1// Copyright 2009 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5// See malloc.h for overview.
6//
7// TODO(rsc): double-check stats.
8
9package runtime
10#include <stddef.h>
11#include <errno.h>
12#include <stdlib.h>
13#include "go-alloc.h"
14#include "runtime.h"
15#include "arch.h"
16#include "malloc.h"
17#include "interface.h"
18#include "go-type.h"
19
20// Map gccgo field names to gc field names.
21// Eface aka __go_empty_interface.
22#define type __type_descriptor
23// Type aka __go_type_descriptor
24#define kind __code
25#define string __reflection
26#define KindPtr GO_PTR
27#define KindNoPointers GO_NO_POINTERS
28#define kindMask GO_CODE_MASK
29
30// GCCGO SPECIFIC CHANGE
31//
32// There is a long comment in runtime_mallocinit about where to put the heap
33// on a 64-bit system.  It makes assumptions that are not valid on linux/arm64
34// -- it assumes user space can choose the lower 47 bits of a pointer, but on
35// linux/arm64 we can only choose the lower 39 bits.  This means the heap is
36// roughly a quarter of the available address space and we cannot choose a bit
37// pattern that all pointers will have -- luckily the GC is mostly precise
38// these days so this doesn't matter all that much.  The kernel (as of 3.13)
39// will allocate address space starting either down from 0x7fffffffff or up
40// from 0x2000000000, so we put the heap roughly in the middle of these two
41// addresses to minimize the chance that a non-heap allocation will get in the
42// way of the heap.
43//
44// This all means that there isn't much point in trying 256 different
45// locations for the heap on such systems.
46#ifdef __aarch64__
47#define HeapBase(i) ((void*)(uintptr)(0x40ULL<<32))
48#define HeapBaseOptions 1
49#else
50#define HeapBase(i) ((void*)(uintptr)(i<<40|0x00c0ULL<<32))
51#define HeapBaseOptions 0x80
52#endif
53// END GCCGO SPECIFIC CHANGE
54
55// Mark mheap as 'no pointers', it does not contain interesting pointers but occupies ~45K.
56MHeap runtime_mheap;
57MStats mstats;
58
59int32	runtime_checking;
60
61extern MStats mstats;	// defined in zruntime_def_$GOOS_$GOARCH.go
62
63extern volatile intgo runtime_MemProfileRate
64  __asm__ (GOSYM_PREFIX "runtime.MemProfileRate");
65
66static MSpan* largealloc(uint32, uintptr*);
67static void runtime_profilealloc(void *v, uintptr size);
68static void settype(MSpan *s, void *v, uintptr typ);
69
70// Allocate an object of at least size bytes.
71// Small objects are allocated from the per-thread cache's free lists.
72// Large objects (> 32 kB) are allocated straight from the heap.
73// If the block will be freed with runtime_free(), typ must be 0.
74void*
75runtime_mallocgc(uintptr size, uintptr typ, uint32 flag)
76{
77	M *m;
78	G *g;
79	int32 sizeclass;
80	uintptr tinysize, size1;
81	intgo rate;
82	MCache *c;
83	MSpan *s;
84	MLink *v, *next;
85	byte *tiny;
86	bool incallback;
87
88	if(size == 0) {
89		// All 0-length allocations use this pointer.
90		// The language does not require the allocations to
91		// have distinct values.
92		return &runtime_zerobase;
93	}
94
95	m = runtime_m();
96	g = runtime_g();
97
98	incallback = false;
99	if(m->mcache == nil && g->ncgo > 0) {
100		// For gccgo this case can occur when a cgo or SWIG function
101		// has an interface return type and the function
102		// returns a non-pointer, so memory allocation occurs
103		// after syscall.Cgocall but before syscall.CgocallDone.
104		// We treat it as a callback.
105		runtime_exitsyscall();
106		m = runtime_m();
107		incallback = true;
108		flag |= FlagNoInvokeGC;
109	}
110
111	if(runtime_gcwaiting() && g != m->g0 && m->locks == 0 && !(flag & FlagNoInvokeGC)) {
112		runtime_gosched();
113		m = runtime_m();
114	}
115	if(m->mallocing)
116		runtime_throw("malloc/free - deadlock");
117	// Disable preemption during settype.
118	// We can not use m->mallocing for this, because settype calls mallocgc.
119	m->locks++;
120	m->mallocing = 1;
121
122	if(DebugTypeAtBlockEnd)
123		size += sizeof(uintptr);
124
125	c = m->mcache;
126	if(!runtime_debug.efence && size <= MaxSmallSize) {
127		if((flag&(FlagNoScan|FlagNoGC)) == FlagNoScan && size < TinySize) {
128			// Tiny allocator.
129			//
130			// Tiny allocator combines several tiny allocation requests
131			// into a single memory block. The resulting memory block
132			// is freed when all subobjects are unreachable. The subobjects
133			// must be FlagNoScan (don't have pointers), this ensures that
134			// the amount of potentially wasted memory is bounded.
135			//
136			// Size of the memory block used for combining (TinySize) is tunable.
137			// Current setting is 16 bytes, which relates to 2x worst case memory
138			// wastage (when all but one subobjects are unreachable).
139			// 8 bytes would result in no wastage at all, but provides less
140			// opportunities for combining.
141			// 32 bytes provides more opportunities for combining,
142			// but can lead to 4x worst case wastage.
143			// The best case winning is 8x regardless of block size.
144			//
145			// Objects obtained from tiny allocator must not be freed explicitly.
146			// So when an object will be freed explicitly, we ensure that
147			// its size >= TinySize.
148			//
149			// SetFinalizer has a special case for objects potentially coming
150			// from tiny allocator, it such case it allows to set finalizers
151			// for an inner byte of a memory block.
152			//
153			// The main targets of tiny allocator are small strings and
154			// standalone escaping variables. On a json benchmark
155			// the allocator reduces number of allocations by ~12% and
156			// reduces heap size by ~20%.
157
158			tinysize = c->tinysize;
159			if(size <= tinysize) {
160				tiny = c->tiny;
161				// Align tiny pointer for required (conservative) alignment.
162				if((size&7) == 0)
163					tiny = (byte*)ROUND((uintptr)tiny, 8);
164				else if((size&3) == 0)
165					tiny = (byte*)ROUND((uintptr)tiny, 4);
166				else if((size&1) == 0)
167					tiny = (byte*)ROUND((uintptr)tiny, 2);
168				size1 = size + (tiny - c->tiny);
169				if(size1 <= tinysize) {
170					// The object fits into existing tiny block.
171					v = (MLink*)tiny;
172					c->tiny += size1;
173					c->tinysize -= size1;
174					m->mallocing = 0;
175					m->locks--;
176					if(incallback)
177						runtime_entersyscall();
178					return v;
179				}
180			}
181			// Allocate a new TinySize block.
182			s = c->alloc[TinySizeClass];
183			if(s->freelist == nil)
184				s = runtime_MCache_Refill(c, TinySizeClass);
185			v = s->freelist;
186			next = v->next;
187			s->freelist = next;
188			s->ref++;
189			if(next != nil)  // prefetching nil leads to a DTLB miss
190				PREFETCH(next);
191			((uint64*)v)[0] = 0;
192			((uint64*)v)[1] = 0;
193			// See if we need to replace the existing tiny block with the new one
194			// based on amount of remaining free space.
195			if(TinySize-size > tinysize) {
196				c->tiny = (byte*)v + size;
197				c->tinysize = TinySize - size;
198			}
199			size = TinySize;
200			goto done;
201		}
202		// Allocate from mcache free lists.
203		// Inlined version of SizeToClass().
204		if(size <= 1024-8)
205			sizeclass = runtime_size_to_class8[(size+7)>>3];
206		else
207			sizeclass = runtime_size_to_class128[(size-1024+127) >> 7];
208		size = runtime_class_to_size[sizeclass];
209		s = c->alloc[sizeclass];
210		if(s->freelist == nil)
211			s = runtime_MCache_Refill(c, sizeclass);
212		v = s->freelist;
213		next = v->next;
214		s->freelist = next;
215		s->ref++;
216		if(next != nil)  // prefetching nil leads to a DTLB miss
217			PREFETCH(next);
218		if(!(flag & FlagNoZero)) {
219			v->next = nil;
220			// block is zeroed iff second word is zero ...
221			if(size > 2*sizeof(uintptr) && ((uintptr*)v)[1] != 0)
222				runtime_memclr((byte*)v, size);
223		}
224	done:
225		c->local_cachealloc += size;
226	} else {
227		// Allocate directly from heap.
228		s = largealloc(flag, &size);
229		v = (void*)(s->start << PageShift);
230	}
231
232	if(flag & FlagNoGC)
233		runtime_marknogc(v);
234	else if(!(flag & FlagNoScan))
235		runtime_markscan(v);
236
237	if(DebugTypeAtBlockEnd)
238		*(uintptr*)((uintptr)v+size-sizeof(uintptr)) = typ;
239
240	m->mallocing = 0;
241	// TODO: save type even if FlagNoScan?  Potentially expensive but might help
242	// heap profiling/tracing.
243	if(UseSpanType && !(flag & FlagNoScan) && typ != 0)
244		settype(s, v, typ);
245
246	if(runtime_debug.allocfreetrace)
247		runtime_tracealloc(v, size, typ);
248
249	if(!(flag & FlagNoProfiling) && (rate = runtime_MemProfileRate) > 0) {
250		if(size < (uintptr)rate && size < (uintptr)(uint32)c->next_sample)
251			c->next_sample -= size;
252		else
253			runtime_profilealloc(v, size);
254	}
255
256	m->locks--;
257
258	if(!(flag & FlagNoInvokeGC) && mstats.heap_alloc >= mstats.next_gc)
259		runtime_gc(0);
260
261	if(incallback)
262		runtime_entersyscall();
263
264	return v;
265}
266
267static MSpan*
268largealloc(uint32 flag, uintptr *sizep)
269{
270	uintptr npages, size;
271	MSpan *s;
272	void *v;
273
274	// Allocate directly from heap.
275	size = *sizep;
276	if(size + PageSize < size)
277		runtime_throw("out of memory");
278	npages = size >> PageShift;
279	if((size & PageMask) != 0)
280		npages++;
281	s = runtime_MHeap_Alloc(&runtime_mheap, npages, 0, 1, !(flag & FlagNoZero));
282	if(s == nil)
283		runtime_throw("out of memory");
284	s->limit = (byte*)(s->start<<PageShift) + size;
285	*sizep = npages<<PageShift;
286	v = (void*)(s->start << PageShift);
287	// setup for mark sweep
288	runtime_markspan(v, 0, 0, true);
289	return s;
290}
291
292static void
293runtime_profilealloc(void *v, uintptr size)
294{
295	uintptr rate;
296	int32 next;
297	MCache *c;
298
299	c = runtime_m()->mcache;
300	rate = runtime_MemProfileRate;
301	if(size < rate) {
302		// pick next profile time
303		// If you change this, also change allocmcache.
304		if(rate > 0x3fffffff)	// make 2*rate not overflow
305			rate = 0x3fffffff;
306		next = runtime_fastrand1() % (2*rate);
307		// Subtract the "remainder" of the current allocation.
308		// Otherwise objects that are close in size to sampling rate
309		// will be under-sampled, because we consistently discard this remainder.
310		next -= (size - c->next_sample);
311		if(next < 0)
312			next = 0;
313		c->next_sample = next;
314	}
315	runtime_MProf_Malloc(v, size);
316}
317
318void*
319__go_alloc(uintptr size)
320{
321	return runtime_mallocgc(size, 0, FlagNoInvokeGC);
322}
323
324// Free the object whose base pointer is v.
325void
326__go_free(void *v)
327{
328	M *m;
329	int32 sizeclass;
330	MSpan *s;
331	MCache *c;
332	uintptr size;
333
334	if(v == nil)
335		return;
336
337	// If you change this also change mgc0.c:/^sweep,
338	// which has a copy of the guts of free.
339
340	m = runtime_m();
341	if(m->mallocing)
342		runtime_throw("malloc/free - deadlock");
343	m->mallocing = 1;
344
345	if(!runtime_mlookup(v, nil, nil, &s)) {
346		runtime_printf("free %p: not an allocated block\n", v);
347		runtime_throw("free runtime_mlookup");
348	}
349	size = s->elemsize;
350	sizeclass = s->sizeclass;
351	// Objects that are smaller than TinySize can be allocated using tiny alloc,
352	// if then such object is combined with an object with finalizer, we will crash.
353	if(size < TinySize)
354		runtime_throw("freeing too small block");
355
356	if(runtime_debug.allocfreetrace)
357		runtime_tracefree(v, size);
358
359	// Ensure that the span is swept.
360	// If we free into an unswept span, we will corrupt GC bitmaps.
361	runtime_MSpan_EnsureSwept(s);
362
363	if(s->specials != nil)
364		runtime_freeallspecials(s, v, size);
365
366	c = m->mcache;
367	if(sizeclass == 0) {
368		// Large object.
369		s->needzero = 1;
370		// Must mark v freed before calling unmarkspan and MHeap_Free:
371		// they might coalesce v into other spans and change the bitmap further.
372		runtime_markfreed(v);
373		runtime_unmarkspan(v, 1<<PageShift);
374		// NOTE(rsc,dvyukov): The original implementation of efence
375		// in CL 22060046 used SysFree instead of SysFault, so that
376		// the operating system would eventually give the memory
377		// back to us again, so that an efence program could run
378		// longer without running out of memory. Unfortunately,
379		// calling SysFree here without any kind of adjustment of the
380		// heap data structures means that when the memory does
381		// come back to us, we have the wrong metadata for it, either in
382		// the MSpan structures or in the garbage collection bitmap.
383		// Using SysFault here means that the program will run out of
384		// memory fairly quickly in efence mode, but at least it won't
385		// have mysterious crashes due to confused memory reuse.
386		// It should be possible to switch back to SysFree if we also
387		// implement and then call some kind of MHeap_DeleteSpan.
388		if(runtime_debug.efence)
389			runtime_SysFault((void*)(s->start<<PageShift), size);
390		else
391			runtime_MHeap_Free(&runtime_mheap, s, 1);
392		c->local_nlargefree++;
393		c->local_largefree += size;
394	} else {
395		// Small object.
396		if(size > 2*sizeof(uintptr))
397			((uintptr*)v)[1] = (uintptr)0xfeedfeedfeedfeedll;	// mark as "needs to be zeroed"
398		else if(size > sizeof(uintptr))
399			((uintptr*)v)[1] = 0;
400		// Must mark v freed before calling MCache_Free:
401		// it might coalesce v and other blocks into a bigger span
402		// and change the bitmap further.
403		c->local_nsmallfree[sizeclass]++;
404		c->local_cachealloc -= size;
405		if(c->alloc[sizeclass] == s) {
406			// We own the span, so we can just add v to the freelist
407			runtime_markfreed(v);
408			((MLink*)v)->next = s->freelist;
409			s->freelist = v;
410			s->ref--;
411		} else {
412			// Someone else owns this span.  Add to free queue.
413			runtime_MCache_Free(c, v, sizeclass, size);
414		}
415	}
416	m->mallocing = 0;
417}
418
419int32
420runtime_mlookup(void *v, byte **base, uintptr *size, MSpan **sp)
421{
422	M *m;
423	uintptr n, i;
424	byte *p;
425	MSpan *s;
426
427	m = runtime_m();
428
429	m->mcache->local_nlookup++;
430	if (sizeof(void*) == 4 && m->mcache->local_nlookup >= (1<<30)) {
431		// purge cache stats to prevent overflow
432		runtime_lock(&runtime_mheap);
433		runtime_purgecachedstats(m->mcache);
434		runtime_unlock(&runtime_mheap);
435	}
436
437	s = runtime_MHeap_LookupMaybe(&runtime_mheap, v);
438	if(sp)
439		*sp = s;
440	if(s == nil) {
441		runtime_checkfreed(v, 1);
442		if(base)
443			*base = nil;
444		if(size)
445			*size = 0;
446		return 0;
447	}
448
449	p = (byte*)((uintptr)s->start<<PageShift);
450	if(s->sizeclass == 0) {
451		// Large object.
452		if(base)
453			*base = p;
454		if(size)
455			*size = s->npages<<PageShift;
456		return 1;
457	}
458
459	n = s->elemsize;
460	if(base) {
461		i = ((byte*)v - p)/n;
462		*base = p + i*n;
463	}
464	if(size)
465		*size = n;
466
467	return 1;
468}
469
470void
471runtime_purgecachedstats(MCache *c)
472{
473	MHeap *h;
474	int32 i;
475
476	// Protected by either heap or GC lock.
477	h = &runtime_mheap;
478	mstats.heap_alloc += c->local_cachealloc;
479	c->local_cachealloc = 0;
480	mstats.nlookup += c->local_nlookup;
481	c->local_nlookup = 0;
482	h->largefree += c->local_largefree;
483	c->local_largefree = 0;
484	h->nlargefree += c->local_nlargefree;
485	c->local_nlargefree = 0;
486	for(i=0; i<(int32)nelem(c->local_nsmallfree); i++) {
487		h->nsmallfree[i] += c->local_nsmallfree[i];
488		c->local_nsmallfree[i] = 0;
489	}
490}
491
492extern uintptr runtime_sizeof_C_MStats
493  __asm__ (GOSYM_PREFIX "runtime.Sizeof_C_MStats");
494
495// Size of the trailing by_size array differs between Go and C,
496// NumSizeClasses was changed, but we can not change Go struct because of backward compatibility.
497// sizeof_C_MStats is what C thinks about size of Go struct.
498
499// Initialized in mallocinit because it's defined in go/runtime/mem.go.
500
501#define MaxArena32 (2U<<30)
502
503void
504runtime_mallocinit(void)
505{
506	byte *p, *p1;
507	uintptr arena_size, bitmap_size, spans_size, p_size;
508	uintptr *pend;
509	uintptr end;
510	uintptr limit;
511	uint64 i;
512	bool reserved;
513
514	runtime_sizeof_C_MStats = sizeof(MStats) - (NumSizeClasses - 61) * sizeof(mstats.by_size[0]);
515
516	p = nil;
517	p_size = 0;
518	arena_size = 0;
519	bitmap_size = 0;
520	spans_size = 0;
521	reserved = false;
522
523	// for 64-bit build
524	USED(p);
525	USED(p_size);
526	USED(arena_size);
527	USED(bitmap_size);
528	USED(spans_size);
529
530	runtime_InitSizes();
531
532	if(runtime_class_to_size[TinySizeClass] != TinySize)
533		runtime_throw("bad TinySizeClass");
534
535	// limit = runtime_memlimit();
536	// See https://code.google.com/p/go/issues/detail?id=5049
537	// TODO(rsc): Fix after 1.1.
538	limit = 0;
539
540	// Set up the allocation arena, a contiguous area of memory where
541	// allocated data will be found.  The arena begins with a bitmap large
542	// enough to hold 4 bits per allocated word.
543	if(sizeof(void*) == 8 && (limit == 0 || limit > (1<<30))) {
544		// On a 64-bit machine, allocate from a single contiguous reservation.
545		// 128 GB (MaxMem) should be big enough for now.
546		//
547		// The code will work with the reservation at any address, but ask
548		// SysReserve to use 0x0000XXc000000000 if possible (XX=00...7f).
549		// Allocating a 128 GB region takes away 37 bits, and the amd64
550		// doesn't let us choose the top 17 bits, so that leaves the 11 bits
551		// in the middle of 0x00c0 for us to choose.  Choosing 0x00c0 means
552		// that the valid memory addresses will begin 0x00c0, 0x00c1, ..., 0x00df.
553		// In little-endian, that's c0 00, c1 00, ..., df 00. None of those are valid
554		// UTF-8 sequences, and they are otherwise as far away from
555		// ff (likely a common byte) as possible.  If that fails, we try other 0xXXc0
556		// addresses.  An earlier attempt to use 0x11f8 caused out of memory errors
557		// on OS X during thread allocations.  0x00c0 causes conflicts with
558		// AddressSanitizer which reserves all memory up to 0x0100.
559		// These choices are both for debuggability and to reduce the
560		// odds of the conservative garbage collector not collecting memory
561		// because some non-pointer block of memory had a bit pattern
562		// that matched a memory address.
563		//
564		// Actually we reserve 136 GB (because the bitmap ends up being 8 GB)
565		// but it hardly matters: e0 00 is not valid UTF-8 either.
566		//
567		// If this fails we fall back to the 32 bit memory mechanism
568		arena_size = MaxMem;
569		bitmap_size = arena_size / (sizeof(void*)*8/4);
570		spans_size = arena_size / PageSize * sizeof(runtime_mheap.spans[0]);
571		spans_size = ROUND(spans_size, PageSize);
572		for(i = 0; i < HeapBaseOptions; i++) {
573			p = HeapBase(i);
574			p_size = bitmap_size + spans_size + arena_size + PageSize;
575			p = runtime_SysReserve(p, p_size, &reserved);
576			if(p != nil)
577				break;
578		}
579	}
580	if (p == nil) {
581		// On a 32-bit machine, we can't typically get away
582		// with a giant virtual address space reservation.
583		// Instead we map the memory information bitmap
584		// immediately after the data segment, large enough
585		// to handle another 2GB of mappings (256 MB),
586		// along with a reservation for another 512 MB of memory.
587		// When that gets used up, we'll start asking the kernel
588		// for any memory anywhere and hope it's in the 2GB
589		// following the bitmap (presumably the executable begins
590		// near the bottom of memory, so we'll have to use up
591		// most of memory before the kernel resorts to giving out
592		// memory before the beginning of the text segment).
593		//
594		// Alternatively we could reserve 512 MB bitmap, enough
595		// for 4GB of mappings, and then accept any memory the
596		// kernel threw at us, but normally that's a waste of 512 MB
597		// of address space, which is probably too much in a 32-bit world.
598		bitmap_size = MaxArena32 / (sizeof(void*)*8/4);
599		arena_size = 512<<20;
600		spans_size = MaxArena32 / PageSize * sizeof(runtime_mheap.spans[0]);
601		if(limit > 0 && arena_size+bitmap_size+spans_size > limit) {
602			bitmap_size = (limit / 9) & ~((1<<PageShift) - 1);
603			arena_size = bitmap_size * 8;
604			spans_size = arena_size / PageSize * sizeof(runtime_mheap.spans[0]);
605		}
606		spans_size = ROUND(spans_size, PageSize);
607
608		// SysReserve treats the address we ask for, end, as a hint,
609		// not as an absolute requirement.  If we ask for the end
610		// of the data segment but the operating system requires
611		// a little more space before we can start allocating, it will
612		// give out a slightly higher pointer.  Except QEMU, which
613		// is buggy, as usual: it won't adjust the pointer upward.
614		// So adjust it upward a little bit ourselves: 1/4 MB to get
615		// away from the running binary image and then round up
616		// to a MB boundary.
617
618		end = 0;
619		pend = &__go_end;
620		if(pend != nil)
621			end = *pend;
622		p = (byte*)ROUND(end + (1<<18), 1<<20);
623		p_size = bitmap_size + spans_size + arena_size + PageSize;
624		p = runtime_SysReserve(p, p_size, &reserved);
625		if(p == nil)
626			runtime_throw("runtime: cannot reserve arena virtual address space");
627	}
628
629	// PageSize can be larger than OS definition of page size,
630	// so SysReserve can give us a PageSize-unaligned pointer.
631	// To overcome this we ask for PageSize more and round up the pointer.
632	p1 = (byte*)ROUND((uintptr)p, PageSize);
633
634	runtime_mheap.spans = (MSpan**)p1;
635	runtime_mheap.bitmap = p1 + spans_size;
636	runtime_mheap.arena_start = p1 + spans_size + bitmap_size;
637	runtime_mheap.arena_used = runtime_mheap.arena_start;
638	runtime_mheap.arena_end = p + p_size;
639	runtime_mheap.arena_reserved = reserved;
640
641	if(((uintptr)runtime_mheap.arena_start & (PageSize-1)) != 0)
642		runtime_throw("misrounded allocation in mallocinit");
643
644	// Initialize the rest of the allocator.
645	runtime_MHeap_Init(&runtime_mheap);
646	runtime_m()->mcache = runtime_allocmcache();
647
648	// See if it works.
649	runtime_free(runtime_malloc(TinySize));
650}
651
652void*
653runtime_MHeap_SysAlloc(MHeap *h, uintptr n)
654{
655	byte *p, *p_end;
656	uintptr p_size;
657	bool reserved;
658
659
660	if(n > (uintptr)(h->arena_end - h->arena_used)) {
661		// We are in 32-bit mode, maybe we didn't use all possible address space yet.
662		// Reserve some more space.
663		byte *new_end;
664
665		p_size = ROUND(n + PageSize, 256<<20);
666		new_end = h->arena_end + p_size;
667		if(new_end <= h->arena_start + MaxArena32) {
668			// TODO: It would be bad if part of the arena
669			// is reserved and part is not.
670			p = runtime_SysReserve(h->arena_end, p_size, &reserved);
671			if(p == h->arena_end) {
672				h->arena_end = new_end;
673				h->arena_reserved = reserved;
674			}
675			else if(p+p_size <= h->arena_start + MaxArena32) {
676				// Keep everything page-aligned.
677				// Our pages are bigger than hardware pages.
678				h->arena_end = p+p_size;
679				h->arena_used = p + (-(uintptr)p&(PageSize-1));
680				h->arena_reserved = reserved;
681			} else {
682				uint64 stat;
683				stat = 0;
684				runtime_SysFree(p, p_size, &stat);
685			}
686		}
687	}
688	if(n <= (uintptr)(h->arena_end - h->arena_used)) {
689		// Keep taking from our reservation.
690		p = h->arena_used;
691		runtime_SysMap(p, n, h->arena_reserved, &mstats.heap_sys);
692		h->arena_used += n;
693		runtime_MHeap_MapBits(h);
694		runtime_MHeap_MapSpans(h);
695
696		if(((uintptr)p & (PageSize-1)) != 0)
697			runtime_throw("misrounded allocation in MHeap_SysAlloc");
698		return p;
699	}
700
701	// If using 64-bit, our reservation is all we have.
702	if((uintptr)(h->arena_end - h->arena_start) >= MaxArena32)
703		return nil;
704
705	// On 32-bit, once the reservation is gone we can
706	// try to get memory at a location chosen by the OS
707	// and hope that it is in the range we allocated bitmap for.
708	p_size = ROUND(n, PageSize) + PageSize;
709	p = runtime_SysAlloc(p_size, &mstats.heap_sys);
710	if(p == nil)
711		return nil;
712
713	if(p < h->arena_start || (uintptr)(p+p_size - h->arena_start) >= MaxArena32) {
714		runtime_printf("runtime: memory allocated by OS (%p) not in usable range [%p,%p)\n",
715			p, h->arena_start, h->arena_start+MaxArena32);
716		runtime_SysFree(p, p_size, &mstats.heap_sys);
717		return nil;
718	}
719
720	p_end = p + p_size;
721	p += -(uintptr)p & (PageSize-1);
722	if(p+n > h->arena_used) {
723		h->arena_used = p+n;
724		if(p_end > h->arena_end)
725			h->arena_end = p_end;
726		runtime_MHeap_MapBits(h);
727		runtime_MHeap_MapSpans(h);
728	}
729
730	if(((uintptr)p & (PageSize-1)) != 0)
731		runtime_throw("misrounded allocation in MHeap_SysAlloc");
732	return p;
733}
734
735static struct
736{
737	Lock;
738	byte*	pos;
739	byte*	end;
740} persistent;
741
742enum
743{
744	PersistentAllocChunk	= 256<<10,
745	PersistentAllocMaxBlock	= 64<<10,  // VM reservation granularity is 64K on windows
746};
747
748// Wrapper around SysAlloc that can allocate small chunks.
749// There is no associated free operation.
750// Intended for things like function/type/debug-related persistent data.
751// If align is 0, uses default align (currently 8).
752void*
753runtime_persistentalloc(uintptr size, uintptr align, uint64 *stat)
754{
755	byte *p;
756
757	if(align != 0) {
758		if(align&(align-1))
759			runtime_throw("persistentalloc: align is not a power of 2");
760		if(align > PageSize)
761			runtime_throw("persistentalloc: align is too large");
762	} else
763		align = 8;
764	if(size >= PersistentAllocMaxBlock)
765		return runtime_SysAlloc(size, stat);
766	runtime_lock(&persistent);
767	persistent.pos = (byte*)ROUND((uintptr)persistent.pos, align);
768	if(persistent.pos + size > persistent.end) {
769		persistent.pos = runtime_SysAlloc(PersistentAllocChunk, &mstats.other_sys);
770		if(persistent.pos == nil) {
771			runtime_unlock(&persistent);
772			runtime_throw("runtime: cannot allocate memory");
773		}
774		persistent.end = persistent.pos + PersistentAllocChunk;
775	}
776	p = persistent.pos;
777	persistent.pos += size;
778	runtime_unlock(&persistent);
779	if(stat != &mstats.other_sys) {
780		// reaccount the allocation against provided stat
781		runtime_xadd64(stat, size);
782		runtime_xadd64(&mstats.other_sys, -(uint64)size);
783	}
784	return p;
785}
786
787static void
788settype(MSpan *s, void *v, uintptr typ)
789{
790	uintptr size, ofs, j, t;
791	uintptr ntypes, nbytes2, nbytes3;
792	uintptr *data2;
793	byte *data3;
794
795	if(s->sizeclass == 0) {
796		s->types.compression = MTypes_Single;
797		s->types.data = typ;
798		return;
799	}
800	size = s->elemsize;
801	ofs = ((uintptr)v - (s->start<<PageShift)) / size;
802
803	switch(s->types.compression) {
804	case MTypes_Empty:
805		ntypes = (s->npages << PageShift) / size;
806		nbytes3 = 8*sizeof(uintptr) + 1*ntypes;
807		data3 = runtime_mallocgc(nbytes3, 0, FlagNoProfiling|FlagNoScan|FlagNoInvokeGC);
808		s->types.compression = MTypes_Bytes;
809		s->types.data = (uintptr)data3;
810		((uintptr*)data3)[1] = typ;
811		data3[8*sizeof(uintptr) + ofs] = 1;
812		break;
813
814	case MTypes_Words:
815		((uintptr*)s->types.data)[ofs] = typ;
816		break;
817
818	case MTypes_Bytes:
819		data3 = (byte*)s->types.data;
820		for(j=1; j<8; j++) {
821			if(((uintptr*)data3)[j] == typ) {
822				break;
823			}
824			if(((uintptr*)data3)[j] == 0) {
825				((uintptr*)data3)[j] = typ;
826				break;
827			}
828		}
829		if(j < 8) {
830			data3[8*sizeof(uintptr) + ofs] = j;
831		} else {
832			ntypes = (s->npages << PageShift) / size;
833			nbytes2 = ntypes * sizeof(uintptr);
834			data2 = runtime_mallocgc(nbytes2, 0, FlagNoProfiling|FlagNoScan|FlagNoInvokeGC);
835			s->types.compression = MTypes_Words;
836			s->types.data = (uintptr)data2;
837
838			// Move the contents of data3 to data2. Then deallocate data3.
839			for(j=0; j<ntypes; j++) {
840				t = data3[8*sizeof(uintptr) + j];
841				t = ((uintptr*)data3)[t];
842				data2[j] = t;
843			}
844			data2[ofs] = typ;
845		}
846		break;
847	}
848}
849
850uintptr
851runtime_gettype(void *v)
852{
853	MSpan *s;
854	uintptr t, ofs;
855	byte *data;
856
857	s = runtime_MHeap_LookupMaybe(&runtime_mheap, v);
858	if(s != nil) {
859		t = 0;
860		switch(s->types.compression) {
861		case MTypes_Empty:
862			break;
863		case MTypes_Single:
864			t = s->types.data;
865			break;
866		case MTypes_Words:
867			ofs = (uintptr)v - (s->start<<PageShift);
868			t = ((uintptr*)s->types.data)[ofs/s->elemsize];
869			break;
870		case MTypes_Bytes:
871			ofs = (uintptr)v - (s->start<<PageShift);
872			data = (byte*)s->types.data;
873			t = data[8*sizeof(uintptr) + ofs/s->elemsize];
874			t = ((uintptr*)data)[t];
875			break;
876		default:
877			runtime_throw("runtime_gettype: invalid compression kind");
878		}
879		if(0) {
880			runtime_printf("%p -> %d,%X\n", v, (int32)s->types.compression, (int64)t);
881		}
882		return t;
883	}
884	return 0;
885}
886
887// Runtime stubs.
888
889void*
890runtime_mal(uintptr n)
891{
892	return runtime_mallocgc(n, 0, 0);
893}
894
895func new(typ *Type) (ret *uint8) {
896	ret = runtime_mallocgc(typ->__size, (uintptr)typ | TypeInfo_SingleObject, typ->kind&KindNoPointers ? FlagNoScan : 0);
897}
898
899static void*
900cnew(const Type *typ, intgo n, int32 objtyp)
901{
902	if((objtyp&(PtrSize-1)) != objtyp)
903		runtime_throw("runtime: invalid objtyp");
904	if(n < 0 || (typ->__size > 0 && (uintptr)n > (MaxMem/typ->__size)))
905		runtime_panicstring("runtime: allocation size out of range");
906	return runtime_mallocgc(typ->__size*n, (uintptr)typ | objtyp, typ->kind&KindNoPointers ? FlagNoScan : 0);
907}
908
909// same as runtime_new, but callable from C
910void*
911runtime_cnew(const Type *typ)
912{
913	return cnew(typ, 1, TypeInfo_SingleObject);
914}
915
916void*
917runtime_cnewarray(const Type *typ, intgo n)
918{
919	return cnew(typ, n, TypeInfo_Array);
920}
921
922func GC() {
923	runtime_gc(2);  // force GC and do eager sweep
924}
925
926func SetFinalizer(obj Eface, finalizer Eface) {
927	byte *base;
928	uintptr size;
929	const FuncType *ft;
930	const Type *fint;
931	const PtrType *ot;
932
933	if(obj.__type_descriptor == nil) {
934		runtime_printf("runtime.SetFinalizer: first argument is nil interface\n");
935		goto throw;
936	}
937	if((obj.__type_descriptor->kind&kindMask) != GO_PTR) {
938		runtime_printf("runtime.SetFinalizer: first argument is %S, not pointer\n", *obj.__type_descriptor->__reflection);
939		goto throw;
940	}
941	ot = (const PtrType*)obj.type;
942	// As an implementation detail we do not run finalizers for zero-sized objects,
943	// because we use &runtime_zerobase for all such allocations.
944	if(ot->__element_type != nil && ot->__element_type->__size == 0)
945		return;
946	// The following check is required for cases when a user passes a pointer to composite literal,
947	// but compiler makes it a pointer to global. For example:
948	//	var Foo = &Object{}
949	//	func main() {
950	//		runtime.SetFinalizer(Foo, nil)
951	//	}
952	// See issue 7656.
953	if((byte*)obj.__object < runtime_mheap.arena_start || runtime_mheap.arena_used <= (byte*)obj.__object)
954		return;
955	if(!runtime_mlookup(obj.__object, &base, &size, nil) || obj.__object != base) {
956		// As an implementation detail we allow to set finalizers for an inner byte
957		// of an object if it could come from tiny alloc (see mallocgc for details).
958		if(ot->__element_type == nil || (ot->__element_type->kind&KindNoPointers) == 0 || ot->__element_type->__size >= TinySize) {
959			runtime_printf("runtime.SetFinalizer: pointer not at beginning of allocated block (%p)\n", obj.__object);
960			goto throw;
961		}
962	}
963	if(finalizer.__type_descriptor != nil) {
964		runtime_createfing();
965		if((finalizer.__type_descriptor->kind&kindMask) != GO_FUNC)
966			goto badfunc;
967		ft = (const FuncType*)finalizer.__type_descriptor;
968		if(ft->__dotdotdot || ft->__in.__count != 1)
969			goto badfunc;
970		fint = *(Type**)ft->__in.__values;
971		if(__go_type_descriptors_equal(fint, obj.__type_descriptor)) {
972			// ok - same type
973		} else if((fint->kind&kindMask) == GO_PTR && (fint->__uncommon == nil || fint->__uncommon->__name == nil || obj.type->__uncommon == nil || obj.type->__uncommon->__name == nil) && __go_type_descriptors_equal(((const PtrType*)fint)->__element_type, ((const PtrType*)obj.type)->__element_type)) {
974			// ok - not same type, but both pointers,
975			// one or the other is unnamed, and same element type, so assignable.
976		} else if((fint->kind&kindMask) == GO_INTERFACE && ((const InterfaceType*)fint)->__methods.__count == 0) {
977			// ok - satisfies empty interface
978		} else if((fint->kind&kindMask) == GO_INTERFACE && __go_convert_interface_2(fint, obj.__type_descriptor, 1) != nil) {
979			// ok - satisfies non-empty interface
980		} else
981			goto badfunc;
982
983		ot = (const PtrType*)obj.__type_descriptor;
984		if(!runtime_addfinalizer(obj.__object, *(FuncVal**)finalizer.__object, ft, ot)) {
985			runtime_printf("runtime.SetFinalizer: finalizer already set\n");
986			goto throw;
987		}
988	} else {
989		// NOTE: asking to remove a finalizer when there currently isn't one set is OK.
990		runtime_removefinalizer(obj.__object);
991	}
992	return;
993
994badfunc:
995	runtime_printf("runtime.SetFinalizer: cannot pass %S to finalizer %S\n", *obj.__type_descriptor->__reflection, *finalizer.__type_descriptor->__reflection);
996throw:
997	runtime_throw("runtime.SetFinalizer");
998}
999