alias.  */
6697       if (pt1->ipa_escaped && pt2->ipa_escaped)
6698 	return true;
6699 
6700       /* If either points to escaped memory see if the escaped solution
6701 	 intersects with the other.  */
6702       if ((pt1->ipa_escaped
6703 	   && pt_solutions_intersect_1 (&ipa_escaped_pt, pt2))
6704 	  || (pt2->ipa_escaped
6705 	      && pt_solutions_intersect_1 (&ipa_escaped_pt, pt1)))
6706 	return true;
6707     }
6708 
6709   /* Now both pointers alias if their points-to solution intersects.  */
6710   return (pt1->vars
6711 	  && pt2->vars
6712 	  && bitmap_intersect_p (pt1->vars, pt2->vars));
6713 }
6714 
6715 bool
pt_solutions_intersect(struct pt_solution * pt1,struct pt_solution * pt2)6716 pt_solutions_intersect (struct pt_solution *pt1, struct pt_solution *pt2)
6717 {
6718   bool res = pt_solutions_intersect_1 (pt1, pt2);
6719   if (res)
6720     ++pta_stats.pt_solutions_intersect_may_alias;
6721   else
6722     ++pta_stats.pt_solutions_intersect_no_alias;
6723   return res;
6724 }
6725 
6726 
6727 /* Dump points-to information to OUTFILE.  */
6728 
6729 static void
dump_sa_points_to_info(FILE * outfile)6730 dump_sa_points_to_info (FILE *outfile)
6731 {
6732   unsigned int i;
6733 
6734   fprintf (outfile, "\nPoints-to sets\n\n");
6735 
6736   if (dump_flags & TDF_STATS)
6737     {
6738       fprintf (outfile, "Stats:\n");
6739       fprintf (outfile, "Total vars:               %d\n", stats.total_vars);
6740       fprintf (outfile, "Non-pointer vars:          %d\n",
6741 	       stats.nonpointer_vars);
6742       fprintf (outfile, "Statically unified vars:  %d\n",
6743 	       stats.unified_vars_static);
6744       fprintf (outfile, "Dynamically unified vars: %d\n",
6745 	       stats.unified_vars_dynamic);
6746       fprintf (outfile, "Iterations:               %d\n", stats.iterations);
6747       fprintf (outfile, "Number of edges:          %d\n", stats.num_edges);
6748       fprintf (outfile, "Number of implicit edges: %d\n",
6749 	       stats.num_implicit_edges);
6750     }
6751 
6752   for (i = 1; i < varmap.length (); i++)
6753     {
6754       varinfo_t vi = get_varinfo (i);
6755       if (!vi->may_have_pointers)
6756 	continue;
6757       dump_solution_for_var (outfile, i);
6758     }
6759 }
6760 
6761 
6762 /* Debug points-to information to stderr.  */
6763 
6764 DEBUG_FUNCTION void
debug_sa_points_to_info(void)6765 debug_sa_points_to_info (void)
6766 {
6767   dump_sa_points_to_info (stderr);
6768 }
6769 
6770 
6771 /* Initialize the always-existing constraint variables for NULL
6772    ANYTHING, READONLY, and INTEGER */
6773 
6774 static void
init_base_vars(void)6775 init_base_vars (void)
6776 {
6777   struct constraint_expr lhs, rhs;
6778   varinfo_t var_anything;
6779   varinfo_t var_nothing;
6780   varinfo_t var_string;
6781   varinfo_t var_escaped;
6782   varinfo_t var_nonlocal;
6783   varinfo_t var_storedanything;
6784   varinfo_t var_integer;
6785 
6786   /* Variable ID zero is reserved and should be NULL.  */
6787   varmap.safe_push (NULL);
6788 
6789   /* Create the NULL variable, used to represent that a variable points
6790      to NULL.  */
6791   var_nothing = new_var_info (NULL_TREE, "NULL", false);
6792   gcc_assert (var_nothing->id == nothing_id);
6793   var_nothing->is_artificial_var = 1;
6794   var_nothing->offset = 0;
6795   var_nothing->size = ~0;
6796   var_nothing->fullsize = ~0;
6797   var_nothing->is_special_var = 1;
6798   var_nothing->may_have_pointers = 0;
6799   var_nothing->is_global_var = 0;
6800 
6801   /* Create the ANYTHING variable, used to represent that a variable
6802      points to some unknown piece of memory.  */
6803   var_anything = new_var_info (NULL_TREE, "ANYTHING", false);
6804   gcc_assert (var_anything->id == anything_id);
6805   var_anything->is_artificial_var = 1;
6806   var_anything->size = ~0;
6807   var_anything->offset = 0;
6808   var_anything->fullsize = ~0;
6809   var_anything->is_special_var = 1;
6810 
6811   /* Anything points to anything.  This makes deref constraints just
6812      work in the presence of linked list and other p = *p type loops,
6813      by saying that *ANYTHING = ANYTHING. */
6814   lhs.type = SCALAR;
6815   lhs.var = anything_id;
6816   lhs.offset = 0;
6817   rhs.type = ADDRESSOF;
6818   rhs.var = anything_id;
6819   rhs.offset = 0;
6820 
6821   /* This specifically does not use process_constraint because
6822      process_constraint ignores all anything = anything constraints, since all
6823      but this one are redundant.  */
6824   constraints.safe_push (new_constraint (lhs, rhs));
6825 
6826   /* Create the STRING variable, used to represent that a variable
6827      points to a string literal.  String literals don't contain
6828      pointers so STRING doesn't point to anything.  */
6829   var_string = new_var_info (NULL_TREE, "STRING", false);
6830   gcc_assert (var_string->id == string_id);
6831   var_string->is_artificial_var = 1;
6832   var_string->offset = 0;
6833   var_string->size = ~0;
6834   var_string->fullsize = ~0;
6835   var_string->is_special_var = 1;
6836   var_string->may_have_pointers = 0;
6837 
6838   /* Create the ESCAPED variable, used to represent the set of escaped
6839      memory.  */
6840   var_escaped = new_var_info (NULL_TREE, "ESCAPED", false);
6841   gcc_assert (var_escaped->id == escaped_id);
6842   var_escaped->is_artificial_var = 1;
6843   var_escaped->offset = 0;
6844   var_escaped->size = ~0;
6845   var_escaped->fullsize = ~0;
6846   var_escaped->is_special_var = 0;
6847 
6848   /* Create the NONLOCAL variable, used to represent the set of nonlocal
6849      memory.  */
6850   var_nonlocal = new_var_info (NULL_TREE, "NONLOCAL", false);
6851   gcc_assert (var_nonlocal->id == nonlocal_id);
6852   var_nonlocal->is_artificial_var = 1;
6853   var_nonlocal->offset = 0;
6854   var_nonlocal->size = ~0;
6855   var_nonlocal->fullsize = ~0;
6856   var_nonlocal->is_special_var = 1;
6857 
6858   /* ESCAPED = *ESCAPED, because escaped is may-deref'd at calls, etc.  */
6859   lhs.type = SCALAR;
6860   lhs.var = escaped_id;
6861   lhs.offset = 0;
6862   rhs.type = DEREF;
6863   rhs.var = escaped_id;
6864   rhs.offset = 0;
6865   process_constraint (new_constraint (lhs, rhs));
6866 
6867   /* ESCAPED = ESCAPED + UNKNOWN_OFFSET, because if a sub-field escapes the
6868      whole variable escapes.  */
6869   lhs.type = SCALAR;
6870   lhs.var = escaped_id;
6871   lhs.offset = 0;
6872   rhs.type = SCALAR;
6873   rhs.var = escaped_id;
6874   rhs.offset = UNKNOWN_OFFSET;
6875   process_constraint (new_constraint (lhs, rhs));
6876 
6877   /* *ESCAPED = NONLOCAL.  This is true because we have to assume
6878      everything pointed to by escaped points to what global memory can
6879      point to.  */
6880   lhs.type = DEREF;
6881   lhs.var = escaped_id;
6882   lhs.offset = 0;
6883   rhs.type = SCALAR;
6884   rhs.var = nonlocal_id;
6885   rhs.offset = 0;
6886   process_constraint (new_constraint (lhs, rhs));
6887 
6888   /* NONLOCAL = &NONLOCAL, NONLOCAL = &ESCAPED.  This is true because
6889      global memory may point to global memory and escaped memory.  */
6890   lhs.type = SCALAR;
6891   lhs.var = nonlocal_id;
6892   lhs.offset = 0;
6893   rhs.type = ADDRESSOF;
6894   rhs.var = nonlocal_id;
6895   rhs.offset = 0;
6896   process_constraint (new_constraint (lhs, rhs));
6897   rhs.type = ADDRESSOF;
6898   rhs.var = escaped_id;
6899   rhs.offset = 0;
6900   process_constraint (new_constraint (lhs, rhs));
6901 
6902   /* Create the STOREDANYTHING variable, used to represent the set of
6903      variables stored to *ANYTHING.  */
6904   var_storedanything = new_var_info (NULL_TREE, "STOREDANYTHING", false);
6905   gcc_assert (var_storedanything->id == storedanything_id);
6906   var_storedanything->is_artificial_var = 1;
6907   var_storedanything->offset = 0;
6908   var_storedanything->size = ~0;
6909   var_storedanything->fullsize = ~0;
6910   var_storedanything->is_special_var = 0;
6911 
6912   /* Create the INTEGER variable, used to represent that a variable points
6913      to what an INTEGER "points to".  */
6914   var_integer = new_var_info (NULL_TREE, "INTEGER", false);
6915   gcc_assert (var_integer->id == integer_id);
6916   var_integer->is_artificial_var = 1;
6917   var_integer->size = ~0;
6918   var_integer->fullsize = ~0;
6919   var_integer->offset = 0;
6920   var_integer->is_special_var = 1;
6921 
6922   /* INTEGER = ANYTHING, because we don't know where a dereference of
6923      a random integer will point to.  */
6924   lhs.type = SCALAR;
6925   lhs.var = integer_id;
6926   lhs.offset = 0;
6927   rhs.type = ADDRESSOF;
6928   rhs.var = anything_id;
6929   rhs.offset = 0;
6930   process_constraint (new_constraint (lhs, rhs));
6931 }
6932 
6933 /* Initialize things necessary to perform PTA */
6934 
6935 static void
init_alias_vars(void)6936 init_alias_vars (void)
6937 {
6938   use_field_sensitive = (MAX_FIELDS_FOR_FIELD_SENSITIVE > 1);
6939 
6940   bitmap_obstack_initialize (&pta_obstack);
6941   bitmap_obstack_initialize (&oldpta_obstack);
6942   bitmap_obstack_initialize (&predbitmap_obstack);
6943 
6944   constraints.create (8);
6945   varmap.create (8);
6946   vi_for_tree = new hash_map<tree, varinfo_t>;
6947   call_stmt_vars = new hash_map<gimple *, varinfo_t>;
6948 
6949   memset (&stats, 0, sizeof (stats));
6950   shared_bitmap_table = new hash_table<shared_bitmap_hasher> (511);
6951   init_base_vars ();
6952 
6953   gcc_obstack_init (&fake_var_decl_obstack);
6954 
6955   final_solutions = new hash_map<varinfo_t, pt_solution *>;
6956   gcc_obstack_init (&final_solutions_obstack);
6957 }
6958 
6959 /* Remove the REF and ADDRESS edges from GRAPH, as well as all the
6960    predecessor edges.  */
6961 
6962 static void
remove_preds_and_fake_succs(constraint_graph_t graph)6963 remove_preds_and_fake_succs (constraint_graph_t graph)
6964 {
6965   unsigned int i;
6966 
6967   /* Clear the implicit ref and address nodes from the successor
6968      lists.  */
6969   for (i = 1; i < FIRST_REF_NODE; i++)
6970     {
6971       if (graph->succs[i])
6972 	bitmap_clear_range (graph->succs[i], FIRST_REF_NODE,
6973 			    FIRST_REF_NODE * 2);
6974     }
6975 
6976   /* Free the successor list for the non-ref nodes.  */
6977   for (i = FIRST_REF_NODE + 1; i < graph->size; i++)
6978     {
6979       if (graph->succs[i])
6980 	BITMAP_FREE (graph->succs[i]);
6981     }
6982 
6983   /* Now reallocate the size of the successor list as, and blow away
6984      the predecessor bitmaps.  */
6985   graph->size = varmap.length ();
6986   graph->succs = XRESIZEVEC (bitmap, graph->succs, graph->size);
6987 
6988   free (graph->implicit_preds);
6989   graph->implicit_preds = NULL;
6990   free (graph->preds);
6991   graph->preds = NULL;
6992   bitmap_obstack_release (&predbitmap_obstack);
6993 }
6994 
6995 /* Solve the constraint set.  */
6996 
6997 static void
solve_constraints(void)6998 solve_constraints (void)
6999 {
7000   struct scc_info *si;
7001 
7002   if (dump_file)
7003     fprintf (dump_file,
7004 	     "\nCollapsing static cycles and doing variable "
7005 	     "substitution\n");
7006 
7007   init_graph (varmap.length () * 2);
7008 
7009   if (dump_file)
7010     fprintf (dump_file, "Building predecessor graph\n");
7011   build_pred_graph ();
7012 
7013   if (dump_file)
7014     fprintf (dump_file, "Detecting pointer and location "
7015 	     "equivalences\n");
7016   si = perform_var_substitution (graph);
7017 
7018   if (dump_file)
7019     fprintf (dump_file, "Rewriting constraints and unifying "
7020 	     "variables\n");
7021   rewrite_constraints (graph, si);
7022 
7023   build_succ_graph ();
7024 
7025   free_var_substitution_info (si);
7026 
7027   /* Attach complex constraints to graph nodes.  */
7028   move_complex_constraints (graph);
7029 
7030   if (dump_file)
7031     fprintf (dump_file, "Uniting pointer but not location equivalent "
7032 	     "variables\n");
7033   unite_pointer_equivalences (graph);
7034 
7035   if (dump_file)
7036     fprintf (dump_file, "Finding indirect cycles\n");
7037   find_indirect_cycles (graph);
7038 
7039   /* Implicit nodes and predecessors are no longer necessary at this
7040      point. */
7041   remove_preds_and_fake_succs (graph);
7042 
7043   if (dump_file && (dump_flags & TDF_GRAPH))
7044     {
7045       fprintf (dump_file, "\n\n// The constraint graph before solve-graph "
7046 	       "in dot format:\n");
7047       dump_constraint_graph (dump_file);
7048       fprintf (dump_file, "\n\n");
7049     }
7050 
7051   if (dump_file)
7052     fprintf (dump_file, "Solving graph\n");
7053 
7054   solve_graph (graph);
7055 
7056   if (dump_file && (dump_flags & TDF_GRAPH))
7057     {
7058       fprintf (dump_file, "\n\n// The constraint graph after solve-graph "
7059 	       "in dot format:\n");
7060       dump_constraint_graph (dump_file);
7061       fprintf (dump_file, "\n\n");
7062     }
7063 
7064   if (dump_file)
7065     dump_sa_points_to_info (dump_file);
7066 }
7067 
7068 /* Create points-to sets for the current function.  See the comments
7069    at the start of the file for an algorithmic overview.  */
7070 
7071 static void
compute_points_to_sets(void)7072 compute_points_to_sets (void)
7073 {
7074   basic_block bb;
7075   unsigned i;
7076   varinfo_t vi;
7077 
7078   timevar_push (TV_TREE_PTA);
7079 
7080   init_alias_vars ();
7081 
7082   intra_create_variable_infos (cfun);
7083 
7084   /* Now walk all statements and build the constraint set.  */
7085   FOR_EACH_BB_FN (bb, cfun)
7086     {
7087       for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
7088 	   gsi_next (&gsi))
7089 	{
7090 	  gphi *phi = gsi.phi ();
7091 
7092 	  if (! virtual_operand_p (gimple_phi_result (phi)))
7093 	    find_func_aliases (cfun, phi);
7094 	}
7095 
7096       for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
7097 	   gsi_next (&gsi))
7098 	{
7099 	  gimple *stmt = gsi_stmt (gsi);
7100 
7101 	  find_func_aliases (cfun, stmt);
7102 	}
7103     }
7104 
7105   if (dump_file)
7106     {
7107       fprintf (dump_file, "Points-to analysis\n\nConstraints:\n\n");
7108       dump_constraints (dump_file, 0);
7109     }
7110 
7111   /* From the constraints compute the points-to sets.  */
7112   solve_constraints ();
7113 
7114   /* Compute the points-to set for ESCAPED used for call-clobber analysis.  */
7115   cfun->gimple_df->escaped = find_what_var_points_to (cfun->decl,
7116 						      get_varinfo (escaped_id));
7117 
7118   /* Make sure the ESCAPED solution (which is used as placeholder in
7119      other solutions) does not reference itself.  This simplifies
7120      points-to solution queries.  */
7121   cfun->gimple_df->escaped.escaped = 0;
7122 
7123   /* Compute the points-to sets for pointer SSA_NAMEs.  */
7124   for (i = 0; i < num_ssa_names; ++i)
7125     {
7126       tree ptr = ssa_name (i);
7127       if (ptr
7128 	  && POINTER_TYPE_P (TREE_TYPE (ptr)))
7129 	find_what_p_points_to (cfun->decl, ptr);
7130     }
7131 
7132   /* Compute the call-used/clobbered sets.  */
7133   FOR_EACH_BB_FN (bb, cfun)
7134     {
7135       gimple_stmt_iterator gsi;
7136 
7137       for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
7138 	{
7139 	  gcall *stmt;
7140 	  struct pt_solution *pt;
7141 
7142 	  stmt = dyn_cast <gcall *> (gsi_stmt (gsi));
7143 	  if (!stmt)
7144 	    continue;
7145 
7146 	  pt = gimple_call_use_set (stmt);
7147 	  if (gimple_call_flags (stmt) & ECF_CONST)
7148 	    memset (pt, 0, sizeof (struct pt_solution));
7149 	  else if ((vi = lookup_call_use_vi (stmt)) != NULL)
7150 	    {
7151 	      *pt = find_what_var_points_to (cfun->decl, vi);
7152 	      /* Escaped (and thus nonlocal) variables are always
7153 	         implicitly used by calls.  */
7154 	      /* ???  ESCAPED can be empty even though NONLOCAL
7155 		 always escaped.  */
7156 	      pt->nonlocal = 1;
7157 	      pt->escaped = 1;
7158 	    }
7159 	  else
7160 	    {
7161 	      /* If there is nothing special about this call then
7162 		 we have made everything that is used also escape.  */
7163 	      *pt = cfun->gimple_df->escaped;
7164 	      pt->nonlocal = 1;
7165 	    }
7166 
7167 	  pt = gimple_call_clobber_set (stmt);
7168 	  if (gimple_call_flags (stmt) & (ECF_CONST|ECF_PURE|ECF_NOVOPS))
7169 	    memset (pt, 0, sizeof (struct pt_solution));
7170 	  else if ((vi = lookup_call_clobber_vi (stmt)) != NULL)
7171 	    {
7172 	      *pt = find_what_var_points_to (cfun->decl, vi);
7173 	      /* Escaped (and thus nonlocal) variables are always
7174 	         implicitly clobbered by calls.  */
7175 	      /* ???  ESCAPED can be empty even though NONLOCAL
7176 		 always escaped.  */
7177 	      pt->nonlocal = 1;
7178 	      pt->escaped = 1;
7179 	    }
7180 	  else
7181 	    {
7182 	      /* If there is nothing special about this call then
7183 		 we have made everything that is used also escape.  */
7184 	      *pt = cfun->gimple_df->escaped;
7185 	      pt->nonlocal = 1;
7186 	    }
7187 	}
7188     }
7189 
7190   timevar_pop (TV_TREE_PTA);
7191 }
7192 
7193 
7194 /* Delete created points-to sets.  */
7195 
7196 static void
delete_points_to_sets(void)7197 delete_points_to_sets (void)
7198 {
7199   unsigned int i;
7200 
7201   delete shared_bitmap_table;
7202   shared_bitmap_table = NULL;
7203   if (dump_file && (dump_flags & TDF_STATS))
7204     fprintf (dump_file, "Points to sets created:%d\n",
7205 	     stats.points_to_sets_created);
7206 
7207   delete vi_for_tree;
7208   delete call_stmt_vars;
7209   bitmap_obstack_release (&pta_obstack);
7210   constraints.release ();
7211 
7212   for (i = 0; i < graph->size; i++)
7213     graph->complex[i].release ();
7214   free (graph->complex);
7215 
7216   free (graph->rep);
7217   free (graph->succs);
7218   free (graph->pe);
7219   free (graph->pe_rep);
7220   free (graph->indirect_cycles);
7221   free (graph);
7222 
7223   varmap.release ();
7224   variable_info_pool.release ();
7225   constraint_pool.release ();
7226 
7227   obstack_free (&fake_var_decl_obstack, NULL);
7228 
7229   delete final_solutions;
7230   obstack_free (&final_solutions_obstack, NULL);
7231 }
7232 
7233 struct vls_data
7234 {
7235   unsigned short clique;
7236   bitmap rvars;
7237 };
7238 
7239 /* Mark "other" loads and stores as belonging to CLIQUE and with
7240    base zero.  */
7241 
7242 static bool
visit_loadstore(gimple *,tree base,tree ref,void * data)7243 visit_loadstore (gimple *, tree base, tree ref, void *data)
7244 {
7245   unsigned short clique = ((vls_data *) data)->clique;
7246   bitmap rvars = ((vls_data *) data)->rvars;
7247   if (TREE_CODE (base) == MEM_REF
7248       || TREE_CODE (base) == TARGET_MEM_REF)
7249     {
7250       tree ptr = TREE_OPERAND (base, 0);
7251       if (TREE_CODE (ptr) == SSA_NAME)
7252 	{
7253 	  /* For parameters, get at the points-to set for the actual parm
7254 	     decl.  */
7255 	  if (SSA_NAME_IS_DEFAULT_DEF (ptr)
7256 	      && (TREE_CODE (SSA_NAME_VAR (ptr)) == PARM_DECL
7257 		  || TREE_CODE (SSA_NAME_VAR (ptr)) == RESULT_DECL))
7258 	    ptr = SSA_NAME_VAR (ptr);
7259 
7260 	  /* We need to make sure 'ptr' doesn't include any of
7261 	     the restrict tags we added bases for in its points-to set.  */
7262 	  varinfo_t vi = lookup_vi_for_tree (ptr);
7263 	  if (! vi)
7264 	    return false;
7265 
7266 	  vi = get_varinfo (find (vi->id));
7267 	  if (bitmap_intersect_p (rvars, vi->solution))
7268 	    return false;
7269 	}
7270 
7271       /* Do not overwrite existing cliques (that includes clique, base
7272          pairs we just set).  */
7273       if (MR_DEPENDENCE_CLIQUE (base) == 0)
7274 	{
7275 	  MR_DEPENDENCE_CLIQUE (base) = clique;
7276 	  MR_DEPENDENCE_BASE (base) = 0;
7277 	}
7278     }
7279 
7280   /* For plain decl accesses see whether they are accesses to globals
7281      and rewrite them to MEM_REFs with { clique, 0 }.  */
7282   if (TREE_CODE (base) == VAR_DECL
7283       && is_global_var (base)
7284       /* ???  We can't rewrite a plain decl with the walk_stmt_load_store
7285 	 ops callback.  */
7286       && base != ref)
7287     {
7288       tree *basep = &ref;
7289       while (handled_component_p (*basep))
7290 	basep = &TREE_OPERAND (*basep, 0);
7291       gcc_assert (TREE_CODE (*basep) == VAR_DECL);
7292       tree ptr = build_fold_addr_expr (*basep);
7293       tree zero = build_int_cst (TREE_TYPE (ptr), 0);
7294       *basep = build2 (MEM_REF, TREE_TYPE (*basep), ptr, zero);
7295       MR_DEPENDENCE_CLIQUE (*basep) = clique;
7296       MR_DEPENDENCE_BASE (*basep) = 0;
7297     }
7298 
7299   return false;
7300 }
7301 
7302 /* If REF is a MEM_REF then assign a clique, base pair to it, updating
7303    CLIQUE, *RESTRICT_VAR and LAST_RUID.  Return whether dependence info
7304    was assigned to REF.  */
7305 
7306 static bool
maybe_set_dependence_info(tree ref,tree ptr,unsigned short & clique,varinfo_t restrict_var,unsigned short & last_ruid)7307 maybe_set_dependence_info (tree ref, tree ptr,
7308 			   unsigned short &clique, varinfo_t restrict_var,
7309 			   unsigned short &last_ruid)
7310 {
7311   while (handled_component_p (ref))
7312     ref = TREE_OPERAND (ref, 0);
7313   if ((TREE_CODE (ref) == MEM_REF
7314        || TREE_CODE (ref) == TARGET_MEM_REF)
7315       && TREE_OPERAND (ref, 0) == ptr)
7316     {
7317       /* Do not overwrite existing cliques.  This avoids overwriting dependence
7318 	 info inlined from a function with restrict parameters inlined
7319 	 into a function with restrict parameters.  This usually means we
7320 	 prefer to be precise in innermost loops.  */
7321       if (MR_DEPENDENCE_CLIQUE (ref) == 0)
7322 	{
7323 	  if (clique == 0)
7324 	    clique = ++cfun->last_clique;
7325 	  if (restrict_var->ruid == 0)
7326 	    restrict_var->ruid = ++last_ruid;
7327 	  MR_DEPENDENCE_CLIQUE (ref) = clique;
7328 	  MR_DEPENDENCE_BASE (ref) = restrict_var->ruid;
7329 	  return true;
7330 	}
7331     }
7332   return false;
7333 }
7334 
7335 /* Compute the set of independend memory references based on restrict
7336    tags and their conservative propagation to the points-to sets.  */
7337 
7338 static void
compute_dependence_clique(void)7339 compute_dependence_clique (void)
7340 {
7341   unsigned short clique = 0;
7342   unsigned short last_ruid = 0;
7343   bitmap rvars = BITMAP_ALLOC (NULL);
7344   for (unsigned i = 0; i < num_ssa_names; ++i)
7345     {
7346       tree ptr = ssa_name (i);
7347       if (!ptr || !POINTER_TYPE_P (TREE_TYPE (ptr)))
7348 	continue;
7349 
7350       /* Avoid all this when ptr is not dereferenced?  */
7351       tree p = ptr;
7352       if (SSA_NAME_IS_DEFAULT_DEF (ptr)
7353 	  && (TREE_CODE (SSA_NAME_VAR (ptr)) == PARM_DECL
7354 	      || TREE_CODE (SSA_NAME_VAR (ptr)) == RESULT_DECL))
7355 	p = SSA_NAME_VAR (ptr);
7356       varinfo_t vi = lookup_vi_for_tree (p);
7357       if (!vi)
7358 	continue;
7359       vi = get_varinfo (find (vi->id));
7360       bitmap_iterator bi;
7361       unsigned j;
7362       varinfo_t restrict_var = NULL;
7363       EXECUTE_IF_SET_IN_BITMAP (vi->solution, 0, j, bi)
7364 	{
7365 	  varinfo_t oi = get_varinfo (j);
7366 	  if (oi->is_restrict_var)
7367 	    {
7368 	      if (restrict_var)
7369 		{
7370 		  if (dump_file && (dump_flags & TDF_DETAILS))
7371 		    {
7372 		      fprintf (dump_file, "found restrict pointed-to "
7373 			       "for ");
7374 		      print_generic_expr (dump_file, ptr, 0);
7375 		      fprintf (dump_file, " but not exclusively\n");
7376 		    }
7377 		  restrict_var = NULL;
7378 		  break;
7379 		}
7380 	      restrict_var = oi;
7381 	    }
7382 	  /* NULL is the only other valid points-to entry.  */
7383 	  else if (oi->id != nothing_id)
7384 	    {
7385 	      restrict_var = NULL;
7386 	      break;
7387 	    }
7388 	}
7389       /* Ok, found that ptr must(!) point to a single(!) restrict
7390 	 variable.  */
7391       /* ???  PTA isn't really a proper propagation engine to compute
7392 	 this property.
7393 	 ???  We could handle merging of two restricts by unifying them.  */
7394       if (restrict_var)
7395 	{
7396 	  /* Now look at possible dereferences of ptr.  */
7397 	  imm_use_iterator ui;
7398 	  gimple *use_stmt;
7399 	  bool used = false;
7400 	  FOR_EACH_IMM_USE_STMT (use_stmt, ui, ptr)
7401 	    {
7402 	      /* ???  Calls and asms.  */
7403 	      if (!gimple_assign_single_p (use_stmt))
7404 		continue;
7405 	      used |= maybe_set_dependence_info (gimple_assign_lhs (use_stmt),
7406 						 ptr, clique, restrict_var,
7407 						 last_ruid);
7408 	      used |= maybe_set_dependence_info (gimple_assign_rhs1 (use_stmt),
7409 						 ptr, clique, restrict_var,
7410 						 last_ruid);
7411 	    }
7412 	  if (used)
7413 	    bitmap_set_bit (rvars, restrict_var->id);
7414 	}
7415     }
7416 
7417   if (clique != 0)
7418     {
7419       /* Assign the BASE id zero to all accesses not based on a restrict
7420 	 pointer.  That way they get disambiguated against restrict
7421 	 accesses but not against each other.  */
7422       /* ???  For restricts derived from globals (thus not incoming
7423 	 parameters) we can't restrict scoping properly thus the following
7424 	 is too aggressive there.  For now we have excluded those globals from
7425 	 getting into the MR_DEPENDENCE machinery.  */
7426       vls_data data = { clique, rvars };
7427       basic_block bb;
7428       FOR_EACH_BB_FN (bb, cfun)
7429 	for (gimple_stmt_iterator gsi = gsi_start_bb (bb);
7430 	     !gsi_end_p (gsi); gsi_next (&gsi))
7431 	  {
7432 	    gimple *stmt = gsi_stmt (gsi);
7433 	    walk_stmt_load_store_ops (stmt, &data,
7434 				      visit_loadstore, visit_loadstore);
7435 	  }
7436     }
7437 
7438   BITMAP_FREE (rvars);
7439 }
7440 
7441 /* Compute points-to information for every SSA_NAME pointer in the
7442    current function and compute the transitive closure of escaped
7443    variables to re-initialize the call-clobber states of local variables.  */
7444 
7445 unsigned int
compute_may_aliases(void)7446 compute_may_aliases (void)
7447 {
7448   if (cfun->gimple_df->ipa_pta)
7449     {
7450       if (dump_file)
7451 	{
7452 	  fprintf (dump_file, "\nNot re-computing points-to information "
7453 		   "because IPA points-to information is available.\n\n");
7454 
7455 	  /* But still dump what we have remaining it.  */
7456 	  dump_alias_info (dump_file);
7457 	}
7458 
7459       return 0;
7460     }
7461 
7462   /* For each pointer P_i, determine the sets of variables that P_i may
7463      point-to.  Compute the reachability set of escaped and call-used
7464      variables.  */
7465   compute_points_to_sets ();
7466 
7467   /* Debugging dumps.  */
7468   if (dump_file)
7469     dump_alias_info (dump_file);
7470 
7471   /* Compute restrict-based memory disambiguations.  */
7472   compute_dependence_clique ();
7473 
7474   /* Deallocate memory used by aliasing data structures and the internal
7475      points-to solution.  */
7476   delete_points_to_sets ();
7477 
7478   gcc_assert (!need_ssa_update_p (cfun));
7479 
7480   return 0;
7481 }
7482 
7483 /* A dummy pass to cause points-to information to be computed via
7484    TODO_rebuild_alias.  */
7485 
7486 namespace {
7487 
7488 const pass_data pass_data_build_alias =
7489 {
7490   GIMPLE_PASS, /* type */
7491   "alias", /* name */
7492   OPTGROUP_NONE, /* optinfo_flags */
7493   TV_NONE, /* tv_id */
7494   ( PROP_cfg | PROP_ssa ), /* properties_required */
7495   0, /* properties_provided */
7496   0, /* properties_destroyed */
7497   0, /* todo_flags_start */
7498   TODO_rebuild_alias, /* todo_flags_finish */
7499 };
7500 
7501 class pass_build_alias : public gimple_opt_pass
7502 {
7503 public:
pass_build_alias(gcc::context * ctxt)7504   pass_build_alias (gcc::context *ctxt)
7505     : gimple_opt_pass (pass_data_build_alias, ctxt)
7506   {}
7507 
7508   /* opt_pass methods: */
gate(function *)7509   virtual bool gate (function *) { return flag_tree_pta; }
7510 
7511 }; // class pass_build_alias
7512 
7513 } // anon namespace
7514 
7515 gimple_opt_pass *
make_pass_build_alias(gcc::context * ctxt)7516 make_pass_build_alias (gcc::context *ctxt)
7517 {
7518   return new pass_build_alias (ctxt);
7519 }
7520 
7521 /* A dummy pass to cause points-to information to be computed via
7522    TODO_rebuild_alias.  */
7523 
7524 namespace {
7525 
7526 const pass_data pass_data_build_ealias =
7527 {
7528   GIMPLE_PASS, /* type */
7529   "ealias", /* name */
7530   OPTGROUP_NONE, /* optinfo_flags */
7531   TV_NONE, /* tv_id */
7532   ( PROP_cfg | PROP_ssa ), /* properties_required */
7533   0, /* properties_provided */
7534   0, /* properties_destroyed */
7535   0, /* todo_flags_start */
7536   TODO_rebuild_alias, /* todo_flags_finish */
7537 };
7538 
7539 class pass_build_ealias : public gimple_opt_pass
7540 {
7541 public:
pass_build_ealias(gcc::context * ctxt)7542   pass_build_ealias (gcc::context *ctxt)
7543     : gimple_opt_pass (pass_data_build_ealias, ctxt)
7544   {}
7545 
7546   /* opt_pass methods: */
gate(function *)7547   virtual bool gate (function *) { return flag_tree_pta; }
7548 
7549 }; // class pass_build_ealias
7550 
7551 } // anon namespace
7552 
7553 gimple_opt_pass *
make_pass_build_ealias(gcc::context * ctxt)7554 make_pass_build_ealias (gcc::context *ctxt)
7555 {
7556   return new pass_build_ealias (ctxt);
7557 }
7558 
7559 
7560 /* IPA PTA solutions for ESCAPED.  */
7561 struct pt_solution ipa_escaped_pt
7562   = { true, false, false, false, false, false, false, false, NULL };
7563 
7564 /* Associate node with varinfo DATA. Worker for
7565    cgraph_for_symbol_thunks_and_aliases.  */
7566 static bool
associate_varinfo_to_alias(struct cgraph_node * node,void * data)7567 associate_varinfo_to_alias (struct cgraph_node *node, void *data)
7568 {
7569   if ((node->alias || node->thunk.thunk_p)
7570       && node->analyzed)
7571     insert_vi_for_tree (node->decl, (varinfo_t)data);
7572   return false;
7573 }
7574 
7575 /* Compute whether node is refered to non-locally.  Worker for
7576    cgraph_for_symbol_thunks_and_aliases.  */
7577 static bool
refered_from_nonlocal_fn(struct cgraph_node * node,void * data)7578 refered_from_nonlocal_fn (struct cgraph_node *node, void *data)
7579 {
7580   bool *nonlocal_p = (bool *)data;
7581   *nonlocal_p |= (node->used_from_other_partition
7582 		  || node->externally_visible
7583 		  || node->force_output);
7584   return false;
7585 }
7586 
7587 /* Same for varpool nodes.  */
7588 static bool
refered_from_nonlocal_var(struct varpool_node * node,void * data)7589 refered_from_nonlocal_var (struct varpool_node *node, void *data)
7590 {
7591   bool *nonlocal_p = (bool *)data;
7592   *nonlocal_p |= (node->used_from_other_partition
7593 		  || node->externally_visible
7594 		  || node->force_output);
7595   return false;
7596 }
7597 
7598 /* Execute the driver for IPA PTA.  */
7599 static unsigned int
ipa_pta_execute(void)7600 ipa_pta_execute (void)
7601 {
7602   struct cgraph_node *node;
7603   varpool_node *var;
7604   unsigned int from = 0;
7605 
7606   in_ipa_mode = 1;
7607 
7608   init_alias_vars ();
7609 
7610   if (dump_file && (dump_flags & TDF_DETAILS))
7611     {
7612       symtab_node::dump_table (dump_file);
7613       fprintf (dump_file, "\n");
7614     }
7615 
7616   if (dump_file)
7617     {
7618       fprintf (dump_file, "Generating generic constraints\n\n");
7619       dump_constraints (dump_file, from);
7620       fprintf (dump_file, "\n");
7621       from = constraints.length ();
7622     }
7623 
7624   /* Build the constraints.  */
7625   FOR_EACH_DEFINED_FUNCTION (node)
7626     {
7627       varinfo_t vi;
7628       /* Nodes without a body are not interesting.  Especially do not
7629          visit clones at this point for now - we get duplicate decls
7630 	 there for inline clones at least.  */
7631       if (!node->has_gimple_body_p () || node->global.inlined_to)
7632 	continue;
7633       node->get_body ();
7634 
7635       gcc_assert (!node->clone_of);
7636 
7637       /* When parallelizing a code region, we split the region off into a
7638 	 separate function, to be run by several threads in parallel.  So for a
7639 	 function foo, we split off a region into a function
7640 	 foo._0 (void *foodata), and replace the region with some variant of a
7641 	 function call run_on_threads (&foo._0, data).  The '&foo._0' sets the
7642 	 address_taken bit for function foo._0, which would make it non-local.
7643 	 But for the purpose of ipa-pta, we can regard the run_on_threads call
7644 	 as a local call foo._0 (data),  so we ignore address_taken on nodes
7645 	 with parallelized_function set.
7646 	 Note: this is only safe, if foo and foo._0 are in the same lto
7647 	 partition.  */
7648       bool node_address_taken = ((node->parallelized_function
7649 				  && !node->used_from_other_partition)
7650 				 ? false
7651 				 : node->address_taken);
7652 
7653       /* For externally visible or attribute used annotated functions use
7654 	 local constraints for their arguments.
7655 	 For local functions we see all callers and thus do not need initial
7656 	 constraints for parameters.  */
7657       bool nonlocal_p = (node->used_from_other_partition
7658 			 || node->externally_visible
7659 			 || node->force_output
7660 			 || node_address_taken);
7661       node->call_for_symbol_thunks_and_aliases (refered_from_nonlocal_fn,
7662 						&nonlocal_p, true);
7663 
7664       vi = create_function_info_for (node->decl,
7665 				     alias_get_name (node->decl), false,
7666 				     nonlocal_p);
7667       if (dump_file
7668 	  && from != constraints.length ())
7669 	{
7670 	  fprintf (dump_file,
7671 		   "Generating intial constraints for %s", node->name ());
7672 	  if (DECL_ASSEMBLER_NAME_SET_P (node->decl))
7673 	    fprintf (dump_file, " (%s)",
7674 		     IDENTIFIER_POINTER
7675 		       (DECL_ASSEMBLER_NAME (node->decl)));
7676 	  fprintf (dump_file, "\n\n");
7677 	  dump_constraints (dump_file, from);
7678 	  fprintf (dump_file, "\n");
7679 
7680 	  from = constraints.length ();
7681 	}
7682 
7683       node->call_for_symbol_thunks_and_aliases
7684 	(associate_varinfo_to_alias, vi, true);
7685     }
7686 
7687   /* Create constraints for global variables and their initializers.  */
7688   FOR_EACH_VARIABLE (var)
7689     {
7690       if (var->alias && var->analyzed)
7691 	continue;
7692 
7693       varinfo_t vi = get_vi_for_tree (var->decl);
7694 
7695       /* For the purpose of IPA PTA unit-local globals are not
7696          escape points.  */
7697       bool nonlocal_p = (var->used_from_other_partition
7698 			 || var->externally_visible
7699 			 || var->force_output);
7700       var->call_for_symbol_and_aliases (refered_from_nonlocal_var,
7701 					&nonlocal_p, true);
7702       if (nonlocal_p)
7703 	vi->is_ipa_escape_point = true;
7704     }
7705 
7706   if (dump_file
7707       && from != constraints.length ())
7708     {
7709       fprintf (dump_file,
7710 	       "Generating constraints for global initializers\n\n");
7711       dump_constraints (dump_file, from);
7712       fprintf (dump_file, "\n");
7713       from = constraints.length ();
7714     }
7715 
7716   FOR_EACH_DEFINED_FUNCTION (node)
7717     {
7718       struct function *func;
7719       basic_block bb;
7720 
7721       /* Nodes without a body are not interesting.  */
7722       if (!node->has_gimple_body_p () || node->clone_of)
7723 	continue;
7724 
7725       if (dump_file)
7726 	{
7727 	  fprintf (dump_file,
7728 		   "Generating constraints for %s", node->name ());
7729 	  if (DECL_ASSEMBLER_NAME_SET_P (node->decl))
7730 	    fprintf (dump_file, " (%s)",
7731 		     IDENTIFIER_POINTER
7732 		       (DECL_ASSEMBLER_NAME (node->decl)));
7733 	  fprintf (dump_file, "\n");
7734 	}
7735 
7736       func = DECL_STRUCT_FUNCTION (node->decl);
7737       gcc_assert (cfun == NULL);
7738 
7739       /* Build constriants for the function body.  */
7740       FOR_EACH_BB_FN (bb, func)
7741 	{
7742 	  for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
7743 	       gsi_next (&gsi))
7744 	    {
7745 	      gphi *phi = gsi.phi ();
7746 
7747 	      if (! virtual_operand_p (gimple_phi_result (phi)))
7748 		find_func_aliases (func, phi);
7749 	    }
7750 
7751 	  for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
7752 	       gsi_next (&gsi))
7753 	    {
7754 	      gimple *stmt = gsi_stmt (gsi);
7755 
7756 	      find_func_aliases (func, stmt);
7757 	      find_func_clobbers (func, stmt);
7758 	    }
7759 	}
7760 
7761       if (dump_file)
7762 	{
7763 	  fprintf (dump_file, "\n");
7764 	  dump_constraints (dump_file, from);
7765 	  fprintf (dump_file, "\n");
7766 	  from = constraints.length ();
7767 	}
7768     }
7769 
7770   /* From the constraints compute the points-to sets.  */
7771   solve_constraints ();
7772 
7773   /* Compute the global points-to sets for ESCAPED.
7774      ???  Note that the computed escape set is not correct
7775      for the whole unit as we fail to consider graph edges to
7776      externally visible functions.  */
7777   ipa_escaped_pt = find_what_var_points_to (NULL, get_varinfo (escaped_id));
7778 
7779   /* Make sure the ESCAPED solution (which is used as placeholder in
7780      other solutions) does not reference itself.  This simplifies
7781      points-to solution queries.  */
7782   ipa_escaped_pt.ipa_escaped = 0;
7783 
7784   /* Assign the points-to sets to the SSA names in the unit.  */
7785   FOR_EACH_DEFINED_FUNCTION (node)
7786     {
7787       tree ptr;
7788       struct function *fn;
7789       unsigned i;
7790       basic_block bb;
7791 
7792       /* Nodes without a body are not interesting.  */
7793       if (!node->has_gimple_body_p () || node->clone_of)
7794 	continue;
7795 
7796       fn = DECL_STRUCT_FUNCTION (node->decl);
7797 
7798       /* Compute the points-to sets for pointer SSA_NAMEs.  */
7799       FOR_EACH_VEC_ELT (*fn->gimple_df->ssa_names, i, ptr)
7800 	{
7801 	  if (ptr
7802 	      && POINTER_TYPE_P (TREE_TYPE (ptr)))
7803 	    find_what_p_points_to (node->decl, ptr);
7804 	}
7805 
7806       /* Compute the call-use and call-clobber sets for indirect calls
7807 	 and calls to external functions.  */
7808       FOR_EACH_BB_FN (bb, fn)
7809 	{
7810 	  gimple_stmt_iterator gsi;
7811 
7812 	  for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
7813 	    {
7814 	      gcall *stmt;
7815 	      struct pt_solution *pt;
7816 	      varinfo_t vi, fi;
7817 	      tree decl;
7818 
7819 	      stmt = dyn_cast <gcall *> (gsi_stmt (gsi));
7820 	      if (!stmt)
7821 		continue;
7822 
7823 	      /* Handle direct calls to functions with body.  */
7824 	      decl = gimple_call_fndecl (stmt);
7825 
7826 	      {
7827 		tree called_decl = NULL_TREE;
7828 		if (gimple_call_builtin_p (stmt, BUILT_IN_GOMP_PARALLEL))
7829 		  called_decl = TREE_OPERAND (gimple_call_arg (stmt, 0), 0);
7830 		else if (gimple_call_builtin_p (stmt, BUILT_IN_GOACC_PARALLEL))
7831 		  called_decl = TREE_OPERAND (gimple_call_arg (stmt, 1), 0);
7832 
7833 		if (called_decl != NULL_TREE
7834 		    && !fndecl_maybe_in_other_partition (called_decl))
7835 		  decl = called_decl;
7836 	      }
7837 
7838 	      if (decl
7839 		  && (fi = lookup_vi_for_tree (decl))
7840 		  && fi->is_fn_info)
7841 		{
7842 		  *gimple_call_clobber_set (stmt)
7843 		     = find_what_var_points_to
7844 		         (node->decl, first_vi_for_offset (fi, fi_clobbers));
7845 		  *gimple_call_use_set (stmt)
7846 		     = find_what_var_points_to
7847 		         (node->decl, first_vi_for_offset (fi, fi_uses));
7848 		}
7849 	      /* Handle direct calls to external functions.  */
7850 	      else if (decl)
7851 		{
7852 		  pt = gimple_call_use_set (stmt);
7853 		  if (gimple_call_flags (stmt) & ECF_CONST)
7854 		    memset (pt, 0, sizeof (struct pt_solution));
7855 		  else if ((vi = lookup_call_use_vi (stmt)) != NULL)
7856 		    {
7857 		      *pt = find_what_var_points_to (node->decl, vi);
7858 		      /* Escaped (and thus nonlocal) variables are always
7859 			 implicitly used by calls.  */
7860 		      /* ???  ESCAPED can be empty even though NONLOCAL
7861 			 always escaped.  */
7862 		      pt->nonlocal = 1;
7863 		      pt->ipa_escaped = 1;
7864 		    }
7865 		  else
7866 		    {
7867 		      /* If there is nothing special about this call then
7868 			 we have made everything that is used also escape.  */
7869 		      *pt = ipa_escaped_pt;
7870 		      pt->nonlocal = 1;
7871 		    }
7872 
7873 		  pt = gimple_call_clobber_set (stmt);
7874 		  if (gimple_call_flags (stmt) & (ECF_CONST|ECF_PURE|ECF_NOVOPS))
7875 		    memset (pt, 0, sizeof (struct pt_solution));
7876 		  else if ((vi = lookup_call_clobber_vi (stmt)) != NULL)
7877 		    {
7878 		      *pt = find_what_var_points_to (node->decl, vi);
7879 		      /* Escaped (and thus nonlocal) variables are always
7880 			 implicitly clobbered by calls.  */
7881 		      /* ???  ESCAPED can be empty even though NONLOCAL
7882 			 always escaped.  */
7883 		      pt->nonlocal = 1;
7884 		      pt->ipa_escaped = 1;
7885 		    }
7886 		  else
7887 		    {
7888 		      /* If there is nothing special about this call then
7889 			 we have made everything that is used also escape.  */
7890 		      *pt = ipa_escaped_pt;
7891 		      pt->nonlocal = 1;
7892 		    }
7893 		}
7894 	      /* Handle indirect calls.  */
7895 	      else if (!decl
7896 		       && (fi = get_fi_for_callee (stmt)))
7897 		{
7898 		  /* We need to accumulate all clobbers/uses of all possible
7899 		     callees.  */
7900 		  fi = get_varinfo (find (fi->id));
7901 		  /* If we cannot constrain the set of functions we'll end up
7902 		     calling we end up using/clobbering everything.  */
7903 		  if (bitmap_bit_p (fi->solution, anything_id)
7904 		      || bitmap_bit_p (fi->solution, nonlocal_id)
7905 		      || bitmap_bit_p (fi->solution, escaped_id))
7906 		    {
7907 		      pt_solution_reset (gimple_call_clobber_set (stmt));
7908 		      pt_solution_reset (gimple_call_use_set (stmt));
7909 		    }
7910 		  else
7911 		    {
7912 		      bitmap_iterator bi;
7913 		      unsigned i;
7914 		      struct pt_solution *uses, *clobbers;
7915 
7916 		      uses = gimple_call_use_set (stmt);
7917 		      clobbers = gimple_call_clobber_set (stmt);
7918 		      memset (uses, 0, sizeof (struct pt_solution));
7919 		      memset (clobbers, 0, sizeof (struct pt_solution));
7920 		      EXECUTE_IF_SET_IN_BITMAP (fi->solution, 0, i, bi)
7921 			{
7922 			  struct pt_solution sol;
7923 
7924 			  vi = get_varinfo (i);
7925 			  if (!vi->is_fn_info)
7926 			    {
7927 			      /* ???  We could be more precise here?  */
7928 			      uses->nonlocal = 1;
7929 			      uses->ipa_escaped = 1;
7930 			      clobbers->nonlocal = 1;
7931 			      clobbers->ipa_escaped = 1;
7932 			      continue;
7933 			    }
7934 
7935 			  if (!uses->anything)
7936 			    {
7937 			      sol = find_what_var_points_to
7938 				      (node->decl,
7939 				       first_vi_for_offset (vi, fi_uses));
7940 			      pt_solution_ior_into (uses, &sol);
7941 			    }
7942 			  if (!clobbers->anything)
7943 			    {
7944 			      sol = find_what_var_points_to
7945 				      (node->decl,
7946 				       first_vi_for_offset (vi, fi_clobbers));
7947 			      pt_solution_ior_into (clobbers, &sol);
7948 			    }
7949 			}
7950 		    }
7951 		}
7952 	    }
7953 	}
7954 
7955       fn->gimple_df->ipa_pta = true;
7956 
7957       /* We have to re-set the final-solution cache after each function
7958          because what is a "global" is dependent on function context.  */
7959       final_solutions->empty ();
7960       obstack_free (&final_solutions_obstack, NULL);
7961       gcc_obstack_init (&final_solutions_obstack);
7962     }
7963 
7964   delete_points_to_sets ();
7965 
7966   in_ipa_mode = 0;
7967 
7968   return 0;
7969 }
7970 
7971 namespace {
7972 
7973 const pass_data pass_data_ipa_pta =
7974 {
7975   SIMPLE_IPA_PASS, /* type */
7976   "pta", /* name */
7977   OPTGROUP_NONE, /* optinfo_flags */
7978   TV_IPA_PTA, /* tv_id */
7979   0, /* properties_required */
7980   0, /* properties_provided */
7981   0, /* properties_destroyed */
7982   0, /* todo_flags_start */
7983   0, /* todo_flags_finish */
7984 };
7985 
7986 class pass_ipa_pta : public simple_ipa_opt_pass
7987 {
7988 public:
pass_ipa_pta(gcc::context * ctxt)7989   pass_ipa_pta (gcc::context *ctxt)
7990     : simple_ipa_opt_pass (pass_data_ipa_pta, ctxt)
7991   {}
7992 
7993   /* opt_pass methods: */
gate(function *)7994   virtual bool gate (function *)
7995     {
7996       return (optimize
7997 	      && flag_ipa_pta
7998 	      /* Don't bother doing anything if the program has errors.  */
7999 	      && !seen_error ());
8000     }
8001 
clone()8002   opt_pass * clone () { return new pass_ipa_pta (m_ctxt); }
8003 
execute(function *)8004   virtual unsigned int execute (function *) { return ipa_pta_execute (); }
8005 
8006 }; // class pass_ipa_pta
8007 
8008 } // anon namespace
8009 
8010 simple_ipa_opt_pass *
make_pass_ipa_pta(gcc::context * ctxt)8011 make_pass_ipa_pta (gcc::context *ctxt)
8012 {
8013   return new pass_ipa_pta (ctxt);
8014 }
8015