1// Copyright 2009 The Go Authors.  All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5// Package draw provides image composition functions.
6//
7// See "The Go image/draw package" for an introduction to this package:
8// https://golang.org/doc/articles/image_draw.html
9package draw
10
11import (
12	"image"
13	"image/color"
14	"image/internal/imageutil"
15)
16
17// m is the maximum color value returned by image.Color.RGBA.
18const m = 1<<16 - 1
19
20// Image is an image.Image with a Set method to change a single pixel.
21type Image interface {
22	image.Image
23	Set(x, y int, c color.Color)
24}
25
26// Quantizer produces a palette for an image.
27type Quantizer interface {
28	// Quantize appends up to cap(p) - len(p) colors to p and returns the
29	// updated palette suitable for converting m to a paletted image.
30	Quantize(p color.Palette, m image.Image) color.Palette
31}
32
33// Op is a Porter-Duff compositing operator.
34type Op int
35
36const (
37	// Over specifies ``(src in mask) over dst''.
38	Over Op = iota
39	// Src specifies ``src in mask''.
40	Src
41)
42
43// Draw implements the Drawer interface by calling the Draw function with this
44// Op.
45func (op Op) Draw(dst Image, r image.Rectangle, src image.Image, sp image.Point) {
46	DrawMask(dst, r, src, sp, nil, image.Point{}, op)
47}
48
49// Drawer contains the Draw method.
50type Drawer interface {
51	// Draw aligns r.Min in dst with sp in src and then replaces the
52	// rectangle r in dst with the result of drawing src on dst.
53	Draw(dst Image, r image.Rectangle, src image.Image, sp image.Point)
54}
55
56// FloydSteinberg is a Drawer that is the Src Op with Floyd-Steinberg error
57// diffusion.
58var FloydSteinberg Drawer = floydSteinberg{}
59
60type floydSteinberg struct{}
61
62func (floydSteinberg) Draw(dst Image, r image.Rectangle, src image.Image, sp image.Point) {
63	clip(dst, &r, src, &sp, nil, nil)
64	if r.Empty() {
65		return
66	}
67	drawPaletted(dst, r, src, sp, true)
68}
69
70// clip clips r against each image's bounds (after translating into the
71// destination image's coordinate space) and shifts the points sp and mp by
72// the same amount as the change in r.Min.
73func clip(dst Image, r *image.Rectangle, src image.Image, sp *image.Point, mask image.Image, mp *image.Point) {
74	orig := r.Min
75	*r = r.Intersect(dst.Bounds())
76	*r = r.Intersect(src.Bounds().Add(orig.Sub(*sp)))
77	if mask != nil {
78		*r = r.Intersect(mask.Bounds().Add(orig.Sub(*mp)))
79	}
80	dx := r.Min.X - orig.X
81	dy := r.Min.Y - orig.Y
82	if dx == 0 && dy == 0 {
83		return
84	}
85	sp.X += dx
86	sp.Y += dy
87	if mp != nil {
88		mp.X += dx
89		mp.Y += dy
90	}
91}
92
93func processBackward(dst Image, r image.Rectangle, src image.Image, sp image.Point) bool {
94	return image.Image(dst) == src &&
95		r.Overlaps(r.Add(sp.Sub(r.Min))) &&
96		(sp.Y < r.Min.Y || (sp.Y == r.Min.Y && sp.X < r.Min.X))
97}
98
99// Draw calls DrawMask with a nil mask.
100func Draw(dst Image, r image.Rectangle, src image.Image, sp image.Point, op Op) {
101	DrawMask(dst, r, src, sp, nil, image.Point{}, op)
102}
103
104// DrawMask aligns r.Min in dst with sp in src and mp in mask and then replaces the rectangle r
105// in dst with the result of a Porter-Duff composition. A nil mask is treated as opaque.
106func DrawMask(dst Image, r image.Rectangle, src image.Image, sp image.Point, mask image.Image, mp image.Point, op Op) {
107	clip(dst, &r, src, &sp, mask, &mp)
108	if r.Empty() {
109		return
110	}
111
112	// Fast paths for special cases. If none of them apply, then we fall back to a general but slow implementation.
113	switch dst0 := dst.(type) {
114	case *image.RGBA:
115		if op == Over {
116			if mask == nil {
117				switch src0 := src.(type) {
118				case *image.Uniform:
119					drawFillOver(dst0, r, src0)
120					return
121				case *image.RGBA:
122					drawCopyOver(dst0, r, src0, sp)
123					return
124				case *image.NRGBA:
125					drawNRGBAOver(dst0, r, src0, sp)
126					return
127				case *image.YCbCr:
128					// An image.YCbCr is always fully opaque, and so if the
129					// mask is nil (i.e. fully opaque) then the op is
130					// effectively always Src. Similarly for image.Gray and
131					// image.CMYK.
132					if imageutil.DrawYCbCr(dst0, r, src0, sp) {
133						return
134					}
135				case *image.Gray:
136					drawGray(dst0, r, src0, sp)
137					return
138				case *image.CMYK:
139					drawCMYK(dst0, r, src0, sp)
140					return
141				}
142			} else if mask0, ok := mask.(*image.Alpha); ok {
143				switch src0 := src.(type) {
144				case *image.Uniform:
145					drawGlyphOver(dst0, r, src0, mask0, mp)
146					return
147				}
148			}
149		} else {
150			if mask == nil {
151				switch src0 := src.(type) {
152				case *image.Uniform:
153					drawFillSrc(dst0, r, src0)
154					return
155				case *image.RGBA:
156					drawCopySrc(dst0, r, src0, sp)
157					return
158				case *image.NRGBA:
159					drawNRGBASrc(dst0, r, src0, sp)
160					return
161				case *image.YCbCr:
162					if imageutil.DrawYCbCr(dst0, r, src0, sp) {
163						return
164					}
165				case *image.Gray:
166					drawGray(dst0, r, src0, sp)
167					return
168				case *image.CMYK:
169					drawCMYK(dst0, r, src0, sp)
170					return
171				}
172			}
173		}
174		drawRGBA(dst0, r, src, sp, mask, mp, op)
175		return
176	case *image.Paletted:
177		if op == Src && mask == nil && !processBackward(dst, r, src, sp) {
178			drawPaletted(dst0, r, src, sp, false)
179			return
180		}
181	}
182
183	x0, x1, dx := r.Min.X, r.Max.X, 1
184	y0, y1, dy := r.Min.Y, r.Max.Y, 1
185	if processBackward(dst, r, src, sp) {
186		x0, x1, dx = x1-1, x0-1, -1
187		y0, y1, dy = y1-1, y0-1, -1
188	}
189
190	var out color.RGBA64
191	sy := sp.Y + y0 - r.Min.Y
192	my := mp.Y + y0 - r.Min.Y
193	for y := y0; y != y1; y, sy, my = y+dy, sy+dy, my+dy {
194		sx := sp.X + x0 - r.Min.X
195		mx := mp.X + x0 - r.Min.X
196		for x := x0; x != x1; x, sx, mx = x+dx, sx+dx, mx+dx {
197			ma := uint32(m)
198			if mask != nil {
199				_, _, _, ma = mask.At(mx, my).RGBA()
200			}
201			switch {
202			case ma == 0:
203				if op == Over {
204					// No-op.
205				} else {
206					dst.Set(x, y, color.Transparent)
207				}
208			case ma == m && op == Src:
209				dst.Set(x, y, src.At(sx, sy))
210			default:
211				sr, sg, sb, sa := src.At(sx, sy).RGBA()
212				if op == Over {
213					dr, dg, db, da := dst.At(x, y).RGBA()
214					a := m - (sa * ma / m)
215					out.R = uint16((dr*a + sr*ma) / m)
216					out.G = uint16((dg*a + sg*ma) / m)
217					out.B = uint16((db*a + sb*ma) / m)
218					out.A = uint16((da*a + sa*ma) / m)
219				} else {
220					out.R = uint16(sr * ma / m)
221					out.G = uint16(sg * ma / m)
222					out.B = uint16(sb * ma / m)
223					out.A = uint16(sa * ma / m)
224				}
225				// The third argument is &out instead of out (and out is
226				// declared outside of the inner loop) to avoid the implicit
227				// conversion to color.Color here allocating memory in the
228				// inner loop if sizeof(color.RGBA64) > sizeof(uintptr).
229				dst.Set(x, y, &out)
230			}
231		}
232	}
233}
234
235func drawFillOver(dst *image.RGBA, r image.Rectangle, src *image.Uniform) {
236	sr, sg, sb, sa := src.RGBA()
237	// The 0x101 is here for the same reason as in drawRGBA.
238	a := (m - sa) * 0x101
239	i0 := dst.PixOffset(r.Min.X, r.Min.Y)
240	i1 := i0 + r.Dx()*4
241	for y := r.Min.Y; y != r.Max.Y; y++ {
242		for i := i0; i < i1; i += 4 {
243			dr := &dst.Pix[i+0]
244			dg := &dst.Pix[i+1]
245			db := &dst.Pix[i+2]
246			da := &dst.Pix[i+3]
247
248			*dr = uint8((uint32(*dr)*a/m + sr) >> 8)
249			*dg = uint8((uint32(*dg)*a/m + sg) >> 8)
250			*db = uint8((uint32(*db)*a/m + sb) >> 8)
251			*da = uint8((uint32(*da)*a/m + sa) >> 8)
252		}
253		i0 += dst.Stride
254		i1 += dst.Stride
255	}
256}
257
258func drawFillSrc(dst *image.RGBA, r image.Rectangle, src *image.Uniform) {
259	sr, sg, sb, sa := src.RGBA()
260	sr8 := uint8(sr >> 8)
261	sg8 := uint8(sg >> 8)
262	sb8 := uint8(sb >> 8)
263	sa8 := uint8(sa >> 8)
264	// The built-in copy function is faster than a straightforward for loop to fill the destination with
265	// the color, but copy requires a slice source. We therefore use a for loop to fill the first row, and
266	// then use the first row as the slice source for the remaining rows.
267	i0 := dst.PixOffset(r.Min.X, r.Min.Y)
268	i1 := i0 + r.Dx()*4
269	for i := i0; i < i1; i += 4 {
270		dst.Pix[i+0] = sr8
271		dst.Pix[i+1] = sg8
272		dst.Pix[i+2] = sb8
273		dst.Pix[i+3] = sa8
274	}
275	firstRow := dst.Pix[i0:i1]
276	for y := r.Min.Y + 1; y < r.Max.Y; y++ {
277		i0 += dst.Stride
278		i1 += dst.Stride
279		copy(dst.Pix[i0:i1], firstRow)
280	}
281}
282
283func drawCopyOver(dst *image.RGBA, r image.Rectangle, src *image.RGBA, sp image.Point) {
284	dx, dy := r.Dx(), r.Dy()
285	d0 := dst.PixOffset(r.Min.X, r.Min.Y)
286	s0 := src.PixOffset(sp.X, sp.Y)
287	var (
288		ddelta, sdelta int
289		i0, i1, idelta int
290	)
291	if r.Min.Y < sp.Y || r.Min.Y == sp.Y && r.Min.X <= sp.X {
292		ddelta = dst.Stride
293		sdelta = src.Stride
294		i0, i1, idelta = 0, dx*4, +4
295	} else {
296		// If the source start point is higher than the destination start point, or equal height but to the left,
297		// then we compose the rows in right-to-left, bottom-up order instead of left-to-right, top-down.
298		d0 += (dy - 1) * dst.Stride
299		s0 += (dy - 1) * src.Stride
300		ddelta = -dst.Stride
301		sdelta = -src.Stride
302		i0, i1, idelta = (dx-1)*4, -4, -4
303	}
304	for ; dy > 0; dy-- {
305		dpix := dst.Pix[d0:]
306		spix := src.Pix[s0:]
307		for i := i0; i != i1; i += idelta {
308			sr := uint32(spix[i+0]) * 0x101
309			sg := uint32(spix[i+1]) * 0x101
310			sb := uint32(spix[i+2]) * 0x101
311			sa := uint32(spix[i+3]) * 0x101
312
313			dr := &dpix[i+0]
314			dg := &dpix[i+1]
315			db := &dpix[i+2]
316			da := &dpix[i+3]
317
318			// The 0x101 is here for the same reason as in drawRGBA.
319			a := (m - sa) * 0x101
320
321			*dr = uint8((uint32(*dr)*a/m + sr) >> 8)
322			*dg = uint8((uint32(*dg)*a/m + sg) >> 8)
323			*db = uint8((uint32(*db)*a/m + sb) >> 8)
324			*da = uint8((uint32(*da)*a/m + sa) >> 8)
325		}
326		d0 += ddelta
327		s0 += sdelta
328	}
329}
330
331func drawCopySrc(dst *image.RGBA, r image.Rectangle, src *image.RGBA, sp image.Point) {
332	n, dy := 4*r.Dx(), r.Dy()
333	d0 := dst.PixOffset(r.Min.X, r.Min.Y)
334	s0 := src.PixOffset(sp.X, sp.Y)
335	var ddelta, sdelta int
336	if r.Min.Y <= sp.Y {
337		ddelta = dst.Stride
338		sdelta = src.Stride
339	} else {
340		// If the source start point is higher than the destination start
341		// point, then we compose the rows in bottom-up order instead of
342		// top-down. Unlike the drawCopyOver function, we don't have to check
343		// the x coordinates because the built-in copy function can handle
344		// overlapping slices.
345		d0 += (dy - 1) * dst.Stride
346		s0 += (dy - 1) * src.Stride
347		ddelta = -dst.Stride
348		sdelta = -src.Stride
349	}
350	for ; dy > 0; dy-- {
351		copy(dst.Pix[d0:d0+n], src.Pix[s0:s0+n])
352		d0 += ddelta
353		s0 += sdelta
354	}
355}
356
357func drawNRGBAOver(dst *image.RGBA, r image.Rectangle, src *image.NRGBA, sp image.Point) {
358	i0 := (r.Min.X - dst.Rect.Min.X) * 4
359	i1 := (r.Max.X - dst.Rect.Min.X) * 4
360	si0 := (sp.X - src.Rect.Min.X) * 4
361	yMax := r.Max.Y - dst.Rect.Min.Y
362
363	y := r.Min.Y - dst.Rect.Min.Y
364	sy := sp.Y - src.Rect.Min.Y
365	for ; y != yMax; y, sy = y+1, sy+1 {
366		dpix := dst.Pix[y*dst.Stride:]
367		spix := src.Pix[sy*src.Stride:]
368
369		for i, si := i0, si0; i < i1; i, si = i+4, si+4 {
370			// Convert from non-premultiplied color to pre-multiplied color.
371			sa := uint32(spix[si+3]) * 0x101
372			sr := uint32(spix[si+0]) * sa / 0xff
373			sg := uint32(spix[si+1]) * sa / 0xff
374			sb := uint32(spix[si+2]) * sa / 0xff
375
376			dr := uint32(dpix[i+0])
377			dg := uint32(dpix[i+1])
378			db := uint32(dpix[i+2])
379			da := uint32(dpix[i+3])
380
381			// The 0x101 is here for the same reason as in drawRGBA.
382			a := (m - sa) * 0x101
383
384			dpix[i+0] = uint8((dr*a/m + sr) >> 8)
385			dpix[i+1] = uint8((dg*a/m + sg) >> 8)
386			dpix[i+2] = uint8((db*a/m + sb) >> 8)
387			dpix[i+3] = uint8((da*a/m + sa) >> 8)
388		}
389	}
390}
391
392func drawNRGBASrc(dst *image.RGBA, r image.Rectangle, src *image.NRGBA, sp image.Point) {
393	i0 := (r.Min.X - dst.Rect.Min.X) * 4
394	i1 := (r.Max.X - dst.Rect.Min.X) * 4
395	si0 := (sp.X - src.Rect.Min.X) * 4
396	yMax := r.Max.Y - dst.Rect.Min.Y
397
398	y := r.Min.Y - dst.Rect.Min.Y
399	sy := sp.Y - src.Rect.Min.Y
400	for ; y != yMax; y, sy = y+1, sy+1 {
401		dpix := dst.Pix[y*dst.Stride:]
402		spix := src.Pix[sy*src.Stride:]
403
404		for i, si := i0, si0; i < i1; i, si = i+4, si+4 {
405			// Convert from non-premultiplied color to pre-multiplied color.
406			sa := uint32(spix[si+3]) * 0x101
407			sr := uint32(spix[si+0]) * sa / 0xff
408			sg := uint32(spix[si+1]) * sa / 0xff
409			sb := uint32(spix[si+2]) * sa / 0xff
410
411			dpix[i+0] = uint8(sr >> 8)
412			dpix[i+1] = uint8(sg >> 8)
413			dpix[i+2] = uint8(sb >> 8)
414			dpix[i+3] = uint8(sa >> 8)
415		}
416	}
417}
418
419func drawGray(dst *image.RGBA, r image.Rectangle, src *image.Gray, sp image.Point) {
420	i0 := (r.Min.X - dst.Rect.Min.X) * 4
421	i1 := (r.Max.X - dst.Rect.Min.X) * 4
422	si0 := (sp.X - src.Rect.Min.X) * 1
423	yMax := r.Max.Y - dst.Rect.Min.Y
424
425	y := r.Min.Y - dst.Rect.Min.Y
426	sy := sp.Y - src.Rect.Min.Y
427	for ; y != yMax; y, sy = y+1, sy+1 {
428		dpix := dst.Pix[y*dst.Stride:]
429		spix := src.Pix[sy*src.Stride:]
430
431		for i, si := i0, si0; i < i1; i, si = i+4, si+1 {
432			p := spix[si]
433			dpix[i+0] = p
434			dpix[i+1] = p
435			dpix[i+2] = p
436			dpix[i+3] = 255
437		}
438	}
439}
440
441func drawCMYK(dst *image.RGBA, r image.Rectangle, src *image.CMYK, sp image.Point) {
442	i0 := (r.Min.X - dst.Rect.Min.X) * 4
443	i1 := (r.Max.X - dst.Rect.Min.X) * 4
444	si0 := (sp.X - src.Rect.Min.X) * 4
445	yMax := r.Max.Y - dst.Rect.Min.Y
446
447	y := r.Min.Y - dst.Rect.Min.Y
448	sy := sp.Y - src.Rect.Min.Y
449	for ; y != yMax; y, sy = y+1, sy+1 {
450		dpix := dst.Pix[y*dst.Stride:]
451		spix := src.Pix[sy*src.Stride:]
452
453		for i, si := i0, si0; i < i1; i, si = i+4, si+4 {
454			dpix[i+0], dpix[i+1], dpix[i+2] =
455				color.CMYKToRGB(spix[si+0], spix[si+1], spix[si+2], spix[si+3])
456			dpix[i+3] = 255
457		}
458	}
459}
460
461func drawGlyphOver(dst *image.RGBA, r image.Rectangle, src *image.Uniform, mask *image.Alpha, mp image.Point) {
462	i0 := dst.PixOffset(r.Min.X, r.Min.Y)
463	i1 := i0 + r.Dx()*4
464	mi0 := mask.PixOffset(mp.X, mp.Y)
465	sr, sg, sb, sa := src.RGBA()
466	for y, my := r.Min.Y, mp.Y; y != r.Max.Y; y, my = y+1, my+1 {
467		for i, mi := i0, mi0; i < i1; i, mi = i+4, mi+1 {
468			ma := uint32(mask.Pix[mi])
469			if ma == 0 {
470				continue
471			}
472			ma |= ma << 8
473
474			dr := &dst.Pix[i+0]
475			dg := &dst.Pix[i+1]
476			db := &dst.Pix[i+2]
477			da := &dst.Pix[i+3]
478
479			// The 0x101 is here for the same reason as in drawRGBA.
480			a := (m - (sa * ma / m)) * 0x101
481
482			*dr = uint8((uint32(*dr)*a + sr*ma) / m >> 8)
483			*dg = uint8((uint32(*dg)*a + sg*ma) / m >> 8)
484			*db = uint8((uint32(*db)*a + sb*ma) / m >> 8)
485			*da = uint8((uint32(*da)*a + sa*ma) / m >> 8)
486		}
487		i0 += dst.Stride
488		i1 += dst.Stride
489		mi0 += mask.Stride
490	}
491}
492
493func drawRGBA(dst *image.RGBA, r image.Rectangle, src image.Image, sp image.Point, mask image.Image, mp image.Point, op Op) {
494	x0, x1, dx := r.Min.X, r.Max.X, 1
495	y0, y1, dy := r.Min.Y, r.Max.Y, 1
496	if image.Image(dst) == src && r.Overlaps(r.Add(sp.Sub(r.Min))) {
497		if sp.Y < r.Min.Y || sp.Y == r.Min.Y && sp.X < r.Min.X {
498			x0, x1, dx = x1-1, x0-1, -1
499			y0, y1, dy = y1-1, y0-1, -1
500		}
501	}
502
503	sy := sp.Y + y0 - r.Min.Y
504	my := mp.Y + y0 - r.Min.Y
505	sx0 := sp.X + x0 - r.Min.X
506	mx0 := mp.X + x0 - r.Min.X
507	sx1 := sx0 + (x1 - x0)
508	i0 := dst.PixOffset(x0, y0)
509	di := dx * 4
510	for y := y0; y != y1; y, sy, my = y+dy, sy+dy, my+dy {
511		for i, sx, mx := i0, sx0, mx0; sx != sx1; i, sx, mx = i+di, sx+dx, mx+dx {
512			ma := uint32(m)
513			if mask != nil {
514				_, _, _, ma = mask.At(mx, my).RGBA()
515			}
516			sr, sg, sb, sa := src.At(sx, sy).RGBA()
517			if op == Over {
518				dr := uint32(dst.Pix[i+0])
519				dg := uint32(dst.Pix[i+1])
520				db := uint32(dst.Pix[i+2])
521				da := uint32(dst.Pix[i+3])
522
523				// dr, dg, db and da are all 8-bit color at the moment, ranging in [0,255].
524				// We work in 16-bit color, and so would normally do:
525				// dr |= dr << 8
526				// and similarly for dg, db and da, but instead we multiply a
527				// (which is a 16-bit color, ranging in [0,65535]) by 0x101.
528				// This yields the same result, but is fewer arithmetic operations.
529				a := (m - (sa * ma / m)) * 0x101
530
531				dst.Pix[i+0] = uint8((dr*a + sr*ma) / m >> 8)
532				dst.Pix[i+1] = uint8((dg*a + sg*ma) / m >> 8)
533				dst.Pix[i+2] = uint8((db*a + sb*ma) / m >> 8)
534				dst.Pix[i+3] = uint8((da*a + sa*ma) / m >> 8)
535
536			} else {
537				dst.Pix[i+0] = uint8(sr * ma / m >> 8)
538				dst.Pix[i+1] = uint8(sg * ma / m >> 8)
539				dst.Pix[i+2] = uint8(sb * ma / m >> 8)
540				dst.Pix[i+3] = uint8(sa * ma / m >> 8)
541			}
542		}
543		i0 += dy * dst.Stride
544	}
545}
546
547// clamp clamps i to the interval [0, 0xffff].
548func clamp(i int32) int32 {
549	if i < 0 {
550		return 0
551	}
552	if i > 0xffff {
553		return 0xffff
554	}
555	return i
556}
557
558// sqDiff returns the squared-difference of x and y, shifted by 2 so that
559// adding four of those won't overflow a uint32.
560//
561// x and y are both assumed to be in the range [0, 0xffff].
562func sqDiff(x, y int32) uint32 {
563	var d uint32
564	if x > y {
565		d = uint32(x - y)
566	} else {
567		d = uint32(y - x)
568	}
569	return (d * d) >> 2
570}
571
572func drawPaletted(dst Image, r image.Rectangle, src image.Image, sp image.Point, floydSteinberg bool) {
573	// TODO(nigeltao): handle the case where the dst and src overlap.
574	// Does it even make sense to try and do Floyd-Steinberg whilst
575	// walking the image backward (right-to-left bottom-to-top)?
576
577	// If dst is an *image.Paletted, we have a fast path for dst.Set and
578	// dst.At. The dst.Set equivalent is a batch version of the algorithm
579	// used by color.Palette's Index method in image/color/color.go, plus
580	// optional Floyd-Steinberg error diffusion.
581	palette, pix, stride := [][4]int32(nil), []byte(nil), 0
582	if p, ok := dst.(*image.Paletted); ok {
583		palette = make([][4]int32, len(p.Palette))
584		for i, col := range p.Palette {
585			r, g, b, a := col.RGBA()
586			palette[i][0] = int32(r)
587			palette[i][1] = int32(g)
588			palette[i][2] = int32(b)
589			palette[i][3] = int32(a)
590		}
591		pix, stride = p.Pix[p.PixOffset(r.Min.X, r.Min.Y):], p.Stride
592	}
593
594	// quantErrorCurr and quantErrorNext are the Floyd-Steinberg quantization
595	// errors that have been propagated to the pixels in the current and next
596	// rows. The +2 simplifies calculation near the edges.
597	var quantErrorCurr, quantErrorNext [][4]int32
598	if floydSteinberg {
599		quantErrorCurr = make([][4]int32, r.Dx()+2)
600		quantErrorNext = make([][4]int32, r.Dx()+2)
601	}
602
603	// Loop over each source pixel.
604	out := color.RGBA64{A: 0xffff}
605	for y := 0; y != r.Dy(); y++ {
606		for x := 0; x != r.Dx(); x++ {
607			// er, eg and eb are the pixel's R,G,B values plus the
608			// optional Floyd-Steinberg error.
609			sr, sg, sb, sa := src.At(sp.X+x, sp.Y+y).RGBA()
610			er, eg, eb, ea := int32(sr), int32(sg), int32(sb), int32(sa)
611			if floydSteinberg {
612				er = clamp(er + quantErrorCurr[x+1][0]/16)
613				eg = clamp(eg + quantErrorCurr[x+1][1]/16)
614				eb = clamp(eb + quantErrorCurr[x+1][2]/16)
615				ea = clamp(ea + quantErrorCurr[x+1][3]/16)
616			}
617
618			if palette != nil {
619				// Find the closest palette color in Euclidean R,G,B,A space:
620				// the one that minimizes sum-squared-difference.
621				// TODO(nigeltao): consider smarter algorithms.
622				bestIndex, bestSum := 0, uint32(1<<32-1)
623				for index, p := range palette {
624					sum := sqDiff(er, p[0]) + sqDiff(eg, p[1]) + sqDiff(eb, p[2]) + sqDiff(ea, p[3])
625					if sum < bestSum {
626						bestIndex, bestSum = index, sum
627						if sum == 0 {
628							break
629						}
630					}
631				}
632				pix[y*stride+x] = byte(bestIndex)
633
634				if !floydSteinberg {
635					continue
636				}
637				er -= int32(palette[bestIndex][0])
638				eg -= int32(palette[bestIndex][1])
639				eb -= int32(palette[bestIndex][2])
640				ea -= int32(palette[bestIndex][3])
641
642			} else {
643				out.R = uint16(er)
644				out.G = uint16(eg)
645				out.B = uint16(eb)
646				out.A = uint16(ea)
647				// The third argument is &out instead of out (and out is
648				// declared outside of the inner loop) to avoid the implicit
649				// conversion to color.Color here allocating memory in the
650				// inner loop if sizeof(color.RGBA64) > sizeof(uintptr).
651				dst.Set(r.Min.X+x, r.Min.Y+y, &out)
652
653				if !floydSteinberg {
654					continue
655				}
656				sr, sg, sb, sa = dst.At(r.Min.X+x, r.Min.Y+y).RGBA()
657				er -= int32(sr)
658				eg -= int32(sg)
659				eb -= int32(sb)
660				ea -= int32(sa)
661			}
662
663			// Propagate the Floyd-Steinberg quantization error.
664			quantErrorNext[x+0][0] += er * 3
665			quantErrorNext[x+0][1] += eg * 3
666			quantErrorNext[x+0][2] += eb * 3
667			quantErrorNext[x+0][3] += ea * 3
668			quantErrorNext[x+1][0] += er * 5
669			quantErrorNext[x+1][1] += eg * 5
670			quantErrorNext[x+1][2] += eb * 5
671			quantErrorNext[x+1][3] += ea * 5
672			quantErrorNext[x+2][0] += er * 1
673			quantErrorNext[x+2][1] += eg * 1
674			quantErrorNext[x+2][2] += eb * 1
675			quantErrorNext[x+2][3] += ea * 1
676			quantErrorCurr[x+2][0] += er * 7
677			quantErrorCurr[x+2][1] += eg * 7
678			quantErrorCurr[x+2][2] += eb * 7
679			quantErrorCurr[x+2][3] += ea * 7
680		}
681
682		// Recycle the quantization error buffers.
683		if floydSteinberg {
684			quantErrorCurr, quantErrorNext = quantErrorNext, quantErrorCurr
685			for i := range quantErrorNext {
686				quantErrorNext[i] = [4]int32{}
687			}
688		}
689	}
690}
691