1------------------------------------------------------------------------------
2--                                                                          --
3--                         GNAT COMPILER COMPONENTS                         --
4--                                                                          --
5--        G N A T . P E R F E C T _ H A S H _ G E N E R A T O R S           --
6--                                                                          --
7--                                 B o d y                                  --
8--                                                                          --
9--                     Copyright (C) 2002-2018, AdaCore                     --
10--                                                                          --
11-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12-- terms of the  GNU General Public License as published  by the Free Soft- --
13-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
17--                                                                          --
18-- As a special exception under Section 7 of GPL version 3, you are granted --
19-- additional permissions described in the GCC Runtime Library Exception,   --
20-- version 3.1, as published by the Free Software Foundation.               --
21--                                                                          --
22-- You should have received a copy of the GNU General Public License and    --
23-- a copy of the GCC Runtime Library Exception along with this program;     --
24-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
25-- <http://www.gnu.org/licenses/>.                                          --
26--                                                                          --
27-- GNAT was originally developed  by the GNAT team at  New York University. --
28-- Extensive contributions were provided by Ada Core Technologies Inc.      --
29--                                                                          --
30------------------------------------------------------------------------------
31
32with Ada.IO_Exceptions;       use Ada.IO_Exceptions;
33with Ada.Characters.Handling; use Ada.Characters.Handling;
34with Ada.Directories;
35
36with GNAT.Heap_Sort_G;
37with GNAT.OS_Lib;      use GNAT.OS_Lib;
38with GNAT.Table;
39
40package body GNAT.Perfect_Hash_Generators is
41
42   --  We are using the algorithm of J. Czech as described in Zbigniew J.
43   --  Czech, George Havas, and Bohdan S. Majewski ``An Optimal Algorithm for
44   --  Generating Minimal Perfect Hash Functions'', Information Processing
45   --  Letters, 43(1992) pp.257-264, Oct.1992
46
47   --  This minimal perfect hash function generator is based on random graphs
48   --  and produces a hash function of the form:
49
50   --             h (w) = (g (f1 (w)) + g (f2 (w))) mod m
51
52   --  where f1 and f2 are functions that map strings into integers, and g is
53   --  a function that maps integers into [0, m-1]. h can be order preserving.
54   --  For instance, let W = {w_0, ..., w_i, ..., w_m-1}, h can be defined
55   --  such that h (w_i) = i.
56
57   --  This algorithm defines two possible constructions of f1 and f2. Method
58   --  b) stores the hash function in less memory space at the expense of
59   --  greater CPU time.
60
61   --  a) fk (w) = sum (for i in 1 .. length (w)) (Tk (i, w (i))) mod n
62
63   --     size (Tk) = max (for w in W) (length (w)) * size (used char set)
64
65   --  b) fk (w) = sum (for i in 1 .. length (w)) (Tk (i) * w (i)) mod n
66
67   --     size (Tk) = max (for w in W) (length (w)) but the table lookups are
68   --     replaced by multiplications.
69
70   --  where Tk values are randomly generated. n is defined later on but the
71   --  algorithm recommends to use a value a little bit greater than 2m. Note
72   --  that for large values of m, the main memory space requirements comes
73   --  from the memory space for storing function g (>= 2m entries).
74
75   --  Random graphs are frequently used to solve difficult problems that do
76   --  not have polynomial solutions. This algorithm is based on a weighted
77   --  undirected graph. It comprises two steps: mapping and assignment.
78
79   --  In the mapping step, a graph G = (V, E) is constructed, where = {0, 1,
80   --  ..., n-1} and E = {(for w in W) (f1 (w), f2 (w))}. In order for the
81   --  assignment step to be successful, G has to be acyclic. To have a high
82   --  probability of generating an acyclic graph, n >= 2m. If it is not
83   --  acyclic, Tk have to be regenerated.
84
85   --  In the assignment step, the algorithm builds function g. As G is
86   --  acyclic, there is a vertex v1 with only one neighbor v2. Let w_i be
87   --  the word such that v1 = f1 (w_i) and v2 = f2 (w_i). Let g (v1) = 0 by
88   --  construction and g (v2) = (i - g (v1)) mod n (or h (i) - g (v1) mod n).
89   --  If word w_j is such that v2 = f1 (w_j) and v3 = f2 (w_j), g (v3) = (j -
90   --  g (v2)) mod (or to be general, (h (j) - g (v2)) mod n). If w_i has no
91   --  neighbor, then another vertex is selected. The algorithm traverses G to
92   --  assign values to all the vertices. It cannot assign a value to an
93   --  already assigned vertex as G is acyclic.
94
95   subtype Word_Id   is Integer;
96   subtype Key_Id    is Integer;
97   subtype Vertex_Id is Integer;
98   subtype Edge_Id   is Integer;
99   subtype Table_Id  is Integer;
100
101   No_Vertex : constant Vertex_Id := -1;
102   No_Edge   : constant Edge_Id   := -1;
103   No_Table  : constant Table_Id  := -1;
104
105   type Word_Type is new String_Access;
106   procedure Free_Word (W : in out Word_Type) renames Free;
107   function New_Word (S : String) return Word_Type;
108
109   procedure Resize_Word (W : in out Word_Type; Len : Natural);
110   --  Resize string W to have a length Len
111
112   type Key_Type is record
113      Edge : Edge_Id;
114   end record;
115   --  A key corresponds to an edge in the algorithm graph
116
117   type Vertex_Type is record
118      First : Edge_Id;
119      Last  : Edge_Id;
120   end record;
121   --  A vertex can be involved in several edges. First and Last are the bounds
122   --  of an array of edges stored in a global edge table.
123
124   type Edge_Type is record
125      X   : Vertex_Id;
126      Y   : Vertex_Id;
127      Key : Key_Id;
128   end record;
129   --  An edge is a peer of vertices. In the algorithm, a key is associated to
130   --  an edge.
131
132   package WT is new GNAT.Table (Word_Type, Word_Id, 0, 32, 32);
133   package IT is new GNAT.Table (Integer, Integer, 0, 32, 32);
134   --  The two main tables. WT is used to store the words in their initial
135   --  version and in their reduced version (that is words reduced to their
136   --  significant characters). As an instance of GNAT.Table, WT does not
137   --  initialize string pointers to null. This initialization has to be done
138   --  manually when the table is allocated. IT is used to store several
139   --  tables of components containing only integers.
140
141   function Image (Int : Integer; W : Natural := 0) return String;
142   function Image (Str : String;  W : Natural := 0) return String;
143   --  Return a string which includes string Str or integer Int preceded by
144   --  leading spaces if required by width W.
145
146   function Trim_Trailing_Nuls (Str : String) return String;
147   --  Return Str with trailing NUL characters removed
148
149   Output : File_Descriptor renames GNAT.OS_Lib.Standout;
150   --  Shortcuts
151
152   EOL : constant Character := ASCII.LF;
153
154   Max  : constant := 78;
155   Last : Natural  := 0;
156   Line : String (1 .. Max);
157   --  Use this line to provide buffered IO
158
159   procedure Add (C : Character);
160   procedure Add (S : String);
161   --  Add a character or a string in Line and update Last
162
163   procedure Put
164     (F  : File_Descriptor;
165      S  : String;
166      F1 : Natural;
167      L1 : Natural;
168      C1 : Natural;
169      F2 : Natural;
170      L2 : Natural;
171      C2 : Natural);
172   --  Write string S into file F as a element of an array of one or two
173   --  dimensions. Fk (resp. Lk and Ck) indicates the first (resp last and
174   --  current) index in the k-th dimension. If F1 = L1 the array is considered
175   --  as a one dimension array. This dimension is described by F2 and L2. This
176   --  routine takes care of all the parenthesis, spaces and commas needed to
177   --  format correctly the array. Moreover, the array is well indented and is
178   --  wrapped to fit in a 80 col line. When the line is full, the routine
179   --  writes it into file F. When the array is completed, the routine adds
180   --  semi-colon and writes the line into file F.
181
182   procedure New_Line (File : File_Descriptor);
183   --  Simulate Ada.Text_IO.New_Line with GNAT.OS_Lib
184
185   procedure Put (File : File_Descriptor; Str : String);
186   --  Simulate Ada.Text_IO.Put with GNAT.OS_Lib
187
188   procedure Put_Used_Char_Set (File : File_Descriptor; Title : String);
189   --  Output a title and a used character set
190
191   procedure Put_Int_Vector
192     (File   : File_Descriptor;
193      Title  : String;
194      Vector : Integer;
195      Length : Natural);
196   --  Output a title and a vector
197
198   procedure Put_Int_Matrix
199     (File  : File_Descriptor;
200      Title : String;
201      Table : Table_Id;
202      Len_1 : Natural;
203      Len_2 : Natural);
204   --  Output a title and a matrix. When the matrix has only one non-empty
205   --  dimension (Len_2 = 0), output a vector.
206
207   procedure Put_Edges (File : File_Descriptor; Title : String);
208   --  Output a title and an edge table
209
210   procedure Put_Initial_Keys (File : File_Descriptor; Title : String);
211   --  Output a title and a key table
212
213   procedure Put_Reduced_Keys (File : File_Descriptor; Title : String);
214   --  Output a title and a key table
215
216   procedure Put_Vertex_Table (File : File_Descriptor; Title : String);
217   --  Output a title and a vertex table
218
219   function Ada_File_Base_Name (Pkg_Name : String) return String;
220   --  Return the base file name (i.e. without .ads/.adb extension) for an
221   --  Ada source file containing the named package, using the standard GNAT
222   --  file-naming convention. For example, if Pkg_Name is "Parent.Child", we
223   --  return "parent-child".
224
225   ----------------------------------
226   -- Character Position Selection --
227   ----------------------------------
228
229   --  We reduce the maximum key size by selecting representative positions
230   --  in these keys. We build a matrix with one word per line. We fill the
231   --  remaining space of a line with ASCII.NUL. The heuristic selects the
232   --  position that induces the minimum number of collisions. If there are
233   --  collisions, select another position on the reduced key set responsible
234   --  of the collisions. Apply the heuristic until there is no more collision.
235
236   procedure Apply_Position_Selection;
237   --  Apply Position selection and build the reduced key table
238
239   procedure Parse_Position_Selection (Argument : String);
240   --  Parse Argument and compute the position set. Argument is list of
241   --  substrings separated by commas. Each substring represents a position
242   --  or a range of positions (like x-y).
243
244   procedure Select_Character_Set;
245   --  Define an optimized used character set like Character'Pos in order not
246   --  to allocate tables of 256 entries.
247
248   procedure Select_Char_Position;
249   --  Find a min char position set in order to reduce the max key length. The
250   --  heuristic selects the position that induces the minimum number of
251   --  collisions. If there are collisions, select another position on the
252   --  reduced key set responsible of the collisions. Apply the heuristic until
253   --  there is no collision.
254
255   -----------------------------
256   -- Random Graph Generation --
257   -----------------------------
258
259   procedure Random (Seed : in out Natural);
260   --  Simulate Ada.Discrete_Numerics.Random
261
262   procedure Generate_Mapping_Table
263     (Tab  : Table_Id;
264      L1   : Natural;
265      L2   : Natural;
266      Seed : in out Natural);
267   --  Random generation of the tables below. T is already allocated
268
269   procedure Generate_Mapping_Tables
270     (Opt  : Optimization;
271      Seed : in out Natural);
272   --  Generate the mapping tables T1 and T2. They are used to define fk (w) =
273   --  sum (for i in 1 .. length (w)) (Tk (i, w (i))) mod n. Keys, NK and Chars
274   --  are used to compute the matrix size.
275
276   ---------------------------
277   -- Algorithm Computation --
278   ---------------------------
279
280   procedure Compute_Edges_And_Vertices (Opt : Optimization);
281   --  Compute the edge and vertex tables. These are empty when a self loop is
282   --  detected (f1 (w) = f2 (w)). The edge table is sorted by X value and then
283   --  Y value. Keys is the key table and NK the number of keys. Chars is the
284   --  set of characters really used in Keys. NV is the number of vertices
285   --  recommended by the algorithm. T1 and T2 are the mapping tables needed to
286   --  compute f1 (w) and f2 (w).
287
288   function Acyclic return Boolean;
289   --  Return True when the graph is acyclic. Vertices is the current vertex
290   --  table and Edges the current edge table.
291
292   procedure Assign_Values_To_Vertices;
293   --  Execute the assignment step of the algorithm. Keys is the current key
294   --  table. Vertices and Edges represent the random graph. G is the result of
295   --  the assignment step such that:
296   --    h (w) = (g (f1 (w)) + g (f2 (w))) mod m
297
298   function Sum
299     (Word  : Word_Type;
300      Table : Table_Id;
301      Opt   : Optimization) return Natural;
302   --  For an optimization of CPU_Time return
303   --    fk (w) = sum (for i in 1 .. length (w)) (Tk (i, w (i))) mod n
304   --  For an optimization of Memory_Space return
305   --    fk (w) = sum (for i in 1 .. length (w)) (Tk (i) * w (i)) mod n
306   --  Here NV = n
307
308   -------------------------------
309   -- Internal Table Management --
310   -------------------------------
311
312   function Allocate (N : Natural; S : Natural := 1) return Table_Id;
313   --  Allocate N * S ints from IT table
314
315   ----------
316   -- Keys --
317   ----------
318
319   Keys : Table_Id := No_Table;
320   NK   : Natural  := 0;
321   --  NK : Number of Keys
322
323   function Initial (K : Key_Id) return Word_Id;
324   pragma Inline (Initial);
325
326   function Reduced (K : Key_Id) return Word_Id;
327   pragma Inline (Reduced);
328
329   function  Get_Key (N : Key_Id) return Key_Type;
330   procedure Set_Key (N : Key_Id; Item : Key_Type);
331   --  Get or Set Nth element of Keys table
332
333   ------------------
334   -- Char_Pos_Set --
335   ------------------
336
337   Char_Pos_Set     : Table_Id := No_Table;
338   Char_Pos_Set_Len : Natural;
339   --  Character Selected Position Set
340
341   function  Get_Char_Pos (P : Natural) return Natural;
342   procedure Set_Char_Pos (P : Natural; Item : Natural);
343   --  Get or Set the string position of the Pth selected character
344
345   -------------------
346   -- Used_Char_Set --
347   -------------------
348
349   Used_Char_Set     : Table_Id := No_Table;
350   Used_Char_Set_Len : Natural;
351   --  Used Character Set : Define a new character mapping. When all the
352   --  characters are not present in the keys, in order to reduce the size
353   --  of some tables, we redefine the character mapping.
354
355   function  Get_Used_Char (C : Character) return Natural;
356   procedure Set_Used_Char (C : Character; Item : Natural);
357
358   ------------
359   -- Tables --
360   ------------
361
362   T1     : Table_Id := No_Table;
363   T2     : Table_Id := No_Table;
364   T1_Len : Natural;
365   T2_Len : Natural;
366   --  T1  : Values table to compute F1
367   --  T2  : Values table to compute F2
368
369   function  Get_Table (T : Integer; X, Y : Natural) return Natural;
370   procedure Set_Table (T : Integer; X, Y : Natural; Item : Natural);
371
372   -----------
373   -- Graph --
374   -----------
375
376   G     : Table_Id := No_Table;
377   G_Len : Natural;
378   --  Values table to compute G
379
380   NT : Natural := Default_Tries;
381   --  Number of tries running the algorithm before raising an error
382
383   function  Get_Graph (N : Natural) return Integer;
384   procedure Set_Graph (N : Natural; Item : Integer);
385   --  Get or Set Nth element of graph
386
387   -----------
388   -- Edges --
389   -----------
390
391   Edge_Size : constant := 3;
392   Edges     : Table_Id := No_Table;
393   Edges_Len : Natural;
394   --  Edges  : Edge table of the random graph G
395
396   function  Get_Edges (F : Natural) return Edge_Type;
397   procedure Set_Edges (F : Natural; Item : Edge_Type);
398
399   --------------
400   -- Vertices --
401   --------------
402
403   Vertex_Size : constant := 2;
404
405   Vertices : Table_Id := No_Table;
406   --  Vertex table of the random graph G
407
408   NV : Natural;
409   --  Number of Vertices
410
411   function  Get_Vertices (F : Natural) return Vertex_Type;
412   procedure Set_Vertices (F : Natural; Item : Vertex_Type);
413   --  Comments needed ???
414
415   K2V : Float;
416   --  Ratio between Keys and Vertices (parameter of Czech's algorithm)
417
418   Opt : Optimization;
419   --  Optimization mode (memory vs CPU)
420
421   Max_Key_Len : Natural := 0;
422   Min_Key_Len : Natural := 0;
423   --  Maximum and minimum of all the word length
424
425   S : Natural;
426   --  Seed
427
428   function Type_Size (L : Natural) return Natural;
429   --  Given the last L of an unsigned integer type T, return its size
430
431   -------------
432   -- Acyclic --
433   -------------
434
435   function Acyclic return Boolean is
436      Marks : array (0 .. NV - 1) of Vertex_Id := (others => No_Vertex);
437
438      function Traverse (Edge : Edge_Id; Mark : Vertex_Id) return Boolean;
439      --  Propagate Mark from X to Y. X is already marked. Mark Y and propagate
440      --  it to the edges of Y except the one representing the same key. Return
441      --  False when Y is marked with Mark.
442
443      --------------
444      -- Traverse --
445      --------------
446
447      function Traverse (Edge : Edge_Id; Mark : Vertex_Id) return Boolean is
448         E : constant Edge_Type := Get_Edges (Edge);
449         K : constant Key_Id    := E.Key;
450         Y : constant Vertex_Id := E.Y;
451         M : constant Vertex_Id := Marks (E.Y);
452         V : Vertex_Type;
453
454      begin
455         if M = Mark then
456            return False;
457
458         elsif M = No_Vertex then
459            Marks (Y) := Mark;
460            V := Get_Vertices (Y);
461
462            for J in V.First .. V.Last loop
463
464               --  Do not propagate to the edge representing the same key
465
466               if Get_Edges (J).Key /= K
467                 and then not Traverse (J, Mark)
468               then
469                  return False;
470               end if;
471            end loop;
472         end if;
473
474         return True;
475      end Traverse;
476
477      Edge  : Edge_Type;
478
479   --  Start of processing for Acyclic
480
481   begin
482      --  Edges valid range is
483
484      for J in 1 .. Edges_Len - 1 loop
485
486         Edge := Get_Edges (J);
487
488         --  Mark X of E when it has not been already done
489
490         if Marks (Edge.X) = No_Vertex then
491            Marks (Edge.X) := Edge.X;
492         end if;
493
494         --  Traverse E when this has not already been done
495
496         if Marks (Edge.Y) = No_Vertex
497           and then not Traverse (J, Edge.X)
498         then
499            return False;
500         end if;
501      end loop;
502
503      return True;
504   end Acyclic;
505
506   ------------------------
507   -- Ada_File_Base_Name --
508   ------------------------
509
510   function Ada_File_Base_Name (Pkg_Name : String) return String is
511   begin
512      --  Convert to lower case, then replace '.' with '-'
513
514      return Result : String := To_Lower (Pkg_Name) do
515         for J in Result'Range loop
516            if Result (J) = '.' then
517               Result (J) := '-';
518            end if;
519         end loop;
520      end return;
521   end Ada_File_Base_Name;
522
523   ---------
524   -- Add --
525   ---------
526
527   procedure Add (C : Character) is
528      pragma Assert (C /= ASCII.NUL);
529   begin
530      Line (Last + 1) := C;
531      Last := Last + 1;
532   end Add;
533
534   ---------
535   -- Add --
536   ---------
537
538   procedure Add (S : String) is
539      Len : constant Natural := S'Length;
540   begin
541      for J in S'Range loop
542         pragma Assert (S (J) /= ASCII.NUL);
543         null;
544      end loop;
545
546      Line (Last + 1 .. Last + Len) := S;
547      Last := Last + Len;
548   end Add;
549
550   --------------
551   -- Allocate --
552   --------------
553
554   function Allocate (N : Natural; S : Natural := 1) return Table_Id is
555      L : constant Integer := IT.Last;
556   begin
557      IT.Set_Last (L + N * S);
558
559      --  Initialize, so debugging printouts don't trip over uninitialized
560      --  components.
561
562      for J in L + 1 .. IT.Last loop
563         IT.Table (J) := -1;
564      end loop;
565
566      return L + 1;
567   end Allocate;
568
569   ------------------------------
570   -- Apply_Position_Selection --
571   ------------------------------
572
573   procedure Apply_Position_Selection is
574   begin
575      for J in 0 .. NK - 1 loop
576         declare
577            IW : constant String := WT.Table (Initial (J)).all;
578            RW : String (1 .. IW'Length) := (others => ASCII.NUL);
579            N  : Natural := IW'First - 1;
580
581         begin
582            --  Select the characters of Word included in the position
583            --  selection.
584
585            for C in 0 .. Char_Pos_Set_Len - 1 loop
586               exit when IW (Get_Char_Pos (C)) = ASCII.NUL;
587               N := N + 1;
588               RW (N) := IW (Get_Char_Pos (C));
589            end loop;
590
591            --  Build the new table with the reduced word. Be careful
592            --  to deallocate the old version to avoid memory leaks.
593
594            Free_Word (WT.Table (Reduced (J)));
595            WT.Table (Reduced (J)) := New_Word (RW);
596            Set_Key (J, (Edge => No_Edge));
597         end;
598      end loop;
599   end Apply_Position_Selection;
600
601   -------------------------------
602   -- Assign_Values_To_Vertices --
603   -------------------------------
604
605   procedure Assign_Values_To_Vertices is
606      X : Vertex_Id;
607
608      procedure Assign (X : Vertex_Id);
609      --  Execute assignment on X's neighbors except the vertex that we are
610      --  coming from which is already assigned.
611
612      ------------
613      -- Assign --
614      ------------
615
616      procedure Assign (X : Vertex_Id) is
617         E : Edge_Type;
618         V : constant Vertex_Type := Get_Vertices (X);
619
620      begin
621         for J in V.First .. V.Last loop
622            E := Get_Edges (J);
623
624            if Get_Graph (E.Y) = -1 then
625               Set_Graph (E.Y, (E.Key - Get_Graph (X)) mod NK);
626               Assign (E.Y);
627            end if;
628         end loop;
629      end Assign;
630
631   --  Start of processing for Assign_Values_To_Vertices
632
633   begin
634      --  Value -1 denotes an uninitialized value as it is supposed to
635      --  be in the range 0 .. NK.
636
637      if G = No_Table then
638         G_Len := NV;
639         G := Allocate (G_Len, 1);
640      end if;
641
642      for J in 0 .. G_Len - 1 loop
643         Set_Graph (J, -1);
644      end loop;
645
646      for K in 0 .. NK - 1 loop
647         X := Get_Edges (Get_Key (K).Edge).X;
648
649         if Get_Graph (X) = -1 then
650            Set_Graph (X, 0);
651            Assign (X);
652         end if;
653      end loop;
654
655      for J in 0 .. G_Len - 1 loop
656         if Get_Graph (J) = -1 then
657            Set_Graph (J, 0);
658         end if;
659      end loop;
660
661      if Verbose then
662         Put_Int_Vector (Output, "Assign Values To Vertices", G, G_Len);
663      end if;
664   end Assign_Values_To_Vertices;
665
666   -------------
667   -- Compute --
668   -------------
669
670   procedure Compute (Position : String := Default_Position) is
671      Success : Boolean := False;
672
673   begin
674      if NK = 0 then
675         raise Program_Error with "keywords set cannot be empty";
676      end if;
677
678      if Verbose then
679         Put_Initial_Keys (Output, "Initial Key Table");
680      end if;
681
682      if Position'Length /= 0 then
683         Parse_Position_Selection (Position);
684      else
685         Select_Char_Position;
686      end if;
687
688      if Verbose then
689         Put_Int_Vector
690           (Output, "Char Position Set", Char_Pos_Set, Char_Pos_Set_Len);
691      end if;
692
693      Apply_Position_Selection;
694
695      if Verbose then
696         Put_Reduced_Keys (Output, "Reduced Keys Table");
697      end if;
698
699      Select_Character_Set;
700
701      if Verbose then
702         Put_Used_Char_Set (Output, "Character Position Table");
703      end if;
704
705      --  Perform Czech's algorithm
706
707      for J in 1 .. NT loop
708         Generate_Mapping_Tables (Opt, S);
709         Compute_Edges_And_Vertices (Opt);
710
711         --  When graph is not empty (no self-loop from previous operation) and
712         --  not acyclic.
713
714         if 0 < Edges_Len and then Acyclic then
715            Success := True;
716            exit;
717         end if;
718      end loop;
719
720      if not Success then
721         raise Too_Many_Tries;
722      end if;
723
724      Assign_Values_To_Vertices;
725   end Compute;
726
727   --------------------------------
728   -- Compute_Edges_And_Vertices --
729   --------------------------------
730
731   procedure Compute_Edges_And_Vertices (Opt : Optimization) is
732      X           : Natural;
733      Y           : Natural;
734      Key         : Key_Type;
735      Edge        : Edge_Type;
736      Vertex      : Vertex_Type;
737      Not_Acyclic : Boolean := False;
738
739      procedure Move (From : Natural; To : Natural);
740      function Lt (L, R : Natural) return Boolean;
741      --  Subprograms needed for GNAT.Heap_Sort_G
742
743      --------
744      -- Lt --
745      --------
746
747      function Lt (L, R : Natural) return Boolean is
748         EL : constant Edge_Type := Get_Edges (L);
749         ER : constant Edge_Type := Get_Edges (R);
750      begin
751         return EL.X < ER.X or else (EL.X = ER.X and then EL.Y < ER.Y);
752      end Lt;
753
754      ----------
755      -- Move --
756      ----------
757
758      procedure Move (From : Natural; To : Natural) is
759      begin
760         Set_Edges (To, Get_Edges (From));
761      end Move;
762
763      package Sorting is new GNAT.Heap_Sort_G (Move, Lt);
764
765   --  Start of processing for Compute_Edges_And_Vertices
766
767   begin
768      --  We store edges from 1 to 2 * NK and leave zero alone in order to use
769      --  GNAT.Heap_Sort_G.
770
771      Edges_Len := 2 * NK + 1;
772
773      if Edges = No_Table then
774         Edges := Allocate (Edges_Len, Edge_Size);
775      end if;
776
777      if Vertices = No_Table then
778         Vertices := Allocate (NV, Vertex_Size);
779      end if;
780
781      for J in 0 .. NV - 1 loop
782         Set_Vertices (J, (No_Vertex, No_Vertex - 1));
783      end loop;
784
785      --  For each w, X = f1 (w) and Y = f2 (w)
786
787      for J in 0 .. NK - 1 loop
788         Key := Get_Key (J);
789         Key.Edge := No_Edge;
790         Set_Key (J, Key);
791
792         X := Sum (WT.Table (Reduced (J)), T1, Opt);
793         Y := Sum (WT.Table (Reduced (J)), T2, Opt);
794
795         --  Discard T1 and T2 as soon as we discover a self loop
796
797         if X = Y then
798            Not_Acyclic := True;
799            exit;
800         end if;
801
802         --  We store (X, Y) and (Y, X) to ease assignment step
803
804         Set_Edges (2 * J + 1, (X, Y, J));
805         Set_Edges (2 * J + 2, (Y, X, J));
806      end loop;
807
808      --  Return an empty graph when self loop detected
809
810      if Not_Acyclic then
811         Edges_Len := 0;
812
813      else
814         if Verbose then
815            Put_Edges      (Output, "Unsorted Edge Table");
816            Put_Int_Matrix (Output, "Function Table 1", T1,
817                            T1_Len, T2_Len);
818            Put_Int_Matrix (Output, "Function Table 2", T2,
819                            T1_Len, T2_Len);
820         end if;
821
822         --  Enforce consistency between edges and keys. Construct Vertices and
823         --  compute the list of neighbors of a vertex First .. Last as Edges
824         --  is sorted by X and then Y. To compute the neighbor list, sort the
825         --  edges.
826
827         Sorting.Sort (Edges_Len - 1);
828
829         if Verbose then
830            Put_Edges      (Output, "Sorted Edge Table");
831            Put_Int_Matrix (Output, "Function Table 1", T1,
832                            T1_Len, T2_Len);
833            Put_Int_Matrix (Output, "Function Table 2", T2,
834                            T1_Len, T2_Len);
835         end if;
836
837         --  Edges valid range is 1 .. 2 * NK
838
839         for E in 1 .. Edges_Len - 1 loop
840            Edge := Get_Edges (E);
841            Key  := Get_Key (Edge.Key);
842
843            if Key.Edge = No_Edge then
844               Key.Edge := E;
845               Set_Key (Edge.Key, Key);
846            end if;
847
848            Vertex := Get_Vertices (Edge.X);
849
850            if Vertex.First = No_Edge then
851               Vertex.First := E;
852            end if;
853
854            Vertex.Last := E;
855            Set_Vertices (Edge.X, Vertex);
856         end loop;
857
858         if Verbose then
859            Put_Reduced_Keys (Output, "Key Table");
860            Put_Edges        (Output, "Edge Table");
861            Put_Vertex_Table (Output, "Vertex Table");
862         end if;
863      end if;
864   end Compute_Edges_And_Vertices;
865
866   ------------
867   -- Define --
868   ------------
869
870   procedure Define
871     (Name      : Table_Name;
872      Item_Size : out Natural;
873      Length_1  : out Natural;
874      Length_2  : out Natural)
875   is
876   begin
877      case Name is
878         when Character_Position =>
879            Item_Size := 8;
880            Length_1  := Char_Pos_Set_Len;
881            Length_2  := 0;
882
883         when Used_Character_Set =>
884            Item_Size := 8;
885            Length_1  := 256;
886            Length_2  := 0;
887
888         when Function_Table_1
889            | Function_Table_2
890         =>
891            Item_Size := Type_Size (NV);
892            Length_1  := T1_Len;
893            Length_2  := T2_Len;
894
895         when Graph_Table =>
896            Item_Size := Type_Size (NK);
897            Length_1  := NV;
898            Length_2  := 0;
899      end case;
900   end Define;
901
902   --------------
903   -- Finalize --
904   --------------
905
906   procedure Finalize is
907   begin
908      if Verbose then
909         Put (Output, "Finalize");
910         New_Line (Output);
911      end if;
912
913      --  Deallocate all the WT components (both initial and reduced ones) to
914      --  avoid memory leaks.
915
916      for W in 0 .. WT.Last loop
917
918         --  Note: WT.Table (NK) is a temporary variable, do not free it since
919         --  this would cause a double free.
920
921         if W /= NK then
922            Free_Word (WT.Table (W));
923         end if;
924      end loop;
925
926      WT.Release;
927      IT.Release;
928
929      --  Reset all variables for next usage
930
931      Keys := No_Table;
932
933      Char_Pos_Set     := No_Table;
934      Char_Pos_Set_Len := 0;
935
936      Used_Char_Set     := No_Table;
937      Used_Char_Set_Len := 0;
938
939      T1 := No_Table;
940      T2 := No_Table;
941
942      T1_Len := 0;
943      T2_Len := 0;
944
945      G     := No_Table;
946      G_Len := 0;
947
948      Edges     := No_Table;
949      Edges_Len := 0;
950
951      Vertices := No_Table;
952      NV       := 0;
953
954      NK := 0;
955      Max_Key_Len := 0;
956      Min_Key_Len := 0;
957   end Finalize;
958
959   ----------------------------
960   -- Generate_Mapping_Table --
961   ----------------------------
962
963   procedure Generate_Mapping_Table
964     (Tab  : Integer;
965      L1   : Natural;
966      L2   : Natural;
967      Seed : in out Natural)
968   is
969   begin
970      for J in 0 .. L1 - 1 loop
971         for K in 0 .. L2 - 1 loop
972            Random (Seed);
973            Set_Table (Tab, J, K, Seed mod NV);
974         end loop;
975      end loop;
976   end Generate_Mapping_Table;
977
978   -----------------------------
979   -- Generate_Mapping_Tables --
980   -----------------------------
981
982   procedure Generate_Mapping_Tables
983     (Opt  : Optimization;
984      Seed : in out Natural)
985   is
986   begin
987      --  If T1 and T2 are already allocated no need to do it twice. Reuse them
988      --  as their size has not changed.
989
990      if T1 = No_Table and then T2 = No_Table then
991         declare
992            Used_Char_Last : Natural := 0;
993            Used_Char      : Natural;
994
995         begin
996            if Opt = CPU_Time then
997               for P in reverse Character'Range loop
998                  Used_Char := Get_Used_Char (P);
999                  if Used_Char /= 0 then
1000                     Used_Char_Last := Used_Char;
1001                     exit;
1002                  end if;
1003               end loop;
1004            end if;
1005
1006            T1_Len := Char_Pos_Set_Len;
1007            T2_Len := Used_Char_Last + 1;
1008            T1 := Allocate (T1_Len * T2_Len);
1009            T2 := Allocate (T1_Len * T2_Len);
1010         end;
1011      end if;
1012
1013      Generate_Mapping_Table (T1, T1_Len, T2_Len, Seed);
1014      Generate_Mapping_Table (T2, T1_Len, T2_Len, Seed);
1015
1016      if Verbose then
1017         Put_Used_Char_Set (Output, "Used Character Set");
1018         Put_Int_Matrix (Output, "Function Table 1", T1,
1019                        T1_Len, T2_Len);
1020         Put_Int_Matrix (Output, "Function Table 2", T2,
1021                        T1_Len, T2_Len);
1022      end if;
1023   end Generate_Mapping_Tables;
1024
1025   ------------------
1026   -- Get_Char_Pos --
1027   ------------------
1028
1029   function Get_Char_Pos (P : Natural) return Natural is
1030      N : constant Natural := Char_Pos_Set + P;
1031   begin
1032      return IT.Table (N);
1033   end Get_Char_Pos;
1034
1035   ---------------
1036   -- Get_Edges --
1037   ---------------
1038
1039   function Get_Edges (F : Natural) return Edge_Type is
1040      N : constant Natural := Edges + (F * Edge_Size);
1041      E : Edge_Type;
1042   begin
1043      E.X   := IT.Table (N);
1044      E.Y   := IT.Table (N + 1);
1045      E.Key := IT.Table (N + 2);
1046      return E;
1047   end Get_Edges;
1048
1049   ---------------
1050   -- Get_Graph --
1051   ---------------
1052
1053   function Get_Graph (N : Natural) return Integer is
1054   begin
1055      return IT.Table (G + N);
1056   end Get_Graph;
1057
1058   -------------
1059   -- Get_Key --
1060   -------------
1061
1062   function Get_Key (N : Key_Id) return Key_Type is
1063      K : Key_Type;
1064   begin
1065      K.Edge := IT.Table (Keys + N);
1066      return K;
1067   end Get_Key;
1068
1069   ---------------
1070   -- Get_Table --
1071   ---------------
1072
1073   function Get_Table (T : Integer; X, Y : Natural) return Natural is
1074      N : constant Natural := T + (Y * T1_Len) + X;
1075   begin
1076      return IT.Table (N);
1077   end Get_Table;
1078
1079   -------------------
1080   -- Get_Used_Char --
1081   -------------------
1082
1083   function Get_Used_Char (C : Character) return Natural is
1084      N : constant Natural := Used_Char_Set + Character'Pos (C);
1085   begin
1086      return IT.Table (N);
1087   end Get_Used_Char;
1088
1089   ------------------
1090   -- Get_Vertices --
1091   ------------------
1092
1093   function Get_Vertices (F : Natural) return Vertex_Type is
1094      N : constant Natural := Vertices + (F * Vertex_Size);
1095      V : Vertex_Type;
1096   begin
1097      V.First := IT.Table (N);
1098      V.Last  := IT.Table (N + 1);
1099      return V;
1100   end Get_Vertices;
1101
1102   -----------
1103   -- Image --
1104   -----------
1105
1106   function Image (Int : Integer; W : Natural := 0) return String is
1107      B : String (1 .. 32);
1108      L : Natural := 0;
1109
1110      procedure Img (V : Natural);
1111      --  Compute image of V into B, starting at B (L), incrementing L
1112
1113      ---------
1114      -- Img --
1115      ---------
1116
1117      procedure Img (V : Natural) is
1118      begin
1119         if V > 9 then
1120            Img (V / 10);
1121         end if;
1122
1123         L := L + 1;
1124         B (L) := Character'Val ((V mod 10) + Character'Pos ('0'));
1125      end Img;
1126
1127   --  Start of processing for Image
1128
1129   begin
1130      if Int < 0 then
1131         L := L + 1;
1132         B (L) := '-';
1133         Img (-Int);
1134      else
1135         Img (Int);
1136      end if;
1137
1138      return Image (B (1 .. L), W);
1139   end Image;
1140
1141   -----------
1142   -- Image --
1143   -----------
1144
1145   function Image (Str : String; W : Natural := 0) return String is
1146      Len : constant Natural := Str'Length;
1147      Max : Natural := Len;
1148
1149   begin
1150      if Max < W then
1151         Max := W;
1152      end if;
1153
1154      declare
1155         Buf : String (1 .. Max) := (1 .. Max => ' ');
1156
1157      begin
1158         for J in 0 .. Len - 1 loop
1159            Buf (Max - Len + 1 + J) := Str (Str'First + J);
1160         end loop;
1161
1162         return Buf;
1163      end;
1164   end Image;
1165
1166   -------------
1167   -- Initial --
1168   -------------
1169
1170   function Initial (K : Key_Id) return Word_Id is
1171   begin
1172      return K;
1173   end Initial;
1174
1175   ----------------
1176   -- Initialize --
1177   ----------------
1178
1179   procedure Initialize
1180     (Seed   : Natural;
1181      K_To_V : Float        := Default_K_To_V;
1182      Optim  : Optimization := Memory_Space;
1183      Tries  : Positive     := Default_Tries)
1184   is
1185   begin
1186      if Verbose then
1187         Put (Output, "Initialize");
1188         New_Line (Output);
1189      end if;
1190
1191      --  Deallocate the part of the table concerning the reduced words.
1192      --  Initial words are already present in the table. We may have reduced
1193      --  words already there because a previous computation failed. We are
1194      --  currently retrying and the reduced words have to be deallocated.
1195
1196      for W in Reduced (0) .. WT.Last loop
1197         Free_Word (WT.Table (W));
1198      end loop;
1199
1200      IT.Init;
1201
1202      --  Initialize of computation variables
1203
1204      Keys := No_Table;
1205
1206      Char_Pos_Set     := No_Table;
1207      Char_Pos_Set_Len := 0;
1208
1209      Used_Char_Set     := No_Table;
1210      Used_Char_Set_Len := 0;
1211
1212      T1 := No_Table;
1213      T2 := No_Table;
1214
1215      T1_Len := 0;
1216      T2_Len := 0;
1217
1218      G     := No_Table;
1219      G_Len := 0;
1220
1221      Edges     := No_Table;
1222      Edges_Len := 0;
1223
1224      Vertices := No_Table;
1225      NV       := 0;
1226
1227      S    := Seed;
1228      K2V  := K_To_V;
1229      Opt  := Optim;
1230      NT   := Tries;
1231
1232      if K2V <= 2.0 then
1233         raise Program_Error with "K to V ratio cannot be lower than 2.0";
1234      end if;
1235
1236      --  Do not accept a value of K2V too close to 2.0 such that once
1237      --  rounded up, NV = 2 * NK because the algorithm would not converge.
1238
1239      NV := Natural (Float (NK) * K2V);
1240      if NV <= 2 * NK then
1241         NV := 2 * NK + 1;
1242      end if;
1243
1244      Keys := Allocate (NK);
1245
1246      --  Resize initial words to have all of them at the same size
1247      --  (so the size of the largest one).
1248
1249      for K in 0 .. NK - 1 loop
1250         Resize_Word (WT.Table (Initial (K)), Max_Key_Len);
1251      end loop;
1252
1253      --  Allocated the table to store the reduced words. As WT is a
1254      --  GNAT.Table (using C memory management), pointers have to be
1255      --  explicitly initialized to null.
1256
1257      WT.Set_Last (Reduced (NK - 1));
1258
1259      --  Note: Reduced (0) = NK + 1
1260
1261      WT.Table (NK) := null;
1262
1263      for W in 0 .. NK - 1 loop
1264         WT.Table (Reduced (W)) := null;
1265      end loop;
1266   end Initialize;
1267
1268   ------------
1269   -- Insert --
1270   ------------
1271
1272   procedure Insert (Value : String) is
1273      Len  : constant Natural := Value'Length;
1274
1275   begin
1276      if Verbose then
1277         Put (Output, "Inserting """ & Value & """");
1278         New_Line (Output);
1279      end if;
1280
1281      for J in Value'Range loop
1282         pragma Assert (Value (J) /= ASCII.NUL);
1283         null;
1284      end loop;
1285
1286      WT.Set_Last (NK);
1287      WT.Table (NK) := New_Word (Value);
1288      NK := NK + 1;
1289
1290      if Max_Key_Len < Len then
1291         Max_Key_Len := Len;
1292      end if;
1293
1294      if Min_Key_Len = 0 or else Len < Min_Key_Len then
1295         Min_Key_Len := Len;
1296      end if;
1297   end Insert;
1298
1299   --------------
1300   -- New_Line --
1301   --------------
1302
1303   procedure New_Line (File : File_Descriptor) is
1304   begin
1305      if Write (File, EOL'Address, 1) /= 1 then
1306         raise Program_Error;
1307      end if;
1308   end New_Line;
1309
1310   --------------
1311   -- New_Word --
1312   --------------
1313
1314   function New_Word (S : String) return Word_Type is
1315   begin
1316      return new String'(S);
1317   end New_Word;
1318
1319   ------------------------------
1320   -- Parse_Position_Selection --
1321   ------------------------------
1322
1323   procedure Parse_Position_Selection (Argument : String) is
1324      N : Natural          := Argument'First;
1325      L : constant Natural := Argument'Last;
1326      M : constant Natural := Max_Key_Len;
1327
1328      T : array (1 .. M) of Boolean := (others => False);
1329
1330      function Parse_Index return Natural;
1331      --  Parse argument starting at index N to find an index
1332
1333      -----------------
1334      -- Parse_Index --
1335      -----------------
1336
1337      function Parse_Index return Natural is
1338         C : Character := Argument (N);
1339         V : Natural   := 0;
1340
1341      begin
1342         if C = '$' then
1343            N := N + 1;
1344            return M;
1345         end if;
1346
1347         if C not in '0' .. '9' then
1348            raise Program_Error with "cannot read position argument";
1349         end if;
1350
1351         while C in '0' .. '9' loop
1352            V := V * 10 + (Character'Pos (C) - Character'Pos ('0'));
1353            N := N + 1;
1354            exit when L < N;
1355            C := Argument (N);
1356         end loop;
1357
1358         return V;
1359      end Parse_Index;
1360
1361   --  Start of processing for Parse_Position_Selection
1362
1363   begin
1364      --  Empty specification means all the positions
1365
1366      if L < N then
1367         Char_Pos_Set_Len := M;
1368         Char_Pos_Set := Allocate (Char_Pos_Set_Len);
1369
1370         for C in 0 .. Char_Pos_Set_Len - 1 loop
1371            Set_Char_Pos (C, C + 1);
1372         end loop;
1373
1374      else
1375         loop
1376            declare
1377               First, Last : Natural;
1378
1379            begin
1380               First := Parse_Index;
1381               Last  := First;
1382
1383               --  Detect a range
1384
1385               if N <= L and then Argument (N) = '-' then
1386                  N := N + 1;
1387                  Last := Parse_Index;
1388               end if;
1389
1390               --  Include the positions in the selection
1391
1392               for J in First .. Last loop
1393                  T (J) := True;
1394               end loop;
1395            end;
1396
1397            exit when L < N;
1398
1399            if Argument (N) /= ',' then
1400               raise Program_Error with "cannot read position argument";
1401            end if;
1402
1403            N := N + 1;
1404         end loop;
1405
1406         --  Compute position selection length
1407
1408         N := 0;
1409         for J in T'Range loop
1410            if T (J) then
1411               N := N + 1;
1412            end if;
1413         end loop;
1414
1415         --  Fill position selection
1416
1417         Char_Pos_Set_Len := N;
1418         Char_Pos_Set := Allocate (Char_Pos_Set_Len);
1419
1420         N := 0;
1421         for J in T'Range loop
1422            if T (J) then
1423               Set_Char_Pos (N, J);
1424               N := N + 1;
1425            end if;
1426         end loop;
1427      end if;
1428   end Parse_Position_Selection;
1429
1430   -------------
1431   -- Produce --
1432   -------------
1433
1434   procedure Produce
1435     (Pkg_Name   : String  := Default_Pkg_Name;
1436      Use_Stdout : Boolean := False)
1437   is
1438      File : File_Descriptor := Standout;
1439
1440      Status : Boolean;
1441      --  For call to Close
1442
1443      function Array_Img (N, T, R1 : String; R2 : String := "") return String;
1444      --  Return string "N : constant array (R1[, R2]) of T;"
1445
1446      function Range_Img (F, L : Natural; T : String := "") return String;
1447      --  Return string "[T range ]F .. L"
1448
1449      function Type_Img (L : Natural) return String;
1450      --  Return the larger unsigned type T such that T'Last < L
1451
1452      ---------------
1453      -- Array_Img --
1454      ---------------
1455
1456      function Array_Img
1457        (N, T, R1 : String;
1458         R2       : String := "") return String
1459      is
1460      begin
1461         Last := 0;
1462         Add ("   ");
1463         Add (N);
1464         Add (" : constant array (");
1465         Add (R1);
1466
1467         if R2 /= "" then
1468            Add (", ");
1469            Add (R2);
1470         end if;
1471
1472         Add (") of ");
1473         Add (T);
1474         Add (" :=");
1475         return Line (1 .. Last);
1476      end Array_Img;
1477
1478      ---------------
1479      -- Range_Img --
1480      ---------------
1481
1482      function Range_Img (F, L : Natural; T : String := "") return String is
1483         FI  : constant String  := Image (F);
1484         FL  : constant Natural := FI'Length;
1485         LI  : constant String  := Image (L);
1486         LL  : constant Natural := LI'Length;
1487         TL  : constant Natural := T'Length;
1488         RI  : String (1 .. TL + 7 + FL + 4 + LL);
1489         Len : Natural := 0;
1490
1491      begin
1492         if TL /= 0 then
1493            RI (Len + 1 .. Len + TL) := T;
1494            Len := Len + TL;
1495            RI (Len + 1 .. Len + 7) := " range ";
1496            Len := Len + 7;
1497         end if;
1498
1499         RI (Len + 1 .. Len + FL) := FI;
1500         Len := Len + FL;
1501         RI (Len + 1 .. Len + 4) := " .. ";
1502         Len := Len + 4;
1503         RI (Len + 1 .. Len + LL) := LI;
1504         Len := Len + LL;
1505         return RI (1 .. Len);
1506      end Range_Img;
1507
1508      --------------
1509      -- Type_Img --
1510      --------------
1511
1512      function Type_Img (L : Natural) return String is
1513         S : constant String := Image (Type_Size (L));
1514         U : String  := "Unsigned_  ";
1515         N : Natural := 9;
1516
1517      begin
1518         for J in S'Range loop
1519            N := N + 1;
1520            U (N) := S (J);
1521         end loop;
1522
1523         return U (1 .. N);
1524      end Type_Img;
1525
1526      F : Natural;
1527      L : Natural;
1528      P : Natural;
1529
1530      FName : String := Ada_File_Base_Name (Pkg_Name) & ".ads";
1531      --  Initially, the name of the spec file, then modified to be the name of
1532      --  the body file. Not used if Use_Stdout is True.
1533
1534   --  Start of processing for Produce
1535
1536   begin
1537
1538      if Verbose and then not Use_Stdout then
1539         Put (Output,
1540              "Producing " & Ada.Directories.Current_Directory & "/" & FName);
1541         New_Line (Output);
1542      end if;
1543
1544      if not Use_Stdout then
1545         File := Create_File (FName, Binary);
1546
1547         if File = Invalid_FD then
1548            raise Program_Error with "cannot create: " & FName;
1549         end if;
1550      end if;
1551
1552      Put      (File, "package ");
1553      Put      (File, Pkg_Name);
1554      Put      (File, " is");
1555      New_Line (File);
1556      Put      (File, "   function Hash (S : String) return Natural;");
1557      New_Line (File);
1558      Put      (File, "end ");
1559      Put      (File, Pkg_Name);
1560      Put      (File, ";");
1561      New_Line (File);
1562
1563      if not Use_Stdout then
1564         Close (File, Status);
1565
1566         if not Status then
1567            raise Device_Error;
1568         end if;
1569      end if;
1570
1571      if not Use_Stdout then
1572
1573         --  Set to body file name
1574
1575         FName (FName'Last) := 'b';
1576
1577         File := Create_File (FName, Binary);
1578
1579         if File = Invalid_FD then
1580            raise Program_Error with "cannot create: " & FName;
1581         end if;
1582      end if;
1583
1584      Put      (File, "with Interfaces; use Interfaces;");
1585      New_Line (File);
1586      New_Line (File);
1587      Put      (File, "package body ");
1588      Put      (File, Pkg_Name);
1589      Put      (File, " is");
1590      New_Line (File);
1591      New_Line (File);
1592
1593      if Opt = CPU_Time then
1594         Put      (File, Array_Img ("C", Type_Img (256), "Character"));
1595         New_Line (File);
1596
1597         F := Character'Pos (Character'First);
1598         L := Character'Pos (Character'Last);
1599
1600         for J in Character'Range loop
1601            P := Get_Used_Char (J);
1602            Put (File, Image (P), 1, 0, 1, F, L, Character'Pos (J));
1603         end loop;
1604
1605         New_Line (File);
1606      end if;
1607
1608      F := 0;
1609      L := Char_Pos_Set_Len - 1;
1610
1611      Put      (File, Array_Img ("P", "Natural", Range_Img (F, L)));
1612      New_Line (File);
1613
1614      for J in F .. L loop
1615         Put (File, Image (Get_Char_Pos (J)), 1, 0, 1, F, L, J);
1616      end loop;
1617
1618      New_Line (File);
1619
1620      case Opt is
1621         when CPU_Time =>
1622            Put_Int_Matrix
1623              (File,
1624               Array_Img ("T1", Type_Img (NV),
1625                          Range_Img (0, T1_Len - 1),
1626                          Range_Img (0, T2_Len - 1, Type_Img (256))),
1627               T1, T1_Len, T2_Len);
1628
1629         when Memory_Space =>
1630            Put_Int_Matrix
1631              (File,
1632               Array_Img ("T1", Type_Img (NV),
1633                          Range_Img (0, T1_Len - 1)),
1634               T1, T1_Len, 0);
1635      end case;
1636
1637      New_Line (File);
1638
1639      case Opt is
1640         when CPU_Time =>
1641            Put_Int_Matrix
1642              (File,
1643               Array_Img ("T2", Type_Img (NV),
1644                          Range_Img (0, T1_Len - 1),
1645                          Range_Img (0, T2_Len - 1, Type_Img (256))),
1646               T2, T1_Len, T2_Len);
1647
1648         when Memory_Space =>
1649            Put_Int_Matrix
1650              (File,
1651               Array_Img ("T2", Type_Img (NV),
1652                          Range_Img (0, T1_Len - 1)),
1653               T2, T1_Len, 0);
1654      end case;
1655
1656      New_Line (File);
1657
1658      Put_Int_Vector
1659        (File,
1660         Array_Img ("G", Type_Img (NK),
1661                    Range_Img (0, G_Len - 1)),
1662         G, G_Len);
1663      New_Line (File);
1664
1665      Put      (File, "   function Hash (S : String) return Natural is");
1666      New_Line (File);
1667      Put      (File, "      F : constant Natural := S'First - 1;");
1668      New_Line (File);
1669      Put      (File, "      L : constant Natural := S'Length;");
1670      New_Line (File);
1671      Put      (File, "      F1, F2 : Natural := 0;");
1672      New_Line (File);
1673
1674      Put (File, "      J : ");
1675
1676      case Opt is
1677         when CPU_Time =>
1678            Put (File, Type_Img (256));
1679
1680         when Memory_Space =>
1681            Put (File, "Natural");
1682      end case;
1683
1684      Put (File, ";");
1685      New_Line (File);
1686
1687      Put      (File, "   begin");
1688      New_Line (File);
1689      Put      (File, "      for K in P'Range loop");
1690      New_Line (File);
1691      Put      (File, "         exit when L < P (K);");
1692      New_Line (File);
1693      Put      (File, "         J  := ");
1694
1695      case Opt is
1696         when CPU_Time =>
1697            Put (File, "C");
1698
1699         when Memory_Space =>
1700            Put (File, "Character'Pos");
1701      end case;
1702
1703      Put      (File, " (S (P (K) + F));");
1704      New_Line (File);
1705
1706      Put (File, "         F1 := (F1 + Natural (T1 (K");
1707
1708      if Opt = CPU_Time then
1709         Put (File, ", J");
1710      end if;
1711
1712      Put (File, "))");
1713
1714      if Opt = Memory_Space then
1715         Put (File, " * J");
1716      end if;
1717
1718      Put      (File, ") mod ");
1719      Put      (File, Image (NV));
1720      Put      (File, ";");
1721      New_Line (File);
1722
1723      Put (File, "         F2 := (F2 + Natural (T2 (K");
1724
1725      if Opt = CPU_Time then
1726         Put (File, ", J");
1727      end if;
1728
1729      Put (File, "))");
1730
1731      if Opt = Memory_Space then
1732         Put (File, " * J");
1733      end if;
1734
1735      Put      (File, ") mod ");
1736      Put      (File, Image (NV));
1737      Put      (File, ";");
1738      New_Line (File);
1739
1740      Put      (File, "      end loop;");
1741      New_Line (File);
1742
1743      Put      (File,
1744                "      return (Natural (G (F1)) + Natural (G (F2))) mod ");
1745
1746      Put      (File, Image (NK));
1747      Put      (File, ";");
1748      New_Line (File);
1749      Put      (File, "   end Hash;");
1750      New_Line (File);
1751      New_Line (File);
1752      Put      (File, "end ");
1753      Put      (File, Pkg_Name);
1754      Put      (File, ";");
1755      New_Line (File);
1756
1757      if not Use_Stdout then
1758         Close (File, Status);
1759
1760         if not Status then
1761            raise Device_Error;
1762         end if;
1763      end if;
1764   end Produce;
1765
1766   ---------
1767   -- Put --
1768   ---------
1769
1770   procedure Put (File : File_Descriptor; Str : String) is
1771      Len : constant Natural := Str'Length;
1772   begin
1773      for J in Str'Range loop
1774         pragma Assert (Str (J) /= ASCII.NUL);
1775         null;
1776      end loop;
1777
1778      if Write (File, Str'Address, Len) /= Len then
1779         raise Program_Error;
1780      end if;
1781   end Put;
1782
1783   ---------
1784   -- Put --
1785   ---------
1786
1787   procedure Put
1788     (F  : File_Descriptor;
1789      S  : String;
1790      F1 : Natural;
1791      L1 : Natural;
1792      C1 : Natural;
1793      F2 : Natural;
1794      L2 : Natural;
1795      C2 : Natural)
1796   is
1797      Len : constant Natural := S'Length;
1798
1799      procedure Flush;
1800      --  Write current line, followed by LF
1801
1802      -----------
1803      -- Flush --
1804      -----------
1805
1806      procedure Flush is
1807      begin
1808         Put (F, Line (1 .. Last));
1809         New_Line (F);
1810         Last := 0;
1811      end Flush;
1812
1813   --  Start of processing for Put
1814
1815   begin
1816      if C1 = F1 and then C2 = F2 then
1817         Last := 0;
1818      end if;
1819
1820      if Last + Len + 3 >= Max then
1821         Flush;
1822      end if;
1823
1824      if Last = 0 then
1825         Add ("     ");
1826
1827         if F1 <= L1 then
1828            if C1 = F1 and then C2 = F2 then
1829               Add ('(');
1830
1831               if F1 = L1 then
1832                  Add ("0 .. 0 => ");
1833               end if;
1834
1835            else
1836               Add (' ');
1837            end if;
1838         end if;
1839      end if;
1840
1841      if C2 = F2 then
1842         Add ('(');
1843
1844         if F2 = L2 then
1845            Add ("0 .. 0 => ");
1846         end if;
1847
1848      else
1849         Add (' ');
1850      end if;
1851
1852      Add (S);
1853
1854      if C2 = L2 then
1855         Add (')');
1856
1857         if F1 > L1 then
1858            Add (';');
1859            Flush;
1860
1861         elsif C1 /= L1 then
1862            Add (',');
1863            Flush;
1864
1865         else
1866            Add (')');
1867            Add (';');
1868            Flush;
1869         end if;
1870
1871      else
1872         Add (',');
1873      end if;
1874   end Put;
1875
1876   ---------------
1877   -- Put_Edges --
1878   ---------------
1879
1880   procedure Put_Edges (File  : File_Descriptor; Title : String) is
1881      E  : Edge_Type;
1882      F1 : constant Natural := 1;
1883      L1 : constant Natural := Edges_Len - 1;
1884      M  : constant Natural := Max / 5;
1885
1886   begin
1887      Put (File, Title);
1888      New_Line (File);
1889
1890      --  Edges valid range is 1 .. Edge_Len - 1
1891
1892      for J in F1 .. L1 loop
1893         E := Get_Edges (J);
1894         Put (File, Image (J, M),     F1, L1, J, 1, 4, 1);
1895         Put (File, Image (E.X, M),   F1, L1, J, 1, 4, 2);
1896         Put (File, Image (E.Y, M),   F1, L1, J, 1, 4, 3);
1897         Put (File, Image (E.Key, M), F1, L1, J, 1, 4, 4);
1898      end loop;
1899   end Put_Edges;
1900
1901   ----------------------
1902   -- Put_Initial_Keys --
1903   ----------------------
1904
1905   procedure Put_Initial_Keys (File : File_Descriptor; Title : String) is
1906      F1 : constant Natural := 0;
1907      L1 : constant Natural := NK - 1;
1908      M  : constant Natural := Max / 5;
1909      K  : Key_Type;
1910
1911   begin
1912      Put (File, Title);
1913      New_Line (File);
1914
1915      for J in F1 .. L1 loop
1916         K := Get_Key (J);
1917         Put (File, Image (J, M),           F1, L1, J, 1, 3, 1);
1918         Put (File, Image (K.Edge, M),      F1, L1, J, 1, 3, 2);
1919         Put (File, Trim_Trailing_Nuls (WT.Table (Initial (J)).all),
1920                    F1, L1, J, 1, 3, 3);
1921      end loop;
1922   end Put_Initial_Keys;
1923
1924   --------------------
1925   -- Put_Int_Matrix --
1926   --------------------
1927
1928   procedure Put_Int_Matrix
1929     (File   : File_Descriptor;
1930      Title  : String;
1931      Table  : Integer;
1932      Len_1  : Natural;
1933      Len_2  : Natural)
1934   is
1935      F1 : constant Integer := 0;
1936      L1 : constant Integer := Len_1 - 1;
1937      F2 : constant Integer := 0;
1938      L2 : constant Integer := Len_2 - 1;
1939      Ix : Natural;
1940
1941   begin
1942      Put (File, Title);
1943      New_Line (File);
1944
1945      if Len_2 = 0 then
1946         for J in F1 .. L1 loop
1947            Ix := IT.Table (Table + J);
1948            Put (File, Image (Ix), 1, 0, 1, F1, L1, J);
1949         end loop;
1950
1951      else
1952         for J in F1 .. L1 loop
1953            for K in F2 .. L2 loop
1954               Ix := IT.Table (Table + J + K * Len_1);
1955               Put (File, Image (Ix), F1, L1, J, F2, L2, K);
1956            end loop;
1957         end loop;
1958      end if;
1959   end Put_Int_Matrix;
1960
1961   --------------------
1962   -- Put_Int_Vector --
1963   --------------------
1964
1965   procedure Put_Int_Vector
1966     (File   : File_Descriptor;
1967      Title  : String;
1968      Vector : Integer;
1969      Length : Natural)
1970   is
1971      F2 : constant Natural := 0;
1972      L2 : constant Natural := Length - 1;
1973
1974   begin
1975      Put (File, Title);
1976      New_Line (File);
1977
1978      for J in F2 .. L2 loop
1979         Put (File, Image (IT.Table (Vector + J)), 1, 0, 1, F2, L2, J);
1980      end loop;
1981   end Put_Int_Vector;
1982
1983   ----------------------
1984   -- Put_Reduced_Keys --
1985   ----------------------
1986
1987   procedure Put_Reduced_Keys (File : File_Descriptor; Title : String) is
1988      F1 : constant Natural := 0;
1989      L1 : constant Natural := NK - 1;
1990      M  : constant Natural := Max / 5;
1991      K  : Key_Type;
1992
1993   begin
1994      Put (File, Title);
1995      New_Line (File);
1996
1997      for J in F1 .. L1 loop
1998         K := Get_Key (J);
1999         Put (File, Image (J, M),           F1, L1, J, 1, 3, 1);
2000         Put (File, Image (K.Edge, M),      F1, L1, J, 1, 3, 2);
2001         Put (File, Trim_Trailing_Nuls (WT.Table (Reduced (J)).all),
2002                    F1, L1, J, 1, 3, 3);
2003      end loop;
2004   end Put_Reduced_Keys;
2005
2006   -----------------------
2007   -- Put_Used_Char_Set --
2008   -----------------------
2009
2010   procedure Put_Used_Char_Set (File : File_Descriptor; Title : String) is
2011      F : constant Natural := Character'Pos (Character'First);
2012      L : constant Natural := Character'Pos (Character'Last);
2013
2014   begin
2015      Put (File, Title);
2016      New_Line (File);
2017
2018      for J in Character'Range loop
2019         Put
2020           (File, Image (Get_Used_Char (J)), 1, 0, 1, F, L, Character'Pos (J));
2021      end loop;
2022   end Put_Used_Char_Set;
2023
2024   ----------------------
2025   -- Put_Vertex_Table --
2026   ----------------------
2027
2028   procedure Put_Vertex_Table (File : File_Descriptor; Title : String) is
2029      F1 : constant Natural := 0;
2030      L1 : constant Natural := NV - 1;
2031      M  : constant Natural := Max / 4;
2032      V  : Vertex_Type;
2033
2034   begin
2035      Put (File, Title);
2036      New_Line (File);
2037
2038      for J in F1 .. L1 loop
2039         V := Get_Vertices (J);
2040         Put (File, Image (J, M),       F1, L1, J, 1, 3, 1);
2041         Put (File, Image (V.First, M), F1, L1, J, 1, 3, 2);
2042         Put (File, Image (V.Last, M),  F1, L1, J, 1, 3, 3);
2043      end loop;
2044   end Put_Vertex_Table;
2045
2046   ------------
2047   -- Random --
2048   ------------
2049
2050   procedure Random (Seed : in out Natural) is
2051
2052      --  Park & Miller Standard Minimal using Schrage's algorithm to avoid
2053      --  overflow: Xn+1 = 16807 * Xn mod (2 ** 31 - 1)
2054
2055      R : Natural;
2056      Q : Natural;
2057      X : Integer;
2058
2059   begin
2060      R := Seed mod 127773;
2061      Q := Seed / 127773;
2062      X := 16807 * R - 2836 * Q;
2063
2064      Seed := (if X < 0 then X + 2147483647 else X);
2065   end Random;
2066
2067   -------------
2068   -- Reduced --
2069   -------------
2070
2071   function Reduced (K : Key_Id) return Word_Id is
2072   begin
2073      return K + NK + 1;
2074   end Reduced;
2075
2076   -----------------
2077   -- Resize_Word --
2078   -----------------
2079
2080   procedure Resize_Word (W : in out Word_Type; Len : Natural) is
2081      S1 : constant String := W.all;
2082      S2 : String (1 .. Len) := (others => ASCII.NUL);
2083      L  : constant Natural := S1'Length;
2084   begin
2085      if L /= Len then
2086         Free_Word (W);
2087         S2 (1 .. L) := S1;
2088         W := New_Word (S2);
2089      end if;
2090   end Resize_Word;
2091
2092   --------------------------
2093   -- Select_Char_Position --
2094   --------------------------
2095
2096   procedure Select_Char_Position is
2097
2098      type Vertex_Table_Type is array (Natural range <>) of Vertex_Type;
2099
2100      procedure Build_Identical_Keys_Sets
2101        (Table : in out Vertex_Table_Type;
2102         Last  : in out Natural;
2103         Pos   : Natural);
2104      --  Build a list of keys subsets that are identical with the current
2105      --  position selection plus Pos. Once this routine is called, reduced
2106      --  words are sorted by subsets and each item (First, Last) in Sets
2107      --  defines the range of identical keys.
2108      --  Need comment saying exactly what Last is ???
2109
2110      function Count_Different_Keys
2111        (Table : Vertex_Table_Type;
2112         Last  : Natural;
2113         Pos   : Natural) return Natural;
2114      --  For each subset in Sets, count the number of different keys if we add
2115      --  Pos to the current position selection.
2116
2117      Sel_Position : IT.Table_Type (1 .. Max_Key_Len);
2118      Last_Sel_Pos : Natural := 0;
2119      Max_Sel_Pos  : Natural := 0;
2120
2121      -------------------------------
2122      -- Build_Identical_Keys_Sets --
2123      -------------------------------
2124
2125      procedure Build_Identical_Keys_Sets
2126        (Table : in out Vertex_Table_Type;
2127         Last  : in out Natural;
2128         Pos   : Natural)
2129      is
2130         S : constant Vertex_Table_Type := Table (Table'First .. Last);
2131         C : constant Natural           := Pos;
2132         --  Shortcuts (why are these not renames ???)
2133
2134         F : Integer;
2135         L : Integer;
2136         --  First and last words of a subset
2137
2138         Offset : Natural;
2139         --  GNAT.Heap_Sort assumes that the first array index is 1. Offset
2140         --  defines the translation to operate.
2141
2142         function Lt (L, R : Natural) return Boolean;
2143         procedure Move (From : Natural; To : Natural);
2144         --  Subprograms needed by GNAT.Heap_Sort_G
2145
2146         --------
2147         -- Lt --
2148         --------
2149
2150         function Lt (L, R : Natural) return Boolean is
2151            C     : constant Natural := Pos;
2152            Left  : Natural;
2153            Right : Natural;
2154
2155         begin
2156            if L = 0 then
2157               Left  := NK;
2158               Right := Offset + R;
2159            elsif R = 0 then
2160               Left  := Offset + L;
2161               Right := NK;
2162            else
2163               Left  := Offset + L;
2164               Right := Offset + R;
2165            end if;
2166
2167            return WT.Table (Left)(C) < WT.Table (Right)(C);
2168         end Lt;
2169
2170         ----------
2171         -- Move --
2172         ----------
2173
2174         procedure Move (From : Natural; To : Natural) is
2175            Target, Source : Natural;
2176
2177         begin
2178            if From = 0 then
2179               Source := NK;
2180               Target := Offset + To;
2181            elsif To = 0 then
2182               Source := Offset + From;
2183               Target := NK;
2184            else
2185               Source := Offset + From;
2186               Target := Offset + To;
2187            end if;
2188
2189            WT.Table (Target) := WT.Table (Source);
2190            WT.Table (Source) := null;
2191         end Move;
2192
2193         package Sorting is new GNAT.Heap_Sort_G (Move, Lt);
2194
2195      --  Start of processing for Build_Identical_Key_Sets
2196
2197      begin
2198         Last := 0;
2199
2200         --  For each subset in S, extract the new subsets we have by adding C
2201         --  in the position selection.
2202
2203         for J in S'Range loop
2204            if S (J).First = S (J).Last then
2205               F := S (J).First;
2206               L := S (J).Last;
2207               Last := Last + 1;
2208               Table (Last) := (F, L);
2209
2210            else
2211               Offset := Reduced (S (J).First) - 1;
2212               Sorting.Sort (S (J).Last - S (J).First + 1);
2213
2214               F := S (J).First;
2215               L := F;
2216               for N in S (J).First .. S (J).Last loop
2217
2218                  --  For the last item, close the last subset
2219
2220                  if N = S (J).Last then
2221                     Last := Last + 1;
2222                     Table (Last) := (F, N);
2223
2224                  --  Two contiguous words are identical when they have the
2225                  --  same Cth character.
2226
2227                  elsif WT.Table (Reduced (N))(C) =
2228                        WT.Table (Reduced (N + 1))(C)
2229                  then
2230                     L := N + 1;
2231
2232                  --  Find a new subset of identical keys. Store the current
2233                  --  one and create a new subset.
2234
2235                  else
2236                     Last := Last + 1;
2237                     Table (Last) := (F, L);
2238                     F := N + 1;
2239                     L := F;
2240                  end if;
2241               end loop;
2242            end if;
2243         end loop;
2244      end Build_Identical_Keys_Sets;
2245
2246      --------------------------
2247      -- Count_Different_Keys --
2248      --------------------------
2249
2250      function Count_Different_Keys
2251        (Table : Vertex_Table_Type;
2252         Last  : Natural;
2253         Pos   : Natural) return Natural
2254      is
2255         N : array (Character) of Natural;
2256         C : Character;
2257         T : Natural := 0;
2258
2259      begin
2260         --  For each subset, count the number of words that are still
2261         --  different when we include Pos in the position selection. Only
2262         --  focus on this position as the other positions already produce
2263         --  identical keys.
2264
2265         for S in 1 .. Last loop
2266
2267            --  Count the occurrences of the different characters
2268
2269            N := (others => 0);
2270            for K in Table (S).First .. Table (S).Last loop
2271               C := WT.Table (Reduced (K))(Pos);
2272               N (C) := N (C) + 1;
2273            end loop;
2274
2275            --  Update the number of different keys. Each character used
2276            --  denotes a different key.
2277
2278            for J in N'Range loop
2279               if N (J) > 0 then
2280                  T := T + 1;
2281               end if;
2282            end loop;
2283         end loop;
2284
2285         return T;
2286      end Count_Different_Keys;
2287
2288   --  Start of processing for Select_Char_Position
2289
2290   begin
2291      --  Initialize the reduced words set
2292
2293      for K in 0 .. NK - 1 loop
2294         WT.Table (Reduced (K)) := New_Word (WT.Table (Initial (K)).all);
2295      end loop;
2296
2297      declare
2298         Differences          : Natural;
2299         Max_Differences      : Natural := 0;
2300         Old_Differences      : Natural;
2301         Max_Diff_Sel_Pos     : Natural := 0; -- init to kill warning
2302         Max_Diff_Sel_Pos_Idx : Natural := 0; -- init to kill warning
2303         Same_Keys_Sets_Table : Vertex_Table_Type (1 .. NK);
2304         Same_Keys_Sets_Last  : Natural := 1;
2305
2306      begin
2307         for C in Sel_Position'Range loop
2308            Sel_Position (C) := C;
2309         end loop;
2310
2311         Same_Keys_Sets_Table (1) := (0, NK - 1);
2312
2313         loop
2314            --  Preserve maximum number of different keys and check later on
2315            --  that this value is strictly incrementing. Otherwise, it means
2316            --  that two keys are strictly identical.
2317
2318            Old_Differences := Max_Differences;
2319
2320            --  The first position should not exceed the minimum key length.
2321            --  Otherwise, we may end up with an empty word once reduced.
2322
2323            Max_Sel_Pos :=
2324              (if Last_Sel_Pos = 0 then Min_Key_Len else Max_Key_Len);
2325
2326            --  Find which position increases more the number of differences
2327
2328            for J in Last_Sel_Pos + 1 .. Max_Sel_Pos loop
2329               Differences := Count_Different_Keys
2330                 (Same_Keys_Sets_Table,
2331                  Same_Keys_Sets_Last,
2332                  Sel_Position (J));
2333
2334               if Verbose then
2335                  Put (Output,
2336                       "Selecting position" & Sel_Position (J)'Img &
2337                         " results in" & Differences'Img &
2338                         " differences");
2339                  New_Line (Output);
2340               end if;
2341
2342               if Differences > Max_Differences then
2343                  Max_Differences      := Differences;
2344                  Max_Diff_Sel_Pos     := Sel_Position (J);
2345                  Max_Diff_Sel_Pos_Idx := J;
2346               end if;
2347            end loop;
2348
2349            if Old_Differences = Max_Differences then
2350               raise Program_Error with "some keys are identical";
2351            end if;
2352
2353            --  Insert selected position and sort Sel_Position table
2354
2355            Last_Sel_Pos := Last_Sel_Pos + 1;
2356            Sel_Position (Last_Sel_Pos + 1 .. Max_Diff_Sel_Pos_Idx) :=
2357              Sel_Position (Last_Sel_Pos .. Max_Diff_Sel_Pos_Idx - 1);
2358            Sel_Position (Last_Sel_Pos) := Max_Diff_Sel_Pos;
2359
2360            for P in 1 .. Last_Sel_Pos - 1 loop
2361               if Max_Diff_Sel_Pos < Sel_Position (P) then
2362                  Sel_Position (P + 1 .. Last_Sel_Pos) :=
2363                    Sel_Position (P .. Last_Sel_Pos - 1);
2364                  Sel_Position (P) := Max_Diff_Sel_Pos;
2365                  exit;
2366               end if;
2367            end loop;
2368
2369            exit when Max_Differences = NK;
2370
2371            Build_Identical_Keys_Sets
2372              (Same_Keys_Sets_Table,
2373               Same_Keys_Sets_Last,
2374               Max_Diff_Sel_Pos);
2375
2376            if Verbose then
2377               Put (Output,
2378                    "Selecting position" & Max_Diff_Sel_Pos'Img &
2379                      " results in" & Max_Differences'Img &
2380                      " differences");
2381               New_Line (Output);
2382               Put (Output, "--");
2383               New_Line (Output);
2384               for J in 1 .. Same_Keys_Sets_Last loop
2385                  for K in
2386                    Same_Keys_Sets_Table (J).First ..
2387                    Same_Keys_Sets_Table (J).Last
2388                  loop
2389                     Put (Output,
2390                          Trim_Trailing_Nuls (WT.Table (Reduced (K)).all));
2391                     New_Line (Output);
2392                  end loop;
2393                  Put (Output, "--");
2394                  New_Line (Output);
2395               end loop;
2396            end if;
2397         end loop;
2398      end;
2399
2400      Char_Pos_Set_Len := Last_Sel_Pos;
2401      Char_Pos_Set := Allocate (Char_Pos_Set_Len);
2402
2403      for C in 1 .. Last_Sel_Pos loop
2404         Set_Char_Pos (C - 1, Sel_Position (C));
2405      end loop;
2406   end Select_Char_Position;
2407
2408   --------------------------
2409   -- Select_Character_Set --
2410   --------------------------
2411
2412   procedure Select_Character_Set is
2413      Last : Natural := 0;
2414      Used : array (Character) of Boolean := (others => False);
2415      Char : Character;
2416
2417   begin
2418      for J in 0 .. NK - 1 loop
2419         for K in 0 .. Char_Pos_Set_Len - 1 loop
2420            Char := WT.Table (Initial (J))(Get_Char_Pos (K));
2421            exit when Char = ASCII.NUL;
2422            Used (Char) := True;
2423         end loop;
2424      end loop;
2425
2426      Used_Char_Set_Len := 256;
2427      Used_Char_Set := Allocate (Used_Char_Set_Len);
2428
2429      for J in Used'Range loop
2430         if Used (J) then
2431            Set_Used_Char (J, Last);
2432            Last := Last + 1;
2433         else
2434            Set_Used_Char (J, 0);
2435         end if;
2436      end loop;
2437   end Select_Character_Set;
2438
2439   ------------------
2440   -- Set_Char_Pos --
2441   ------------------
2442
2443   procedure Set_Char_Pos (P : Natural; Item : Natural) is
2444      N : constant Natural := Char_Pos_Set + P;
2445   begin
2446      IT.Table (N) := Item;
2447   end Set_Char_Pos;
2448
2449   ---------------
2450   -- Set_Edges --
2451   ---------------
2452
2453   procedure Set_Edges (F : Natural; Item : Edge_Type) is
2454      N : constant Natural := Edges + (F * Edge_Size);
2455   begin
2456      IT.Table (N)     := Item.X;
2457      IT.Table (N + 1) := Item.Y;
2458      IT.Table (N + 2) := Item.Key;
2459   end Set_Edges;
2460
2461   ---------------
2462   -- Set_Graph --
2463   ---------------
2464
2465   procedure Set_Graph (N : Natural; Item : Integer) is
2466   begin
2467      IT.Table (G + N) := Item;
2468   end Set_Graph;
2469
2470   -------------
2471   -- Set_Key --
2472   -------------
2473
2474   procedure Set_Key (N : Key_Id; Item : Key_Type) is
2475   begin
2476      IT.Table (Keys + N) := Item.Edge;
2477   end Set_Key;
2478
2479   ---------------
2480   -- Set_Table --
2481   ---------------
2482
2483   procedure Set_Table (T : Integer; X, Y : Natural; Item : Natural) is
2484      N : constant Natural := T + ((Y * T1_Len) + X);
2485   begin
2486      IT.Table (N) := Item;
2487   end Set_Table;
2488
2489   -------------------
2490   -- Set_Used_Char --
2491   -------------------
2492
2493   procedure Set_Used_Char (C : Character; Item : Natural) is
2494      N : constant Natural := Used_Char_Set + Character'Pos (C);
2495   begin
2496      IT.Table (N) := Item;
2497   end Set_Used_Char;
2498
2499   ------------------
2500   -- Set_Vertices --
2501   ------------------
2502
2503   procedure Set_Vertices (F : Natural; Item : Vertex_Type) is
2504      N : constant Natural := Vertices + (F * Vertex_Size);
2505   begin
2506      IT.Table (N)     := Item.First;
2507      IT.Table (N + 1) := Item.Last;
2508   end Set_Vertices;
2509
2510   ---------
2511   -- Sum --
2512   ---------
2513
2514   function Sum
2515     (Word  : Word_Type;
2516      Table : Table_Id;
2517      Opt   : Optimization) return Natural
2518   is
2519      S : Natural := 0;
2520      R : Natural;
2521
2522   begin
2523      case Opt is
2524         when CPU_Time =>
2525            for J in 0 .. T1_Len - 1 loop
2526               exit when Word (J + 1) = ASCII.NUL;
2527               R := Get_Table (Table, J, Get_Used_Char (Word (J + 1)));
2528               S := (S + R) mod NV;
2529            end loop;
2530
2531         when Memory_Space =>
2532            for J in 0 .. T1_Len - 1 loop
2533               exit when Word (J + 1) = ASCII.NUL;
2534               R := Get_Table (Table, J, 0);
2535               S := (S + R * Character'Pos (Word (J + 1))) mod NV;
2536            end loop;
2537      end case;
2538
2539      return S;
2540   end Sum;
2541
2542   ------------------------
2543   -- Trim_Trailing_Nuls --
2544   ------------------------
2545
2546   function Trim_Trailing_Nuls (Str : String) return String is
2547   begin
2548      for J in reverse Str'Range loop
2549         if Str (J) /= ASCII.NUL then
2550            return Str (Str'First .. J);
2551         end if;
2552      end loop;
2553
2554      return Str;
2555   end Trim_Trailing_Nuls;
2556
2557   ---------------
2558   -- Type_Size --
2559   ---------------
2560
2561   function Type_Size (L : Natural) return Natural is
2562   begin
2563      if L <= 2 ** 8 then
2564         return 8;
2565      elsif L <= 2 ** 16 then
2566         return 16;
2567      else
2568         return 32;
2569      end if;
2570   end Type_Size;
2571
2572   -----------
2573   -- Value --
2574   -----------
2575
2576   function Value
2577     (Name : Table_Name;
2578      J    : Natural;
2579      K    : Natural := 0) return Natural
2580   is
2581   begin
2582      case Name is
2583         when Character_Position =>
2584            return Get_Char_Pos (J);
2585
2586         when Used_Character_Set =>
2587            return Get_Used_Char (Character'Val (J));
2588
2589         when Function_Table_1 =>
2590            return Get_Table (T1, J, K);
2591
2592         when Function_Table_2 =>
2593            return Get_Table (T2, J, K);
2594
2595         when Graph_Table =>
2596            return Get_Graph (J);
2597      end case;
2598   end Value;
2599
2600end GNAT.Perfect_Hash_Generators;
2601