1// Copyright 2010 The Go Authors. All rights reserved. 2// Use of this source code is governed by a BSD-style 3// license that can be found in the LICENSE file. 4 5// TLS low level connection and record layer 6 7package tls 8 9import ( 10 "bytes" 11 "crypto/cipher" 12 "crypto/subtle" 13 "crypto/x509" 14 "errors" 15 "fmt" 16 "io" 17 "net" 18 "sync" 19 "sync/atomic" 20 "time" 21) 22 23// A Conn represents a secured connection. 24// It implements the net.Conn interface. 25type Conn struct { 26 // constant 27 conn net.Conn 28 isClient bool 29 30 // constant after handshake; protected by handshakeMutex 31 handshakeMutex sync.Mutex // handshakeMutex < in.Mutex, out.Mutex, errMutex 32 handshakeErr error // error resulting from handshake 33 vers uint16 // TLS version 34 haveVers bool // version has been negotiated 35 config *Config // configuration passed to constructor 36 handshakeComplete bool 37 didResume bool // whether this connection was a session resumption 38 cipherSuite uint16 39 ocspResponse []byte // stapled OCSP response 40 scts [][]byte // signed certificate timestamps from server 41 peerCertificates []*x509.Certificate 42 // verifiedChains contains the certificate chains that we built, as 43 // opposed to the ones presented by the server. 44 verifiedChains [][]*x509.Certificate 45 // serverName contains the server name indicated by the client, if any. 46 serverName string 47 // firstFinished contains the first Finished hash sent during the 48 // handshake. This is the "tls-unique" channel binding value. 49 firstFinished [12]byte 50 51 clientProtocol string 52 clientProtocolFallback bool 53 54 // input/output 55 in, out halfConn // in.Mutex < out.Mutex 56 rawInput *block // raw input, right off the wire 57 input *block // application data waiting to be read 58 hand bytes.Buffer // handshake data waiting to be read 59 60 // activeCall is an atomic int32; the low bit is whether Close has 61 // been called. the rest of the bits are the number of goroutines 62 // in Conn.Write. 63 activeCall int32 64 65 tmp [16]byte 66} 67 68// Access to net.Conn methods. 69// Cannot just embed net.Conn because that would 70// export the struct field too. 71 72// LocalAddr returns the local network address. 73func (c *Conn) LocalAddr() net.Addr { 74 return c.conn.LocalAddr() 75} 76 77// RemoteAddr returns the remote network address. 78func (c *Conn) RemoteAddr() net.Addr { 79 return c.conn.RemoteAddr() 80} 81 82// SetDeadline sets the read and write deadlines associated with the connection. 83// A zero value for t means Read and Write will not time out. 84// After a Write has timed out, the TLS state is corrupt and all future writes will return the same error. 85func (c *Conn) SetDeadline(t time.Time) error { 86 return c.conn.SetDeadline(t) 87} 88 89// SetReadDeadline sets the read deadline on the underlying connection. 90// A zero value for t means Read will not time out. 91func (c *Conn) SetReadDeadline(t time.Time) error { 92 return c.conn.SetReadDeadline(t) 93} 94 95// SetWriteDeadline sets the write deadline on the underlying connection. 96// A zero value for t means Write will not time out. 97// After a Write has timed out, the TLS state is corrupt and all future writes will return the same error. 98func (c *Conn) SetWriteDeadline(t time.Time) error { 99 return c.conn.SetWriteDeadline(t) 100} 101 102// A halfConn represents one direction of the record layer 103// connection, either sending or receiving. 104type halfConn struct { 105 sync.Mutex 106 107 err error // first permanent error 108 version uint16 // protocol version 109 cipher interface{} // cipher algorithm 110 mac macFunction 111 seq [8]byte // 64-bit sequence number 112 bfree *block // list of free blocks 113 additionalData [13]byte // to avoid allocs; interface method args escape 114 115 nextCipher interface{} // next encryption state 116 nextMac macFunction // next MAC algorithm 117 118 // used to save allocating a new buffer for each MAC. 119 inDigestBuf, outDigestBuf []byte 120} 121 122func (hc *halfConn) setErrorLocked(err error) error { 123 hc.err = err 124 return err 125} 126 127func (hc *halfConn) error() error { 128 hc.Lock() 129 err := hc.err 130 hc.Unlock() 131 return err 132} 133 134// prepareCipherSpec sets the encryption and MAC states 135// that a subsequent changeCipherSpec will use. 136func (hc *halfConn) prepareCipherSpec(version uint16, cipher interface{}, mac macFunction) { 137 hc.version = version 138 hc.nextCipher = cipher 139 hc.nextMac = mac 140} 141 142// changeCipherSpec changes the encryption and MAC states 143// to the ones previously passed to prepareCipherSpec. 144func (hc *halfConn) changeCipherSpec() error { 145 if hc.nextCipher == nil { 146 return alertInternalError 147 } 148 hc.cipher = hc.nextCipher 149 hc.mac = hc.nextMac 150 hc.nextCipher = nil 151 hc.nextMac = nil 152 for i := range hc.seq { 153 hc.seq[i] = 0 154 } 155 return nil 156} 157 158// incSeq increments the sequence number. 159func (hc *halfConn) incSeq() { 160 for i := 7; i >= 0; i-- { 161 hc.seq[i]++ 162 if hc.seq[i] != 0 { 163 return 164 } 165 } 166 167 // Not allowed to let sequence number wrap. 168 // Instead, must renegotiate before it does. 169 // Not likely enough to bother. 170 panic("TLS: sequence number wraparound") 171} 172 173// resetSeq resets the sequence number to zero. 174func (hc *halfConn) resetSeq() { 175 for i := range hc.seq { 176 hc.seq[i] = 0 177 } 178} 179 180// removePadding returns an unpadded slice, in constant time, which is a prefix 181// of the input. It also returns a byte which is equal to 255 if the padding 182// was valid and 0 otherwise. See RFC 2246, section 6.2.3.2 183func removePadding(payload []byte) ([]byte, byte) { 184 if len(payload) < 1 { 185 return payload, 0 186 } 187 188 paddingLen := payload[len(payload)-1] 189 t := uint(len(payload)-1) - uint(paddingLen) 190 // if len(payload) >= (paddingLen - 1) then the MSB of t is zero 191 good := byte(int32(^t) >> 31) 192 193 toCheck := 255 // the maximum possible padding length 194 // The length of the padded data is public, so we can use an if here 195 if toCheck+1 > len(payload) { 196 toCheck = len(payload) - 1 197 } 198 199 for i := 0; i < toCheck; i++ { 200 t := uint(paddingLen) - uint(i) 201 // if i <= paddingLen then the MSB of t is zero 202 mask := byte(int32(^t) >> 31) 203 b := payload[len(payload)-1-i] 204 good &^= mask&paddingLen ^ mask&b 205 } 206 207 // We AND together the bits of good and replicate the result across 208 // all the bits. 209 good &= good << 4 210 good &= good << 2 211 good &= good << 1 212 good = uint8(int8(good) >> 7) 213 214 toRemove := good&paddingLen + 1 215 return payload[:len(payload)-int(toRemove)], good 216} 217 218// removePaddingSSL30 is a replacement for removePadding in the case that the 219// protocol version is SSLv3. In this version, the contents of the padding 220// are random and cannot be checked. 221func removePaddingSSL30(payload []byte) ([]byte, byte) { 222 if len(payload) < 1 { 223 return payload, 0 224 } 225 226 paddingLen := int(payload[len(payload)-1]) + 1 227 if paddingLen > len(payload) { 228 return payload, 0 229 } 230 231 return payload[:len(payload)-paddingLen], 255 232} 233 234func roundUp(a, b int) int { 235 return a + (b-a%b)%b 236} 237 238// cbcMode is an interface for block ciphers using cipher block chaining. 239type cbcMode interface { 240 cipher.BlockMode 241 SetIV([]byte) 242} 243 244// decrypt checks and strips the mac and decrypts the data in b. Returns a 245// success boolean, the number of bytes to skip from the start of the record in 246// order to get the application payload, and an optional alert value. 247func (hc *halfConn) decrypt(b *block) (ok bool, prefixLen int, alertValue alert) { 248 // pull out payload 249 payload := b.data[recordHeaderLen:] 250 251 macSize := 0 252 if hc.mac != nil { 253 macSize = hc.mac.Size() 254 } 255 256 paddingGood := byte(255) 257 explicitIVLen := 0 258 259 // decrypt 260 if hc.cipher != nil { 261 switch c := hc.cipher.(type) { 262 case cipher.Stream: 263 c.XORKeyStream(payload, payload) 264 case cipher.AEAD: 265 explicitIVLen = 8 266 if len(payload) < explicitIVLen { 267 return false, 0, alertBadRecordMAC 268 } 269 nonce := payload[:8] 270 payload = payload[8:] 271 272 copy(hc.additionalData[:], hc.seq[:]) 273 copy(hc.additionalData[8:], b.data[:3]) 274 n := len(payload) - c.Overhead() 275 hc.additionalData[11] = byte(n >> 8) 276 hc.additionalData[12] = byte(n) 277 var err error 278 payload, err = c.Open(payload[:0], nonce, payload, hc.additionalData[:]) 279 if err != nil { 280 return false, 0, alertBadRecordMAC 281 } 282 b.resize(recordHeaderLen + explicitIVLen + len(payload)) 283 case cbcMode: 284 blockSize := c.BlockSize() 285 if hc.version >= VersionTLS11 { 286 explicitIVLen = blockSize 287 } 288 289 if len(payload)%blockSize != 0 || len(payload) < roundUp(explicitIVLen+macSize+1, blockSize) { 290 return false, 0, alertBadRecordMAC 291 } 292 293 if explicitIVLen > 0 { 294 c.SetIV(payload[:explicitIVLen]) 295 payload = payload[explicitIVLen:] 296 } 297 c.CryptBlocks(payload, payload) 298 if hc.version == VersionSSL30 { 299 payload, paddingGood = removePaddingSSL30(payload) 300 } else { 301 payload, paddingGood = removePadding(payload) 302 } 303 b.resize(recordHeaderLen + explicitIVLen + len(payload)) 304 305 // note that we still have a timing side-channel in the 306 // MAC check, below. An attacker can align the record 307 // so that a correct padding will cause one less hash 308 // block to be calculated. Then they can iteratively 309 // decrypt a record by breaking each byte. See 310 // "Password Interception in a SSL/TLS Channel", Brice 311 // Canvel et al. 312 // 313 // However, our behavior matches OpenSSL, so we leak 314 // only as much as they do. 315 default: 316 panic("unknown cipher type") 317 } 318 } 319 320 // check, strip mac 321 if hc.mac != nil { 322 if len(payload) < macSize { 323 return false, 0, alertBadRecordMAC 324 } 325 326 // strip mac off payload, b.data 327 n := len(payload) - macSize 328 b.data[3] = byte(n >> 8) 329 b.data[4] = byte(n) 330 b.resize(recordHeaderLen + explicitIVLen + n) 331 remoteMAC := payload[n:] 332 localMAC := hc.mac.MAC(hc.inDigestBuf, hc.seq[0:], b.data[:recordHeaderLen], payload[:n]) 333 334 if subtle.ConstantTimeCompare(localMAC, remoteMAC) != 1 || paddingGood != 255 { 335 return false, 0, alertBadRecordMAC 336 } 337 hc.inDigestBuf = localMAC 338 } 339 hc.incSeq() 340 341 return true, recordHeaderLen + explicitIVLen, 0 342} 343 344// padToBlockSize calculates the needed padding block, if any, for a payload. 345// On exit, prefix aliases payload and extends to the end of the last full 346// block of payload. finalBlock is a fresh slice which contains the contents of 347// any suffix of payload as well as the needed padding to make finalBlock a 348// full block. 349func padToBlockSize(payload []byte, blockSize int) (prefix, finalBlock []byte) { 350 overrun := len(payload) % blockSize 351 paddingLen := blockSize - overrun 352 prefix = payload[:len(payload)-overrun] 353 finalBlock = make([]byte, blockSize) 354 copy(finalBlock, payload[len(payload)-overrun:]) 355 for i := overrun; i < blockSize; i++ { 356 finalBlock[i] = byte(paddingLen - 1) 357 } 358 return 359} 360 361// encrypt encrypts and macs the data in b. 362func (hc *halfConn) encrypt(b *block, explicitIVLen int) (bool, alert) { 363 // mac 364 if hc.mac != nil { 365 mac := hc.mac.MAC(hc.outDigestBuf, hc.seq[0:], b.data[:recordHeaderLen], b.data[recordHeaderLen+explicitIVLen:]) 366 367 n := len(b.data) 368 b.resize(n + len(mac)) 369 copy(b.data[n:], mac) 370 hc.outDigestBuf = mac 371 } 372 373 payload := b.data[recordHeaderLen:] 374 375 // encrypt 376 if hc.cipher != nil { 377 switch c := hc.cipher.(type) { 378 case cipher.Stream: 379 c.XORKeyStream(payload, payload) 380 case cipher.AEAD: 381 payloadLen := len(b.data) - recordHeaderLen - explicitIVLen 382 b.resize(len(b.data) + c.Overhead()) 383 nonce := b.data[recordHeaderLen : recordHeaderLen+explicitIVLen] 384 payload := b.data[recordHeaderLen+explicitIVLen:] 385 payload = payload[:payloadLen] 386 387 copy(hc.additionalData[:], hc.seq[:]) 388 copy(hc.additionalData[8:], b.data[:3]) 389 hc.additionalData[11] = byte(payloadLen >> 8) 390 hc.additionalData[12] = byte(payloadLen) 391 392 c.Seal(payload[:0], nonce, payload, hc.additionalData[:]) 393 case cbcMode: 394 blockSize := c.BlockSize() 395 if explicitIVLen > 0 { 396 c.SetIV(payload[:explicitIVLen]) 397 payload = payload[explicitIVLen:] 398 } 399 prefix, finalBlock := padToBlockSize(payload, blockSize) 400 b.resize(recordHeaderLen + explicitIVLen + len(prefix) + len(finalBlock)) 401 c.CryptBlocks(b.data[recordHeaderLen+explicitIVLen:], prefix) 402 c.CryptBlocks(b.data[recordHeaderLen+explicitIVLen+len(prefix):], finalBlock) 403 default: 404 panic("unknown cipher type") 405 } 406 } 407 408 // update length to include MAC and any block padding needed. 409 n := len(b.data) - recordHeaderLen 410 b.data[3] = byte(n >> 8) 411 b.data[4] = byte(n) 412 hc.incSeq() 413 414 return true, 0 415} 416 417// A block is a simple data buffer. 418type block struct { 419 data []byte 420 off int // index for Read 421 link *block 422} 423 424// resize resizes block to be n bytes, growing if necessary. 425func (b *block) resize(n int) { 426 if n > cap(b.data) { 427 b.reserve(n) 428 } 429 b.data = b.data[0:n] 430} 431 432// reserve makes sure that block contains a capacity of at least n bytes. 433func (b *block) reserve(n int) { 434 if cap(b.data) >= n { 435 return 436 } 437 m := cap(b.data) 438 if m == 0 { 439 m = 1024 440 } 441 for m < n { 442 m *= 2 443 } 444 data := make([]byte, len(b.data), m) 445 copy(data, b.data) 446 b.data = data 447} 448 449// readFromUntil reads from r into b until b contains at least n bytes 450// or else returns an error. 451func (b *block) readFromUntil(r io.Reader, n int) error { 452 // quick case 453 if len(b.data) >= n { 454 return nil 455 } 456 457 // read until have enough. 458 b.reserve(n) 459 for { 460 m, err := r.Read(b.data[len(b.data):cap(b.data)]) 461 b.data = b.data[0 : len(b.data)+m] 462 if len(b.data) >= n { 463 // TODO(bradfitz,agl): slightly suspicious 464 // that we're throwing away r.Read's err here. 465 break 466 } 467 if err != nil { 468 return err 469 } 470 } 471 return nil 472} 473 474func (b *block) Read(p []byte) (n int, err error) { 475 n = copy(p, b.data[b.off:]) 476 b.off += n 477 return 478} 479 480// newBlock allocates a new block, from hc's free list if possible. 481func (hc *halfConn) newBlock() *block { 482 b := hc.bfree 483 if b == nil { 484 return new(block) 485 } 486 hc.bfree = b.link 487 b.link = nil 488 b.resize(0) 489 return b 490} 491 492// freeBlock returns a block to hc's free list. 493// The protocol is such that each side only has a block or two on 494// its free list at a time, so there's no need to worry about 495// trimming the list, etc. 496func (hc *halfConn) freeBlock(b *block) { 497 b.link = hc.bfree 498 hc.bfree = b 499} 500 501// splitBlock splits a block after the first n bytes, 502// returning a block with those n bytes and a 503// block with the remainder. the latter may be nil. 504func (hc *halfConn) splitBlock(b *block, n int) (*block, *block) { 505 if len(b.data) <= n { 506 return b, nil 507 } 508 bb := hc.newBlock() 509 bb.resize(len(b.data) - n) 510 copy(bb.data, b.data[n:]) 511 b.data = b.data[0:n] 512 return b, bb 513} 514 515// RecordHeaderError results when a TLS record header is invalid. 516type RecordHeaderError struct { 517 // Msg contains a human readable string that describes the error. 518 Msg string 519 // RecordHeader contains the five bytes of TLS record header that 520 // triggered the error. 521 RecordHeader [5]byte 522} 523 524func (e RecordHeaderError) Error() string { return "tls: " + e.Msg } 525 526func (c *Conn) newRecordHeaderError(msg string) (err RecordHeaderError) { 527 err.Msg = msg 528 copy(err.RecordHeader[:], c.rawInput.data) 529 return err 530} 531 532// readRecord reads the next TLS record from the connection 533// and updates the record layer state. 534// c.in.Mutex <= L; c.input == nil. 535func (c *Conn) readRecord(want recordType) error { 536 // Caller must be in sync with connection: 537 // handshake data if handshake not yet completed, 538 // else application data. (We don't support renegotiation.) 539 switch want { 540 default: 541 c.sendAlert(alertInternalError) 542 return c.in.setErrorLocked(errors.New("tls: unknown record type requested")) 543 case recordTypeHandshake, recordTypeChangeCipherSpec: 544 if c.handshakeComplete { 545 c.sendAlert(alertInternalError) 546 return c.in.setErrorLocked(errors.New("tls: handshake or ChangeCipherSpec requested after handshake complete")) 547 } 548 case recordTypeApplicationData: 549 if !c.handshakeComplete { 550 c.sendAlert(alertInternalError) 551 return c.in.setErrorLocked(errors.New("tls: application data record requested before handshake complete")) 552 } 553 } 554 555Again: 556 if c.rawInput == nil { 557 c.rawInput = c.in.newBlock() 558 } 559 b := c.rawInput 560 561 // Read header, payload. 562 if err := b.readFromUntil(c.conn, recordHeaderLen); err != nil { 563 // RFC suggests that EOF without an alertCloseNotify is 564 // an error, but popular web sites seem to do this, 565 // so we can't make it an error. 566 // if err == io.EOF { 567 // err = io.ErrUnexpectedEOF 568 // } 569 if e, ok := err.(net.Error); !ok || !e.Temporary() { 570 c.in.setErrorLocked(err) 571 } 572 return err 573 } 574 typ := recordType(b.data[0]) 575 576 // No valid TLS record has a type of 0x80, however SSLv2 handshakes 577 // start with a uint16 length where the MSB is set and the first record 578 // is always < 256 bytes long. Therefore typ == 0x80 strongly suggests 579 // an SSLv2 client. 580 if want == recordTypeHandshake && typ == 0x80 { 581 c.sendAlert(alertProtocolVersion) 582 return c.in.setErrorLocked(c.newRecordHeaderError("unsupported SSLv2 handshake received")) 583 } 584 585 vers := uint16(b.data[1])<<8 | uint16(b.data[2]) 586 n := int(b.data[3])<<8 | int(b.data[4]) 587 if c.haveVers && vers != c.vers { 588 c.sendAlert(alertProtocolVersion) 589 msg := fmt.Sprintf("received record with version %x when expecting version %x", vers, c.vers) 590 return c.in.setErrorLocked(c.newRecordHeaderError(msg)) 591 } 592 if n > maxCiphertext { 593 c.sendAlert(alertRecordOverflow) 594 msg := fmt.Sprintf("oversized record received with length %d", n) 595 return c.in.setErrorLocked(c.newRecordHeaderError(msg)) 596 } 597 if !c.haveVers { 598 // First message, be extra suspicious: this might not be a TLS 599 // client. Bail out before reading a full 'body', if possible. 600 // The current max version is 3.3 so if the version is >= 16.0, 601 // it's probably not real. 602 if (typ != recordTypeAlert && typ != want) || vers >= 0x1000 { 603 c.sendAlert(alertUnexpectedMessage) 604 return c.in.setErrorLocked(c.newRecordHeaderError("first record does not look like a TLS handshake")) 605 } 606 } 607 if err := b.readFromUntil(c.conn, recordHeaderLen+n); err != nil { 608 if err == io.EOF { 609 err = io.ErrUnexpectedEOF 610 } 611 if e, ok := err.(net.Error); !ok || !e.Temporary() { 612 c.in.setErrorLocked(err) 613 } 614 return err 615 } 616 617 // Process message. 618 b, c.rawInput = c.in.splitBlock(b, recordHeaderLen+n) 619 ok, off, err := c.in.decrypt(b) 620 if !ok { 621 c.in.setErrorLocked(c.sendAlert(err)) 622 } 623 b.off = off 624 data := b.data[b.off:] 625 if len(data) > maxPlaintext { 626 err := c.sendAlert(alertRecordOverflow) 627 c.in.freeBlock(b) 628 return c.in.setErrorLocked(err) 629 } 630 631 switch typ { 632 default: 633 c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) 634 635 case recordTypeAlert: 636 if len(data) != 2 { 637 c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) 638 break 639 } 640 if alert(data[1]) == alertCloseNotify { 641 c.in.setErrorLocked(io.EOF) 642 break 643 } 644 switch data[0] { 645 case alertLevelWarning: 646 // drop on the floor 647 c.in.freeBlock(b) 648 goto Again 649 case alertLevelError: 650 c.in.setErrorLocked(&net.OpError{Op: "remote error", Err: alert(data[1])}) 651 default: 652 c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) 653 } 654 655 case recordTypeChangeCipherSpec: 656 if typ != want || len(data) != 1 || data[0] != 1 { 657 c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) 658 break 659 } 660 err := c.in.changeCipherSpec() 661 if err != nil { 662 c.in.setErrorLocked(c.sendAlert(err.(alert))) 663 } 664 665 case recordTypeApplicationData: 666 if typ != want { 667 c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) 668 break 669 } 670 c.input = b 671 b = nil 672 673 case recordTypeHandshake: 674 // TODO(rsc): Should at least pick off connection close. 675 if typ != want { 676 return c.in.setErrorLocked(c.sendAlert(alertNoRenegotiation)) 677 } 678 c.hand.Write(data) 679 } 680 681 if b != nil { 682 c.in.freeBlock(b) 683 } 684 return c.in.err 685} 686 687// sendAlert sends a TLS alert message. 688// c.out.Mutex <= L. 689func (c *Conn) sendAlertLocked(err alert) error { 690 switch err { 691 case alertNoRenegotiation, alertCloseNotify: 692 c.tmp[0] = alertLevelWarning 693 default: 694 c.tmp[0] = alertLevelError 695 } 696 c.tmp[1] = byte(err) 697 c.writeRecord(recordTypeAlert, c.tmp[0:2]) 698 // closeNotify is a special case in that it isn't an error: 699 if err != alertCloseNotify { 700 return c.out.setErrorLocked(&net.OpError{Op: "local error", Err: err}) 701 } 702 return nil 703} 704 705// sendAlert sends a TLS alert message. 706// L < c.out.Mutex. 707func (c *Conn) sendAlert(err alert) error { 708 c.out.Lock() 709 defer c.out.Unlock() 710 return c.sendAlertLocked(err) 711} 712 713// writeRecord writes a TLS record with the given type and payload 714// to the connection and updates the record layer state. 715// c.out.Mutex <= L. 716func (c *Conn) writeRecord(typ recordType, data []byte) (n int, err error) { 717 b := c.out.newBlock() 718 for len(data) > 0 { 719 m := len(data) 720 if m > maxPlaintext { 721 m = maxPlaintext 722 } 723 explicitIVLen := 0 724 explicitIVIsSeq := false 725 726 var cbc cbcMode 727 if c.out.version >= VersionTLS11 { 728 var ok bool 729 if cbc, ok = c.out.cipher.(cbcMode); ok { 730 explicitIVLen = cbc.BlockSize() 731 } 732 } 733 if explicitIVLen == 0 { 734 if _, ok := c.out.cipher.(cipher.AEAD); ok { 735 explicitIVLen = 8 736 // The AES-GCM construction in TLS has an 737 // explicit nonce so that the nonce can be 738 // random. However, the nonce is only 8 bytes 739 // which is too small for a secure, random 740 // nonce. Therefore we use the sequence number 741 // as the nonce. 742 explicitIVIsSeq = true 743 } 744 } 745 b.resize(recordHeaderLen + explicitIVLen + m) 746 b.data[0] = byte(typ) 747 vers := c.vers 748 if vers == 0 { 749 // Some TLS servers fail if the record version is 750 // greater than TLS 1.0 for the initial ClientHello. 751 vers = VersionTLS10 752 } 753 b.data[1] = byte(vers >> 8) 754 b.data[2] = byte(vers) 755 b.data[3] = byte(m >> 8) 756 b.data[4] = byte(m) 757 if explicitIVLen > 0 { 758 explicitIV := b.data[recordHeaderLen : recordHeaderLen+explicitIVLen] 759 if explicitIVIsSeq { 760 copy(explicitIV, c.out.seq[:]) 761 } else { 762 if _, err = io.ReadFull(c.config.rand(), explicitIV); err != nil { 763 break 764 } 765 } 766 } 767 copy(b.data[recordHeaderLen+explicitIVLen:], data) 768 c.out.encrypt(b, explicitIVLen) 769 _, err = c.conn.Write(b.data) 770 if err != nil { 771 break 772 } 773 n += m 774 data = data[m:] 775 } 776 c.out.freeBlock(b) 777 778 if typ == recordTypeChangeCipherSpec { 779 err = c.out.changeCipherSpec() 780 if err != nil { 781 // Cannot call sendAlert directly, 782 // because we already hold c.out.Mutex. 783 c.tmp[0] = alertLevelError 784 c.tmp[1] = byte(err.(alert)) 785 c.writeRecord(recordTypeAlert, c.tmp[0:2]) 786 return n, c.out.setErrorLocked(&net.OpError{Op: "local error", Err: err}) 787 } 788 } 789 return 790} 791 792// readHandshake reads the next handshake message from 793// the record layer. 794// c.in.Mutex < L; c.out.Mutex < L. 795func (c *Conn) readHandshake() (interface{}, error) { 796 for c.hand.Len() < 4 { 797 if err := c.in.err; err != nil { 798 return nil, err 799 } 800 if err := c.readRecord(recordTypeHandshake); err != nil { 801 return nil, err 802 } 803 } 804 805 data := c.hand.Bytes() 806 n := int(data[1])<<16 | int(data[2])<<8 | int(data[3]) 807 if n > maxHandshake { 808 return nil, c.in.setErrorLocked(c.sendAlert(alertInternalError)) 809 } 810 for c.hand.Len() < 4+n { 811 if err := c.in.err; err != nil { 812 return nil, err 813 } 814 if err := c.readRecord(recordTypeHandshake); err != nil { 815 return nil, err 816 } 817 } 818 data = c.hand.Next(4 + n) 819 var m handshakeMessage 820 switch data[0] { 821 case typeClientHello: 822 m = new(clientHelloMsg) 823 case typeServerHello: 824 m = new(serverHelloMsg) 825 case typeNewSessionTicket: 826 m = new(newSessionTicketMsg) 827 case typeCertificate: 828 m = new(certificateMsg) 829 case typeCertificateRequest: 830 m = &certificateRequestMsg{ 831 hasSignatureAndHash: c.vers >= VersionTLS12, 832 } 833 case typeCertificateStatus: 834 m = new(certificateStatusMsg) 835 case typeServerKeyExchange: 836 m = new(serverKeyExchangeMsg) 837 case typeServerHelloDone: 838 m = new(serverHelloDoneMsg) 839 case typeClientKeyExchange: 840 m = new(clientKeyExchangeMsg) 841 case typeCertificateVerify: 842 m = &certificateVerifyMsg{ 843 hasSignatureAndHash: c.vers >= VersionTLS12, 844 } 845 case typeNextProtocol: 846 m = new(nextProtoMsg) 847 case typeFinished: 848 m = new(finishedMsg) 849 default: 850 return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) 851 } 852 853 // The handshake message unmarshallers 854 // expect to be able to keep references to data, 855 // so pass in a fresh copy that won't be overwritten. 856 data = append([]byte(nil), data...) 857 858 if !m.unmarshal(data) { 859 return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) 860 } 861 return m, nil 862} 863 864var errClosed = errors.New("crypto/tls: use of closed connection") 865 866// Write writes data to the connection. 867func (c *Conn) Write(b []byte) (int, error) { 868 // interlock with Close below 869 for { 870 x := atomic.LoadInt32(&c.activeCall) 871 if x&1 != 0 { 872 return 0, errClosed 873 } 874 if atomic.CompareAndSwapInt32(&c.activeCall, x, x+2) { 875 defer atomic.AddInt32(&c.activeCall, -2) 876 break 877 } 878 } 879 880 if err := c.Handshake(); err != nil { 881 return 0, err 882 } 883 884 c.out.Lock() 885 defer c.out.Unlock() 886 887 if err := c.out.err; err != nil { 888 return 0, err 889 } 890 891 if !c.handshakeComplete { 892 return 0, alertInternalError 893 } 894 895 // SSL 3.0 and TLS 1.0 are susceptible to a chosen-plaintext 896 // attack when using block mode ciphers due to predictable IVs. 897 // This can be prevented by splitting each Application Data 898 // record into two records, effectively randomizing the IV. 899 // 900 // http://www.openssl.org/~bodo/tls-cbc.txt 901 // https://bugzilla.mozilla.org/show_bug.cgi?id=665814 902 // http://www.imperialviolet.org/2012/01/15/beastfollowup.html 903 904 var m int 905 if len(b) > 1 && c.vers <= VersionTLS10 { 906 if _, ok := c.out.cipher.(cipher.BlockMode); ok { 907 n, err := c.writeRecord(recordTypeApplicationData, b[:1]) 908 if err != nil { 909 return n, c.out.setErrorLocked(err) 910 } 911 m, b = 1, b[1:] 912 } 913 } 914 915 n, err := c.writeRecord(recordTypeApplicationData, b) 916 return n + m, c.out.setErrorLocked(err) 917} 918 919// Read can be made to time out and return a net.Error with Timeout() == true 920// after a fixed time limit; see SetDeadline and SetReadDeadline. 921func (c *Conn) Read(b []byte) (n int, err error) { 922 if err = c.Handshake(); err != nil { 923 return 924 } 925 if len(b) == 0 { 926 // Put this after Handshake, in case people were calling 927 // Read(nil) for the side effect of the Handshake. 928 return 929 } 930 931 c.in.Lock() 932 defer c.in.Unlock() 933 934 // Some OpenSSL servers send empty records in order to randomize the 935 // CBC IV. So this loop ignores a limited number of empty records. 936 const maxConsecutiveEmptyRecords = 100 937 for emptyRecordCount := 0; emptyRecordCount <= maxConsecutiveEmptyRecords; emptyRecordCount++ { 938 for c.input == nil && c.in.err == nil { 939 if err := c.readRecord(recordTypeApplicationData); err != nil { 940 // Soft error, like EAGAIN 941 return 0, err 942 } 943 } 944 if err := c.in.err; err != nil { 945 return 0, err 946 } 947 948 n, err = c.input.Read(b) 949 if c.input.off >= len(c.input.data) { 950 c.in.freeBlock(c.input) 951 c.input = nil 952 } 953 954 // If a close-notify alert is waiting, read it so that 955 // we can return (n, EOF) instead of (n, nil), to signal 956 // to the HTTP response reading goroutine that the 957 // connection is now closed. This eliminates a race 958 // where the HTTP response reading goroutine would 959 // otherwise not observe the EOF until its next read, 960 // by which time a client goroutine might have already 961 // tried to reuse the HTTP connection for a new 962 // request. 963 // See https://codereview.appspot.com/76400046 964 // and https://golang.org/issue/3514 965 if ri := c.rawInput; ri != nil && 966 n != 0 && err == nil && 967 c.input == nil && len(ri.data) > 0 && recordType(ri.data[0]) == recordTypeAlert { 968 if recErr := c.readRecord(recordTypeApplicationData); recErr != nil { 969 err = recErr // will be io.EOF on closeNotify 970 } 971 } 972 973 if n != 0 || err != nil { 974 return n, err 975 } 976 } 977 978 return 0, io.ErrNoProgress 979} 980 981// Close closes the connection. 982func (c *Conn) Close() error { 983 // Interlock with Conn.Write above. 984 var x int32 985 for { 986 x = atomic.LoadInt32(&c.activeCall) 987 if x&1 != 0 { 988 return errClosed 989 } 990 if atomic.CompareAndSwapInt32(&c.activeCall, x, x|1) { 991 break 992 } 993 } 994 if x != 0 { 995 // io.Writer and io.Closer should not be used concurrently. 996 // If Close is called while a Write is currently in-flight, 997 // interpret that as a sign that this Close is really just 998 // being used to break the Write and/or clean up resources and 999 // avoid sending the alertCloseNotify, which may block 1000 // waiting on handshakeMutex or the c.out mutex. 1001 return c.conn.Close() 1002 } 1003 1004 var alertErr error 1005 1006 c.handshakeMutex.Lock() 1007 defer c.handshakeMutex.Unlock() 1008 if c.handshakeComplete { 1009 alertErr = c.sendAlert(alertCloseNotify) 1010 } 1011 1012 if err := c.conn.Close(); err != nil { 1013 return err 1014 } 1015 return alertErr 1016} 1017 1018// Handshake runs the client or server handshake 1019// protocol if it has not yet been run. 1020// Most uses of this package need not call Handshake 1021// explicitly: the first Read or Write will call it automatically. 1022func (c *Conn) Handshake() error { 1023 c.handshakeMutex.Lock() 1024 defer c.handshakeMutex.Unlock() 1025 if err := c.handshakeErr; err != nil { 1026 return err 1027 } 1028 if c.handshakeComplete { 1029 return nil 1030 } 1031 1032 if c.isClient { 1033 c.handshakeErr = c.clientHandshake() 1034 } else { 1035 c.handshakeErr = c.serverHandshake() 1036 } 1037 return c.handshakeErr 1038} 1039 1040// ConnectionState returns basic TLS details about the connection. 1041func (c *Conn) ConnectionState() ConnectionState { 1042 c.handshakeMutex.Lock() 1043 defer c.handshakeMutex.Unlock() 1044 1045 var state ConnectionState 1046 state.HandshakeComplete = c.handshakeComplete 1047 if c.handshakeComplete { 1048 state.Version = c.vers 1049 state.NegotiatedProtocol = c.clientProtocol 1050 state.DidResume = c.didResume 1051 state.NegotiatedProtocolIsMutual = !c.clientProtocolFallback 1052 state.CipherSuite = c.cipherSuite 1053 state.PeerCertificates = c.peerCertificates 1054 state.VerifiedChains = c.verifiedChains 1055 state.ServerName = c.serverName 1056 state.SignedCertificateTimestamps = c.scts 1057 state.OCSPResponse = c.ocspResponse 1058 if !c.didResume { 1059 state.TLSUnique = c.firstFinished[:] 1060 } 1061 } 1062 1063 return state 1064} 1065 1066// OCSPResponse returns the stapled OCSP response from the TLS server, if 1067// any. (Only valid for client connections.) 1068func (c *Conn) OCSPResponse() []byte { 1069 c.handshakeMutex.Lock() 1070 defer c.handshakeMutex.Unlock() 1071 1072 return c.ocspResponse 1073} 1074 1075// VerifyHostname checks that the peer certificate chain is valid for 1076// connecting to host. If so, it returns nil; if not, it returns an error 1077// describing the problem. 1078func (c *Conn) VerifyHostname(host string) error { 1079 c.handshakeMutex.Lock() 1080 defer c.handshakeMutex.Unlock() 1081 if !c.isClient { 1082 return errors.New("tls: VerifyHostname called on TLS server connection") 1083 } 1084 if !c.handshakeComplete { 1085 return errors.New("tls: handshake has not yet been performed") 1086 } 1087 if len(c.verifiedChains) == 0 { 1088 return errors.New("tls: handshake did not verify certificate chain") 1089 } 1090 return c.peerCertificates[0].VerifyHostname(host) 1091} 1092