1 /* LinkedHashMap.java -- a class providing hashtable data structure,
2    mapping Object --> Object, with linked list traversal
3    Copyright (C) 2001, 2002, 2005 Free Software Foundation, Inc.
4 
5 This file is part of GNU Classpath.
6 
7 GNU Classpath is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11 
12 GNU Classpath is distributed in the hope that it will be useful, but
13 WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15 General Public License for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GNU Classpath; see the file COPYING.  If not, write to the
19 Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301 USA.
21 
22 Linking this library statically or dynamically with other modules is
23 making a combined work based on this library.  Thus, the terms and
24 conditions of the GNU General Public License cover the whole
25 combination.
26 
27 As a special exception, the copyright holders of this library give you
28 permission to link this library with independent modules to produce an
29 executable, regardless of the license terms of these independent
30 modules, and to copy and distribute the resulting executable under
31 terms of your choice, provided that you also meet, for each linked
32 independent module, the terms and conditions of the license of that
33 module.  An independent module is a module which is not derived from
34 or based on this library.  If you modify this library, you may extend
35 this exception to your version of the library, but you are not
36 obligated to do so.  If you do not wish to do so, delete this
37 exception statement from your version. */
38 
39 
40 package java.util;
41 
42 /**
43  * This class provides a hashtable-backed implementation of the
44  * Map interface, with predictable traversal order.
45  * <p>
46  *
47  * It uses a hash-bucket approach; that is, hash collisions are handled
48  * by linking the new node off of the pre-existing node (or list of
49  * nodes).  In this manner, techniques such as linear probing (which
50  * can cause primary clustering) and rehashing (which does not fit very
51  * well with Java's method of precomputing hash codes) are avoided.  In
52  * addition, this maintains a doubly-linked list which tracks either
53  * insertion or access order.
54  * <p>
55  *
56  * In insertion order, calling <code>put</code> adds the key to the end of
57  * traversal, unless the key was already in the map; changing traversal order
58  * requires removing and reinserting a key.  On the other hand, in access
59  * order, all calls to <code>put</code> and <code>get</code> cause the
60  * accessed key to move to the end of the traversal list.  Note that any
61  * accesses to the map's contents via its collection views and iterators do
62  * not affect the map's traversal order, since the collection views do not
63  * call <code>put</code> or <code>get</code>.
64  * <p>
65  *
66  * One of the nice features of tracking insertion order is that you can
67  * copy a hashtable, and regardless of the implementation of the original,
68  * produce the same results when iterating over the copy.  This is possible
69  * without needing the overhead of <code>TreeMap</code>.
70  * <p>
71  *
72  * When using this {@link #LinkedHashMap(int, float, boolean) constructor},
73  * you can build an access-order mapping.  This can be used to implement LRU
74  * caches, for example.  By overriding {@link #removeEldestEntry(Map.Entry)},
75  * you can also control the removal of the oldest entry, and thereby do
76  * things like keep the map at a fixed size.
77  * <p>
78  *
79  * Under ideal circumstances (no collisions), LinkedHashMap offers O(1)
80  * performance on most operations (<code>containsValue()</code> is,
81  * of course, O(n)).  In the worst case (all keys map to the same
82  * hash code -- very unlikely), most operations are O(n).  Traversal is
83  * faster than in HashMap (proportional to the map size, and not the space
84  * allocated for the map), but other operations may be slower because of the
85  * overhead of the maintaining the traversal order list.
86  * <p>
87  *
88  * LinkedHashMap accepts the null key and null values.  It is not
89  * synchronized, so if you need multi-threaded access, consider using:<br>
90  * <code>Map m = Collections.synchronizedMap(new LinkedHashMap(...));</code>
91  * <p>
92  *
93  * The iterators are <i>fail-fast</i>, meaning that any structural
94  * modification, except for <code>remove()</code> called on the iterator
95  * itself, cause the iterator to throw a
96  * {@link ConcurrentModificationException} rather than exhibit
97  * non-deterministic behavior.
98  *
99  * @author Eric Blake (ebb9@email.byu.edu)
100  * @author Tom Tromey (tromey@redhat.com)
101  * @author Andrew John Hughes (gnu_andrew@member.fsf.org)
102  * @see Object#hashCode()
103  * @see Collection
104  * @see Map
105  * @see HashMap
106  * @see TreeMap
107  * @see Hashtable
108  * @since 1.4
109  * @status updated to 1.4
110  */
111 public class LinkedHashMap<K,V> extends HashMap<K,V>
112 {
113   /**
114    * Compatible with JDK 1.4.
115    */
116   private static final long serialVersionUID = 3801124242820219131L;
117 
118   /**
119    * The oldest Entry to begin iteration at.
120    */
121   transient LinkedHashEntry root;
122 
123   /**
124    * The iteration order of this linked hash map: <code>true</code> for
125    * access-order, <code>false</code> for insertion-order.
126    *
127    * @serial true for access order traversal
128    */
129   final boolean accessOrder;
130 
131   /**
132    * Class to represent an entry in the hash table. Holds a single key-value
133    * pair and the doubly-linked insertion order list.
134    */
135   class LinkedHashEntry<K,V> extends HashEntry<K,V>
136   {
137     /**
138      * The predecessor in the iteration list. If this entry is the root
139      * (eldest), pred points to the newest entry.
140      */
141     LinkedHashEntry<K,V> pred;
142 
143     /** The successor in the iteration list, null if this is the newest. */
144     LinkedHashEntry<K,V> succ;
145 
146     /**
147      * Simple constructor.
148      *
149      * @param key the key
150      * @param value the value
151      */
LinkedHashEntry(K key, V value)152     LinkedHashEntry(K key, V value)
153     {
154       super(key, value);
155       if (root == null)
156         {
157           root = this;
158           pred = this;
159         }
160       else
161         {
162           pred = root.pred;
163           pred.succ = this;
164           root.pred = this;
165         }
166     }
167 
168     /**
169      * Called when this entry is accessed via put or get. This version does
170      * the necessary bookkeeping to keep the doubly-linked list in order,
171      * after moving this element to the newest position in access order.
172      */
access()173     void access()
174     {
175       if (accessOrder && succ != null)
176         {
177           modCount++;
178           if (this == root)
179             {
180               root = succ;
181               pred.succ = this;
182               succ = null;
183             }
184           else
185             {
186               pred.succ = succ;
187               succ.pred = pred;
188               succ = null;
189               pred = root.pred;
190               pred.succ = this;
191               root.pred = this;
192             }
193         }
194     }
195 
196     /**
197      * Called when this entry is removed from the map. This version does
198      * the necessary bookkeeping to keep the doubly-linked list in order.
199      *
200      * @return the value of this key as it is removed
201      */
cleanup()202     V cleanup()
203     {
204       if (this == root)
205         {
206           root = succ;
207           if (succ != null)
208             succ.pred = pred;
209         }
210       else if (succ == null)
211         {
212           pred.succ = null;
213           root.pred = pred;
214         }
215       else
216         {
217           pred.succ = succ;
218           succ.pred = pred;
219         }
220       return value;
221     }
222   } // class LinkedHashEntry
223 
224   /**
225    * Construct a new insertion-ordered LinkedHashMap with the default
226    * capacity (11) and the default load factor (0.75).
227    */
LinkedHashMap()228   public LinkedHashMap()
229   {
230     super();
231     accessOrder = false;
232   }
233 
234   /**
235    * Construct a new insertion-ordered LinkedHashMap from the given Map,
236    * with initial capacity the greater of the size of <code>m</code> or
237    * the default of 11.
238    * <p>
239    *
240    * Every element in Map m will be put into this new HashMap, in the
241    * order of m's iterator.
242    *
243    * @param m a Map whose key / value pairs will be put into
244    *          the new HashMap.  <b>NOTE: key / value pairs
245    *          are not cloned in this constructor.</b>
246    * @throws NullPointerException if m is null
247    */
LinkedHashMap(Map<? extends K, ? extends V> m)248   public LinkedHashMap(Map<? extends K, ? extends V> m)
249   {
250     super(m);
251     accessOrder = false;
252   }
253 
254   /**
255    * Construct a new insertion-ordered LinkedHashMap with a specific
256    * inital capacity and default load factor of 0.75.
257    *
258    * @param initialCapacity the initial capacity of this HashMap (&gt;= 0)
259    * @throws IllegalArgumentException if (initialCapacity &lt; 0)
260    */
LinkedHashMap(int initialCapacity)261   public LinkedHashMap(int initialCapacity)
262   {
263     super(initialCapacity);
264     accessOrder = false;
265   }
266 
267   /**
268    * Construct a new insertion-orderd LinkedHashMap with a specific
269    * inital capacity and load factor.
270    *
271    * @param initialCapacity the initial capacity (&gt;= 0)
272    * @param loadFactor the load factor (&gt; 0, not NaN)
273    * @throws IllegalArgumentException if (initialCapacity &lt; 0) ||
274    *                                     ! (loadFactor &gt; 0.0)
275    */
LinkedHashMap(int initialCapacity, float loadFactor)276   public LinkedHashMap(int initialCapacity, float loadFactor)
277   {
278     super(initialCapacity, loadFactor);
279     accessOrder = false;
280   }
281 
282   /**
283    * Construct a new LinkedHashMap with a specific inital capacity, load
284    * factor, and ordering mode.
285    *
286    * @param initialCapacity the initial capacity (&gt;=0)
287    * @param loadFactor the load factor (&gt;0, not NaN)
288    * @param accessOrder true for access-order, false for insertion-order
289    * @throws IllegalArgumentException if (initialCapacity &lt; 0) ||
290    *                                     ! (loadFactor &gt; 0.0)
291    */
LinkedHashMap(int initialCapacity, float loadFactor, boolean accessOrder)292   public LinkedHashMap(int initialCapacity, float loadFactor,
293                        boolean accessOrder)
294   {
295     super(initialCapacity, loadFactor);
296     this.accessOrder = accessOrder;
297   }
298 
299   /**
300    * Clears the Map so it has no keys. This is O(1).
301    */
clear()302   public void clear()
303   {
304     super.clear();
305     root = null;
306   }
307 
308   /**
309    * Returns <code>true</code> if this HashMap contains a value
310    * <code>o</code>, such that <code>o.equals(value)</code>.
311    *
312    * @param value the value to search for in this HashMap
313    * @return <code>true</code> if at least one key maps to the value
314    */
containsValue(Object value)315   public boolean containsValue(Object value)
316   {
317     LinkedHashEntry e = root;
318     while (e != null)
319       {
320         if (equals(value, e.value))
321           return true;
322         e = e.succ;
323       }
324     return false;
325   }
326 
327   /**
328    * Return the value in this Map associated with the supplied key,
329    * or <code>null</code> if the key maps to nothing.  If this is an
330    * access-ordered Map and the key is found, this performs structural
331    * modification, moving the key to the newest end of the list. NOTE:
332    * Since the value could also be null, you must use containsKey to
333    * see if this key actually maps to something.
334    *
335    * @param key the key for which to fetch an associated value
336    * @return what the key maps to, if present
337    * @see #put(Object, Object)
338    * @see #containsKey(Object)
339    */
get(Object key)340   public V get(Object key)
341   {
342     int idx = hash(key);
343     HashEntry<K,V> e = buckets[idx];
344     while (e != null)
345       {
346         if (equals(key, e.key))
347           {
348             e.access();
349             return e.value;
350           }
351         e = e.next;
352       }
353     return null;
354   }
355 
356   /**
357    * Returns <code>true</code> if this map should remove the eldest entry.
358    * This method is invoked by all calls to <code>put</code> and
359    * <code>putAll</code> which place a new entry in the map, providing
360    * the implementer an opportunity to remove the eldest entry any time
361    * a new one is added.  This can be used to save memory usage of the
362    * hashtable, as well as emulating a cache, by deleting stale entries.
363    * <p>
364    *
365    * For example, to keep the Map limited to 100 entries, override as follows:
366    * <pre>
367    * private static final int MAX_ENTRIES = 100;
368    * protected boolean removeEldestEntry(Map.Entry eldest)
369    * {
370    *   return size() &gt; MAX_ENTRIES;
371    * }
372    * </pre><p>
373    *
374    * Typically, this method does not modify the map, but just uses the
375    * return value as an indication to <code>put</code> whether to proceed.
376    * However, if you override it to modify the map, you must return false
377    * (indicating that <code>put</code> should leave the modified map alone),
378    * or you face unspecified behavior.  Remember that in access-order mode,
379    * even calling <code>get</code> is a structural modification, but using
380    * the collections views (such as <code>keySet</code>) is not.
381    * <p>
382    *
383    * This method is called after the eldest entry has been inserted, so
384    * if <code>put</code> was called on a previously empty map, the eldest
385    * entry is the one you just put in! The default implementation just
386    * returns <code>false</code>, so that this map always behaves like
387    * a normal one with unbounded growth.
388    *
389    * @param eldest the eldest element which would be removed if this
390    *        returns true. For an access-order map, this is the least
391    *        recently accessed; for an insertion-order map, this is the
392    *        earliest element inserted.
393    * @return true if <code>eldest</code> should be removed
394    */
removeEldestEntry(Map.Entry<K,V> eldest)395   protected boolean removeEldestEntry(Map.Entry<K,V> eldest)
396   {
397     return false;
398   }
399 
400   /**
401    * Helper method called by <code>put</code>, which creates and adds a
402    * new Entry, followed by performing bookkeeping (like removeEldestEntry).
403    *
404    * @param key the key of the new Entry
405    * @param value the value
406    * @param idx the index in buckets where the new Entry belongs
407    * @param callRemove whether to call the removeEldestEntry method
408    * @see #put(Object, Object)
409    * @see #removeEldestEntry(Map.Entry)
410    * @see LinkedHashEntry#LinkedHashEntry(Object, Object)
411    */
addEntry(K key, V value, int idx, boolean callRemove)412   void addEntry(K key, V value, int idx, boolean callRemove)
413   {
414     LinkedHashEntry e = new LinkedHashEntry(key, value);
415     e.next = buckets[idx];
416     buckets[idx] = e;
417     if (callRemove && removeEldestEntry(root))
418       remove(root.key);
419   }
420 
421   /**
422    * Helper method, called by clone() to reset the doubly-linked list.
423    *
424    * @param m the map to add entries from
425    * @see #clone()
426    */
putAllInternal(Map m)427   void putAllInternal(Map m)
428   {
429     root = null;
430     super.putAllInternal(m);
431   }
432 
433   /**
434    * Generates a parameterized iterator. This allows traversal to follow
435    * the doubly-linked list instead of the random bin order of HashMap.
436    *
437    * @param type {@link #KEYS}, {@link #VALUES}, or {@link #ENTRIES}
438    * @return the appropriate iterator
439    */
iterator(final int type)440   Iterator iterator(final int type)
441   {
442     return new Iterator()
443     {
444       /** The current Entry. */
445       LinkedHashEntry current = root;
446 
447       /** The previous Entry returned by next(). */
448       LinkedHashEntry last;
449 
450       /** The number of known modifications to the backing Map. */
451       int knownMod = modCount;
452 
453       /**
454        * Returns true if the Iterator has more elements.
455        *
456        * @return true if there are more elements
457        */
458       public boolean hasNext()
459       {
460         return current != null;
461       }
462 
463       /**
464        * Returns the next element in the Iterator's sequential view.
465        *
466        * @return the next element
467        * @throws ConcurrentModificationException if the HashMap was modified
468        * @throws NoSuchElementException if there is none
469        */
470       public Object next()
471       {
472         if (knownMod != modCount)
473           throw new ConcurrentModificationException();
474         if (current == null)
475           throw new NoSuchElementException();
476         last = current;
477         current = current.succ;
478         return type == VALUES ? last.value : type == KEYS ? last.key : last;
479       }
480 
481       /**
482        * Removes from the backing HashMap the last element which was fetched
483        * with the <code>next()</code> method.
484        *
485        * @throws ConcurrentModificationException if the HashMap was modified
486        * @throws IllegalStateException if called when there is no last element
487        */
488       public void remove()
489       {
490         if (knownMod != modCount)
491           throw new ConcurrentModificationException();
492         if (last == null)
493           throw new IllegalStateException();
494         LinkedHashMap.this.remove(last.key);
495         last = null;
496         knownMod++;
497       }
498     };
499   }
500 } // class LinkedHashMap
501