1------------------------------------------------------------------------------
2--                                                                          --
3--                         GNAT LIBRARY COMPONENTS                          --
4--                                                                          --
5--                          G N A T . R E G P A T                           --
6--                                                                          --
7--                                 B o d y                                  --
8--                                                                          --
9--               Copyright (C) 1986 by University of Toronto.               --
10--                      Copyright (C) 1999-2018, AdaCore                    --
11--                                                                          --
12-- GNAT is free software;  you can  redistribute it  and/or modify it under --
13-- terms of the  GNU General Public License as published  by the Free Soft- --
14-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
15-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
16-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
17-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
18--                                                                          --
19-- As a special exception under Section 7 of GPL version 3, you are granted --
20-- additional permissions described in the GCC Runtime Library Exception,   --
21-- version 3.1, as published by the Free Software Foundation.               --
22--                                                                          --
23-- You should have received a copy of the GNU General Public License and    --
24-- a copy of the GCC Runtime Library Exception along with this program;     --
25-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
26-- <http://www.gnu.org/licenses/>.                                          --
27--                                                                          --
28-- GNAT was originally developed  by the GNAT team at  New York University. --
29-- Extensive contributions were provided by Ada Core Technologies Inc.      --
30--                                                                          --
31------------------------------------------------------------------------------
32
33--  This is an altered Ada 95 version of the original V8 style regular
34--  expression library written in C by Henry Spencer. Apart from the
35--  translation to Ada, the interface has been considerably changed to
36--  use the Ada String type instead of C-style nul-terminated strings.
37
38--  Beware that some of this code is subtly aware of the way operator
39--  precedence is structured in regular expressions. Serious changes in
40--  regular-expression syntax might require a total rethink.
41
42with System.IO;               use System.IO;
43with Ada.Characters.Handling; use Ada.Characters.Handling;
44with Ada.Unchecked_Conversion;
45
46package body System.Regpat is
47
48   Debug : constant Boolean := False;
49   --  Set to True to activate debug traces. This is normally set to constant
50   --  False to simply delete all the trace code. It is to be edited to True
51   --  for internal debugging of the package.
52
53   ----------------------------
54   -- Implementation details --
55   ----------------------------
56
57   --  This is essentially a linear encoding of a nondeterministic
58   --  finite-state machine, also known as syntax charts or
59   --  "railroad normal form" in parsing technology.
60
61   --  Each node is an opcode plus a "next" pointer, possibly plus an
62   --  operand. "Next" pointers of all nodes except BRANCH implement
63   --  concatenation; a "next" pointer with a BRANCH on both ends of it
64   --  is connecting two alternatives.
65
66   --  The operand of some types of node is a literal string; for others,
67   --  it is a node leading into a sub-FSM. In particular, the operand of
68   --  a BRANCH node is the first node of the branch.
69   --  (NB this is *not* a tree structure:  the tail of the branch connects
70   --  to the thing following the set of BRANCHes).
71
72   --  You can see the exact byte-compiled version by using the Dump
73   --  subprogram. However, here are a few examples:
74
75   --  (a|b):  1 : BRANCH  (next at  9)
76   --          4 :    EXACT  (next at  17)   operand=a
77   --          9 : BRANCH  (next at  17)
78   --         12 :    EXACT  (next at  17)   operand=b
79   --         17 : EOP  (next at 0)
80   --
81   --  (ab)*:  1 : CURLYX  (next at  25)  { 0, 32767}
82   --          8 :    OPEN 1  (next at  12)
83   --         12 :       EXACT  (next at  18)   operand=ab
84   --         18 :    CLOSE 1  (next at  22)
85   --         22 :    WHILEM  (next at 0)
86   --         25 : NOTHING  (next at  28)
87   --         28 : EOP  (next at 0)
88
89   --  The opcodes are:
90
91   type Opcode is
92
93      --  Name          Operand?  Meaning
94
95     (EOP,        -- no        End of program
96      MINMOD,     -- no        Next operator is not greedy
97
98      --  Classes of characters
99
100      ANY,        -- no        Match any one character except newline
101      SANY,       -- no        Match any character, including new line
102      ANYOF,      -- class     Match any character in this class
103      EXACT,      -- str       Match this string exactly
104      EXACTF,     -- str       Match this string (case-folding is one)
105      NOTHING,    -- no        Match empty string
106      SPACE,      -- no        Match any whitespace character
107      NSPACE,     -- no        Match any non-whitespace character
108      DIGIT,      -- no        Match any numeric character
109      NDIGIT,     -- no        Match any non-numeric character
110      ALNUM,      -- no        Match any alphanumeric character
111      NALNUM,     -- no        Match any non-alphanumeric character
112
113      --  Branches
114
115      BRANCH,     -- node      Match this alternative, or the next
116
117      --  Simple loops (when the following node is one character in length)
118
119      STAR,       -- node      Match this simple thing 0 or more times
120      PLUS,       -- node      Match this simple thing 1 or more times
121      CURLY,      -- 2num node Match this simple thing between n and m times.
122
123      --  Complex loops
124
125      CURLYX,     -- 2num node Match this complex thing {n,m} times
126      --                       The nums are coded on two characters each
127
128      WHILEM,     -- no        Do curly processing and see if rest matches
129
130      --  Matches after or before a word
131
132      BOL,        -- no        Match "" at beginning of line
133      MBOL,       -- no        Same, assuming multiline (match after \n)
134      SBOL,       -- no        Same, assuming single line (don't match at \n)
135      EOL,        -- no        Match "" at end of line
136      MEOL,       -- no        Same, assuming multiline (match before \n)
137      SEOL,       -- no        Same, assuming single line (don't match at \n)
138
139      BOUND,      -- no        Match "" at any word boundary
140      NBOUND,     -- no        Match "" at any word non-boundary
141
142      --  Parenthesis groups handling
143
144      REFF,       -- num       Match some already matched string, folded
145      OPEN,       -- num       Mark this point in input as start of #n
146      CLOSE);     -- num       Analogous to OPEN
147
148   for Opcode'Size use 8;
149
150   --  Opcode notes:
151
152   --  BRANCH
153   --    The set of branches constituting a single choice are hooked
154   --    together with their "next" pointers, since precedence prevents
155   --    anything being concatenated to any individual branch. The
156   --    "next" pointer of the last BRANCH in a choice points to the
157   --    thing following the whole choice. This is also where the
158   --    final "next" pointer of each individual branch points; each
159   --    branch starts with the operand node of a BRANCH node.
160
161   --  STAR,PLUS
162   --    '?', and complex '*' and '+', are implemented with CURLYX.
163   --    branches. Simple cases (one character per match) are implemented with
164   --    STAR and PLUS for speed and to minimize recursive plunges.
165
166   --  OPEN,CLOSE
167   --    ...are numbered at compile time.
168
169   --  EXACT, EXACTF
170   --    There are in fact two arguments, the first one is the length (minus
171   --    one of the string argument), coded on one character, the second
172   --    argument is the string itself, coded on length + 1 characters.
173
174   --  A node is one char of opcode followed by two chars of "next" pointer.
175   --  "Next" pointers are stored as two 8-bit pieces, high order first. The
176   --  value is a positive offset from the opcode of the node containing it.
177   --  An operand, if any, simply follows the node. (Note that much of the
178   --  code generation knows about this implicit relationship.)
179
180   --  Using two bytes for the "next" pointer is vast overkill for most
181   --  things, but allows patterns to get big without disasters.
182
183   Next_Pointer_Bytes : constant := 3;
184   --  Points after the "next pointer" data. An instruction is therefore:
185   --     1 byte: instruction opcode
186   --     2 bytes: pointer to next instruction
187   --     * bytes: optional data for the instruction
188
189   -----------------------
190   -- Character classes --
191   -----------------------
192   --  This is the implementation for character classes ([...]) in the
193   --  syntax for regular expressions. Each character (0..256) has an
194   --  entry into the table. This makes for a very fast matching
195   --  algorithm.
196
197   type Class_Byte is mod 256;
198   type Character_Class is array (Class_Byte range 0 .. 31) of Class_Byte;
199
200   type Bit_Conversion_Array is array (Class_Byte range 0 .. 7) of Class_Byte;
201   Bit_Conversion : constant Bit_Conversion_Array :=
202                      (1, 2, 4, 8, 16, 32, 64, 128);
203
204   type Std_Class is (ANYOF_NONE,
205                      ANYOF_ALNUM,   --  Alphanumeric class [a-zA-Z0-9]
206                      ANYOF_NALNUM,
207                      ANYOF_SPACE,   --  Space class [ \t\n\r\f]
208                      ANYOF_NSPACE,
209                      ANYOF_DIGIT,   --  Digit class [0-9]
210                      ANYOF_NDIGIT,
211                      ANYOF_ALNUMC,  --  Alphanumeric class [a-zA-Z0-9]
212                      ANYOF_NALNUMC,
213                      ANYOF_ALPHA,   --  Alpha class [a-zA-Z]
214                      ANYOF_NALPHA,
215                      ANYOF_ASCII,   --  Ascii class (7 bits) 0..127
216                      ANYOF_NASCII,
217                      ANYOF_CNTRL,   --  Control class
218                      ANYOF_NCNTRL,
219                      ANYOF_GRAPH,   --  Graphic class
220                      ANYOF_NGRAPH,
221                      ANYOF_LOWER,   --  Lower case class [a-z]
222                      ANYOF_NLOWER,
223                      ANYOF_PRINT,   --  printable class
224                      ANYOF_NPRINT,
225                      ANYOF_PUNCT,   --
226                      ANYOF_NPUNCT,
227                      ANYOF_UPPER,   --  Upper case class [A-Z]
228                      ANYOF_NUPPER,
229                      ANYOF_XDIGIT,  --  Hexadecimal digit
230                      ANYOF_NXDIGIT
231                      );
232
233   procedure Set_In_Class
234     (Bitmap : in out Character_Class;
235      C      : Character);
236   --  Set the entry to True for C in the class Bitmap
237
238   function Get_From_Class
239     (Bitmap : Character_Class;
240      C      : Character) return Boolean;
241   --  Return True if the entry is set for C in the class Bitmap
242
243   procedure Reset_Class (Bitmap : out Character_Class);
244   --  Clear all the entries in the class Bitmap
245
246   pragma Inline (Set_In_Class);
247   pragma Inline (Get_From_Class);
248   pragma Inline (Reset_Class);
249
250   -----------------------
251   -- Local Subprograms --
252   -----------------------
253
254   function "=" (Left : Character; Right : Opcode) return Boolean;
255
256   function Is_Alnum (C : Character) return Boolean;
257   --  Return True if C is an alphanum character or an underscore ('_')
258
259   function Is_White_Space (C : Character) return Boolean;
260   --  Return True if C is a whitespace character
261
262   function Is_Printable (C : Character) return Boolean;
263   --  Return True if C is a printable character
264
265   function Operand (P : Pointer) return Pointer;
266   --  Return a pointer to the first operand of the node at P
267
268   function String_Length
269     (Program : Program_Data;
270      P       : Pointer) return Program_Size;
271   --  Return the length of the string argument of the node at P
272
273   function String_Operand (P : Pointer) return Pointer;
274   --  Return a pointer to the string argument of the node at P
275
276   procedure Bitmap_Operand
277     (Program : Program_Data;
278      P       : Pointer;
279      Op      : out Character_Class);
280   --  Return a pointer to the string argument of the node at P
281
282   function Get_Next
283     (Program : Program_Data;
284      IP      : Pointer) return Pointer;
285   --  Dig the next instruction pointer out of a node
286
287   procedure Optimize (Self : in out Pattern_Matcher);
288   --  Optimize a Pattern_Matcher by noting certain special cases
289
290   function Read_Natural
291     (Program : Program_Data;
292      IP      : Pointer) return Natural;
293   --  Return the 2-byte natural coded at position IP
294
295   --  All of the subprograms above are tiny and should be inlined
296
297   pragma Inline ("=");
298   pragma Inline (Is_Alnum);
299   pragma Inline (Is_White_Space);
300   pragma Inline (Get_Next);
301   pragma Inline (Operand);
302   pragma Inline (Read_Natural);
303   pragma Inline (String_Length);
304   pragma Inline (String_Operand);
305
306   type Expression_Flags is record
307      Has_Width,            -- Known never to match null string
308      Simple,               -- Simple enough to be STAR/PLUS operand
309      SP_Start  : Boolean;  -- Starts with * or +
310   end record;
311
312   Worst_Expression : constant Expression_Flags := (others => False);
313   --  Worst case
314
315   procedure Dump_Until
316     (Program  : Program_Data;
317      Index    : in out Pointer;
318      Till     : Pointer;
319      Indent   : Natural;
320      Do_Print : Boolean := True);
321   --  Dump the program until the node Till (not included) is met. Every line
322   --  is indented with Index spaces at the beginning Dumps till the end if
323   --  Till is 0.
324
325   procedure Dump_Operation
326      (Program      : Program_Data;
327       Index        : Pointer;
328       Indent       : Natural);
329   --  Same as above, but only dumps a single operation, and compute its
330   --  indentation from the program.
331
332   ---------
333   -- "=" --
334   ---------
335
336   function "=" (Left : Character; Right : Opcode) return Boolean is
337   begin
338      return Character'Pos (Left) = Opcode'Pos (Right);
339   end "=";
340
341   --------------------
342   -- Bitmap_Operand --
343   --------------------
344
345   procedure Bitmap_Operand
346     (Program : Program_Data;
347      P       : Pointer;
348      Op      : out Character_Class)
349   is
350      function Convert is new Ada.Unchecked_Conversion
351        (Program_Data, Character_Class);
352
353   begin
354      Op (0 .. 31) := Convert (Program (P + Next_Pointer_Bytes .. P + 34));
355   end Bitmap_Operand;
356
357   -------------
358   -- Compile --
359   -------------
360
361   procedure Compile
362     (Matcher         : out Pattern_Matcher;
363      Expression      : String;
364      Final_Code_Size : out Program_Size;
365      Flags           : Regexp_Flags := No_Flags)
366   is
367      --  We can't allocate space until we know how big the compiled form
368      --  will be, but we can't compile it (and thus know how big it is)
369      --  until we've got a place to put the code. So we cheat: we compile
370      --  it twice, once with code generation turned off and size counting
371      --  turned on, and once "for real".
372
373      --  This also means that we don't allocate space until we are sure
374      --  that the thing really will compile successfully, and we never
375      --  have to move the code and thus invalidate pointers into it.
376
377      --  Beware that the optimization-preparation code in here knows
378      --  about some of the structure of the compiled regexp.
379
380      PM        : Pattern_Matcher renames Matcher;
381      Program   : Program_Data renames PM.Program;
382
383      Emit_Ptr  : Pointer := Program_First;
384
385      Parse_Pos : Natural := Expression'First; -- Input-scan pointer
386      Parse_End : constant Natural := Expression'Last;
387
388      ----------------------------
389      -- Subprograms for Create --
390      ----------------------------
391
392      procedure Emit (B : Character);
393      --  Output the Character B to the Program. If code-generation is
394      --  disabled, simply increments the program counter.
395
396      function  Emit_Node (Op : Opcode) return Pointer;
397      --  If code-generation is enabled, Emit_Node outputs the
398      --  opcode Op and reserves space for a pointer to the next node.
399      --  Return value is the location of new opcode, i.e. old Emit_Ptr.
400
401      procedure Emit_Natural (IP : Pointer; N : Natural);
402      --  Split N on two characters at position IP
403
404      procedure Emit_Class (Bitmap : Character_Class);
405      --  Emits a character class
406
407      procedure Case_Emit (C : Character);
408      --  Emit C, after converting is to lower-case if the regular
409      --  expression is case insensitive.
410
411      procedure Parse
412        (Parenthesized : Boolean;
413         Capturing     : Boolean;
414         Flags         : out Expression_Flags;
415         IP            : out Pointer);
416      --  Parse regular expression, i.e. main body or parenthesized thing.
417      --  Caller must absorb opening parenthesis. Capturing should be set to
418      --  True when we have an open parenthesis from which we want the user
419      --  to extra text.
420
421      procedure Parse_Branch
422        (Flags         : out Expression_Flags;
423         First         : Boolean;
424         IP            : out Pointer);
425      --  Implements the concatenation operator and handles '|'.
426      --  First should be true if this is the first item of the alternative.
427
428      procedure Parse_Piece
429        (Expr_Flags : out Expression_Flags;
430         IP         : out Pointer);
431      --  Parse something followed by possible [*+?]
432
433      procedure Parse_Atom
434        (Expr_Flags : out Expression_Flags;
435         IP         : out Pointer);
436      --  Parse_Atom is the lowest level parse procedure.
437      --
438      --  Optimization: Gobbles an entire sequence of ordinary characters so
439      --  that it can turn them into a single node, which is smaller to store
440      --  and faster to run. Backslashed characters are exceptions, each
441      --  becoming a separate node; the code is simpler that way and it's
442      --  not worth fixing.
443
444      procedure Insert_Operator
445        (Op       : Opcode;
446         Operand  : Pointer;
447         Greedy   : Boolean := True);
448      --  Insert_Operator inserts an operator in front of an already-emitted
449      --  operand and relocates the operand. This applies to PLUS and STAR.
450      --  If Minmod is True, then the operator is non-greedy.
451
452      function Insert_Operator_Before
453        (Op      : Opcode;
454         Operand : Pointer;
455         Greedy  : Boolean;
456         Opsize  : Pointer) return Pointer;
457      --  Insert an operator before Operand (and move the latter forward in the
458      --  program). Opsize is the size needed to represent the operator. This
459      --  returns the position at which the operator was inserted, and moves
460      --  Emit_Ptr after the new position of the operand.
461
462      procedure Insert_Curly_Operator
463        (Op      : Opcode;
464         Min     : Natural;
465         Max     : Natural;
466         Operand : Pointer;
467         Greedy  : Boolean := True);
468      --  Insert an operator for CURLY ({Min}, {Min,} or {Min,Max}).
469      --  If Minmod is True, then the operator is non-greedy.
470
471      procedure Link_Tail (P, Val : Pointer);
472      --  Link_Tail sets the next-pointer at the end of a node chain
473
474      procedure Link_Operand_Tail (P, Val : Pointer);
475      --  Link_Tail on operand of first argument; noop if operand-less
476
477      procedure Fail (M : String);
478      pragma No_Return (Fail);
479      --  Fail with a diagnostic message, if possible
480
481      function Is_Curly_Operator (IP : Natural) return Boolean;
482      --  Return True if IP is looking at a '{' that is the beginning
483      --  of a curly operator, i.e. it matches {\d+,?\d*}
484
485      function Is_Mult (IP : Natural) return Boolean;
486      --  Return True if C is a regexp multiplier: '+', '*' or '?'
487
488      procedure Get_Curly_Arguments
489        (IP     : Natural;
490         Min    : out Natural;
491         Max    : out Natural;
492         Greedy : out Boolean);
493      --  Parse the argument list for a curly operator.
494      --  It is assumed that IP is indeed pointing at a valid operator.
495      --  So what is IP and how come IP is not referenced in the body ???
496
497      procedure Parse_Character_Class (IP : out Pointer);
498      --  Parse a character class.
499      --  The calling subprogram should consume the opening '[' before.
500
501      procedure Parse_Literal
502        (Expr_Flags : out Expression_Flags;
503         IP         : out Pointer);
504      --  Parse_Literal encodes a string of characters to be matched exactly
505
506      function Parse_Posix_Character_Class return Std_Class;
507      --  Parse a posix character class, like [:alpha:] or [:^alpha:].
508      --  The caller is supposed to absorb the opening [.
509
510      pragma Inline (Is_Mult);
511      pragma Inline (Emit_Natural);
512      pragma Inline (Parse_Character_Class); --  since used only once
513
514      ---------------
515      -- Case_Emit --
516      ---------------
517
518      procedure Case_Emit (C : Character) is
519      begin
520         if (Flags and Case_Insensitive) /= 0 then
521            Emit (To_Lower (C));
522
523         else
524            --  Dump current character
525
526            Emit (C);
527         end if;
528      end Case_Emit;
529
530      ----------
531      -- Emit --
532      ----------
533
534      procedure Emit (B : Character) is
535      begin
536         if Emit_Ptr <= PM.Size then
537            Program (Emit_Ptr) := B;
538         end if;
539
540         Emit_Ptr := Emit_Ptr + 1;
541      end Emit;
542
543      ----------------
544      -- Emit_Class --
545      ----------------
546
547      procedure Emit_Class (Bitmap : Character_Class) is
548         subtype Program31 is Program_Data (0 .. 31);
549
550         function Convert is new Ada.Unchecked_Conversion
551           (Character_Class, Program31);
552
553      begin
554         --  What is the mysterious constant 31 here??? Can't it be expressed
555         --  symbolically (size of integer - 1 or some such???). In any case
556         --  it should be declared as a constant (and referenced presumably
557         --  as this constant + 1 below.
558
559         if Emit_Ptr + 31 <= PM.Size then
560            Program (Emit_Ptr .. Emit_Ptr + 31) := Convert (Bitmap);
561         end if;
562
563         Emit_Ptr := Emit_Ptr + 32;
564      end Emit_Class;
565
566      ------------------
567      -- Emit_Natural --
568      ------------------
569
570      procedure Emit_Natural (IP : Pointer; N : Natural) is
571      begin
572         if IP + 1 <= PM.Size then
573            Program (IP + 1) := Character'Val (N / 256);
574            Program (IP) := Character'Val (N mod 256);
575         end if;
576      end Emit_Natural;
577
578      ---------------
579      -- Emit_Node --
580      ---------------
581
582      function Emit_Node (Op : Opcode) return Pointer is
583         Result : constant Pointer := Emit_Ptr;
584
585      begin
586         if Emit_Ptr + 2 <= PM.Size then
587            Program (Emit_Ptr) := Character'Val (Opcode'Pos (Op));
588            Program (Emit_Ptr + 1) := ASCII.NUL;
589            Program (Emit_Ptr + 2) := ASCII.NUL;
590         end if;
591
592         Emit_Ptr := Emit_Ptr + Next_Pointer_Bytes;
593         return Result;
594      end Emit_Node;
595
596      ----------
597      -- Fail --
598      ----------
599
600      procedure Fail (M : String) is
601      begin
602         raise Expression_Error with M;
603      end Fail;
604
605      -------------------------
606      -- Get_Curly_Arguments --
607      -------------------------
608
609      procedure Get_Curly_Arguments
610        (IP     : Natural;
611         Min    : out Natural;
612         Max    : out Natural;
613         Greedy : out Boolean)
614      is
615         pragma Unreferenced (IP);
616
617         Save_Pos : Natural := Parse_Pos + 1;
618
619      begin
620         Min := 0;
621         Max := Max_Curly_Repeat;
622
623         while Expression (Parse_Pos) /= '}'
624           and then Expression (Parse_Pos) /= ','
625         loop
626            Parse_Pos := Parse_Pos + 1;
627         end loop;
628
629         Min := Natural'Value (Expression (Save_Pos .. Parse_Pos - 1));
630
631         if Expression (Parse_Pos) = ',' then
632            Save_Pos := Parse_Pos + 1;
633            while Expression (Parse_Pos) /= '}' loop
634               Parse_Pos := Parse_Pos + 1;
635            end loop;
636
637            if Save_Pos /= Parse_Pos then
638               Max := Natural'Value (Expression (Save_Pos .. Parse_Pos - 1));
639            end if;
640
641         else
642            Max := Min;
643         end if;
644
645         if Parse_Pos < Expression'Last
646           and then Expression (Parse_Pos + 1) = '?'
647         then
648            Greedy := False;
649            Parse_Pos := Parse_Pos + 1;
650
651         else
652            Greedy := True;
653         end if;
654      end Get_Curly_Arguments;
655
656      ---------------------------
657      -- Insert_Curly_Operator --
658      ---------------------------
659
660      procedure Insert_Curly_Operator
661        (Op      : Opcode;
662         Min     : Natural;
663         Max     : Natural;
664         Operand : Pointer;
665         Greedy  : Boolean := True)
666      is
667         Old    : Pointer;
668      begin
669         Old := Insert_Operator_Before (Op, Operand, Greedy, Opsize => 7);
670         Emit_Natural (Old + Next_Pointer_Bytes, Min);
671         Emit_Natural (Old + Next_Pointer_Bytes + 2, Max);
672      end Insert_Curly_Operator;
673
674      ----------------------------
675      -- Insert_Operator_Before --
676      ----------------------------
677
678      function Insert_Operator_Before
679        (Op      : Opcode;
680         Operand : Pointer;
681         Greedy  : Boolean;
682         Opsize  : Pointer) return Pointer
683      is
684         Dest : constant Pointer := Emit_Ptr;
685         Old  : Pointer;
686         Size : Pointer := Opsize;
687
688      begin
689         --  If not greedy, we have to emit another opcode first
690
691         if not Greedy then
692            Size := Size + Next_Pointer_Bytes;
693         end if;
694
695         --  Move the operand in the byte-compilation, so that we can insert
696         --  the operator before it.
697
698         if Emit_Ptr + Size <= PM.Size then
699            Program (Operand + Size .. Emit_Ptr + Size) :=
700              Program (Operand .. Emit_Ptr);
701         end if;
702
703         --  Insert the operator at the position previously occupied by the
704         --  operand.
705
706         Emit_Ptr := Operand;
707
708         if not Greedy then
709            Old := Emit_Node (MINMOD);
710            Link_Tail (Old, Old + Next_Pointer_Bytes);
711         end if;
712
713         Old := Emit_Node (Op);
714         Emit_Ptr := Dest + Size;
715         return Old;
716      end Insert_Operator_Before;
717
718      ---------------------
719      -- Insert_Operator --
720      ---------------------
721
722      procedure Insert_Operator
723        (Op      : Opcode;
724         Operand : Pointer;
725         Greedy  : Boolean := True)
726      is
727         Discard : Pointer;
728         pragma Warnings (Off, Discard);
729      begin
730         Discard := Insert_Operator_Before
731            (Op, Operand, Greedy, Opsize => Next_Pointer_Bytes);
732      end Insert_Operator;
733
734      -----------------------
735      -- Is_Curly_Operator --
736      -----------------------
737
738      function Is_Curly_Operator (IP : Natural) return Boolean is
739         Scan : Natural := IP;
740
741      begin
742         if Expression (Scan) /= '{'
743           or else Scan + 2 > Expression'Last
744           or else not Is_Digit (Expression (Scan + 1))
745         then
746            return False;
747         end if;
748
749         Scan := Scan + 1;
750
751         --  The first digit
752
753         loop
754            Scan := Scan + 1;
755
756            if Scan > Expression'Last then
757               return False;
758            end if;
759
760            exit when not Is_Digit (Expression (Scan));
761         end loop;
762
763         if Expression (Scan) = ',' then
764            loop
765               Scan := Scan + 1;
766
767               if Scan > Expression'Last then
768                  return False;
769               end if;
770
771               exit when not Is_Digit (Expression (Scan));
772            end loop;
773         end if;
774
775         return Expression (Scan) = '}';
776      end Is_Curly_Operator;
777
778      -------------
779      -- Is_Mult --
780      -------------
781
782      function Is_Mult (IP : Natural) return Boolean is
783         C : constant Character := Expression (IP);
784
785      begin
786         return     C = '*'
787           or else  C = '+'
788           or else  C = '?'
789           or else (C = '{' and then Is_Curly_Operator (IP));
790      end Is_Mult;
791
792      -----------------------
793      -- Link_Operand_Tail --
794      -----------------------
795
796      procedure Link_Operand_Tail (P, Val : Pointer) is
797      begin
798         if P <= PM.Size and then Program (P) = BRANCH then
799            Link_Tail (Operand (P), Val);
800         end if;
801      end Link_Operand_Tail;
802
803      ---------------
804      -- Link_Tail --
805      ---------------
806
807      procedure Link_Tail (P, Val : Pointer) is
808         Scan   : Pointer;
809         Temp   : Pointer;
810         Offset : Pointer;
811
812      begin
813         --  Find last node (the size of the pattern matcher might be too
814         --  small, so don't try to read past its end).
815
816         Scan := P;
817         while Scan + Next_Pointer_Bytes <= PM.Size loop
818            Temp := Get_Next (Program, Scan);
819            exit when Temp = Scan;
820            Scan := Temp;
821         end loop;
822
823         Offset := Val - Scan;
824
825         Emit_Natural (Scan + 1, Natural (Offset));
826      end Link_Tail;
827
828      -----------
829      -- Parse --
830      -----------
831
832      --  Combining parenthesis handling with the base level of regular
833      --  expression is a trifle forced, but the need to tie the tails of the
834      --  the branches to what follows makes it hard to avoid.
835
836      procedure Parse
837         (Parenthesized : Boolean;
838          Capturing     : Boolean;
839          Flags         : out Expression_Flags;
840          IP            : out Pointer)
841      is
842         E           : String renames Expression;
843         Br, Br2     : Pointer;
844         Ender       : Pointer;
845         Par_No      : Natural;
846         New_Flags   : Expression_Flags;
847         Have_Branch : Boolean := False;
848
849      begin
850         Flags := (Has_Width => True, others => False);  -- Tentatively
851
852         --  Make an OPEN node, if parenthesized
853
854         if Parenthesized and then Capturing then
855            if Matcher.Paren_Count > Max_Paren_Count then
856               Fail ("too many ()");
857            end if;
858
859            Par_No := Matcher.Paren_Count + 1;
860            Matcher.Paren_Count := Matcher.Paren_Count + 1;
861            IP := Emit_Node (OPEN);
862            Emit (Character'Val (Par_No));
863         else
864            IP := 0;
865            Par_No := 0;
866         end if;
867
868         --  Pick up the branches, linking them together
869
870         Parse_Branch (New_Flags, True, Br);
871
872         if Br = 0 then
873            IP := 0;
874            return;
875         end if;
876
877         if Parse_Pos <= Parse_End
878           and then E (Parse_Pos) = '|'
879         then
880            Insert_Operator (BRANCH, Br);
881            Have_Branch := True;
882         end if;
883
884         if IP /= 0 then
885            Link_Tail (IP, Br);   -- OPEN -> first
886         else
887            IP := Br;
888         end if;
889
890         if not New_Flags.Has_Width then
891            Flags.Has_Width := False;
892         end if;
893
894         Flags.SP_Start := Flags.SP_Start or else New_Flags.SP_Start;
895
896         while Parse_Pos <= Parse_End
897           and then (E (Parse_Pos) = '|')
898         loop
899            Parse_Pos := Parse_Pos + 1;
900            Parse_Branch (New_Flags, False, Br);
901
902            if Br = 0 then
903               IP := 0;
904               return;
905            end if;
906
907            Link_Tail (IP, Br);   -- BRANCH -> BRANCH
908
909            if not New_Flags.Has_Width then
910               Flags.Has_Width := False;
911            end if;
912
913            Flags.SP_Start := Flags.SP_Start or else New_Flags.SP_Start;
914         end loop;
915
916         --  Make a closing node, and hook it on the end
917
918         if Parenthesized then
919            if Capturing then
920               Ender := Emit_Node (CLOSE);
921               Emit (Character'Val (Par_No));
922               Link_Tail (IP, Ender);
923
924            else
925               --  Need to keep looking after the closing parenthesis
926               Ender := Emit_Ptr;
927            end if;
928
929         else
930            Ender := Emit_Node (EOP);
931            Link_Tail (IP, Ender);
932         end if;
933
934         if Have_Branch and then Emit_Ptr <= PM.Size + 1 then
935
936            --  Hook the tails of the branches to the closing node
937
938            Br := IP;
939            loop
940               Link_Operand_Tail (Br, Ender);
941               Br2 := Get_Next (Program, Br);
942               exit when Br2 = Br;
943               Br := Br2;
944            end loop;
945         end if;
946
947         --  Check for proper termination
948
949         if Parenthesized then
950            if Parse_Pos > Parse_End or else E (Parse_Pos) /= ')' then
951               Fail ("unmatched ()");
952            end if;
953
954            Parse_Pos := Parse_Pos + 1;
955
956         elsif Parse_Pos <= Parse_End then
957            if E (Parse_Pos) = ')'  then
958               Fail ("unmatched ')'");
959            else
960               Fail ("junk on end");         -- "Can't happen"
961            end if;
962         end if;
963      end Parse;
964
965      ----------------
966      -- Parse_Atom --
967      ----------------
968
969      procedure Parse_Atom
970        (Expr_Flags : out Expression_Flags;
971         IP         : out Pointer)
972      is
973         C : Character;
974
975      begin
976         --  Tentatively set worst expression case
977
978         Expr_Flags := Worst_Expression;
979
980         C := Expression (Parse_Pos);
981         Parse_Pos := Parse_Pos + 1;
982
983         case (C) is
984            when '^' =>
985               IP :=
986                 Emit_Node
987                   (if (Flags and Multiple_Lines) /= 0 then MBOL
988                    elsif (Flags and Single_Line) /= 0 then SBOL
989                    else BOL);
990
991            when '$' =>
992               IP :=
993                 Emit_Node
994                   (if (Flags and Multiple_Lines) /= 0 then MEOL
995                    elsif (Flags and Single_Line) /= 0 then SEOL
996                    else EOL);
997
998            when '.' =>
999               IP :=
1000                 Emit_Node
1001                   (if (Flags and Single_Line) /= 0 then SANY else ANY);
1002
1003               Expr_Flags.Has_Width := True;
1004               Expr_Flags.Simple := True;
1005
1006            when '[' =>
1007               Parse_Character_Class (IP);
1008               Expr_Flags.Has_Width := True;
1009               Expr_Flags.Simple := True;
1010
1011            when '(' =>
1012               declare
1013                  New_Flags : Expression_Flags;
1014
1015               begin
1016                  if Parse_Pos <= Parse_End - 1
1017                    and then Expression (Parse_Pos) = '?'
1018                    and then Expression (Parse_Pos + 1) = ':'
1019                  then
1020                     Parse_Pos := Parse_Pos + 2;
1021
1022                     --  Non-capturing parenthesis
1023
1024                     Parse (True, False, New_Flags, IP);
1025
1026                  else
1027                     --  Capturing parenthesis
1028
1029                     Parse (True, True, New_Flags, IP);
1030                     Expr_Flags.Has_Width :=
1031                       Expr_Flags.Has_Width or else New_Flags.Has_Width;
1032                     Expr_Flags.SP_Start :=
1033                       Expr_Flags.SP_Start or else New_Flags.SP_Start;
1034                     if IP = 0 then
1035                        return;
1036                     end if;
1037                  end if;
1038               end;
1039
1040            when '|' | ASCII.LF | ')' =>
1041               Fail ("internal urp");  --  Supposed to be caught earlier
1042
1043            when '?' | '+' | '*' =>
1044               Fail (C & " follows nothing");
1045
1046            when '{' =>
1047               if Is_Curly_Operator (Parse_Pos - 1) then
1048                  Fail (C & " follows nothing");
1049               else
1050                  Parse_Literal (Expr_Flags, IP);
1051               end if;
1052
1053            when '\' =>
1054               if Parse_Pos > Parse_End then
1055                  Fail ("trailing \");
1056               end if;
1057
1058               Parse_Pos := Parse_Pos + 1;
1059
1060               case Expression (Parse_Pos - 1) is
1061                  when 'b'        =>
1062                     IP := Emit_Node (BOUND);
1063
1064                  when 'B'        =>
1065                     IP := Emit_Node (NBOUND);
1066
1067                  when 's'        =>
1068                     IP := Emit_Node (SPACE);
1069                     Expr_Flags.Simple := True;
1070                     Expr_Flags.Has_Width := True;
1071
1072                  when 'S'        =>
1073                     IP := Emit_Node (NSPACE);
1074                     Expr_Flags.Simple := True;
1075                     Expr_Flags.Has_Width := True;
1076
1077                  when 'd'        =>
1078                     IP := Emit_Node (DIGIT);
1079                     Expr_Flags.Simple := True;
1080                     Expr_Flags.Has_Width := True;
1081
1082                  when 'D'        =>
1083                     IP := Emit_Node (NDIGIT);
1084                     Expr_Flags.Simple := True;
1085                     Expr_Flags.Has_Width := True;
1086
1087                  when 'w'        =>
1088                     IP := Emit_Node (ALNUM);
1089                     Expr_Flags.Simple := True;
1090                     Expr_Flags.Has_Width := True;
1091
1092                  when 'W'        =>
1093                     IP := Emit_Node (NALNUM);
1094                     Expr_Flags.Simple := True;
1095                     Expr_Flags.Has_Width := True;
1096
1097                  when 'A'        =>
1098                     IP := Emit_Node (SBOL);
1099
1100                  when 'G'        =>
1101                     IP := Emit_Node (SEOL);
1102
1103                  when '0' .. '9' =>
1104                     IP := Emit_Node (REFF);
1105
1106                     declare
1107                        Save : constant Natural := Parse_Pos - 1;
1108
1109                     begin
1110                        while Parse_Pos <= Expression'Last
1111                          and then Is_Digit (Expression (Parse_Pos))
1112                        loop
1113                           Parse_Pos := Parse_Pos + 1;
1114                        end loop;
1115
1116                        Emit (Character'Val (Natural'Value
1117                               (Expression (Save .. Parse_Pos - 1))));
1118                     end;
1119
1120                  when others =>
1121                     Parse_Pos := Parse_Pos - 1;
1122                     Parse_Literal (Expr_Flags, IP);
1123               end case;
1124
1125            when others =>
1126               Parse_Literal (Expr_Flags, IP);
1127         end case;
1128      end Parse_Atom;
1129
1130      ------------------
1131      -- Parse_Branch --
1132      ------------------
1133
1134      procedure Parse_Branch
1135        (Flags : out Expression_Flags;
1136         First : Boolean;
1137         IP    : out Pointer)
1138      is
1139         E         : String renames Expression;
1140         Chain     : Pointer;
1141         Last      : Pointer;
1142         New_Flags : Expression_Flags;
1143
1144         Discard : Pointer;
1145         pragma Warnings (Off, Discard);
1146
1147      begin
1148         Flags := Worst_Expression;    -- Tentatively
1149         IP := (if First then Emit_Ptr else Emit_Node (BRANCH));
1150
1151         Chain := 0;
1152         while Parse_Pos <= Parse_End
1153           and then E (Parse_Pos) /= ')'
1154           and then E (Parse_Pos) /= ASCII.LF
1155           and then E (Parse_Pos) /= '|'
1156         loop
1157            Parse_Piece (New_Flags, Last);
1158
1159            if Last = 0 then
1160               IP := 0;
1161               return;
1162            end if;
1163
1164            Flags.Has_Width := Flags.Has_Width or else New_Flags.Has_Width;
1165
1166            if Chain = 0 then            -- First piece
1167               Flags.SP_Start := Flags.SP_Start or else New_Flags.SP_Start;
1168            else
1169               Link_Tail (Chain, Last);
1170            end if;
1171
1172            Chain := Last;
1173         end loop;
1174
1175         --  Case where loop ran zero CURLY
1176
1177         if Chain = 0 then
1178            Discard := Emit_Node (NOTHING);
1179         end if;
1180      end Parse_Branch;
1181
1182      ---------------------------
1183      -- Parse_Character_Class --
1184      ---------------------------
1185
1186      procedure Parse_Character_Class (IP : out Pointer) is
1187         Bitmap      : Character_Class;
1188         Invert      : Boolean := False;
1189         In_Range    : Boolean := False;
1190         Named_Class : Std_Class := ANYOF_NONE;
1191         Value       : Character;
1192         Last_Value  : Character := ASCII.NUL;
1193
1194      begin
1195         Reset_Class (Bitmap);
1196
1197         --  Do we have an invert character class ?
1198
1199         if Parse_Pos <= Parse_End
1200           and then Expression (Parse_Pos) = '^'
1201         then
1202            Invert := True;
1203            Parse_Pos := Parse_Pos + 1;
1204         end if;
1205
1206         --  First character can be ] or - without closing the class
1207
1208         if Parse_Pos <= Parse_End
1209           and then (Expression (Parse_Pos) = ']'
1210                      or else Expression (Parse_Pos) = '-')
1211         then
1212            Set_In_Class (Bitmap, Expression (Parse_Pos));
1213            Parse_Pos := Parse_Pos + 1;
1214         end if;
1215
1216         --  While we don't have the end of the class
1217
1218         while Parse_Pos <= Parse_End
1219           and then Expression (Parse_Pos) /= ']'
1220         loop
1221            Named_Class := ANYOF_NONE;
1222            Value := Expression (Parse_Pos);
1223            Parse_Pos := Parse_Pos + 1;
1224
1225            --  Do we have a Posix character class
1226            if Value = '[' then
1227               Named_Class := Parse_Posix_Character_Class;
1228
1229            elsif Value = '\' then
1230               if Parse_Pos = Parse_End then
1231                  Fail ("Trailing \");
1232               end if;
1233               Value := Expression (Parse_Pos);
1234               Parse_Pos := Parse_Pos + 1;
1235
1236               case Value is
1237                  when 'w' => Named_Class := ANYOF_ALNUM;
1238                  when 'W' => Named_Class := ANYOF_NALNUM;
1239                  when 's' => Named_Class := ANYOF_SPACE;
1240                  when 'S' => Named_Class := ANYOF_NSPACE;
1241                  when 'd' => Named_Class := ANYOF_DIGIT;
1242                  when 'D' => Named_Class := ANYOF_NDIGIT;
1243                  when 'n' => Value := ASCII.LF;
1244                  when 'r' => Value := ASCII.CR;
1245                  when 't' => Value := ASCII.HT;
1246                  when 'f' => Value := ASCII.FF;
1247                  when 'e' => Value := ASCII.ESC;
1248                  when 'a' => Value := ASCII.BEL;
1249
1250                  --  when 'x'  => ??? hexadecimal value
1251                  --  when 'c'  => ??? control character
1252                  --  when '0'..'9' => ??? octal character
1253
1254                  when others => null;
1255               end case;
1256            end if;
1257
1258            --  Do we have a character class?
1259
1260            if Named_Class /= ANYOF_NONE then
1261
1262               --  A range like 'a-\d' or 'a-[:digit:] is not a range
1263
1264               if In_Range then
1265                  Set_In_Class (Bitmap, Last_Value);
1266                  Set_In_Class (Bitmap, '-');
1267                  In_Range := False;
1268               end if;
1269
1270               --  Expand the range
1271
1272               case Named_Class is
1273                  when ANYOF_NONE => null;
1274
1275                  when ANYOF_ALNUM | ANYOF_ALNUMC =>
1276                     for Value in Class_Byte'Range loop
1277                        if Is_Alnum (Character'Val (Value)) then
1278                           Set_In_Class (Bitmap, Character'Val (Value));
1279                        end if;
1280                     end loop;
1281
1282                  when ANYOF_NALNUM | ANYOF_NALNUMC =>
1283                     for Value in Class_Byte'Range loop
1284                        if not Is_Alnum (Character'Val (Value)) then
1285                           Set_In_Class (Bitmap, Character'Val (Value));
1286                        end if;
1287                     end loop;
1288
1289                  when ANYOF_SPACE =>
1290                     for Value in Class_Byte'Range loop
1291                        if Is_White_Space (Character'Val (Value)) then
1292                           Set_In_Class (Bitmap, Character'Val (Value));
1293                        end if;
1294                     end loop;
1295
1296                  when ANYOF_NSPACE =>
1297                     for Value in Class_Byte'Range loop
1298                        if not Is_White_Space (Character'Val (Value)) then
1299                           Set_In_Class (Bitmap, Character'Val (Value));
1300                        end if;
1301                     end loop;
1302
1303                  when ANYOF_DIGIT =>
1304                     for Value in Class_Byte'Range loop
1305                        if Is_Digit (Character'Val (Value)) then
1306                           Set_In_Class (Bitmap, Character'Val (Value));
1307                        end if;
1308                     end loop;
1309
1310                  when ANYOF_NDIGIT =>
1311                     for Value in Class_Byte'Range loop
1312                        if not Is_Digit (Character'Val (Value)) then
1313                           Set_In_Class (Bitmap, Character'Val (Value));
1314                        end if;
1315                     end loop;
1316
1317                  when ANYOF_ALPHA =>
1318                     for Value in Class_Byte'Range loop
1319                        if Is_Letter (Character'Val (Value)) then
1320                           Set_In_Class (Bitmap, Character'Val (Value));
1321                        end if;
1322                     end loop;
1323
1324                  when ANYOF_NALPHA =>
1325                     for Value in Class_Byte'Range loop
1326                        if not Is_Letter (Character'Val (Value)) then
1327                           Set_In_Class (Bitmap, Character'Val (Value));
1328                        end if;
1329                     end loop;
1330
1331                  when ANYOF_ASCII =>
1332                     for Value in 0 .. 127 loop
1333                        Set_In_Class (Bitmap, Character'Val (Value));
1334                     end loop;
1335
1336                  when ANYOF_NASCII =>
1337                     for Value in 128 .. 255 loop
1338                        Set_In_Class (Bitmap, Character'Val (Value));
1339                     end loop;
1340
1341                  when ANYOF_CNTRL =>
1342                     for Value in Class_Byte'Range loop
1343                        if Is_Control (Character'Val (Value)) then
1344                           Set_In_Class (Bitmap, Character'Val (Value));
1345                        end if;
1346                     end loop;
1347
1348                  when ANYOF_NCNTRL =>
1349                     for Value in Class_Byte'Range loop
1350                        if not Is_Control (Character'Val (Value)) then
1351                           Set_In_Class (Bitmap, Character'Val (Value));
1352                        end if;
1353                     end loop;
1354
1355                  when ANYOF_GRAPH =>
1356                     for Value in Class_Byte'Range loop
1357                        if Is_Graphic (Character'Val (Value)) then
1358                           Set_In_Class (Bitmap, Character'Val (Value));
1359                        end if;
1360                     end loop;
1361
1362                  when ANYOF_NGRAPH =>
1363                     for Value in Class_Byte'Range loop
1364                        if not Is_Graphic (Character'Val (Value)) then
1365                           Set_In_Class (Bitmap, Character'Val (Value));
1366                        end if;
1367                     end loop;
1368
1369                  when ANYOF_LOWER =>
1370                     for Value in Class_Byte'Range loop
1371                        if Is_Lower (Character'Val (Value)) then
1372                           Set_In_Class (Bitmap, Character'Val (Value));
1373                        end if;
1374                     end loop;
1375
1376                  when ANYOF_NLOWER =>
1377                     for Value in Class_Byte'Range loop
1378                        if not Is_Lower (Character'Val (Value)) then
1379                           Set_In_Class (Bitmap, Character'Val (Value));
1380                        end if;
1381                     end loop;
1382
1383                  when ANYOF_PRINT =>
1384                     for Value in Class_Byte'Range loop
1385                        if Is_Printable (Character'Val (Value)) then
1386                           Set_In_Class (Bitmap, Character'Val (Value));
1387                        end if;
1388                     end loop;
1389
1390                  when ANYOF_NPRINT =>
1391                     for Value in Class_Byte'Range loop
1392                        if not Is_Printable (Character'Val (Value)) then
1393                           Set_In_Class (Bitmap, Character'Val (Value));
1394                        end if;
1395                     end loop;
1396
1397                  when ANYOF_PUNCT =>
1398                     for Value in Class_Byte'Range loop
1399                        if Is_Printable (Character'Val (Value))
1400                          and then not Is_White_Space (Character'Val (Value))
1401                          and then not Is_Alnum (Character'Val (Value))
1402                        then
1403                           Set_In_Class (Bitmap, Character'Val (Value));
1404                        end if;
1405                     end loop;
1406
1407                  when ANYOF_NPUNCT =>
1408                     for Value in Class_Byte'Range loop
1409                        if not Is_Printable (Character'Val (Value))
1410                          or else Is_White_Space (Character'Val (Value))
1411                          or else Is_Alnum (Character'Val (Value))
1412                        then
1413                           Set_In_Class (Bitmap, Character'Val (Value));
1414                        end if;
1415                     end loop;
1416
1417                  when ANYOF_UPPER =>
1418                     for Value in Class_Byte'Range loop
1419                        if Is_Upper (Character'Val (Value)) then
1420                           Set_In_Class (Bitmap, Character'Val (Value));
1421                        end if;
1422                     end loop;
1423
1424                  when ANYOF_NUPPER =>
1425                     for Value in Class_Byte'Range loop
1426                        if not Is_Upper (Character'Val (Value)) then
1427                           Set_In_Class (Bitmap, Character'Val (Value));
1428                        end if;
1429                     end loop;
1430
1431                  when ANYOF_XDIGIT =>
1432                     for Value in Class_Byte'Range loop
1433                        if Is_Hexadecimal_Digit (Character'Val (Value)) then
1434                           Set_In_Class (Bitmap, Character'Val (Value));
1435                        end if;
1436                     end loop;
1437
1438                  when ANYOF_NXDIGIT =>
1439                     for Value in Class_Byte'Range loop
1440                        if not Is_Hexadecimal_Digit
1441                          (Character'Val (Value))
1442                        then
1443                           Set_In_Class (Bitmap, Character'Val (Value));
1444                        end if;
1445                     end loop;
1446
1447               end case;
1448
1449            --  Not a character range
1450
1451            elsif not In_Range then
1452               Last_Value := Value;
1453
1454               if Parse_Pos > Expression'Last then
1455                  Fail ("Empty character class []");
1456               end if;
1457
1458               if Expression (Parse_Pos) = '-'
1459                 and then Parse_Pos < Parse_End
1460                 and then Expression (Parse_Pos + 1) /= ']'
1461               then
1462                  Parse_Pos := Parse_Pos + 1;
1463
1464                  --  Do we have a range like '\d-a' and '[:space:]-a'
1465                  --  which is not a real range
1466
1467                  if Named_Class /= ANYOF_NONE then
1468                     Set_In_Class (Bitmap, '-');
1469                  else
1470                     In_Range := True;
1471                  end if;
1472
1473               else
1474                  Set_In_Class (Bitmap, Value);
1475
1476               end if;
1477
1478            --  Else in a character range
1479
1480            else
1481               if Last_Value > Value then
1482                  Fail ("Invalid Range [" & Last_Value'Img
1483                        & "-" & Value'Img & "]");
1484               end if;
1485
1486               while Last_Value <= Value loop
1487                  Set_In_Class (Bitmap, Last_Value);
1488                  Last_Value := Character'Succ (Last_Value);
1489               end loop;
1490
1491               In_Range := False;
1492
1493            end if;
1494
1495         end loop;
1496
1497         --  Optimize case-insensitive ranges (put the upper case or lower
1498         --  case character into the bitmap)
1499
1500         if (Flags and Case_Insensitive) /= 0 then
1501            for C in Character'Range loop
1502               if Get_From_Class (Bitmap, C) then
1503                  Set_In_Class (Bitmap, To_Lower (C));
1504                  Set_In_Class (Bitmap, To_Upper (C));
1505               end if;
1506            end loop;
1507         end if;
1508
1509         --  Optimize inverted classes
1510
1511         if Invert then
1512            for J in Bitmap'Range loop
1513               Bitmap (J) := not Bitmap (J);
1514            end loop;
1515         end if;
1516
1517         Parse_Pos := Parse_Pos + 1;
1518
1519         --  Emit the class
1520
1521         IP := Emit_Node (ANYOF);
1522         Emit_Class (Bitmap);
1523      end Parse_Character_Class;
1524
1525      -------------------
1526      -- Parse_Literal --
1527      -------------------
1528
1529      --  This is a bit tricky due to quoted chars and due to
1530      --  the multiplier characters '*', '+', and '?' that
1531      --  take the SINGLE char previous as their operand.
1532
1533      --  On entry, the character at Parse_Pos - 1 is going to go
1534      --  into the string, no matter what it is. It could be
1535      --  following a \ if Parse_Atom was entered from the '\' case.
1536
1537      --  Basic idea is to pick up a good char in C and examine
1538      --  the next char. If Is_Mult (C) then twiddle, if it's a \
1539      --  then frozzle and if it's another magic char then push C and
1540      --  terminate the string. If none of the above, push C on the
1541      --  string and go around again.
1542
1543      --  Start_Pos is used to remember where "the current character"
1544      --  starts in the string, if due to an Is_Mult we need to back
1545      --  up and put the current char in a separate 1-character string.
1546      --  When Start_Pos is 0, C is the only char in the string;
1547      --  this is used in Is_Mult handling, and in setting the SIMPLE
1548      --  flag at the end.
1549
1550      procedure Parse_Literal
1551        (Expr_Flags : out Expression_Flags;
1552         IP         : out Pointer)
1553      is
1554         Start_Pos  : Natural := 0;
1555         C          : Character;
1556         Length_Ptr : Pointer;
1557
1558         Has_Special_Operator : Boolean := False;
1559
1560      begin
1561         Parse_Pos := Parse_Pos - 1;      --  Look at current character
1562
1563         IP :=
1564           Emit_Node
1565             (if (Flags and Case_Insensitive) /= 0 then EXACTF else EXACT);
1566
1567         Length_Ptr := Emit_Ptr;
1568         Emit_Ptr := String_Operand (IP);
1569
1570         Parse_Loop :
1571         loop
1572            C := Expression (Parse_Pos); --  Get current character
1573
1574            case C is
1575               when '.' | '[' | '(' | ')' | '|' | ASCII.LF | '$' | '^' =>
1576
1577                  if Start_Pos = 0 then
1578                     Start_Pos := Parse_Pos;
1579                     Emit (C);         --  First character is always emitted
1580                  else
1581                     exit Parse_Loop;  --  Else we are done
1582                  end if;
1583
1584               when '?' | '+' | '*' | '{' =>
1585
1586                  if Start_Pos = 0 then
1587                     Start_Pos := Parse_Pos;
1588                     Emit (C);         --  First character is always emitted
1589
1590                  --  Are we looking at an operator, or is this
1591                  --  simply a normal character ?
1592
1593                  elsif not Is_Mult (Parse_Pos) then
1594                     Start_Pos := Parse_Pos;
1595                     Case_Emit (C);
1596
1597                  else
1598                     --  We've got something like "abc?d".  Mark this as a
1599                     --  special case. What we want to emit is a first
1600                     --  constant string for "ab", then one for "c" that will
1601                     --  ultimately be transformed with a CURLY operator, A
1602                     --  special case has to be handled for "a?", since there
1603                     --  is no initial string to emit.
1604
1605                     Has_Special_Operator := True;
1606                     exit Parse_Loop;
1607                  end if;
1608
1609               when '\' =>
1610                  Start_Pos := Parse_Pos;
1611
1612                  if Parse_Pos = Parse_End then
1613                     Fail ("Trailing \");
1614
1615                  else
1616                     case Expression (Parse_Pos + 1) is
1617                        when 'b' | 'B' | 's' | 'S' | 'd' | 'D'
1618                          | 'w' | 'W' | '0' .. '9' | 'G' | 'A'
1619                          => exit Parse_Loop;
1620                        when 'n'         => Emit (ASCII.LF);
1621                        when 't'         => Emit (ASCII.HT);
1622                        when 'r'         => Emit (ASCII.CR);
1623                        when 'f'         => Emit (ASCII.FF);
1624                        when 'e'         => Emit (ASCII.ESC);
1625                        when 'a'         => Emit (ASCII.BEL);
1626                        when others      => Emit (Expression (Parse_Pos + 1));
1627                     end case;
1628
1629                     Parse_Pos := Parse_Pos + 1;
1630                  end if;
1631
1632               when others =>
1633                  Start_Pos := Parse_Pos;
1634                  Case_Emit (C);
1635            end case;
1636
1637            Parse_Pos := Parse_Pos + 1;
1638            exit Parse_Loop when Parse_Pos > Parse_End
1639              or else Emit_Ptr - Length_Ptr = 254;
1640         end loop Parse_Loop;
1641
1642         --  Is the string followed by a '*+?{' operator ? If yes, and if there
1643         --  is an initial string to emit, do it now.
1644
1645         if Has_Special_Operator
1646           and then Emit_Ptr >= Length_Ptr + Next_Pointer_Bytes
1647         then
1648            Emit_Ptr := Emit_Ptr - 1;
1649            Parse_Pos := Start_Pos;
1650         end if;
1651
1652         if Length_Ptr <= PM.Size then
1653            Program (Length_Ptr) := Character'Val (Emit_Ptr - Length_Ptr - 2);
1654         end if;
1655
1656         Expr_Flags.Has_Width := True;
1657
1658         --  Slight optimization when there is a single character
1659
1660         if Emit_Ptr = Length_Ptr + 2 then
1661            Expr_Flags.Simple := True;
1662         end if;
1663      end Parse_Literal;
1664
1665      -----------------
1666      -- Parse_Piece --
1667      -----------------
1668
1669      --  Note that the branching code sequences used for '?' and the
1670      --  general cases of '*' and + are somewhat optimized: they use
1671      --  the same NOTHING node as both the endmarker for their branch
1672      --  list and the body of the last branch. It might seem that
1673      --  this node could be dispensed with entirely, but the endmarker
1674      --  role is not redundant.
1675
1676      procedure Parse_Piece
1677        (Expr_Flags : out Expression_Flags;
1678         IP         : out Pointer)
1679      is
1680         Op        : Character;
1681         New_Flags : Expression_Flags;
1682         Greedy    : Boolean := True;
1683
1684      begin
1685         Parse_Atom (New_Flags, IP);
1686
1687         if IP = 0 then
1688            return;
1689         end if;
1690
1691         if Parse_Pos > Parse_End
1692           or else not Is_Mult (Parse_Pos)
1693         then
1694            Expr_Flags := New_Flags;
1695            return;
1696         end if;
1697
1698         Op := Expression (Parse_Pos);
1699
1700         Expr_Flags :=
1701           (if Op /= '+'
1702            then (SP_Start  => True, others => False)
1703            else (Has_Width => True, others => False));
1704
1705         --  Detect non greedy operators in the easy cases
1706
1707         if Op /= '{'
1708           and then Parse_Pos + 1 <= Parse_End
1709           and then Expression (Parse_Pos + 1) = '?'
1710         then
1711            Greedy := False;
1712            Parse_Pos := Parse_Pos + 1;
1713         end if;
1714
1715         --  Generate the byte code
1716
1717         case Op is
1718            when '*' =>
1719
1720               if New_Flags.Simple then
1721                  Insert_Operator (STAR, IP, Greedy);
1722               else
1723                  Link_Tail (IP, Emit_Node (WHILEM));
1724                  Insert_Curly_Operator
1725                    (CURLYX, 0, Max_Curly_Repeat, IP, Greedy);
1726                  Link_Tail (IP, Emit_Node (NOTHING));
1727               end if;
1728
1729            when '+' =>
1730
1731               if New_Flags.Simple then
1732                  Insert_Operator (PLUS, IP, Greedy);
1733               else
1734                  Link_Tail (IP, Emit_Node (WHILEM));
1735                  Insert_Curly_Operator
1736                    (CURLYX, 1, Max_Curly_Repeat, IP, Greedy);
1737                  Link_Tail (IP, Emit_Node (NOTHING));
1738               end if;
1739
1740            when '?' =>
1741               if New_Flags.Simple then
1742                  Insert_Curly_Operator (CURLY, 0, 1, IP, Greedy);
1743               else
1744                  Link_Tail (IP, Emit_Node (WHILEM));
1745                  Insert_Curly_Operator (CURLYX, 0, 1, IP, Greedy);
1746                  Link_Tail (IP, Emit_Node (NOTHING));
1747               end if;
1748
1749            when '{' =>
1750               declare
1751                  Min, Max : Natural;
1752
1753               begin
1754                  Get_Curly_Arguments (Parse_Pos, Min, Max, Greedy);
1755
1756                  if New_Flags.Simple then
1757                     Insert_Curly_Operator (CURLY, Min, Max, IP, Greedy);
1758                  else
1759                     Link_Tail (IP, Emit_Node (WHILEM));
1760                     Insert_Curly_Operator (CURLYX, Min, Max, IP, Greedy);
1761                     Link_Tail (IP, Emit_Node (NOTHING));
1762                  end if;
1763               end;
1764
1765            when others =>
1766               null;
1767         end case;
1768
1769         Parse_Pos := Parse_Pos + 1;
1770
1771         if Parse_Pos <= Parse_End
1772           and then Is_Mult (Parse_Pos)
1773         then
1774            Fail ("nested *+{");
1775         end if;
1776      end Parse_Piece;
1777
1778      ---------------------------------
1779      -- Parse_Posix_Character_Class --
1780      ---------------------------------
1781
1782      function Parse_Posix_Character_Class return Std_Class is
1783         Invert : Boolean := False;
1784         Class  : Std_Class := ANYOF_NONE;
1785         E      : String renames Expression;
1786
1787         --  Class names. Note that code assumes that the length of all
1788         --  classes starting with the same letter have the same length.
1789
1790         Alnum   : constant String := "alnum:]";
1791         Alpha   : constant String := "alpha:]";
1792         Ascii_C : constant String := "ascii:]";
1793         Cntrl   : constant String := "cntrl:]";
1794         Digit   : constant String := "digit:]";
1795         Graph   : constant String := "graph:]";
1796         Lower   : constant String := "lower:]";
1797         Print   : constant String := "print:]";
1798         Punct   : constant String := "punct:]";
1799         Space   : constant String := "space:]";
1800         Upper   : constant String := "upper:]";
1801         Word    : constant String := "word:]";
1802         Xdigit  : constant String := "xdigit:]";
1803
1804      begin
1805         --  Case of character class specified
1806
1807         if Parse_Pos <= Parse_End
1808           and then Expression (Parse_Pos) = ':'
1809         then
1810            Parse_Pos := Parse_Pos + 1;
1811
1812            --  Do we have something like:  [[:^alpha:]]
1813
1814            if Parse_Pos <= Parse_End
1815              and then Expression (Parse_Pos) = '^'
1816            then
1817               Invert := True;
1818               Parse_Pos := Parse_Pos + 1;
1819            end if;
1820
1821            --  Check for class names based on first letter
1822
1823            case Expression (Parse_Pos) is
1824               when 'a' =>
1825
1826                  --  All 'a' classes have the same length (Alnum'Length)
1827
1828                  if Parse_Pos + Alnum'Length - 1 <= Parse_End then
1829                     if
1830                       E (Parse_Pos .. Parse_Pos + Alnum'Length - 1) = Alnum
1831                     then
1832                        Class :=
1833                          (if Invert then ANYOF_NALNUMC else ANYOF_ALNUMC);
1834                        Parse_Pos := Parse_Pos + Alnum'Length;
1835
1836                     elsif
1837                       E (Parse_Pos .. Parse_Pos + Alpha'Length - 1) = Alpha
1838                     then
1839                        Class :=
1840                          (if Invert then ANYOF_NALPHA else ANYOF_ALPHA);
1841                        Parse_Pos := Parse_Pos + Alpha'Length;
1842
1843                     elsif E (Parse_Pos .. Parse_Pos + Ascii_C'Length - 1) =
1844                                                                      Ascii_C
1845                     then
1846                        Class :=
1847                          (if Invert then ANYOF_NASCII else ANYOF_ASCII);
1848                        Parse_Pos := Parse_Pos + Ascii_C'Length;
1849                     else
1850                        Fail ("Invalid character class: " & E);
1851                     end if;
1852
1853                  else
1854                     Fail ("Invalid character class: " & E);
1855                  end if;
1856
1857               when 'c' =>
1858                  if Parse_Pos + Cntrl'Length - 1 <= Parse_End
1859                    and then
1860                      E (Parse_Pos .. Parse_Pos + Cntrl'Length - 1) = Cntrl
1861                  then
1862                     Class := (if Invert then ANYOF_NCNTRL else ANYOF_CNTRL);
1863                     Parse_Pos := Parse_Pos + Cntrl'Length;
1864                  else
1865                     Fail ("Invalid character class: " & E);
1866                  end if;
1867
1868               when 'd' =>
1869                  if Parse_Pos + Digit'Length - 1 <= Parse_End
1870                    and then
1871                      E (Parse_Pos .. Parse_Pos + Digit'Length - 1) = Digit
1872                  then
1873                     Class := (if Invert then ANYOF_NDIGIT else ANYOF_DIGIT);
1874                     Parse_Pos := Parse_Pos + Digit'Length;
1875                  end if;
1876
1877               when 'g' =>
1878                  if Parse_Pos + Graph'Length - 1 <= Parse_End
1879                    and then
1880                      E (Parse_Pos .. Parse_Pos + Graph'Length - 1) = Graph
1881                  then
1882                     Class := (if Invert then ANYOF_NGRAPH else ANYOF_GRAPH);
1883                     Parse_Pos := Parse_Pos + Graph'Length;
1884                  else
1885                     Fail ("Invalid character class: " & E);
1886                  end if;
1887
1888               when 'l' =>
1889                  if Parse_Pos + Lower'Length - 1 <= Parse_End
1890                    and then
1891                      E (Parse_Pos .. Parse_Pos + Lower'Length - 1) = Lower
1892                  then
1893                     Class := (if Invert then ANYOF_NLOWER else ANYOF_LOWER);
1894                     Parse_Pos := Parse_Pos + Lower'Length;
1895                  else
1896                     Fail ("Invalid character class: " & E);
1897                  end if;
1898
1899               when 'p' =>
1900
1901                  --  All 'p' classes have the same length
1902
1903                  if Parse_Pos + Print'Length - 1 <= Parse_End then
1904                     if
1905                       E (Parse_Pos .. Parse_Pos + Print'Length - 1) = Print
1906                     then
1907                        Class :=
1908                          (if Invert then ANYOF_NPRINT else ANYOF_PRINT);
1909                        Parse_Pos := Parse_Pos + Print'Length;
1910
1911                     elsif
1912                       E (Parse_Pos .. Parse_Pos + Punct'Length - 1) = Punct
1913                     then
1914                        Class :=
1915                          (if Invert then ANYOF_NPUNCT else ANYOF_PUNCT);
1916                        Parse_Pos := Parse_Pos + Punct'Length;
1917
1918                     else
1919                        Fail ("Invalid character class: " & E);
1920                     end if;
1921
1922                  else
1923                     Fail ("Invalid character class: " & E);
1924                  end if;
1925
1926               when 's' =>
1927                  if Parse_Pos + Space'Length - 1 <= Parse_End
1928                    and then
1929                      E (Parse_Pos .. Parse_Pos + Space'Length - 1) = Space
1930                  then
1931                     Class := (if Invert then ANYOF_NSPACE else ANYOF_SPACE);
1932                     Parse_Pos := Parse_Pos + Space'Length;
1933                  else
1934                     Fail ("Invalid character class: " & E);
1935                  end if;
1936
1937               when 'u' =>
1938                  if Parse_Pos + Upper'Length - 1 <= Parse_End
1939                    and then
1940                      E (Parse_Pos .. Parse_Pos + Upper'Length - 1) = Upper
1941                  then
1942                     Class := (if Invert then ANYOF_NUPPER else ANYOF_UPPER);
1943                     Parse_Pos := Parse_Pos + Upper'Length;
1944                  else
1945                     Fail ("Invalid character class: " & E);
1946                  end if;
1947
1948               when 'w' =>
1949                  if Parse_Pos + Word'Length - 1 <= Parse_End
1950                    and then
1951                      E (Parse_Pos .. Parse_Pos + Word'Length - 1) = Word
1952                  then
1953                     Class := (if Invert then ANYOF_NALNUM else ANYOF_ALNUM);
1954                     Parse_Pos := Parse_Pos + Word'Length;
1955                  else
1956                     Fail ("Invalid character class: " & E);
1957                  end if;
1958
1959               when 'x' =>
1960                  if Parse_Pos + Xdigit'Length - 1 <= Parse_End
1961                    and then
1962                      E (Parse_Pos .. Parse_Pos + Xdigit'Length - 1) = Xdigit
1963                  then
1964                     Class := (if Invert then ANYOF_NXDIGIT else ANYOF_XDIGIT);
1965                     Parse_Pos := Parse_Pos + Xdigit'Length;
1966
1967                  else
1968                     Fail ("Invalid character class: " & E);
1969                  end if;
1970
1971               when others =>
1972                  Fail ("Invalid character class: " & E);
1973            end case;
1974
1975         --  Character class not specified
1976
1977         else
1978            return ANYOF_NONE;
1979         end if;
1980
1981         return Class;
1982      end Parse_Posix_Character_Class;
1983
1984      --  Local Declarations
1985
1986      Result : Pointer;
1987
1988      Expr_Flags : Expression_Flags;
1989      pragma Unreferenced (Expr_Flags);
1990
1991   --  Start of processing for Compile
1992
1993   begin
1994      Parse (False, False, Expr_Flags, Result);
1995
1996      if Result = 0 then
1997         Fail ("Couldn't compile expression");
1998      end if;
1999
2000      Final_Code_Size := Emit_Ptr - 1;
2001
2002      --  Do we want to actually compile the expression, or simply get the
2003      --  code size ???
2004
2005      if Emit_Ptr <= PM.Size then
2006         Optimize (PM);
2007      end if;
2008
2009      PM.Flags := Flags;
2010   end Compile;
2011
2012   function Compile
2013     (Expression : String;
2014      Flags      : Regexp_Flags := No_Flags) return Pattern_Matcher
2015   is
2016      --  Assume the compiled regexp will fit in 1000 chars. If it does not we
2017      --  will have to compile a second time once the correct size is known. If
2018      --  it fits, we save a significant amount of time by avoiding the second
2019      --  compilation.
2020
2021      Dummy : Pattern_Matcher (1000);
2022      Size  : Program_Size;
2023
2024   begin
2025      Compile (Dummy, Expression, Size, Flags);
2026
2027      if Size <= Dummy.Size then
2028         return Pattern_Matcher'
2029           (Size             => Size,
2030            First            => Dummy.First,
2031            Anchored         => Dummy.Anchored,
2032            Must_Have        => Dummy.Must_Have,
2033            Must_Have_Length => Dummy.Must_Have_Length,
2034            Paren_Count      => Dummy.Paren_Count,
2035            Flags            => Dummy.Flags,
2036            Program          =>
2037              Dummy.Program
2038                (Dummy.Program'First .. Dummy.Program'First + Size - 1));
2039      else
2040         --  We have to recompile now that we know the size
2041         --  ??? Can we use Ada 2005's return construct ?
2042
2043         declare
2044            Result : Pattern_Matcher (Size);
2045         begin
2046            Compile (Result, Expression, Size, Flags);
2047            return Result;
2048         end;
2049      end if;
2050   end Compile;
2051
2052   procedure Compile
2053     (Matcher    : out Pattern_Matcher;
2054      Expression : String;
2055      Flags      : Regexp_Flags := No_Flags)
2056   is
2057      Size : Program_Size;
2058
2059   begin
2060      Compile (Matcher, Expression, Size, Flags);
2061
2062      if Size > Matcher.Size then
2063         raise Expression_Error with "Pattern_Matcher is too small";
2064      end if;
2065   end Compile;
2066
2067   --------------------
2068   -- Dump_Operation --
2069   --------------------
2070
2071   procedure Dump_Operation
2072      (Program : Program_Data;
2073       Index   : Pointer;
2074       Indent  : Natural)
2075   is
2076      Current : Pointer := Index;
2077   begin
2078      Dump_Until (Program, Current, Current + 1, Indent);
2079   end Dump_Operation;
2080
2081   ----------------
2082   -- Dump_Until --
2083   ----------------
2084
2085   procedure Dump_Until
2086      (Program  : Program_Data;
2087       Index    : in out Pointer;
2088       Till     : Pointer;
2089       Indent   : Natural;
2090       Do_Print : Boolean := True)
2091   is
2092      function Image (S : String) return String;
2093      --  Remove leading space
2094
2095      -----------
2096      -- Image --
2097      -----------
2098
2099      function Image (S : String) return String is
2100      begin
2101         if S (S'First) = ' ' then
2102            return S (S'First + 1 .. S'Last);
2103         else
2104            return S;
2105         end if;
2106      end Image;
2107
2108      --  Local variables
2109
2110      Op           : Opcode;
2111      Next         : Pointer;
2112      Length       : Pointer;
2113      Local_Indent : Natural := Indent;
2114
2115   --  Start of processing for Dump_Until
2116
2117   begin
2118      while Index < Till loop
2119         Op   := Opcode'Val (Character'Pos ((Program (Index))));
2120         Next := Get_Next (Program, Index);
2121
2122         if Do_Print then
2123            declare
2124               Point   : constant String := Pointer'Image (Index);
2125            begin
2126               Put ((1 .. 4 - Point'Length => ' ')
2127                    & Point & ":"
2128                    & (1 .. Local_Indent * 2 => ' ') & Opcode'Image (Op));
2129            end;
2130
2131            --  Print the parenthesis number
2132
2133            if Op = OPEN or else Op = CLOSE or else Op = REFF then
2134               Put (Image (Natural'Image
2135                            (Character'Pos
2136                               (Program (Index + Next_Pointer_Bytes)))));
2137            end if;
2138
2139            if Next = Index then
2140               Put (" (-)");
2141            else
2142               Put (" (" & Image (Pointer'Image (Next)) & ")");
2143            end if;
2144         end if;
2145
2146         case Op is
2147            when ANYOF =>
2148               declare
2149                  Bitmap       : Character_Class;
2150                  Last         : Character := ASCII.NUL;
2151                  Current      : Natural := 0;
2152                  Current_Char : Character;
2153
2154               begin
2155                  Bitmap_Operand (Program, Index, Bitmap);
2156
2157                  if Do_Print then
2158                     Put ("[");
2159
2160                     while Current <= 255 loop
2161                        Current_Char := Character'Val (Current);
2162
2163                        --  First item in a range
2164
2165                        if Get_From_Class (Bitmap, Current_Char) then
2166                           Last := Current_Char;
2167
2168                           --  Search for the last item in the range
2169
2170                           loop
2171                              Current := Current + 1;
2172                              exit when Current > 255;
2173                              Current_Char := Character'Val (Current);
2174                              exit when
2175                                not Get_From_Class (Bitmap, Current_Char);
2176                           end loop;
2177
2178                           if not Is_Graphic (Last) then
2179                              Put (Last'Img);
2180                           else
2181                              Put (Last);
2182                           end if;
2183
2184                           if Character'Succ (Last) /= Current_Char then
2185                              Put ("\-" & Character'Pred (Current_Char));
2186                           end if;
2187
2188                        else
2189                           Current := Current + 1;
2190                        end if;
2191                     end loop;
2192
2193                     Put_Line ("]");
2194                  end if;
2195
2196                  Index := Index + Next_Pointer_Bytes + Bitmap'Length;
2197               end;
2198
2199            when EXACT | EXACTF =>
2200               Length := String_Length (Program, Index);
2201               if Do_Print then
2202                  Put (" (" & Image (Program_Size'Image (Length + 1))
2203                          & " chars) <"
2204                          & String (Program (String_Operand (Index)
2205                                              .. String_Operand (Index)
2206                                              + Length)));
2207                  Put_Line (">");
2208               end if;
2209
2210               Index := String_Operand (Index) + Length + 1;
2211
2212               --  Node operand
2213
2214            when BRANCH | STAR | PLUS =>
2215               if Do_Print then
2216                  New_Line;
2217               end if;
2218
2219               Index  := Index + Next_Pointer_Bytes;
2220               Dump_Until (Program, Index, Pointer'Min (Next, Till),
2221                           Local_Indent + 1, Do_Print);
2222
2223            when CURLY | CURLYX =>
2224               if Do_Print then
2225                  Put_Line
2226                    (" {"
2227                    & Image (Natural'Image
2228                       (Read_Natural (Program, Index + Next_Pointer_Bytes)))
2229                    & ","
2230                    & Image (Natural'Image (Read_Natural (Program, Index + 5)))
2231                    & "}");
2232               end if;
2233
2234               Index  := Index + 7;
2235               Dump_Until (Program, Index, Pointer'Min (Next, Till),
2236                           Local_Indent + 1, Do_Print);
2237
2238            when OPEN =>
2239               if Do_Print then
2240                  New_Line;
2241               end if;
2242
2243               Index := Index + 4;
2244               Local_Indent := Local_Indent + 1;
2245
2246            when CLOSE | REFF =>
2247               if Do_Print then
2248                  New_Line;
2249               end if;
2250
2251               Index := Index + 4;
2252
2253               if Op = CLOSE then
2254                  Local_Indent := Local_Indent - 1;
2255               end if;
2256
2257            when others =>
2258               Index := Index + Next_Pointer_Bytes;
2259
2260               if Do_Print then
2261                  New_Line;
2262               end if;
2263
2264               exit when Op = EOP;
2265         end case;
2266      end loop;
2267   end Dump_Until;
2268
2269   ----------
2270   -- Dump --
2271   ----------
2272
2273   procedure Dump (Self : Pattern_Matcher) is
2274      Program : Program_Data renames Self.Program;
2275      Index   : Pointer := Program'First;
2276
2277   --  Start of processing for Dump
2278
2279   begin
2280      Put_Line ("Must start with (Self.First) = "
2281                & Character'Image (Self.First));
2282
2283      if (Self.Flags and Case_Insensitive) /= 0 then
2284         Put_Line ("  Case_Insensitive mode");
2285      end if;
2286
2287      if (Self.Flags and Single_Line) /= 0 then
2288         Put_Line ("  Single_Line mode");
2289      end if;
2290
2291      if (Self.Flags and Multiple_Lines) /= 0 then
2292         Put_Line ("  Multiple_Lines mode");
2293      end if;
2294
2295      Dump_Until (Program, Index, Self.Program'Last + 1, 0);
2296   end Dump;
2297
2298   --------------------
2299   -- Get_From_Class --
2300   --------------------
2301
2302   function Get_From_Class
2303     (Bitmap : Character_Class;
2304      C      : Character) return Boolean
2305   is
2306      Value : constant Class_Byte := Character'Pos (C);
2307   begin
2308      return
2309        (Bitmap (Value / 8) and Bit_Conversion (Value mod 8)) /= 0;
2310   end Get_From_Class;
2311
2312   --------------
2313   -- Get_Next --
2314   --------------
2315
2316   function Get_Next (Program : Program_Data; IP : Pointer) return Pointer is
2317   begin
2318      return IP + Pointer (Read_Natural (Program, IP + 1));
2319   end Get_Next;
2320
2321   --------------
2322   -- Is_Alnum --
2323   --------------
2324
2325   function Is_Alnum (C : Character) return Boolean is
2326   begin
2327      return Is_Alphanumeric (C) or else C = '_';
2328   end Is_Alnum;
2329
2330   ------------------
2331   -- Is_Printable --
2332   ------------------
2333
2334   function Is_Printable (C : Character) return Boolean is
2335   begin
2336      --  Printable if space or graphic character or other whitespace
2337      --  Other white space includes (HT/LF/VT/FF/CR = codes 9-13)
2338
2339      return C in Character'Val (32) .. Character'Val (126)
2340        or else C in ASCII.HT .. ASCII.CR;
2341   end Is_Printable;
2342
2343   --------------------
2344   -- Is_White_Space --
2345   --------------------
2346
2347   function Is_White_Space (C : Character) return Boolean is
2348   begin
2349      --  Note: HT = 9, LF = 10, VT = 11, FF = 12, CR = 13
2350
2351      return C = ' ' or else C in ASCII.HT .. ASCII.CR;
2352   end Is_White_Space;
2353
2354   -----------
2355   -- Match --
2356   -----------
2357
2358   procedure Match
2359     (Self       : Pattern_Matcher;
2360      Data       : String;
2361      Matches    : out Match_Array;
2362      Data_First : Integer := -1;
2363      Data_Last  : Positive := Positive'Last)
2364   is
2365      Program : Program_Data renames Self.Program; -- Shorter notation
2366
2367      First_In_Data : constant Integer := Integer'Max (Data_First, Data'First);
2368      Last_In_Data  : constant Integer := Integer'Min (Data_Last, Data'Last);
2369
2370      --  Global work variables
2371
2372      Input_Pos : Natural;           -- String-input pointer
2373      BOL_Pos   : Natural;           -- Beginning of input, for ^ check
2374      Matched   : Boolean := False;  -- Until proven True
2375
2376      Matches_Full : Match_Array (0 .. Natural'Max (Self.Paren_Count,
2377                                                    Matches'Last));
2378      --  Stores the value of all the parenthesis pairs.
2379      --  We do not use directly Matches, so that we can also use back
2380      --  references (REFF) even if Matches is too small.
2381
2382      type Natural_Array is array (Match_Count range <>) of Natural;
2383      Matches_Tmp : Natural_Array (Matches_Full'Range);
2384      --  Save the opening position of parenthesis
2385
2386      Last_Paren  : Natural := 0;
2387      --  Last parenthesis seen
2388
2389      Greedy : Boolean := True;
2390      --  True if the next operator should be greedy
2391
2392      type Current_Curly_Record;
2393      type Current_Curly_Access is access all Current_Curly_Record;
2394      type Current_Curly_Record is record
2395         Paren_Floor : Natural;  --  How far back to strip parenthesis data
2396         Cur         : Integer;  --  How many instances of scan we've matched
2397         Min         : Natural;  --  Minimal number of scans to match
2398         Max         : Natural;  --  Maximal number of scans to match
2399         Greedy      : Boolean;  --  Whether to work our way up or down
2400         Scan        : Pointer;  --  The thing to match
2401         Next        : Pointer;  --  What has to match after it
2402         Lastloc     : Natural;  --  Where we started matching this scan
2403         Old_Cc      : Current_Curly_Access; --  Before we started this one
2404      end record;
2405      --  Data used to handle the curly operator and the plus and star
2406      --  operators for complex expressions.
2407
2408      Current_Curly : Current_Curly_Access := null;
2409      --  The curly currently being processed
2410
2411      -----------------------
2412      -- Local Subprograms --
2413      -----------------------
2414
2415      function Index (Start : Positive; C : Character) return Natural;
2416      --  Find character C in Data starting at Start and return position
2417
2418      function Repeat
2419        (IP  : Pointer;
2420         Max : Natural := Natural'Last) return Natural;
2421      --  Repeatedly match something simple, report how many
2422      --  It only matches on things of length 1.
2423      --  Starting from Input_Pos, it matches at most Max CURLY.
2424
2425      function Try (Pos : Positive) return Boolean;
2426      --  Try to match at specific point
2427
2428      function Match (IP : Pointer) return Boolean;
2429      --  This is the main matching routine. Conceptually the strategy
2430      --  is simple:  check to see whether the current node matches,
2431      --  call self recursively to see whether the rest matches,
2432      --  and then act accordingly.
2433      --
2434      --  In practice Match makes some effort to avoid recursion, in
2435      --  particular by going through "ordinary" nodes (that don't
2436      --  need to know whether the rest of the match failed) by
2437      --  using a loop instead of recursion.
2438      --  Why is the above comment part of the spec rather than body ???
2439
2440      function Match_Whilem return Boolean;
2441      --  Return True if a WHILEM matches the Current_Curly
2442
2443      function Recurse_Match (IP : Pointer; From : Natural) return Boolean;
2444      pragma Inline (Recurse_Match);
2445      --  Calls Match recursively. It saves and restores the parenthesis
2446      --  status and location in the input stream correctly, so that
2447      --  backtracking is possible
2448
2449      function Match_Simple_Operator
2450        (Op     : Opcode;
2451         Scan   : Pointer;
2452         Next   : Pointer;
2453         Greedy : Boolean) return Boolean;
2454      --  Return True it the simple operator (possibly non-greedy) matches
2455
2456      Dump_Indent : Integer := -1;
2457      procedure Dump_Current (Scan : Pointer; Prefix : Boolean := True);
2458      procedure Dump_Error (Msg : String);
2459      --  Debug: print the current context
2460
2461      pragma Inline (Index);
2462      pragma Inline (Repeat);
2463
2464      --  These are two complex functions, but used only once
2465
2466      pragma Inline (Match_Whilem);
2467      pragma Inline (Match_Simple_Operator);
2468
2469      -----------
2470      -- Index --
2471      -----------
2472
2473      function Index (Start : Positive; C : Character) return Natural is
2474      begin
2475         for J in Start .. Last_In_Data loop
2476            if Data (J) = C then
2477               return J;
2478            end if;
2479         end loop;
2480
2481         return 0;
2482      end Index;
2483
2484      -------------------
2485      -- Recurse_Match --
2486      -------------------
2487
2488      function Recurse_Match (IP : Pointer; From : Natural) return Boolean is
2489         L     : constant Natural := Last_Paren;
2490         Tmp_F : constant Match_Array :=
2491                   Matches_Full (From + 1 .. Matches_Full'Last);
2492         Start : constant Natural_Array :=
2493                   Matches_Tmp (From + 1 .. Matches_Tmp'Last);
2494         Input : constant Natural := Input_Pos;
2495
2496         Dump_Indent_Save : constant Integer := Dump_Indent;
2497
2498      begin
2499         if Match (IP) then
2500            return True;
2501         end if;
2502
2503         Last_Paren := L;
2504         Matches_Full (Tmp_F'Range) := Tmp_F;
2505         Matches_Tmp (Start'Range) := Start;
2506         Input_Pos := Input;
2507         Dump_Indent := Dump_Indent_Save;
2508         return False;
2509      end Recurse_Match;
2510
2511      ------------------
2512      -- Dump_Current --
2513      ------------------
2514
2515      procedure Dump_Current (Scan : Pointer; Prefix : Boolean := True) is
2516         Length : constant := 10;
2517         Pos    : constant String := Integer'Image (Input_Pos);
2518
2519      begin
2520         if Prefix then
2521            Put ((1 .. 5 - Pos'Length => ' '));
2522            Put (Pos & " <"
2523                 & Data (Input_Pos
2524                     .. Integer'Min (Last_In_Data, Input_Pos + Length - 1)));
2525            Put ((1 .. Length - 1 - Last_In_Data + Input_Pos => ' '));
2526            Put ("> |");
2527
2528         else
2529            Put ("                    ");
2530         end if;
2531
2532         Dump_Operation (Program, Scan, Indent => Dump_Indent);
2533      end Dump_Current;
2534
2535      ----------------
2536      -- Dump_Error --
2537      ----------------
2538
2539      procedure Dump_Error (Msg : String) is
2540      begin
2541         Put ("                   |     ");
2542         Put ((1 .. Dump_Indent * 2 => ' '));
2543         Put_Line (Msg);
2544      end Dump_Error;
2545
2546      -----------
2547      -- Match --
2548      -----------
2549
2550      function Match (IP : Pointer) return Boolean is
2551         Scan   : Pointer := IP;
2552         Next   : Pointer;
2553         Op     : Opcode;
2554         Result : Boolean;
2555
2556      begin
2557         Dump_Indent := Dump_Indent + 1;
2558
2559         State_Machine :
2560         loop
2561            pragma Assert (Scan /= 0);
2562
2563            --  Determine current opcode and count its usage in debug mode
2564
2565            Op := Opcode'Val (Character'Pos (Program (Scan)));
2566
2567            --  Calculate offset of next instruction. Second character is most
2568            --  significant in Program_Data.
2569
2570            Next := Get_Next (Program, Scan);
2571
2572            if Debug then
2573               Dump_Current (Scan);
2574            end if;
2575
2576            case Op is
2577               when EOP =>
2578                  Dump_Indent := Dump_Indent - 1;
2579                  return True;  --  Success
2580
2581               when BRANCH =>
2582                  if Program (Next) /= BRANCH then
2583                     Next := Operand (Scan); -- No choice, avoid recursion
2584
2585                  else
2586                     loop
2587                        if Recurse_Match (Operand (Scan), 0) then
2588                           Dump_Indent := Dump_Indent - 1;
2589                           return True;
2590                        end if;
2591
2592                        Scan := Get_Next (Program, Scan);
2593                        exit when Scan = 0 or else Program (Scan) /= BRANCH;
2594                     end loop;
2595
2596                     exit State_Machine;
2597                  end if;
2598
2599               when NOTHING =>
2600                  null;
2601
2602               when BOL =>
2603                  exit State_Machine when Input_Pos /= BOL_Pos
2604                    and then ((Self.Flags and Multiple_Lines) = 0
2605                               or else Data (Input_Pos - 1) /= ASCII.LF);
2606
2607               when MBOL =>
2608                  exit State_Machine when Input_Pos /= BOL_Pos
2609                    and then Data (Input_Pos - 1) /= ASCII.LF;
2610
2611               when SBOL =>
2612                  exit State_Machine when Input_Pos /= BOL_Pos;
2613
2614               when EOL =>
2615
2616                  --  A combination of MEOL and SEOL
2617
2618                  if (Self.Flags and Multiple_Lines) = 0 then
2619
2620                     --  Single line mode
2621
2622                     exit State_Machine when Input_Pos <= Data'Last;
2623
2624                  elsif Input_Pos <= Last_In_Data then
2625                     exit State_Machine when Data (Input_Pos) /= ASCII.LF;
2626                  else
2627                     exit State_Machine when Last_In_Data /= Data'Last;
2628                  end if;
2629
2630               when MEOL =>
2631                  if Input_Pos <= Last_In_Data then
2632                     exit State_Machine when Data (Input_Pos) /= ASCII.LF;
2633                  else
2634                     exit State_Machine when Last_In_Data /= Data'Last;
2635                  end if;
2636
2637               when SEOL =>
2638
2639                  --  If there is a character before Data'Last (even if
2640                  --  Last_In_Data stops before then), we can't have the
2641                  --  end of the line.
2642
2643                  exit State_Machine when Input_Pos <= Data'Last;
2644
2645               when BOUND | NBOUND =>
2646
2647                  --  Was last char in word ?
2648
2649                  declare
2650                     N  : Boolean := False;
2651                     Ln : Boolean := False;
2652
2653                  begin
2654                     if Input_Pos /= First_In_Data then
2655                        N := Is_Alnum (Data (Input_Pos - 1));
2656                     end if;
2657
2658                     Ln :=
2659                       (if Input_Pos > Last_In_Data
2660                        then False
2661                        else Is_Alnum (Data (Input_Pos)));
2662
2663                     if Op = BOUND then
2664                        if N = Ln then
2665                           exit State_Machine;
2666                        end if;
2667                     else
2668                        if N /= Ln then
2669                           exit State_Machine;
2670                        end if;
2671                     end if;
2672                  end;
2673
2674               when SPACE =>
2675                  exit State_Machine when Input_Pos > Last_In_Data
2676                    or else not Is_White_Space (Data (Input_Pos));
2677                  Input_Pos := Input_Pos + 1;
2678
2679               when NSPACE =>
2680                  exit State_Machine when Input_Pos > Last_In_Data
2681                    or else Is_White_Space (Data (Input_Pos));
2682                  Input_Pos := Input_Pos + 1;
2683
2684               when DIGIT =>
2685                  exit State_Machine when Input_Pos > Last_In_Data
2686                    or else not Is_Digit (Data (Input_Pos));
2687                  Input_Pos := Input_Pos + 1;
2688
2689               when NDIGIT =>
2690                  exit State_Machine when Input_Pos > Last_In_Data
2691                    or else Is_Digit (Data (Input_Pos));
2692                  Input_Pos := Input_Pos + 1;
2693
2694               when ALNUM =>
2695                  exit State_Machine when Input_Pos > Last_In_Data
2696                    or else not Is_Alnum (Data (Input_Pos));
2697                  Input_Pos := Input_Pos + 1;
2698
2699               when NALNUM =>
2700                  exit State_Machine when Input_Pos > Last_In_Data
2701                    or else Is_Alnum (Data (Input_Pos));
2702                  Input_Pos := Input_Pos + 1;
2703
2704               when ANY =>
2705                  exit State_Machine when Input_Pos > Last_In_Data
2706                    or else Data (Input_Pos) = ASCII.LF;
2707                  Input_Pos := Input_Pos + 1;
2708
2709               when SANY =>
2710                  exit State_Machine when Input_Pos > Last_In_Data;
2711                  Input_Pos := Input_Pos + 1;
2712
2713               when EXACT =>
2714                  declare
2715                     Opnd    : Pointer  := String_Operand (Scan);
2716                     Current : Positive := Input_Pos;
2717                     Last    : constant Pointer :=
2718                                 Opnd + String_Length (Program, Scan);
2719
2720                  begin
2721                     while Opnd <= Last loop
2722                        exit State_Machine when Current > Last_In_Data
2723                          or else Program (Opnd) /= Data (Current);
2724                        Current := Current + 1;
2725                        Opnd := Opnd + 1;
2726                     end loop;
2727
2728                     Input_Pos := Current;
2729                  end;
2730
2731               when EXACTF =>
2732                  declare
2733                     Opnd    : Pointer  := String_Operand (Scan);
2734                     Current : Positive := Input_Pos;
2735
2736                     Last : constant Pointer :=
2737                              Opnd + String_Length (Program, Scan);
2738
2739                  begin
2740                     while Opnd <= Last loop
2741                        exit State_Machine when Current > Last_In_Data
2742                          or else Program (Opnd) /= To_Lower (Data (Current));
2743                        Current := Current + 1;
2744                        Opnd := Opnd + 1;
2745                     end loop;
2746
2747                     Input_Pos := Current;
2748                  end;
2749
2750               when ANYOF =>
2751                  declare
2752                     Bitmap : Character_Class;
2753                  begin
2754                     Bitmap_Operand (Program, Scan, Bitmap);
2755                     exit State_Machine when Input_Pos > Last_In_Data
2756                       or else not Get_From_Class (Bitmap, Data (Input_Pos));
2757                     Input_Pos := Input_Pos + 1;
2758                  end;
2759
2760               when OPEN =>
2761                  declare
2762                     No : constant Natural :=
2763                            Character'Pos (Program (Operand (Scan)));
2764                  begin
2765                     Matches_Tmp (No) := Input_Pos;
2766                  end;
2767
2768               when CLOSE =>
2769                  declare
2770                     No : constant Natural :=
2771                            Character'Pos (Program (Operand (Scan)));
2772
2773                  begin
2774                     Matches_Full (No) := (Matches_Tmp (No), Input_Pos - 1);
2775
2776                     if Last_Paren < No then
2777                        Last_Paren := No;
2778                     end if;
2779                  end;
2780
2781               when REFF =>
2782                  declare
2783                     No : constant Natural :=
2784                            Character'Pos (Program (Operand (Scan)));
2785
2786                     Data_Pos : Natural;
2787
2788                  begin
2789                     --  If we haven't seen that parenthesis yet
2790
2791                     if Last_Paren < No then
2792                        Dump_Indent := Dump_Indent - 1;
2793
2794                        if Debug then
2795                           Dump_Error ("REFF: No match, backtracking");
2796                        end if;
2797
2798                        return False;
2799                     end if;
2800
2801                     Data_Pos := Matches_Full (No).First;
2802
2803                     while Data_Pos <= Matches_Full (No).Last loop
2804                        if Input_Pos > Last_In_Data
2805                          or else Data (Input_Pos) /= Data (Data_Pos)
2806                        then
2807                           Dump_Indent := Dump_Indent - 1;
2808
2809                           if Debug then
2810                              Dump_Error ("REFF: No match, backtracking");
2811                           end if;
2812
2813                           return False;
2814                        end if;
2815
2816                        Input_Pos := Input_Pos + 1;
2817                        Data_Pos := Data_Pos + 1;
2818                     end loop;
2819                  end;
2820
2821               when MINMOD =>
2822                  Greedy := False;
2823
2824               when STAR | PLUS | CURLY =>
2825                  declare
2826                     Greed : constant Boolean := Greedy;
2827                  begin
2828                     Greedy := True;
2829                     Result := Match_Simple_Operator (Op, Scan, Next, Greed);
2830                     Dump_Indent := Dump_Indent - 1;
2831                     return Result;
2832                  end;
2833
2834               when CURLYX =>
2835
2836                  --  Looking at something like:
2837
2838                  --    1: CURLYX {n,m}  (->4)
2839                  --    2:   code for complex thing  (->3)
2840                  --    3:   WHILEM (->0)
2841                  --    4: NOTHING
2842
2843                  declare
2844                     Min : constant Natural :=
2845                             Read_Natural (Program, Scan + Next_Pointer_Bytes);
2846                     Max : constant Natural :=
2847                             Read_Natural
2848                                (Program, Scan + Next_Pointer_Bytes + 2);
2849                     Cc  : aliased Current_Curly_Record;
2850
2851                     Has_Match : Boolean;
2852
2853                  begin
2854                     Cc := (Paren_Floor => Last_Paren,
2855                            Cur         => -1,
2856                            Min         => Min,
2857                            Max         => Max,
2858                            Greedy      => Greedy,
2859                            Scan        => Scan + 7,
2860                            Next        => Next,
2861                            Lastloc     => 0,
2862                            Old_Cc      => Current_Curly);
2863                     Greedy := True;
2864                     Current_Curly := Cc'Unchecked_Access;
2865
2866                     Has_Match := Match (Next - Next_Pointer_Bytes);
2867
2868                     --  Start on the WHILEM
2869
2870                     Current_Curly := Cc.Old_Cc;
2871                     Dump_Indent := Dump_Indent - 1;
2872
2873                     if not Has_Match then
2874                        if Debug then
2875                           Dump_Error ("CURLYX failed...");
2876                        end if;
2877                     end if;
2878
2879                     return Has_Match;
2880                  end;
2881
2882               when WHILEM =>
2883                  Result := Match_Whilem;
2884                  Dump_Indent := Dump_Indent - 1;
2885
2886                  if Debug and then not Result then
2887                     Dump_Error ("WHILEM: no match, backtracking");
2888                  end if;
2889
2890                  return Result;
2891            end case;
2892
2893            Scan := Next;
2894         end loop State_Machine;
2895
2896         if Debug then
2897            Dump_Error ("failed...");
2898            Dump_Indent := Dump_Indent - 1;
2899         end if;
2900
2901         --  If we get here, there is no match. For successful matches when EOP
2902         --  is the terminating point.
2903
2904         return False;
2905      end Match;
2906
2907      ---------------------------
2908      -- Match_Simple_Operator --
2909      ---------------------------
2910
2911      function Match_Simple_Operator
2912        (Op     : Opcode;
2913         Scan   : Pointer;
2914         Next   : Pointer;
2915         Greedy : Boolean) return Boolean
2916      is
2917         Next_Char       : Character := ASCII.NUL;
2918         Next_Char_Known : Boolean := False;
2919         No              : Integer;  --  Can be negative
2920         Min             : Natural;
2921         Max             : Natural := Natural'Last;
2922         Operand_Code    : Pointer;
2923         Old             : Natural;
2924         Last_Pos        : Natural;
2925         Save            : constant Natural := Input_Pos;
2926
2927      begin
2928         --  Lookahead to avoid useless match attempts when we know what
2929         --  character comes next.
2930
2931         if Program (Next) = EXACT then
2932            Next_Char := Program (String_Operand (Next));
2933            Next_Char_Known := True;
2934         end if;
2935
2936         --  Find the minimal and maximal values for the operator
2937
2938         case Op is
2939            when STAR =>
2940               Min := 0;
2941               Operand_Code := Operand (Scan);
2942
2943            when PLUS =>
2944               Min := 1;
2945               Operand_Code := Operand (Scan);
2946
2947            when others =>
2948               Min := Read_Natural (Program, Scan + Next_Pointer_Bytes);
2949               Max := Read_Natural (Program, Scan + Next_Pointer_Bytes + 2);
2950               Operand_Code := Scan + 7;
2951         end case;
2952
2953         if Debug then
2954            Dump_Current (Operand_Code, Prefix => False);
2955         end if;
2956
2957         --  Non greedy operators
2958
2959         if not Greedy then
2960
2961            --  Test we can repeat at least Min times
2962
2963            if Min /= 0 then
2964               No := Repeat (Operand_Code, Min);
2965
2966               if No < Min then
2967                  if Debug then
2968                     Dump_Error ("failed... matched" & No'Img & " times");
2969                  end if;
2970
2971                  return False;
2972               end if;
2973            end if;
2974
2975            Old := Input_Pos;
2976
2977            --  Find the place where 'next' could work
2978
2979            if Next_Char_Known then
2980
2981               --  Last position to check
2982
2983               if Max = Natural'Last then
2984                  Last_Pos := Last_In_Data;
2985               else
2986                  Last_Pos := Input_Pos + Max;
2987
2988                  if Last_Pos > Last_In_Data then
2989                     Last_Pos := Last_In_Data;
2990                  end if;
2991               end if;
2992
2993               --  Look for the first possible opportunity
2994
2995               if Debug then
2996                  Dump_Error ("Next_Char must be " & Next_Char);
2997               end if;
2998
2999               loop
3000                  --  Find the next possible position
3001
3002                  while Input_Pos <= Last_Pos
3003                    and then Data (Input_Pos) /= Next_Char
3004                  loop
3005                     Input_Pos := Input_Pos + 1;
3006                  end loop;
3007
3008                  if Input_Pos > Last_Pos then
3009                     return False;
3010                  end if;
3011
3012                  --  Check that we still match if we stop at the position we
3013                  --  just found.
3014
3015                  declare
3016                     Num : constant Natural := Input_Pos - Old;
3017
3018                  begin
3019                     Input_Pos := Old;
3020
3021                     if Debug then
3022                        Dump_Error ("Would we still match at that position?");
3023                     end if;
3024
3025                     if Repeat (Operand_Code, Num) < Num then
3026                        return False;
3027                     end if;
3028                  end;
3029
3030                  --  Input_Pos now points to the new position
3031
3032                  if Match (Get_Next (Program, Scan)) then
3033                     return True;
3034                  end if;
3035
3036                  Old := Input_Pos;
3037                  Input_Pos := Input_Pos + 1;
3038               end loop;
3039
3040            --  We do not know what the next character is
3041
3042            else
3043               while Max >= Min loop
3044                  if Debug then
3045                     Dump_Error ("Non-greedy repeat, N=" & Min'Img);
3046                     Dump_Error ("Do we still match Next if we stop here?");
3047                  end if;
3048
3049                  --  If the next character matches
3050
3051                  if Recurse_Match (Next, 1) then
3052                     return True;
3053                  end if;
3054
3055                  Input_Pos := Save + Min;
3056
3057                  --  Could not or did not match -- move forward
3058
3059                  if Repeat (Operand_Code, 1) /= 0 then
3060                     Min := Min + 1;
3061                  else
3062                     if Debug then
3063                        Dump_Error ("Non-greedy repeat failed...");
3064                     end if;
3065
3066                     return False;
3067                  end if;
3068               end loop;
3069            end if;
3070
3071            return False;
3072
3073         --  Greedy operators
3074
3075         else
3076            No := Repeat (Operand_Code, Max);
3077
3078            if Debug and then No < Min then
3079               Dump_Error ("failed... matched" & No'Img & " times");
3080            end if;
3081
3082            --  ??? Perl has some special code here in case the next
3083            --  instruction is of type EOL, since $ and \Z can match before
3084            --  *and* after newline at the end.
3085
3086            --  ??? Perl has some special code here in case (paren) is True
3087
3088            --  Else, if we don't have any parenthesis
3089
3090            while No >= Min loop
3091               if not Next_Char_Known
3092                 or else (Input_Pos <= Last_In_Data
3093                           and then Data (Input_Pos) = Next_Char)
3094               then
3095                  if Match (Next) then
3096                     return True;
3097                  end if;
3098               end if;
3099
3100               --  Could not or did not work, we back up
3101
3102               No := No - 1;
3103               Input_Pos := Save + No;
3104            end loop;
3105
3106            return False;
3107         end if;
3108      end Match_Simple_Operator;
3109
3110      ------------------
3111      -- Match_Whilem --
3112      ------------------
3113
3114      --  This is really hard to understand, because after we match what we
3115      --  are trying to match, we must make sure the rest of the REx is going
3116      --  to match for sure, and to do that we have to go back UP the parse
3117      --  tree by recursing ever deeper.  And if it fails, we have to reset
3118      --  our parent's current state that we can try again after backing off.
3119
3120      function Match_Whilem return Boolean is
3121         Cc : constant Current_Curly_Access := Current_Curly;
3122
3123         N  : constant Natural              := Cc.Cur + 1;
3124         Ln : Natural                       := 0;
3125
3126         Lastloc : constant Natural := Cc.Lastloc;
3127         --  Detection of 0-len
3128
3129      begin
3130         --  If degenerate scan matches "", assume scan done
3131
3132         if Input_Pos = Cc.Lastloc
3133           and then N >= Cc.Min
3134         then
3135            --  Temporarily restore the old context, and check that we
3136            --  match was comes after CURLYX.
3137
3138            Current_Curly := Cc.Old_Cc;
3139
3140            if Current_Curly /= null then
3141               Ln := Current_Curly.Cur;
3142            end if;
3143
3144            if Match (Cc.Next) then
3145               return True;
3146            end if;
3147
3148            if Current_Curly /= null then
3149               Current_Curly.Cur := Ln;
3150            end if;
3151
3152            Current_Curly := Cc;
3153            return False;
3154         end if;
3155
3156         --  First, just match a string of min scans
3157
3158         if N < Cc.Min then
3159            Cc.Cur := N;
3160            Cc.Lastloc := Input_Pos;
3161
3162            if Debug then
3163               Dump_Error
3164                 ("Tests that we match at least" & Cc.Min'Img & " N=" & N'Img);
3165            end if;
3166
3167            if Match (Cc.Scan) then
3168               return True;
3169            end if;
3170
3171            Cc.Cur := N - 1;
3172            Cc.Lastloc := Lastloc;
3173
3174            if Debug then
3175               Dump_Error ("failed...");
3176            end if;
3177
3178            return False;
3179         end if;
3180
3181         --  Prefer next over scan for minimal matching
3182
3183         if not Cc.Greedy then
3184            Current_Curly := Cc.Old_Cc;
3185
3186            if Current_Curly /= null then
3187               Ln := Current_Curly.Cur;
3188            end if;
3189
3190            if Recurse_Match (Cc.Next, Cc.Paren_Floor) then
3191               return True;
3192            end if;
3193
3194            if Current_Curly /= null then
3195               Current_Curly.Cur := Ln;
3196            end if;
3197
3198            Current_Curly := Cc;
3199
3200            --  Maximum greed exceeded ?
3201
3202            if N >= Cc.Max then
3203               if Debug then
3204                  Dump_Error ("failed...");
3205               end if;
3206               return False;
3207            end if;
3208
3209            --  Try scanning more and see if it helps
3210            Cc.Cur := N;
3211            Cc.Lastloc := Input_Pos;
3212
3213            if Debug then
3214               Dump_Error ("Next failed, what about Current?");
3215            end if;
3216
3217            if Recurse_Match (Cc.Scan, Cc.Paren_Floor) then
3218               return True;
3219            end if;
3220
3221            Cc.Cur := N - 1;
3222            Cc.Lastloc := Lastloc;
3223            return False;
3224         end if;
3225
3226         --  Prefer scan over next for maximal matching
3227
3228         if N < Cc.Max then   --  more greed allowed ?
3229            Cc.Cur := N;
3230            Cc.Lastloc := Input_Pos;
3231
3232            if Debug then
3233               Dump_Error ("Recurse at current position");
3234            end if;
3235
3236            if Recurse_Match (Cc.Scan, Cc.Paren_Floor) then
3237               return True;
3238            end if;
3239         end if;
3240
3241         --  Failed deeper matches of scan, so see if this one works
3242
3243         Current_Curly := Cc.Old_Cc;
3244
3245         if Current_Curly /= null then
3246            Ln := Current_Curly.Cur;
3247         end if;
3248
3249         if Debug then
3250            Dump_Error ("Failed matching for later positions");
3251         end if;
3252
3253         if Match (Cc.Next) then
3254            return True;
3255         end if;
3256
3257         if Current_Curly /= null then
3258            Current_Curly.Cur := Ln;
3259         end if;
3260
3261         Current_Curly := Cc;
3262         Cc.Cur := N - 1;
3263         Cc.Lastloc := Lastloc;
3264
3265         if Debug then
3266            Dump_Error ("failed...");
3267         end if;
3268
3269         return False;
3270      end Match_Whilem;
3271
3272      ------------
3273      -- Repeat --
3274      ------------
3275
3276      function Repeat
3277        (IP  : Pointer;
3278         Max : Natural := Natural'Last) return Natural
3279      is
3280         Scan  : Natural := Input_Pos;
3281         Last  : Natural;
3282         Op    : constant Opcode := Opcode'Val (Character'Pos (Program (IP)));
3283         Count : Natural;
3284         C     : Character;
3285         Is_First : Boolean := True;
3286         Bitmap   : Character_Class;
3287
3288      begin
3289         if Max = Natural'Last or else Scan + Max - 1 > Last_In_Data then
3290            Last := Last_In_Data;
3291         else
3292            Last := Scan + Max - 1;
3293         end if;
3294
3295         case Op is
3296            when ANY =>
3297               while Scan <= Last
3298                 and then Data (Scan) /= ASCII.LF
3299               loop
3300                  Scan := Scan + 1;
3301               end loop;
3302
3303            when SANY =>
3304               Scan := Last + 1;
3305
3306            when EXACT =>
3307
3308               --  The string has only one character if Repeat was called
3309
3310               C := Program (String_Operand (IP));
3311               while Scan <= Last
3312                 and then C = Data (Scan)
3313               loop
3314                  Scan := Scan + 1;
3315               end loop;
3316
3317            when EXACTF =>
3318
3319               --  The string has only one character if Repeat was called
3320
3321               C := Program (String_Operand (IP));
3322               while Scan <= Last
3323                 and then To_Lower (C) = Data (Scan)
3324               loop
3325                  Scan := Scan + 1;
3326               end loop;
3327
3328            when ANYOF =>
3329               if Is_First then
3330                  Bitmap_Operand (Program, IP, Bitmap);
3331                  Is_First := False;
3332               end if;
3333
3334               while Scan <= Last
3335                 and then Get_From_Class (Bitmap, Data (Scan))
3336               loop
3337                  Scan := Scan + 1;
3338               end loop;
3339
3340            when ALNUM =>
3341               while Scan <= Last
3342                 and then Is_Alnum (Data (Scan))
3343               loop
3344                  Scan := Scan + 1;
3345               end loop;
3346
3347            when NALNUM =>
3348               while Scan <= Last
3349                 and then not Is_Alnum (Data (Scan))
3350               loop
3351                  Scan := Scan + 1;
3352               end loop;
3353
3354            when SPACE =>
3355               while Scan <= Last
3356                 and then Is_White_Space (Data (Scan))
3357               loop
3358                  Scan := Scan + 1;
3359               end loop;
3360
3361            when NSPACE =>
3362               while Scan <= Last
3363                 and then not Is_White_Space (Data (Scan))
3364               loop
3365                  Scan := Scan + 1;
3366               end loop;
3367
3368            when DIGIT  =>
3369               while Scan <= Last
3370                 and then Is_Digit (Data (Scan))
3371               loop
3372                  Scan := Scan + 1;
3373               end loop;
3374
3375            when NDIGIT  =>
3376               while Scan <= Last
3377                 and then not Is_Digit (Data (Scan))
3378               loop
3379                  Scan := Scan + 1;
3380               end loop;
3381
3382            when others =>
3383               raise Program_Error;
3384         end case;
3385
3386         Count := Scan - Input_Pos;
3387         Input_Pos := Scan;
3388         return Count;
3389      end Repeat;
3390
3391      ---------
3392      -- Try --
3393      ---------
3394
3395      function Try (Pos : Positive) return Boolean is
3396      begin
3397         Input_Pos  := Pos;
3398         Last_Paren := 0;
3399         Matches_Full := (others => No_Match);
3400
3401         if Match (Program_First) then
3402            Matches_Full (0) := (Pos, Input_Pos - 1);
3403            return True;
3404         end if;
3405
3406         return False;
3407      end Try;
3408
3409   --  Start of processing for Match
3410
3411   begin
3412      --  Do we have the regexp Never_Match?
3413
3414      if Self.Size = 0 then
3415         Matches := (others => No_Match);
3416         return;
3417      end if;
3418
3419      --  If there is a "must appear" string, look for it
3420
3421      if Self.Must_Have_Length > 0 then
3422         declare
3423            First      : constant Character := Program (Self.Must_Have);
3424            Must_First : constant Pointer := Self.Must_Have;
3425            Must_Last  : constant Pointer :=
3426                           Must_First + Pointer (Self.Must_Have_Length - 1);
3427            Next_Try   : Natural := Index (First_In_Data, First);
3428
3429         begin
3430            while Next_Try /= 0
3431              and then Data (Next_Try .. Next_Try + Self.Must_Have_Length - 1)
3432                          = String (Program (Must_First .. Must_Last))
3433            loop
3434               Next_Try := Index (Next_Try + 1, First);
3435            end loop;
3436
3437            if Next_Try = 0 then
3438               Matches := (others => No_Match);
3439               return;                  -- Not present
3440            end if;
3441         end;
3442      end if;
3443
3444      --  Mark beginning of line for ^
3445
3446      BOL_Pos := Data'First;
3447
3448      --  Simplest case first: an anchored match need be tried only once
3449
3450      if Self.Anchored and then (Self.Flags and Multiple_Lines) = 0 then
3451         Matched := Try (First_In_Data);
3452
3453      elsif Self.Anchored then
3454         declare
3455            Next_Try : Natural := First_In_Data;
3456         begin
3457            --  Test the first position in the buffer
3458            Matched := Try (Next_Try);
3459
3460            --  Else only test after newlines
3461
3462            if not Matched then
3463               while Next_Try <= Last_In_Data loop
3464                  while Next_Try <= Last_In_Data
3465                    and then Data (Next_Try) /= ASCII.LF
3466                  loop
3467                     Next_Try := Next_Try + 1;
3468                  end loop;
3469
3470                  Next_Try := Next_Try + 1;
3471
3472                  if Next_Try <= Last_In_Data then
3473                     Matched := Try (Next_Try);
3474                     exit when Matched;
3475                  end if;
3476               end loop;
3477            end if;
3478         end;
3479
3480      elsif Self.First /= ASCII.NUL then
3481         --  We know what char it must start with
3482
3483         declare
3484            Next_Try : Natural := Index (First_In_Data, Self.First);
3485
3486         begin
3487            while Next_Try /= 0 loop
3488               Matched := Try (Next_Try);
3489               exit when Matched;
3490               Next_Try := Index (Next_Try + 1, Self.First);
3491            end loop;
3492         end;
3493
3494      else
3495         --  Messy cases: try all locations (including for the empty string)
3496
3497         Matched := Try (First_In_Data);
3498
3499         if not Matched then
3500            for S in First_In_Data + 1 .. Last_In_Data loop
3501               Matched := Try (S);
3502               exit when Matched;
3503            end loop;
3504         end if;
3505      end if;
3506
3507      --  Matched has its value
3508
3509      for J in Last_Paren + 1 .. Matches'Last loop
3510         Matches_Full (J) := No_Match;
3511      end loop;
3512
3513      Matches := Matches_Full (Matches'Range);
3514   end Match;
3515
3516   -----------
3517   -- Match --
3518   -----------
3519
3520   function Match
3521     (Self       : Pattern_Matcher;
3522      Data       : String;
3523      Data_First : Integer := -1;
3524      Data_Last  : Positive := Positive'Last) return Natural
3525   is
3526      Matches : Match_Array (0 .. 0);
3527
3528   begin
3529      Match (Self, Data, Matches, Data_First, Data_Last);
3530      if Matches (0) = No_Match then
3531         return Data'First - 1;
3532      else
3533         return Matches (0).First;
3534      end if;
3535   end Match;
3536
3537   function Match
3538     (Self       : Pattern_Matcher;
3539      Data       : String;
3540      Data_First : Integer  := -1;
3541      Data_Last  : Positive := Positive'Last) return Boolean
3542   is
3543      Matches : Match_Array (0 .. 0);
3544
3545   begin
3546      Match (Self, Data, Matches, Data_First, Data_Last);
3547      return Matches (0).First >= Data'First;
3548   end Match;
3549
3550   procedure Match
3551     (Expression : String;
3552      Data       : String;
3553      Matches    : out Match_Array;
3554      Size       : Program_Size := Auto_Size;
3555      Data_First : Integer      := -1;
3556      Data_Last  : Positive     := Positive'Last)
3557   is
3558      PM            : Pattern_Matcher (Size);
3559      Finalize_Size : Program_Size;
3560      pragma Unreferenced (Finalize_Size);
3561   begin
3562      if Size = 0 then
3563         Match (Compile (Expression), Data, Matches, Data_First, Data_Last);
3564      else
3565         Compile (PM, Expression, Finalize_Size);
3566         Match (PM, Data, Matches, Data_First, Data_Last);
3567      end if;
3568   end Match;
3569
3570   -----------
3571   -- Match --
3572   -----------
3573
3574   function Match
3575     (Expression : String;
3576      Data       : String;
3577      Size       : Program_Size := Auto_Size;
3578      Data_First : Integer      := -1;
3579      Data_Last  : Positive     := Positive'Last) return Natural
3580   is
3581      PM         : Pattern_Matcher (Size);
3582      Final_Size : Program_Size;
3583      pragma Unreferenced (Final_Size);
3584   begin
3585      if Size = 0 then
3586         return Match (Compile (Expression), Data, Data_First, Data_Last);
3587      else
3588         Compile (PM, Expression, Final_Size);
3589         return Match (PM, Data, Data_First, Data_Last);
3590      end if;
3591   end Match;
3592
3593   -----------
3594   -- Match --
3595   -----------
3596
3597   function  Match
3598     (Expression : String;
3599      Data       : String;
3600      Size       : Program_Size := Auto_Size;
3601      Data_First : Integer      := -1;
3602      Data_Last  : Positive     := Positive'Last) return Boolean
3603   is
3604      Matches    : Match_Array (0 .. 0);
3605      PM         : Pattern_Matcher (Size);
3606      Final_Size : Program_Size;
3607      pragma Unreferenced (Final_Size);
3608   begin
3609      if Size = 0 then
3610         Match (Compile (Expression), Data, Matches, Data_First, Data_Last);
3611      else
3612         Compile (PM, Expression, Final_Size);
3613         Match (PM, Data, Matches, Data_First, Data_Last);
3614      end if;
3615
3616      return Matches (0).First >= Data'First;
3617   end Match;
3618
3619   -------------
3620   -- Operand --
3621   -------------
3622
3623   function Operand (P : Pointer) return Pointer is
3624   begin
3625      return P + Next_Pointer_Bytes;
3626   end Operand;
3627
3628   --------------
3629   -- Optimize --
3630   --------------
3631
3632   procedure Optimize (Self : in out Pattern_Matcher) is
3633      Scan    : Pointer;
3634      Program : Program_Data renames Self.Program;
3635
3636   begin
3637      --  Start with safe defaults (no optimization):
3638      --    *  No known first character of match
3639      --    *  Does not necessarily start at beginning of line
3640      --    *  No string known that has to appear in data
3641
3642      Self.First := ASCII.NUL;
3643      Self.Anchored := False;
3644      Self.Must_Have := Program'Last + 1;
3645      Self.Must_Have_Length := 0;
3646
3647      Scan := Program_First;  --  First instruction (can be anything)
3648
3649      if Program (Scan) = EXACT then
3650         Self.First := Program (String_Operand (Scan));
3651
3652      elsif Program (Scan) = BOL
3653        or else Program (Scan) = SBOL
3654        or else Program (Scan) = MBOL
3655      then
3656         Self.Anchored := True;
3657      end if;
3658   end Optimize;
3659
3660   -----------------
3661   -- Paren_Count --
3662   -----------------
3663
3664   function Paren_Count (Regexp : Pattern_Matcher) return Match_Count is
3665   begin
3666      return Regexp.Paren_Count;
3667   end Paren_Count;
3668
3669   -----------
3670   -- Quote --
3671   -----------
3672
3673   function Quote (Str : String) return String is
3674      S    : String (1 .. Str'Length * 2);
3675      Last : Natural := 0;
3676
3677   begin
3678      for J in Str'Range loop
3679         case Str (J) is
3680            when '^' | '$' | '|' | '*' | '+' | '?' | '{' |
3681                 '}' | '[' | ']' | '(' | ')' | '\' | '.' =>
3682
3683               S (Last + 1) := '\';
3684               S (Last + 2) := Str (J);
3685               Last := Last + 2;
3686
3687            when others =>
3688               S (Last + 1) := Str (J);
3689               Last := Last + 1;
3690         end case;
3691      end loop;
3692
3693      return S (1 .. Last);
3694   end Quote;
3695
3696   ------------------
3697   -- Read_Natural --
3698   ------------------
3699
3700   function Read_Natural
3701     (Program : Program_Data;
3702      IP      : Pointer) return Natural
3703   is
3704   begin
3705      return Character'Pos (Program (IP)) +
3706               256 * Character'Pos (Program (IP + 1));
3707   end Read_Natural;
3708
3709   -----------------
3710   -- Reset_Class --
3711   -----------------
3712
3713   procedure Reset_Class (Bitmap : out Character_Class) is
3714   begin
3715      Bitmap := (others => 0);
3716   end Reset_Class;
3717
3718   ------------------
3719   -- Set_In_Class --
3720   ------------------
3721
3722   procedure Set_In_Class
3723     (Bitmap : in out Character_Class;
3724      C      : Character)
3725   is
3726      Value : constant Class_Byte := Character'Pos (C);
3727   begin
3728      Bitmap (Value / 8) := Bitmap (Value / 8)
3729        or Bit_Conversion (Value mod 8);
3730   end Set_In_Class;
3731
3732   -------------------
3733   -- String_Length --
3734   -------------------
3735
3736   function String_Length
3737     (Program : Program_Data;
3738      P       : Pointer) return Program_Size
3739   is
3740   begin
3741      pragma Assert (Program (P) = EXACT or else Program (P) = EXACTF);
3742      return Character'Pos (Program (P + Next_Pointer_Bytes));
3743   end String_Length;
3744
3745   --------------------
3746   -- String_Operand --
3747   --------------------
3748
3749   function String_Operand (P : Pointer) return Pointer is
3750   begin
3751      return P + 4;
3752   end String_Operand;
3753
3754end System.Regpat;
3755