1------------------------------------------------------------------------------
2--                                                                          --
3--                         GNAT COMPILER COMPONENTS                         --
4--                                                                          --
5--                              S E M _ R E S                               --
6--                                                                          --
7--                                 B o d y                                  --
8--                                                                          --
9--          Copyright (C) 1992-2018, Free Software Foundation, Inc.         --
10--                                                                          --
11-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12-- terms of the  GNU General Public License as published  by the Free Soft- --
13-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
17-- for  more details.  You should have  received  a copy of the GNU General --
18-- Public License  distributed with GNAT; see file COPYING3.  If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license.          --
20--                                                                          --
21-- GNAT was originally developed  by the GNAT team at  New York University. --
22-- Extensive contributions were provided by Ada Core Technologies Inc.      --
23--                                                                          --
24------------------------------------------------------------------------------
25
26with Atree;    use Atree;
27with Checks;   use Checks;
28with Debug;    use Debug;
29with Debug_A;  use Debug_A;
30with Einfo;    use Einfo;
31with Errout;   use Errout;
32with Expander; use Expander;
33with Exp_Disp; use Exp_Disp;
34with Exp_Ch6;  use Exp_Ch6;
35with Exp_Ch7;  use Exp_Ch7;
36with Exp_Tss;  use Exp_Tss;
37with Exp_Util; use Exp_Util;
38with Freeze;   use Freeze;
39with Ghost;    use Ghost;
40with Inline;   use Inline;
41with Itypes;   use Itypes;
42with Lib;      use Lib;
43with Lib.Xref; use Lib.Xref;
44with Namet;    use Namet;
45with Nmake;    use Nmake;
46with Nlists;   use Nlists;
47with Opt;      use Opt;
48with Output;   use Output;
49with Par_SCO;  use Par_SCO;
50with Restrict; use Restrict;
51with Rident;   use Rident;
52with Rtsfind;  use Rtsfind;
53with Sem;      use Sem;
54with Sem_Aux;  use Sem_Aux;
55with Sem_Aggr; use Sem_Aggr;
56with Sem_Attr; use Sem_Attr;
57with Sem_Cat;  use Sem_Cat;
58with Sem_Ch4;  use Sem_Ch4;
59with Sem_Ch3;  use Sem_Ch3;
60with Sem_Ch6;  use Sem_Ch6;
61with Sem_Ch8;  use Sem_Ch8;
62with Sem_Ch13; use Sem_Ch13;
63with Sem_Dim;  use Sem_Dim;
64with Sem_Disp; use Sem_Disp;
65with Sem_Dist; use Sem_Dist;
66with Sem_Elab; use Sem_Elab;
67with Sem_Elim; use Sem_Elim;
68with Sem_Eval; use Sem_Eval;
69with Sem_Intr; use Sem_Intr;
70with Sem_Util; use Sem_Util;
71with Targparm; use Targparm;
72with Sem_Type; use Sem_Type;
73with Sem_Warn; use Sem_Warn;
74with Sinfo;    use Sinfo;
75with Sinfo.CN; use Sinfo.CN;
76with Snames;   use Snames;
77with Stand;    use Stand;
78with Stringt;  use Stringt;
79with Style;    use Style;
80with Tbuild;   use Tbuild;
81with Uintp;    use Uintp;
82with Urealp;   use Urealp;
83
84package body Sem_Res is
85
86   -----------------------
87   -- Local Subprograms --
88   -----------------------
89
90   --  Second pass (top-down) type checking and overload resolution procedures
91   --  Typ is the type required by context. These procedures propagate the
92   --  type information recursively to the descendants of N. If the node is not
93   --  overloaded, its Etype is established in the first pass. If overloaded,
94   --  the Resolve routines set the correct type. For arithmetic operators, the
95   --  Etype is the base type of the context.
96
97   --  Note that Resolve_Attribute is separated off in Sem_Attr
98
99   procedure Check_Discriminant_Use (N : Node_Id);
100   --  Enforce the restrictions on the use of discriminants when constraining
101   --  a component of a discriminated type (record or concurrent type).
102
103   procedure Check_For_Visible_Operator (N : Node_Id; T : Entity_Id);
104   --  Given a node for an operator associated with type T, check that the
105   --  operator is visible. Operators all of whose operands are universal must
106   --  be checked for visibility during resolution because their type is not
107   --  determinable based on their operands.
108
109   procedure Check_Fully_Declared_Prefix
110     (Typ  : Entity_Id;
111      Pref : Node_Id);
112   --  Check that the type of the prefix of a dereference is not incomplete
113
114   function Check_Infinite_Recursion (N : Node_Id) return Boolean;
115   --  Given a call node, N, which is known to occur immediately within the
116   --  subprogram being called, determines whether it is a detectable case of
117   --  an infinite recursion, and if so, outputs appropriate messages. Returns
118   --  True if an infinite recursion is detected, and False otherwise.
119
120   procedure Check_No_Direct_Boolean_Operators (N : Node_Id);
121   --  N is the node for a logical operator. If the operator is predefined, and
122   --  the root type of the operands is Standard.Boolean, then a check is made
123   --  for restriction No_Direct_Boolean_Operators. This procedure also handles
124   --  the style check for Style_Check_Boolean_And_Or.
125
126   function Is_Atomic_Ref_With_Address (N : Node_Id) return Boolean;
127   --  N is either an indexed component or a selected component. This function
128   --  returns true if the prefix refers to an object that has an address
129   --  clause (the case in which we may want to issue a warning).
130
131   function Is_Definite_Access_Type (E : Entity_Id) return Boolean;
132   --  Determine whether E is an access type declared by an access declaration,
133   --  and not an (anonymous) allocator type.
134
135   function Is_Predefined_Op (Nam : Entity_Id) return Boolean;
136   --  Utility to check whether the entity for an operator is a predefined
137   --  operator, in which case the expression is left as an operator in the
138   --  tree (else it is rewritten into a call). An instance of an intrinsic
139   --  conversion operation may be given an operator name, but is not treated
140   --  like an operator. Note that an operator that is an imported back-end
141   --  builtin has convention Intrinsic, but is expected to be rewritten into
142   --  a call, so such an operator is not treated as predefined by this
143   --  predicate.
144
145   procedure Replace_Actual_Discriminants (N : Node_Id; Default : Node_Id);
146   --  If a default expression in entry call N depends on the discriminants
147   --  of the task, it must be replaced with a reference to the discriminant
148   --  of the task being called.
149
150   procedure Resolve_Op_Concat_Arg
151     (N       : Node_Id;
152      Arg     : Node_Id;
153      Typ     : Entity_Id;
154      Is_Comp : Boolean);
155   --  Internal procedure for Resolve_Op_Concat to resolve one operand of
156   --  concatenation operator.  The operand is either of the array type or of
157   --  the component type. If the operand is an aggregate, and the component
158   --  type is composite, this is ambiguous if component type has aggregates.
159
160   procedure Resolve_Op_Concat_First (N : Node_Id; Typ : Entity_Id);
161   --  Does the first part of the work of Resolve_Op_Concat
162
163   procedure Resolve_Op_Concat_Rest (N : Node_Id; Typ : Entity_Id);
164   --  Does the "rest" of the work of Resolve_Op_Concat, after the left operand
165   --  has been resolved. See Resolve_Op_Concat for details.
166
167   procedure Resolve_Allocator                 (N : Node_Id; Typ : Entity_Id);
168   procedure Resolve_Arithmetic_Op             (N : Node_Id; Typ : Entity_Id);
169   procedure Resolve_Call                      (N : Node_Id; Typ : Entity_Id);
170   procedure Resolve_Case_Expression           (N : Node_Id; Typ : Entity_Id);
171   procedure Resolve_Character_Literal         (N : Node_Id; Typ : Entity_Id);
172   procedure Resolve_Comparison_Op             (N : Node_Id; Typ : Entity_Id);
173   procedure Resolve_Entity_Name               (N : Node_Id; Typ : Entity_Id);
174   procedure Resolve_Equality_Op               (N : Node_Id; Typ : Entity_Id);
175   procedure Resolve_Explicit_Dereference      (N : Node_Id; Typ : Entity_Id);
176   procedure Resolve_Expression_With_Actions   (N : Node_Id; Typ : Entity_Id);
177   procedure Resolve_If_Expression             (N : Node_Id; Typ : Entity_Id);
178   procedure Resolve_Generalized_Indexing      (N : Node_Id; Typ : Entity_Id);
179   procedure Resolve_Indexed_Component         (N : Node_Id; Typ : Entity_Id);
180   procedure Resolve_Integer_Literal           (N : Node_Id; Typ : Entity_Id);
181   procedure Resolve_Logical_Op                (N : Node_Id; Typ : Entity_Id);
182   procedure Resolve_Membership_Op             (N : Node_Id; Typ : Entity_Id);
183   procedure Resolve_Null                      (N : Node_Id; Typ : Entity_Id);
184   procedure Resolve_Operator_Symbol           (N : Node_Id; Typ : Entity_Id);
185   procedure Resolve_Op_Concat                 (N : Node_Id; Typ : Entity_Id);
186   procedure Resolve_Op_Expon                  (N : Node_Id; Typ : Entity_Id);
187   procedure Resolve_Op_Not                    (N : Node_Id; Typ : Entity_Id);
188   procedure Resolve_Qualified_Expression      (N : Node_Id; Typ : Entity_Id);
189   procedure Resolve_Raise_Expression          (N : Node_Id; Typ : Entity_Id);
190   procedure Resolve_Range                     (N : Node_Id; Typ : Entity_Id);
191   procedure Resolve_Real_Literal              (N : Node_Id; Typ : Entity_Id);
192   procedure Resolve_Reference                 (N : Node_Id; Typ : Entity_Id);
193   procedure Resolve_Selected_Component        (N : Node_Id; Typ : Entity_Id);
194   procedure Resolve_Shift                     (N : Node_Id; Typ : Entity_Id);
195   procedure Resolve_Short_Circuit             (N : Node_Id; Typ : Entity_Id);
196   procedure Resolve_Slice                     (N : Node_Id; Typ : Entity_Id);
197   procedure Resolve_String_Literal            (N : Node_Id; Typ : Entity_Id);
198   procedure Resolve_Target_Name               (N : Node_Id; Typ : Entity_Id);
199   procedure Resolve_Type_Conversion           (N : Node_Id; Typ : Entity_Id);
200   procedure Resolve_Unary_Op                  (N : Node_Id; Typ : Entity_Id);
201   procedure Resolve_Unchecked_Expression      (N : Node_Id; Typ : Entity_Id);
202   procedure Resolve_Unchecked_Type_Conversion (N : Node_Id; Typ : Entity_Id);
203
204   function Operator_Kind
205     (Op_Name   : Name_Id;
206      Is_Binary : Boolean) return Node_Kind;
207   --  Utility to map the name of an operator into the corresponding Node. Used
208   --  by other node rewriting procedures.
209
210   procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id);
211   --  Resolve actuals of call, and add default expressions for missing ones.
212   --  N is the Node_Id for the subprogram call, and Nam is the entity of the
213   --  called subprogram.
214
215   procedure Resolve_Entry_Call (N : Node_Id; Typ : Entity_Id);
216   --  Called from Resolve_Call, when the prefix denotes an entry or element
217   --  of entry family. Actuals are resolved as for subprograms, and the node
218   --  is rebuilt as an entry call. Also called for protected operations. Typ
219   --  is the context type, which is used when the operation is a protected
220   --  function with no arguments, and the return value is indexed.
221
222   procedure Resolve_Intrinsic_Operator (N : Node_Id; Typ : Entity_Id);
223   --  A call to a user-defined intrinsic operator is rewritten as a call to
224   --  the corresponding predefined operator, with suitable conversions. Note
225   --  that this applies only for intrinsic operators that denote predefined
226   --  operators, not ones that are intrinsic imports of back-end builtins.
227
228   procedure Resolve_Intrinsic_Unary_Operator (N : Node_Id; Typ : Entity_Id);
229   --  Ditto, for arithmetic unary operators
230
231   procedure Rewrite_Operator_As_Call (N : Node_Id; Nam : Entity_Id);
232   --  If an operator node resolves to a call to a user-defined operator,
233   --  rewrite the node as a function call.
234
235   procedure Make_Call_Into_Operator
236     (N     : Node_Id;
237      Typ   : Entity_Id;
238      Op_Id : Entity_Id);
239   --  Inverse transformation: if an operator is given in functional notation,
240   --  then after resolving the node, transform into an operator node, so that
241   --  operands are resolved properly. Recall that predefined operators do not
242   --  have a full signature and special resolution rules apply.
243
244   procedure Rewrite_Renamed_Operator
245     (N   : Node_Id;
246      Op  : Entity_Id;
247      Typ : Entity_Id);
248   --  An operator can rename another, e.g. in an instantiation. In that
249   --  case, the proper operator node must be constructed and resolved.
250
251   procedure Set_String_Literal_Subtype (N : Node_Id; Typ : Entity_Id);
252   --  The String_Literal_Subtype is built for all strings that are not
253   --  operands of a static concatenation operation. If the argument is not
254   --  a N_String_Literal node, then the call has no effect.
255
256   procedure Set_Slice_Subtype (N : Node_Id);
257   --  Build subtype of array type, with the range specified by the slice
258
259   procedure Simplify_Type_Conversion (N : Node_Id);
260   --  Called after N has been resolved and evaluated, but before range checks
261   --  have been applied. Currently simplifies a combination of floating-point
262   --  to integer conversion and Rounding or Truncation attribute.
263
264   function Unique_Fixed_Point_Type (N : Node_Id) return Entity_Id;
265   --  A universal_fixed expression in an universal context is unambiguous if
266   --  there is only one applicable fixed point type. Determining whether there
267   --  is only one requires a search over all visible entities, and happens
268   --  only in very pathological cases (see 6115-006).
269
270   -------------------------
271   -- Ambiguous_Character --
272   -------------------------
273
274   procedure Ambiguous_Character (C : Node_Id) is
275      E : Entity_Id;
276
277   begin
278      if Nkind (C) = N_Character_Literal then
279         Error_Msg_N ("ambiguous character literal", C);
280
281         --  First the ones in Standard
282
283         Error_Msg_N ("\\possible interpretation: Character!", C);
284         Error_Msg_N ("\\possible interpretation: Wide_Character!", C);
285
286         --  Include Wide_Wide_Character in Ada 2005 mode
287
288         if Ada_Version >= Ada_2005 then
289            Error_Msg_N ("\\possible interpretation: Wide_Wide_Character!", C);
290         end if;
291
292         --  Now any other types that match
293
294         E := Current_Entity (C);
295         while Present (E) loop
296            Error_Msg_NE ("\\possible interpretation:}!", C, Etype (E));
297            E := Homonym (E);
298         end loop;
299      end if;
300   end Ambiguous_Character;
301
302   -------------------------
303   -- Analyze_And_Resolve --
304   -------------------------
305
306   procedure Analyze_And_Resolve (N : Node_Id) is
307   begin
308      Analyze (N);
309      Resolve (N);
310   end Analyze_And_Resolve;
311
312   procedure Analyze_And_Resolve (N : Node_Id; Typ : Entity_Id) is
313   begin
314      Analyze (N);
315      Resolve (N, Typ);
316   end Analyze_And_Resolve;
317
318   --  Versions with check(s) suppressed
319
320   procedure Analyze_And_Resolve
321     (N        : Node_Id;
322      Typ      : Entity_Id;
323      Suppress : Check_Id)
324   is
325      Scop : constant Entity_Id := Current_Scope;
326
327   begin
328      if Suppress = All_Checks then
329         declare
330            Sva : constant Suppress_Array := Scope_Suppress.Suppress;
331         begin
332            Scope_Suppress.Suppress := (others => True);
333            Analyze_And_Resolve (N, Typ);
334            Scope_Suppress.Suppress := Sva;
335         end;
336
337      else
338         declare
339            Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
340         begin
341            Scope_Suppress.Suppress (Suppress) := True;
342            Analyze_And_Resolve (N, Typ);
343            Scope_Suppress.Suppress (Suppress) := Svg;
344         end;
345      end if;
346
347      if Current_Scope /= Scop
348        and then Scope_Is_Transient
349      then
350         --  This can only happen if a transient scope was created for an inner
351         --  expression, which will be removed upon completion of the analysis
352         --  of an enclosing construct. The transient scope must have the
353         --  suppress status of the enclosing environment, not of this Analyze
354         --  call.
355
356         Scope_Stack.Table (Scope_Stack.Last).Save_Scope_Suppress :=
357           Scope_Suppress;
358      end if;
359   end Analyze_And_Resolve;
360
361   procedure Analyze_And_Resolve
362     (N        : Node_Id;
363      Suppress : Check_Id)
364   is
365      Scop : constant Entity_Id := Current_Scope;
366
367   begin
368      if Suppress = All_Checks then
369         declare
370            Sva : constant Suppress_Array := Scope_Suppress.Suppress;
371         begin
372            Scope_Suppress.Suppress := (others => True);
373            Analyze_And_Resolve (N);
374            Scope_Suppress.Suppress := Sva;
375         end;
376
377      else
378         declare
379            Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
380         begin
381            Scope_Suppress.Suppress (Suppress) := True;
382            Analyze_And_Resolve (N);
383            Scope_Suppress.Suppress (Suppress) := Svg;
384         end;
385      end if;
386
387      if Current_Scope /= Scop and then Scope_Is_Transient then
388         Scope_Stack.Table (Scope_Stack.Last).Save_Scope_Suppress :=
389           Scope_Suppress;
390      end if;
391   end Analyze_And_Resolve;
392
393   ----------------------------
394   -- Check_Discriminant_Use --
395   ----------------------------
396
397   procedure Check_Discriminant_Use (N : Node_Id) is
398      PN   : constant Node_Id   := Parent (N);
399      Disc : constant Entity_Id := Entity (N);
400      P    : Node_Id;
401      D    : Node_Id;
402
403   begin
404      --  Any use in a spec-expression is legal
405
406      if In_Spec_Expression then
407         null;
408
409      elsif Nkind (PN) = N_Range then
410
411         --  Discriminant cannot be used to constrain a scalar type
412
413         P := Parent (PN);
414
415         if Nkind (P) = N_Range_Constraint
416           and then Nkind (Parent (P)) = N_Subtype_Indication
417           and then Nkind (Parent (Parent (P))) = N_Component_Definition
418         then
419            Error_Msg_N ("discriminant cannot constrain scalar type", N);
420
421         elsif Nkind (P) = N_Index_Or_Discriminant_Constraint then
422
423            --  The following check catches the unusual case where a
424            --  discriminant appears within an index constraint that is part
425            --  of a larger expression within a constraint on a component,
426            --  e.g. "C : Int range 1 .. F (new A(1 .. D))". For now we only
427            --  check case of record components, and note that a similar check
428            --  should also apply in the case of discriminant constraints
429            --  below. ???
430
431            --  Note that the check for N_Subtype_Declaration below is to
432            --  detect the valid use of discriminants in the constraints of a
433            --  subtype declaration when this subtype declaration appears
434            --  inside the scope of a record type (which is syntactically
435            --  illegal, but which may be created as part of derived type
436            --  processing for records). See Sem_Ch3.Build_Derived_Record_Type
437            --  for more info.
438
439            if Ekind (Current_Scope) = E_Record_Type
440              and then Scope (Disc) = Current_Scope
441              and then not
442                (Nkind (Parent (P)) = N_Subtype_Indication
443                  and then
444                    Nkind_In (Parent (Parent (P)), N_Component_Definition,
445                                                   N_Subtype_Declaration)
446                  and then Paren_Count (N) = 0)
447            then
448               Error_Msg_N
449                 ("discriminant must appear alone in component constraint", N);
450               return;
451            end if;
452
453            --   Detect a common error:
454
455            --   type R (D : Positive := 100) is record
456            --     Name : String (1 .. D);
457            --   end record;
458
459            --  The default value causes an object of type R to be allocated
460            --  with room for Positive'Last characters. The RM does not mandate
461            --  the allocation of the maximum size, but that is what GNAT does
462            --  so we should warn the programmer that there is a problem.
463
464            Check_Large : declare
465               SI : Node_Id;
466               T  : Entity_Id;
467               TB : Node_Id;
468               CB : Entity_Id;
469
470               function Large_Storage_Type (T : Entity_Id) return Boolean;
471               --  Return True if type T has a large enough range that any
472               --  array whose index type covered the whole range of the type
473               --  would likely raise Storage_Error.
474
475               ------------------------
476               -- Large_Storage_Type --
477               ------------------------
478
479               function Large_Storage_Type (T : Entity_Id) return Boolean is
480               begin
481                  --  The type is considered large if its bounds are known at
482                  --  compile time and if it requires at least as many bits as
483                  --  a Positive to store the possible values.
484
485                  return Compile_Time_Known_Value (Type_Low_Bound (T))
486                    and then Compile_Time_Known_Value (Type_High_Bound (T))
487                    and then
488                      Minimum_Size (T, Biased => True) >=
489                        RM_Size (Standard_Positive);
490               end Large_Storage_Type;
491
492            --  Start of processing for Check_Large
493
494            begin
495               --  Check that the Disc has a large range
496
497               if not Large_Storage_Type (Etype (Disc)) then
498                  goto No_Danger;
499               end if;
500
501               --  If the enclosing type is limited, we allocate only the
502               --  default value, not the maximum, and there is no need for
503               --  a warning.
504
505               if Is_Limited_Type (Scope (Disc)) then
506                  goto No_Danger;
507               end if;
508
509               --  Check that it is the high bound
510
511               if N /= High_Bound (PN)
512                 or else No (Discriminant_Default_Value (Disc))
513               then
514                  goto No_Danger;
515               end if;
516
517               --  Check the array allows a large range at this bound. First
518               --  find the array
519
520               SI := Parent (P);
521
522               if Nkind (SI) /= N_Subtype_Indication then
523                  goto No_Danger;
524               end if;
525
526               T := Entity (Subtype_Mark (SI));
527
528               if not Is_Array_Type (T) then
529                  goto No_Danger;
530               end if;
531
532               --  Next, find the dimension
533
534               TB := First_Index (T);
535               CB := First (Constraints (P));
536               while True
537                 and then Present (TB)
538                 and then Present (CB)
539                 and then CB /= PN
540               loop
541                  Next_Index (TB);
542                  Next (CB);
543               end loop;
544
545               if CB /= PN then
546                  goto No_Danger;
547               end if;
548
549               --  Now, check the dimension has a large range
550
551               if not Large_Storage_Type (Etype (TB)) then
552                  goto No_Danger;
553               end if;
554
555               --  Warn about the danger
556
557               Error_Msg_N
558                 ("??creation of & object may raise Storage_Error!",
559                  Scope (Disc));
560
561               <<No_Danger>>
562                  null;
563
564            end Check_Large;
565         end if;
566
567      --  Legal case is in index or discriminant constraint
568
569      elsif Nkind_In (PN, N_Index_Or_Discriminant_Constraint,
570                          N_Discriminant_Association)
571      then
572         if Paren_Count (N) > 0 then
573            Error_Msg_N
574              ("discriminant in constraint must appear alone",  N);
575
576         elsif Nkind (N) = N_Expanded_Name
577           and then Comes_From_Source (N)
578         then
579            Error_Msg_N
580              ("discriminant must appear alone as a direct name", N);
581         end if;
582
583         return;
584
585      --  Otherwise, context is an expression. It should not be within (i.e. a
586      --  subexpression of) a constraint for a component.
587
588      else
589         D := PN;
590         P := Parent (PN);
591         while not Nkind_In (P, N_Component_Declaration,
592                                N_Subtype_Indication,
593                                N_Entry_Declaration)
594         loop
595            D := P;
596            P := Parent (P);
597            exit when No (P);
598         end loop;
599
600         --  If the discriminant is used in an expression that is a bound of a
601         --  scalar type, an Itype is created and the bounds are attached to
602         --  its range, not to the original subtype indication. Such use is of
603         --  course a double fault.
604
605         if (Nkind (P) = N_Subtype_Indication
606              and then Nkind_In (Parent (P), N_Component_Definition,
607                                             N_Derived_Type_Definition)
608              and then D = Constraint (P))
609
610           --  The constraint itself may be given by a subtype indication,
611           --  rather than by a more common discrete range.
612
613           or else (Nkind (P) = N_Subtype_Indication
614                      and then
615                    Nkind (Parent (P)) = N_Index_Or_Discriminant_Constraint)
616           or else Nkind (P) = N_Entry_Declaration
617           or else Nkind (D) = N_Defining_Identifier
618         then
619            Error_Msg_N
620              ("discriminant in constraint must appear alone",  N);
621         end if;
622      end if;
623   end Check_Discriminant_Use;
624
625   --------------------------------
626   -- Check_For_Visible_Operator --
627   --------------------------------
628
629   procedure Check_For_Visible_Operator (N : Node_Id; T : Entity_Id) is
630   begin
631      if Is_Invisible_Operator (N, T) then
632         Error_Msg_NE -- CODEFIX
633           ("operator for} is not directly visible!", N, First_Subtype (T));
634         Error_Msg_N -- CODEFIX
635           ("use clause would make operation legal!", N);
636      end if;
637   end Check_For_Visible_Operator;
638
639   ----------------------------------
640   --  Check_Fully_Declared_Prefix --
641   ----------------------------------
642
643   procedure Check_Fully_Declared_Prefix
644     (Typ  : Entity_Id;
645      Pref : Node_Id)
646   is
647   begin
648      --  Check that the designated type of the prefix of a dereference is
649      --  not an incomplete type. This cannot be done unconditionally, because
650      --  dereferences of private types are legal in default expressions. This
651      --  case is taken care of in Check_Fully_Declared, called below. There
652      --  are also 2005 cases where it is legal for the prefix to be unfrozen.
653
654      --  This consideration also applies to similar checks for allocators,
655      --  qualified expressions, and type conversions.
656
657      --  An additional exception concerns other per-object expressions that
658      --  are not directly related to component declarations, in particular
659      --  representation pragmas for tasks. These will be per-object
660      --  expressions if they depend on discriminants or some global entity.
661      --  If the task has access discriminants, the designated type may be
662      --  incomplete at the point the expression is resolved. This resolution
663      --  takes place within the body of the initialization procedure, where
664      --  the discriminant is replaced by its discriminal.
665
666      if Is_Entity_Name (Pref)
667        and then Ekind (Entity (Pref)) = E_In_Parameter
668      then
669         null;
670
671      --  Ada 2005 (AI-326): Tagged incomplete types allowed. The wrong usages
672      --  are handled by Analyze_Access_Attribute, Analyze_Assignment,
673      --  Analyze_Object_Renaming, and Freeze_Entity.
674
675      elsif Ada_Version >= Ada_2005
676        and then Is_Entity_Name (Pref)
677        and then Is_Access_Type (Etype (Pref))
678        and then Ekind (Directly_Designated_Type (Etype (Pref))) =
679                                                       E_Incomplete_Type
680        and then Is_Tagged_Type (Directly_Designated_Type (Etype (Pref)))
681      then
682         null;
683      else
684         Check_Fully_Declared (Typ, Parent (Pref));
685      end if;
686   end Check_Fully_Declared_Prefix;
687
688   ------------------------------
689   -- Check_Infinite_Recursion --
690   ------------------------------
691
692   function Check_Infinite_Recursion (N : Node_Id) return Boolean is
693      P : Node_Id;
694      C : Node_Id;
695
696      function Same_Argument_List return Boolean;
697      --  Check whether list of actuals is identical to list of formals of
698      --  called function (which is also the enclosing scope).
699
700      ------------------------
701      -- Same_Argument_List --
702      ------------------------
703
704      function Same_Argument_List return Boolean is
705         A    : Node_Id;
706         F    : Entity_Id;
707         Subp : Entity_Id;
708
709      begin
710         if not Is_Entity_Name (Name (N)) then
711            return False;
712         else
713            Subp := Entity (Name (N));
714         end if;
715
716         F := First_Formal (Subp);
717         A := First_Actual (N);
718         while Present (F) and then Present (A) loop
719            if not Is_Entity_Name (A) or else Entity (A) /= F then
720               return False;
721            end if;
722
723            Next_Actual (A);
724            Next_Formal (F);
725         end loop;
726
727         return True;
728      end Same_Argument_List;
729
730   --  Start of processing for Check_Infinite_Recursion
731
732   begin
733      --  Special case, if this is a procedure call and is a call to the
734      --  current procedure with the same argument list, then this is for
735      --  sure an infinite recursion and we insert a call to raise SE.
736
737      if Is_List_Member (N)
738        and then List_Length (List_Containing (N)) = 1
739        and then Same_Argument_List
740      then
741         declare
742            P : constant Node_Id := Parent (N);
743         begin
744            if Nkind (P) = N_Handled_Sequence_Of_Statements
745              and then Nkind (Parent (P)) = N_Subprogram_Body
746              and then Is_Empty_List (Declarations (Parent (P)))
747            then
748               Error_Msg_Warn := SPARK_Mode /= On;
749               Error_Msg_N ("!infinite recursion<<", N);
750               Error_Msg_N ("\!Storage_Error [<<", N);
751               Insert_Action (N,
752                 Make_Raise_Storage_Error (Sloc (N),
753                   Reason => SE_Infinite_Recursion));
754               return True;
755            end if;
756         end;
757      end if;
758
759      --  If not that special case, search up tree, quitting if we reach a
760      --  construct (e.g. a conditional) that tells us that this is not a
761      --  case for an infinite recursion warning.
762
763      C := N;
764      loop
765         P := Parent (C);
766
767         --  If no parent, then we were not inside a subprogram, this can for
768         --  example happen when processing certain pragmas in a spec. Just
769         --  return False in this case.
770
771         if No (P) then
772            return False;
773         end if;
774
775         --  Done if we get to subprogram body, this is definitely an infinite
776         --  recursion case if we did not find anything to stop us.
777
778         exit when Nkind (P) = N_Subprogram_Body;
779
780         --  If appearing in conditional, result is false
781
782         if Nkind_In (P, N_Or_Else,
783                         N_And_Then,
784                         N_Case_Expression,
785                         N_Case_Statement,
786                         N_If_Expression,
787                         N_If_Statement)
788         then
789            return False;
790
791         elsif Nkind (P) = N_Handled_Sequence_Of_Statements
792           and then C /= First (Statements (P))
793         then
794            --  If the call is the expression of a return statement and the
795            --  actuals are identical to the formals, it's worth a warning.
796            --  However, we skip this if there is an immediately preceding
797            --  raise statement, since the call is never executed.
798
799            --  Furthermore, this corresponds to a common idiom:
800
801            --    function F (L : Thing) return Boolean is
802            --    begin
803            --       raise Program_Error;
804            --       return F (L);
805            --    end F;
806
807            --  for generating a stub function
808
809            if Nkind (Parent (N)) = N_Simple_Return_Statement
810              and then Same_Argument_List
811            then
812               exit when not Is_List_Member (Parent (N));
813
814               --  OK, return statement is in a statement list, look for raise
815
816               declare
817                  Nod : Node_Id;
818
819               begin
820                  --  Skip past N_Freeze_Entity nodes generated by expansion
821
822                  Nod := Prev (Parent (N));
823                  while Present (Nod)
824                    and then Nkind (Nod) = N_Freeze_Entity
825                  loop
826                     Prev (Nod);
827                  end loop;
828
829                  --  If no raise statement, give warning. We look at the
830                  --  original node, because in the case of "raise ... with
831                  --  ...", the node has been transformed into a call.
832
833                  exit when Nkind (Original_Node (Nod)) /= N_Raise_Statement
834                    and then
835                      (Nkind (Nod) not in N_Raise_xxx_Error
836                        or else Present (Condition (Nod)));
837               end;
838            end if;
839
840            return False;
841
842         else
843            C := P;
844         end if;
845      end loop;
846
847      Error_Msg_Warn := SPARK_Mode /= On;
848      Error_Msg_N ("!possible infinite recursion<<", N);
849      Error_Msg_N ("\!??Storage_Error ]<<", N);
850
851      return True;
852   end Check_Infinite_Recursion;
853
854   ---------------------------------------
855   -- Check_No_Direct_Boolean_Operators --
856   ---------------------------------------
857
858   procedure Check_No_Direct_Boolean_Operators (N : Node_Id) is
859   begin
860      if Scope (Entity (N)) = Standard_Standard
861        and then Root_Type (Etype (Left_Opnd (N))) = Standard_Boolean
862      then
863         --  Restriction only applies to original source code
864
865         if Comes_From_Source (N) then
866            Check_Restriction (No_Direct_Boolean_Operators, N);
867         end if;
868      end if;
869
870      --  Do style check (but skip if in instance, error is on template)
871
872      if Style_Check then
873         if not In_Instance then
874            Check_Boolean_Operator (N);
875         end if;
876      end if;
877   end Check_No_Direct_Boolean_Operators;
878
879   ------------------------------
880   -- Check_Parameterless_Call --
881   ------------------------------
882
883   procedure Check_Parameterless_Call (N : Node_Id) is
884      Nam : Node_Id;
885
886      function Prefix_Is_Access_Subp return Boolean;
887      --  If the prefix is of an access_to_subprogram type, the node must be
888      --  rewritten as a call. Ditto if the prefix is overloaded and all its
889      --  interpretations are access to subprograms.
890
891      ---------------------------
892      -- Prefix_Is_Access_Subp --
893      ---------------------------
894
895      function Prefix_Is_Access_Subp return Boolean is
896         I   : Interp_Index;
897         It  : Interp;
898
899      begin
900         --  If the context is an attribute reference that can apply to
901         --  functions, this is never a parameterless call (RM 4.1.4(6)).
902
903         if Nkind (Parent (N)) = N_Attribute_Reference
904            and then Nam_In (Attribute_Name (Parent (N)), Name_Address,
905                                                          Name_Code_Address,
906                                                          Name_Access)
907         then
908            return False;
909         end if;
910
911         if not Is_Overloaded (N) then
912            return
913              Ekind (Etype (N)) = E_Subprogram_Type
914                and then Base_Type (Etype (Etype (N))) /= Standard_Void_Type;
915         else
916            Get_First_Interp (N, I, It);
917            while Present (It.Typ) loop
918               if Ekind (It.Typ) /= E_Subprogram_Type
919                 or else Base_Type (Etype (It.Typ)) = Standard_Void_Type
920               then
921                  return False;
922               end if;
923
924               Get_Next_Interp (I, It);
925            end loop;
926
927            return True;
928         end if;
929      end Prefix_Is_Access_Subp;
930
931   --  Start of processing for Check_Parameterless_Call
932
933   begin
934      --  Defend against junk stuff if errors already detected
935
936      if Total_Errors_Detected /= 0 then
937         if Nkind (N) in N_Has_Etype and then Etype (N) = Any_Type then
938            return;
939         elsif Nkind (N) in N_Has_Chars
940           and then not Is_Valid_Name (Chars (N))
941         then
942            return;
943         end if;
944
945         Require_Entity (N);
946      end if;
947
948      --  If the context expects a value, and the name is a procedure, this is
949      --  most likely a missing 'Access. Don't try to resolve the parameterless
950      --  call, error will be caught when the outer call is analyzed.
951
952      if Is_Entity_Name (N)
953        and then Ekind (Entity (N)) = E_Procedure
954        and then not Is_Overloaded (N)
955        and then
956         Nkind_In (Parent (N), N_Parameter_Association,
957                               N_Function_Call,
958                               N_Procedure_Call_Statement)
959      then
960         return;
961      end if;
962
963      --  Rewrite as call if overloadable entity that is (or could be, in the
964      --  overloaded case) a function call. If we know for sure that the entity
965      --  is an enumeration literal, we do not rewrite it.
966
967      --  If the entity is the name of an operator, it cannot be a call because
968      --  operators cannot have default parameters. In this case, this must be
969      --  a string whose contents coincide with an operator name. Set the kind
970      --  of the node appropriately.
971
972      if (Is_Entity_Name (N)
973            and then Nkind (N) /= N_Operator_Symbol
974            and then Is_Overloadable (Entity (N))
975            and then (Ekind (Entity (N)) /= E_Enumeration_Literal
976                       or else Is_Overloaded (N)))
977
978      --  Rewrite as call if it is an explicit dereference of an expression of
979      --  a subprogram access type, and the subprogram type is not that of a
980      --  procedure or entry.
981
982      or else
983        (Nkind (N) = N_Explicit_Dereference and then Prefix_Is_Access_Subp)
984
985      --  Rewrite as call if it is a selected component which is a function,
986      --  this is the case of a call to a protected function (which may be
987      --  overloaded with other protected operations).
988
989      or else
990        (Nkind (N) = N_Selected_Component
991          and then (Ekind (Entity (Selector_Name (N))) = E_Function
992                     or else
993                       (Ekind_In (Entity (Selector_Name (N)), E_Entry,
994                                                              E_Procedure)
995                         and then Is_Overloaded (Selector_Name (N)))))
996
997      --  If one of the above three conditions is met, rewrite as call. Apply
998      --  the rewriting only once.
999
1000      then
1001         if Nkind (Parent (N)) /= N_Function_Call
1002           or else N /= Name (Parent (N))
1003         then
1004
1005            --  This may be a prefixed call that was not fully analyzed, e.g.
1006            --  an actual in an instance.
1007
1008            if Ada_Version >= Ada_2005
1009              and then Nkind (N) = N_Selected_Component
1010              and then Is_Dispatching_Operation (Entity (Selector_Name (N)))
1011            then
1012               Analyze_Selected_Component (N);
1013
1014               if Nkind (N) /= N_Selected_Component then
1015                  return;
1016               end if;
1017            end if;
1018
1019            --  The node is the name of the parameterless call. Preserve its
1020            --  descendants, which may be complex expressions.
1021
1022            Nam := Relocate_Node (N);
1023
1024            --  If overloaded, overload set belongs to new copy
1025
1026            Save_Interps (N, Nam);
1027
1028            --  Change node to parameterless function call (note that the
1029            --  Parameter_Associations associations field is left set to Empty,
1030            --  its normal default value since there are no parameters)
1031
1032            Change_Node (N, N_Function_Call);
1033            Set_Name (N, Nam);
1034            Set_Sloc (N, Sloc (Nam));
1035            Analyze_Call (N);
1036         end if;
1037
1038      elsif Nkind (N) = N_Parameter_Association then
1039         Check_Parameterless_Call (Explicit_Actual_Parameter (N));
1040
1041      elsif Nkind (N) = N_Operator_Symbol then
1042         Change_Operator_Symbol_To_String_Literal (N);
1043         Set_Is_Overloaded (N, False);
1044         Set_Etype (N, Any_String);
1045      end if;
1046   end Check_Parameterless_Call;
1047
1048   --------------------------------
1049   -- Is_Atomic_Ref_With_Address --
1050   --------------------------------
1051
1052   function Is_Atomic_Ref_With_Address (N : Node_Id) return Boolean is
1053      Pref : constant Node_Id := Prefix (N);
1054
1055   begin
1056      if not Is_Entity_Name (Pref) then
1057         return False;
1058
1059      else
1060         declare
1061            Pent : constant Entity_Id := Entity (Pref);
1062            Ptyp : constant Entity_Id := Etype (Pent);
1063         begin
1064            return not Is_Access_Type (Ptyp)
1065              and then (Is_Atomic (Ptyp) or else Is_Atomic (Pent))
1066              and then Present (Address_Clause (Pent));
1067         end;
1068      end if;
1069   end Is_Atomic_Ref_With_Address;
1070
1071   -----------------------------
1072   -- Is_Definite_Access_Type --
1073   -----------------------------
1074
1075   function Is_Definite_Access_Type (E : Entity_Id) return Boolean is
1076      Btyp : constant Entity_Id := Base_Type (E);
1077   begin
1078      return Ekind (Btyp) = E_Access_Type
1079        or else (Ekind (Btyp) = E_Access_Subprogram_Type
1080                  and then Comes_From_Source (Btyp));
1081   end Is_Definite_Access_Type;
1082
1083   ----------------------
1084   -- Is_Predefined_Op --
1085   ----------------------
1086
1087   function Is_Predefined_Op (Nam : Entity_Id) return Boolean is
1088   begin
1089      --  Predefined operators are intrinsic subprograms
1090
1091      if not Is_Intrinsic_Subprogram (Nam) then
1092         return False;
1093      end if;
1094
1095      --  A call to a back-end builtin is never a predefined operator
1096
1097      if Is_Imported (Nam) and then Present (Interface_Name (Nam)) then
1098         return False;
1099      end if;
1100
1101      return not Is_Generic_Instance (Nam)
1102        and then Chars (Nam) in Any_Operator_Name
1103        and then (No (Alias (Nam)) or else Is_Predefined_Op (Alias (Nam)));
1104   end Is_Predefined_Op;
1105
1106   -----------------------------
1107   -- Make_Call_Into_Operator --
1108   -----------------------------
1109
1110   procedure Make_Call_Into_Operator
1111     (N     : Node_Id;
1112      Typ   : Entity_Id;
1113      Op_Id : Entity_Id)
1114   is
1115      Op_Name   : constant Name_Id := Chars (Op_Id);
1116      Act1      : Node_Id := First_Actual (N);
1117      Act2      : Node_Id := Next_Actual (Act1);
1118      Error     : Boolean := False;
1119      Func      : constant Entity_Id := Entity (Name (N));
1120      Is_Binary : constant Boolean   := Present (Act2);
1121      Op_Node   : Node_Id;
1122      Opnd_Type : Entity_Id := Empty;
1123      Orig_Type : Entity_Id := Empty;
1124      Pack      : Entity_Id;
1125
1126      type Kind_Test is access function (E : Entity_Id) return Boolean;
1127
1128      function Operand_Type_In_Scope (S : Entity_Id) return Boolean;
1129      --  If the operand is not universal, and the operator is given by an
1130      --  expanded name, verify that the operand has an interpretation with a
1131      --  type defined in the given scope of the operator.
1132
1133      function Type_In_P (Test : Kind_Test) return Entity_Id;
1134      --  Find a type of the given class in package Pack that contains the
1135      --  operator.
1136
1137      ---------------------------
1138      -- Operand_Type_In_Scope --
1139      ---------------------------
1140
1141      function Operand_Type_In_Scope (S : Entity_Id) return Boolean is
1142         Nod : constant Node_Id := Right_Opnd (Op_Node);
1143         I   : Interp_Index;
1144         It  : Interp;
1145
1146      begin
1147         if not Is_Overloaded (Nod) then
1148            return Scope (Base_Type (Etype (Nod))) = S;
1149
1150         else
1151            Get_First_Interp (Nod, I, It);
1152            while Present (It.Typ) loop
1153               if Scope (Base_Type (It.Typ)) = S then
1154                  return True;
1155               end if;
1156
1157               Get_Next_Interp (I, It);
1158            end loop;
1159
1160            return False;
1161         end if;
1162      end Operand_Type_In_Scope;
1163
1164      ---------------
1165      -- Type_In_P --
1166      ---------------
1167
1168      function Type_In_P (Test : Kind_Test) return Entity_Id is
1169         E : Entity_Id;
1170
1171         function In_Decl return Boolean;
1172         --  Verify that node is not part of the type declaration for the
1173         --  candidate type, which would otherwise be invisible.
1174
1175         -------------
1176         -- In_Decl --
1177         -------------
1178
1179         function In_Decl return Boolean is
1180            Decl_Node : constant Node_Id := Parent (E);
1181            N2        : Node_Id;
1182
1183         begin
1184            N2 := N;
1185
1186            if Etype (E) = Any_Type then
1187               return True;
1188
1189            elsif No (Decl_Node) then
1190               return False;
1191
1192            else
1193               while Present (N2)
1194                 and then Nkind (N2) /= N_Compilation_Unit
1195               loop
1196                  if N2 = Decl_Node then
1197                     return True;
1198                  else
1199                     N2 := Parent (N2);
1200                  end if;
1201               end loop;
1202
1203               return False;
1204            end if;
1205         end In_Decl;
1206
1207      --  Start of processing for Type_In_P
1208
1209      begin
1210         --  If the context type is declared in the prefix package, this is the
1211         --  desired base type.
1212
1213         if Scope (Base_Type (Typ)) = Pack and then Test (Typ) then
1214            return Base_Type (Typ);
1215
1216         else
1217            E := First_Entity (Pack);
1218            while Present (E) loop
1219               if Test (E) and then not In_Decl then
1220                  return E;
1221               end if;
1222
1223               Next_Entity (E);
1224            end loop;
1225
1226            return Empty;
1227         end if;
1228      end Type_In_P;
1229
1230   --  Start of processing for Make_Call_Into_Operator
1231
1232   begin
1233      Op_Node := New_Node (Operator_Kind (Op_Name, Is_Binary), Sloc (N));
1234
1235      --  Ensure that the corresponding operator has the same parent as the
1236      --  original call. This guarantees that parent traversals performed by
1237      --  the ABE mechanism succeed.
1238
1239      Set_Parent (Op_Node, Parent (N));
1240
1241      --  Binary operator
1242
1243      if Is_Binary then
1244         Set_Left_Opnd  (Op_Node, Relocate_Node (Act1));
1245         Set_Right_Opnd (Op_Node, Relocate_Node (Act2));
1246         Save_Interps (Act1, Left_Opnd  (Op_Node));
1247         Save_Interps (Act2, Right_Opnd (Op_Node));
1248         Act1 := Left_Opnd (Op_Node);
1249         Act2 := Right_Opnd (Op_Node);
1250
1251      --  Unary operator
1252
1253      else
1254         Set_Right_Opnd (Op_Node, Relocate_Node (Act1));
1255         Save_Interps (Act1, Right_Opnd (Op_Node));
1256         Act1 := Right_Opnd (Op_Node);
1257      end if;
1258
1259      --  If the operator is denoted by an expanded name, and the prefix is
1260      --  not Standard, but the operator is a predefined one whose scope is
1261      --  Standard, then this is an implicit_operator, inserted as an
1262      --  interpretation by the procedure of the same name. This procedure
1263      --  overestimates the presence of implicit operators, because it does
1264      --  not examine the type of the operands. Verify now that the operand
1265      --  type appears in the given scope. If right operand is universal,
1266      --  check the other operand. In the case of concatenation, either
1267      --  argument can be the component type, so check the type of the result.
1268      --  If both arguments are literals, look for a type of the right kind
1269      --  defined in the given scope. This elaborate nonsense is brought to
1270      --  you courtesy of b33302a. The type itself must be frozen, so we must
1271      --  find the type of the proper class in the given scope.
1272
1273      --  A final wrinkle is the multiplication operator for fixed point types,
1274      --  which is defined in Standard only, and not in the scope of the
1275      --  fixed point type itself.
1276
1277      if Nkind (Name (N)) = N_Expanded_Name then
1278         Pack := Entity (Prefix (Name (N)));
1279
1280         --  If this is a package renaming, get renamed entity, which will be
1281         --  the scope of the operands if operaton is type-correct.
1282
1283         if Present (Renamed_Entity (Pack)) then
1284            Pack := Renamed_Entity (Pack);
1285         end if;
1286
1287         --  If the entity being called is defined in the given package, it is
1288         --  a renaming of a predefined operator, and known to be legal.
1289
1290         if Scope (Entity (Name (N))) = Pack
1291            and then Pack /= Standard_Standard
1292         then
1293            null;
1294
1295         --  Visibility does not need to be checked in an instance: if the
1296         --  operator was not visible in the generic it has been diagnosed
1297         --  already, else there is an implicit copy of it in the instance.
1298
1299         elsif In_Instance then
1300            null;
1301
1302         elsif Nam_In (Op_Name, Name_Op_Multiply, Name_Op_Divide)
1303           and then Is_Fixed_Point_Type (Etype (Left_Opnd  (Op_Node)))
1304           and then Is_Fixed_Point_Type (Etype (Right_Opnd (Op_Node)))
1305         then
1306            if Pack /= Standard_Standard then
1307               Error := True;
1308            end if;
1309
1310         --  Ada 2005 AI-420: Predefined equality on Universal_Access is
1311         --  available.
1312
1313         elsif Ada_Version >= Ada_2005
1314           and then Nam_In (Op_Name, Name_Op_Eq, Name_Op_Ne)
1315           and then Ekind (Etype (Act1)) = E_Anonymous_Access_Type
1316         then
1317            null;
1318
1319         else
1320            Opnd_Type := Base_Type (Etype (Right_Opnd (Op_Node)));
1321
1322            if Op_Name = Name_Op_Concat then
1323               Opnd_Type := Base_Type (Typ);
1324
1325            elsif (Scope (Opnd_Type) = Standard_Standard
1326                    and then Is_Binary)
1327              or else (Nkind (Right_Opnd (Op_Node)) = N_Attribute_Reference
1328                        and then Is_Binary
1329                        and then not Comes_From_Source (Opnd_Type))
1330            then
1331               Opnd_Type := Base_Type (Etype (Left_Opnd (Op_Node)));
1332            end if;
1333
1334            if Scope (Opnd_Type) = Standard_Standard then
1335
1336               --  Verify that the scope contains a type that corresponds to
1337               --  the given literal. Optimize the case where Pack is Standard.
1338
1339               if Pack /= Standard_Standard then
1340                  if Opnd_Type = Universal_Integer then
1341                     Orig_Type := Type_In_P (Is_Integer_Type'Access);
1342
1343                  elsif Opnd_Type = Universal_Real then
1344                     Orig_Type := Type_In_P (Is_Real_Type'Access);
1345
1346                  elsif Opnd_Type = Any_String then
1347                     Orig_Type := Type_In_P (Is_String_Type'Access);
1348
1349                  elsif Opnd_Type = Any_Access then
1350                     Orig_Type := Type_In_P (Is_Definite_Access_Type'Access);
1351
1352                  elsif Opnd_Type = Any_Composite then
1353                     Orig_Type := Type_In_P (Is_Composite_Type'Access);
1354
1355                     if Present (Orig_Type) then
1356                        if Has_Private_Component (Orig_Type) then
1357                           Orig_Type := Empty;
1358                        else
1359                           Set_Etype (Act1, Orig_Type);
1360
1361                           if Is_Binary then
1362                              Set_Etype (Act2, Orig_Type);
1363                           end if;
1364                        end if;
1365                     end if;
1366
1367                  else
1368                     Orig_Type := Empty;
1369                  end if;
1370
1371                  Error := No (Orig_Type);
1372               end if;
1373
1374            elsif Ekind (Opnd_Type) = E_Allocator_Type
1375               and then No (Type_In_P (Is_Definite_Access_Type'Access))
1376            then
1377               Error := True;
1378
1379            --  If the type is defined elsewhere, and the operator is not
1380            --  defined in the given scope (by a renaming declaration, e.g.)
1381            --  then this is an error as well. If an extension of System is
1382            --  present, and the type may be defined there, Pack must be
1383            --  System itself.
1384
1385            elsif Scope (Opnd_Type) /= Pack
1386              and then Scope (Op_Id) /= Pack
1387              and then (No (System_Aux_Id)
1388                         or else Scope (Opnd_Type) /= System_Aux_Id
1389                         or else Pack /= Scope (System_Aux_Id))
1390            then
1391               if not Is_Overloaded (Right_Opnd (Op_Node)) then
1392                  Error := True;
1393               else
1394                  Error := not Operand_Type_In_Scope (Pack);
1395               end if;
1396
1397            elsif Pack = Standard_Standard
1398              and then not Operand_Type_In_Scope (Standard_Standard)
1399            then
1400               Error := True;
1401            end if;
1402         end if;
1403
1404         if Error then
1405            Error_Msg_Node_2 := Pack;
1406            Error_Msg_NE
1407              ("& not declared in&", N, Selector_Name (Name (N)));
1408            Set_Etype (N, Any_Type);
1409            return;
1410
1411         --  Detect a mismatch between the context type and the result type
1412         --  in the named package, which is otherwise not detected if the
1413         --  operands are universal. Check is only needed if source entity is
1414         --  an operator, not a function that renames an operator.
1415
1416         elsif Nkind (Parent (N)) /= N_Type_Conversion
1417           and then Ekind (Entity (Name (N))) = E_Operator
1418           and then Is_Numeric_Type (Typ)
1419           and then not Is_Universal_Numeric_Type (Typ)
1420           and then Scope (Base_Type (Typ)) /= Pack
1421           and then not In_Instance
1422         then
1423            if Is_Fixed_Point_Type (Typ)
1424              and then Nam_In (Op_Name, Name_Op_Multiply, Name_Op_Divide)
1425            then
1426               --  Already checked above
1427
1428               null;
1429
1430            --  Operator may be defined in an extension of System
1431
1432            elsif Present (System_Aux_Id)
1433              and then Present (Opnd_Type)
1434              and then Scope (Opnd_Type) = System_Aux_Id
1435            then
1436               null;
1437
1438            else
1439               --  Could we use Wrong_Type here??? (this would require setting
1440               --  Etype (N) to the actual type found where Typ was expected).
1441
1442               Error_Msg_NE ("expect }", N, Typ);
1443            end if;
1444         end if;
1445      end if;
1446
1447      Set_Chars  (Op_Node, Op_Name);
1448
1449      if not Is_Private_Type (Etype (N)) then
1450         Set_Etype (Op_Node, Base_Type (Etype (N)));
1451      else
1452         Set_Etype (Op_Node, Etype (N));
1453      end if;
1454
1455      --  If this is a call to a function that renames a predefined equality,
1456      --  the renaming declaration provides a type that must be used to
1457      --  resolve the operands. This must be done now because resolution of
1458      --  the equality node will not resolve any remaining ambiguity, and it
1459      --  assumes that the first operand is not overloaded.
1460
1461      if Nam_In (Op_Name, Name_Op_Eq, Name_Op_Ne)
1462        and then Ekind (Func) = E_Function
1463        and then Is_Overloaded (Act1)
1464      then
1465         Resolve (Act1, Base_Type (Etype (First_Formal (Func))));
1466         Resolve (Act2, Base_Type (Etype (First_Formal (Func))));
1467      end if;
1468
1469      Set_Entity (Op_Node, Op_Id);
1470      Generate_Reference (Op_Id, N, ' ');
1471
1472      --  Do rewrite setting Comes_From_Source on the result if the original
1473      --  call came from source. Although it is not strictly the case that the
1474      --  operator as such comes from the source, logically it corresponds
1475      --  exactly to the function call in the source, so it should be marked
1476      --  this way (e.g. to make sure that validity checks work fine).
1477
1478      declare
1479         CS : constant Boolean := Comes_From_Source (N);
1480      begin
1481         Rewrite (N, Op_Node);
1482         Set_Comes_From_Source (N, CS);
1483      end;
1484
1485      --  If this is an arithmetic operator and the result type is private,
1486      --  the operands and the result must be wrapped in conversion to
1487      --  expose the underlying numeric type and expand the proper checks,
1488      --  e.g. on division.
1489
1490      if Is_Private_Type (Typ) then
1491         case Nkind (N) is
1492            when N_Op_Add
1493               | N_Op_Divide
1494               | N_Op_Expon
1495               | N_Op_Mod
1496               | N_Op_Multiply
1497               | N_Op_Rem
1498               | N_Op_Subtract
1499            =>
1500               Resolve_Intrinsic_Operator (N, Typ);
1501
1502            when N_Op_Abs
1503               | N_Op_Minus
1504               | N_Op_Plus
1505            =>
1506               Resolve_Intrinsic_Unary_Operator (N, Typ);
1507
1508            when others =>
1509               Resolve (N, Typ);
1510         end case;
1511      else
1512         Resolve (N, Typ);
1513      end if;
1514
1515      --  If in ASIS_Mode, propagate operand types to original actuals of
1516      --  function call, which would otherwise not be fully resolved. If
1517      --  the call has already been constant-folded, nothing to do. We
1518      --  relocate the operand nodes rather than copy them, to preserve
1519      --  original_node pointers, given that the operands themselves may
1520      --  have been rewritten. If the call was itself a rewriting of an
1521      --  operator node, nothing to do.
1522
1523      if ASIS_Mode
1524        and then Nkind (N) in N_Op
1525        and then Nkind (Original_Node (N)) = N_Function_Call
1526      then
1527         declare
1528            L : Node_Id;
1529            R : constant Node_Id := Right_Opnd (N);
1530
1531            Old_First : constant Node_Id :=
1532                          First (Parameter_Associations (Original_Node (N)));
1533            Old_Sec   : Node_Id;
1534
1535         begin
1536            if Is_Binary then
1537               L       := Left_Opnd (N);
1538               Old_Sec := Next (Old_First);
1539
1540               --  If the original call has named associations, replace the
1541               --  explicit actual parameter in the association with the proper
1542               --  resolved operand.
1543
1544               if Nkind (Old_First) = N_Parameter_Association then
1545                  if Chars (Selector_Name (Old_First)) =
1546                     Chars (First_Entity (Op_Id))
1547                  then
1548                     Rewrite (Explicit_Actual_Parameter (Old_First),
1549                       Relocate_Node (L));
1550                  else
1551                     Rewrite (Explicit_Actual_Parameter (Old_First),
1552                       Relocate_Node (R));
1553                  end if;
1554
1555               else
1556                  Rewrite (Old_First, Relocate_Node (L));
1557               end if;
1558
1559               if Nkind (Old_Sec) = N_Parameter_Association then
1560                  if Chars (Selector_Name (Old_Sec)) =
1561                     Chars (First_Entity (Op_Id))
1562                  then
1563                     Rewrite (Explicit_Actual_Parameter (Old_Sec),
1564                       Relocate_Node (L));
1565                  else
1566                     Rewrite (Explicit_Actual_Parameter (Old_Sec),
1567                       Relocate_Node (R));
1568                  end if;
1569
1570               else
1571                  Rewrite (Old_Sec, Relocate_Node (R));
1572               end if;
1573
1574            else
1575               if Nkind (Old_First) = N_Parameter_Association then
1576                  Rewrite (Explicit_Actual_Parameter (Old_First),
1577                    Relocate_Node (R));
1578               else
1579                  Rewrite (Old_First, Relocate_Node (R));
1580               end if;
1581            end if;
1582         end;
1583
1584         Set_Parent (Original_Node (N), Parent (N));
1585      end if;
1586   end Make_Call_Into_Operator;
1587
1588   -------------------
1589   -- Operator_Kind --
1590   -------------------
1591
1592   function Operator_Kind
1593     (Op_Name   : Name_Id;
1594      Is_Binary : Boolean) return Node_Kind
1595   is
1596      Kind : Node_Kind;
1597
1598   begin
1599      --  Use CASE statement or array???
1600
1601      if Is_Binary then
1602         if    Op_Name = Name_Op_And      then
1603            Kind := N_Op_And;
1604         elsif Op_Name = Name_Op_Or       then
1605            Kind := N_Op_Or;
1606         elsif Op_Name = Name_Op_Xor      then
1607            Kind := N_Op_Xor;
1608         elsif Op_Name = Name_Op_Eq       then
1609            Kind := N_Op_Eq;
1610         elsif Op_Name = Name_Op_Ne       then
1611            Kind := N_Op_Ne;
1612         elsif Op_Name = Name_Op_Lt       then
1613            Kind := N_Op_Lt;
1614         elsif Op_Name = Name_Op_Le       then
1615            Kind := N_Op_Le;
1616         elsif Op_Name = Name_Op_Gt       then
1617            Kind := N_Op_Gt;
1618         elsif Op_Name = Name_Op_Ge       then
1619            Kind := N_Op_Ge;
1620         elsif Op_Name = Name_Op_Add      then
1621            Kind := N_Op_Add;
1622         elsif Op_Name = Name_Op_Subtract then
1623            Kind := N_Op_Subtract;
1624         elsif Op_Name = Name_Op_Concat   then
1625            Kind := N_Op_Concat;
1626         elsif Op_Name = Name_Op_Multiply then
1627            Kind := N_Op_Multiply;
1628         elsif Op_Name = Name_Op_Divide   then
1629            Kind := N_Op_Divide;
1630         elsif Op_Name = Name_Op_Mod      then
1631            Kind := N_Op_Mod;
1632         elsif Op_Name = Name_Op_Rem      then
1633            Kind := N_Op_Rem;
1634         elsif Op_Name = Name_Op_Expon    then
1635            Kind := N_Op_Expon;
1636         else
1637            raise Program_Error;
1638         end if;
1639
1640      --  Unary operators
1641
1642      else
1643         if    Op_Name = Name_Op_Add      then
1644            Kind := N_Op_Plus;
1645         elsif Op_Name = Name_Op_Subtract then
1646            Kind := N_Op_Minus;
1647         elsif Op_Name = Name_Op_Abs      then
1648            Kind := N_Op_Abs;
1649         elsif Op_Name = Name_Op_Not      then
1650            Kind := N_Op_Not;
1651         else
1652            raise Program_Error;
1653         end if;
1654      end if;
1655
1656      return Kind;
1657   end Operator_Kind;
1658
1659   ----------------------------
1660   -- Preanalyze_And_Resolve --
1661   ----------------------------
1662
1663   procedure Preanalyze_And_Resolve (N : Node_Id; T : Entity_Id) is
1664      Save_Full_Analysis : constant Boolean := Full_Analysis;
1665
1666   begin
1667      Full_Analysis := False;
1668      Expander_Mode_Save_And_Set (False);
1669
1670      --  Normally, we suppress all checks for this preanalysis. There is no
1671      --  point in processing them now, since they will be applied properly
1672      --  and in the proper location when the default expressions reanalyzed
1673      --  and reexpanded later on. We will also have more information at that
1674      --  point for possible suppression of individual checks.
1675
1676      --  However, in SPARK mode, most expansion is suppressed, and this
1677      --  later reanalysis and reexpansion may not occur. SPARK mode does
1678      --  require the setting of checking flags for proof purposes, so we
1679      --  do the SPARK preanalysis without suppressing checks.
1680
1681      --  This special handling for SPARK mode is required for example in the
1682      --  case of Ada 2012 constructs such as quantified expressions, which are
1683      --  expanded in two separate steps.
1684
1685      if GNATprove_Mode then
1686         Analyze_And_Resolve (N, T);
1687      else
1688         Analyze_And_Resolve (N, T, Suppress => All_Checks);
1689      end if;
1690
1691      Expander_Mode_Restore;
1692      Full_Analysis := Save_Full_Analysis;
1693   end Preanalyze_And_Resolve;
1694
1695   --  Version without context type
1696
1697   procedure Preanalyze_And_Resolve (N : Node_Id) is
1698      Save_Full_Analysis : constant Boolean := Full_Analysis;
1699
1700   begin
1701      Full_Analysis := False;
1702      Expander_Mode_Save_And_Set (False);
1703
1704      Analyze (N);
1705      Resolve (N, Etype (N), Suppress => All_Checks);
1706
1707      Expander_Mode_Restore;
1708      Full_Analysis := Save_Full_Analysis;
1709   end Preanalyze_And_Resolve;
1710
1711   ----------------------------------
1712   -- Replace_Actual_Discriminants --
1713   ----------------------------------
1714
1715   procedure Replace_Actual_Discriminants (N : Node_Id; Default : Node_Id) is
1716      Loc : constant Source_Ptr := Sloc (N);
1717      Tsk : Node_Id := Empty;
1718
1719      function Process_Discr (Nod : Node_Id) return Traverse_Result;
1720      --  Comment needed???
1721
1722      -------------------
1723      -- Process_Discr --
1724      -------------------
1725
1726      function Process_Discr (Nod : Node_Id) return Traverse_Result is
1727         Ent : Entity_Id;
1728
1729      begin
1730         if Nkind (Nod) = N_Identifier then
1731            Ent := Entity (Nod);
1732
1733            if Present (Ent)
1734              and then Ekind (Ent) = E_Discriminant
1735            then
1736               Rewrite (Nod,
1737                 Make_Selected_Component (Loc,
1738                   Prefix        => New_Copy_Tree (Tsk, New_Sloc => Loc),
1739                   Selector_Name => Make_Identifier (Loc, Chars (Ent))));
1740
1741               Set_Etype (Nod, Etype (Ent));
1742            end if;
1743
1744         end if;
1745
1746         return OK;
1747      end Process_Discr;
1748
1749      procedure Replace_Discrs is new Traverse_Proc (Process_Discr);
1750
1751   --  Start of processing for Replace_Actual_Discriminants
1752
1753   begin
1754      if Expander_Active then
1755         null;
1756
1757      --  Allow the replacement of concurrent discriminants in GNATprove even
1758      --  though this is a light expansion activity. Note that generic units
1759      --  are not modified.
1760
1761      elsif GNATprove_Mode and not Inside_A_Generic then
1762         null;
1763
1764      else
1765         return;
1766      end if;
1767
1768      if Nkind (Name (N)) = N_Selected_Component then
1769         Tsk := Prefix (Name (N));
1770
1771      elsif Nkind (Name (N)) = N_Indexed_Component then
1772         Tsk := Prefix (Prefix (Name (N)));
1773      end if;
1774
1775      if Present (Tsk) then
1776         Replace_Discrs (Default);
1777      end if;
1778   end Replace_Actual_Discriminants;
1779
1780   -------------
1781   -- Resolve --
1782   -------------
1783
1784   procedure Resolve (N : Node_Id; Typ : Entity_Id) is
1785      Ambiguous : Boolean   := False;
1786      Ctx_Type  : Entity_Id := Typ;
1787      Expr_Type : Entity_Id := Empty; -- prevent junk warning
1788      Err_Type  : Entity_Id := Empty;
1789      Found     : Boolean   := False;
1790      From_Lib  : Boolean;
1791      I         : Interp_Index;
1792      I1        : Interp_Index := 0;  -- prevent junk warning
1793      It        : Interp;
1794      It1       : Interp;
1795      Seen      : Entity_Id := Empty; -- prevent junk warning
1796
1797      function Comes_From_Predefined_Lib_Unit (Nod : Node_Id) return Boolean;
1798      --  Determine whether a node comes from a predefined library unit or
1799      --  Standard.
1800
1801      procedure Patch_Up_Value (N : Node_Id; Typ : Entity_Id);
1802      --  Try and fix up a literal so that it matches its expected type. New
1803      --  literals are manufactured if necessary to avoid cascaded errors.
1804
1805      procedure Report_Ambiguous_Argument;
1806      --  Additional diagnostics when an ambiguous call has an ambiguous
1807      --  argument (typically a controlling actual).
1808
1809      procedure Resolution_Failed;
1810      --  Called when attempt at resolving current expression fails
1811
1812      ------------------------------------
1813      -- Comes_From_Predefined_Lib_Unit --
1814      -------------------------------------
1815
1816      function Comes_From_Predefined_Lib_Unit (Nod : Node_Id) return Boolean is
1817      begin
1818         return
1819           Sloc (Nod) = Standard_Location or else In_Predefined_Unit (Nod);
1820      end Comes_From_Predefined_Lib_Unit;
1821
1822      --------------------
1823      -- Patch_Up_Value --
1824      --------------------
1825
1826      procedure Patch_Up_Value (N : Node_Id; Typ : Entity_Id) is
1827      begin
1828         if Nkind (N) = N_Integer_Literal and then Is_Real_Type (Typ) then
1829            Rewrite (N,
1830              Make_Real_Literal (Sloc (N),
1831                Realval => UR_From_Uint (Intval (N))));
1832            Set_Etype (N, Universal_Real);
1833            Set_Is_Static_Expression (N);
1834
1835         elsif Nkind (N) = N_Real_Literal and then Is_Integer_Type (Typ) then
1836            Rewrite (N,
1837              Make_Integer_Literal (Sloc (N),
1838                Intval => UR_To_Uint (Realval (N))));
1839            Set_Etype (N, Universal_Integer);
1840            Set_Is_Static_Expression (N);
1841
1842         elsif Nkind (N) = N_String_Literal
1843                 and then Is_Character_Type (Typ)
1844         then
1845            Set_Character_Literal_Name (Char_Code (Character'Pos ('A')));
1846            Rewrite (N,
1847              Make_Character_Literal (Sloc (N),
1848                Chars => Name_Find,
1849                Char_Literal_Value =>
1850                  UI_From_Int (Character'Pos ('A'))));
1851            Set_Etype (N, Any_Character);
1852            Set_Is_Static_Expression (N);
1853
1854         elsif Nkind (N) /= N_String_Literal and then Is_String_Type (Typ) then
1855            Rewrite (N,
1856              Make_String_Literal (Sloc (N),
1857                Strval => End_String));
1858
1859         elsif Nkind (N) = N_Range then
1860            Patch_Up_Value (Low_Bound (N),  Typ);
1861            Patch_Up_Value (High_Bound (N), Typ);
1862         end if;
1863      end Patch_Up_Value;
1864
1865      -------------------------------
1866      -- Report_Ambiguous_Argument --
1867      -------------------------------
1868
1869      procedure Report_Ambiguous_Argument is
1870         Arg : constant Node_Id := First (Parameter_Associations (N));
1871         I   : Interp_Index;
1872         It  : Interp;
1873
1874      begin
1875         if Nkind (Arg) = N_Function_Call
1876           and then Is_Entity_Name (Name (Arg))
1877           and then Is_Overloaded (Name (Arg))
1878         then
1879            Error_Msg_NE ("ambiguous call to&", Arg, Name (Arg));
1880
1881            --  Could use comments on what is going on here???
1882
1883            Get_First_Interp (Name (Arg), I, It);
1884            while Present (It.Nam) loop
1885               Error_Msg_Sloc := Sloc (It.Nam);
1886
1887               if Nkind (Parent (It.Nam)) = N_Full_Type_Declaration then
1888                  Error_Msg_N ("interpretation (inherited) #!", Arg);
1889               else
1890                  Error_Msg_N ("interpretation #!", Arg);
1891               end if;
1892
1893               Get_Next_Interp (I, It);
1894            end loop;
1895         end if;
1896      end Report_Ambiguous_Argument;
1897
1898      -----------------------
1899      -- Resolution_Failed --
1900      -----------------------
1901
1902      procedure Resolution_Failed is
1903      begin
1904         Patch_Up_Value (N, Typ);
1905
1906         --  Set the type to the desired one to minimize cascaded errors. Note
1907         --  that this is an approximation and does not work in all cases.
1908
1909         Set_Etype (N, Typ);
1910
1911         Debug_A_Exit ("resolving  ", N, " (done, resolution failed)");
1912         Set_Is_Overloaded (N, False);
1913
1914         --  The caller will return without calling the expander, so we need
1915         --  to set the analyzed flag. Note that it is fine to set Analyzed
1916         --  to True even if we are in the middle of a shallow analysis,
1917         --  (see the spec of sem for more details) since this is an error
1918         --  situation anyway, and there is no point in repeating the
1919         --  analysis later (indeed it won't work to repeat it later, since
1920         --  we haven't got a clear resolution of which entity is being
1921         --  referenced.)
1922
1923         Set_Analyzed (N, True);
1924         return;
1925      end Resolution_Failed;
1926
1927   --  Start of processing for Resolve
1928
1929   begin
1930      if N = Error then
1931         return;
1932      end if;
1933
1934      --  Access attribute on remote subprogram cannot be used for a non-remote
1935      --  access-to-subprogram type.
1936
1937      if Nkind (N) = N_Attribute_Reference
1938        and then Nam_In (Attribute_Name (N), Name_Access,
1939                                             Name_Unrestricted_Access,
1940                                             Name_Unchecked_Access)
1941        and then Comes_From_Source (N)
1942        and then Is_Entity_Name (Prefix (N))
1943        and then Is_Subprogram (Entity (Prefix (N)))
1944        and then Is_Remote_Call_Interface (Entity (Prefix (N)))
1945        and then not Is_Remote_Access_To_Subprogram_Type (Typ)
1946      then
1947         Error_Msg_N
1948           ("prefix must statically denote a non-remote subprogram", N);
1949      end if;
1950
1951      From_Lib := Comes_From_Predefined_Lib_Unit (N);
1952
1953      --  If the context is a Remote_Access_To_Subprogram, access attributes
1954      --  must be resolved with the corresponding fat pointer. There is no need
1955      --  to check for the attribute name since the return type of an
1956      --  attribute is never a remote type.
1957
1958      if Nkind (N) = N_Attribute_Reference
1959        and then Comes_From_Source (N)
1960        and then (Is_Remote_Call_Interface (Typ) or else Is_Remote_Types (Typ))
1961      then
1962         declare
1963            Attr      : constant Attribute_Id :=
1964                          Get_Attribute_Id (Attribute_Name (N));
1965            Pref      : constant Node_Id      := Prefix (N);
1966            Decl      : Node_Id;
1967            Spec      : Node_Id;
1968            Is_Remote : Boolean := True;
1969
1970         begin
1971            --  Check that Typ is a remote access-to-subprogram type
1972
1973            if Is_Remote_Access_To_Subprogram_Type (Typ) then
1974
1975               --  Prefix (N) must statically denote a remote subprogram
1976               --  declared in a package specification.
1977
1978               if Attr = Attribute_Access           or else
1979                  Attr = Attribute_Unchecked_Access or else
1980                  Attr = Attribute_Unrestricted_Access
1981               then
1982                  Decl := Unit_Declaration_Node (Entity (Pref));
1983
1984                  if Nkind (Decl) = N_Subprogram_Body then
1985                     Spec := Corresponding_Spec (Decl);
1986
1987                     if Present (Spec) then
1988                        Decl := Unit_Declaration_Node (Spec);
1989                     end if;
1990                  end if;
1991
1992                  Spec := Parent (Decl);
1993
1994                  if not Is_Entity_Name (Prefix (N))
1995                    or else Nkind (Spec) /= N_Package_Specification
1996                    or else
1997                      not Is_Remote_Call_Interface (Defining_Entity (Spec))
1998                  then
1999                     Is_Remote := False;
2000                     Error_Msg_N
2001                       ("prefix must statically denote a remote subprogram ",
2002                        N);
2003                  end if;
2004
2005                  --  If we are generating code in distributed mode, perform
2006                  --  semantic checks against corresponding remote entities.
2007
2008                  if Expander_Active
2009                    and then Get_PCS_Name /= Name_No_DSA
2010                  then
2011                     Check_Subtype_Conformant
2012                       (New_Id  => Entity (Prefix (N)),
2013                        Old_Id  => Designated_Type
2014                                     (Corresponding_Remote_Type (Typ)),
2015                        Err_Loc => N);
2016
2017                     if Is_Remote then
2018                        Process_Remote_AST_Attribute (N, Typ);
2019                     end if;
2020                  end if;
2021               end if;
2022            end if;
2023         end;
2024      end if;
2025
2026      Debug_A_Entry ("resolving  ", N);
2027
2028      if Debug_Flag_V then
2029         Write_Overloads (N);
2030      end if;
2031
2032      if Comes_From_Source (N) then
2033         if Is_Fixed_Point_Type (Typ) then
2034            Check_Restriction (No_Fixed_Point, N);
2035
2036         elsif Is_Floating_Point_Type (Typ)
2037           and then Typ /= Universal_Real
2038           and then Typ /= Any_Real
2039         then
2040            Check_Restriction (No_Floating_Point, N);
2041         end if;
2042      end if;
2043
2044      --  Return if already analyzed
2045
2046      if Analyzed (N) then
2047         Debug_A_Exit ("resolving  ", N, "  (done, already analyzed)");
2048         Analyze_Dimension (N);
2049         return;
2050
2051      --  Any case of Any_Type as the Etype value means that we had a
2052      --  previous error.
2053
2054      elsif Etype (N) = Any_Type then
2055         Debug_A_Exit ("resolving  ", N, "  (done, Etype = Any_Type)");
2056         return;
2057      end if;
2058
2059      Check_Parameterless_Call (N);
2060
2061      --  The resolution of an Expression_With_Actions is determined by
2062      --  its Expression.
2063
2064      if Nkind (N) = N_Expression_With_Actions then
2065         Resolve (Expression (N), Typ);
2066
2067         Found := True;
2068         Expr_Type := Etype (Expression (N));
2069
2070      --  If not overloaded, then we know the type, and all that needs doing
2071      --  is to check that this type is compatible with the context.
2072
2073      elsif not Is_Overloaded (N) then
2074         Found := Covers (Typ, Etype (N));
2075         Expr_Type := Etype (N);
2076
2077      --  In the overloaded case, we must select the interpretation that
2078      --  is compatible with the context (i.e. the type passed to Resolve)
2079
2080      else
2081         --  Loop through possible interpretations
2082
2083         Get_First_Interp (N, I, It);
2084         Interp_Loop : while Present (It.Typ) loop
2085            if Debug_Flag_V then
2086               Write_Str ("Interp: ");
2087               Write_Interp (It);
2088            end if;
2089
2090            --  We are only interested in interpretations that are compatible
2091            --  with the expected type, any other interpretations are ignored.
2092
2093            if not Covers (Typ, It.Typ) then
2094               if Debug_Flag_V then
2095                  Write_Str ("    interpretation incompatible with context");
2096                  Write_Eol;
2097               end if;
2098
2099            else
2100               --  Skip the current interpretation if it is disabled by an
2101               --  abstract operator. This action is performed only when the
2102               --  type against which we are resolving is the same as the
2103               --  type of the interpretation.
2104
2105               if Ada_Version >= Ada_2005
2106                 and then It.Typ = Typ
2107                 and then Typ /= Universal_Integer
2108                 and then Typ /= Universal_Real
2109                 and then Present (It.Abstract_Op)
2110               then
2111                  if Debug_Flag_V then
2112                     Write_Line ("Skip.");
2113                  end if;
2114
2115                  goto Continue;
2116               end if;
2117
2118               --  First matching interpretation
2119
2120               if not Found then
2121                  Found := True;
2122                  I1    := I;
2123                  Seen  := It.Nam;
2124                  Expr_Type := It.Typ;
2125
2126               --  Matching interpretation that is not the first, maybe an
2127               --  error, but there are some cases where preference rules are
2128               --  used to choose between the two possibilities. These and
2129               --  some more obscure cases are handled in Disambiguate.
2130
2131               else
2132                  --  If the current statement is part of a predefined library
2133                  --  unit, then all interpretations which come from user level
2134                  --  packages should not be considered. Check previous and
2135                  --  current one.
2136
2137                  if From_Lib then
2138                     if not Comes_From_Predefined_Lib_Unit (It.Nam) then
2139                        goto Continue;
2140
2141                     elsif not Comes_From_Predefined_Lib_Unit (Seen) then
2142
2143                        --  Previous interpretation must be discarded
2144
2145                        I1 := I;
2146                        Seen := It.Nam;
2147                        Expr_Type := It.Typ;
2148                        Set_Entity (N, Seen);
2149                        goto Continue;
2150                     end if;
2151                  end if;
2152
2153                  --  Otherwise apply further disambiguation steps
2154
2155                  Error_Msg_Sloc := Sloc (Seen);
2156                  It1 := Disambiguate (N, I1, I, Typ);
2157
2158                  --  Disambiguation has succeeded. Skip the remaining
2159                  --  interpretations.
2160
2161                  if It1 /= No_Interp then
2162                     Seen := It1.Nam;
2163                     Expr_Type := It1.Typ;
2164
2165                     while Present (It.Typ) loop
2166                        Get_Next_Interp (I, It);
2167                     end loop;
2168
2169                  else
2170                     --  Before we issue an ambiguity complaint, check for the
2171                     --  case of a subprogram call where at least one of the
2172                     --  arguments is Any_Type, and if so suppress the message,
2173                     --  since it is a cascaded error. This can also happen for
2174                     --  a generalized indexing operation.
2175
2176                     if Nkind (N) in N_Subprogram_Call
2177                       or else (Nkind (N) = N_Indexed_Component
2178                                 and then Present (Generalized_Indexing (N)))
2179                     then
2180                        declare
2181                           A : Node_Id;
2182                           E : Node_Id;
2183
2184                        begin
2185                           if Nkind (N) = N_Indexed_Component then
2186                              Rewrite (N, Generalized_Indexing (N));
2187                           end if;
2188
2189                           A := First_Actual (N);
2190                           while Present (A) loop
2191                              E := A;
2192
2193                              if Nkind (E) = N_Parameter_Association then
2194                                 E := Explicit_Actual_Parameter (E);
2195                              end if;
2196
2197                              if Etype (E) = Any_Type then
2198                                 if Debug_Flag_V then
2199                                    Write_Str ("Any_Type in call");
2200                                    Write_Eol;
2201                                 end if;
2202
2203                                 exit Interp_Loop;
2204                              end if;
2205
2206                              Next_Actual (A);
2207                           end loop;
2208                        end;
2209
2210                     elsif Nkind (N) in N_Binary_Op
2211                       and then (Etype (Left_Opnd (N)) = Any_Type
2212                                  or else Etype (Right_Opnd (N)) = Any_Type)
2213                     then
2214                        exit Interp_Loop;
2215
2216                     elsif Nkind (N) in N_Unary_Op
2217                       and then Etype (Right_Opnd (N)) = Any_Type
2218                     then
2219                        exit Interp_Loop;
2220                     end if;
2221
2222                     --  Not that special case, so issue message using the flag
2223                     --  Ambiguous to control printing of the header message
2224                     --  only at the start of an ambiguous set.
2225
2226                     if not Ambiguous then
2227                        if Nkind (N) = N_Function_Call
2228                          and then Nkind (Name (N)) = N_Explicit_Dereference
2229                        then
2230                           Error_Msg_N
2231                             ("ambiguous expression (cannot resolve indirect "
2232                              & "call)!", N);
2233                        else
2234                           Error_Msg_NE -- CODEFIX
2235                             ("ambiguous expression (cannot resolve&)!",
2236                              N, It.Nam);
2237                        end if;
2238
2239                        Ambiguous := True;
2240
2241                        if Nkind (Parent (Seen)) = N_Full_Type_Declaration then
2242                           Error_Msg_N
2243                             ("\\possible interpretation (inherited)#!", N);
2244                        else
2245                           Error_Msg_N -- CODEFIX
2246                             ("\\possible interpretation#!", N);
2247                        end if;
2248
2249                        if Nkind (N) in N_Subprogram_Call
2250                          and then Present (Parameter_Associations (N))
2251                        then
2252                           Report_Ambiguous_Argument;
2253                        end if;
2254                     end if;
2255
2256                     Error_Msg_Sloc := Sloc (It.Nam);
2257
2258                     --  By default, the error message refers to the candidate
2259                     --  interpretation. But if it is a predefined operator, it
2260                     --  is implicitly declared at the declaration of the type
2261                     --  of the operand. Recover the sloc of that declaration
2262                     --  for the error message.
2263
2264                     if Nkind (N) in N_Op
2265                       and then Scope (It.Nam) = Standard_Standard
2266                       and then not Is_Overloaded (Right_Opnd (N))
2267                       and then Scope (Base_Type (Etype (Right_Opnd (N)))) /=
2268                                                             Standard_Standard
2269                     then
2270                        Err_Type := First_Subtype (Etype (Right_Opnd (N)));
2271
2272                        if Comes_From_Source (Err_Type)
2273                          and then Present (Parent (Err_Type))
2274                        then
2275                           Error_Msg_Sloc := Sloc (Parent (Err_Type));
2276                        end if;
2277
2278                     elsif Nkind (N) in N_Binary_Op
2279                       and then Scope (It.Nam) = Standard_Standard
2280                       and then not Is_Overloaded (Left_Opnd (N))
2281                       and then Scope (Base_Type (Etype (Left_Opnd (N)))) /=
2282                                                             Standard_Standard
2283                     then
2284                        Err_Type := First_Subtype (Etype (Left_Opnd (N)));
2285
2286                        if Comes_From_Source (Err_Type)
2287                          and then Present (Parent (Err_Type))
2288                        then
2289                           Error_Msg_Sloc := Sloc (Parent (Err_Type));
2290                        end if;
2291
2292                     --  If this is an indirect call, use the subprogram_type
2293                     --  in the message, to have a meaningful location. Also
2294                     --  indicate if this is an inherited operation, created
2295                     --  by a type declaration.
2296
2297                     elsif Nkind (N) = N_Function_Call
2298                       and then Nkind (Name (N)) = N_Explicit_Dereference
2299                       and then Is_Type (It.Nam)
2300                     then
2301                        Err_Type := It.Nam;
2302                        Error_Msg_Sloc :=
2303                          Sloc (Associated_Node_For_Itype (Err_Type));
2304                     else
2305                        Err_Type := Empty;
2306                     end if;
2307
2308                     if Nkind (N) in N_Op
2309                       and then Scope (It.Nam) = Standard_Standard
2310                       and then Present (Err_Type)
2311                     then
2312                        --  Special-case the message for universal_fixed
2313                        --  operators, which are not declared with the type
2314                        --  of the operand, but appear forever in Standard.
2315
2316                        if It.Typ = Universal_Fixed
2317                          and then Scope (It.Nam) = Standard_Standard
2318                        then
2319                           Error_Msg_N
2320                             ("\\possible interpretation as universal_fixed "
2321                              & "operation (RM 4.5.5 (19))", N);
2322                        else
2323                           Error_Msg_N
2324                             ("\\possible interpretation (predefined)#!", N);
2325                        end if;
2326
2327                     elsif
2328                       Nkind (Parent (It.Nam)) = N_Full_Type_Declaration
2329                     then
2330                        Error_Msg_N
2331                          ("\\possible interpretation (inherited)#!", N);
2332                     else
2333                        Error_Msg_N -- CODEFIX
2334                          ("\\possible interpretation#!", N);
2335                     end if;
2336
2337                  end if;
2338               end if;
2339
2340               --  We have a matching interpretation, Expr_Type is the type
2341               --  from this interpretation, and Seen is the entity.
2342
2343               --  For an operator, just set the entity name. The type will be
2344               --  set by the specific operator resolution routine.
2345
2346               if Nkind (N) in N_Op then
2347                  Set_Entity (N, Seen);
2348                  Generate_Reference (Seen, N);
2349
2350               elsif Nkind_In (N, N_Case_Expression,
2351                                  N_Character_Literal,
2352                                  N_Delta_Aggregate,
2353                                  N_If_Expression)
2354               then
2355                  Set_Etype (N, Expr_Type);
2356
2357               --  AI05-0139-2: Expression is overloaded because type has
2358               --  implicit dereference. If type matches context, no implicit
2359               --  dereference is involved. If the expression is an entity,
2360               --  generate a reference to it, as this is not done for an
2361               --  overloaded construct during analysis.
2362
2363               elsif Has_Implicit_Dereference (Expr_Type) then
2364                  Set_Etype (N, Expr_Type);
2365                  Set_Is_Overloaded (N, False);
2366
2367                  if Is_Entity_Name (N) then
2368                     Generate_Reference (Entity (N), N);
2369                  end if;
2370
2371                  exit Interp_Loop;
2372
2373               elsif Is_Overloaded (N)
2374                 and then Present (It.Nam)
2375                 and then Ekind (It.Nam) = E_Discriminant
2376                 and then Has_Implicit_Dereference (It.Nam)
2377               then
2378                  --  If the node is a general indexing, the dereference is
2379                  --  is inserted when resolving the rewritten form, else
2380                  --  insert it now.
2381
2382                  if Nkind (N) /= N_Indexed_Component
2383                    or else No (Generalized_Indexing (N))
2384                  then
2385                     Build_Explicit_Dereference (N, It.Nam);
2386                  end if;
2387
2388               --  For an explicit dereference, attribute reference, range,
2389               --  short-circuit form (which is not an operator node), or call
2390               --  with a name that is an explicit dereference, there is
2391               --  nothing to be done at this point.
2392
2393               elsif Nkind_In (N, N_Attribute_Reference,
2394                                  N_And_Then,
2395                                  N_Explicit_Dereference,
2396                                  N_Identifier,
2397                                  N_Indexed_Component,
2398                                  N_Or_Else,
2399                                  N_Range,
2400                                  N_Selected_Component,
2401                                  N_Slice)
2402                 or else Nkind (Name (N)) = N_Explicit_Dereference
2403               then
2404                  null;
2405
2406               --  For procedure or function calls, set the type of the name,
2407               --  and also the entity pointer for the prefix.
2408
2409               elsif Nkind (N) in N_Subprogram_Call
2410                 and then Is_Entity_Name (Name (N))
2411               then
2412                  Set_Etype  (Name (N), Expr_Type);
2413                  Set_Entity (Name (N), Seen);
2414                  Generate_Reference (Seen, Name (N));
2415
2416               elsif Nkind (N) = N_Function_Call
2417                 and then Nkind (Name (N)) = N_Selected_Component
2418               then
2419                  Set_Etype (Name (N), Expr_Type);
2420                  Set_Entity (Selector_Name (Name (N)), Seen);
2421                  Generate_Reference (Seen, Selector_Name (Name (N)));
2422
2423               --  For all other cases, just set the type of the Name
2424
2425               else
2426                  Set_Etype (Name (N), Expr_Type);
2427               end if;
2428
2429            end if;
2430
2431            <<Continue>>
2432
2433            --  Move to next interpretation
2434
2435            exit Interp_Loop when No (It.Typ);
2436
2437            Get_Next_Interp (I, It);
2438         end loop Interp_Loop;
2439      end if;
2440
2441      --  At this stage Found indicates whether or not an acceptable
2442      --  interpretation exists. If not, then we have an error, except that if
2443      --  the context is Any_Type as a result of some other error, then we
2444      --  suppress the error report.
2445
2446      if not Found then
2447         if Typ /= Any_Type then
2448
2449            --  If type we are looking for is Void, then this is the procedure
2450            --  call case, and the error is simply that what we gave is not a
2451            --  procedure name (we think of procedure calls as expressions with
2452            --  types internally, but the user doesn't think of them this way).
2453
2454            if Typ = Standard_Void_Type then
2455
2456               --  Special case message if function used as a procedure
2457
2458               if Nkind (N) = N_Procedure_Call_Statement
2459                 and then Is_Entity_Name (Name (N))
2460                 and then Ekind (Entity (Name (N))) = E_Function
2461               then
2462                  Error_Msg_NE
2463                    ("cannot use call to function & as a statement",
2464                     Name (N), Entity (Name (N)));
2465                  Error_Msg_N
2466                    ("\return value of a function call cannot be ignored",
2467                     Name (N));
2468
2469               --  Otherwise give general message (not clear what cases this
2470               --  covers, but no harm in providing for them).
2471
2472               else
2473                  Error_Msg_N ("expect procedure name in procedure call", N);
2474               end if;
2475
2476               Found := True;
2477
2478            --  Otherwise we do have a subexpression with the wrong type
2479
2480            --  Check for the case of an allocator which uses an access type
2481            --  instead of the designated type. This is a common error and we
2482            --  specialize the message, posting an error on the operand of the
2483            --  allocator, complaining that we expected the designated type of
2484            --  the allocator.
2485
2486            elsif Nkind (N) = N_Allocator
2487              and then Is_Access_Type (Typ)
2488              and then Is_Access_Type (Etype (N))
2489              and then Designated_Type (Etype (N)) = Typ
2490            then
2491               Wrong_Type (Expression (N), Designated_Type (Typ));
2492               Found := True;
2493
2494            --  Check for view mismatch on Null in instances, for which the
2495            --  view-swapping mechanism has no identifier.
2496
2497            elsif (In_Instance or else In_Inlined_Body)
2498              and then (Nkind (N) = N_Null)
2499              and then Is_Private_Type (Typ)
2500              and then Is_Access_Type (Full_View (Typ))
2501            then
2502               Resolve (N, Full_View (Typ));
2503               Set_Etype (N, Typ);
2504               return;
2505
2506            --  Check for an aggregate. Sometimes we can get bogus aggregates
2507            --  from misuse of parentheses, and we are about to complain about
2508            --  the aggregate without even looking inside it.
2509
2510            --  Instead, if we have an aggregate of type Any_Composite, then
2511            --  analyze and resolve the component fields, and then only issue
2512            --  another message if we get no errors doing this (otherwise
2513            --  assume that the errors in the aggregate caused the problem).
2514
2515            elsif Nkind (N) = N_Aggregate
2516              and then Etype (N) = Any_Composite
2517            then
2518               --  Disable expansion in any case. If there is a type mismatch
2519               --  it may be fatal to try to expand the aggregate. The flag
2520               --  would otherwise be set to false when the error is posted.
2521
2522               Expander_Active := False;
2523
2524               declare
2525                  procedure Check_Aggr (Aggr : Node_Id);
2526                  --  Check one aggregate, and set Found to True if we have a
2527                  --  definite error in any of its elements
2528
2529                  procedure Check_Elmt (Aelmt : Node_Id);
2530                  --  Check one element of aggregate and set Found to True if
2531                  --  we definitely have an error in the element.
2532
2533                  ----------------
2534                  -- Check_Aggr --
2535                  ----------------
2536
2537                  procedure Check_Aggr (Aggr : Node_Id) is
2538                     Elmt : Node_Id;
2539
2540                  begin
2541                     if Present (Expressions (Aggr)) then
2542                        Elmt := First (Expressions (Aggr));
2543                        while Present (Elmt) loop
2544                           Check_Elmt (Elmt);
2545                           Next (Elmt);
2546                        end loop;
2547                     end if;
2548
2549                     if Present (Component_Associations (Aggr)) then
2550                        Elmt := First (Component_Associations (Aggr));
2551                        while Present (Elmt) loop
2552
2553                           --  If this is a default-initialized component, then
2554                           --  there is nothing to check. The box will be
2555                           --  replaced by the appropriate call during late
2556                           --  expansion.
2557
2558                           if Nkind (Elmt) /= N_Iterated_Component_Association
2559                             and then not Box_Present (Elmt)
2560                           then
2561                              Check_Elmt (Expression (Elmt));
2562                           end if;
2563
2564                           Next (Elmt);
2565                        end loop;
2566                     end if;
2567                  end Check_Aggr;
2568
2569                  ----------------
2570                  -- Check_Elmt --
2571                  ----------------
2572
2573                  procedure Check_Elmt (Aelmt : Node_Id) is
2574                  begin
2575                     --  If we have a nested aggregate, go inside it (to
2576                     --  attempt a naked analyze-resolve of the aggregate can
2577                     --  cause undesirable cascaded errors). Do not resolve
2578                     --  expression if it needs a type from context, as for
2579                     --  integer * fixed expression.
2580
2581                     if Nkind (Aelmt) = N_Aggregate then
2582                        Check_Aggr (Aelmt);
2583
2584                     else
2585                        Analyze (Aelmt);
2586
2587                        if not Is_Overloaded (Aelmt)
2588                          and then Etype (Aelmt) /= Any_Fixed
2589                        then
2590                           Resolve (Aelmt);
2591                        end if;
2592
2593                        if Etype (Aelmt) = Any_Type then
2594                           Found := True;
2595                        end if;
2596                     end if;
2597                  end Check_Elmt;
2598
2599               begin
2600                  Check_Aggr (N);
2601               end;
2602            end if;
2603
2604            --  Looks like we have a type error, but check for special case
2605            --  of Address wanted, integer found, with the configuration pragma
2606            --  Allow_Integer_Address active. If we have this case, introduce
2607            --  an unchecked conversion to allow the integer expression to be
2608            --  treated as an Address. The reverse case of integer wanted,
2609            --  Address found, is treated in an analogous manner.
2610
2611            if Address_Integer_Convert_OK (Typ, Etype (N)) then
2612               Rewrite (N, Unchecked_Convert_To (Typ, Relocate_Node (N)));
2613               Analyze_And_Resolve (N, Typ);
2614               return;
2615
2616            --  Under relaxed RM semantics silently replace occurrences of null
2617            --  by System.Address_Null.
2618
2619            elsif Null_To_Null_Address_Convert_OK (N, Typ) then
2620               Replace_Null_By_Null_Address (N);
2621               Analyze_And_Resolve (N, Typ);
2622               return;
2623            end if;
2624
2625            --  That special Allow_Integer_Address check did not apply, so we
2626            --  have a real type error. If an error message was issued already,
2627            --  Found got reset to True, so if it's still False, issue standard
2628            --  Wrong_Type message.
2629
2630            if not Found then
2631               if Is_Overloaded (N) and then Nkind (N) = N_Function_Call then
2632                  declare
2633                     Subp_Name : Node_Id;
2634
2635                  begin
2636                     if Is_Entity_Name (Name (N)) then
2637                        Subp_Name := Name (N);
2638
2639                     elsif Nkind (Name (N)) = N_Selected_Component then
2640
2641                        --  Protected operation: retrieve operation name
2642
2643                        Subp_Name := Selector_Name (Name (N));
2644
2645                     else
2646                        raise Program_Error;
2647                     end if;
2648
2649                     Error_Msg_Node_2 := Typ;
2650                     Error_Msg_NE
2651                       ("no visible interpretation of& matches expected type&",
2652                        N, Subp_Name);
2653                  end;
2654
2655                  if All_Errors_Mode then
2656                     declare
2657                        Index : Interp_Index;
2658                        It    : Interp;
2659
2660                     begin
2661                        Error_Msg_N ("\\possible interpretations:", N);
2662
2663                        Get_First_Interp (Name (N), Index, It);
2664                        while Present (It.Nam) loop
2665                           Error_Msg_Sloc := Sloc (It.Nam);
2666                           Error_Msg_Node_2 := It.Nam;
2667                           Error_Msg_NE
2668                             ("\\  type& for & declared#", N, It.Typ);
2669                           Get_Next_Interp (Index, It);
2670                        end loop;
2671                     end;
2672
2673                  else
2674                     Error_Msg_N ("\use -gnatf for details", N);
2675                  end if;
2676
2677               else
2678                  Wrong_Type (N, Typ);
2679               end if;
2680            end if;
2681         end if;
2682
2683         Resolution_Failed;
2684         return;
2685
2686      --  Test if we have more than one interpretation for the context
2687
2688      elsif Ambiguous then
2689         Resolution_Failed;
2690         return;
2691
2692      --  Only one intepretation
2693
2694      else
2695         --  In Ada 2005, if we have something like "X : T := 2 + 2;", where
2696         --  the "+" on T is abstract, and the operands are of universal type,
2697         --  the above code will have (incorrectly) resolved the "+" to the
2698         --  universal one in Standard. Therefore check for this case and give
2699         --  an error. We can't do this earlier, because it would cause legal
2700         --  cases to get errors (when some other type has an abstract "+").
2701
2702         if Ada_Version >= Ada_2005
2703           and then Nkind (N) in N_Op
2704           and then Is_Overloaded (N)
2705           and then Is_Universal_Numeric_Type (Etype (Entity (N)))
2706         then
2707            Get_First_Interp (N, I, It);
2708            while Present (It.Typ) loop
2709               if Present (It.Abstract_Op) and then
2710                 Etype (It.Abstract_Op) = Typ
2711               then
2712                  Error_Msg_NE
2713                    ("cannot call abstract subprogram &!", N, It.Abstract_Op);
2714                  return;
2715               end if;
2716
2717               Get_Next_Interp (I, It);
2718            end loop;
2719         end if;
2720
2721         --  Here we have an acceptable interpretation for the context
2722
2723         --  Propagate type information and normalize tree for various
2724         --  predefined operations. If the context only imposes a class of
2725         --  types, rather than a specific type, propagate the actual type
2726         --  downward.
2727
2728         if Typ = Any_Integer or else
2729            Typ = Any_Boolean or else
2730            Typ = Any_Modular or else
2731            Typ = Any_Real    or else
2732            Typ = Any_Discrete
2733         then
2734            Ctx_Type := Expr_Type;
2735
2736            --  Any_Fixed is legal in a real context only if a specific fixed-
2737            --  point type is imposed. If Norman Cohen can be confused by this,
2738            --  it deserves a separate message.
2739
2740            if Typ = Any_Real
2741              and then Expr_Type = Any_Fixed
2742            then
2743               Error_Msg_N ("illegal context for mixed mode operation", N);
2744               Set_Etype (N, Universal_Real);
2745               Ctx_Type := Universal_Real;
2746            end if;
2747         end if;
2748
2749         --  A user-defined operator is transformed into a function call at
2750         --  this point, so that further processing knows that operators are
2751         --  really operators (i.e. are predefined operators). User-defined
2752         --  operators that are intrinsic are just renamings of the predefined
2753         --  ones, and need not be turned into calls either, but if they rename
2754         --  a different operator, we must transform the node accordingly.
2755         --  Instantiations of Unchecked_Conversion are intrinsic but are
2756         --  treated as functions, even if given an operator designator.
2757
2758         if Nkind (N) in N_Op
2759           and then Present (Entity (N))
2760           and then Ekind (Entity (N)) /= E_Operator
2761         then
2762            if not Is_Predefined_Op (Entity (N)) then
2763               Rewrite_Operator_As_Call (N, Entity (N));
2764
2765            elsif Present (Alias (Entity (N)))
2766              and then
2767                Nkind (Parent (Parent (Entity (N)))) =
2768                                    N_Subprogram_Renaming_Declaration
2769            then
2770               Rewrite_Renamed_Operator (N, Alias (Entity (N)), Typ);
2771
2772               --  If the node is rewritten, it will be fully resolved in
2773               --  Rewrite_Renamed_Operator.
2774
2775               if Analyzed (N) then
2776                  return;
2777               end if;
2778            end if;
2779         end if;
2780
2781         case N_Subexpr'(Nkind (N)) is
2782            when N_Aggregate =>
2783               Resolve_Aggregate                 (N, Ctx_Type);
2784
2785            when N_Allocator =>
2786               Resolve_Allocator                 (N, Ctx_Type);
2787
2788            when N_Short_Circuit =>
2789               Resolve_Short_Circuit             (N, Ctx_Type);
2790
2791            when N_Attribute_Reference =>
2792               Resolve_Attribute                 (N, Ctx_Type);
2793
2794            when N_Case_Expression =>
2795               Resolve_Case_Expression           (N, Ctx_Type);
2796
2797            when N_Character_Literal =>
2798               Resolve_Character_Literal         (N, Ctx_Type);
2799
2800            when N_Delta_Aggregate =>
2801               Resolve_Delta_Aggregate           (N, Ctx_Type);
2802
2803            when N_Expanded_Name =>
2804               Resolve_Entity_Name               (N, Ctx_Type);
2805
2806            when N_Explicit_Dereference =>
2807               Resolve_Explicit_Dereference      (N, Ctx_Type);
2808
2809            when N_Expression_With_Actions =>
2810               Resolve_Expression_With_Actions   (N, Ctx_Type);
2811
2812            when N_Extension_Aggregate =>
2813               Resolve_Extension_Aggregate       (N, Ctx_Type);
2814
2815            when N_Function_Call =>
2816               Resolve_Call                      (N, Ctx_Type);
2817
2818            when N_Identifier =>
2819               Resolve_Entity_Name               (N, Ctx_Type);
2820
2821            when N_If_Expression =>
2822               Resolve_If_Expression             (N, Ctx_Type);
2823
2824            when N_Indexed_Component =>
2825               Resolve_Indexed_Component         (N, Ctx_Type);
2826
2827            when N_Integer_Literal =>
2828               Resolve_Integer_Literal           (N, Ctx_Type);
2829
2830            when N_Membership_Test =>
2831               Resolve_Membership_Op             (N, Ctx_Type);
2832
2833            when N_Null =>
2834               Resolve_Null                      (N, Ctx_Type);
2835
2836            when N_Op_And
2837               | N_Op_Or
2838               | N_Op_Xor
2839            =>
2840               Resolve_Logical_Op                (N, Ctx_Type);
2841
2842            when N_Op_Eq
2843               | N_Op_Ne
2844            =>
2845               Resolve_Equality_Op               (N, Ctx_Type);
2846
2847            when N_Op_Ge
2848               | N_Op_Gt
2849               | N_Op_Le
2850               | N_Op_Lt
2851            =>
2852               Resolve_Comparison_Op             (N, Ctx_Type);
2853
2854            when N_Op_Not =>
2855               Resolve_Op_Not                    (N, Ctx_Type);
2856
2857            when N_Op_Add
2858               | N_Op_Divide
2859               | N_Op_Mod
2860               | N_Op_Multiply
2861               | N_Op_Rem
2862               | N_Op_Subtract
2863            =>
2864               Resolve_Arithmetic_Op             (N, Ctx_Type);
2865
2866            when N_Op_Concat =>
2867               Resolve_Op_Concat                 (N, Ctx_Type);
2868
2869            when N_Op_Expon =>
2870               Resolve_Op_Expon                  (N, Ctx_Type);
2871
2872            when N_Op_Abs
2873               | N_Op_Minus
2874               | N_Op_Plus
2875            =>
2876               Resolve_Unary_Op                  (N, Ctx_Type);
2877
2878            when N_Op_Shift =>
2879               Resolve_Shift                     (N, Ctx_Type);
2880
2881            when N_Procedure_Call_Statement =>
2882               Resolve_Call                      (N, Ctx_Type);
2883
2884            when N_Operator_Symbol =>
2885               Resolve_Operator_Symbol           (N, Ctx_Type);
2886
2887            when N_Qualified_Expression =>
2888               Resolve_Qualified_Expression      (N, Ctx_Type);
2889
2890            --  Why is the following null, needs a comment ???
2891
2892            when N_Quantified_Expression =>
2893               null;
2894
2895            when N_Raise_Expression =>
2896               Resolve_Raise_Expression          (N, Ctx_Type);
2897
2898            when N_Raise_xxx_Error =>
2899               Set_Etype (N, Ctx_Type);
2900
2901            when N_Range =>
2902               Resolve_Range                     (N, Ctx_Type);
2903
2904            when N_Real_Literal =>
2905               Resolve_Real_Literal              (N, Ctx_Type);
2906
2907            when N_Reduction_Expression =>
2908               null;
2909               --  Resolve (Expression (N),              Ctx_Type);
2910
2911            when N_Reduction_Expression_Parameter =>
2912               null;
2913
2914            when N_Reference =>
2915               Resolve_Reference                 (N, Ctx_Type);
2916
2917            when N_Selected_Component =>
2918               Resolve_Selected_Component        (N, Ctx_Type);
2919
2920            when N_Slice =>
2921               Resolve_Slice                     (N, Ctx_Type);
2922
2923            when N_String_Literal =>
2924               Resolve_String_Literal            (N, Ctx_Type);
2925
2926            when N_Target_Name =>
2927               Resolve_Target_Name               (N, Ctx_Type);
2928
2929            when N_Type_Conversion =>
2930               Resolve_Type_Conversion           (N, Ctx_Type);
2931
2932            when N_Unchecked_Expression =>
2933               Resolve_Unchecked_Expression      (N, Ctx_Type);
2934
2935            when N_Unchecked_Type_Conversion =>
2936               Resolve_Unchecked_Type_Conversion (N, Ctx_Type);
2937         end case;
2938
2939         --  Mark relevant use-type and use-package clauses as effective using
2940         --  the original node because constant folding may have occured and
2941         --  removed references that need to be examined.
2942
2943         if Nkind (Original_Node (N)) in N_Op then
2944            Mark_Use_Clauses (Original_Node (N));
2945         end if;
2946
2947         --  Ada 2012 (AI05-0149): Apply an (implicit) conversion to an
2948         --  expression of an anonymous access type that occurs in the context
2949         --  of a named general access type, except when the expression is that
2950         --  of a membership test. This ensures proper legality checking in
2951         --  terms of allowed conversions (expressions that would be illegal to
2952         --  convert implicitly are allowed in membership tests).
2953
2954         if Ada_Version >= Ada_2012
2955           and then Ekind (Ctx_Type) = E_General_Access_Type
2956           and then Ekind (Etype (N)) = E_Anonymous_Access_Type
2957           and then Nkind (Parent (N)) not in N_Membership_Test
2958         then
2959            Rewrite (N, Convert_To (Ctx_Type, Relocate_Node (N)));
2960            Analyze_And_Resolve (N, Ctx_Type);
2961         end if;
2962
2963         --  If the subexpression was replaced by a non-subexpression, then
2964         --  all we do is to expand it. The only legitimate case we know of
2965         --  is converting procedure call statement to entry call statements,
2966         --  but there may be others, so we are making this test general.
2967
2968         if Nkind (N) not in N_Subexpr then
2969            Debug_A_Exit ("resolving  ", N, "  (done)");
2970            Expand (N);
2971            return;
2972         end if;
2973
2974         --  The expression is definitely NOT overloaded at this point, so
2975         --  we reset the Is_Overloaded flag to avoid any confusion when
2976         --  reanalyzing the node.
2977
2978         Set_Is_Overloaded (N, False);
2979
2980         --  Freeze expression type, entity if it is a name, and designated
2981         --  type if it is an allocator (RM 13.14(10,11,13)).
2982
2983         --  Now that the resolution of the type of the node is complete, and
2984         --  we did not detect an error, we can expand this node. We skip the
2985         --  expand call if we are in a default expression, see section
2986         --  "Handling of Default Expressions" in Sem spec.
2987
2988         Debug_A_Exit ("resolving  ", N, "  (done)");
2989
2990         --  We unconditionally freeze the expression, even if we are in
2991         --  default expression mode (the Freeze_Expression routine tests this
2992         --  flag and only freezes static types if it is set).
2993
2994         --  Ada 2012 (AI05-177): The declaration of an expression function
2995         --  does not cause freezing, but we never reach here in that case.
2996         --  Here we are resolving the corresponding expanded body, so we do
2997         --  need to perform normal freezing.
2998
2999         --  As elsewhere we do not emit freeze node within a generic. We make
3000         --  an exception for entities that are expressions, only to detect
3001         --  misuses of deferred constants and preserve the output of various
3002         --  tests.
3003
3004         if not Inside_A_Generic or else Is_Entity_Name (N) then
3005            Freeze_Expression (N);
3006         end if;
3007
3008         --  Now we can do the expansion
3009
3010         Expand (N);
3011      end if;
3012   end Resolve;
3013
3014   -------------
3015   -- Resolve --
3016   -------------
3017
3018   --  Version with check(s) suppressed
3019
3020   procedure Resolve (N : Node_Id; Typ : Entity_Id; Suppress : Check_Id) is
3021   begin
3022      if Suppress = All_Checks then
3023         declare
3024            Sva : constant Suppress_Array := Scope_Suppress.Suppress;
3025         begin
3026            Scope_Suppress.Suppress := (others => True);
3027            Resolve (N, Typ);
3028            Scope_Suppress.Suppress := Sva;
3029         end;
3030
3031      else
3032         declare
3033            Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
3034         begin
3035            Scope_Suppress.Suppress (Suppress) := True;
3036            Resolve (N, Typ);
3037            Scope_Suppress.Suppress (Suppress) := Svg;
3038         end;
3039      end if;
3040   end Resolve;
3041
3042   -------------
3043   -- Resolve --
3044   -------------
3045
3046   --  Version with implicit type
3047
3048   procedure Resolve (N : Node_Id) is
3049   begin
3050      Resolve (N, Etype (N));
3051   end Resolve;
3052
3053   ---------------------
3054   -- Resolve_Actuals --
3055   ---------------------
3056
3057   procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id) is
3058      Loc    : constant Source_Ptr := Sloc (N);
3059      A      : Node_Id;
3060      A_Id   : Entity_Id;
3061      A_Typ  : Entity_Id := Empty; -- init to avoid warning
3062      F      : Entity_Id;
3063      F_Typ  : Entity_Id;
3064      Prev   : Node_Id := Empty;
3065      Orig_A : Node_Id;
3066      Real_F : Entity_Id := Empty; -- init to avoid warning
3067
3068      Real_Subp : Entity_Id;
3069      --  If the subprogram being called is an inherited operation for
3070      --  a formal derived type in an instance, Real_Subp is the subprogram
3071      --  that will be called. It may have different formal names than the
3072      --  operation of the formal in the generic, so after actual is resolved
3073      --  the name of the actual in a named association must carry the name
3074      --  of the actual of the subprogram being called.
3075
3076      procedure Check_Aliased_Parameter;
3077      --  Check rules on aliased parameters and related accessibility rules
3078      --  in (RM 3.10.2 (10.2-10.4)).
3079
3080      procedure Check_Argument_Order;
3081      --  Performs a check for the case where the actuals are all simple
3082      --  identifiers that correspond to the formal names, but in the wrong
3083      --  order, which is considered suspicious and cause for a warning.
3084
3085      procedure Check_Prefixed_Call;
3086      --  If the original node is an overloaded call in prefix notation,
3087      --  insert an 'Access or a dereference as needed over the first actual.
3088      --  Try_Object_Operation has already verified that there is a valid
3089      --  interpretation, but the form of the actual can only be determined
3090      --  once the primitive operation is identified.
3091
3092      procedure Flag_Effectively_Volatile_Objects (Expr : Node_Id);
3093      --  Emit an error concerning the illegal usage of an effectively volatile
3094      --  object in interfering context (SPARK RM 7.13(12)).
3095
3096      procedure Insert_Default;
3097      --  If the actual is missing in a call, insert in the actuals list
3098      --  an instance of the default expression. The insertion is always
3099      --  a named association.
3100
3101      function Same_Ancestor (T1, T2 : Entity_Id) return Boolean;
3102      --  Check whether T1 and T2, or their full views, are derived from a
3103      --  common type. Used to enforce the restrictions on array conversions
3104      --  of AI95-00246.
3105
3106      function Static_Concatenation (N : Node_Id) return Boolean;
3107      --  Predicate to determine whether an actual that is a concatenation
3108      --  will be evaluated statically and does not need a transient scope.
3109      --  This must be determined before the actual is resolved and expanded
3110      --  because if needed the transient scope must be introduced earlier.
3111
3112      -----------------------------
3113      -- Check_Aliased_Parameter --
3114      -----------------------------
3115
3116      procedure Check_Aliased_Parameter is
3117         Nominal_Subt : Entity_Id;
3118
3119      begin
3120         if Is_Aliased (F) then
3121            if Is_Tagged_Type (A_Typ) then
3122               null;
3123
3124            elsif Is_Aliased_View (A) then
3125               if Is_Constr_Subt_For_U_Nominal (A_Typ) then
3126                  Nominal_Subt := Base_Type (A_Typ);
3127               else
3128                  Nominal_Subt := A_Typ;
3129               end if;
3130
3131               if Subtypes_Statically_Match (F_Typ, Nominal_Subt) then
3132                  null;
3133
3134               --  In a generic body assume the worst for generic formals:
3135               --  they can have a constrained partial view (AI05-041).
3136
3137               elsif Has_Discriminants (F_Typ)
3138                 and then not Is_Constrained (F_Typ)
3139                 and then not Has_Constrained_Partial_View (F_Typ)
3140                 and then not Is_Generic_Type (F_Typ)
3141               then
3142                  null;
3143
3144               else
3145                  Error_Msg_NE ("untagged actual does not match "
3146                                & "aliased formal&", A, F);
3147               end if;
3148
3149            else
3150               Error_Msg_NE ("actual for aliased formal& must be "
3151                             & "aliased object", A, F);
3152            end if;
3153
3154            if Ekind (Nam) = E_Procedure then
3155               null;
3156
3157            elsif Ekind (Etype (Nam)) = E_Anonymous_Access_Type then
3158               if Nkind (Parent (N)) = N_Type_Conversion
3159                 and then Type_Access_Level (Etype (Parent (N))) <
3160                                                        Object_Access_Level (A)
3161               then
3162                  Error_Msg_N ("aliased actual has wrong accessibility", A);
3163               end if;
3164
3165            elsif Nkind (Parent (N)) = N_Qualified_Expression
3166              and then Nkind (Parent (Parent (N))) = N_Allocator
3167              and then Type_Access_Level (Etype (Parent (Parent (N)))) <
3168                                                        Object_Access_Level (A)
3169            then
3170               Error_Msg_N
3171                 ("aliased actual in allocator has wrong accessibility", A);
3172            end if;
3173         end if;
3174      end Check_Aliased_Parameter;
3175
3176      --------------------------
3177      -- Check_Argument_Order --
3178      --------------------------
3179
3180      procedure Check_Argument_Order is
3181      begin
3182         --  Nothing to do if no parameters, or original node is neither a
3183         --  function call nor a procedure call statement (happens in the
3184         --  operator-transformed-to-function call case), or the call does
3185         --  not come from source, or this warning is off.
3186
3187         if not Warn_On_Parameter_Order
3188           or else No (Parameter_Associations (N))
3189           or else Nkind (Original_Node (N)) not in N_Subprogram_Call
3190           or else not Comes_From_Source (N)
3191         then
3192            return;
3193         end if;
3194
3195         declare
3196            Nargs : constant Nat := List_Length (Parameter_Associations (N));
3197
3198         begin
3199            --  Nothing to do if only one parameter
3200
3201            if Nargs < 2 then
3202               return;
3203            end if;
3204
3205            --  Here if at least two arguments
3206
3207            declare
3208               Actuals : array (1 .. Nargs) of Node_Id;
3209               Actual  : Node_Id;
3210               Formal  : Node_Id;
3211
3212               Wrong_Order : Boolean := False;
3213               --  Set True if an out of order case is found
3214
3215            begin
3216               --  Collect identifier names of actuals, fail if any actual is
3217               --  not a simple identifier, and record max length of name.
3218
3219               Actual := First (Parameter_Associations (N));
3220               for J in Actuals'Range loop
3221                  if Nkind (Actual) /= N_Identifier then
3222                     return;
3223                  else
3224                     Actuals (J) := Actual;
3225                     Next (Actual);
3226                  end if;
3227               end loop;
3228
3229               --  If we got this far, all actuals are identifiers and the list
3230               --  of their names is stored in the Actuals array.
3231
3232               Formal := First_Formal (Nam);
3233               for J in Actuals'Range loop
3234
3235                  --  If we ran out of formals, that's odd, probably an error
3236                  --  which will be detected elsewhere, but abandon the search.
3237
3238                  if No (Formal) then
3239                     return;
3240                  end if;
3241
3242                  --  If name matches and is in order OK
3243
3244                  if Chars (Formal) = Chars (Actuals (J)) then
3245                     null;
3246
3247                  else
3248                     --  If no match, see if it is elsewhere in list and if so
3249                     --  flag potential wrong order if type is compatible.
3250
3251                     for K in Actuals'Range loop
3252                        if Chars (Formal) = Chars (Actuals (K))
3253                          and then
3254                            Has_Compatible_Type (Actuals (K), Etype (Formal))
3255                        then
3256                           Wrong_Order := True;
3257                           goto Continue;
3258                        end if;
3259                     end loop;
3260
3261                     --  No match
3262
3263                     return;
3264                  end if;
3265
3266                  <<Continue>> Next_Formal (Formal);
3267               end loop;
3268
3269               --  If Formals left over, also probably an error, skip warning
3270
3271               if Present (Formal) then
3272                  return;
3273               end if;
3274
3275               --  Here we give the warning if something was out of order
3276
3277               if Wrong_Order then
3278                  Error_Msg_N
3279                    ("?P?actuals for this call may be in wrong order", N);
3280               end if;
3281            end;
3282         end;
3283      end Check_Argument_Order;
3284
3285      -------------------------
3286      -- Check_Prefixed_Call --
3287      -------------------------
3288
3289      procedure Check_Prefixed_Call is
3290         Act    : constant Node_Id   := First_Actual (N);
3291         A_Type : constant Entity_Id := Etype (Act);
3292         F_Type : constant Entity_Id := Etype (First_Formal (Nam));
3293         Orig   : constant Node_Id := Original_Node (N);
3294         New_A  : Node_Id;
3295
3296      begin
3297         --  Check whether the call is a prefixed call, with or without
3298         --  additional actuals.
3299
3300         if Nkind (Orig) = N_Selected_Component
3301           or else
3302             (Nkind (Orig) = N_Indexed_Component
3303               and then Nkind (Prefix (Orig)) = N_Selected_Component
3304               and then Is_Entity_Name (Prefix (Prefix (Orig)))
3305               and then Is_Entity_Name (Act)
3306               and then Chars (Act) = Chars (Prefix (Prefix (Orig))))
3307         then
3308            if Is_Access_Type (A_Type)
3309              and then not Is_Access_Type (F_Type)
3310            then
3311               --  Introduce dereference on object in prefix
3312
3313               New_A :=
3314                 Make_Explicit_Dereference (Sloc (Act),
3315                   Prefix => Relocate_Node (Act));
3316               Rewrite (Act, New_A);
3317               Analyze (Act);
3318
3319            elsif Is_Access_Type (F_Type)
3320              and then not Is_Access_Type (A_Type)
3321            then
3322               --  Introduce an implicit 'Access in prefix
3323
3324               if not Is_Aliased_View (Act) then
3325                  Error_Msg_NE
3326                    ("object in prefixed call to& must be aliased "
3327                     & "(RM 4.1.3 (13 1/2))",
3328                    Prefix (Act), Nam);
3329               end if;
3330
3331               Rewrite (Act,
3332                 Make_Attribute_Reference (Loc,
3333                   Attribute_Name => Name_Access,
3334                   Prefix         => Relocate_Node (Act)));
3335            end if;
3336
3337            Analyze (Act);
3338         end if;
3339      end Check_Prefixed_Call;
3340
3341      ---------------------------------------
3342      -- Flag_Effectively_Volatile_Objects --
3343      ---------------------------------------
3344
3345      procedure Flag_Effectively_Volatile_Objects (Expr : Node_Id) is
3346         function Flag_Object (N : Node_Id) return Traverse_Result;
3347         --  Determine whether arbitrary node N denotes an effectively volatile
3348         --  object and if it does, emit an error.
3349
3350         -----------------
3351         -- Flag_Object --
3352         -----------------
3353
3354         function Flag_Object (N : Node_Id) return Traverse_Result is
3355            Id : Entity_Id;
3356
3357         begin
3358            --  Do not consider nested function calls because they have already
3359            --  been processed during their own resolution.
3360
3361            if Nkind (N) = N_Function_Call then
3362               return Skip;
3363
3364            elsif Is_Entity_Name (N) and then Present (Entity (N)) then
3365               Id := Entity (N);
3366
3367               if Is_Object (Id)
3368                 and then Is_Effectively_Volatile (Id)
3369                 and then (Async_Writers_Enabled (Id)
3370                            or else Effective_Reads_Enabled (Id))
3371               then
3372                  Error_Msg_N
3373                    ("volatile object cannot appear in this context (SPARK "
3374                     & "RM 7.1.3(11))", N);
3375                  return Skip;
3376               end if;
3377            end if;
3378
3379            return OK;
3380         end Flag_Object;
3381
3382         procedure Flag_Objects is new Traverse_Proc (Flag_Object);
3383
3384      --  Start of processing for Flag_Effectively_Volatile_Objects
3385
3386      begin
3387         Flag_Objects (Expr);
3388      end Flag_Effectively_Volatile_Objects;
3389
3390      --------------------
3391      -- Insert_Default --
3392      --------------------
3393
3394      procedure Insert_Default is
3395         Actval : Node_Id;
3396         Assoc  : Node_Id;
3397
3398      begin
3399         --  Missing argument in call, nothing to insert
3400
3401         if No (Default_Value (F)) then
3402            return;
3403
3404         else
3405            --  Note that we do a full New_Copy_Tree, so that any associated
3406            --  Itypes are properly copied. This may not be needed any more,
3407            --  but it does no harm as a safety measure. Defaults of a generic
3408            --  formal may be out of bounds of the corresponding actual (see
3409            --  cc1311b) and an additional check may be required.
3410
3411            Actval :=
3412              New_Copy_Tree
3413                (Default_Value (F),
3414                 New_Scope => Current_Scope,
3415                 New_Sloc  => Loc);
3416
3417            --  Propagate dimension information, if any.
3418
3419            Copy_Dimensions (Default_Value (F), Actval);
3420
3421            if Is_Concurrent_Type (Scope (Nam))
3422              and then Has_Discriminants (Scope (Nam))
3423            then
3424               Replace_Actual_Discriminants (N, Actval);
3425            end if;
3426
3427            if Is_Overloadable (Nam)
3428              and then Present (Alias (Nam))
3429            then
3430               if Base_Type (Etype (F)) /= Base_Type (Etype (Actval))
3431                 and then not Is_Tagged_Type (Etype (F))
3432               then
3433                  --  If default is a real literal, do not introduce a
3434                  --  conversion whose effect may depend on the run-time
3435                  --  size of universal real.
3436
3437                  if Nkind (Actval) = N_Real_Literal then
3438                     Set_Etype (Actval, Base_Type (Etype (F)));
3439                  else
3440                     Actval := Unchecked_Convert_To (Etype (F), Actval);
3441                  end if;
3442               end if;
3443
3444               if Is_Scalar_Type (Etype (F)) then
3445                  Enable_Range_Check (Actval);
3446               end if;
3447
3448               Set_Parent (Actval, N);
3449
3450               --  Resolve aggregates with their base type, to avoid scope
3451               --  anomalies: the subtype was first built in the subprogram
3452               --  declaration, and the current call may be nested.
3453
3454               if Nkind (Actval) = N_Aggregate then
3455                  Analyze_And_Resolve (Actval, Etype (F));
3456               else
3457                  Analyze_And_Resolve (Actval, Etype (Actval));
3458               end if;
3459
3460            else
3461               Set_Parent (Actval, N);
3462
3463               --  See note above concerning aggregates
3464
3465               if Nkind (Actval) = N_Aggregate
3466                 and then Has_Discriminants (Etype (Actval))
3467               then
3468                  Analyze_And_Resolve (Actval, Base_Type (Etype (Actval)));
3469
3470               --  Resolve entities with their own type, which may differ from
3471               --  the type of a reference in a generic context (the view
3472               --  swapping mechanism did not anticipate the re-analysis of
3473               --  default values in calls).
3474
3475               elsif Is_Entity_Name (Actval) then
3476                  Analyze_And_Resolve (Actval, Etype (Entity (Actval)));
3477
3478               else
3479                  Analyze_And_Resolve (Actval, Etype (Actval));
3480               end if;
3481            end if;
3482
3483            --  If default is a tag indeterminate function call, propagate tag
3484            --  to obtain proper dispatching.
3485
3486            if Is_Controlling_Formal (F)
3487              and then Nkind (Default_Value (F)) = N_Function_Call
3488            then
3489               Set_Is_Controlling_Actual (Actval);
3490            end if;
3491         end if;
3492
3493         --  If the default expression raises constraint error, then just
3494         --  silently replace it with an N_Raise_Constraint_Error node, since
3495         --  we already gave the warning on the subprogram spec. If node is
3496         --  already a Raise_Constraint_Error leave as is, to prevent loops in
3497         --  the warnings removal machinery.
3498
3499         if Raises_Constraint_Error (Actval)
3500           and then Nkind (Actval) /= N_Raise_Constraint_Error
3501         then
3502            Rewrite (Actval,
3503              Make_Raise_Constraint_Error (Loc,
3504                Reason => CE_Range_Check_Failed));
3505
3506            Set_Raises_Constraint_Error (Actval);
3507            Set_Etype (Actval, Etype (F));
3508         end if;
3509
3510         Assoc :=
3511           Make_Parameter_Association (Loc,
3512             Explicit_Actual_Parameter => Actval,
3513             Selector_Name             => Make_Identifier (Loc, Chars (F)));
3514
3515         --  Case of insertion is first named actual
3516
3517         if No (Prev)
3518           or else Nkind (Parent (Prev)) /= N_Parameter_Association
3519         then
3520            Set_Next_Named_Actual (Assoc, First_Named_Actual (N));
3521            Set_First_Named_Actual (N, Actval);
3522
3523            if No (Prev) then
3524               if No (Parameter_Associations (N)) then
3525                  Set_Parameter_Associations (N, New_List (Assoc));
3526               else
3527                  Append (Assoc, Parameter_Associations (N));
3528               end if;
3529
3530            else
3531               Insert_After (Prev, Assoc);
3532            end if;
3533
3534         --  Case of insertion is not first named actual
3535
3536         else
3537            Set_Next_Named_Actual
3538              (Assoc, Next_Named_Actual (Parent (Prev)));
3539            Set_Next_Named_Actual (Parent (Prev), Actval);
3540            Append (Assoc, Parameter_Associations (N));
3541         end if;
3542
3543         Mark_Rewrite_Insertion (Assoc);
3544         Mark_Rewrite_Insertion (Actval);
3545
3546         Prev := Actval;
3547      end Insert_Default;
3548
3549      -------------------
3550      -- Same_Ancestor --
3551      -------------------
3552
3553      function Same_Ancestor (T1, T2 : Entity_Id) return Boolean is
3554         FT1 : Entity_Id := T1;
3555         FT2 : Entity_Id := T2;
3556
3557      begin
3558         if Is_Private_Type (T1)
3559           and then Present (Full_View (T1))
3560         then
3561            FT1 := Full_View (T1);
3562         end if;
3563
3564         if Is_Private_Type (T2)
3565           and then Present (Full_View (T2))
3566         then
3567            FT2 := Full_View (T2);
3568         end if;
3569
3570         return Root_Type (Base_Type (FT1)) = Root_Type (Base_Type (FT2));
3571      end Same_Ancestor;
3572
3573      --------------------------
3574      -- Static_Concatenation --
3575      --------------------------
3576
3577      function Static_Concatenation (N : Node_Id) return Boolean is
3578      begin
3579         case Nkind (N) is
3580            when N_String_Literal =>
3581               return True;
3582
3583            when N_Op_Concat =>
3584
3585               --  Concatenation is static when both operands are static and
3586               --  the concatenation operator is a predefined one.
3587
3588               return Scope (Entity (N)) = Standard_Standard
3589                        and then
3590                      Static_Concatenation (Left_Opnd (N))
3591                        and then
3592                      Static_Concatenation (Right_Opnd (N));
3593
3594            when others =>
3595               if Is_Entity_Name (N) then
3596                  declare
3597                     Ent : constant Entity_Id := Entity (N);
3598                  begin
3599                     return Ekind (Ent) = E_Constant
3600                              and then Present (Constant_Value (Ent))
3601                              and then
3602                                Is_OK_Static_Expression (Constant_Value (Ent));
3603                  end;
3604
3605               else
3606                  return False;
3607               end if;
3608         end case;
3609      end Static_Concatenation;
3610
3611   --  Start of processing for Resolve_Actuals
3612
3613   begin
3614      Check_Argument_Order;
3615
3616      if Is_Overloadable (Nam)
3617        and then Is_Inherited_Operation (Nam)
3618        and then In_Instance
3619        and then Present (Alias (Nam))
3620        and then Present (Overridden_Operation (Alias (Nam)))
3621      then
3622         Real_Subp := Alias (Nam);
3623      else
3624         Real_Subp := Empty;
3625      end if;
3626
3627      if Present (First_Actual (N)) then
3628         Check_Prefixed_Call;
3629      end if;
3630
3631      A := First_Actual (N);
3632      F := First_Formal (Nam);
3633
3634      if Present (Real_Subp) then
3635         Real_F := First_Formal (Real_Subp);
3636      end if;
3637
3638      while Present (F) loop
3639         if No (A) and then Needs_No_Actuals (Nam) then
3640            null;
3641
3642         --  If we have an error in any actual or formal, indicated by a type
3643         --  of Any_Type, then abandon resolution attempt, and set result type
3644         --  to Any_Type. Skip this if the actual is a Raise_Expression, whose
3645         --  type is imposed from context.
3646
3647         elsif (Present (A) and then Etype (A) = Any_Type)
3648           or else Etype (F) = Any_Type
3649         then
3650            if Nkind (A) /= N_Raise_Expression then
3651               Set_Etype (N, Any_Type);
3652               return;
3653            end if;
3654         end if;
3655
3656         --  Case where actual is present
3657
3658         --  If the actual is an entity, generate a reference to it now. We
3659         --  do this before the actual is resolved, because a formal of some
3660         --  protected subprogram, or a task discriminant, will be rewritten
3661         --  during expansion, and the source entity reference may be lost.
3662
3663         if Present (A)
3664           and then Is_Entity_Name (A)
3665           and then Comes_From_Source (A)
3666         then
3667            --  Annotate the tree by creating a variable reference marker when
3668            --  the actual denotes a variable reference, in case the reference
3669            --  is folded or optimized away. The variable reference marker is
3670            --  automatically saved for later examination by the ABE Processing
3671            --  phase. The status of the reference is set as follows:
3672
3673            --    status   mode
3674            --    read     IN, IN OUT
3675            --    write    IN OUT, OUT
3676
3677            Build_Variable_Reference_Marker
3678              (N     => A,
3679               Read  => Ekind (F) /= E_Out_Parameter,
3680               Write => Ekind (F) /= E_In_Parameter);
3681
3682            Orig_A := Entity (A);
3683
3684            if Present (Orig_A) then
3685               if Is_Formal (Orig_A)
3686                 and then Ekind (F) /= E_In_Parameter
3687               then
3688                  Generate_Reference (Orig_A, A, 'm');
3689
3690               elsif not Is_Overloaded (A) then
3691                  if Ekind (F) /= E_Out_Parameter then
3692                     Generate_Reference (Orig_A, A);
3693
3694                  --  RM 6.4.1(12): For an out parameter that is passed by
3695                  --  copy, the formal parameter object is created, and:
3696
3697                  --  * For an access type, the formal parameter is initialized
3698                  --    from the value of the actual, without checking that the
3699                  --    value satisfies any constraint, any predicate, or any
3700                  --    exclusion of the null value.
3701
3702                  --  * For a scalar type that has the Default_Value aspect
3703                  --    specified, the formal parameter is initialized from the
3704                  --    value of the actual, without checking that the value
3705                  --    satisfies any constraint or any predicate.
3706                  --  I do not understand why this case is included??? this is
3707                  --  not a case where an OUT parameter is treated as IN OUT.
3708
3709                  --  * For a composite type with discriminants or that has
3710                  --    implicit initial values for any subcomponents, the
3711                  --    behavior is as for an in out parameter passed by copy.
3712
3713                  --  Hence for these cases we generate the read reference now
3714                  --  (the write reference will be generated later by
3715                  --   Note_Possible_Modification).
3716
3717                  elsif Is_By_Copy_Type (Etype (F))
3718                    and then
3719                      (Is_Access_Type (Etype (F))
3720                         or else
3721                           (Is_Scalar_Type (Etype (F))
3722                              and then
3723                                Present (Default_Aspect_Value (Etype (F))))
3724                         or else
3725                           (Is_Composite_Type (Etype (F))
3726                              and then (Has_Discriminants (Etype (F))
3727                                         or else Is_Partially_Initialized_Type
3728                                                   (Etype (F)))))
3729                  then
3730                     Generate_Reference (Orig_A, A);
3731                  end if;
3732               end if;
3733            end if;
3734         end if;
3735
3736         if Present (A)
3737           and then (Nkind (Parent (A)) /= N_Parameter_Association
3738                      or else Chars (Selector_Name (Parent (A))) = Chars (F))
3739         then
3740            --  If style checking mode on, check match of formal name
3741
3742            if Style_Check then
3743               if Nkind (Parent (A)) = N_Parameter_Association then
3744                  Check_Identifier (Selector_Name (Parent (A)), F);
3745               end if;
3746            end if;
3747
3748            --  If the formal is Out or In_Out, do not resolve and expand the
3749            --  conversion, because it is subsequently expanded into explicit
3750            --  temporaries and assignments. However, the object of the
3751            --  conversion can be resolved. An exception is the case of tagged
3752            --  type conversion with a class-wide actual. In that case we want
3753            --  the tag check to occur and no temporary will be needed (no
3754            --  representation change can occur) and the parameter is passed by
3755            --  reference, so we go ahead and resolve the type conversion.
3756            --  Another exception is the case of reference to component or
3757            --  subcomponent of a bit-packed array, in which case we want to
3758            --  defer expansion to the point the in and out assignments are
3759            --  performed.
3760
3761            if Ekind (F) /= E_In_Parameter
3762              and then Nkind (A) = N_Type_Conversion
3763              and then not Is_Class_Wide_Type (Etype (Expression (A)))
3764            then
3765               if Ekind (F) = E_In_Out_Parameter
3766                 and then Is_Array_Type (Etype (F))
3767               then
3768                  --  In a view conversion, the conversion must be legal in
3769                  --  both directions, and thus both component types must be
3770                  --  aliased, or neither (4.6 (8)).
3771
3772                  --  The extra rule in 4.6 (24.9.2) seems unduly restrictive:
3773                  --  the privacy requirement should not apply to generic
3774                  --  types, and should be checked in an instance. ARG query
3775                  --  is in order ???
3776
3777                  if Has_Aliased_Components (Etype (Expression (A))) /=
3778                     Has_Aliased_Components (Etype (F))
3779                  then
3780                     Error_Msg_N
3781                       ("both component types in a view conversion must be"
3782                         & " aliased, or neither", A);
3783
3784                  --  Comment here??? what set of cases???
3785
3786                  elsif
3787                     not Same_Ancestor (Etype (F), Etype (Expression (A)))
3788                  then
3789                     --  Check view conv between unrelated by ref array types
3790
3791                     if Is_By_Reference_Type (Etype (F))
3792                        or else Is_By_Reference_Type (Etype (Expression (A)))
3793                     then
3794                        Error_Msg_N
3795                          ("view conversion between unrelated by reference "
3796                           & "array types not allowed (\'A'I-00246)", A);
3797
3798                     --  In Ada 2005 mode, check view conversion component
3799                     --  type cannot be private, tagged, or volatile. Note
3800                     --  that we only apply this to source conversions. The
3801                     --  generated code can contain conversions which are
3802                     --  not subject to this test, and we cannot extract the
3803                     --  component type in such cases since it is not present.
3804
3805                     elsif Comes_From_Source (A)
3806                       and then Ada_Version >= Ada_2005
3807                     then
3808                        declare
3809                           Comp_Type : constant Entity_Id :=
3810                                         Component_Type
3811                                           (Etype (Expression (A)));
3812                        begin
3813                           if (Is_Private_Type (Comp_Type)
3814                                 and then not Is_Generic_Type (Comp_Type))
3815                             or else Is_Tagged_Type (Comp_Type)
3816                             or else Is_Volatile (Comp_Type)
3817                           then
3818                              Error_Msg_N
3819                                ("component type of a view conversion cannot"
3820                                   & " be private, tagged, or volatile"
3821                                   & " (RM 4.6 (24))",
3822                                   Expression (A));
3823                           end if;
3824                        end;
3825                     end if;
3826                  end if;
3827               end if;
3828
3829               --  Resolve expression if conversion is all OK
3830
3831               if (Conversion_OK (A)
3832                    or else Valid_Conversion (A, Etype (A), Expression (A)))
3833                 and then not Is_Ref_To_Bit_Packed_Array (Expression (A))
3834               then
3835                  Resolve (Expression (A));
3836               end if;
3837
3838            --  If the actual is a function call that returns a limited
3839            --  unconstrained object that needs finalization, create a
3840            --  transient scope for it, so that it can receive the proper
3841            --  finalization list.
3842
3843            elsif Expander_Active
3844              and then Nkind (A) = N_Function_Call
3845              and then Is_Limited_Record (Etype (F))
3846              and then not Is_Constrained (Etype (F))
3847              and then (Needs_Finalization (Etype (F))
3848                         or else Has_Task (Etype (F)))
3849            then
3850               Establish_Transient_Scope (A, Manage_Sec_Stack => False);
3851               Resolve (A, Etype (F));
3852
3853            --  A small optimization: if one of the actuals is a concatenation
3854            --  create a block around a procedure call to recover stack space.
3855            --  This alleviates stack usage when several procedure calls in
3856            --  the same statement list use concatenation. We do not perform
3857            --  this wrapping for code statements, where the argument is a
3858            --  static string, and we want to preserve warnings involving
3859            --  sequences of such statements.
3860
3861            elsif Expander_Active
3862              and then Nkind (A) = N_Op_Concat
3863              and then Nkind (N) = N_Procedure_Call_Statement
3864              and then not (Is_Intrinsic_Subprogram (Nam)
3865                             and then Chars (Nam) = Name_Asm)
3866              and then not Static_Concatenation (A)
3867            then
3868               Establish_Transient_Scope (A, Manage_Sec_Stack => False);
3869               Resolve (A, Etype (F));
3870
3871            else
3872               if Nkind (A) = N_Type_Conversion
3873                 and then Is_Array_Type (Etype (F))
3874                 and then not Same_Ancestor (Etype (F), Etype (Expression (A)))
3875                 and then
3876                   (Is_Limited_Type (Etype (F))
3877                     or else Is_Limited_Type (Etype (Expression (A))))
3878               then
3879                  Error_Msg_N
3880                    ("conversion between unrelated limited array types not "
3881                     & "allowed ('A'I-00246)", A);
3882
3883                  if Is_Limited_Type (Etype (F)) then
3884                     Explain_Limited_Type (Etype (F), A);
3885                  end if;
3886
3887                  if Is_Limited_Type (Etype (Expression (A))) then
3888                     Explain_Limited_Type (Etype (Expression (A)), A);
3889                  end if;
3890               end if;
3891
3892               --  (Ada 2005: AI-251): If the actual is an allocator whose
3893               --  directly designated type is a class-wide interface, we build
3894               --  an anonymous access type to use it as the type of the
3895               --  allocator. Later, when the subprogram call is expanded, if
3896               --  the interface has a secondary dispatch table the expander
3897               --  will add a type conversion to force the correct displacement
3898               --  of the pointer.
3899
3900               if Nkind (A) = N_Allocator then
3901                  declare
3902                     DDT : constant Entity_Id :=
3903                             Directly_Designated_Type (Base_Type (Etype (F)));
3904
3905                     New_Itype : Entity_Id;
3906
3907                  begin
3908                     if Is_Class_Wide_Type (DDT)
3909                       and then Is_Interface (DDT)
3910                     then
3911                        New_Itype := Create_Itype (E_Anonymous_Access_Type, A);
3912                        Set_Etype (New_Itype, Etype (A));
3913                        Set_Directly_Designated_Type
3914                          (New_Itype, Directly_Designated_Type (Etype (A)));
3915                        Set_Etype (A, New_Itype);
3916                     end if;
3917
3918                     --  Ada 2005, AI-162:If the actual is an allocator, the
3919                     --  innermost enclosing statement is the master of the
3920                     --  created object. This needs to be done with expansion
3921                     --  enabled only, otherwise the transient scope will not
3922                     --  be removed in the expansion of the wrapped construct.
3923
3924                     if Expander_Active
3925                       and then (Needs_Finalization (DDT)
3926                                  or else Has_Task (DDT))
3927                     then
3928                        Establish_Transient_Scope
3929                          (A, Manage_Sec_Stack => False);
3930                     end if;
3931                  end;
3932
3933                  if Ekind (Etype (F)) = E_Anonymous_Access_Type then
3934                     Check_Restriction (No_Access_Parameter_Allocators, A);
3935                  end if;
3936               end if;
3937
3938               --  (Ada 2005): The call may be to a primitive operation of a
3939               --  tagged synchronized type, declared outside of the type. In
3940               --  this case the controlling actual must be converted to its
3941               --  corresponding record type, which is the formal type. The
3942               --  actual may be a subtype, either because of a constraint or
3943               --  because it is a generic actual, so use base type to locate
3944               --  concurrent type.
3945
3946               F_Typ := Base_Type (Etype (F));
3947
3948               if Is_Tagged_Type (F_Typ)
3949                 and then (Is_Concurrent_Type (F_Typ)
3950                            or else Is_Concurrent_Record_Type (F_Typ))
3951               then
3952                  --  If the actual is overloaded, look for an interpretation
3953                  --  that has a synchronized type.
3954
3955                  if not Is_Overloaded (A) then
3956                     A_Typ := Base_Type (Etype (A));
3957
3958                  else
3959                     declare
3960                        Index : Interp_Index;
3961                        It    : Interp;
3962
3963                     begin
3964                        Get_First_Interp (A, Index, It);
3965                        while Present (It.Typ) loop
3966                           if Is_Concurrent_Type (It.Typ)
3967                             or else Is_Concurrent_Record_Type (It.Typ)
3968                           then
3969                              A_Typ := Base_Type (It.Typ);
3970                              exit;
3971                           end if;
3972
3973                           Get_Next_Interp (Index, It);
3974                        end loop;
3975                     end;
3976                  end if;
3977
3978                  declare
3979                     Full_A_Typ : Entity_Id;
3980
3981                  begin
3982                     if Present (Full_View (A_Typ)) then
3983                        Full_A_Typ := Base_Type (Full_View (A_Typ));
3984                     else
3985                        Full_A_Typ := A_Typ;
3986                     end if;
3987
3988                     --  Tagged synchronized type (case 1): the actual is a
3989                     --  concurrent type.
3990
3991                     if Is_Concurrent_Type (A_Typ)
3992                       and then Corresponding_Record_Type (A_Typ) = F_Typ
3993                     then
3994                        Rewrite (A,
3995                          Unchecked_Convert_To
3996                            (Corresponding_Record_Type (A_Typ), A));
3997                        Resolve (A, Etype (F));
3998
3999                     --  Tagged synchronized type (case 2): the formal is a
4000                     --  concurrent type.
4001
4002                     elsif Ekind (Full_A_Typ) = E_Record_Type
4003                       and then Present
4004                               (Corresponding_Concurrent_Type (Full_A_Typ))
4005                       and then Is_Concurrent_Type (F_Typ)
4006                       and then Present (Corresponding_Record_Type (F_Typ))
4007                       and then Full_A_Typ = Corresponding_Record_Type (F_Typ)
4008                     then
4009                        Resolve (A, Corresponding_Record_Type (F_Typ));
4010
4011                     --  Common case
4012
4013                     else
4014                        Resolve (A, Etype (F));
4015                     end if;
4016                  end;
4017
4018               --  Not a synchronized operation
4019
4020               else
4021                  Resolve (A, Etype (F));
4022               end if;
4023            end if;
4024
4025            A_Typ := Etype (A);
4026            F_Typ := Etype (F);
4027
4028            --  An actual cannot be an untagged formal incomplete type
4029
4030            if Ekind (A_Typ) = E_Incomplete_Type
4031              and then not Is_Tagged_Type (A_Typ)
4032              and then Is_Generic_Type (A_Typ)
4033            then
4034               Error_Msg_N
4035                 ("invalid use of untagged formal incomplete type", A);
4036            end if;
4037
4038            if Comes_From_Source (Original_Node (N))
4039              and then Nkind_In (Original_Node (N), N_Function_Call,
4040                                                    N_Procedure_Call_Statement)
4041            then
4042               --  In formal mode, check that actual parameters matching
4043               --  formals of tagged types are objects (or ancestor type
4044               --  conversions of objects), not general expressions.
4045
4046               if Is_Actual_Tagged_Parameter (A) then
4047                  if Is_SPARK_05_Object_Reference (A) then
4048                     null;
4049
4050                  elsif Nkind (A) = N_Type_Conversion then
4051                     declare
4052                        Operand     : constant Node_Id   := Expression (A);
4053                        Operand_Typ : constant Entity_Id := Etype (Operand);
4054                        Target_Typ  : constant Entity_Id := A_Typ;
4055
4056                     begin
4057                        if not Is_SPARK_05_Object_Reference (Operand) then
4058                           Check_SPARK_05_Restriction
4059                             ("object required", Operand);
4060
4061                        --  In formal mode, the only view conversions are those
4062                        --  involving ancestor conversion of an extended type.
4063
4064                        elsif not
4065                          (Is_Tagged_Type (Target_Typ)
4066                           and then not Is_Class_Wide_Type (Target_Typ)
4067                           and then Is_Tagged_Type (Operand_Typ)
4068                           and then not Is_Class_Wide_Type (Operand_Typ)
4069                           and then Is_Ancestor (Target_Typ, Operand_Typ))
4070                        then
4071                           if Ekind_In
4072                             (F, E_Out_Parameter, E_In_Out_Parameter)
4073                           then
4074                              Check_SPARK_05_Restriction
4075                                ("ancestor conversion is the only permitted "
4076                                 & "view conversion", A);
4077                           else
4078                              Check_SPARK_05_Restriction
4079                                ("ancestor conversion required", A);
4080                           end if;
4081
4082                        else
4083                           null;
4084                        end if;
4085                     end;
4086
4087                  else
4088                     Check_SPARK_05_Restriction ("object required", A);
4089                  end if;
4090
4091               --  In formal mode, the only view conversions are those
4092               --  involving ancestor conversion of an extended type.
4093
4094               elsif Nkind (A) = N_Type_Conversion
4095                 and then Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter)
4096               then
4097                  Check_SPARK_05_Restriction
4098                    ("ancestor conversion is the only permitted view "
4099                     & "conversion", A);
4100               end if;
4101            end if;
4102
4103            --  has warnings suppressed, then we reset Never_Set_In_Source for
4104            --  the calling entity. The reason for this is to catch cases like
4105            --  GNAT.Spitbol.Patterns.Vstring_Var where the called subprogram
4106            --  uses trickery to modify an IN parameter.
4107
4108            if Ekind (F) = E_In_Parameter
4109              and then Is_Entity_Name (A)
4110              and then Present (Entity (A))
4111              and then Ekind (Entity (A)) = E_Variable
4112              and then Has_Warnings_Off (F_Typ)
4113            then
4114               Set_Never_Set_In_Source (Entity (A), False);
4115            end if;
4116
4117            --  Perform error checks for IN and IN OUT parameters
4118
4119            if Ekind (F) /= E_Out_Parameter then
4120
4121               --  Check unset reference. For scalar parameters, it is clearly
4122               --  wrong to pass an uninitialized value as either an IN or
4123               --  IN-OUT parameter. For composites, it is also clearly an
4124               --  error to pass a completely uninitialized value as an IN
4125               --  parameter, but the case of IN OUT is trickier. We prefer
4126               --  not to give a warning here. For example, suppose there is
4127               --  a routine that sets some component of a record to False.
4128               --  It is perfectly reasonable to make this IN-OUT and allow
4129               --  either initialized or uninitialized records to be passed
4130               --  in this case.
4131
4132               --  For partially initialized composite values, we also avoid
4133               --  warnings, since it is quite likely that we are passing a
4134               --  partially initialized value and only the initialized fields
4135               --  will in fact be read in the subprogram.
4136
4137               if Is_Scalar_Type (A_Typ)
4138                 or else (Ekind (F) = E_In_Parameter
4139                           and then not Is_Partially_Initialized_Type (A_Typ))
4140               then
4141                  Check_Unset_Reference (A);
4142               end if;
4143
4144               --  In Ada 83 we cannot pass an OUT parameter as an IN or IN OUT
4145               --  actual to a nested call, since this constitutes a reading of
4146               --  the parameter, which is not allowed.
4147
4148               if Ada_Version = Ada_83
4149                 and then Is_Entity_Name (A)
4150                 and then Ekind (Entity (A)) = E_Out_Parameter
4151               then
4152                  Error_Msg_N ("(Ada 83) illegal reading of out parameter", A);
4153               end if;
4154            end if;
4155
4156            --  In -gnatd.q mode, forget that a given array is constant when
4157            --  it is passed as an IN parameter to a foreign-convention
4158            --  subprogram. This is in case the subprogram evilly modifies the
4159            --  object. Of course, correct code would use IN OUT.
4160
4161            if Debug_Flag_Dot_Q
4162              and then Ekind (F) = E_In_Parameter
4163              and then Has_Foreign_Convention (Nam)
4164              and then Is_Array_Type (F_Typ)
4165              and then Nkind (A) in N_Has_Entity
4166              and then Present (Entity (A))
4167            then
4168               Set_Is_True_Constant (Entity (A), False);
4169            end if;
4170
4171            --  Case of OUT or IN OUT parameter
4172
4173            if Ekind (F) /= E_In_Parameter then
4174
4175               --  For an Out parameter, check for useless assignment. Note
4176               --  that we can't set Last_Assignment this early, because we may
4177               --  kill current values in Resolve_Call, and that call would
4178               --  clobber the Last_Assignment field.
4179
4180               --  Note: call Warn_On_Useless_Assignment before doing the check
4181               --  below for Is_OK_Variable_For_Out_Formal so that the setting
4182               --  of Referenced_As_LHS/Referenced_As_Out_Formal properly
4183               --  reflects the last assignment, not this one.
4184
4185               if Ekind (F) = E_Out_Parameter then
4186                  if Warn_On_Modified_As_Out_Parameter (F)
4187                    and then Is_Entity_Name (A)
4188                    and then Present (Entity (A))
4189                    and then Comes_From_Source (N)
4190                  then
4191                     Warn_On_Useless_Assignment (Entity (A), A);
4192                  end if;
4193               end if;
4194
4195               --  Validate the form of the actual. Note that the call to
4196               --  Is_OK_Variable_For_Out_Formal generates the required
4197               --  reference in this case.
4198
4199               --  A call to an initialization procedure for an aggregate
4200               --  component may initialize a nested component of a constant
4201               --  designated object. In this context the object is variable.
4202
4203               if not Is_OK_Variable_For_Out_Formal (A)
4204                 and then not Is_Init_Proc (Nam)
4205               then
4206                  Error_Msg_NE ("actual for& must be a variable", A, F);
4207
4208                  if Is_Subprogram (Current_Scope) then
4209                     if Is_Invariant_Procedure (Current_Scope)
4210                       or else Is_Partial_Invariant_Procedure (Current_Scope)
4211                     then
4212                        Error_Msg_N
4213                          ("function used in invariant cannot modify its "
4214                           & "argument", F);
4215
4216                     elsif Is_Predicate_Function (Current_Scope) then
4217                        Error_Msg_N
4218                          ("function used in predicate cannot modify its "
4219                           & "argument", F);
4220                     end if;
4221                  end if;
4222               end if;
4223
4224               --  What's the following about???
4225
4226               if Is_Entity_Name (A) then
4227                  Kill_Checks (Entity (A));
4228               else
4229                  Kill_All_Checks;
4230               end if;
4231            end if;
4232
4233            if Etype (A) = Any_Type then
4234               Set_Etype (N, Any_Type);
4235               return;
4236            end if;
4237
4238            --  Apply appropriate constraint/predicate checks for IN [OUT] case
4239
4240            if Ekind_In (F, E_In_Parameter, E_In_Out_Parameter) then
4241
4242               --  Apply predicate tests except in certain special cases. Note
4243               --  that it might be more consistent to apply these only when
4244               --  expansion is active (in Exp_Ch6.Expand_Actuals), as we do
4245               --  for the outbound predicate tests ??? In any case indicate
4246               --  the function being called, for better warnings if the call
4247               --  leads to an infinite recursion.
4248
4249               if Predicate_Tests_On_Arguments (Nam) then
4250                  Apply_Predicate_Check (A, F_Typ, Nam);
4251               end if;
4252
4253               --  Apply required constraint checks
4254
4255               --  Gigi looks at the check flag and uses the appropriate types.
4256               --  For now since one flag is used there is an optimization
4257               --  which might not be done in the IN OUT case since Gigi does
4258               --  not do any analysis. More thought required about this ???
4259
4260               --  In fact is this comment obsolete??? doesn't the expander now
4261               --  generate all these tests anyway???
4262
4263               if Is_Scalar_Type (Etype (A)) then
4264                  Apply_Scalar_Range_Check (A, F_Typ);
4265
4266               elsif Is_Array_Type (Etype (A)) then
4267                  Apply_Length_Check (A, F_Typ);
4268
4269               elsif Is_Record_Type (F_Typ)
4270                 and then Has_Discriminants (F_Typ)
4271                 and then Is_Constrained (F_Typ)
4272                 and then (not Is_Derived_Type (F_Typ)
4273                            or else Comes_From_Source (Nam))
4274               then
4275                  Apply_Discriminant_Check (A, F_Typ);
4276
4277                  --  For view conversions of a discriminated object, apply
4278                  --  check to object itself, the conversion alreay has the
4279                  --  proper type.
4280
4281                  if Nkind (A) = N_Type_Conversion
4282                    and then Is_Constrained (Etype (Expression (A)))
4283                  then
4284                     Apply_Discriminant_Check (Expression (A), F_Typ);
4285                  end if;
4286
4287               elsif Is_Access_Type (F_Typ)
4288                 and then Is_Array_Type (Designated_Type (F_Typ))
4289                 and then Is_Constrained (Designated_Type (F_Typ))
4290               then
4291                  Apply_Length_Check (A, F_Typ);
4292
4293               elsif Is_Access_Type (F_Typ)
4294                 and then Has_Discriminants (Designated_Type (F_Typ))
4295                 and then Is_Constrained (Designated_Type (F_Typ))
4296               then
4297                  Apply_Discriminant_Check (A, F_Typ);
4298
4299               else
4300                  Apply_Range_Check (A, F_Typ);
4301               end if;
4302
4303               --  Ada 2005 (AI-231): Note that the controlling parameter case
4304               --  already existed in Ada 95, which is partially checked
4305               --  elsewhere (see Checks), and we don't want the warning
4306               --  message to differ.
4307
4308               if Is_Access_Type (F_Typ)
4309                 and then Can_Never_Be_Null (F_Typ)
4310                 and then Known_Null (A)
4311               then
4312                  if Is_Controlling_Formal (F) then
4313                     Apply_Compile_Time_Constraint_Error
4314                       (N      => A,
4315                        Msg    => "null value not allowed here??",
4316                        Reason => CE_Access_Check_Failed);
4317
4318                  elsif Ada_Version >= Ada_2005 then
4319                     Apply_Compile_Time_Constraint_Error
4320                       (N      => A,
4321                        Msg    => "(Ada 2005) null not allowed in "
4322                                  & "null-excluding formal??",
4323                        Reason => CE_Null_Not_Allowed);
4324                  end if;
4325               end if;
4326            end if;
4327
4328            --  Checks for OUT parameters and IN OUT parameters
4329
4330            if Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter) then
4331
4332               --  If there is a type conversion, make sure the return value
4333               --  meets the constraints of the variable before the conversion.
4334
4335               if Nkind (A) = N_Type_Conversion then
4336                  if Is_Scalar_Type (A_Typ) then
4337                     Apply_Scalar_Range_Check
4338                       (Expression (A), Etype (Expression (A)), A_Typ);
4339
4340                     --  In addition, the returned value of the parameter must
4341                     --  satisfy the bounds of the object type (see comment
4342                     --  below).
4343
4344                     Apply_Scalar_Range_Check (A, A_Typ, F_Typ);
4345
4346                  else
4347                     Apply_Range_Check
4348                       (Expression (A), Etype (Expression (A)), A_Typ);
4349                  end if;
4350
4351               --  If no conversion, apply scalar range checks and length check
4352               --  based on the subtype of the actual (NOT that of the formal).
4353               --  This indicates that the check takes place on return from the
4354               --  call. During expansion the required constraint checks are
4355               --  inserted. In GNATprove mode, in the absence of expansion,
4356               --  the flag indicates that the returned value is valid.
4357
4358               else
4359                  if Is_Scalar_Type (F_Typ) then
4360                     Apply_Scalar_Range_Check (A, A_Typ, F_Typ);
4361
4362                  elsif Is_Array_Type (F_Typ)
4363                    and then Ekind (F) = E_Out_Parameter
4364                  then
4365                     Apply_Length_Check (A, F_Typ);
4366                  else
4367                     Apply_Range_Check (A, A_Typ, F_Typ);
4368                  end if;
4369               end if;
4370
4371               --  Note: we do not apply the predicate checks for the case of
4372               --  OUT and IN OUT parameters. They are instead applied in the
4373               --  Expand_Actuals routine in Exp_Ch6.
4374            end if;
4375
4376            --  An actual associated with an access parameter is implicitly
4377            --  converted to the anonymous access type of the formal and must
4378            --  satisfy the legality checks for access conversions.
4379
4380            if Ekind (F_Typ) = E_Anonymous_Access_Type then
4381               if not Valid_Conversion (A, F_Typ, A) then
4382                  Error_Msg_N
4383                    ("invalid implicit conversion for access parameter", A);
4384               end if;
4385
4386               --  If the actual is an access selected component of a variable,
4387               --  the call may modify its designated object. It is reasonable
4388               --  to treat this as a potential modification of the enclosing
4389               --  record, to prevent spurious warnings that it should be
4390               --  declared as a constant, because intuitively programmers
4391               --  regard the designated subcomponent as part of the record.
4392
4393               if Nkind (A) = N_Selected_Component
4394                 and then Is_Entity_Name (Prefix (A))
4395                 and then not Is_Constant_Object (Entity (Prefix (A)))
4396               then
4397                  Note_Possible_Modification (A, Sure => False);
4398               end if;
4399            end if;
4400
4401            --  Check bad case of atomic/volatile argument (RM C.6(12))
4402
4403            if Is_By_Reference_Type (Etype (F))
4404              and then Comes_From_Source (N)
4405            then
4406               if Is_Atomic_Object (A)
4407                 and then not Is_Atomic (Etype (F))
4408               then
4409                  Error_Msg_NE
4410                    ("cannot pass atomic argument to non-atomic formal&",
4411                     A, F);
4412
4413               elsif Is_Volatile_Object (A)
4414                 and then not Is_Volatile (Etype (F))
4415               then
4416                  Error_Msg_NE
4417                    ("cannot pass volatile argument to non-volatile formal&",
4418                     A, F);
4419               end if;
4420            end if;
4421
4422            --  Check that subprograms don't have improper controlling
4423            --  arguments (RM 3.9.2 (9)).
4424
4425            --  A primitive operation may have an access parameter of an
4426            --  incomplete tagged type, but a dispatching call is illegal
4427            --  if the type is still incomplete.
4428
4429            if Is_Controlling_Formal (F) then
4430               Set_Is_Controlling_Actual (A);
4431
4432               if Ekind (Etype (F)) = E_Anonymous_Access_Type then
4433                  declare
4434                     Desig : constant Entity_Id := Designated_Type (Etype (F));
4435                  begin
4436                     if Ekind (Desig) = E_Incomplete_Type
4437                       and then No (Full_View (Desig))
4438                       and then No (Non_Limited_View (Desig))
4439                     then
4440                        Error_Msg_NE
4441                          ("premature use of incomplete type& "
4442                           & "in dispatching call", A, Desig);
4443                     end if;
4444                  end;
4445               end if;
4446
4447            elsif Nkind (A) = N_Explicit_Dereference then
4448               Validate_Remote_Access_To_Class_Wide_Type (A);
4449            end if;
4450
4451            --  Apply legality rule 3.9.2  (9/1)
4452
4453            if (Is_Class_Wide_Type (A_Typ) or else Is_Dynamically_Tagged (A))
4454              and then not Is_Class_Wide_Type (F_Typ)
4455              and then not Is_Controlling_Formal (F)
4456              and then not In_Instance
4457            then
4458               Error_Msg_N ("class-wide argument not allowed here!", A);
4459
4460               if Is_Subprogram (Nam) and then Comes_From_Source (Nam) then
4461                  Error_Msg_Node_2 := F_Typ;
4462                  Error_Msg_NE
4463                    ("& is not a dispatching operation of &!", A, Nam);
4464               end if;
4465
4466            --  Apply the checks described in 3.10.2(27): if the context is a
4467            --  specific access-to-object, the actual cannot be class-wide.
4468            --  Use base type to exclude access_to_subprogram cases.
4469
4470            elsif Is_Access_Type (A_Typ)
4471              and then Is_Access_Type (F_Typ)
4472              and then not Is_Access_Subprogram_Type (Base_Type (F_Typ))
4473              and then (Is_Class_Wide_Type (Designated_Type (A_Typ))
4474                         or else (Nkind (A) = N_Attribute_Reference
4475                                   and then
4476                                     Is_Class_Wide_Type (Etype (Prefix (A)))))
4477              and then not Is_Class_Wide_Type (Designated_Type (F_Typ))
4478              and then not Is_Controlling_Formal (F)
4479
4480              --  Disable these checks for call to imported C++ subprograms
4481
4482              and then not
4483                (Is_Entity_Name (Name (N))
4484                  and then Is_Imported (Entity (Name (N)))
4485                  and then Convention (Entity (Name (N))) = Convention_CPP)
4486            then
4487               Error_Msg_N
4488                 ("access to class-wide argument not allowed here!", A);
4489
4490               if Is_Subprogram (Nam) and then Comes_From_Source (Nam) then
4491                  Error_Msg_Node_2 := Designated_Type (F_Typ);
4492                  Error_Msg_NE
4493                    ("& is not a dispatching operation of &!", A, Nam);
4494               end if;
4495            end if;
4496
4497            Check_Aliased_Parameter;
4498
4499            Eval_Actual (A);
4500
4501            --  If it is a named association, treat the selector_name as a
4502            --  proper identifier, and mark the corresponding entity.
4503
4504            if Nkind (Parent (A)) = N_Parameter_Association
4505
4506              --  Ignore reference in SPARK mode, as it refers to an entity not
4507              --  in scope at the point of reference, so the reference should
4508              --  be ignored for computing effects of subprograms.
4509
4510              and then not GNATprove_Mode
4511            then
4512               --  If subprogram is overridden, use name of formal that
4513               --  is being called.
4514
4515               if Present (Real_Subp) then
4516                  Set_Entity (Selector_Name (Parent (A)), Real_F);
4517                  Set_Etype (Selector_Name (Parent (A)), Etype (Real_F));
4518
4519               else
4520                  Set_Entity (Selector_Name (Parent (A)), F);
4521                  Generate_Reference (F, Selector_Name (Parent (A)));
4522                  Set_Etype (Selector_Name (Parent (A)), F_Typ);
4523                  Generate_Reference (F_Typ, N, ' ');
4524               end if;
4525            end if;
4526
4527            Prev := A;
4528
4529            if Ekind (F) /= E_Out_Parameter then
4530               Check_Unset_Reference (A);
4531            end if;
4532
4533            --  The following checks are only relevant when SPARK_Mode is on as
4534            --  they are not standard Ada legality rule. Internally generated
4535            --  temporaries are ignored.
4536
4537            if SPARK_Mode = On and then Comes_From_Source (A) then
4538
4539               --  An effectively volatile object may act as an actual when the
4540               --  corresponding formal is of a non-scalar effectively volatile
4541               --  type (SPARK RM 7.1.3(11)).
4542
4543               if not Is_Scalar_Type (Etype (F))
4544                 and then Is_Effectively_Volatile (Etype (F))
4545               then
4546                  null;
4547
4548               --  An effectively volatile object may act as an actual in a
4549               --  call to an instance of Unchecked_Conversion.
4550               --  (SPARK RM 7.1.3(11)).
4551
4552               elsif Is_Unchecked_Conversion_Instance (Nam) then
4553                  null;
4554
4555               --  The actual denotes an object
4556
4557               elsif Is_Effectively_Volatile_Object (A) then
4558                  Error_Msg_N
4559                    ("volatile object cannot act as actual in a call (SPARK "
4560                     & "RM 7.1.3(11))", A);
4561
4562               --  Otherwise the actual denotes an expression. Inspect the
4563               --  expression and flag each effectively volatile object with
4564               --  enabled property Async_Writers or Effective_Reads as illegal
4565               --  because it apprears within an interfering context. Note that
4566               --  this is usually done in Resolve_Entity_Name, but when the
4567               --  effectively volatile object appears as an actual in a call,
4568               --  the call must be resolved first.
4569
4570               else
4571                  Flag_Effectively_Volatile_Objects (A);
4572               end if;
4573
4574               --  An effectively volatile variable cannot act as an actual
4575               --  parameter in a procedure call when the variable has enabled
4576               --  property Effective_Reads and the corresponding formal is of
4577               --  mode IN (SPARK RM 7.1.3(10)).
4578
4579               if Ekind (Nam) = E_Procedure
4580                 and then Ekind (F) = E_In_Parameter
4581                 and then Is_Entity_Name (A)
4582               then
4583                  A_Id := Entity (A);
4584
4585                  if Ekind (A_Id) = E_Variable
4586                    and then Is_Effectively_Volatile (Etype (A_Id))
4587                    and then Effective_Reads_Enabled (A_Id)
4588                  then
4589                     Error_Msg_NE
4590                       ("effectively volatile variable & cannot appear as "
4591                        & "actual in procedure call", A, A_Id);
4592
4593                     Error_Msg_Name_1 := Name_Effective_Reads;
4594                     Error_Msg_N ("\\variable has enabled property %", A);
4595                     Error_Msg_N ("\\corresponding formal has mode IN", A);
4596                  end if;
4597               end if;
4598            end if;
4599
4600            --  A formal parameter of a specific tagged type whose related
4601            --  subprogram is subject to pragma Extensions_Visible with value
4602            --  "False" cannot act as an actual in a subprogram with value
4603            --  "True" (SPARK RM 6.1.7(3)).
4604
4605            if Is_EVF_Expression (A)
4606              and then Extensions_Visible_Status (Nam) =
4607                       Extensions_Visible_True
4608            then
4609               Error_Msg_N
4610                 ("formal parameter cannot act as actual parameter when "
4611                  & "Extensions_Visible is False", A);
4612               Error_Msg_NE
4613                 ("\subprogram & has Extensions_Visible True", A, Nam);
4614            end if;
4615
4616            --  The actual parameter of a Ghost subprogram whose formal is of
4617            --  mode IN OUT or OUT must be a Ghost variable (SPARK RM 6.9(12)).
4618
4619            if Comes_From_Source (Nam)
4620              and then Is_Ghost_Entity (Nam)
4621              and then Ekind_In (F, E_In_Out_Parameter, E_Out_Parameter)
4622              and then Is_Entity_Name (A)
4623              and then Present (Entity (A))
4624              and then not Is_Ghost_Entity (Entity (A))
4625            then
4626               Error_Msg_NE
4627                 ("non-ghost variable & cannot appear as actual in call to "
4628                  & "ghost procedure", A, Entity (A));
4629
4630               if Ekind (F) = E_In_Out_Parameter then
4631                  Error_Msg_N ("\corresponding formal has mode `IN OUT`", A);
4632               else
4633                  Error_Msg_N ("\corresponding formal has mode OUT", A);
4634               end if;
4635            end if;
4636
4637            Next_Actual (A);
4638
4639         --  Case where actual is not present
4640
4641         else
4642            Insert_Default;
4643         end if;
4644
4645         Next_Formal (F);
4646
4647         if Present (Real_Subp) then
4648            Next_Formal (Real_F);
4649         end if;
4650      end loop;
4651   end Resolve_Actuals;
4652
4653   -----------------------
4654   -- Resolve_Allocator --
4655   -----------------------
4656
4657   procedure Resolve_Allocator (N : Node_Id; Typ : Entity_Id) is
4658      Desig_T  : constant Entity_Id := Designated_Type (Typ);
4659      E        : constant Node_Id   := Expression (N);
4660      Subtyp   : Entity_Id;
4661      Discrim  : Entity_Id;
4662      Constr   : Node_Id;
4663      Aggr     : Node_Id;
4664      Assoc    : Node_Id := Empty;
4665      Disc_Exp : Node_Id;
4666
4667      procedure Check_Allocator_Discrim_Accessibility
4668        (Disc_Exp  : Node_Id;
4669         Alloc_Typ : Entity_Id);
4670      --  Check that accessibility level associated with an access discriminant
4671      --  initialized in an allocator by the expression Disc_Exp is not deeper
4672      --  than the level of the allocator type Alloc_Typ. An error message is
4673      --  issued if this condition is violated. Specialized checks are done for
4674      --  the cases of a constraint expression which is an access attribute or
4675      --  an access discriminant.
4676
4677      function In_Dispatching_Context return Boolean;
4678      --  If the allocator is an actual in a call, it is allowed to be class-
4679      --  wide when the context is not because it is a controlling actual.
4680
4681      -------------------------------------------
4682      -- Check_Allocator_Discrim_Accessibility --
4683      -------------------------------------------
4684
4685      procedure Check_Allocator_Discrim_Accessibility
4686        (Disc_Exp  : Node_Id;
4687         Alloc_Typ : Entity_Id)
4688      is
4689      begin
4690         if Type_Access_Level (Etype (Disc_Exp)) >
4691            Deepest_Type_Access_Level (Alloc_Typ)
4692         then
4693            Error_Msg_N
4694              ("operand type has deeper level than allocator type", Disc_Exp);
4695
4696         --  When the expression is an Access attribute the level of the prefix
4697         --  object must not be deeper than that of the allocator's type.
4698
4699         elsif Nkind (Disc_Exp) = N_Attribute_Reference
4700           and then Get_Attribute_Id (Attribute_Name (Disc_Exp)) =
4701                      Attribute_Access
4702           and then Object_Access_Level (Prefix (Disc_Exp)) >
4703                      Deepest_Type_Access_Level (Alloc_Typ)
4704         then
4705            Error_Msg_N
4706              ("prefix of attribute has deeper level than allocator type",
4707               Disc_Exp);
4708
4709         --  When the expression is an access discriminant the check is against
4710         --  the level of the prefix object.
4711
4712         elsif Ekind (Etype (Disc_Exp)) = E_Anonymous_Access_Type
4713           and then Nkind (Disc_Exp) = N_Selected_Component
4714           and then Object_Access_Level (Prefix (Disc_Exp)) >
4715                      Deepest_Type_Access_Level (Alloc_Typ)
4716         then
4717            Error_Msg_N
4718              ("access discriminant has deeper level than allocator type",
4719               Disc_Exp);
4720
4721         --  All other cases are legal
4722
4723         else
4724            null;
4725         end if;
4726      end Check_Allocator_Discrim_Accessibility;
4727
4728      ----------------------------
4729      -- In_Dispatching_Context --
4730      ----------------------------
4731
4732      function In_Dispatching_Context return Boolean is
4733         Par : constant Node_Id := Parent (N);
4734
4735      begin
4736         return Nkind (Par) in N_Subprogram_Call
4737           and then Is_Entity_Name (Name (Par))
4738           and then Is_Dispatching_Operation (Entity (Name (Par)));
4739      end In_Dispatching_Context;
4740
4741   --  Start of processing for Resolve_Allocator
4742
4743   begin
4744      --  Replace general access with specific type
4745
4746      if Ekind (Etype (N)) = E_Allocator_Type then
4747         Set_Etype (N, Base_Type (Typ));
4748      end if;
4749
4750      if Is_Abstract_Type (Typ) then
4751         Error_Msg_N ("type of allocator cannot be abstract",  N);
4752      end if;
4753
4754      --  For qualified expression, resolve the expression using the given
4755      --  subtype (nothing to do for type mark, subtype indication)
4756
4757      if Nkind (E) = N_Qualified_Expression then
4758         if Is_Class_Wide_Type (Etype (E))
4759           and then not Is_Class_Wide_Type (Desig_T)
4760           and then not In_Dispatching_Context
4761         then
4762            Error_Msg_N
4763              ("class-wide allocator not allowed for this access type", N);
4764         end if;
4765
4766         Resolve (Expression (E), Etype (E));
4767         Check_Non_Static_Context (Expression (E));
4768         Check_Unset_Reference (Expression (E));
4769
4770         --  Allocators generated by the build-in-place expansion mechanism
4771         --  are explicitly marked as coming from source but do not need to be
4772         --  checked for limited initialization. To exclude this case, ensure
4773         --  that the parent of the allocator is a source node.
4774         --  The return statement constructed for an Expression_Function does
4775         --  not come from source but requires a limited check.
4776
4777         if Is_Limited_Type (Etype (E))
4778           and then Comes_From_Source (N)
4779           and then
4780             (Comes_From_Source (Parent (N))
4781               or else
4782                 (Ekind (Current_Scope) = E_Function
4783                   and then Nkind (Original_Node (Unit_Declaration_Node
4784                              (Current_Scope))) = N_Expression_Function))
4785           and then not In_Instance_Body
4786         then
4787            if not OK_For_Limited_Init (Etype (E), Expression (E)) then
4788               if Nkind (Parent (N)) = N_Assignment_Statement then
4789                  Error_Msg_N
4790                    ("illegal expression for initialized allocator of a "
4791                     & "limited type (RM 7.5 (2.7/2))", N);
4792               else
4793                  Error_Msg_N
4794                    ("initialization not allowed for limited types", N);
4795               end if;
4796
4797               Explain_Limited_Type (Etype (E), N);
4798            end if;
4799         end if;
4800
4801         --  A qualified expression requires an exact match of the type. Class-
4802         --  wide matching is not allowed.
4803
4804         if (Is_Class_Wide_Type (Etype (Expression (E)))
4805              or else Is_Class_Wide_Type (Etype (E)))
4806           and then Base_Type (Etype (Expression (E))) /= Base_Type (Etype (E))
4807         then
4808            Wrong_Type (Expression (E), Etype (E));
4809         end if;
4810
4811         --  Calls to build-in-place functions are not currently supported in
4812         --  allocators for access types associated with a simple storage pool.
4813         --  Supporting such allocators may require passing additional implicit
4814         --  parameters to build-in-place functions (or a significant revision
4815         --  of the current b-i-p implementation to unify the handling for
4816         --  multiple kinds of storage pools). ???
4817
4818         if Is_Limited_View (Desig_T)
4819           and then Nkind (Expression (E)) = N_Function_Call
4820         then
4821            declare
4822               Pool : constant Entity_Id :=
4823                        Associated_Storage_Pool (Root_Type (Typ));
4824            begin
4825               if Present (Pool)
4826                 and then
4827                   Present (Get_Rep_Pragma
4828                              (Etype (Pool), Name_Simple_Storage_Pool_Type))
4829               then
4830                  Error_Msg_N
4831                    ("limited function calls not yet supported in simple "
4832                     & "storage pool allocators", Expression (E));
4833               end if;
4834            end;
4835         end if;
4836
4837         --  A special accessibility check is needed for allocators that
4838         --  constrain access discriminants. The level of the type of the
4839         --  expression used to constrain an access discriminant cannot be
4840         --  deeper than the type of the allocator (in contrast to access
4841         --  parameters, where the level of the actual can be arbitrary).
4842
4843         --  We can't use Valid_Conversion to perform this check because in
4844         --  general the type of the allocator is unrelated to the type of
4845         --  the access discriminant.
4846
4847         if Ekind (Typ) /= E_Anonymous_Access_Type
4848           or else Is_Local_Anonymous_Access (Typ)
4849         then
4850            Subtyp := Entity (Subtype_Mark (E));
4851
4852            Aggr := Original_Node (Expression (E));
4853
4854            if Has_Discriminants (Subtyp)
4855              and then Nkind_In (Aggr, N_Aggregate, N_Extension_Aggregate)
4856            then
4857               Discrim := First_Discriminant (Base_Type (Subtyp));
4858
4859               --  Get the first component expression of the aggregate
4860
4861               if Present (Expressions (Aggr)) then
4862                  Disc_Exp := First (Expressions (Aggr));
4863
4864               elsif Present (Component_Associations (Aggr)) then
4865                  Assoc := First (Component_Associations (Aggr));
4866
4867                  if Present (Assoc) then
4868                     Disc_Exp := Expression (Assoc);
4869                  else
4870                     Disc_Exp := Empty;
4871                  end if;
4872
4873               else
4874                  Disc_Exp := Empty;
4875               end if;
4876
4877               while Present (Discrim) and then Present (Disc_Exp) loop
4878                  if Ekind (Etype (Discrim)) = E_Anonymous_Access_Type then
4879                     Check_Allocator_Discrim_Accessibility (Disc_Exp, Typ);
4880                  end if;
4881
4882                  Next_Discriminant (Discrim);
4883
4884                  if Present (Discrim) then
4885                     if Present (Assoc) then
4886                        Next (Assoc);
4887                        Disc_Exp := Expression (Assoc);
4888
4889                     elsif Present (Next (Disc_Exp)) then
4890                        Next (Disc_Exp);
4891
4892                     else
4893                        Assoc := First (Component_Associations (Aggr));
4894
4895                        if Present (Assoc) then
4896                           Disc_Exp := Expression (Assoc);
4897                        else
4898                           Disc_Exp := Empty;
4899                        end if;
4900                     end if;
4901                  end if;
4902               end loop;
4903            end if;
4904         end if;
4905
4906      --  For a subtype mark or subtype indication, freeze the subtype
4907
4908      else
4909         Freeze_Expression (E);
4910
4911         if Is_Access_Constant (Typ) and then not No_Initialization (N) then
4912            Error_Msg_N
4913              ("initialization required for access-to-constant allocator", N);
4914         end if;
4915
4916         --  A special accessibility check is needed for allocators that
4917         --  constrain access discriminants. The level of the type of the
4918         --  expression used to constrain an access discriminant cannot be
4919         --  deeper than the type of the allocator (in contrast to access
4920         --  parameters, where the level of the actual can be arbitrary).
4921         --  We can't use Valid_Conversion to perform this check because
4922         --  in general the type of the allocator is unrelated to the type
4923         --  of the access discriminant.
4924
4925         if Nkind (Original_Node (E)) = N_Subtype_Indication
4926           and then (Ekind (Typ) /= E_Anonymous_Access_Type
4927                      or else Is_Local_Anonymous_Access (Typ))
4928         then
4929            Subtyp := Entity (Subtype_Mark (Original_Node (E)));
4930
4931            if Has_Discriminants (Subtyp) then
4932               Discrim := First_Discriminant (Base_Type (Subtyp));
4933               Constr := First (Constraints (Constraint (Original_Node (E))));
4934               while Present (Discrim) and then Present (Constr) loop
4935                  if Ekind (Etype (Discrim)) = E_Anonymous_Access_Type then
4936                     if Nkind (Constr) = N_Discriminant_Association then
4937                        Disc_Exp := Original_Node (Expression (Constr));
4938                     else
4939                        Disc_Exp := Original_Node (Constr);
4940                     end if;
4941
4942                     Check_Allocator_Discrim_Accessibility (Disc_Exp, Typ);
4943                  end if;
4944
4945                  Next_Discriminant (Discrim);
4946                  Next (Constr);
4947               end loop;
4948            end if;
4949         end if;
4950      end if;
4951
4952      --  Ada 2005 (AI-344): A class-wide allocator requires an accessibility
4953      --  check that the level of the type of the created object is not deeper
4954      --  than the level of the allocator's access type, since extensions can
4955      --  now occur at deeper levels than their ancestor types. This is a
4956      --  static accessibility level check; a run-time check is also needed in
4957      --  the case of an initialized allocator with a class-wide argument (see
4958      --  Expand_Allocator_Expression).
4959
4960      if Ada_Version >= Ada_2005
4961        and then Is_Class_Wide_Type (Desig_T)
4962      then
4963         declare
4964            Exp_Typ : Entity_Id;
4965
4966         begin
4967            if Nkind (E) = N_Qualified_Expression then
4968               Exp_Typ := Etype (E);
4969            elsif Nkind (E) = N_Subtype_Indication then
4970               Exp_Typ := Entity (Subtype_Mark (Original_Node (E)));
4971            else
4972               Exp_Typ := Entity (E);
4973            end if;
4974
4975            if Type_Access_Level (Exp_Typ) >
4976                 Deepest_Type_Access_Level (Typ)
4977            then
4978               if In_Instance_Body then
4979                  Error_Msg_Warn := SPARK_Mode /= On;
4980                  Error_Msg_N
4981                    ("type in allocator has deeper level than "
4982                     & "designated class-wide type<<", E);
4983                  Error_Msg_N ("\Program_Error [<<", E);
4984                  Rewrite (N,
4985                    Make_Raise_Program_Error (Sloc (N),
4986                      Reason => PE_Accessibility_Check_Failed));
4987                  Set_Etype (N, Typ);
4988
4989               --  Do not apply Ada 2005 accessibility checks on a class-wide
4990               --  allocator if the type given in the allocator is a formal
4991               --  type. A run-time check will be performed in the instance.
4992
4993               elsif not Is_Generic_Type (Exp_Typ) then
4994                  Error_Msg_N ("type in allocator has deeper level than "
4995                               & "designated class-wide type", E);
4996               end if;
4997            end if;
4998         end;
4999      end if;
5000
5001      --  Check for allocation from an empty storage pool
5002
5003      if No_Pool_Assigned (Typ) then
5004         Error_Msg_N ("allocation from empty storage pool!", N);
5005
5006      --  If the context is an unchecked conversion, as may happen within an
5007      --  inlined subprogram, the allocator is being resolved with its own
5008      --  anonymous type. In that case, if the target type has a specific
5009      --  storage pool, it must be inherited explicitly by the allocator type.
5010
5011      elsif Nkind (Parent (N)) = N_Unchecked_Type_Conversion
5012        and then No (Associated_Storage_Pool (Typ))
5013      then
5014         Set_Associated_Storage_Pool
5015           (Typ, Associated_Storage_Pool (Etype (Parent (N))));
5016      end if;
5017
5018      if Ekind (Etype (N)) = E_Anonymous_Access_Type then
5019         Check_Restriction (No_Anonymous_Allocators, N);
5020      end if;
5021
5022      --  Check that an allocator with task parts isn't for a nested access
5023      --  type when restriction No_Task_Hierarchy applies.
5024
5025      if not Is_Library_Level_Entity (Base_Type (Typ))
5026        and then Has_Task (Base_Type (Desig_T))
5027      then
5028         Check_Restriction (No_Task_Hierarchy, N);
5029      end if;
5030
5031      --  An illegal allocator may be rewritten as a raise Program_Error
5032      --  statement.
5033
5034      if Nkind (N) = N_Allocator then
5035
5036         --  Avoid coextension processing for an allocator that is the
5037         --  expansion of a build-in-place function call.
5038
5039         if Nkind (Original_Node (N)) = N_Allocator
5040           and then Nkind (Expression (Original_Node (N))) =
5041                      N_Qualified_Expression
5042           and then Nkind (Expression (Expression (Original_Node (N)))) =
5043                      N_Function_Call
5044           and then Is_Expanded_Build_In_Place_Call
5045                      (Expression (Expression (Original_Node (N))))
5046         then
5047            null; -- b-i-p function call case
5048
5049         else
5050            --  An anonymous access discriminant is the definition of a
5051            --  coextension.
5052
5053            if Ekind (Typ) = E_Anonymous_Access_Type
5054              and then Nkind (Associated_Node_For_Itype (Typ)) =
5055                         N_Discriminant_Specification
5056            then
5057               declare
5058                  Discr : constant Entity_Id :=
5059                    Defining_Identifier (Associated_Node_For_Itype (Typ));
5060
5061               begin
5062                  Check_Restriction (No_Coextensions, N);
5063
5064                  --  Ada 2012 AI05-0052: If the designated type of the
5065                  --  allocator is limited, then the allocator shall not
5066                  --  be used to define the value of an access discriminant
5067                  --  unless the discriminated type is immutably limited.
5068
5069                  if Ada_Version >= Ada_2012
5070                    and then Is_Limited_Type (Desig_T)
5071                    and then not Is_Limited_View (Scope (Discr))
5072                  then
5073                     Error_Msg_N
5074                       ("only immutably limited types can have anonymous "
5075                        & "access discriminants designating a limited type",
5076                        N);
5077                  end if;
5078               end;
5079
5080               --  Avoid marking an allocator as a dynamic coextension if it is
5081               --  within a static construct.
5082
5083               if not Is_Static_Coextension (N) then
5084                  Set_Is_Dynamic_Coextension (N);
5085
5086                  --  Finalization and deallocation of coextensions utilizes an
5087                  --  approximate implementation which does not directly adhere
5088                  --  to the semantic rules. Warn on potential issues involving
5089                  --  coextensions.
5090
5091                  if Is_Controlled (Desig_T) then
5092                     Error_Msg_N
5093                       ("??coextension will not be finalized when its "
5094                        & "associated owner is deallocated or finalized", N);
5095                  else
5096                     Error_Msg_N
5097                       ("??coextension will not be deallocated when its "
5098                        & "associated owner is deallocated", N);
5099                  end if;
5100               end if;
5101
5102            --  Cleanup for potential static coextensions
5103
5104            else
5105               Set_Is_Dynamic_Coextension (N, False);
5106               Set_Is_Static_Coextension  (N, False);
5107
5108               --  Anonymous access-to-controlled objects are not finalized on
5109               --  time because this involves run-time ownership and currently
5110               --  this property is not available. In rare cases the object may
5111               --  not be finalized at all. Warn on potential issues involving
5112               --  anonymous access-to-controlled objects.
5113
5114               if Ekind (Typ) = E_Anonymous_Access_Type
5115                 and then Is_Controlled_Active (Desig_T)
5116               then
5117                  Error_Msg_N
5118                    ("??object designated by anonymous access object might "
5119                     & "not be finalized until its enclosing library unit "
5120                     & "goes out of scope", N);
5121                  Error_Msg_N ("\use named access type instead", N);
5122               end if;
5123            end if;
5124         end if;
5125      end if;
5126
5127      --  Report a simple error: if the designated object is a local task,
5128      --  its body has not been seen yet, and its activation will fail an
5129      --  elaboration check.
5130
5131      if Is_Task_Type (Desig_T)
5132        and then Scope (Base_Type (Desig_T)) = Current_Scope
5133        and then Is_Compilation_Unit (Current_Scope)
5134        and then Ekind (Current_Scope) = E_Package
5135        and then not In_Package_Body (Current_Scope)
5136      then
5137         Error_Msg_Warn := SPARK_Mode /= On;
5138         Error_Msg_N ("cannot activate task before body seen<<", N);
5139         Error_Msg_N ("\Program_Error [<<", N);
5140      end if;
5141
5142      --  Ada 2012 (AI05-0111-3): Detect an attempt to allocate a task or a
5143      --  type with a task component on a subpool. This action must raise
5144      --  Program_Error at runtime.
5145
5146      if Ada_Version >= Ada_2012
5147        and then Nkind (N) = N_Allocator
5148        and then Present (Subpool_Handle_Name (N))
5149        and then Has_Task (Desig_T)
5150      then
5151         Error_Msg_Warn := SPARK_Mode /= On;
5152         Error_Msg_N ("cannot allocate task on subpool<<", N);
5153         Error_Msg_N ("\Program_Error [<<", N);
5154
5155         Rewrite (N,
5156           Make_Raise_Program_Error (Sloc (N),
5157             Reason => PE_Explicit_Raise));
5158         Set_Etype (N, Typ);
5159      end if;
5160   end Resolve_Allocator;
5161
5162   ---------------------------
5163   -- Resolve_Arithmetic_Op --
5164   ---------------------------
5165
5166   --  Used for resolving all arithmetic operators except exponentiation
5167
5168   procedure Resolve_Arithmetic_Op (N : Node_Id; Typ : Entity_Id) is
5169      L   : constant Node_Id := Left_Opnd (N);
5170      R   : constant Node_Id := Right_Opnd (N);
5171      TL  : constant Entity_Id := Base_Type (Etype (L));
5172      TR  : constant Entity_Id := Base_Type (Etype (R));
5173      T   : Entity_Id;
5174      Rop : Node_Id;
5175
5176      B_Typ : constant Entity_Id := Base_Type (Typ);
5177      --  We do the resolution using the base type, because intermediate values
5178      --  in expressions always are of the base type, not a subtype of it.
5179
5180      function Expected_Type_Is_Any_Real (N : Node_Id) return Boolean;
5181      --  Returns True if N is in a context that expects "any real type"
5182
5183      function Is_Integer_Or_Universal (N : Node_Id) return Boolean;
5184      --  Return True iff given type is Integer or universal real/integer
5185
5186      procedure Set_Mixed_Mode_Operand (N : Node_Id; T : Entity_Id);
5187      --  Choose type of integer literal in fixed-point operation to conform
5188      --  to available fixed-point type. T is the type of the other operand,
5189      --  which is needed to determine the expected type of N.
5190
5191      procedure Set_Operand_Type (N : Node_Id);
5192      --  Set operand type to T if universal
5193
5194      -------------------------------
5195      -- Expected_Type_Is_Any_Real --
5196      -------------------------------
5197
5198      function Expected_Type_Is_Any_Real (N : Node_Id) return Boolean is
5199      begin
5200         --  N is the expression after "delta" in a fixed_point_definition;
5201         --  see RM-3.5.9(6):
5202
5203         return Nkind_In (Parent (N), N_Ordinary_Fixed_Point_Definition,
5204                                      N_Decimal_Fixed_Point_Definition,
5205
5206         --  N is one of the bounds in a real_range_specification;
5207         --  see RM-3.5.7(5):
5208
5209                                      N_Real_Range_Specification,
5210
5211         --  N is the expression of a delta_constraint;
5212         --  see RM-J.3(3):
5213
5214                                      N_Delta_Constraint);
5215      end Expected_Type_Is_Any_Real;
5216
5217      -----------------------------
5218      -- Is_Integer_Or_Universal --
5219      -----------------------------
5220
5221      function Is_Integer_Or_Universal (N : Node_Id) return Boolean is
5222         T     : Entity_Id;
5223         Index : Interp_Index;
5224         It    : Interp;
5225
5226      begin
5227         if not Is_Overloaded (N) then
5228            T := Etype (N);
5229            return Base_Type (T) = Base_Type (Standard_Integer)
5230              or else T = Universal_Integer
5231              or else T = Universal_Real;
5232         else
5233            Get_First_Interp (N, Index, It);
5234            while Present (It.Typ) loop
5235               if Base_Type (It.Typ) = Base_Type (Standard_Integer)
5236                 or else It.Typ = Universal_Integer
5237                 or else It.Typ = Universal_Real
5238               then
5239                  return True;
5240               end if;
5241
5242               Get_Next_Interp (Index, It);
5243            end loop;
5244         end if;
5245
5246         return False;
5247      end Is_Integer_Or_Universal;
5248
5249      ----------------------------
5250      -- Set_Mixed_Mode_Operand --
5251      ----------------------------
5252
5253      procedure Set_Mixed_Mode_Operand (N : Node_Id; T : Entity_Id) is
5254         Index : Interp_Index;
5255         It    : Interp;
5256
5257      begin
5258         if Universal_Interpretation (N) = Universal_Integer then
5259
5260            --  A universal integer literal is resolved as standard integer
5261            --  except in the case of a fixed-point result, where we leave it
5262            --  as universal (to be handled by Exp_Fixd later on)
5263
5264            if Is_Fixed_Point_Type (T) then
5265               Resolve (N, Universal_Integer);
5266            else
5267               Resolve (N, Standard_Integer);
5268            end if;
5269
5270         elsif Universal_Interpretation (N) = Universal_Real
5271           and then (T = Base_Type (Standard_Integer)
5272                      or else T = Universal_Integer
5273                      or else T = Universal_Real)
5274         then
5275            --  A universal real can appear in a fixed-type context. We resolve
5276            --  the literal with that context, even though this might raise an
5277            --  exception prematurely (the other operand may be zero).
5278
5279            Resolve (N, B_Typ);
5280
5281         elsif Etype (N) = Base_Type (Standard_Integer)
5282           and then T = Universal_Real
5283           and then Is_Overloaded (N)
5284         then
5285            --  Integer arg in mixed-mode operation. Resolve with universal
5286            --  type, in case preference rule must be applied.
5287
5288            Resolve (N, Universal_Integer);
5289
5290         elsif Etype (N) = T
5291           and then B_Typ /= Universal_Fixed
5292         then
5293            --  Not a mixed-mode operation, resolve with context
5294
5295            Resolve (N, B_Typ);
5296
5297         elsif Etype (N) = Any_Fixed then
5298
5299            --  N may itself be a mixed-mode operation, so use context type
5300
5301            Resolve (N, B_Typ);
5302
5303         elsif Is_Fixed_Point_Type (T)
5304           and then B_Typ = Universal_Fixed
5305           and then Is_Overloaded (N)
5306         then
5307            --  Must be (fixed * fixed) operation, operand must have one
5308            --  compatible interpretation.
5309
5310            Resolve (N, Any_Fixed);
5311
5312         elsif Is_Fixed_Point_Type (B_Typ)
5313           and then (T = Universal_Real or else Is_Fixed_Point_Type (T))
5314           and then Is_Overloaded (N)
5315         then
5316            --  C * F(X) in a fixed context, where C is a real literal or a
5317            --  fixed-point expression. F must have either a fixed type
5318            --  interpretation or an integer interpretation, but not both.
5319
5320            Get_First_Interp (N, Index, It);
5321            while Present (It.Typ) loop
5322               if Base_Type (It.Typ) = Base_Type (Standard_Integer) then
5323                  if Analyzed (N) then
5324                     Error_Msg_N ("ambiguous operand in fixed operation", N);
5325                  else
5326                     Resolve (N, Standard_Integer);
5327                  end if;
5328
5329               elsif Is_Fixed_Point_Type (It.Typ) then
5330                  if Analyzed (N) then
5331                     Error_Msg_N ("ambiguous operand in fixed operation", N);
5332                  else
5333                     Resolve (N, It.Typ);
5334                  end if;
5335               end if;
5336
5337               Get_Next_Interp (Index, It);
5338            end loop;
5339
5340            --  Reanalyze the literal with the fixed type of the context. If
5341            --  context is Universal_Fixed, we are within a conversion, leave
5342            --  the literal as a universal real because there is no usable
5343            --  fixed type, and the target of the conversion plays no role in
5344            --  the resolution.
5345
5346            declare
5347               Op2 : Node_Id;
5348               T2  : Entity_Id;
5349
5350            begin
5351               if N = L then
5352                  Op2 := R;
5353               else
5354                  Op2 := L;
5355               end if;
5356
5357               if B_Typ = Universal_Fixed
5358                  and then Nkind (Op2) = N_Real_Literal
5359               then
5360                  T2 := Universal_Real;
5361               else
5362                  T2 := B_Typ;
5363               end if;
5364
5365               Set_Analyzed (Op2, False);
5366               Resolve (Op2, T2);
5367            end;
5368
5369         --  A universal real conditional expression can appear in a fixed-type
5370         --  context and must be resolved with that context to facilitate the
5371         --  code generation to the backend.
5372
5373         elsif Nkind_In (N, N_Case_Expression, N_If_Expression)
5374           and then Etype (N) = Universal_Real
5375           and then Is_Fixed_Point_Type (B_Typ)
5376         then
5377            Resolve (N, B_Typ);
5378
5379         else
5380            Resolve (N);
5381         end if;
5382      end Set_Mixed_Mode_Operand;
5383
5384      ----------------------
5385      -- Set_Operand_Type --
5386      ----------------------
5387
5388      procedure Set_Operand_Type (N : Node_Id) is
5389      begin
5390         if Etype (N) = Universal_Integer
5391           or else Etype (N) = Universal_Real
5392         then
5393            Set_Etype (N, T);
5394         end if;
5395      end Set_Operand_Type;
5396
5397   --  Start of processing for Resolve_Arithmetic_Op
5398
5399   begin
5400      if Comes_From_Source (N)
5401        and then Ekind (Entity (N)) = E_Function
5402        and then Is_Imported (Entity (N))
5403        and then Is_Intrinsic_Subprogram (Entity (N))
5404      then
5405         Resolve_Intrinsic_Operator (N, Typ);
5406         return;
5407
5408      --  Special-case for mixed-mode universal expressions or fixed point type
5409      --  operation: each argument is resolved separately. The same treatment
5410      --  is required if one of the operands of a fixed point operation is
5411      --  universal real, since in this case we don't do a conversion to a
5412      --  specific fixed-point type (instead the expander handles the case).
5413
5414      --  Set the type of the node to its universal interpretation because
5415      --  legality checks on an exponentiation operand need the context.
5416
5417      elsif (B_Typ = Universal_Integer or else B_Typ = Universal_Real)
5418        and then Present (Universal_Interpretation (L))
5419        and then Present (Universal_Interpretation (R))
5420      then
5421         Set_Etype (N, B_Typ);
5422         Resolve (L, Universal_Interpretation (L));
5423         Resolve (R, Universal_Interpretation (R));
5424
5425      elsif (B_Typ = Universal_Real
5426              or else Etype (N) = Universal_Fixed
5427              or else (Etype (N) = Any_Fixed
5428                        and then Is_Fixed_Point_Type (B_Typ))
5429              or else (Is_Fixed_Point_Type (B_Typ)
5430                        and then (Is_Integer_Or_Universal (L)
5431                                    or else
5432                                  Is_Integer_Or_Universal (R))))
5433        and then Nkind_In (N, N_Op_Multiply, N_Op_Divide)
5434      then
5435         if TL = Universal_Integer or else TR = Universal_Integer then
5436            Check_For_Visible_Operator (N, B_Typ);
5437         end if;
5438
5439         --  If context is a fixed type and one operand is integer, the other
5440         --  is resolved with the type of the context.
5441
5442         if Is_Fixed_Point_Type (B_Typ)
5443           and then (Base_Type (TL) = Base_Type (Standard_Integer)
5444                      or else TL = Universal_Integer)
5445         then
5446            Resolve (R, B_Typ);
5447            Resolve (L, TL);
5448
5449         elsif Is_Fixed_Point_Type (B_Typ)
5450           and then (Base_Type (TR) = Base_Type (Standard_Integer)
5451                      or else TR = Universal_Integer)
5452         then
5453            Resolve (L, B_Typ);
5454            Resolve (R, TR);
5455
5456         --  If both operands are universal and the context is a floating
5457         --  point type, the operands are resolved to the type of the context.
5458
5459         elsif Is_Floating_Point_Type (B_Typ) then
5460            Resolve (L, B_Typ);
5461            Resolve (R, B_Typ);
5462
5463         else
5464            Set_Mixed_Mode_Operand (L, TR);
5465            Set_Mixed_Mode_Operand (R, TL);
5466         end if;
5467
5468         --  Check the rule in RM05-4.5.5(19.1/2) disallowing universal_fixed
5469         --  multiplying operators from being used when the expected type is
5470         --  also universal_fixed. Note that B_Typ will be Universal_Fixed in
5471         --  some cases where the expected type is actually Any_Real;
5472         --  Expected_Type_Is_Any_Real takes care of that case.
5473
5474         if Etype (N) = Universal_Fixed
5475           or else Etype (N) = Any_Fixed
5476         then
5477            if B_Typ = Universal_Fixed
5478              and then not Expected_Type_Is_Any_Real (N)
5479              and then not Nkind_In (Parent (N), N_Type_Conversion,
5480                                                 N_Unchecked_Type_Conversion)
5481            then
5482               Error_Msg_N ("type cannot be determined from context!", N);
5483               Error_Msg_N ("\explicit conversion to result type required", N);
5484
5485               Set_Etype (L, Any_Type);
5486               Set_Etype (R, Any_Type);
5487
5488            else
5489               if Ada_Version = Ada_83
5490                 and then Etype (N) = Universal_Fixed
5491                 and then not
5492                   Nkind_In (Parent (N), N_Type_Conversion,
5493                                         N_Unchecked_Type_Conversion)
5494               then
5495                  Error_Msg_N
5496                    ("(Ada 83) fixed-point operation needs explicit "
5497                     & "conversion", N);
5498               end if;
5499
5500               --  The expected type is "any real type" in contexts like
5501
5502               --    type T is delta <universal_fixed-expression> ...
5503
5504               --  in which case we need to set the type to Universal_Real
5505               --  so that static expression evaluation will work properly.
5506
5507               if Expected_Type_Is_Any_Real (N) then
5508                  Set_Etype (N, Universal_Real);
5509               else
5510                  Set_Etype (N, B_Typ);
5511               end if;
5512            end if;
5513
5514         elsif Is_Fixed_Point_Type (B_Typ)
5515           and then (Is_Integer_Or_Universal (L)
5516                       or else Nkind (L) = N_Real_Literal
5517                       or else Nkind (R) = N_Real_Literal
5518                       or else Is_Integer_Or_Universal (R))
5519         then
5520            Set_Etype (N, B_Typ);
5521
5522         elsif Etype (N) = Any_Fixed then
5523
5524            --  If no previous errors, this is only possible if one operand is
5525            --  overloaded and the context is universal. Resolve as such.
5526
5527            Set_Etype (N, B_Typ);
5528         end if;
5529
5530      else
5531         if (TL = Universal_Integer or else TL = Universal_Real)
5532               and then
5533            (TR = Universal_Integer or else TR = Universal_Real)
5534         then
5535            Check_For_Visible_Operator (N, B_Typ);
5536         end if;
5537
5538         --  If the context is Universal_Fixed and the operands are also
5539         --  universal fixed, this is an error, unless there is only one
5540         --  applicable fixed_point type (usually Duration).
5541
5542         if B_Typ = Universal_Fixed and then Etype (L) = Universal_Fixed then
5543            T := Unique_Fixed_Point_Type (N);
5544
5545            if T  = Any_Type then
5546               Set_Etype (N, T);
5547               return;
5548            else
5549               Resolve (L, T);
5550               Resolve (R, T);
5551            end if;
5552
5553         else
5554            Resolve (L, B_Typ);
5555            Resolve (R, B_Typ);
5556         end if;
5557
5558         --  If one of the arguments was resolved to a non-universal type.
5559         --  label the result of the operation itself with the same type.
5560         --  Do the same for the universal argument, if any.
5561
5562         T := Intersect_Types (L, R);
5563         Set_Etype (N, Base_Type (T));
5564         Set_Operand_Type (L);
5565         Set_Operand_Type (R);
5566      end if;
5567
5568      Generate_Operator_Reference (N, Typ);
5569      Analyze_Dimension (N);
5570      Eval_Arithmetic_Op (N);
5571
5572      --  In SPARK, a multiplication or division with operands of fixed point
5573      --  types must be qualified or explicitly converted to identify the
5574      --  result type.
5575
5576      if (Is_Fixed_Point_Type (Etype (L))
5577           or else Is_Fixed_Point_Type (Etype (R)))
5578        and then Nkind_In (N, N_Op_Multiply, N_Op_Divide)
5579        and then
5580          not Nkind_In (Parent (N), N_Qualified_Expression, N_Type_Conversion)
5581      then
5582         Check_SPARK_05_Restriction
5583           ("operation should be qualified or explicitly converted", N);
5584      end if;
5585
5586      --  Set overflow and division checking bit
5587
5588      if Nkind (N) in N_Op then
5589         if not Overflow_Checks_Suppressed (Etype (N)) then
5590            Enable_Overflow_Check (N);
5591         end if;
5592
5593         --  Give warning if explicit division by zero
5594
5595         if Nkind_In (N, N_Op_Divide, N_Op_Rem, N_Op_Mod)
5596           and then not Division_Checks_Suppressed (Etype (N))
5597         then
5598            Rop := Right_Opnd (N);
5599
5600            if Compile_Time_Known_Value (Rop)
5601              and then ((Is_Integer_Type (Etype (Rop))
5602                          and then Expr_Value (Rop) = Uint_0)
5603                         or else
5604                           (Is_Real_Type (Etype (Rop))
5605                             and then Expr_Value_R (Rop) = Ureal_0))
5606            then
5607               --  Specialize the warning message according to the operation.
5608               --  When SPARK_Mode is On, force a warning instead of an error
5609               --  in that case, as this likely corresponds to deactivated
5610               --  code. The following warnings are for the case
5611
5612               case Nkind (N) is
5613                  when N_Op_Divide =>
5614
5615                     --  For division, we have two cases, for float division
5616                     --  of an unconstrained float type, on a machine where
5617                     --  Machine_Overflows is false, we don't get an exception
5618                     --  at run-time, but rather an infinity or Nan. The Nan
5619                     --  case is pretty obscure, so just warn about infinities.
5620
5621                     if Is_Floating_Point_Type (Typ)
5622                       and then not Is_Constrained (Typ)
5623                       and then not Machine_Overflows_On_Target
5624                     then
5625                        Error_Msg_N
5626                          ("float division by zero, may generate "
5627                           & "'+'/'- infinity??", Right_Opnd (N));
5628
5629                     --  For all other cases, we get a Constraint_Error
5630
5631                     else
5632                        Apply_Compile_Time_Constraint_Error
5633                          (N, "division by zero??", CE_Divide_By_Zero,
5634                           Loc  => Sloc (Right_Opnd (N)),
5635                           Warn => SPARK_Mode = On);
5636                     end if;
5637
5638                  when N_Op_Rem =>
5639                     Apply_Compile_Time_Constraint_Error
5640                       (N, "rem with zero divisor??", CE_Divide_By_Zero,
5641                        Loc  => Sloc (Right_Opnd (N)),
5642                        Warn => SPARK_Mode = On);
5643
5644                  when N_Op_Mod =>
5645                     Apply_Compile_Time_Constraint_Error
5646                       (N, "mod with zero divisor??", CE_Divide_By_Zero,
5647                        Loc  => Sloc (Right_Opnd (N)),
5648                        Warn => SPARK_Mode = On);
5649
5650                  --  Division by zero can only happen with division, rem,
5651                  --  and mod operations.
5652
5653                  when others =>
5654                     raise Program_Error;
5655               end case;
5656
5657               --  In GNATprove mode, we enable the division check so that
5658               --  GNATprove will issue a message if it cannot be proved.
5659
5660               if GNATprove_Mode then
5661                  Activate_Division_Check (N);
5662               end if;
5663
5664            --  Otherwise just set the flag to check at run time
5665
5666            else
5667               Activate_Division_Check (N);
5668            end if;
5669         end if;
5670
5671         --  If Restriction No_Implicit_Conditionals is active, then it is
5672         --  violated if either operand can be negative for mod, or for rem
5673         --  if both operands can be negative.
5674
5675         if Restriction_Check_Required (No_Implicit_Conditionals)
5676           and then Nkind_In (N, N_Op_Rem, N_Op_Mod)
5677         then
5678            declare
5679               Lo : Uint;
5680               Hi : Uint;
5681               OK : Boolean;
5682
5683               LNeg : Boolean;
5684               RNeg : Boolean;
5685               --  Set if corresponding operand might be negative
5686
5687            begin
5688               Determine_Range
5689                 (Left_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
5690               LNeg := (not OK) or else Lo < 0;
5691
5692               Determine_Range
5693                 (Right_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
5694               RNeg := (not OK) or else Lo < 0;
5695
5696               --  Check if we will be generating conditionals. There are two
5697               --  cases where that can happen, first for REM, the only case
5698               --  is largest negative integer mod -1, where the division can
5699               --  overflow, but we still have to give the right result. The
5700               --  front end generates a test for this annoying case. Here we
5701               --  just test if both operands can be negative (that's what the
5702               --  expander does, so we match its logic here).
5703
5704               --  The second case is mod where either operand can be negative.
5705               --  In this case, the back end has to generate additional tests.
5706
5707               if (Nkind (N) = N_Op_Rem and then (LNeg and RNeg))
5708                     or else
5709                  (Nkind (N) = N_Op_Mod and then (LNeg or RNeg))
5710               then
5711                  Check_Restriction (No_Implicit_Conditionals, N);
5712               end if;
5713            end;
5714         end if;
5715      end if;
5716
5717      Check_Unset_Reference (L);
5718      Check_Unset_Reference (R);
5719   end Resolve_Arithmetic_Op;
5720
5721   ------------------
5722   -- Resolve_Call --
5723   ------------------
5724
5725   procedure Resolve_Call (N : Node_Id; Typ : Entity_Id) is
5726      function Same_Or_Aliased_Subprograms
5727        (S : Entity_Id;
5728         E : Entity_Id) return Boolean;
5729      --  Returns True if the subprogram entity S is the same as E or else
5730      --  S is an alias of E.
5731
5732      ---------------------------------
5733      -- Same_Or_Aliased_Subprograms --
5734      ---------------------------------
5735
5736      function Same_Or_Aliased_Subprograms
5737        (S : Entity_Id;
5738         E : Entity_Id) return Boolean
5739      is
5740         Subp_Alias : constant Entity_Id := Alias (S);
5741      begin
5742         return S = E or else (Present (Subp_Alias) and then Subp_Alias = E);
5743      end Same_Or_Aliased_Subprograms;
5744
5745      --  Local variables
5746
5747      Loc      : constant Source_Ptr := Sloc (N);
5748      Subp     : constant Node_Id    := Name (N);
5749      Body_Id  : Entity_Id;
5750      I        : Interp_Index;
5751      It       : Interp;
5752      Nam      : Entity_Id;
5753      Nam_Decl : Node_Id;
5754      Nam_UA   : Entity_Id;
5755      Norm_OK  : Boolean;
5756      Rtype    : Entity_Id;
5757      Scop     : Entity_Id;
5758
5759   --  Start of processing for Resolve_Call
5760
5761   begin
5762      --  Preserve relevant elaboration-related attributes of the context which
5763      --  are no longer available or very expensive to recompute once analysis,
5764      --  resolution, and expansion are over.
5765
5766      Mark_Elaboration_Attributes
5767        (N_Id     => N,
5768         Checks   => True,
5769         Modes    => True,
5770         Warnings => True);
5771
5772      --  The context imposes a unique interpretation with type Typ on a
5773      --  procedure or function call. Find the entity of the subprogram that
5774      --  yields the expected type, and propagate the corresponding formal
5775      --  constraints on the actuals. The caller has established that an
5776      --  interpretation exists, and emitted an error if not unique.
5777
5778      --  First deal with the case of a call to an access-to-subprogram,
5779      --  dereference made explicit in Analyze_Call.
5780
5781      if Ekind (Etype (Subp)) = E_Subprogram_Type then
5782         if not Is_Overloaded (Subp) then
5783            Nam := Etype (Subp);
5784
5785         else
5786            --  Find the interpretation whose type (a subprogram type) has a
5787            --  return type that is compatible with the context. Analysis of
5788            --  the node has established that one exists.
5789
5790            Nam := Empty;
5791
5792            Get_First_Interp (Subp,  I, It);
5793            while Present (It.Typ) loop
5794               if Covers (Typ, Etype (It.Typ)) then
5795                  Nam := It.Typ;
5796                  exit;
5797               end if;
5798
5799               Get_Next_Interp (I, It);
5800            end loop;
5801
5802            if No (Nam) then
5803               raise Program_Error;
5804            end if;
5805         end if;
5806
5807         --  If the prefix is not an entity, then resolve it
5808
5809         if not Is_Entity_Name (Subp) then
5810            Resolve (Subp, Nam);
5811         end if;
5812
5813         --  For an indirect call, we always invalidate checks, since we do not
5814         --  know whether the subprogram is local or global. Yes we could do
5815         --  better here, e.g. by knowing that there are no local subprograms,
5816         --  but it does not seem worth the effort. Similarly, we kill all
5817         --  knowledge of current constant values.
5818
5819         Kill_Current_Values;
5820
5821      --  If this is a procedure call which is really an entry call, do
5822      --  the conversion of the procedure call to an entry call. Protected
5823      --  operations use the same circuitry because the name in the call
5824      --  can be an arbitrary expression with special resolution rules.
5825
5826      elsif Nkind_In (Subp, N_Selected_Component, N_Indexed_Component)
5827        or else (Is_Entity_Name (Subp)
5828                  and then Ekind_In (Entity (Subp), E_Entry, E_Entry_Family))
5829      then
5830         Resolve_Entry_Call (N, Typ);
5831
5832         if Legacy_Elaboration_Checks then
5833            Check_Elab_Call (N);
5834         end if;
5835
5836         --  Annotate the tree by creating a call marker in case the original
5837         --  call is transformed by expansion. The call marker is automatically
5838         --  saved for later examination by the ABE Processing phase.
5839
5840         Build_Call_Marker (N);
5841
5842         --  Kill checks and constant values, as above for indirect case
5843         --  Who knows what happens when another task is activated?
5844
5845         Kill_Current_Values;
5846         return;
5847
5848      --  Normal subprogram call with name established in Resolve
5849
5850      elsif not (Is_Type (Entity (Subp))) then
5851         Nam := Entity (Subp);
5852         Set_Entity_With_Checks (Subp, Nam);
5853
5854      --  Otherwise we must have the case of an overloaded call
5855
5856      else
5857         pragma Assert (Is_Overloaded (Subp));
5858
5859         --  Initialize Nam to prevent warning (we know it will be assigned
5860         --  in the loop below, but the compiler does not know that).
5861
5862         Nam := Empty;
5863
5864         Get_First_Interp (Subp,  I, It);
5865         while Present (It.Typ) loop
5866            if Covers (Typ, It.Typ) then
5867               Nam := It.Nam;
5868               Set_Entity_With_Checks (Subp, Nam);
5869               exit;
5870            end if;
5871
5872            Get_Next_Interp (I, It);
5873         end loop;
5874      end if;
5875
5876      if Is_Access_Subprogram_Type (Base_Type (Etype (Nam)))
5877        and then not Is_Access_Subprogram_Type (Base_Type (Typ))
5878        and then Nkind (Subp) /= N_Explicit_Dereference
5879        and then Present (Parameter_Associations (N))
5880      then
5881         --  The prefix is a parameterless function call that returns an access
5882         --  to subprogram. If parameters are present in the current call, add
5883         --  add an explicit dereference. We use the base type here because
5884         --  within an instance these may be subtypes.
5885
5886         --  The dereference is added either in Analyze_Call or here. Should
5887         --  be consolidated ???
5888
5889         Set_Is_Overloaded (Subp, False);
5890         Set_Etype (Subp, Etype (Nam));
5891         Insert_Explicit_Dereference (Subp);
5892         Nam := Designated_Type (Etype (Nam));
5893         Resolve (Subp, Nam);
5894      end if;
5895
5896      --  Check that a call to Current_Task does not occur in an entry body
5897
5898      if Is_RTE (Nam, RE_Current_Task) then
5899         declare
5900            P : Node_Id;
5901
5902         begin
5903            P := N;
5904            loop
5905               P := Parent (P);
5906
5907               --  Exclude calls that occur within the default of a formal
5908               --  parameter of the entry, since those are evaluated outside
5909               --  of the body.
5910
5911               exit when No (P) or else Nkind (P) = N_Parameter_Specification;
5912
5913               if Nkind (P) = N_Entry_Body
5914                 or else (Nkind (P) = N_Subprogram_Body
5915                           and then Is_Entry_Barrier_Function (P))
5916               then
5917                  Rtype := Etype (N);
5918                  Error_Msg_Warn := SPARK_Mode /= On;
5919                  Error_Msg_NE
5920                    ("& should not be used in entry body (RM C.7(17))<<",
5921                     N, Nam);
5922                  Error_Msg_NE ("\Program_Error [<<", N, Nam);
5923                  Rewrite (N,
5924                    Make_Raise_Program_Error (Loc,
5925                      Reason => PE_Current_Task_In_Entry_Body));
5926                  Set_Etype (N, Rtype);
5927                  return;
5928               end if;
5929            end loop;
5930         end;
5931      end if;
5932
5933      --  Check that a procedure call does not occur in the context of the
5934      --  entry call statement of a conditional or timed entry call. Note that
5935      --  the case of a call to a subprogram renaming of an entry will also be
5936      --  rejected. The test for N not being an N_Entry_Call_Statement is
5937      --  defensive, covering the possibility that the processing of entry
5938      --  calls might reach this point due to later modifications of the code
5939      --  above.
5940
5941      if Nkind (Parent (N)) = N_Entry_Call_Alternative
5942        and then Nkind (N) /= N_Entry_Call_Statement
5943        and then Entry_Call_Statement (Parent (N)) = N
5944      then
5945         if Ada_Version < Ada_2005 then
5946            Error_Msg_N ("entry call required in select statement", N);
5947
5948         --  Ada 2005 (AI-345): If a procedure_call_statement is used
5949         --  for a procedure_or_entry_call, the procedure_name or
5950         --  procedure_prefix of the procedure_call_statement shall denote
5951         --  an entry renamed by a procedure, or (a view of) a primitive
5952         --  subprogram of a limited interface whose first parameter is
5953         --  a controlling parameter.
5954
5955         elsif Nkind (N) = N_Procedure_Call_Statement
5956           and then not Is_Renamed_Entry (Nam)
5957           and then not Is_Controlling_Limited_Procedure (Nam)
5958         then
5959            Error_Msg_N
5960             ("entry call or dispatching primitive of interface required", N);
5961         end if;
5962      end if;
5963
5964      --  If the SPARK_05 restriction is active, we are not allowed
5965      --  to have a call to a subprogram before we see its completion.
5966
5967      if not Has_Completion (Nam)
5968        and then Restriction_Check_Required (SPARK_05)
5969
5970        --  Don't flag strange internal calls
5971
5972        and then Comes_From_Source (N)
5973        and then Comes_From_Source (Nam)
5974
5975        --  Only flag calls in extended main source
5976
5977        and then In_Extended_Main_Source_Unit (Nam)
5978        and then In_Extended_Main_Source_Unit (N)
5979
5980        --  Exclude enumeration literals from this processing
5981
5982        and then Ekind (Nam) /= E_Enumeration_Literal
5983      then
5984         Check_SPARK_05_Restriction
5985           ("call to subprogram cannot appear before its body", N);
5986      end if;
5987
5988      --  Check that this is not a call to a protected procedure or entry from
5989      --  within a protected function.
5990
5991      Check_Internal_Protected_Use (N, Nam);
5992
5993      --  Freeze the subprogram name if not in a spec-expression. Note that
5994      --  we freeze procedure calls as well as function calls. Procedure calls
5995      --  are not frozen according to the rules (RM 13.14(14)) because it is
5996      --  impossible to have a procedure call to a non-frozen procedure in
5997      --  pure Ada, but in the code that we generate in the expander, this
5998      --  rule needs extending because we can generate procedure calls that
5999      --  need freezing.
6000
6001      --  In Ada 2012, expression functions may be called within pre/post
6002      --  conditions of subsequent functions or expression functions. Such
6003      --  calls do not freeze when they appear within generated bodies,
6004      --  (including the body of another expression function) which would
6005      --  place the freeze node in the wrong scope. An expression function
6006      --  is frozen in the usual fashion, by the appearance of a real body,
6007      --  or at the end of a declarative part.
6008
6009      if Is_Entity_Name (Subp)
6010        and then not In_Spec_Expression
6011        and then not Is_Expression_Function_Or_Completion (Current_Scope)
6012        and then
6013          (not Is_Expression_Function_Or_Completion (Entity (Subp))
6014            or else Scope (Entity (Subp)) = Current_Scope)
6015      then
6016         Freeze_Expression (Subp);
6017      end if;
6018
6019      --  For a predefined operator, the type of the result is the type imposed
6020      --  by context, except for a predefined operation on universal fixed.
6021      --  Otherwise The type of the call is the type returned by the subprogram
6022      --  being called.
6023
6024      if Is_Predefined_Op (Nam) then
6025         if Etype (N) /= Universal_Fixed then
6026            Set_Etype (N, Typ);
6027         end if;
6028
6029      --  If the subprogram returns an array type, and the context requires the
6030      --  component type of that array type, the node is really an indexing of
6031      --  the parameterless call. Resolve as such. A pathological case occurs
6032      --  when the type of the component is an access to the array type. In
6033      --  this case the call is truly ambiguous. If the call is to an intrinsic
6034      --  subprogram, it can't be an indexed component. This check is necessary
6035      --  because if it's Unchecked_Conversion, and we have "type T_Ptr is
6036      --  access T;" and "type T is array (...) of T_Ptr;" (i.e. an array of
6037      --  pointers to the same array), the compiler gets confused and does an
6038      --  infinite recursion.
6039
6040      elsif (Needs_No_Actuals (Nam) or else Needs_One_Actual (Nam))
6041        and then
6042          ((Is_Array_Type (Etype (Nam))
6043             and then Covers (Typ, Component_Type (Etype (Nam))))
6044           or else
6045             (Is_Access_Type (Etype (Nam))
6046               and then Is_Array_Type (Designated_Type (Etype (Nam)))
6047               and then
6048                 Covers (Typ, Component_Type (Designated_Type (Etype (Nam))))
6049               and then not Is_Intrinsic_Subprogram (Entity (Subp))))
6050      then
6051         declare
6052            Index_Node : Node_Id;
6053            New_Subp   : Node_Id;
6054            Ret_Type   : constant Entity_Id := Etype (Nam);
6055
6056         begin
6057            if Is_Access_Type (Ret_Type)
6058              and then Ret_Type = Component_Type (Designated_Type (Ret_Type))
6059            then
6060               Error_Msg_N
6061                 ("cannot disambiguate function call and indexing", N);
6062            else
6063               New_Subp := Relocate_Node (Subp);
6064
6065               --  The called entity may be an explicit dereference, in which
6066               --  case there is no entity to set.
6067
6068               if Nkind (New_Subp) /= N_Explicit_Dereference then
6069                  Set_Entity (Subp, Nam);
6070               end if;
6071
6072               if (Is_Array_Type (Ret_Type)
6073                    and then Component_Type (Ret_Type) /= Any_Type)
6074                 or else
6075                  (Is_Access_Type (Ret_Type)
6076                    and then
6077                      Component_Type (Designated_Type (Ret_Type)) /= Any_Type)
6078               then
6079                  if Needs_No_Actuals (Nam) then
6080
6081                     --  Indexed call to a parameterless function
6082
6083                     Index_Node :=
6084                       Make_Indexed_Component (Loc,
6085                         Prefix      =>
6086                           Make_Function_Call (Loc, Name => New_Subp),
6087                         Expressions => Parameter_Associations (N));
6088                  else
6089                     --  An Ada 2005 prefixed call to a primitive operation
6090                     --  whose first parameter is the prefix. This prefix was
6091                     --  prepended to the parameter list, which is actually a
6092                     --  list of indexes. Remove the prefix in order to build
6093                     --  the proper indexed component.
6094
6095                     Index_Node :=
6096                       Make_Indexed_Component (Loc,
6097                         Prefix      =>
6098                           Make_Function_Call (Loc,
6099                             Name                   => New_Subp,
6100                             Parameter_Associations =>
6101                               New_List
6102                                 (Remove_Head (Parameter_Associations (N)))),
6103                         Expressions => Parameter_Associations (N));
6104                  end if;
6105
6106                  --  Preserve the parenthesis count of the node
6107
6108                  Set_Paren_Count (Index_Node, Paren_Count (N));
6109
6110                  --  Since we are correcting a node classification error made
6111                  --  by the parser, we call Replace rather than Rewrite.
6112
6113                  Replace (N, Index_Node);
6114
6115                  Set_Etype (Prefix (N), Ret_Type);
6116                  Set_Etype (N, Typ);
6117                  Resolve_Indexed_Component (N, Typ);
6118
6119                  if Legacy_Elaboration_Checks then
6120                     Check_Elab_Call (Prefix (N));
6121                  end if;
6122
6123                  --  Annotate the tree by creating a call marker in case
6124                  --  the original call is transformed by expansion. The call
6125                  --  marker is automatically saved for later examination by
6126                  --  the ABE Processing phase.
6127
6128                  Build_Call_Marker (Prefix (N));
6129               end if;
6130            end if;
6131
6132            return;
6133         end;
6134
6135      else
6136         --  If the called function is not declared in the main unit and it
6137         --  returns the limited view of type then use the available view (as
6138         --  is done in Try_Object_Operation) to prevent back-end confusion;
6139         --  for the function entity itself. The call must appear in a context
6140         --  where the nonlimited view is available. If the function entity is
6141         --  in the extended main unit then no action is needed, because the
6142         --  back end handles this case. In either case the type of the call
6143         --  is the nonlimited view.
6144
6145         if From_Limited_With (Etype (Nam))
6146           and then Present (Available_View (Etype (Nam)))
6147         then
6148            Set_Etype (N, Available_View (Etype (Nam)));
6149
6150            if not In_Extended_Main_Code_Unit (Nam) then
6151               Set_Etype (Nam, Available_View (Etype (Nam)));
6152            end if;
6153
6154         else
6155            Set_Etype (N, Etype (Nam));
6156         end if;
6157      end if;
6158
6159      --  In the case where the call is to an overloaded subprogram, Analyze
6160      --  calls Normalize_Actuals once per overloaded subprogram. Therefore in
6161      --  such a case Normalize_Actuals needs to be called once more to order
6162      --  the actuals correctly. Otherwise the call will have the ordering
6163      --  given by the last overloaded subprogram whether this is the correct
6164      --  one being called or not.
6165
6166      if Is_Overloaded (Subp) then
6167         Normalize_Actuals (N, Nam, False, Norm_OK);
6168         pragma Assert (Norm_OK);
6169      end if;
6170
6171      --  In any case, call is fully resolved now. Reset Overload flag, to
6172      --  prevent subsequent overload resolution if node is analyzed again
6173
6174      Set_Is_Overloaded (Subp, False);
6175      Set_Is_Overloaded (N, False);
6176
6177      --  A Ghost entity must appear in a specific context
6178
6179      if Is_Ghost_Entity (Nam) and then Comes_From_Source (N) then
6180         Check_Ghost_Context (Nam, N);
6181      end if;
6182
6183      --  If we are calling the current subprogram from immediately within its
6184      --  body, then that is the case where we can sometimes detect cases of
6185      --  infinite recursion statically. Do not try this in case restriction
6186      --  No_Recursion is in effect anyway, and do it only for source calls.
6187
6188      if Comes_From_Source (N) then
6189         Scop := Current_Scope;
6190
6191         --  Check violation of SPARK_05 restriction which does not permit
6192         --  a subprogram body to contain a call to the subprogram directly.
6193
6194         if Restriction_Check_Required (SPARK_05)
6195           and then Same_Or_Aliased_Subprograms (Nam, Scop)
6196         then
6197            Check_SPARK_05_Restriction
6198              ("subprogram may not contain direct call to itself", N);
6199         end if;
6200
6201         --  Issue warning for possible infinite recursion in the absence
6202         --  of the No_Recursion restriction.
6203
6204         if Same_Or_Aliased_Subprograms (Nam, Scop)
6205           and then not Restriction_Active (No_Recursion)
6206           and then Check_Infinite_Recursion (N)
6207         then
6208            --  Here we detected and flagged an infinite recursion, so we do
6209            --  not need to test the case below for further warnings. Also we
6210            --  are all done if we now have a raise SE node.
6211
6212            if Nkind (N) = N_Raise_Storage_Error then
6213               return;
6214            end if;
6215
6216         --  If call is to immediately containing subprogram, then check for
6217         --  the case of a possible run-time detectable infinite recursion.
6218
6219         else
6220            Scope_Loop : while Scop /= Standard_Standard loop
6221               if Same_Or_Aliased_Subprograms (Nam, Scop) then
6222
6223                  --  Although in general case, recursion is not statically
6224                  --  checkable, the case of calling an immediately containing
6225                  --  subprogram is easy to catch.
6226
6227                  Check_Restriction (No_Recursion, N);
6228
6229                  --  If the recursive call is to a parameterless subprogram,
6230                  --  then even if we can't statically detect infinite
6231                  --  recursion, this is pretty suspicious, and we output a
6232                  --  warning. Furthermore, we will try later to detect some
6233                  --  cases here at run time by expanding checking code (see
6234                  --  Detect_Infinite_Recursion in package Exp_Ch6).
6235
6236                  --  If the recursive call is within a handler, do not emit a
6237                  --  warning, because this is a common idiom: loop until input
6238                  --  is correct, catch illegal input in handler and restart.
6239
6240                  if No (First_Formal (Nam))
6241                    and then Etype (Nam) = Standard_Void_Type
6242                    and then not Error_Posted (N)
6243                    and then Nkind (Parent (N)) /= N_Exception_Handler
6244                  then
6245                     --  For the case of a procedure call. We give the message
6246                     --  only if the call is the first statement in a sequence
6247                     --  of statements, or if all previous statements are
6248                     --  simple assignments. This is simply a heuristic to
6249                     --  decrease false positives, without losing too many good
6250                     --  warnings. The idea is that these previous statements
6251                     --  may affect global variables the procedure depends on.
6252                     --  We also exclude raise statements, that may arise from
6253                     --  constraint checks and are probably unrelated to the
6254                     --  intended control flow.
6255
6256                     if Nkind (N) = N_Procedure_Call_Statement
6257                       and then Is_List_Member (N)
6258                     then
6259                        declare
6260                           P : Node_Id;
6261                        begin
6262                           P := Prev (N);
6263                           while Present (P) loop
6264                              if not Nkind_In (P, N_Assignment_Statement,
6265                                                  N_Raise_Constraint_Error)
6266                              then
6267                                 exit Scope_Loop;
6268                              end if;
6269
6270                              Prev (P);
6271                           end loop;
6272                        end;
6273                     end if;
6274
6275                     --  Do not give warning if we are in a conditional context
6276
6277                     declare
6278                        K : constant Node_Kind := Nkind (Parent (N));
6279                     begin
6280                        if (K = N_Loop_Statement
6281                             and then Present (Iteration_Scheme (Parent (N))))
6282                          or else K = N_If_Statement
6283                          or else K = N_Elsif_Part
6284                          or else K = N_Case_Statement_Alternative
6285                        then
6286                           exit Scope_Loop;
6287                        end if;
6288                     end;
6289
6290                     --  Here warning is to be issued
6291
6292                     Set_Has_Recursive_Call (Nam);
6293                     Error_Msg_Warn := SPARK_Mode /= On;
6294                     Error_Msg_N ("possible infinite recursion<<!", N);
6295                     Error_Msg_N ("\Storage_Error ]<<!", N);
6296                  end if;
6297
6298                  exit Scope_Loop;
6299               end if;
6300
6301               Scop := Scope (Scop);
6302            end loop Scope_Loop;
6303         end if;
6304      end if;
6305
6306      --  Check obsolescent reference to Ada.Characters.Handling subprogram
6307
6308      Check_Obsolescent_2005_Entity (Nam, Subp);
6309
6310      --  If subprogram name is a predefined operator, it was given in
6311      --  functional notation. Replace call node with operator node, so
6312      --  that actuals can be resolved appropriately.
6313
6314      if Is_Predefined_Op (Nam) or else Ekind (Nam) = E_Operator then
6315         Make_Call_Into_Operator (N, Typ, Entity (Name (N)));
6316         return;
6317
6318      elsif Present (Alias (Nam))
6319        and then Is_Predefined_Op (Alias (Nam))
6320      then
6321         Resolve_Actuals (N, Nam);
6322         Make_Call_Into_Operator (N, Typ, Alias (Nam));
6323         return;
6324      end if;
6325
6326      --  Create a transient scope if the resulting type requires it
6327
6328      --  There are several notable exceptions:
6329
6330      --  a) In init procs, the transient scope overhead is not needed, and is
6331      --  even incorrect when the call is a nested initialization call for a
6332      --  component whose expansion may generate adjust calls. However, if the
6333      --  call is some other procedure call within an initialization procedure
6334      --  (for example a call to Create_Task in the init_proc of the task
6335      --  run-time record) a transient scope must be created around this call.
6336
6337      --  b) Enumeration literal pseudo-calls need no transient scope
6338
6339      --  c) Intrinsic subprograms (Unchecked_Conversion and source info
6340      --  functions) do not use the secondary stack even though the return
6341      --  type may be unconstrained.
6342
6343      --  d) Calls to a build-in-place function, since such functions may
6344      --  allocate their result directly in a target object, and cases where
6345      --  the result does get allocated in the secondary stack are checked for
6346      --  within the specialized Exp_Ch6 procedures for expanding those
6347      --  build-in-place calls.
6348
6349      --  e) Calls to inlinable expression functions do not use the secondary
6350      --  stack (since the call will be replaced by its returned object).
6351
6352      --  f) If the subprogram is marked Inline_Always, then even if it returns
6353      --  an unconstrained type the call does not require use of the secondary
6354      --  stack. However, inlining will only take place if the body to inline
6355      --  is already present. It may not be available if e.g. the subprogram is
6356      --  declared in a child instance.
6357
6358      if Is_Inlined (Nam)
6359        and then Has_Pragma_Inline (Nam)
6360        and then Nkind (Unit_Declaration_Node (Nam)) = N_Subprogram_Declaration
6361        and then Present (Body_To_Inline (Unit_Declaration_Node (Nam)))
6362      then
6363         null;
6364
6365      elsif Ekind (Nam) = E_Enumeration_Literal
6366        or else Is_Build_In_Place_Function (Nam)
6367        or else Is_Intrinsic_Subprogram (Nam)
6368        or else Is_Inlinable_Expression_Function (Nam)
6369      then
6370         null;
6371
6372      elsif Expander_Active
6373        and then Ekind (Nam) = E_Function
6374        and then Requires_Transient_Scope (Etype (Nam))
6375      then
6376         Establish_Transient_Scope (N, Manage_Sec_Stack => True);
6377
6378         --  If the call appears within the bounds of a loop, it will be
6379         --  rewritten and reanalyzed, nothing left to do here.
6380
6381         if Nkind (N) /= N_Function_Call then
6382            return;
6383         end if;
6384      end if;
6385
6386      --  A protected function cannot be called within the definition of the
6387      --  enclosing protected type, unless it is part of a pre/postcondition
6388      --  on another protected operation. This may appear in the entry wrapper
6389      --  created for an entry with preconditions.
6390
6391      if Is_Protected_Type (Scope (Nam))
6392        and then In_Open_Scopes (Scope (Nam))
6393        and then not Has_Completion (Scope (Nam))
6394        and then not In_Spec_Expression
6395        and then not Is_Entry_Wrapper (Current_Scope)
6396      then
6397         Error_Msg_NE
6398           ("& cannot be called before end of protected definition", N, Nam);
6399      end if;
6400
6401      --  Propagate interpretation to actuals, and add default expressions
6402      --  where needed.
6403
6404      if Present (First_Formal (Nam)) then
6405         Resolve_Actuals (N, Nam);
6406
6407      --  Overloaded literals are rewritten as function calls, for purpose of
6408      --  resolution. After resolution, we can replace the call with the
6409      --  literal itself.
6410
6411      elsif Ekind (Nam) = E_Enumeration_Literal then
6412         Copy_Node (Subp, N);
6413         Resolve_Entity_Name (N, Typ);
6414
6415         --  Avoid validation, since it is a static function call
6416
6417         Generate_Reference (Nam, Subp);
6418         return;
6419      end if;
6420
6421      --  If the subprogram is not global, then kill all saved values and
6422      --  checks. This is a bit conservative, since in many cases we could do
6423      --  better, but it is not worth the effort. Similarly, we kill constant
6424      --  values. However we do not need to do this for internal entities
6425      --  (unless they are inherited user-defined subprograms), since they
6426      --  are not in the business of molesting local values.
6427
6428      --  If the flag Suppress_Value_Tracking_On_Calls is set, then we also
6429      --  kill all checks and values for calls to global subprograms. This
6430      --  takes care of the case where an access to a local subprogram is
6431      --  taken, and could be passed directly or indirectly and then called
6432      --  from almost any context.
6433
6434      --  Note: we do not do this step till after resolving the actuals. That
6435      --  way we still take advantage of the current value information while
6436      --  scanning the actuals.
6437
6438      --  We suppress killing values if we are processing the nodes associated
6439      --  with N_Freeze_Entity nodes. Otherwise the declaration of a tagged
6440      --  type kills all the values as part of analyzing the code that
6441      --  initializes the dispatch tables.
6442
6443      if Inside_Freezing_Actions = 0
6444        and then (not Is_Library_Level_Entity (Nam)
6445                   or else Suppress_Value_Tracking_On_Call
6446                             (Nearest_Dynamic_Scope (Current_Scope)))
6447        and then (Comes_From_Source (Nam)
6448                   or else (Present (Alias (Nam))
6449                             and then Comes_From_Source (Alias (Nam))))
6450      then
6451         Kill_Current_Values;
6452      end if;
6453
6454      --  If we are warning about unread OUT parameters, this is the place to
6455      --  set Last_Assignment for OUT and IN OUT parameters. We have to do this
6456      --  after the above call to Kill_Current_Values (since that call clears
6457      --  the Last_Assignment field of all local variables).
6458
6459      if (Warn_On_Modified_Unread or Warn_On_All_Unread_Out_Parameters)
6460        and then Comes_From_Source (N)
6461        and then In_Extended_Main_Source_Unit (N)
6462      then
6463         declare
6464            F : Entity_Id;
6465            A : Node_Id;
6466
6467         begin
6468            F := First_Formal (Nam);
6469            A := First_Actual (N);
6470            while Present (F) and then Present (A) loop
6471               if Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter)
6472                 and then Warn_On_Modified_As_Out_Parameter (F)
6473                 and then Is_Entity_Name (A)
6474                 and then Present (Entity (A))
6475                 and then Comes_From_Source (N)
6476                 and then Safe_To_Capture_Value (N, Entity (A))
6477               then
6478                  Set_Last_Assignment (Entity (A), A);
6479               end if;
6480
6481               Next_Formal (F);
6482               Next_Actual (A);
6483            end loop;
6484         end;
6485      end if;
6486
6487      --  If the subprogram is a primitive operation, check whether or not
6488      --  it is a correct dispatching call.
6489
6490      if Is_Overloadable (Nam)
6491        and then Is_Dispatching_Operation (Nam)
6492      then
6493         Check_Dispatching_Call (N);
6494
6495      elsif Ekind (Nam) /= E_Subprogram_Type
6496        and then Is_Abstract_Subprogram (Nam)
6497        and then not In_Instance
6498      then
6499         Error_Msg_NE ("cannot call abstract subprogram &!", N, Nam);
6500      end if;
6501
6502      --  If this is a dispatching call, generate the appropriate reference,
6503      --  for better source navigation in GPS.
6504
6505      if Is_Overloadable (Nam)
6506        and then Present (Controlling_Argument (N))
6507      then
6508         Generate_Reference (Nam, Subp, 'R');
6509
6510      --  Normal case, not a dispatching call: generate a call reference
6511
6512      else
6513         Generate_Reference (Nam, Subp, 's');
6514      end if;
6515
6516      if Is_Intrinsic_Subprogram (Nam) then
6517         Check_Intrinsic_Call (N);
6518      end if;
6519
6520      --  Check for violation of restriction No_Specific_Termination_Handlers
6521      --  and warn on a potentially blocking call to Abort_Task.
6522
6523      if Restriction_Check_Required (No_Specific_Termination_Handlers)
6524        and then (Is_RTE (Nam, RE_Set_Specific_Handler)
6525                    or else
6526                  Is_RTE (Nam, RE_Specific_Handler))
6527      then
6528         Check_Restriction (No_Specific_Termination_Handlers, N);
6529
6530      elsif Is_RTE (Nam, RE_Abort_Task) then
6531         Check_Potentially_Blocking_Operation (N);
6532      end if;
6533
6534      --  A call to Ada.Real_Time.Timing_Events.Set_Handler to set a relative
6535      --  timing event violates restriction No_Relative_Delay (AI-0211). We
6536      --  need to check the second argument to determine whether it is an
6537      --  absolute or relative timing event.
6538
6539      if Restriction_Check_Required (No_Relative_Delay)
6540        and then Is_RTE (Nam, RE_Set_Handler)
6541        and then Is_RTE (Etype (Next_Actual (First_Actual (N))), RE_Time_Span)
6542      then
6543         Check_Restriction (No_Relative_Delay, N);
6544      end if;
6545
6546      --  Issue an error for a call to an eliminated subprogram. This routine
6547      --  will not perform the check if the call appears within a default
6548      --  expression.
6549
6550      Check_For_Eliminated_Subprogram (Subp, Nam);
6551
6552      --  In formal mode, the primitive operations of a tagged type or type
6553      --  extension do not include functions that return the tagged type.
6554
6555      if Nkind (N) = N_Function_Call
6556        and then Is_Tagged_Type (Etype (N))
6557        and then Is_Entity_Name (Name (N))
6558        and then Is_Inherited_Operation_For_Type (Entity (Name (N)), Etype (N))
6559      then
6560         Check_SPARK_05_Restriction ("function not inherited", N);
6561      end if;
6562
6563      --  Implement rule in 12.5.1 (23.3/2): In an instance, if the actual is
6564      --  class-wide and the call dispatches on result in a context that does
6565      --  not provide a tag, the call raises Program_Error.
6566
6567      if Nkind (N) = N_Function_Call
6568        and then In_Instance
6569        and then Is_Generic_Actual_Type (Typ)
6570        and then Is_Class_Wide_Type (Typ)
6571        and then Has_Controlling_Result (Nam)
6572        and then Nkind (Parent (N)) = N_Object_Declaration
6573      then
6574         --  Verify that none of the formals are controlling
6575
6576         declare
6577            Call_OK : Boolean := False;
6578            F       : Entity_Id;
6579
6580         begin
6581            F := First_Formal (Nam);
6582            while Present (F) loop
6583               if Is_Controlling_Formal (F) then
6584                  Call_OK := True;
6585                  exit;
6586               end if;
6587
6588               Next_Formal (F);
6589            end loop;
6590
6591            if not Call_OK then
6592               Error_Msg_Warn := SPARK_Mode /= On;
6593               Error_Msg_N ("!cannot determine tag of result<<", N);
6594               Error_Msg_N ("\Program_Error [<<!", N);
6595               Insert_Action (N,
6596                 Make_Raise_Program_Error (Sloc (N),
6597                    Reason => PE_Explicit_Raise));
6598            end if;
6599         end;
6600      end if;
6601
6602      --  Check for calling a function with OUT or IN OUT parameter when the
6603      --  calling context (us right now) is not Ada 2012, so does not allow
6604      --  OUT or IN OUT parameters in function calls. Functions declared in
6605      --  a predefined unit are OK, as they may be called indirectly from a
6606      --  user-declared instantiation.
6607
6608      if Ada_Version < Ada_2012
6609        and then Ekind (Nam) = E_Function
6610        and then Has_Out_Or_In_Out_Parameter (Nam)
6611        and then not In_Predefined_Unit (Nam)
6612      then
6613         Error_Msg_NE ("& has at least one OUT or `IN OUT` parameter", N, Nam);
6614         Error_Msg_N ("\call to this function only allowed in Ada 2012", N);
6615      end if;
6616
6617      --  Check the dimensions of the actuals in the call. For function calls,
6618      --  propagate the dimensions from the returned type to N.
6619
6620      Analyze_Dimension_Call (N, Nam);
6621
6622      --  All done, evaluate call and deal with elaboration issues
6623
6624      Eval_Call (N);
6625
6626      if Legacy_Elaboration_Checks then
6627         Check_Elab_Call (N);
6628      end if;
6629
6630      --  Annotate the tree by creating a call marker in case the original call
6631      --  is transformed by expansion. The call marker is automatically saved
6632      --  for later examination by the ABE Processing phase.
6633
6634      Build_Call_Marker (N);
6635
6636      --  In GNATprove mode, expansion is disabled, but we want to inline some
6637      --  subprograms to facilitate formal verification. Indirect calls through
6638      --  a subprogram type or within a generic cannot be inlined. Inlining is
6639      --  performed only for calls subject to SPARK_Mode on.
6640
6641      if GNATprove_Mode
6642        and then SPARK_Mode = On
6643        and then Is_Overloadable (Nam)
6644        and then not Inside_A_Generic
6645      then
6646         Nam_UA   := Ultimate_Alias (Nam);
6647         Nam_Decl := Unit_Declaration_Node (Nam_UA);
6648
6649         if Nkind (Nam_Decl) = N_Subprogram_Declaration then
6650            Body_Id := Corresponding_Body (Nam_Decl);
6651
6652            --  Nothing to do if the subprogram is not eligible for inlining in
6653            --  GNATprove mode, or inlining is disabled with switch -gnatdm
6654
6655            if not Is_Inlined_Always (Nam_UA)
6656              or else not Can_Be_Inlined_In_GNATprove_Mode (Nam_UA, Body_Id)
6657              or else Debug_Flag_M
6658            then
6659               null;
6660
6661            --  Calls cannot be inlined inside assertions, as GNATprove treats
6662            --  assertions as logic expressions. Only issue a message when the
6663            --  body has been seen, otherwise this leads to spurious messages
6664            --  on expression functions.
6665
6666            elsif In_Assertion_Expr /= 0 then
6667               if Present (Body_Id) then
6668                  Cannot_Inline
6669                    ("cannot inline & (in assertion expression)?", N, Nam_UA);
6670               end if;
6671
6672            --  Calls cannot be inlined inside default expressions
6673
6674            elsif In_Default_Expr then
6675               Cannot_Inline
6676                 ("cannot inline & (in default expression)?", N, Nam_UA);
6677
6678            --  Inlining should not be performed during pre-analysis
6679
6680            elsif Full_Analysis then
6681
6682               --  Do not inline calls inside expression functions, as this
6683               --  would prevent interpreting them as logical formulas in
6684               --  GNATprove. Only issue a message when the body has been seen,
6685               --  otherwise this leads to spurious messages on callees that
6686               --  are themselves expression functions.
6687
6688               if Present (Current_Subprogram)
6689                 and then Is_Expression_Function_Or_Completion
6690                            (Current_Subprogram)
6691               then
6692                  if Present (Body_Id)
6693                    and then Present (Body_To_Inline (Nam_Decl))
6694                  then
6695                     Cannot_Inline
6696                       ("cannot inline & (inside expression function)?",
6697                        N, Nam_UA);
6698                  end if;
6699
6700               --  With the one-pass inlining technique, a call cannot be
6701               --  inlined if the corresponding body has not been seen yet.
6702
6703               elsif No (Body_Id) then
6704                  Cannot_Inline
6705                    ("cannot inline & (body not seen yet)?", N, Nam_UA);
6706
6707               --  Nothing to do if there is no body to inline, indicating that
6708               --  the subprogram is not suitable for inlining in GNATprove
6709               --  mode.
6710
6711               elsif No (Body_To_Inline (Nam_Decl)) then
6712                  null;
6713
6714               --  Calls cannot be inlined inside potentially unevaluated
6715               --  expressions, as this would create complex actions inside
6716               --  expressions, that are not handled by GNATprove.
6717
6718               elsif Is_Potentially_Unevaluated (N) then
6719                  Cannot_Inline
6720                    ("cannot inline & (in potentially unevaluated context)?",
6721                     N, Nam_UA);
6722
6723               --  Do not inline calls which would possibly lead to missing a
6724               --  type conversion check on an input parameter.
6725
6726               elsif not Call_Can_Be_Inlined_In_GNATprove_Mode (N, Nam) then
6727                  Cannot_Inline
6728                    ("cannot inline & (possible check on input parameters)?",
6729                     N, Nam_UA);
6730
6731               --  Otherwise, inline the call
6732
6733               else
6734                  Expand_Inlined_Call (N, Nam_UA, Nam);
6735               end if;
6736            end if;
6737         end if;
6738      end if;
6739
6740      Mark_Use_Clauses (Subp);
6741
6742      Warn_On_Overlapping_Actuals (Nam, N);
6743   end Resolve_Call;
6744
6745   -----------------------------
6746   -- Resolve_Case_Expression --
6747   -----------------------------
6748
6749   procedure Resolve_Case_Expression (N : Node_Id; Typ : Entity_Id) is
6750      Alt      : Node_Id;
6751      Alt_Expr : Node_Id;
6752      Alt_Typ  : Entity_Id;
6753      Is_Dyn   : Boolean;
6754
6755   begin
6756      Alt := First (Alternatives (N));
6757      while Present (Alt) loop
6758         Alt_Expr := Expression (Alt);
6759
6760         if Error_Posted (Alt_Expr) then
6761            return;
6762         end if;
6763
6764         Resolve (Alt_Expr, Typ);
6765         Alt_Typ := Etype (Alt_Expr);
6766
6767         --  When the expression is of a scalar subtype different from the
6768         --  result subtype, then insert a conversion to ensure the generation
6769         --  of a constraint check.
6770
6771         if Is_Scalar_Type (Alt_Typ) and then Alt_Typ /= Typ then
6772            Rewrite (Alt_Expr, Convert_To (Typ, Alt_Expr));
6773            Analyze_And_Resolve (Alt_Expr, Typ);
6774         end if;
6775
6776         Next (Alt);
6777      end loop;
6778
6779      --  Apply RM 4.5.7 (17/3): whether the expression is statically or
6780      --  dynamically tagged must be known statically.
6781
6782      if Is_Tagged_Type (Typ) and then not Is_Class_Wide_Type (Typ) then
6783         Alt    := First (Alternatives (N));
6784         Is_Dyn := Is_Dynamically_Tagged (Expression (Alt));
6785
6786         while Present (Alt) loop
6787            if Is_Dynamically_Tagged (Expression (Alt)) /= Is_Dyn then
6788               Error_Msg_N
6789                 ("all or none of the dependent expressions can be "
6790                  & "dynamically tagged", N);
6791            end if;
6792
6793            Next (Alt);
6794         end loop;
6795      end if;
6796
6797      Set_Etype (N, Typ);
6798      Eval_Case_Expression (N);
6799      Analyze_Dimension (N);
6800   end Resolve_Case_Expression;
6801
6802   -------------------------------
6803   -- Resolve_Character_Literal --
6804   -------------------------------
6805
6806   procedure Resolve_Character_Literal (N : Node_Id; Typ : Entity_Id) is
6807      B_Typ : constant Entity_Id := Base_Type (Typ);
6808      C     : Entity_Id;
6809
6810   begin
6811      --  Verify that the character does belong to the type of the context
6812
6813      Set_Etype (N, B_Typ);
6814      Eval_Character_Literal (N);
6815
6816      --  Wide_Wide_Character literals must always be defined, since the set
6817      --  of wide wide character literals is complete, i.e. if a character
6818      --  literal is accepted by the parser, then it is OK for wide wide
6819      --  character (out of range character literals are rejected).
6820
6821      if Root_Type (B_Typ) = Standard_Wide_Wide_Character then
6822         return;
6823
6824      --  Always accept character literal for type Any_Character, which
6825      --  occurs in error situations and in comparisons of literals, both
6826      --  of which should accept all literals.
6827
6828      elsif B_Typ = Any_Character then
6829         return;
6830
6831      --  For Standard.Character or a type derived from it, check that the
6832      --  literal is in range.
6833
6834      elsif Root_Type (B_Typ) = Standard_Character then
6835         if In_Character_Range (UI_To_CC (Char_Literal_Value (N))) then
6836            return;
6837         end if;
6838
6839      --  For Standard.Wide_Character or a type derived from it, check that the
6840      --  literal is in range.
6841
6842      elsif Root_Type (B_Typ) = Standard_Wide_Character then
6843         if In_Wide_Character_Range (UI_To_CC (Char_Literal_Value (N))) then
6844            return;
6845         end if;
6846
6847      --  If the entity is already set, this has already been resolved in a
6848      --  generic context, or comes from expansion. Nothing else to do.
6849
6850      elsif Present (Entity (N)) then
6851         return;
6852
6853      --  Otherwise we have a user defined character type, and we can use the
6854      --  standard visibility mechanisms to locate the referenced entity.
6855
6856      else
6857         C := Current_Entity (N);
6858         while Present (C) loop
6859            if Etype (C) = B_Typ then
6860               Set_Entity_With_Checks (N, C);
6861               Generate_Reference (C, N);
6862               return;
6863            end if;
6864
6865            C := Homonym (C);
6866         end loop;
6867      end if;
6868
6869      --  If we fall through, then the literal does not match any of the
6870      --  entries of the enumeration type. This isn't just a constraint error
6871      --  situation, it is an illegality (see RM 4.2).
6872
6873      Error_Msg_NE
6874        ("character not defined for }", N, First_Subtype (B_Typ));
6875   end Resolve_Character_Literal;
6876
6877   ---------------------------
6878   -- Resolve_Comparison_Op --
6879   ---------------------------
6880
6881   --  Context requires a boolean type, and plays no role in resolution.
6882   --  Processing identical to that for equality operators. The result type is
6883   --  the base type, which matters when pathological subtypes of booleans with
6884   --  limited ranges are used.
6885
6886   procedure Resolve_Comparison_Op (N : Node_Id; Typ : Entity_Id) is
6887      L : constant Node_Id := Left_Opnd (N);
6888      R : constant Node_Id := Right_Opnd (N);
6889      T : Entity_Id;
6890
6891   begin
6892      --  If this is an intrinsic operation which is not predefined, use the
6893      --  types of its declared arguments to resolve the possibly overloaded
6894      --  operands. Otherwise the operands are unambiguous and specify the
6895      --  expected type.
6896
6897      if Scope (Entity (N)) /= Standard_Standard then
6898         T := Etype (First_Entity (Entity (N)));
6899
6900      else
6901         T := Find_Unique_Type (L, R);
6902
6903         if T = Any_Fixed then
6904            T := Unique_Fixed_Point_Type (L);
6905         end if;
6906      end if;
6907
6908      Set_Etype (N, Base_Type (Typ));
6909      Generate_Reference (T, N, ' ');
6910
6911      --  Skip remaining processing if already set to Any_Type
6912
6913      if T = Any_Type then
6914         return;
6915      end if;
6916
6917      --  Deal with other error cases
6918
6919      if T = Any_String    or else
6920         T = Any_Composite or else
6921         T = Any_Character
6922      then
6923         if T = Any_Character then
6924            Ambiguous_Character (L);
6925         else
6926            Error_Msg_N ("ambiguous operands for comparison", N);
6927         end if;
6928
6929         Set_Etype (N, Any_Type);
6930         return;
6931      end if;
6932
6933      --  Resolve the operands if types OK
6934
6935      Resolve (L, T);
6936      Resolve (R, T);
6937      Check_Unset_Reference (L);
6938      Check_Unset_Reference (R);
6939      Generate_Operator_Reference (N, T);
6940      Check_Low_Bound_Tested (N);
6941
6942      --  In SPARK, ordering operators <, <=, >, >= are not defined for Boolean
6943      --  types or array types except String.
6944
6945      if Is_Boolean_Type (T) then
6946         Check_SPARK_05_Restriction
6947           ("comparison is not defined on Boolean type", N);
6948
6949      elsif Is_Array_Type (T)
6950        and then Base_Type (T) /= Standard_String
6951      then
6952         Check_SPARK_05_Restriction
6953           ("comparison is not defined on array types other than String", N);
6954      end if;
6955
6956      --  Check comparison on unordered enumeration
6957
6958      if Bad_Unordered_Enumeration_Reference (N, Etype (L)) then
6959         Error_Msg_Sloc := Sloc (Etype (L));
6960         Error_Msg_NE
6961           ("comparison on unordered enumeration type& declared#?U?",
6962            N, Etype (L));
6963      end if;
6964
6965      Analyze_Dimension (N);
6966
6967      --  Evaluate the relation (note we do this after the above check since
6968      --  this Eval call may change N to True/False. Skip this evaluation
6969      --  inside assertions, in order to keep assertions as written by users
6970      --  for tools that rely on these, e.g. GNATprove for loop invariants.
6971      --  Except evaluation is still performed even inside assertions for
6972      --  comparisons between values of universal type, which are useless
6973      --  for static analysis tools, and not supported even by GNATprove.
6974
6975      if In_Assertion_Expr = 0
6976        or else (Is_Universal_Numeric_Type (Etype (L))
6977                   and then
6978                 Is_Universal_Numeric_Type (Etype (R)))
6979      then
6980         Eval_Relational_Op (N);
6981      end if;
6982   end Resolve_Comparison_Op;
6983
6984   -----------------------------------------
6985   -- Resolve_Discrete_Subtype_Indication --
6986   -----------------------------------------
6987
6988   procedure Resolve_Discrete_Subtype_Indication
6989     (N   : Node_Id;
6990      Typ : Entity_Id)
6991   is
6992      R : Node_Id;
6993      S : Entity_Id;
6994
6995   begin
6996      Analyze (Subtype_Mark (N));
6997      S := Entity (Subtype_Mark (N));
6998
6999      if Nkind (Constraint (N)) /= N_Range_Constraint then
7000         Error_Msg_N ("expect range constraint for discrete type", N);
7001         Set_Etype (N, Any_Type);
7002
7003      else
7004         R := Range_Expression (Constraint (N));
7005
7006         if R = Error then
7007            return;
7008         end if;
7009
7010         Analyze (R);
7011
7012         if Base_Type (S) /= Base_Type (Typ) then
7013            Error_Msg_NE
7014              ("expect subtype of }", N, First_Subtype (Typ));
7015
7016            --  Rewrite the constraint as a range of Typ
7017            --  to allow compilation to proceed further.
7018
7019            Set_Etype (N, Typ);
7020            Rewrite (Low_Bound (R),
7021              Make_Attribute_Reference (Sloc (Low_Bound (R)),
7022                Prefix         => New_Occurrence_Of (Typ, Sloc (R)),
7023                Attribute_Name => Name_First));
7024            Rewrite (High_Bound (R),
7025              Make_Attribute_Reference (Sloc (High_Bound (R)),
7026                Prefix         => New_Occurrence_Of (Typ, Sloc (R)),
7027                Attribute_Name => Name_First));
7028
7029         else
7030            Resolve (R, Typ);
7031            Set_Etype (N, Etype (R));
7032
7033            --  Additionally, we must check that the bounds are compatible
7034            --  with the given subtype, which might be different from the
7035            --  type of the context.
7036
7037            Apply_Range_Check (R, S);
7038
7039            --  ??? If the above check statically detects a Constraint_Error
7040            --  it replaces the offending bound(s) of the range R with a
7041            --  Constraint_Error node. When the itype which uses these bounds
7042            --  is frozen the resulting call to Duplicate_Subexpr generates
7043            --  a new temporary for the bounds.
7044
7045            --  Unfortunately there are other itypes that are also made depend
7046            --  on these bounds, so when Duplicate_Subexpr is called they get
7047            --  a forward reference to the newly created temporaries and Gigi
7048            --  aborts on such forward references. This is probably sign of a
7049            --  more fundamental problem somewhere else in either the order of
7050            --  itype freezing or the way certain itypes are constructed.
7051
7052            --  To get around this problem we call Remove_Side_Effects right
7053            --  away if either bounds of R are a Constraint_Error.
7054
7055            declare
7056               L : constant Node_Id := Low_Bound (R);
7057               H : constant Node_Id := High_Bound (R);
7058
7059            begin
7060               if Nkind (L) = N_Raise_Constraint_Error then
7061                  Remove_Side_Effects (L);
7062               end if;
7063
7064               if Nkind (H) = N_Raise_Constraint_Error then
7065                  Remove_Side_Effects (H);
7066               end if;
7067            end;
7068
7069            Check_Unset_Reference (Low_Bound  (R));
7070            Check_Unset_Reference (High_Bound (R));
7071         end if;
7072      end if;
7073   end Resolve_Discrete_Subtype_Indication;
7074
7075   -------------------------
7076   -- Resolve_Entity_Name --
7077   -------------------------
7078
7079   --  Used to resolve identifiers and expanded names
7080
7081   procedure Resolve_Entity_Name (N : Node_Id; Typ : Entity_Id) is
7082      function Is_Assignment_Or_Object_Expression
7083        (Context : Node_Id;
7084         Expr    : Node_Id) return Boolean;
7085      --  Determine whether node Context denotes an assignment statement or an
7086      --  object declaration whose expression is node Expr.
7087
7088      ----------------------------------------
7089      -- Is_Assignment_Or_Object_Expression --
7090      ----------------------------------------
7091
7092      function Is_Assignment_Or_Object_Expression
7093        (Context : Node_Id;
7094         Expr    : Node_Id) return Boolean
7095      is
7096      begin
7097         if Nkind_In (Context, N_Assignment_Statement,
7098                               N_Object_Declaration)
7099           and then Expression (Context) = Expr
7100         then
7101            return True;
7102
7103         --  Check whether a construct that yields a name is the expression of
7104         --  an assignment statement or an object declaration.
7105
7106         elsif (Nkind_In (Context, N_Attribute_Reference,
7107                                   N_Explicit_Dereference,
7108                                   N_Indexed_Component,
7109                                   N_Selected_Component,
7110                                   N_Slice)
7111                  and then Prefix (Context) = Expr)
7112           or else
7113               (Nkind_In (Context, N_Type_Conversion,
7114                                   N_Unchecked_Type_Conversion)
7115                  and then Expression (Context) = Expr)
7116         then
7117            return
7118              Is_Assignment_Or_Object_Expression
7119                (Context => Parent (Context),
7120                 Expr    => Context);
7121
7122         --  Otherwise the context is not an assignment statement or an object
7123         --  declaration.
7124
7125         else
7126            return False;
7127         end if;
7128      end Is_Assignment_Or_Object_Expression;
7129
7130      --  Local variables
7131
7132      E   : constant Entity_Id := Entity (N);
7133      Par : Node_Id;
7134
7135   --  Start of processing for Resolve_Entity_Name
7136
7137   begin
7138      --  If garbage from errors, set to Any_Type and return
7139
7140      if No (E) and then Total_Errors_Detected /= 0 then
7141         Set_Etype (N, Any_Type);
7142         return;
7143      end if;
7144
7145      --  Replace named numbers by corresponding literals. Note that this is
7146      --  the one case where Resolve_Entity_Name must reset the Etype, since
7147      --  it is currently marked as universal.
7148
7149      if Ekind (E) = E_Named_Integer then
7150         Set_Etype (N, Typ);
7151         Eval_Named_Integer (N);
7152
7153      elsif Ekind (E) = E_Named_Real then
7154         Set_Etype (N, Typ);
7155         Eval_Named_Real (N);
7156
7157      --  For enumeration literals, we need to make sure that a proper style
7158      --  check is done, since such literals are overloaded, and thus we did
7159      --  not do a style check during the first phase of analysis.
7160
7161      elsif Ekind (E) = E_Enumeration_Literal then
7162         Set_Entity_With_Checks (N, E);
7163         Eval_Entity_Name (N);
7164
7165      --  Case of (sub)type name appearing in a context where an expression
7166      --  is expected. This is legal if occurrence is a current instance.
7167      --  See RM 8.6 (17/3).
7168
7169      elsif Is_Type (E) then
7170         if Is_Current_Instance (N) then
7171            null;
7172
7173         --  Any other use is an error
7174
7175         else
7176            Error_Msg_N
7177              ("invalid use of subtype mark in expression or call", N);
7178         end if;
7179
7180      --  Check discriminant use if entity is discriminant in current scope,
7181      --  i.e. discriminant of record or concurrent type currently being
7182      --  analyzed. Uses in corresponding body are unrestricted.
7183
7184      elsif Ekind (E) = E_Discriminant
7185        and then Scope (E) = Current_Scope
7186        and then not Has_Completion (Current_Scope)
7187      then
7188         Check_Discriminant_Use (N);
7189
7190      --  A parameterless generic function cannot appear in a context that
7191      --  requires resolution.
7192
7193      elsif Ekind (E) = E_Generic_Function then
7194         Error_Msg_N ("illegal use of generic function", N);
7195
7196      --  In Ada 83 an OUT parameter cannot be read, but attributes of
7197      --  array types (i.e. bounds and length) are legal.
7198
7199      elsif Ekind (E) = E_Out_Parameter
7200        and then (Nkind (Parent (N)) /= N_Attribute_Reference
7201                   or else Is_Scalar_Type (Etype (E)))
7202
7203        and then (Nkind (Parent (N)) in N_Op
7204                   or else Nkind (Parent (N)) = N_Explicit_Dereference
7205                   or else Is_Assignment_Or_Object_Expression
7206                             (Context => Parent (N),
7207                              Expr    => N))
7208      then
7209         if Ada_Version = Ada_83 then
7210            Error_Msg_N ("(Ada 83) illegal reading of out parameter", N);
7211         end if;
7212
7213      --  In all other cases, just do the possible static evaluation
7214
7215      else
7216         --  A deferred constant that appears in an expression must have a
7217         --  completion, unless it has been removed by in-place expansion of
7218         --  an aggregate. A constant that is a renaming does not need
7219         --  initialization.
7220
7221         if Ekind (E) = E_Constant
7222           and then Comes_From_Source (E)
7223           and then No (Constant_Value (E))
7224           and then Is_Frozen (Etype (E))
7225           and then not In_Spec_Expression
7226           and then not Is_Imported (E)
7227           and then Nkind (Parent (E)) /= N_Object_Renaming_Declaration
7228         then
7229            if No_Initialization (Parent (E))
7230              or else (Present (Full_View (E))
7231                        and then No_Initialization (Parent (Full_View (E))))
7232            then
7233               null;
7234            else
7235               Error_Msg_N
7236                 ("deferred constant is frozen before completion", N);
7237            end if;
7238         end if;
7239
7240         Eval_Entity_Name (N);
7241      end if;
7242
7243      Par := Parent (N);
7244
7245      --  When the entity appears in a parameter association, retrieve the
7246      --  related subprogram call.
7247
7248      if Nkind (Par) = N_Parameter_Association then
7249         Par := Parent (Par);
7250      end if;
7251
7252      if Comes_From_Source (N) then
7253
7254         --  The following checks are only relevant when SPARK_Mode is on as
7255         --  they are not standard Ada legality rules.
7256
7257         if SPARK_Mode = On then
7258
7259            --  An effectively volatile object subject to enabled properties
7260            --  Async_Writers or Effective_Reads must appear in non-interfering
7261            --  context (SPARK RM 7.1.3(12)).
7262
7263            if Is_Object (E)
7264              and then Is_Effectively_Volatile (E)
7265              and then (Async_Writers_Enabled (E)
7266                         or else Effective_Reads_Enabled (E))
7267              and then not Is_OK_Volatile_Context (Par, N)
7268            then
7269               SPARK_Msg_N
7270                 ("volatile object cannot appear in this context "
7271                  & "(SPARK RM 7.1.3(12))", N);
7272            end if;
7273
7274            --  Check for possible elaboration issues with respect to reads of
7275            --  variables. The act of renaming the variable is not considered a
7276            --  read as it simply establishes an alias.
7277
7278            if Legacy_Elaboration_Checks
7279              and then Ekind (E) = E_Variable
7280              and then Dynamic_Elaboration_Checks
7281              and then Nkind (Par) /= N_Object_Renaming_Declaration
7282            then
7283               Check_Elab_Call (N);
7284            end if;
7285         end if;
7286
7287         --  The variable may eventually become a constituent of a single
7288         --  protected/task type. Record the reference now and verify its
7289         --  legality when analyzing the contract of the variable
7290         --  (SPARK RM 9.3).
7291
7292         if Ekind (E) = E_Variable then
7293            Record_Possible_Part_Of_Reference (E, N);
7294         end if;
7295
7296         --  A Ghost entity must appear in a specific context
7297
7298         if Is_Ghost_Entity (E) then
7299            Check_Ghost_Context (E, N);
7300         end if;
7301      end if;
7302
7303      Mark_Use_Clauses (E);
7304   end Resolve_Entity_Name;
7305
7306   -------------------
7307   -- Resolve_Entry --
7308   -------------------
7309
7310   procedure Resolve_Entry (Entry_Name : Node_Id) is
7311      Loc    : constant Source_Ptr := Sloc (Entry_Name);
7312      Nam    : Entity_Id;
7313      New_N  : Node_Id;
7314      S      : Entity_Id;
7315      Tsk    : Entity_Id;
7316      E_Name : Node_Id;
7317      Index  : Node_Id;
7318
7319      function Actual_Index_Type (E : Entity_Id) return Entity_Id;
7320      --  If the bounds of the entry family being called depend on task
7321      --  discriminants, build a new index subtype where a discriminant is
7322      --  replaced with the value of the discriminant of the target task.
7323      --  The target task is the prefix of the entry name in the call.
7324
7325      -----------------------
7326      -- Actual_Index_Type --
7327      -----------------------
7328
7329      function Actual_Index_Type (E : Entity_Id) return Entity_Id is
7330         Typ   : constant Entity_Id := Entry_Index_Type (E);
7331         Tsk   : constant Entity_Id := Scope (E);
7332         Lo    : constant Node_Id   := Type_Low_Bound  (Typ);
7333         Hi    : constant Node_Id   := Type_High_Bound (Typ);
7334         New_T : Entity_Id;
7335
7336         function Actual_Discriminant_Ref (Bound : Node_Id) return Node_Id;
7337         --  If the bound is given by a discriminant, replace with a reference
7338         --  to the discriminant of the same name in the target task. If the
7339         --  entry name is the target of a requeue statement and the entry is
7340         --  in the current protected object, the bound to be used is the
7341         --  discriminal of the object (see Apply_Range_Checks for details of
7342         --  the transformation).
7343
7344         -----------------------------
7345         -- Actual_Discriminant_Ref --
7346         -----------------------------
7347
7348         function Actual_Discriminant_Ref (Bound : Node_Id) return Node_Id is
7349            Typ : constant Entity_Id := Etype (Bound);
7350            Ref : Node_Id;
7351
7352         begin
7353            Remove_Side_Effects (Bound);
7354
7355            if not Is_Entity_Name (Bound)
7356              or else Ekind (Entity (Bound)) /= E_Discriminant
7357            then
7358               return Bound;
7359
7360            elsif Is_Protected_Type (Tsk)
7361              and then In_Open_Scopes (Tsk)
7362              and then Nkind (Parent (Entry_Name)) = N_Requeue_Statement
7363            then
7364               --  Note: here Bound denotes a discriminant of the corresponding
7365               --  record type tskV, whose discriminal is a formal of the
7366               --  init-proc tskVIP. What we want is the body discriminal,
7367               --  which is associated to the discriminant of the original
7368               --  concurrent type tsk.
7369
7370               return New_Occurrence_Of
7371                        (Find_Body_Discriminal (Entity (Bound)), Loc);
7372
7373            else
7374               Ref :=
7375                 Make_Selected_Component (Loc,
7376                   Prefix => New_Copy_Tree (Prefix (Prefix (Entry_Name))),
7377                   Selector_Name => New_Occurrence_Of (Entity (Bound), Loc));
7378               Analyze (Ref);
7379               Resolve (Ref, Typ);
7380               return Ref;
7381            end if;
7382         end Actual_Discriminant_Ref;
7383
7384      --  Start of processing for Actual_Index_Type
7385
7386      begin
7387         if not Has_Discriminants (Tsk)
7388           or else (not Is_Entity_Name (Lo) and then not Is_Entity_Name (Hi))
7389         then
7390            return Entry_Index_Type (E);
7391
7392         else
7393            New_T := Create_Itype (Ekind (Typ), Parent (Entry_Name));
7394            Set_Etype        (New_T, Base_Type (Typ));
7395            Set_Size_Info    (New_T, Typ);
7396            Set_RM_Size      (New_T, RM_Size (Typ));
7397            Set_Scalar_Range (New_T,
7398              Make_Range (Sloc (Entry_Name),
7399                Low_Bound  => Actual_Discriminant_Ref (Lo),
7400                High_Bound => Actual_Discriminant_Ref (Hi)));
7401
7402            return New_T;
7403         end if;
7404      end Actual_Index_Type;
7405
7406   --  Start of processing for Resolve_Entry
7407
7408   begin
7409      --  Find name of entry being called, and resolve prefix of name with its
7410      --  own type. The prefix can be overloaded, and the name and signature of
7411      --  the entry must be taken into account.
7412
7413      if Nkind (Entry_Name) = N_Indexed_Component then
7414
7415         --  Case of dealing with entry family within the current tasks
7416
7417         E_Name := Prefix (Entry_Name);
7418
7419      else
7420         E_Name := Entry_Name;
7421      end if;
7422
7423      if Is_Entity_Name (E_Name) then
7424
7425         --  Entry call to an entry (or entry family) in the current task. This
7426         --  is legal even though the task will deadlock. Rewrite as call to
7427         --  current task.
7428
7429         --  This can also be a call to an entry in an enclosing task. If this
7430         --  is a single task, we have to retrieve its name, because the scope
7431         --  of the entry is the task type, not the object. If the enclosing
7432         --  task is a task type, the identity of the task is given by its own
7433         --  self variable.
7434
7435         --  Finally this can be a requeue on an entry of the same task or
7436         --  protected object.
7437
7438         S := Scope (Entity (E_Name));
7439
7440         for J in reverse 0 .. Scope_Stack.Last loop
7441            if Is_Task_Type (Scope_Stack.Table (J).Entity)
7442              and then not Comes_From_Source (S)
7443            then
7444               --  S is an enclosing task or protected object. The concurrent
7445               --  declaration has been converted into a type declaration, and
7446               --  the object itself has an object declaration that follows
7447               --  the type in the same declarative part.
7448
7449               Tsk := Next_Entity (S);
7450               while Etype (Tsk) /= S loop
7451                  Next_Entity (Tsk);
7452               end loop;
7453
7454               S := Tsk;
7455               exit;
7456
7457            elsif S = Scope_Stack.Table (J).Entity then
7458
7459               --  Call to current task. Will be transformed into call to Self
7460
7461               exit;
7462
7463            end if;
7464         end loop;
7465
7466         New_N :=
7467           Make_Selected_Component (Loc,
7468             Prefix => New_Occurrence_Of (S, Loc),
7469             Selector_Name =>
7470               New_Occurrence_Of (Entity (E_Name), Loc));
7471         Rewrite (E_Name, New_N);
7472         Analyze (E_Name);
7473
7474      elsif Nkind (Entry_Name) = N_Selected_Component
7475        and then Is_Overloaded (Prefix (Entry_Name))
7476      then
7477         --  Use the entry name (which must be unique at this point) to find
7478         --  the prefix that returns the corresponding task/protected type.
7479
7480         declare
7481            Pref : constant Node_Id := Prefix (Entry_Name);
7482            Ent  : constant Entity_Id := Entity (Selector_Name (Entry_Name));
7483            I    : Interp_Index;
7484            It   : Interp;
7485
7486         begin
7487            Get_First_Interp (Pref, I, It);
7488            while Present (It.Typ) loop
7489               if Scope (Ent) = It.Typ then
7490                  Set_Etype (Pref, It.Typ);
7491                  exit;
7492               end if;
7493
7494               Get_Next_Interp (I, It);
7495            end loop;
7496         end;
7497      end if;
7498
7499      if Nkind (Entry_Name) = N_Selected_Component then
7500         Resolve (Prefix (Entry_Name));
7501
7502      else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
7503         Nam := Entity (Selector_Name (Prefix (Entry_Name)));
7504         Resolve (Prefix (Prefix (Entry_Name)));
7505         Index := First (Expressions (Entry_Name));
7506         Resolve (Index, Entry_Index_Type (Nam));
7507
7508         --  Generate a reference for the index when it denotes an entity
7509
7510         if Is_Entity_Name (Index) then
7511            Generate_Reference (Entity (Index), Nam);
7512         end if;
7513
7514         --  Up to this point the expression could have been the actual in a
7515         --  simple entry call, and be given by a named association.
7516
7517         if Nkind (Index) = N_Parameter_Association then
7518            Error_Msg_N ("expect expression for entry index", Index);
7519         else
7520            Apply_Range_Check (Index, Actual_Index_Type (Nam));
7521         end if;
7522      end if;
7523   end Resolve_Entry;
7524
7525   ------------------------
7526   -- Resolve_Entry_Call --
7527   ------------------------
7528
7529   procedure Resolve_Entry_Call (N : Node_Id; Typ : Entity_Id) is
7530      Entry_Name : constant Node_Id    := Name (N);
7531      Loc        : constant Source_Ptr := Sloc (Entry_Name);
7532
7533      Nam      : Entity_Id;
7534      Norm_OK  : Boolean;
7535      Obj      : Node_Id;
7536      Was_Over : Boolean;
7537
7538   begin
7539      --  We kill all checks here, because it does not seem worth the effort to
7540      --  do anything better, an entry call is a big operation.
7541
7542      Kill_All_Checks;
7543
7544      --  Processing of the name is similar for entry calls and protected
7545      --  operation calls. Once the entity is determined, we can complete
7546      --  the resolution of the actuals.
7547
7548      --  The selector may be overloaded, in the case of a protected object
7549      --  with overloaded functions. The type of the context is used for
7550      --  resolution.
7551
7552      if Nkind (Entry_Name) = N_Selected_Component
7553        and then Is_Overloaded (Selector_Name (Entry_Name))
7554        and then Typ /= Standard_Void_Type
7555      then
7556         declare
7557            I  : Interp_Index;
7558            It : Interp;
7559
7560         begin
7561            Get_First_Interp (Selector_Name (Entry_Name), I, It);
7562            while Present (It.Typ) loop
7563               if Covers (Typ, It.Typ) then
7564                  Set_Entity (Selector_Name (Entry_Name), It.Nam);
7565                  Set_Etype  (Entry_Name, It.Typ);
7566
7567                  Generate_Reference (It.Typ, N, ' ');
7568               end if;
7569
7570               Get_Next_Interp (I, It);
7571            end loop;
7572         end;
7573      end if;
7574
7575      Resolve_Entry (Entry_Name);
7576
7577      if Nkind (Entry_Name) = N_Selected_Component then
7578
7579         --  Simple entry or protected operation call
7580
7581         Nam := Entity (Selector_Name (Entry_Name));
7582         Obj := Prefix (Entry_Name);
7583
7584         if Is_Subprogram (Nam) then
7585            Check_For_Eliminated_Subprogram (Entry_Name, Nam);
7586         end if;
7587
7588         Was_Over := Is_Overloaded (Selector_Name (Entry_Name));
7589
7590      else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
7591
7592         --  Call to member of entry family
7593
7594         Nam := Entity (Selector_Name (Prefix (Entry_Name)));
7595         Obj := Prefix (Prefix (Entry_Name));
7596         Was_Over := Is_Overloaded (Selector_Name (Prefix (Entry_Name)));
7597      end if;
7598
7599      --  We cannot in general check the maximum depth of protected entry calls
7600      --  at compile time. But we can tell that any protected entry call at all
7601      --  violates a specified nesting depth of zero.
7602
7603      if Is_Protected_Type (Scope (Nam)) then
7604         Check_Restriction (Max_Entry_Queue_Length, N);
7605      end if;
7606
7607      --  Use context type to disambiguate a protected function that can be
7608      --  called without actuals and that returns an array type, and where the
7609      --  argument list may be an indexing of the returned value.
7610
7611      if Ekind (Nam) = E_Function
7612        and then Needs_No_Actuals (Nam)
7613        and then Present (Parameter_Associations (N))
7614        and then
7615          ((Is_Array_Type (Etype (Nam))
7616             and then Covers (Typ, Component_Type (Etype (Nam))))
7617
7618            or else (Is_Access_Type (Etype (Nam))
7619                      and then Is_Array_Type (Designated_Type (Etype (Nam)))
7620                      and then
7621                        Covers
7622                         (Typ,
7623                          Component_Type (Designated_Type (Etype (Nam))))))
7624      then
7625         declare
7626            Index_Node : Node_Id;
7627
7628         begin
7629            Index_Node :=
7630              Make_Indexed_Component (Loc,
7631                Prefix =>
7632                  Make_Function_Call (Loc, Name => Relocate_Node (Entry_Name)),
7633                Expressions => Parameter_Associations (N));
7634
7635            --  Since we are correcting a node classification error made by the
7636            --  parser, we call Replace rather than Rewrite.
7637
7638            Replace (N, Index_Node);
7639            Set_Etype (Prefix (N), Etype (Nam));
7640            Set_Etype (N, Typ);
7641            Resolve_Indexed_Component (N, Typ);
7642            return;
7643         end;
7644      end if;
7645
7646      if Ekind_In (Nam, E_Entry, E_Entry_Family)
7647        and then Present (Contract_Wrapper (Nam))
7648        and then Current_Scope /= Contract_Wrapper (Nam)
7649      then
7650         --  Note the entity being called before rewriting the call, so that
7651         --  it appears used at this point.
7652
7653         Generate_Reference (Nam, Entry_Name, 'r');
7654
7655         --  Rewrite as call to the precondition wrapper, adding the task
7656         --  object to the list of actuals. If the call is to a member of an
7657         --  entry family, include the index as well.
7658
7659         declare
7660            New_Call    : Node_Id;
7661            New_Actuals : List_Id;
7662
7663         begin
7664            New_Actuals := New_List (Obj);
7665
7666            if Nkind (Entry_Name) = N_Indexed_Component then
7667               Append_To (New_Actuals,
7668                 New_Copy_Tree (First (Expressions (Entry_Name))));
7669            end if;
7670
7671            Append_List (Parameter_Associations (N), New_Actuals);
7672            New_Call :=
7673              Make_Procedure_Call_Statement (Loc,
7674                Name                   =>
7675                  New_Occurrence_Of (Contract_Wrapper (Nam), Loc),
7676                Parameter_Associations => New_Actuals);
7677            Rewrite (N, New_Call);
7678
7679            --  Preanalyze and resolve new call. Current procedure is called
7680            --  from Resolve_Call, after which expansion will take place.
7681
7682            Preanalyze_And_Resolve (N);
7683            return;
7684         end;
7685      end if;
7686
7687      --  The operation name may have been overloaded. Order the actuals
7688      --  according to the formals of the resolved entity, and set the return
7689      --  type to that of the operation.
7690
7691      if Was_Over then
7692         Normalize_Actuals (N, Nam, False, Norm_OK);
7693         pragma Assert (Norm_OK);
7694         Set_Etype (N, Etype (Nam));
7695
7696         --  Reset the Is_Overloaded flag, since resolution is now completed
7697
7698         --  Simple entry call
7699
7700         if Nkind (Entry_Name) = N_Selected_Component then
7701            Set_Is_Overloaded (Selector_Name (Entry_Name), False);
7702
7703         --  Call to a member of an entry family
7704
7705         else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
7706            Set_Is_Overloaded (Selector_Name (Prefix (Entry_Name)), False);
7707         end if;
7708      end if;
7709
7710      Resolve_Actuals (N, Nam);
7711      Check_Internal_Protected_Use (N, Nam);
7712
7713      --  Create a call reference to the entry
7714
7715      Generate_Reference (Nam, Entry_Name, 's');
7716
7717      if Ekind_In (Nam, E_Entry, E_Entry_Family) then
7718         Check_Potentially_Blocking_Operation (N);
7719      end if;
7720
7721      --  Verify that a procedure call cannot masquerade as an entry
7722      --  call where an entry call is expected.
7723
7724      if Ekind (Nam) = E_Procedure then
7725         if Nkind (Parent (N)) = N_Entry_Call_Alternative
7726           and then N = Entry_Call_Statement (Parent (N))
7727         then
7728            Error_Msg_N ("entry call required in select statement", N);
7729
7730         elsif Nkind (Parent (N)) = N_Triggering_Alternative
7731           and then N = Triggering_Statement (Parent (N))
7732         then
7733            Error_Msg_N ("triggering statement cannot be procedure call", N);
7734
7735         elsif Ekind (Scope (Nam)) = E_Task_Type
7736           and then not In_Open_Scopes (Scope (Nam))
7737         then
7738            Error_Msg_N ("task has no entry with this name", Entry_Name);
7739         end if;
7740      end if;
7741
7742      --  After resolution, entry calls and protected procedure calls are
7743      --  changed into entry calls, for expansion. The structure of the node
7744      --  does not change, so it can safely be done in place. Protected
7745      --  function calls must keep their structure because they are
7746      --  subexpressions.
7747
7748      if Ekind (Nam) /= E_Function then
7749
7750         --  A protected operation that is not a function may modify the
7751         --  corresponding object, and cannot apply to a constant. If this
7752         --  is an internal call, the prefix is the type itself.
7753
7754         if Is_Protected_Type (Scope (Nam))
7755           and then not Is_Variable (Obj)
7756           and then (not Is_Entity_Name (Obj)
7757                       or else not Is_Type (Entity (Obj)))
7758         then
7759            Error_Msg_N
7760              ("prefix of protected procedure or entry call must be variable",
7761               Entry_Name);
7762         end if;
7763
7764         declare
7765            Entry_Call : Node_Id;
7766
7767         begin
7768            Entry_Call :=
7769              Make_Entry_Call_Statement (Loc,
7770                Name                   => Entry_Name,
7771                Parameter_Associations => Parameter_Associations (N));
7772
7773            --  Inherit relevant attributes from the original call
7774
7775            Set_First_Named_Actual
7776              (Entry_Call, First_Named_Actual (N));
7777
7778            Set_Is_Elaboration_Checks_OK_Node
7779              (Entry_Call, Is_Elaboration_Checks_OK_Node (N));
7780
7781            Set_Is_Elaboration_Warnings_OK_Node
7782              (Entry_Call, Is_Elaboration_Warnings_OK_Node (N));
7783
7784            Set_Is_SPARK_Mode_On_Node
7785              (Entry_Call, Is_SPARK_Mode_On_Node (N));
7786
7787            Rewrite (N, Entry_Call);
7788            Set_Analyzed (N, True);
7789         end;
7790
7791      --  Protected functions can return on the secondary stack, in which case
7792      --  we must trigger the transient scope mechanism.
7793
7794      elsif Expander_Active
7795        and then Requires_Transient_Scope (Etype (Nam))
7796      then
7797         Establish_Transient_Scope (N, Manage_Sec_Stack => True);
7798      end if;
7799   end Resolve_Entry_Call;
7800
7801   -------------------------
7802   -- Resolve_Equality_Op --
7803   -------------------------
7804
7805   --  Both arguments must have the same type, and the boolean context does
7806   --  not participate in the resolution. The first pass verifies that the
7807   --  interpretation is not ambiguous, and the type of the left argument is
7808   --  correctly set, or is Any_Type in case of ambiguity. If both arguments
7809   --  are strings or aggregates, allocators, or Null, they are ambiguous even
7810   --  though they carry a single (universal) type. Diagnose this case here.
7811
7812   procedure Resolve_Equality_Op (N : Node_Id; Typ : Entity_Id) is
7813      L : constant Node_Id   := Left_Opnd (N);
7814      R : constant Node_Id   := Right_Opnd (N);
7815      T : Entity_Id := Find_Unique_Type (L, R);
7816
7817      procedure Check_If_Expression (Cond : Node_Id);
7818      --  The resolution rule for if expressions requires that each such must
7819      --  have a unique type. This means that if several dependent expressions
7820      --  are of a non-null anonymous access type, and the context does not
7821      --  impose an expected type (as can be the case in an equality operation)
7822      --  the expression must be rejected.
7823
7824      procedure Explain_Redundancy (N : Node_Id);
7825      --  Attempt to explain the nature of a redundant comparison with True. If
7826      --  the expression N is too complex, this routine issues a general error
7827      --  message.
7828
7829      function Find_Unique_Access_Type return Entity_Id;
7830      --  In the case of allocators and access attributes, the context must
7831      --  provide an indication of the specific access type to be used. If
7832      --  one operand is of such a "generic" access type, check whether there
7833      --  is a specific visible access type that has the same designated type.
7834      --  This is semantically dubious, and of no interest to any real code,
7835      --  but c48008a makes it all worthwhile.
7836
7837      -------------------------
7838      -- Check_If_Expression --
7839      -------------------------
7840
7841      procedure Check_If_Expression (Cond : Node_Id) is
7842         Then_Expr : Node_Id;
7843         Else_Expr : Node_Id;
7844
7845      begin
7846         if Nkind (Cond) = N_If_Expression then
7847            Then_Expr := Next (First (Expressions (Cond)));
7848            Else_Expr := Next (Then_Expr);
7849
7850            if Nkind (Then_Expr) /= N_Null
7851              and then Nkind (Else_Expr) /= N_Null
7852            then
7853               Error_Msg_N ("cannot determine type of if expression", Cond);
7854            end if;
7855         end if;
7856      end Check_If_Expression;
7857
7858      ------------------------
7859      -- Explain_Redundancy --
7860      ------------------------
7861
7862      procedure Explain_Redundancy (N : Node_Id) is
7863         Error  : Name_Id;
7864         Val    : Node_Id;
7865         Val_Id : Entity_Id;
7866
7867      begin
7868         Val := N;
7869
7870         --  Strip the operand down to an entity
7871
7872         loop
7873            if Nkind (Val) = N_Selected_Component then
7874               Val := Selector_Name (Val);
7875            else
7876               exit;
7877            end if;
7878         end loop;
7879
7880         --  The construct denotes an entity
7881
7882         if Is_Entity_Name (Val) and then Present (Entity (Val)) then
7883            Val_Id := Entity (Val);
7884
7885            --  Do not generate an error message when the comparison is done
7886            --  against the enumeration literal Standard.True.
7887
7888            if Ekind (Val_Id) /= E_Enumeration_Literal then
7889
7890               --  Build a customized error message
7891
7892               Name_Len := 0;
7893               Add_Str_To_Name_Buffer ("?r?");
7894
7895               if Ekind (Val_Id) = E_Component then
7896                  Add_Str_To_Name_Buffer ("component ");
7897
7898               elsif Ekind (Val_Id) = E_Constant then
7899                  Add_Str_To_Name_Buffer ("constant ");
7900
7901               elsif Ekind (Val_Id) = E_Discriminant then
7902                  Add_Str_To_Name_Buffer ("discriminant ");
7903
7904               elsif Is_Formal (Val_Id) then
7905                  Add_Str_To_Name_Buffer ("parameter ");
7906
7907               elsif Ekind (Val_Id) = E_Variable then
7908                  Add_Str_To_Name_Buffer ("variable ");
7909               end if;
7910
7911               Add_Str_To_Name_Buffer ("& is always True!");
7912               Error := Name_Find;
7913
7914               Error_Msg_NE (Get_Name_String (Error), Val, Val_Id);
7915            end if;
7916
7917         --  The construct is too complex to disect, issue a general message
7918
7919         else
7920            Error_Msg_N ("?r?expression is always True!", Val);
7921         end if;
7922      end Explain_Redundancy;
7923
7924      -----------------------------
7925      -- Find_Unique_Access_Type --
7926      -----------------------------
7927
7928      function Find_Unique_Access_Type return Entity_Id is
7929         Acc : Entity_Id;
7930         E   : Entity_Id;
7931         S   : Entity_Id;
7932
7933      begin
7934         if Ekind_In (Etype (R), E_Allocator_Type,
7935                                 E_Access_Attribute_Type)
7936         then
7937            Acc := Designated_Type (Etype (R));
7938
7939         elsif Ekind_In (Etype (L), E_Allocator_Type,
7940                                    E_Access_Attribute_Type)
7941         then
7942            Acc := Designated_Type (Etype (L));
7943         else
7944            return Empty;
7945         end if;
7946
7947         S := Current_Scope;
7948         while S /= Standard_Standard loop
7949            E := First_Entity (S);
7950            while Present (E) loop
7951               if Is_Type (E)
7952                 and then Is_Access_Type (E)
7953                 and then Ekind (E) /= E_Allocator_Type
7954                 and then Designated_Type (E) = Base_Type (Acc)
7955               then
7956                  return E;
7957               end if;
7958
7959               Next_Entity (E);
7960            end loop;
7961
7962            S := Scope (S);
7963         end loop;
7964
7965         return Empty;
7966      end Find_Unique_Access_Type;
7967
7968   --  Start of processing for Resolve_Equality_Op
7969
7970   begin
7971      Set_Etype (N, Base_Type (Typ));
7972      Generate_Reference (T, N, ' ');
7973
7974      if T = Any_Fixed then
7975         T := Unique_Fixed_Point_Type (L);
7976      end if;
7977
7978      if T /= Any_Type then
7979         if T = Any_String    or else
7980            T = Any_Composite or else
7981            T = Any_Character
7982         then
7983            if T = Any_Character then
7984               Ambiguous_Character (L);
7985            else
7986               Error_Msg_N ("ambiguous operands for equality", N);
7987            end if;
7988
7989            Set_Etype (N, Any_Type);
7990            return;
7991
7992         elsif T = Any_Access
7993           or else Ekind_In (T, E_Allocator_Type, E_Access_Attribute_Type)
7994         then
7995            T := Find_Unique_Access_Type;
7996
7997            if No (T) then
7998               Error_Msg_N ("ambiguous operands for equality", N);
7999               Set_Etype (N, Any_Type);
8000               return;
8001            end if;
8002
8003         --  If expressions must have a single type, and if the context does
8004         --  not impose one the dependent expressions cannot be anonymous
8005         --  access types.
8006
8007         --  Why no similar processing for case expressions???
8008
8009         elsif Ada_Version >= Ada_2012
8010           and then Ekind_In (Etype (L), E_Anonymous_Access_Type,
8011                                         E_Anonymous_Access_Subprogram_Type)
8012           and then Ekind_In (Etype (R), E_Anonymous_Access_Type,
8013                                         E_Anonymous_Access_Subprogram_Type)
8014         then
8015            Check_If_Expression (L);
8016            Check_If_Expression (R);
8017         end if;
8018
8019         Resolve (L, T);
8020         Resolve (R, T);
8021
8022         --  In SPARK, equality operators = and /= for array types other than
8023         --  String are only defined when, for each index position, the
8024         --  operands have equal static bounds.
8025
8026         if Is_Array_Type (T) then
8027
8028            --  Protect call to Matching_Static_Array_Bounds to avoid costly
8029            --  operation if not needed.
8030
8031            if Restriction_Check_Required (SPARK_05)
8032              and then Base_Type (T) /= Standard_String
8033              and then Base_Type (Etype (L)) = Base_Type (Etype (R))
8034              and then Etype (L) /= Any_Composite  --  or else L in error
8035              and then Etype (R) /= Any_Composite  --  or else R in error
8036              and then not Matching_Static_Array_Bounds (Etype (L), Etype (R))
8037            then
8038               Check_SPARK_05_Restriction
8039                 ("array types should have matching static bounds", N);
8040            end if;
8041         end if;
8042
8043         --  If the unique type is a class-wide type then it will be expanded
8044         --  into a dispatching call to the predefined primitive. Therefore we
8045         --  check here for potential violation of such restriction.
8046
8047         if Is_Class_Wide_Type (T) then
8048            Check_Restriction (No_Dispatching_Calls, N);
8049         end if;
8050
8051         --  Only warn for redundant equality comparison to True for objects
8052         --  (e.g. "X = True") and operations (e.g. "(X < Y) = True"). For
8053         --  other expressions, it may be a matter of preference to write
8054         --  "Expr = True" or "Expr".
8055
8056         if Warn_On_Redundant_Constructs
8057           and then Comes_From_Source (N)
8058           and then Comes_From_Source (R)
8059           and then Is_Entity_Name (R)
8060           and then Entity (R) = Standard_True
8061           and then
8062             ((Is_Entity_Name (L) and then Is_Object (Entity (L)))
8063                 or else
8064               Nkind (L) in N_Op)
8065         then
8066            Error_Msg_N -- CODEFIX
8067              ("?r?comparison with True is redundant!", N);
8068            Explain_Redundancy (Original_Node (R));
8069         end if;
8070
8071         Check_Unset_Reference (L);
8072         Check_Unset_Reference (R);
8073         Generate_Operator_Reference (N, T);
8074         Check_Low_Bound_Tested (N);
8075
8076         --  If this is an inequality, it may be the implicit inequality
8077         --  created for a user-defined operation, in which case the corres-
8078         --  ponding equality operation is not intrinsic, and the operation
8079         --  cannot be constant-folded. Else fold.
8080
8081         if Nkind (N) = N_Op_Eq
8082           or else Comes_From_Source (Entity (N))
8083           or else Ekind (Entity (N)) = E_Operator
8084           or else Is_Intrinsic_Subprogram
8085                     (Corresponding_Equality (Entity (N)))
8086         then
8087            Analyze_Dimension (N);
8088            Eval_Relational_Op (N);
8089
8090         elsif Nkind (N) = N_Op_Ne
8091           and then Is_Abstract_Subprogram (Entity (N))
8092         then
8093            Error_Msg_NE ("cannot call abstract subprogram &!", N, Entity (N));
8094         end if;
8095
8096         --  Ada 2005: If one operand is an anonymous access type, convert the
8097         --  other operand to it, to ensure that the underlying types match in
8098         --  the back-end. Same for access_to_subprogram, and the conversion
8099         --  verifies that the types are subtype conformant.
8100
8101         --  We apply the same conversion in the case one of the operands is a
8102         --  private subtype of the type of the other.
8103
8104         --  Why the Expander_Active test here ???
8105
8106         if Expander_Active
8107           and then
8108             (Ekind_In (T, E_Anonymous_Access_Type,
8109                           E_Anonymous_Access_Subprogram_Type)
8110               or else Is_Private_Type (T))
8111         then
8112            if Etype (L) /= T then
8113               Rewrite (L,
8114                 Make_Unchecked_Type_Conversion (Sloc (L),
8115                   Subtype_Mark => New_Occurrence_Of (T, Sloc (L)),
8116                   Expression   => Relocate_Node (L)));
8117               Analyze_And_Resolve (L, T);
8118            end if;
8119
8120            if (Etype (R)) /= T then
8121               Rewrite (R,
8122                  Make_Unchecked_Type_Conversion (Sloc (R),
8123                    Subtype_Mark => New_Occurrence_Of (Etype (L), Sloc (R)),
8124                    Expression   => Relocate_Node (R)));
8125               Analyze_And_Resolve (R, T);
8126            end if;
8127         end if;
8128      end if;
8129   end Resolve_Equality_Op;
8130
8131   ----------------------------------
8132   -- Resolve_Explicit_Dereference --
8133   ----------------------------------
8134
8135   procedure Resolve_Explicit_Dereference (N : Node_Id; Typ : Entity_Id) is
8136      Loc   : constant Source_Ptr := Sloc (N);
8137      New_N : Node_Id;
8138      P     : constant Node_Id := Prefix (N);
8139
8140      P_Typ : Entity_Id;
8141      --  The candidate prefix type, if overloaded
8142
8143      I     : Interp_Index;
8144      It    : Interp;
8145
8146   begin
8147      Check_Fully_Declared_Prefix (Typ, P);
8148      P_Typ := Empty;
8149
8150      --  A useful optimization:  check whether the dereference denotes an
8151      --  element of a container, and if so rewrite it as a call to the
8152      --  corresponding Element function.
8153
8154      --  Disabled for now, on advice of ARG. A more restricted form of the
8155      --  predicate might be acceptable ???
8156
8157      --  if Is_Container_Element (N) then
8158      --     return;
8159      --  end if;
8160
8161      if Is_Overloaded (P) then
8162
8163         --  Use the context type to select the prefix that has the correct
8164         --  designated type. Keep the first match, which will be the inner-
8165         --  most.
8166
8167         Get_First_Interp (P, I, It);
8168
8169         while Present (It.Typ) loop
8170            if Is_Access_Type (It.Typ)
8171              and then Covers (Typ, Designated_Type (It.Typ))
8172            then
8173               if No (P_Typ) then
8174                  P_Typ := It.Typ;
8175               end if;
8176
8177            --  Remove access types that do not match, but preserve access
8178            --  to subprogram interpretations, in case a further dereference
8179            --  is needed (see below).
8180
8181            elsif Ekind (It.Typ) /= E_Access_Subprogram_Type then
8182               Remove_Interp (I);
8183            end if;
8184
8185            Get_Next_Interp (I, It);
8186         end loop;
8187
8188         if Present (P_Typ) then
8189            Resolve (P, P_Typ);
8190            Set_Etype (N, Designated_Type (P_Typ));
8191
8192         else
8193            --  If no interpretation covers the designated type of the prefix,
8194            --  this is the pathological case where not all implementations of
8195            --  the prefix allow the interpretation of the node as a call. Now
8196            --  that the expected type is known, Remove other interpretations
8197            --  from prefix, rewrite it as a call, and resolve again, so that
8198            --  the proper call node is generated.
8199
8200            Get_First_Interp (P, I, It);
8201            while Present (It.Typ) loop
8202               if Ekind (It.Typ) /= E_Access_Subprogram_Type then
8203                  Remove_Interp (I);
8204               end if;
8205
8206               Get_Next_Interp (I, It);
8207            end loop;
8208
8209            New_N :=
8210              Make_Function_Call (Loc,
8211                Name =>
8212                  Make_Explicit_Dereference (Loc,
8213                    Prefix => P),
8214                Parameter_Associations => New_List);
8215
8216            Save_Interps (N, New_N);
8217            Rewrite (N, New_N);
8218            Analyze_And_Resolve (N, Typ);
8219            return;
8220         end if;
8221
8222      --  If not overloaded, resolve P with its own type
8223
8224      else
8225         Resolve (P);
8226      end if;
8227
8228      --  If the prefix might be null, add an access check
8229
8230      if Is_Access_Type (Etype (P))
8231        and then not Can_Never_Be_Null (Etype (P))
8232      then
8233         Apply_Access_Check (N);
8234      end if;
8235
8236      --  If the designated type is a packed unconstrained array type, and the
8237      --  explicit dereference is not in the context of an attribute reference,
8238      --  then we must compute and set the actual subtype, since it is needed
8239      --  by Gigi. The reason we exclude the attribute case is that this is
8240      --  handled fine by Gigi, and in fact we use such attributes to build the
8241      --  actual subtype. We also exclude generated code (which builds actual
8242      --  subtypes directly if they are needed).
8243
8244      if Is_Array_Type (Etype (N))
8245        and then Is_Packed (Etype (N))
8246        and then not Is_Constrained (Etype (N))
8247        and then Nkind (Parent (N)) /= N_Attribute_Reference
8248        and then Comes_From_Source (N)
8249      then
8250         Set_Etype (N, Get_Actual_Subtype (N));
8251      end if;
8252
8253      Analyze_Dimension (N);
8254
8255      --  Note: No Eval processing is required for an explicit dereference,
8256      --  because such a name can never be static.
8257
8258   end Resolve_Explicit_Dereference;
8259
8260   -------------------------------------
8261   -- Resolve_Expression_With_Actions --
8262   -------------------------------------
8263
8264   procedure Resolve_Expression_With_Actions (N : Node_Id; Typ : Entity_Id) is
8265   begin
8266      Set_Etype (N, Typ);
8267
8268      --  If N has no actions, and its expression has been constant folded,
8269      --  then rewrite N as just its expression. Note, we can't do this in
8270      --  the general case of Is_Empty_List (Actions (N)) as this would cause
8271      --  Expression (N) to be expanded again.
8272
8273      if Is_Empty_List (Actions (N))
8274        and then Compile_Time_Known_Value (Expression (N))
8275      then
8276         Rewrite (N, Expression (N));
8277      end if;
8278   end Resolve_Expression_With_Actions;
8279
8280   ----------------------------------
8281   -- Resolve_Generalized_Indexing --
8282   ----------------------------------
8283
8284   procedure Resolve_Generalized_Indexing (N : Node_Id; Typ : Entity_Id) is
8285      Indexing : constant Node_Id := Generalized_Indexing (N);
8286      Call     : Node_Id;
8287      Indexes  : List_Id;
8288      Pref     : Node_Id;
8289
8290   begin
8291      --  In ASIS mode, propagate the information about the indexes back to
8292      --  to the original indexing node. The generalized indexing is either
8293      --  a function call, or a dereference of one. The actuals include the
8294      --  prefix of the original node, which is the container expression.
8295
8296      if ASIS_Mode then
8297         Resolve (Indexing, Typ);
8298         Set_Etype  (N, Etype (Indexing));
8299         Set_Is_Overloaded (N, False);
8300
8301         Call := Indexing;
8302         while Nkind_In (Call, N_Explicit_Dereference, N_Selected_Component)
8303         loop
8304            Call := Prefix (Call);
8305         end loop;
8306
8307         if Nkind (Call) = N_Function_Call then
8308            Indexes := New_Copy_List (Parameter_Associations (Call));
8309            Pref := Remove_Head (Indexes);
8310            Set_Expressions (N, Indexes);
8311
8312            --  If expression is to be reanalyzed, reset Generalized_Indexing
8313            --  to recreate call node, as is the case when the expression is
8314            --  part of an expression function.
8315
8316            if In_Spec_Expression then
8317               Set_Generalized_Indexing (N, Empty);
8318            end if;
8319
8320            Set_Prefix (N, Pref);
8321         end if;
8322
8323      else
8324         Rewrite (N, Indexing);
8325         Resolve (N, Typ);
8326      end if;
8327   end Resolve_Generalized_Indexing;
8328
8329   ---------------------------
8330   -- Resolve_If_Expression --
8331   ---------------------------
8332
8333   procedure Resolve_If_Expression (N : Node_Id; Typ : Entity_Id) is
8334      Condition : constant Node_Id := First (Expressions (N));
8335      Then_Expr : Node_Id;
8336      Else_Expr : Node_Id;
8337      Else_Typ  : Entity_Id;
8338      Then_Typ  : Entity_Id;
8339
8340   begin
8341      --  Defend against malformed expressions
8342
8343      if No (Condition) then
8344         return;
8345      end if;
8346
8347      Then_Expr := Next (Condition);
8348
8349      if No (Then_Expr) then
8350         return;
8351      end if;
8352
8353      Else_Expr := Next (Then_Expr);
8354
8355      Resolve (Condition, Any_Boolean);
8356      Resolve (Then_Expr, Typ);
8357      Then_Typ := Etype (Then_Expr);
8358
8359      --  When the "then" expression is of a scalar subtype different from the
8360      --  result subtype, then insert a conversion to ensure the generation of
8361      --  a constraint check. The same is done for the else part below, again
8362      --  comparing subtypes rather than base types.
8363
8364      if Is_Scalar_Type (Then_Typ) and then Then_Typ /= Typ then
8365         Rewrite (Then_Expr, Convert_To (Typ, Then_Expr));
8366         Analyze_And_Resolve (Then_Expr, Typ);
8367      end if;
8368
8369      --  If ELSE expression present, just resolve using the determined type
8370      --  If type is universal, resolve to any member of the class.
8371
8372      if Present (Else_Expr) then
8373         if Typ = Universal_Integer then
8374            Resolve (Else_Expr, Any_Integer);
8375
8376         elsif Typ = Universal_Real then
8377            Resolve (Else_Expr, Any_Real);
8378
8379         else
8380            Resolve (Else_Expr, Typ);
8381         end if;
8382
8383         Else_Typ := Etype (Else_Expr);
8384
8385         if Is_Scalar_Type (Else_Typ) and then Else_Typ /= Typ then
8386            Rewrite (Else_Expr, Convert_To (Typ, Else_Expr));
8387            Analyze_And_Resolve (Else_Expr, Typ);
8388
8389         --  Apply RM 4.5.7 (17/3): whether the expression is statically or
8390         --  dynamically tagged must be known statically.
8391
8392         elsif Is_Tagged_Type (Typ) and then not Is_Class_Wide_Type (Typ) then
8393            if Is_Dynamically_Tagged (Then_Expr) /=
8394               Is_Dynamically_Tagged (Else_Expr)
8395            then
8396               Error_Msg_N ("all or none of the dependent expressions "
8397                            & "can be dynamically tagged", N);
8398            end if;
8399         end if;
8400
8401      --  If no ELSE expression is present, root type must be Standard.Boolean
8402      --  and we provide a Standard.True result converted to the appropriate
8403      --  Boolean type (in case it is a derived boolean type).
8404
8405      elsif Root_Type (Typ) = Standard_Boolean then
8406         Else_Expr :=
8407           Convert_To (Typ, New_Occurrence_Of (Standard_True, Sloc (N)));
8408         Analyze_And_Resolve (Else_Expr, Typ);
8409         Append_To (Expressions (N), Else_Expr);
8410
8411      else
8412         Error_Msg_N ("can only omit ELSE expression in Boolean case", N);
8413         Append_To (Expressions (N), Error);
8414      end if;
8415
8416      Set_Etype (N, Typ);
8417
8418      if not Error_Posted (N) then
8419         Eval_If_Expression (N);
8420      end if;
8421
8422      Analyze_Dimension (N);
8423   end Resolve_If_Expression;
8424
8425   -------------------------------
8426   -- Resolve_Indexed_Component --
8427   -------------------------------
8428
8429   procedure Resolve_Indexed_Component (N : Node_Id; Typ : Entity_Id) is
8430      Name       : constant Node_Id := Prefix  (N);
8431      Expr       : Node_Id;
8432      Array_Type : Entity_Id := Empty; -- to prevent junk warning
8433      Index      : Node_Id;
8434
8435   begin
8436      if Present (Generalized_Indexing (N)) then
8437         Resolve_Generalized_Indexing (N, Typ);
8438         return;
8439      end if;
8440
8441      if Is_Overloaded (Name) then
8442
8443         --  Use the context type to select the prefix that yields the correct
8444         --  component type.
8445
8446         declare
8447            I     : Interp_Index;
8448            It    : Interp;
8449            I1    : Interp_Index := 0;
8450            P     : constant Node_Id := Prefix (N);
8451            Found : Boolean := False;
8452
8453         begin
8454            Get_First_Interp (P, I, It);
8455            while Present (It.Typ) loop
8456               if (Is_Array_Type (It.Typ)
8457                     and then Covers (Typ, Component_Type (It.Typ)))
8458                 or else (Is_Access_Type (It.Typ)
8459                            and then Is_Array_Type (Designated_Type (It.Typ))
8460                            and then
8461                              Covers
8462                                (Typ,
8463                                 Component_Type (Designated_Type (It.Typ))))
8464               then
8465                  if Found then
8466                     It := Disambiguate (P, I1, I, Any_Type);
8467
8468                     if It = No_Interp then
8469                        Error_Msg_N ("ambiguous prefix for indexing",  N);
8470                        Set_Etype (N, Typ);
8471                        return;
8472
8473                     else
8474                        Found := True;
8475                        Array_Type := It.Typ;
8476                        I1 := I;
8477                     end if;
8478
8479                  else
8480                     Found := True;
8481                     Array_Type := It.Typ;
8482                     I1 := I;
8483                  end if;
8484               end if;
8485
8486               Get_Next_Interp (I, It);
8487            end loop;
8488         end;
8489
8490      else
8491         Array_Type := Etype (Name);
8492      end if;
8493
8494      Resolve (Name, Array_Type);
8495      Array_Type := Get_Actual_Subtype_If_Available (Name);
8496
8497      --  If prefix is access type, dereference to get real array type.
8498      --  Note: we do not apply an access check because the expander always
8499      --  introduces an explicit dereference, and the check will happen there.
8500
8501      if Is_Access_Type (Array_Type) then
8502         Array_Type := Designated_Type (Array_Type);
8503      end if;
8504
8505      --  If name was overloaded, set component type correctly now
8506      --  If a misplaced call to an entry family (which has no index types)
8507      --  return. Error will be diagnosed from calling context.
8508
8509      if Is_Array_Type (Array_Type) then
8510         Set_Etype (N, Component_Type (Array_Type));
8511      else
8512         return;
8513      end if;
8514
8515      Index := First_Index (Array_Type);
8516      Expr  := First (Expressions (N));
8517
8518      --  The prefix may have resolved to a string literal, in which case its
8519      --  etype has a special representation. This is only possible currently
8520      --  if the prefix is a static concatenation, written in functional
8521      --  notation.
8522
8523      if Ekind (Array_Type) = E_String_Literal_Subtype then
8524         Resolve (Expr, Standard_Positive);
8525
8526      else
8527         while Present (Index) and Present (Expr) loop
8528            Resolve (Expr, Etype (Index));
8529            Check_Unset_Reference (Expr);
8530
8531            if Is_Scalar_Type (Etype (Expr)) then
8532               Apply_Scalar_Range_Check (Expr, Etype (Index));
8533            else
8534               Apply_Range_Check (Expr, Get_Actual_Subtype (Index));
8535            end if;
8536
8537            Next_Index (Index);
8538            Next (Expr);
8539         end loop;
8540      end if;
8541
8542      Analyze_Dimension (N);
8543
8544      --  Do not generate the warning on suspicious index if we are analyzing
8545      --  package Ada.Tags; otherwise we will report the warning with the
8546      --  Prims_Ptr field of the dispatch table.
8547
8548      if Scope (Etype (Prefix (N))) = Standard_Standard
8549        or else not
8550          Is_RTU (Cunit_Entity (Get_Source_Unit (Etype (Prefix (N)))),
8551                  Ada_Tags)
8552      then
8553         Warn_On_Suspicious_Index (Name, First (Expressions (N)));
8554         Eval_Indexed_Component (N);
8555      end if;
8556
8557      --  If the array type is atomic, and the component is not atomic, then
8558      --  this is worth a warning, since we have a situation where the access
8559      --  to the component may cause extra read/writes of the atomic array
8560      --  object, or partial word accesses, which could be unexpected.
8561
8562      if Nkind (N) = N_Indexed_Component
8563        and then Is_Atomic_Ref_With_Address (N)
8564        and then not (Has_Atomic_Components (Array_Type)
8565                       or else (Is_Entity_Name (Prefix (N))
8566                                 and then Has_Atomic_Components
8567                                            (Entity (Prefix (N)))))
8568        and then not Is_Atomic (Component_Type (Array_Type))
8569      then
8570         Error_Msg_N
8571           ("??access to non-atomic component of atomic array", Prefix (N));
8572         Error_Msg_N
8573           ("??\may cause unexpected accesses to atomic object", Prefix (N));
8574      end if;
8575   end Resolve_Indexed_Component;
8576
8577   -----------------------------
8578   -- Resolve_Integer_Literal --
8579   -----------------------------
8580
8581   procedure Resolve_Integer_Literal (N : Node_Id; Typ : Entity_Id) is
8582   begin
8583      Set_Etype (N, Typ);
8584      Eval_Integer_Literal (N);
8585   end Resolve_Integer_Literal;
8586
8587   --------------------------------
8588   -- Resolve_Intrinsic_Operator --
8589   --------------------------------
8590
8591   procedure Resolve_Intrinsic_Operator  (N : Node_Id; Typ : Entity_Id) is
8592      Btyp : constant Entity_Id := Base_Type (Underlying_Type (Typ));
8593      Op   : Entity_Id;
8594      Arg1 : Node_Id;
8595      Arg2 : Node_Id;
8596
8597      function Convert_Operand (Opnd : Node_Id) return Node_Id;
8598      --  If the operand is a literal, it cannot be the expression in a
8599      --  conversion. Use a qualified expression instead.
8600
8601      ---------------------
8602      -- Convert_Operand --
8603      ---------------------
8604
8605      function Convert_Operand (Opnd : Node_Id) return Node_Id is
8606         Loc : constant Source_Ptr := Sloc (Opnd);
8607         Res : Node_Id;
8608
8609      begin
8610         if Nkind_In (Opnd, N_Integer_Literal, N_Real_Literal) then
8611            Res :=
8612              Make_Qualified_Expression (Loc,
8613                Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
8614                Expression   => Relocate_Node (Opnd));
8615            Analyze (Res);
8616
8617         else
8618            Res := Unchecked_Convert_To (Btyp, Opnd);
8619         end if;
8620
8621         return Res;
8622      end Convert_Operand;
8623
8624   --  Start of processing for Resolve_Intrinsic_Operator
8625
8626   begin
8627      --  We must preserve the original entity in a generic setting, so that
8628      --  the legality of the operation can be verified in an instance.
8629
8630      if not Expander_Active then
8631         return;
8632      end if;
8633
8634      Op := Entity (N);
8635      while Scope (Op) /= Standard_Standard loop
8636         Op := Homonym (Op);
8637         pragma Assert (Present (Op));
8638      end loop;
8639
8640      Set_Entity (N, Op);
8641      Set_Is_Overloaded (N, False);
8642
8643      --  If the result or operand types are private, rewrite with unchecked
8644      --  conversions on the operands and the result, to expose the proper
8645      --  underlying numeric type.
8646
8647      if Is_Private_Type (Typ)
8648        or else Is_Private_Type (Etype (Left_Opnd (N)))
8649        or else Is_Private_Type (Etype (Right_Opnd (N)))
8650      then
8651         Arg1 := Convert_Operand (Left_Opnd (N));
8652
8653         if Nkind (N) = N_Op_Expon then
8654            Arg2 := Unchecked_Convert_To (Standard_Integer, Right_Opnd (N));
8655         else
8656            Arg2 := Convert_Operand (Right_Opnd (N));
8657         end if;
8658
8659         if Nkind (Arg1) = N_Type_Conversion then
8660            Save_Interps (Left_Opnd (N),  Expression (Arg1));
8661         end if;
8662
8663         if Nkind (Arg2) = N_Type_Conversion then
8664            Save_Interps (Right_Opnd (N), Expression (Arg2));
8665         end if;
8666
8667         Set_Left_Opnd  (N, Arg1);
8668         Set_Right_Opnd (N, Arg2);
8669
8670         Set_Etype (N, Btyp);
8671         Rewrite (N, Unchecked_Convert_To (Typ, N));
8672         Resolve (N, Typ);
8673
8674      elsif Typ /= Etype (Left_Opnd (N))
8675        or else Typ /= Etype (Right_Opnd (N))
8676      then
8677         --  Add explicit conversion where needed, and save interpretations in
8678         --  case operands are overloaded.
8679
8680         Arg1 := Convert_To (Typ, Left_Opnd  (N));
8681         Arg2 := Convert_To (Typ, Right_Opnd (N));
8682
8683         if Nkind (Arg1) = N_Type_Conversion then
8684            Save_Interps (Left_Opnd (N), Expression (Arg1));
8685         else
8686            Save_Interps (Left_Opnd (N), Arg1);
8687         end if;
8688
8689         if Nkind (Arg2) = N_Type_Conversion then
8690            Save_Interps (Right_Opnd (N), Expression (Arg2));
8691         else
8692            Save_Interps (Right_Opnd (N), Arg2);
8693         end if;
8694
8695         Rewrite (Left_Opnd  (N), Arg1);
8696         Rewrite (Right_Opnd (N), Arg2);
8697         Analyze (Arg1);
8698         Analyze (Arg2);
8699         Resolve_Arithmetic_Op (N, Typ);
8700
8701      else
8702         Resolve_Arithmetic_Op (N, Typ);
8703      end if;
8704   end Resolve_Intrinsic_Operator;
8705
8706   --------------------------------------
8707   -- Resolve_Intrinsic_Unary_Operator --
8708   --------------------------------------
8709
8710   procedure Resolve_Intrinsic_Unary_Operator
8711     (N   : Node_Id;
8712      Typ : Entity_Id)
8713   is
8714      Btyp : constant Entity_Id := Base_Type (Underlying_Type (Typ));
8715      Op   : Entity_Id;
8716      Arg2 : Node_Id;
8717
8718   begin
8719      Op := Entity (N);
8720      while Scope (Op) /= Standard_Standard loop
8721         Op := Homonym (Op);
8722         pragma Assert (Present (Op));
8723      end loop;
8724
8725      Set_Entity (N, Op);
8726
8727      if Is_Private_Type (Typ) then
8728         Arg2 := Unchecked_Convert_To (Btyp, Right_Opnd (N));
8729         Save_Interps (Right_Opnd (N), Expression (Arg2));
8730
8731         Set_Right_Opnd (N, Arg2);
8732
8733         Set_Etype (N, Btyp);
8734         Rewrite (N, Unchecked_Convert_To (Typ, N));
8735         Resolve (N, Typ);
8736
8737      else
8738         Resolve_Unary_Op (N, Typ);
8739      end if;
8740   end Resolve_Intrinsic_Unary_Operator;
8741
8742   ------------------------
8743   -- Resolve_Logical_Op --
8744   ------------------------
8745
8746   procedure Resolve_Logical_Op (N : Node_Id; Typ : Entity_Id) is
8747      B_Typ : Entity_Id;
8748
8749   begin
8750      Check_No_Direct_Boolean_Operators (N);
8751
8752      --  Predefined operations on scalar types yield the base type. On the
8753      --  other hand, logical operations on arrays yield the type of the
8754      --  arguments (and the context).
8755
8756      if Is_Array_Type (Typ) then
8757         B_Typ := Typ;
8758      else
8759         B_Typ := Base_Type (Typ);
8760      end if;
8761
8762      --  The following test is required because the operands of the operation
8763      --  may be literals, in which case the resulting type appears to be
8764      --  compatible with a signed integer type, when in fact it is compatible
8765      --  only with modular types. If the context itself is universal, the
8766      --  operation is illegal.
8767
8768      if not Valid_Boolean_Arg (Typ) then
8769         Error_Msg_N ("invalid context for logical operation", N);
8770         Set_Etype (N, Any_Type);
8771         return;
8772
8773      elsif Typ = Any_Modular then
8774         Error_Msg_N
8775           ("no modular type available in this context", N);
8776         Set_Etype (N, Any_Type);
8777         return;
8778
8779      elsif Is_Modular_Integer_Type (Typ)
8780        and then Etype (Left_Opnd (N)) = Universal_Integer
8781        and then Etype (Right_Opnd (N)) = Universal_Integer
8782      then
8783         Check_For_Visible_Operator (N, B_Typ);
8784      end if;
8785
8786      --  Replace AND by AND THEN, or OR by OR ELSE, if Short_Circuit_And_Or
8787      --  is active and the result type is standard Boolean (do not mess with
8788      --  ops that return a nonstandard Boolean type, because something strange
8789      --  is going on).
8790
8791      --  Note: you might expect this replacement to be done during expansion,
8792      --  but that doesn't work, because when the pragma Short_Circuit_And_Or
8793      --  is used, no part of the right operand of an "and" or "or" operator
8794      --  should be executed if the left operand would short-circuit the
8795      --  evaluation of the corresponding "and then" or "or else". If we left
8796      --  the replacement to expansion time, then run-time checks associated
8797      --  with such operands would be evaluated unconditionally, due to being
8798      --  before the condition prior to the rewriting as short-circuit forms
8799      --  during expansion.
8800
8801      if Short_Circuit_And_Or
8802        and then B_Typ = Standard_Boolean
8803        and then Nkind_In (N, N_Op_And, N_Op_Or)
8804      then
8805         --  Mark the corresponding putative SCO operator as truly a logical
8806         --  (and short-circuit) operator.
8807
8808         if Generate_SCO and then Comes_From_Source (N) then
8809            Set_SCO_Logical_Operator (N);
8810         end if;
8811
8812         if Nkind (N) = N_Op_And then
8813            Rewrite (N,
8814              Make_And_Then (Sloc (N),
8815                Left_Opnd  => Relocate_Node (Left_Opnd (N)),
8816                Right_Opnd => Relocate_Node (Right_Opnd (N))));
8817            Analyze_And_Resolve (N, B_Typ);
8818
8819         --  Case of OR changed to OR ELSE
8820
8821         else
8822            Rewrite (N,
8823              Make_Or_Else (Sloc (N),
8824                Left_Opnd  => Relocate_Node (Left_Opnd (N)),
8825                Right_Opnd => Relocate_Node (Right_Opnd (N))));
8826            Analyze_And_Resolve (N, B_Typ);
8827         end if;
8828
8829         --  Return now, since analysis of the rewritten ops will take care of
8830         --  other reference bookkeeping and expression folding.
8831
8832         return;
8833      end if;
8834
8835      Resolve (Left_Opnd (N), B_Typ);
8836      Resolve (Right_Opnd (N), B_Typ);
8837
8838      Check_Unset_Reference (Left_Opnd  (N));
8839      Check_Unset_Reference (Right_Opnd (N));
8840
8841      Set_Etype (N, B_Typ);
8842      Generate_Operator_Reference (N, B_Typ);
8843      Eval_Logical_Op (N);
8844
8845      --  In SPARK, logical operations AND, OR and XOR for arrays are defined
8846      --  only when both operands have same static lower and higher bounds. Of
8847      --  course the types have to match, so only check if operands are
8848      --  compatible and the node itself has no errors.
8849
8850      if Is_Array_Type (B_Typ)
8851        and then Nkind (N) in N_Binary_Op
8852      then
8853         declare
8854            Left_Typ  : constant Node_Id := Etype (Left_Opnd (N));
8855            Right_Typ : constant Node_Id := Etype (Right_Opnd (N));
8856
8857         begin
8858            --  Protect call to Matching_Static_Array_Bounds to avoid costly
8859            --  operation if not needed.
8860
8861            if Restriction_Check_Required (SPARK_05)
8862              and then Base_Type (Left_Typ) = Base_Type (Right_Typ)
8863              and then Left_Typ /= Any_Composite  --  or Left_Opnd in error
8864              and then Right_Typ /= Any_Composite  --  or Right_Opnd in error
8865              and then not Matching_Static_Array_Bounds (Left_Typ, Right_Typ)
8866            then
8867               Check_SPARK_05_Restriction
8868                 ("array types should have matching static bounds", N);
8869            end if;
8870         end;
8871      end if;
8872   end Resolve_Logical_Op;
8873
8874   ---------------------------
8875   -- Resolve_Membership_Op --
8876   ---------------------------
8877
8878   --  The context can only be a boolean type, and does not determine the
8879   --  arguments. Arguments should be unambiguous, but the preference rule for
8880   --  universal types applies.
8881
8882   procedure Resolve_Membership_Op (N : Node_Id; Typ : Entity_Id) is
8883      pragma Warnings (Off, Typ);
8884
8885      L : constant Node_Id := Left_Opnd  (N);
8886      R : constant Node_Id := Right_Opnd (N);
8887      T : Entity_Id;
8888
8889      procedure Resolve_Set_Membership;
8890      --  Analysis has determined a unique type for the left operand. Use it to
8891      --  resolve the disjuncts.
8892
8893      ----------------------------
8894      -- Resolve_Set_Membership --
8895      ----------------------------
8896
8897      procedure Resolve_Set_Membership is
8898         Alt  : Node_Id;
8899         Ltyp : Entity_Id;
8900
8901      begin
8902         --  If the left operand is overloaded, find type compatible with not
8903         --  overloaded alternative of the right operand.
8904
8905         if Is_Overloaded (L) then
8906            Ltyp := Empty;
8907            Alt := First (Alternatives (N));
8908            while Present (Alt) loop
8909               if not Is_Overloaded (Alt) then
8910                  Ltyp := Intersect_Types (L, Alt);
8911                  exit;
8912               else
8913                  Next (Alt);
8914               end if;
8915            end loop;
8916
8917            --  Unclear how to resolve expression if all alternatives are also
8918            --  overloaded.
8919
8920            if No (Ltyp) then
8921               Error_Msg_N ("ambiguous expression", N);
8922            end if;
8923
8924         else
8925            Ltyp := Etype (L);
8926         end if;
8927
8928         Resolve (L, Ltyp);
8929
8930         Alt := First (Alternatives (N));
8931         while Present (Alt) loop
8932
8933            --  Alternative is an expression, a range
8934            --  or a subtype mark.
8935
8936            if not Is_Entity_Name (Alt)
8937              or else not Is_Type (Entity (Alt))
8938            then
8939               Resolve (Alt, Ltyp);
8940            end if;
8941
8942            Next (Alt);
8943         end loop;
8944
8945         --  Check for duplicates for discrete case
8946
8947         if Is_Discrete_Type (Ltyp) then
8948            declare
8949               type Ent is record
8950                  Alt : Node_Id;
8951                  Val : Uint;
8952               end record;
8953
8954               Alts  : array (0 .. List_Length (Alternatives (N))) of Ent;
8955               Nalts : Nat;
8956
8957            begin
8958               --  Loop checking duplicates. This is quadratic, but giant sets
8959               --  are unlikely in this context so it's a reasonable choice.
8960
8961               Nalts := 0;
8962               Alt := First (Alternatives (N));
8963               while Present (Alt) loop
8964                  if Is_OK_Static_Expression (Alt)
8965                    and then (Nkind_In (Alt, N_Integer_Literal,
8966                                             N_Character_Literal)
8967                               or else Nkind (Alt) in N_Has_Entity)
8968                  then
8969                     Nalts := Nalts + 1;
8970                     Alts (Nalts) := (Alt, Expr_Value (Alt));
8971
8972                     for J in 1 .. Nalts - 1 loop
8973                        if Alts (J).Val = Alts (Nalts).Val then
8974                           Error_Msg_Sloc := Sloc (Alts (J).Alt);
8975                           Error_Msg_N ("duplicate of value given#??", Alt);
8976                        end if;
8977                     end loop;
8978                  end if;
8979
8980                  Alt := Next (Alt);
8981               end loop;
8982            end;
8983         end if;
8984
8985         --  RM 4.5.2 (28.1/3) specifies that for types other than records or
8986         --  limited types, evaluation of a membership test uses the predefined
8987         --  equality for the type. This may be confusing to users, and the
8988         --  following warning appears useful for the most common case.
8989
8990         if Is_Scalar_Type (Ltyp)
8991           and then Present (Get_User_Defined_Eq (Ltyp))
8992         then
8993            Error_Msg_NE
8994              ("membership test on& uses predefined equality?", N, Ltyp);
8995            Error_Msg_N
8996              ("\even if user-defined equality exists (RM 4.5.2 (28.1/3)?", N);
8997         end if;
8998      end Resolve_Set_Membership;
8999
9000   --  Start of processing for Resolve_Membership_Op
9001
9002   begin
9003      if L = Error or else R = Error then
9004         return;
9005      end if;
9006
9007      if Present (Alternatives (N)) then
9008         Resolve_Set_Membership;
9009         goto SM_Exit;
9010
9011      elsif not Is_Overloaded (R)
9012        and then
9013          (Etype (R) = Universal_Integer
9014             or else
9015           Etype (R) = Universal_Real)
9016        and then Is_Overloaded (L)
9017      then
9018         T := Etype (R);
9019
9020      --  Ada 2005 (AI-251): Support the following case:
9021
9022      --      type I is interface;
9023      --      type T is tagged ...
9024
9025      --      function Test (O : I'Class) is
9026      --      begin
9027      --         return O in T'Class.
9028      --      end Test;
9029
9030      --  In this case we have nothing else to do. The membership test will be
9031      --  done at run time.
9032
9033      elsif Ada_Version >= Ada_2005
9034        and then Is_Class_Wide_Type (Etype (L))
9035        and then Is_Interface (Etype (L))
9036        and then Is_Class_Wide_Type (Etype (R))
9037        and then not Is_Interface (Etype (R))
9038      then
9039         return;
9040      else
9041         T := Intersect_Types (L, R);
9042      end if;
9043
9044      --  If mixed-mode operations are present and operands are all literal,
9045      --  the only interpretation involves Duration, which is probably not
9046      --  the intention of the programmer.
9047
9048      if T = Any_Fixed then
9049         T := Unique_Fixed_Point_Type (N);
9050
9051         if T = Any_Type then
9052            return;
9053         end if;
9054      end if;
9055
9056      Resolve (L, T);
9057      Check_Unset_Reference (L);
9058
9059      if Nkind (R) = N_Range
9060        and then not Is_Scalar_Type (T)
9061      then
9062         Error_Msg_N ("scalar type required for range", R);
9063      end if;
9064
9065      if Is_Entity_Name (R) then
9066         Freeze_Expression (R);
9067      else
9068         Resolve (R, T);
9069         Check_Unset_Reference (R);
9070      end if;
9071
9072      --  Here after resolving membership operation
9073
9074      <<SM_Exit>>
9075
9076      Eval_Membership_Op (N);
9077   end Resolve_Membership_Op;
9078
9079   ------------------
9080   -- Resolve_Null --
9081   ------------------
9082
9083   procedure Resolve_Null (N : Node_Id; Typ : Entity_Id) is
9084      Loc : constant Source_Ptr := Sloc (N);
9085
9086   begin
9087      --  Handle restriction against anonymous null access values This
9088      --  restriction can be turned off using -gnatdj.
9089
9090      --  Ada 2005 (AI-231): Remove restriction
9091
9092      if Ada_Version < Ada_2005
9093        and then not Debug_Flag_J
9094        and then Ekind (Typ) = E_Anonymous_Access_Type
9095        and then Comes_From_Source (N)
9096      then
9097         --  In the common case of a call which uses an explicitly null value
9098         --  for an access parameter, give specialized error message.
9099
9100         if Nkind (Parent (N)) in N_Subprogram_Call then
9101            Error_Msg_N
9102              ("null is not allowed as argument for an access parameter", N);
9103
9104         --  Standard message for all other cases (are there any?)
9105
9106         else
9107            Error_Msg_N
9108              ("null cannot be of an anonymous access type", N);
9109         end if;
9110      end if;
9111
9112      --  Ada 2005 (AI-231): Generate the null-excluding check in case of
9113      --  assignment to a null-excluding object
9114
9115      if Ada_Version >= Ada_2005
9116        and then Can_Never_Be_Null (Typ)
9117        and then Nkind (Parent (N)) = N_Assignment_Statement
9118      then
9119         if not Inside_Init_Proc then
9120            Insert_Action
9121              (Compile_Time_Constraint_Error (N,
9122                 "(Ada 2005) null not allowed in null-excluding objects??"),
9123               Make_Raise_Constraint_Error (Loc,
9124                 Reason => CE_Access_Check_Failed));
9125         else
9126            Insert_Action (N,
9127              Make_Raise_Constraint_Error (Loc,
9128                Reason => CE_Access_Check_Failed));
9129         end if;
9130      end if;
9131
9132      --  In a distributed context, null for a remote access to subprogram may
9133      --  need to be replaced with a special record aggregate. In this case,
9134      --  return after having done the transformation.
9135
9136      if (Ekind (Typ) = E_Record_Type
9137           or else Is_Remote_Access_To_Subprogram_Type (Typ))
9138        and then Remote_AST_Null_Value (N, Typ)
9139      then
9140         return;
9141      end if;
9142
9143      --  The null literal takes its type from the context
9144
9145      Set_Etype (N, Typ);
9146   end Resolve_Null;
9147
9148   -----------------------
9149   -- Resolve_Op_Concat --
9150   -----------------------
9151
9152   procedure Resolve_Op_Concat (N : Node_Id; Typ : Entity_Id) is
9153
9154      --  We wish to avoid deep recursion, because concatenations are often
9155      --  deeply nested, as in A&B&...&Z. Therefore, we walk down the left
9156      --  operands nonrecursively until we find something that is not a simple
9157      --  concatenation (A in this case). We resolve that, and then walk back
9158      --  up the tree following Parent pointers, calling Resolve_Op_Concat_Rest
9159      --  to do the rest of the work at each level. The Parent pointers allow
9160      --  us to avoid recursion, and thus avoid running out of memory. See also
9161      --  Sem_Ch4.Analyze_Concatenation, where a similar approach is used.
9162
9163      NN  : Node_Id := N;
9164      Op1 : Node_Id;
9165
9166   begin
9167      --  The following code is equivalent to:
9168
9169      --    Resolve_Op_Concat_First (NN, Typ);
9170      --    Resolve_Op_Concat_Arg (N, ...);
9171      --    Resolve_Op_Concat_Rest (N, Typ);
9172
9173      --  where the Resolve_Op_Concat_Arg call recurses back here if the left
9174      --  operand is a concatenation.
9175
9176      --  Walk down left operands
9177
9178      loop
9179         Resolve_Op_Concat_First (NN, Typ);
9180         Op1 := Left_Opnd (NN);
9181         exit when not (Nkind (Op1) = N_Op_Concat
9182                         and then not Is_Array_Type (Component_Type (Typ))
9183                         and then Entity (Op1) = Entity (NN));
9184         NN := Op1;
9185      end loop;
9186
9187      --  Now (given the above example) NN is A&B and Op1 is A
9188
9189      --  First resolve Op1 ...
9190
9191      Resolve_Op_Concat_Arg (NN, Op1, Typ, Is_Component_Left_Opnd  (NN));
9192
9193      --  ... then walk NN back up until we reach N (where we started), calling
9194      --  Resolve_Op_Concat_Rest along the way.
9195
9196      loop
9197         Resolve_Op_Concat_Rest (NN, Typ);
9198         exit when NN = N;
9199         NN := Parent (NN);
9200      end loop;
9201
9202      if Base_Type (Etype (N)) /= Standard_String then
9203         Check_SPARK_05_Restriction
9204           ("result of concatenation should have type String", N);
9205      end if;
9206   end Resolve_Op_Concat;
9207
9208   ---------------------------
9209   -- Resolve_Op_Concat_Arg --
9210   ---------------------------
9211
9212   procedure Resolve_Op_Concat_Arg
9213     (N       : Node_Id;
9214      Arg     : Node_Id;
9215      Typ     : Entity_Id;
9216      Is_Comp : Boolean)
9217   is
9218      Btyp : constant Entity_Id := Base_Type (Typ);
9219      Ctyp : constant Entity_Id := Component_Type (Typ);
9220
9221   begin
9222      if In_Instance then
9223         if Is_Comp
9224           or else (not Is_Overloaded (Arg)
9225                     and then Etype (Arg) /= Any_Composite
9226                     and then Covers (Ctyp, Etype (Arg)))
9227         then
9228            Resolve (Arg, Ctyp);
9229         else
9230            Resolve (Arg, Btyp);
9231         end if;
9232
9233      --  If both Array & Array and Array & Component are visible, there is a
9234      --  potential ambiguity that must be reported.
9235
9236      elsif Has_Compatible_Type (Arg, Ctyp) then
9237         if Nkind (Arg) = N_Aggregate
9238           and then Is_Composite_Type (Ctyp)
9239         then
9240            if Is_Private_Type (Ctyp) then
9241               Resolve (Arg, Btyp);
9242
9243            --  If the operation is user-defined and not overloaded use its
9244            --  profile. The operation may be a renaming, in which case it has
9245            --  been rewritten, and we want the original profile.
9246
9247            elsif not Is_Overloaded (N)
9248              and then Comes_From_Source (Entity (Original_Node (N)))
9249              and then Ekind (Entity (Original_Node (N))) = E_Function
9250            then
9251               Resolve (Arg,
9252                 Etype
9253                   (Next_Formal (First_Formal (Entity (Original_Node (N))))));
9254               return;
9255
9256            --  Otherwise an aggregate may match both the array type and the
9257            --  component type.
9258
9259            else
9260               Error_Msg_N ("ambiguous aggregate must be qualified", Arg);
9261               Set_Etype (Arg, Any_Type);
9262            end if;
9263
9264         else
9265            if Is_Overloaded (Arg)
9266              and then Has_Compatible_Type (Arg, Typ)
9267              and then Etype (Arg) /= Any_Type
9268            then
9269               declare
9270                  I    : Interp_Index;
9271                  It   : Interp;
9272                  Func : Entity_Id;
9273
9274               begin
9275                  Get_First_Interp (Arg, I, It);
9276                  Func := It.Nam;
9277                  Get_Next_Interp (I, It);
9278
9279                  --  Special-case the error message when the overloading is
9280                  --  caused by a function that yields an array and can be
9281                  --  called without parameters.
9282
9283                  if It.Nam = Func then
9284                     Error_Msg_Sloc := Sloc (Func);
9285                     Error_Msg_N ("ambiguous call to function#", Arg);
9286                     Error_Msg_NE
9287                       ("\\interpretation as call yields&", Arg, Typ);
9288                     Error_Msg_NE
9289                       ("\\interpretation as indexing of call yields&",
9290                         Arg, Component_Type (Typ));
9291
9292                  else
9293                     Error_Msg_N ("ambiguous operand for concatenation!", Arg);
9294
9295                     Get_First_Interp (Arg, I, It);
9296                     while Present (It.Nam) loop
9297                        Error_Msg_Sloc := Sloc (It.Nam);
9298
9299                        if Base_Type (It.Typ) = Btyp
9300                             or else
9301                           Base_Type (It.Typ) = Base_Type (Ctyp)
9302                        then
9303                           Error_Msg_N -- CODEFIX
9304                             ("\\possible interpretation#", Arg);
9305                        end if;
9306
9307                        Get_Next_Interp (I, It);
9308                     end loop;
9309                  end if;
9310               end;
9311            end if;
9312
9313            Resolve (Arg, Component_Type (Typ));
9314
9315            if Nkind (Arg) = N_String_Literal then
9316               Set_Etype (Arg, Component_Type (Typ));
9317            end if;
9318
9319            if Arg = Left_Opnd (N) then
9320               Set_Is_Component_Left_Opnd (N);
9321            else
9322               Set_Is_Component_Right_Opnd (N);
9323            end if;
9324         end if;
9325
9326      else
9327         Resolve (Arg, Btyp);
9328      end if;
9329
9330      --  Concatenation is restricted in SPARK: each operand must be either a
9331      --  string literal, the name of a string constant, a static character or
9332      --  string expression, or another concatenation. Arg cannot be a
9333      --  concatenation here as callers of Resolve_Op_Concat_Arg call it
9334      --  separately on each final operand, past concatenation operations.
9335
9336      if Is_Character_Type (Etype (Arg)) then
9337         if not Is_OK_Static_Expression (Arg) then
9338            Check_SPARK_05_Restriction
9339              ("character operand for concatenation should be static", Arg);
9340         end if;
9341
9342      elsif Is_String_Type (Etype (Arg)) then
9343         if not (Nkind_In (Arg, N_Identifier, N_Expanded_Name)
9344                  and then Is_Constant_Object (Entity (Arg)))
9345           and then not Is_OK_Static_Expression (Arg)
9346         then
9347            Check_SPARK_05_Restriction
9348              ("string operand for concatenation should be static", Arg);
9349         end if;
9350
9351      --  Do not issue error on an operand that is neither a character nor a
9352      --  string, as the error is issued in Resolve_Op_Concat.
9353
9354      else
9355         null;
9356      end if;
9357
9358      Check_Unset_Reference (Arg);
9359   end Resolve_Op_Concat_Arg;
9360
9361   -----------------------------
9362   -- Resolve_Op_Concat_First --
9363   -----------------------------
9364
9365   procedure Resolve_Op_Concat_First (N : Node_Id; Typ : Entity_Id) is
9366      Btyp : constant Entity_Id := Base_Type (Typ);
9367      Op1  : constant Node_Id := Left_Opnd (N);
9368      Op2  : constant Node_Id := Right_Opnd (N);
9369
9370   begin
9371      --  The parser folds an enormous sequence of concatenations of string
9372      --  literals into "" & "...", where the Is_Folded_In_Parser flag is set
9373      --  in the right operand. If the expression resolves to a predefined "&"
9374      --  operator, all is well. Otherwise, the parser's folding is wrong, so
9375      --  we give an error. See P_Simple_Expression in Par.Ch4.
9376
9377      if Nkind (Op2) = N_String_Literal
9378        and then Is_Folded_In_Parser (Op2)
9379        and then Ekind (Entity (N)) = E_Function
9380      then
9381         pragma Assert (Nkind (Op1) = N_String_Literal  --  should be ""
9382               and then String_Length (Strval (Op1)) = 0);
9383         Error_Msg_N ("too many user-defined concatenations", N);
9384         return;
9385      end if;
9386
9387      Set_Etype (N, Btyp);
9388
9389      if Is_Limited_Composite (Btyp) then
9390         Error_Msg_N ("concatenation not available for limited array", N);
9391         Explain_Limited_Type (Btyp, N);
9392      end if;
9393   end Resolve_Op_Concat_First;
9394
9395   ----------------------------
9396   -- Resolve_Op_Concat_Rest --
9397   ----------------------------
9398
9399   procedure Resolve_Op_Concat_Rest (N : Node_Id; Typ : Entity_Id) is
9400      Op1  : constant Node_Id := Left_Opnd (N);
9401      Op2  : constant Node_Id := Right_Opnd (N);
9402
9403   begin
9404      Resolve_Op_Concat_Arg (N, Op2, Typ, Is_Component_Right_Opnd  (N));
9405
9406      Generate_Operator_Reference (N, Typ);
9407
9408      if Is_String_Type (Typ) then
9409         Eval_Concatenation (N);
9410      end if;
9411
9412      --  If this is not a static concatenation, but the result is a string
9413      --  type (and not an array of strings) ensure that static string operands
9414      --  have their subtypes properly constructed.
9415
9416      if Nkind (N) /= N_String_Literal
9417        and then Is_Character_Type (Component_Type (Typ))
9418      then
9419         Set_String_Literal_Subtype (Op1, Typ);
9420         Set_String_Literal_Subtype (Op2, Typ);
9421      end if;
9422   end Resolve_Op_Concat_Rest;
9423
9424   ----------------------
9425   -- Resolve_Op_Expon --
9426   ----------------------
9427
9428   procedure Resolve_Op_Expon (N : Node_Id; Typ : Entity_Id) is
9429      B_Typ : constant Entity_Id := Base_Type (Typ);
9430
9431   begin
9432      --  Catch attempts to do fixed-point exponentiation with universal
9433      --  operands, which is a case where the illegality is not caught during
9434      --  normal operator analysis. This is not done in preanalysis mode
9435      --  since the tree is not fully decorated during preanalysis.
9436
9437      if Full_Analysis then
9438         if Is_Fixed_Point_Type (Typ) and then Comes_From_Source (N) then
9439            Error_Msg_N ("exponentiation not available for fixed point", N);
9440            return;
9441
9442         elsif Nkind (Parent (N)) in N_Op
9443           and then Present (Etype (Parent (N)))
9444           and then Is_Fixed_Point_Type (Etype (Parent (N)))
9445           and then Etype (N) = Universal_Real
9446           and then Comes_From_Source (N)
9447         then
9448            Error_Msg_N ("exponentiation not available for fixed point", N);
9449            return;
9450         end if;
9451      end if;
9452
9453      if Comes_From_Source (N)
9454        and then Ekind (Entity (N)) = E_Function
9455        and then Is_Imported (Entity (N))
9456        and then Is_Intrinsic_Subprogram (Entity (N))
9457      then
9458         Resolve_Intrinsic_Operator (N, Typ);
9459         return;
9460      end if;
9461
9462      if Etype (Left_Opnd (N)) = Universal_Integer
9463        or else Etype (Left_Opnd (N)) = Universal_Real
9464      then
9465         Check_For_Visible_Operator (N, B_Typ);
9466      end if;
9467
9468      --  We do the resolution using the base type, because intermediate values
9469      --  in expressions are always of the base type, not a subtype of it.
9470
9471      Resolve (Left_Opnd (N), B_Typ);
9472      Resolve (Right_Opnd (N), Standard_Integer);
9473
9474      --  For integer types, right argument must be in Natural range
9475
9476      if Is_Integer_Type (Typ) then
9477         Apply_Scalar_Range_Check (Right_Opnd (N), Standard_Natural);
9478      end if;
9479
9480      Check_Unset_Reference (Left_Opnd  (N));
9481      Check_Unset_Reference (Right_Opnd (N));
9482
9483      Set_Etype (N, B_Typ);
9484      Generate_Operator_Reference (N, B_Typ);
9485
9486      Analyze_Dimension (N);
9487
9488      if Ada_Version >= Ada_2012 and then Has_Dimension_System (B_Typ) then
9489         --  Evaluate the exponentiation operator for dimensioned type
9490
9491         Eval_Op_Expon_For_Dimensioned_Type (N, B_Typ);
9492      else
9493         Eval_Op_Expon (N);
9494      end if;
9495
9496      --  Set overflow checking bit. Much cleverer code needed here eventually
9497      --  and perhaps the Resolve routines should be separated for the various
9498      --  arithmetic operations, since they will need different processing. ???
9499
9500      if Nkind (N) in N_Op then
9501         if not Overflow_Checks_Suppressed (Etype (N)) then
9502            Enable_Overflow_Check (N);
9503         end if;
9504      end if;
9505   end Resolve_Op_Expon;
9506
9507   --------------------
9508   -- Resolve_Op_Not --
9509   --------------------
9510
9511   procedure Resolve_Op_Not (N : Node_Id; Typ : Entity_Id) is
9512      B_Typ : Entity_Id;
9513
9514      function Parent_Is_Boolean return Boolean;
9515      --  This function determines if the parent node is a boolean operator or
9516      --  operation (comparison op, membership test, or short circuit form) and
9517      --  the not in question is the left operand of this operation. Note that
9518      --  if the not is in parens, then false is returned.
9519
9520      -----------------------
9521      -- Parent_Is_Boolean --
9522      -----------------------
9523
9524      function Parent_Is_Boolean return Boolean is
9525      begin
9526         if Paren_Count (N) /= 0 then
9527            return False;
9528
9529         else
9530            case Nkind (Parent (N)) is
9531               when N_And_Then
9532                  | N_In
9533                  | N_Not_In
9534                  | N_Op_And
9535                  | N_Op_Eq
9536                  | N_Op_Ge
9537                  | N_Op_Gt
9538                  | N_Op_Le
9539                  | N_Op_Lt
9540                  | N_Op_Ne
9541                  | N_Op_Or
9542                  | N_Op_Xor
9543                  | N_Or_Else
9544               =>
9545                  return Left_Opnd (Parent (N)) = N;
9546
9547               when others =>
9548                  return False;
9549            end case;
9550         end if;
9551      end Parent_Is_Boolean;
9552
9553   --  Start of processing for Resolve_Op_Not
9554
9555   begin
9556      --  Predefined operations on scalar types yield the base type. On the
9557      --  other hand, logical operations on arrays yield the type of the
9558      --  arguments (and the context).
9559
9560      if Is_Array_Type (Typ) then
9561         B_Typ := Typ;
9562      else
9563         B_Typ := Base_Type (Typ);
9564      end if;
9565
9566      --  Straightforward case of incorrect arguments
9567
9568      if not Valid_Boolean_Arg (Typ) then
9569         Error_Msg_N ("invalid operand type for operator&", N);
9570         Set_Etype (N, Any_Type);
9571         return;
9572
9573      --  Special case of probable missing parens
9574
9575      elsif Typ = Universal_Integer or else Typ = Any_Modular then
9576         if Parent_Is_Boolean then
9577            Error_Msg_N
9578              ("operand of not must be enclosed in parentheses",
9579               Right_Opnd (N));
9580         else
9581            Error_Msg_N
9582              ("no modular type available in this context", N);
9583         end if;
9584
9585         Set_Etype (N, Any_Type);
9586         return;
9587
9588      --  OK resolution of NOT
9589
9590      else
9591         --  Warn if non-boolean types involved. This is a case like not a < b
9592         --  where a and b are modular, where we will get (not a) < b and most
9593         --  likely not (a < b) was intended.
9594
9595         if Warn_On_Questionable_Missing_Parens
9596           and then not Is_Boolean_Type (Typ)
9597           and then Parent_Is_Boolean
9598         then
9599            Error_Msg_N ("?q?not expression should be parenthesized here!", N);
9600         end if;
9601
9602         --  Warn on double negation if checking redundant constructs
9603
9604         if Warn_On_Redundant_Constructs
9605           and then Comes_From_Source (N)
9606           and then Comes_From_Source (Right_Opnd (N))
9607           and then Root_Type (Typ) = Standard_Boolean
9608           and then Nkind (Right_Opnd (N)) = N_Op_Not
9609         then
9610            Error_Msg_N ("redundant double negation?r?", N);
9611         end if;
9612
9613         --  Complete resolution and evaluation of NOT
9614
9615         Resolve (Right_Opnd (N), B_Typ);
9616         Check_Unset_Reference (Right_Opnd (N));
9617         Set_Etype (N, B_Typ);
9618         Generate_Operator_Reference (N, B_Typ);
9619         Eval_Op_Not (N);
9620      end if;
9621   end Resolve_Op_Not;
9622
9623   -----------------------------
9624   -- Resolve_Operator_Symbol --
9625   -----------------------------
9626
9627   --  Nothing to be done, all resolved already
9628
9629   procedure Resolve_Operator_Symbol (N : Node_Id; Typ : Entity_Id) is
9630      pragma Warnings (Off, N);
9631      pragma Warnings (Off, Typ);
9632
9633   begin
9634      null;
9635   end Resolve_Operator_Symbol;
9636
9637   ----------------------------------
9638   -- Resolve_Qualified_Expression --
9639   ----------------------------------
9640
9641   procedure Resolve_Qualified_Expression (N : Node_Id; Typ : Entity_Id) is
9642      pragma Warnings (Off, Typ);
9643
9644      Target_Typ : constant Entity_Id := Entity (Subtype_Mark (N));
9645      Expr       : constant Node_Id   := Expression (N);
9646
9647   begin
9648      Resolve (Expr, Target_Typ);
9649
9650      --  Protect call to Matching_Static_Array_Bounds to avoid costly
9651      --  operation if not needed.
9652
9653      if Restriction_Check_Required (SPARK_05)
9654        and then Is_Array_Type (Target_Typ)
9655        and then Is_Array_Type (Etype (Expr))
9656        and then Etype (Expr) /= Any_Composite  --  or else Expr in error
9657        and then not Matching_Static_Array_Bounds (Target_Typ, Etype (Expr))
9658      then
9659         Check_SPARK_05_Restriction
9660           ("array types should have matching static bounds", N);
9661      end if;
9662
9663      --  A qualified expression requires an exact match of the type, class-
9664      --  wide matching is not allowed. However, if the qualifying type is
9665      --  specific and the expression has a class-wide type, it may still be
9666      --  okay, since it can be the result of the expansion of a call to a
9667      --  dispatching function, so we also have to check class-wideness of the
9668      --  type of the expression's original node.
9669
9670      if (Is_Class_Wide_Type (Target_Typ)
9671           or else
9672             (Is_Class_Wide_Type (Etype (Expr))
9673               and then Is_Class_Wide_Type (Etype (Original_Node (Expr)))))
9674        and then Base_Type (Etype (Expr)) /= Base_Type (Target_Typ)
9675      then
9676         Wrong_Type (Expr, Target_Typ);
9677      end if;
9678
9679      --  If the target type is unconstrained, then we reset the type of the
9680      --  result from the type of the expression. For other cases, the actual
9681      --  subtype of the expression is the target type.
9682
9683      if Is_Composite_Type (Target_Typ)
9684        and then not Is_Constrained (Target_Typ)
9685      then
9686         Set_Etype (N, Etype (Expr));
9687      end if;
9688
9689      Analyze_Dimension (N);
9690      Eval_Qualified_Expression (N);
9691
9692      --  If we still have a qualified expression after the static evaluation,
9693      --  then apply a scalar range check if needed. The reason that we do this
9694      --  after the Eval call is that otherwise, the application of the range
9695      --  check may convert an illegal static expression and result in warning
9696      --  rather than giving an error (e.g Integer'(Integer'Last + 1)).
9697
9698      if Nkind (N) = N_Qualified_Expression and then Is_Scalar_Type (Typ) then
9699         Apply_Scalar_Range_Check (Expr, Typ);
9700      end if;
9701
9702      --  Finally, check whether a predicate applies to the target type. This
9703      --  comes from AI12-0100. As for type conversions, check the enclosing
9704      --  context to prevent an infinite expansion.
9705
9706      if Has_Predicates (Target_Typ) then
9707         if Nkind (Parent (N)) = N_Function_Call
9708           and then Present (Name (Parent (N)))
9709           and then (Is_Predicate_Function (Entity (Name (Parent (N))))
9710                       or else
9711                     Is_Predicate_Function_M (Entity (Name (Parent (N)))))
9712         then
9713            null;
9714
9715         --  In the case of a qualified expression in an allocator, the check
9716         --  is applied when expanding the allocator, so avoid redundant check.
9717
9718         elsif Nkind (N) = N_Qualified_Expression
9719           and then Nkind (Parent (N)) /= N_Allocator
9720         then
9721            Apply_Predicate_Check (N, Target_Typ);
9722         end if;
9723      end if;
9724   end Resolve_Qualified_Expression;
9725
9726   ------------------------------
9727   -- Resolve_Raise_Expression --
9728   ------------------------------
9729
9730   procedure Resolve_Raise_Expression (N : Node_Id; Typ : Entity_Id) is
9731   begin
9732      if Typ = Raise_Type then
9733         Error_Msg_N ("cannot find unique type for raise expression", N);
9734         Set_Etype (N, Any_Type);
9735      else
9736         Set_Etype (N, Typ);
9737      end if;
9738   end Resolve_Raise_Expression;
9739
9740   -------------------
9741   -- Resolve_Range --
9742   -------------------
9743
9744   procedure Resolve_Range (N : Node_Id; Typ : Entity_Id) is
9745      L : constant Node_Id := Low_Bound (N);
9746      H : constant Node_Id := High_Bound (N);
9747
9748      function First_Last_Ref return Boolean;
9749      --  Returns True if N is of the form X'First .. X'Last where X is the
9750      --  same entity for both attributes.
9751
9752      --------------------
9753      -- First_Last_Ref --
9754      --------------------
9755
9756      function First_Last_Ref return Boolean is
9757         Lorig : constant Node_Id := Original_Node (L);
9758         Horig : constant Node_Id := Original_Node (H);
9759
9760      begin
9761         if Nkind (Lorig) = N_Attribute_Reference
9762           and then Nkind (Horig) = N_Attribute_Reference
9763           and then Attribute_Name (Lorig) = Name_First
9764           and then Attribute_Name (Horig) = Name_Last
9765         then
9766            declare
9767               PL : constant Node_Id := Prefix (Lorig);
9768               PH : constant Node_Id := Prefix (Horig);
9769            begin
9770               if Is_Entity_Name (PL)
9771                 and then Is_Entity_Name (PH)
9772                 and then Entity (PL) = Entity (PH)
9773               then
9774                  return True;
9775               end if;
9776            end;
9777         end if;
9778
9779         return False;
9780      end First_Last_Ref;
9781
9782   --  Start of processing for Resolve_Range
9783
9784   begin
9785      Set_Etype (N, Typ);
9786
9787      --  The lower bound should be in Typ. The higher bound can be in Typ's
9788      --  base type if the range is null. It may still be invalid if it is
9789      --  higher than the lower bound. This is checked later in the context in
9790      --  which the range appears.
9791
9792      Resolve (L, Typ);
9793      Resolve (H, Base_Type (Typ));
9794
9795      --  Check for inappropriate range on unordered enumeration type
9796
9797      if Bad_Unordered_Enumeration_Reference (N, Typ)
9798
9799        --  Exclude X'First .. X'Last if X is the same entity for both
9800
9801        and then not First_Last_Ref
9802      then
9803         Error_Msg_Sloc := Sloc (Typ);
9804         Error_Msg_NE
9805           ("subrange of unordered enumeration type& declared#?U?", N, Typ);
9806      end if;
9807
9808      Check_Unset_Reference (L);
9809      Check_Unset_Reference (H);
9810
9811      --  We have to check the bounds for being within the base range as
9812      --  required for a non-static context. Normally this is automatic and
9813      --  done as part of evaluating expressions, but the N_Range node is an
9814      --  exception, since in GNAT we consider this node to be a subexpression,
9815      --  even though in Ada it is not. The circuit in Sem_Eval could check for
9816      --  this, but that would put the test on the main evaluation path for
9817      --  expressions.
9818
9819      Check_Non_Static_Context (L);
9820      Check_Non_Static_Context (H);
9821
9822      --  Check for an ambiguous range over character literals. This will
9823      --  happen with a membership test involving only literals.
9824
9825      if Typ = Any_Character then
9826         Ambiguous_Character (L);
9827         Set_Etype (N, Any_Type);
9828         return;
9829      end if;
9830
9831      --  If bounds are static, constant-fold them, so size computations are
9832      --  identical between front-end and back-end. Do not perform this
9833      --  transformation while analyzing generic units, as type information
9834      --  would be lost when reanalyzing the constant node in the instance.
9835
9836      if Is_Discrete_Type (Typ) and then Expander_Active then
9837         if Is_OK_Static_Expression (L) then
9838            Fold_Uint (L, Expr_Value (L), Is_OK_Static_Expression (L));
9839         end if;
9840
9841         if Is_OK_Static_Expression (H) then
9842            Fold_Uint (H, Expr_Value (H), Is_OK_Static_Expression (H));
9843         end if;
9844      end if;
9845   end Resolve_Range;
9846
9847   --------------------------
9848   -- Resolve_Real_Literal --
9849   --------------------------
9850
9851   procedure Resolve_Real_Literal (N : Node_Id; Typ : Entity_Id) is
9852      Actual_Typ : constant Entity_Id := Etype (N);
9853
9854   begin
9855      --  Special processing for fixed-point literals to make sure that the
9856      --  value is an exact multiple of small where this is required. We skip
9857      --  this for the universal real case, and also for generic types.
9858
9859      if Is_Fixed_Point_Type (Typ)
9860        and then Typ /= Universal_Fixed
9861        and then Typ /= Any_Fixed
9862        and then not Is_Generic_Type (Typ)
9863      then
9864         declare
9865            Val   : constant Ureal := Realval (N);
9866            Cintr : constant Ureal := Val / Small_Value (Typ);
9867            Cint  : constant Uint  := UR_Trunc (Cintr);
9868            Den   : constant Uint  := Norm_Den (Cintr);
9869            Stat  : Boolean;
9870
9871         begin
9872            --  Case of literal is not an exact multiple of the Small
9873
9874            if Den /= 1 then
9875
9876               --  For a source program literal for a decimal fixed-point type,
9877               --  this is statically illegal (RM 4.9(36)).
9878
9879               if Is_Decimal_Fixed_Point_Type (Typ)
9880                 and then Actual_Typ = Universal_Real
9881                 and then Comes_From_Source (N)
9882               then
9883                  Error_Msg_N ("value has extraneous low order digits", N);
9884               end if;
9885
9886               --  Generate a warning if literal from source
9887
9888               if Is_OK_Static_Expression (N)
9889                 and then Warn_On_Bad_Fixed_Value
9890               then
9891                  Error_Msg_N
9892                    ("?b?static fixed-point value is not a multiple of Small!",
9893                     N);
9894               end if;
9895
9896               --  Replace literal by a value that is the exact representation
9897               --  of a value of the type, i.e. a multiple of the small value,
9898               --  by truncation, since Machine_Rounds is false for all GNAT
9899               --  fixed-point types (RM 4.9(38)).
9900
9901               Stat := Is_OK_Static_Expression (N);
9902               Rewrite (N,
9903                 Make_Real_Literal (Sloc (N),
9904                   Realval => Small_Value (Typ) * Cint));
9905
9906               Set_Is_Static_Expression (N, Stat);
9907            end if;
9908
9909            --  In all cases, set the corresponding integer field
9910
9911            Set_Corresponding_Integer_Value (N, Cint);
9912         end;
9913      end if;
9914
9915      --  Now replace the actual type by the expected type as usual
9916
9917      Set_Etype (N, Typ);
9918      Eval_Real_Literal (N);
9919   end Resolve_Real_Literal;
9920
9921   -----------------------
9922   -- Resolve_Reference --
9923   -----------------------
9924
9925   procedure Resolve_Reference (N : Node_Id; Typ : Entity_Id) is
9926      P : constant Node_Id := Prefix (N);
9927
9928   begin
9929      --  Replace general access with specific type
9930
9931      if Ekind (Etype (N)) = E_Allocator_Type then
9932         Set_Etype (N, Base_Type (Typ));
9933      end if;
9934
9935      Resolve (P, Designated_Type (Etype (N)));
9936
9937      --  If we are taking the reference of a volatile entity, then treat it as
9938      --  a potential modification of this entity. This is too conservative,
9939      --  but necessary because remove side effects can cause transformations
9940      --  of normal assignments into reference sequences that otherwise fail to
9941      --  notice the modification.
9942
9943      if Is_Entity_Name (P) and then Treat_As_Volatile (Entity (P)) then
9944         Note_Possible_Modification (P, Sure => False);
9945      end if;
9946   end Resolve_Reference;
9947
9948   --------------------------------
9949   -- Resolve_Selected_Component --
9950   --------------------------------
9951
9952   procedure Resolve_Selected_Component (N : Node_Id; Typ : Entity_Id) is
9953      Comp  : Entity_Id;
9954      Comp1 : Entity_Id        := Empty; -- prevent junk warning
9955      P     : constant Node_Id := Prefix (N);
9956      S     : constant Node_Id := Selector_Name (N);
9957      T     : Entity_Id        := Etype (P);
9958      I     : Interp_Index;
9959      I1    : Interp_Index := 0; -- prevent junk warning
9960      It    : Interp;
9961      It1   : Interp;
9962      Found : Boolean;
9963
9964      function Init_Component return Boolean;
9965      --  Check whether this is the initialization of a component within an
9966      --  init proc (by assignment or call to another init proc). If true,
9967      --  there is no need for a discriminant check.
9968
9969      --------------------
9970      -- Init_Component --
9971      --------------------
9972
9973      function Init_Component return Boolean is
9974      begin
9975         return Inside_Init_Proc
9976           and then Nkind (Prefix (N)) = N_Identifier
9977           and then Chars (Prefix (N)) = Name_uInit
9978           and then Nkind (Parent (Parent (N))) = N_Case_Statement_Alternative;
9979      end Init_Component;
9980
9981   --  Start of processing for Resolve_Selected_Component
9982
9983   begin
9984      if Is_Overloaded (P) then
9985
9986         --  Use the context type to select the prefix that has a selector
9987         --  of the correct name and type.
9988
9989         Found := False;
9990         Get_First_Interp (P, I, It);
9991
9992         Search : while Present (It.Typ) loop
9993            if Is_Access_Type (It.Typ) then
9994               T := Designated_Type (It.Typ);
9995            else
9996               T := It.Typ;
9997            end if;
9998
9999            --  Locate selected component. For a private prefix the selector
10000            --  can denote a discriminant.
10001
10002            if Is_Record_Type (T) or else Is_Private_Type (T) then
10003
10004               --  The visible components of a class-wide type are those of
10005               --  the root type.
10006
10007               if Is_Class_Wide_Type (T) then
10008                  T := Etype (T);
10009               end if;
10010
10011               Comp := First_Entity (T);
10012               while Present (Comp) loop
10013                  if Chars (Comp) = Chars (S)
10014                    and then Covers (Typ, Etype (Comp))
10015                  then
10016                     if not Found then
10017                        Found := True;
10018                        I1  := I;
10019                        It1 := It;
10020                        Comp1 := Comp;
10021
10022                     else
10023                        It := Disambiguate (P, I1, I, Any_Type);
10024
10025                        if It = No_Interp then
10026                           Error_Msg_N
10027                             ("ambiguous prefix for selected component",  N);
10028                           Set_Etype (N, Typ);
10029                           return;
10030
10031                        else
10032                           It1 := It;
10033
10034                           --  There may be an implicit dereference. Retrieve
10035                           --  designated record type.
10036
10037                           if Is_Access_Type (It1.Typ) then
10038                              T := Designated_Type (It1.Typ);
10039                           else
10040                              T := It1.Typ;
10041                           end if;
10042
10043                           if Scope (Comp1) /= T then
10044
10045                              --  Resolution chooses the new interpretation.
10046                              --  Find the component with the right name.
10047
10048                              Comp1 := First_Entity (T);
10049                              while Present (Comp1)
10050                                and then Chars (Comp1) /= Chars (S)
10051                              loop
10052                                 Comp1 := Next_Entity (Comp1);
10053                              end loop;
10054                           end if;
10055
10056                           exit Search;
10057                        end if;
10058                     end if;
10059                  end if;
10060
10061                  Comp := Next_Entity (Comp);
10062               end loop;
10063            end if;
10064
10065            Get_Next_Interp (I, It);
10066         end loop Search;
10067
10068         --  There must be a legal interpretation at this point
10069
10070         pragma Assert (Found);
10071         Resolve (P, It1.Typ);
10072         Set_Etype (N, Typ);
10073         Set_Entity_With_Checks (S, Comp1);
10074
10075      else
10076         --  Resolve prefix with its type
10077
10078         Resolve (P, T);
10079      end if;
10080
10081      --  Generate cross-reference. We needed to wait until full overloading
10082      --  resolution was complete to do this, since otherwise we can't tell if
10083      --  we are an lvalue or not.
10084
10085      if May_Be_Lvalue (N) then
10086         Generate_Reference (Entity (S), S, 'm');
10087      else
10088         Generate_Reference (Entity (S), S, 'r');
10089      end if;
10090
10091      --  If prefix is an access type, the node will be transformed into an
10092      --  explicit dereference during expansion. The type of the node is the
10093      --  designated type of that of the prefix.
10094
10095      if Is_Access_Type (Etype (P)) then
10096         T := Designated_Type (Etype (P));
10097         Check_Fully_Declared_Prefix (T, P);
10098      else
10099         T := Etype (P);
10100      end if;
10101
10102      --  Set flag for expander if discriminant check required on a component
10103      --  appearing within a variant.
10104
10105      if Has_Discriminants (T)
10106        and then Ekind (Entity (S)) = E_Component
10107        and then Present (Original_Record_Component (Entity (S)))
10108        and then Ekind (Original_Record_Component (Entity (S))) = E_Component
10109        and then
10110          Is_Declared_Within_Variant (Original_Record_Component (Entity (S)))
10111        and then not Discriminant_Checks_Suppressed (T)
10112        and then not Init_Component
10113      then
10114         Set_Do_Discriminant_Check (N);
10115      end if;
10116
10117      if Ekind (Entity (S)) = E_Void then
10118         Error_Msg_N ("premature use of component", S);
10119      end if;
10120
10121      --  If the prefix is a record conversion, this may be a renamed
10122      --  discriminant whose bounds differ from those of the original
10123      --  one, so we must ensure that a range check is performed.
10124
10125      if Nkind (P) = N_Type_Conversion
10126        and then Ekind (Entity (S)) = E_Discriminant
10127        and then Is_Discrete_Type (Typ)
10128      then
10129         Set_Etype (N, Base_Type (Typ));
10130      end if;
10131
10132      --  Note: No Eval processing is required, because the prefix is of a
10133      --  record type, or protected type, and neither can possibly be static.
10134
10135      --  If the record type is atomic, and the component is non-atomic, then
10136      --  this is worth a warning, since we have a situation where the access
10137      --  to the component may cause extra read/writes of the atomic array
10138      --  object, or partial word accesses, both of which may be unexpected.
10139
10140      if Nkind (N) = N_Selected_Component
10141        and then Is_Atomic_Ref_With_Address (N)
10142        and then not Is_Atomic (Entity (S))
10143        and then not Is_Atomic (Etype (Entity (S)))
10144      then
10145         Error_Msg_N
10146           ("??access to non-atomic component of atomic record",
10147            Prefix (N));
10148         Error_Msg_N
10149           ("\??may cause unexpected accesses to atomic object",
10150            Prefix (N));
10151      end if;
10152
10153      Analyze_Dimension (N);
10154   end Resolve_Selected_Component;
10155
10156   -------------------
10157   -- Resolve_Shift --
10158   -------------------
10159
10160   procedure Resolve_Shift (N : Node_Id; Typ : Entity_Id) is
10161      B_Typ : constant Entity_Id := Base_Type (Typ);
10162      L     : constant Node_Id   := Left_Opnd  (N);
10163      R     : constant Node_Id   := Right_Opnd (N);
10164
10165   begin
10166      --  We do the resolution using the base type, because intermediate values
10167      --  in expressions always are of the base type, not a subtype of it.
10168
10169      Resolve (L, B_Typ);
10170      Resolve (R, Standard_Natural);
10171
10172      Check_Unset_Reference (L);
10173      Check_Unset_Reference (R);
10174
10175      Set_Etype (N, B_Typ);
10176      Generate_Operator_Reference (N, B_Typ);
10177      Eval_Shift (N);
10178   end Resolve_Shift;
10179
10180   ---------------------------
10181   -- Resolve_Short_Circuit --
10182   ---------------------------
10183
10184   procedure Resolve_Short_Circuit (N : Node_Id; Typ : Entity_Id) is
10185      B_Typ : constant Entity_Id := Base_Type (Typ);
10186      L     : constant Node_Id   := Left_Opnd  (N);
10187      R     : constant Node_Id   := Right_Opnd (N);
10188
10189   begin
10190      --  Ensure all actions associated with the left operand (e.g.
10191      --  finalization of transient objects) are fully evaluated locally within
10192      --  an expression with actions. This is particularly helpful for coverage
10193      --  analysis. However this should not happen in generics or if option
10194      --  Minimize_Expression_With_Actions is set.
10195
10196      if Expander_Active and not Minimize_Expression_With_Actions then
10197         declare
10198            Reloc_L : constant Node_Id := Relocate_Node (L);
10199         begin
10200            Save_Interps (Old_N => L, New_N => Reloc_L);
10201
10202            Rewrite (L,
10203              Make_Expression_With_Actions (Sloc (L),
10204                Actions    => New_List,
10205                Expression => Reloc_L));
10206
10207            --  Set Comes_From_Source on L to preserve warnings for unset
10208            --  reference.
10209
10210            Set_Comes_From_Source (L, Comes_From_Source (Reloc_L));
10211         end;
10212      end if;
10213
10214      Resolve (L, B_Typ);
10215      Resolve (R, B_Typ);
10216
10217      --  Check for issuing warning for always False assert/check, this happens
10218      --  when assertions are turned off, in which case the pragma Assert/Check
10219      --  was transformed into:
10220
10221      --     if False and then <condition> then ...
10222
10223      --  and we detect this pattern
10224
10225      if Warn_On_Assertion_Failure
10226        and then Is_Entity_Name (R)
10227        and then Entity (R) = Standard_False
10228        and then Nkind (Parent (N)) = N_If_Statement
10229        and then Nkind (N) = N_And_Then
10230        and then Is_Entity_Name (L)
10231        and then Entity (L) = Standard_False
10232      then
10233         declare
10234            Orig : constant Node_Id := Original_Node (Parent (N));
10235
10236         begin
10237            --  Special handling of Asssert pragma
10238
10239            if Nkind (Orig) = N_Pragma
10240              and then Pragma_Name (Orig) = Name_Assert
10241            then
10242               declare
10243                  Expr : constant Node_Id :=
10244                           Original_Node
10245                             (Expression
10246                               (First (Pragma_Argument_Associations (Orig))));
10247
10248               begin
10249                  --  Don't warn if original condition is explicit False,
10250                  --  since obviously the failure is expected in this case.
10251
10252                  if Is_Entity_Name (Expr)
10253                    and then Entity (Expr) = Standard_False
10254                  then
10255                     null;
10256
10257                  --  Issue warning. We do not want the deletion of the
10258                  --  IF/AND-THEN to take this message with it. We achieve this
10259                  --  by making sure that the expanded code points to the Sloc
10260                  --  of the expression, not the original pragma.
10261
10262                  else
10263                     --  Note: Use Error_Msg_F here rather than Error_Msg_N.
10264                     --  The source location of the expression is not usually
10265                     --  the best choice here. For example, it gets located on
10266                     --  the last AND keyword in a chain of boolean expressiond
10267                     --  AND'ed together. It is best to put the message on the
10268                     --  first character of the assertion, which is the effect
10269                     --  of the First_Node call here.
10270
10271                     Error_Msg_F
10272                       ("?A?assertion would fail at run time!",
10273                        Expression
10274                          (First (Pragma_Argument_Associations (Orig))));
10275                  end if;
10276               end;
10277
10278            --  Similar processing for Check pragma
10279
10280            elsif Nkind (Orig) = N_Pragma
10281              and then Pragma_Name (Orig) = Name_Check
10282            then
10283               --  Don't want to warn if original condition is explicit False
10284
10285               declare
10286                  Expr : constant Node_Id :=
10287                    Original_Node
10288                      (Expression
10289                        (Next (First (Pragma_Argument_Associations (Orig)))));
10290               begin
10291                  if Is_Entity_Name (Expr)
10292                    and then Entity (Expr) = Standard_False
10293                  then
10294                     null;
10295
10296                  --  Post warning
10297
10298                  else
10299                     --  Again use Error_Msg_F rather than Error_Msg_N, see
10300                     --  comment above for an explanation of why we do this.
10301
10302                     Error_Msg_F
10303                       ("?A?check would fail at run time!",
10304                        Expression
10305                          (Last (Pragma_Argument_Associations (Orig))));
10306                  end if;
10307               end;
10308            end if;
10309         end;
10310      end if;
10311
10312      --  Continue with processing of short circuit
10313
10314      Check_Unset_Reference (L);
10315      Check_Unset_Reference (R);
10316
10317      Set_Etype (N, B_Typ);
10318      Eval_Short_Circuit (N);
10319   end Resolve_Short_Circuit;
10320
10321   -------------------
10322   -- Resolve_Slice --
10323   -------------------
10324
10325   procedure Resolve_Slice (N : Node_Id; Typ : Entity_Id) is
10326      Drange     : constant Node_Id := Discrete_Range (N);
10327      Name       : constant Node_Id := Prefix (N);
10328      Array_Type : Entity_Id        := Empty;
10329      Dexpr      : Node_Id          := Empty;
10330      Index_Type : Entity_Id;
10331
10332   begin
10333      if Is_Overloaded (Name) then
10334
10335         --  Use the context type to select the prefix that yields the correct
10336         --  array type.
10337
10338         declare
10339            I      : Interp_Index;
10340            I1     : Interp_Index := 0;
10341            It     : Interp;
10342            P      : constant Node_Id := Prefix (N);
10343            Found  : Boolean := False;
10344
10345         begin
10346            Get_First_Interp (P, I,  It);
10347            while Present (It.Typ) loop
10348               if (Is_Array_Type (It.Typ)
10349                    and then Covers (Typ,  It.Typ))
10350                 or else (Is_Access_Type (It.Typ)
10351                           and then Is_Array_Type (Designated_Type (It.Typ))
10352                           and then Covers (Typ, Designated_Type (It.Typ)))
10353               then
10354                  if Found then
10355                     It := Disambiguate (P, I1, I, Any_Type);
10356
10357                     if It = No_Interp then
10358                        Error_Msg_N ("ambiguous prefix for slicing",  N);
10359                        Set_Etype (N, Typ);
10360                        return;
10361                     else
10362                        Found := True;
10363                        Array_Type := It.Typ;
10364                        I1 := I;
10365                     end if;
10366                  else
10367                     Found := True;
10368                     Array_Type := It.Typ;
10369                     I1 := I;
10370                  end if;
10371               end if;
10372
10373               Get_Next_Interp (I, It);
10374            end loop;
10375         end;
10376
10377      else
10378         Array_Type := Etype (Name);
10379      end if;
10380
10381      Resolve (Name, Array_Type);
10382
10383      if Is_Access_Type (Array_Type) then
10384         Apply_Access_Check (N);
10385         Array_Type := Designated_Type (Array_Type);
10386
10387         --  If the prefix is an access to an unconstrained array, we must use
10388         --  the actual subtype of the object to perform the index checks. The
10389         --  object denoted by the prefix is implicit in the node, so we build
10390         --  an explicit representation for it in order to compute the actual
10391         --  subtype.
10392
10393         if not Is_Constrained (Array_Type) then
10394            Remove_Side_Effects (Prefix (N));
10395
10396            declare
10397               Obj : constant Node_Id :=
10398                       Make_Explicit_Dereference (Sloc (N),
10399                         Prefix => New_Copy_Tree (Prefix (N)));
10400            begin
10401               Set_Etype (Obj, Array_Type);
10402               Set_Parent (Obj, Parent (N));
10403               Array_Type := Get_Actual_Subtype (Obj);
10404            end;
10405         end if;
10406
10407      elsif Is_Entity_Name (Name)
10408        or else Nkind (Name) = N_Explicit_Dereference
10409        or else (Nkind (Name) = N_Function_Call
10410                  and then not Is_Constrained (Etype (Name)))
10411      then
10412         Array_Type := Get_Actual_Subtype (Name);
10413
10414      --  If the name is a selected component that depends on discriminants,
10415      --  build an actual subtype for it. This can happen only when the name
10416      --  itself is overloaded; otherwise the actual subtype is created when
10417      --  the selected component is analyzed.
10418
10419      elsif Nkind (Name) = N_Selected_Component
10420        and then Full_Analysis
10421        and then Depends_On_Discriminant (First_Index (Array_Type))
10422      then
10423         declare
10424            Act_Decl : constant Node_Id :=
10425                         Build_Actual_Subtype_Of_Component (Array_Type, Name);
10426         begin
10427            Insert_Action (N, Act_Decl);
10428            Array_Type := Defining_Identifier (Act_Decl);
10429         end;
10430
10431      --  Maybe this should just be "else", instead of checking for the
10432      --  specific case of slice??? This is needed for the case where the
10433      --  prefix is an Image attribute, which gets expanded to a slice, and so
10434      --  has a constrained subtype which we want to use for the slice range
10435      --  check applied below (the range check won't get done if the
10436      --  unconstrained subtype of the 'Image is used).
10437
10438      elsif Nkind (Name) = N_Slice then
10439         Array_Type := Etype (Name);
10440      end if;
10441
10442      --  Obtain the type of the array index
10443
10444      if Ekind (Array_Type) = E_String_Literal_Subtype then
10445         Index_Type := Etype (String_Literal_Low_Bound (Array_Type));
10446      else
10447         Index_Type := Etype (First_Index (Array_Type));
10448      end if;
10449
10450      --  If name was overloaded, set slice type correctly now
10451
10452      Set_Etype (N, Array_Type);
10453
10454      --  Handle the generation of a range check that compares the array index
10455      --  against the discrete_range. The check is not applied to internally
10456      --  built nodes associated with the expansion of dispatch tables. Check
10457      --  that Ada.Tags has already been loaded to avoid extra dependencies on
10458      --  the unit.
10459
10460      if Tagged_Type_Expansion
10461        and then RTU_Loaded (Ada_Tags)
10462        and then Nkind (Prefix (N)) = N_Selected_Component
10463        and then Present (Entity (Selector_Name (Prefix (N))))
10464        and then Entity (Selector_Name (Prefix (N))) =
10465                   RTE_Record_Component (RE_Prims_Ptr)
10466      then
10467         null;
10468
10469      --  The discrete_range is specified by a subtype indication. Create a
10470      --  shallow copy and inherit the type, parent and source location from
10471      --  the discrete_range. This ensures that the range check is inserted
10472      --  relative to the slice and that the runtime exception points to the
10473      --  proper construct.
10474
10475      elsif Is_Entity_Name (Drange) then
10476         Dexpr := New_Copy (Scalar_Range (Entity (Drange)));
10477
10478         Set_Etype  (Dexpr, Etype  (Drange));
10479         Set_Parent (Dexpr, Parent (Drange));
10480         Set_Sloc   (Dexpr, Sloc   (Drange));
10481
10482      --  The discrete_range is a regular range. Resolve the bounds and remove
10483      --  their side effects.
10484
10485      else
10486         Resolve (Drange, Base_Type (Index_Type));
10487
10488         if Nkind (Drange) = N_Range then
10489            Force_Evaluation (Low_Bound  (Drange));
10490            Force_Evaluation (High_Bound (Drange));
10491
10492            Dexpr := Drange;
10493         end if;
10494      end if;
10495
10496      if Present (Dexpr) then
10497         Apply_Range_Check (Dexpr, Index_Type);
10498      end if;
10499
10500      Set_Slice_Subtype (N);
10501
10502      --  Check bad use of type with predicates
10503
10504      declare
10505         Subt : Entity_Id;
10506
10507      begin
10508         if Nkind (Drange) = N_Subtype_Indication
10509           and then Has_Predicates (Entity (Subtype_Mark (Drange)))
10510         then
10511            Subt := Entity (Subtype_Mark (Drange));
10512         else
10513            Subt := Etype (Drange);
10514         end if;
10515
10516         if Has_Predicates (Subt) then
10517            Bad_Predicated_Subtype_Use
10518              ("subtype& has predicate, not allowed in slice", Drange, Subt);
10519         end if;
10520      end;
10521
10522      --  Otherwise here is where we check suspicious indexes
10523
10524      if Nkind (Drange) = N_Range then
10525         Warn_On_Suspicious_Index (Name, Low_Bound  (Drange));
10526         Warn_On_Suspicious_Index (Name, High_Bound (Drange));
10527      end if;
10528
10529      Analyze_Dimension (N);
10530      Eval_Slice (N);
10531   end Resolve_Slice;
10532
10533   ----------------------------
10534   -- Resolve_String_Literal --
10535   ----------------------------
10536
10537   procedure Resolve_String_Literal (N : Node_Id; Typ : Entity_Id) is
10538      C_Typ      : constant Entity_Id  := Component_Type (Typ);
10539      R_Typ      : constant Entity_Id  := Root_Type (C_Typ);
10540      Loc        : constant Source_Ptr := Sloc (N);
10541      Str        : constant String_Id  := Strval (N);
10542      Strlen     : constant Nat        := String_Length (Str);
10543      Subtype_Id : Entity_Id;
10544      Need_Check : Boolean;
10545
10546   begin
10547      --  For a string appearing in a concatenation, defer creation of the
10548      --  string_literal_subtype until the end of the resolution of the
10549      --  concatenation, because the literal may be constant-folded away. This
10550      --  is a useful optimization for long concatenation expressions.
10551
10552      --  If the string is an aggregate built for a single character (which
10553      --  happens in a non-static context) or a is null string to which special
10554      --  checks may apply, we build the subtype. Wide strings must also get a
10555      --  string subtype if they come from a one character aggregate. Strings
10556      --  generated by attributes might be static, but it is often hard to
10557      --  determine whether the enclosing context is static, so we generate
10558      --  subtypes for them as well, thus losing some rarer optimizations ???
10559      --  Same for strings that come from a static conversion.
10560
10561      Need_Check :=
10562        (Strlen = 0 and then Typ /= Standard_String)
10563          or else Nkind (Parent (N)) /= N_Op_Concat
10564          or else (N /= Left_Opnd (Parent (N))
10565                    and then N /= Right_Opnd (Parent (N)))
10566          or else ((Typ = Standard_Wide_String
10567                      or else Typ = Standard_Wide_Wide_String)
10568                    and then Nkind (Original_Node (N)) /= N_String_Literal);
10569
10570      --  If the resolving type is itself a string literal subtype, we can just
10571      --  reuse it, since there is no point in creating another.
10572
10573      if Ekind (Typ) = E_String_Literal_Subtype then
10574         Subtype_Id := Typ;
10575
10576      elsif Nkind (Parent (N)) = N_Op_Concat
10577        and then not Need_Check
10578        and then not Nkind_In (Original_Node (N), N_Character_Literal,
10579                                                  N_Attribute_Reference,
10580                                                  N_Qualified_Expression,
10581                                                  N_Type_Conversion)
10582      then
10583         Subtype_Id := Typ;
10584
10585      --  Do not generate a string literal subtype for the default expression
10586      --  of a formal parameter in GNATprove mode. This is because the string
10587      --  subtype is associated with the freezing actions of the subprogram,
10588      --  however freezing is disabled in GNATprove mode and as a result the
10589      --  subtype is unavailable.
10590
10591      elsif GNATprove_Mode
10592        and then Nkind (Parent (N)) = N_Parameter_Specification
10593      then
10594         Subtype_Id := Typ;
10595
10596      --  Otherwise we must create a string literal subtype. Note that the
10597      --  whole idea of string literal subtypes is simply to avoid the need
10598      --  for building a full fledged array subtype for each literal.
10599
10600      else
10601         Set_String_Literal_Subtype (N, Typ);
10602         Subtype_Id := Etype (N);
10603      end if;
10604
10605      if Nkind (Parent (N)) /= N_Op_Concat
10606        or else Need_Check
10607      then
10608         Set_Etype (N, Subtype_Id);
10609         Eval_String_Literal (N);
10610      end if;
10611
10612      if Is_Limited_Composite (Typ)
10613        or else Is_Private_Composite (Typ)
10614      then
10615         Error_Msg_N ("string literal not available for private array", N);
10616         Set_Etype (N, Any_Type);
10617         return;
10618      end if;
10619
10620      --  The validity of a null string has been checked in the call to
10621      --  Eval_String_Literal.
10622
10623      if Strlen = 0 then
10624         return;
10625
10626      --  Always accept string literal with component type Any_Character, which
10627      --  occurs in error situations and in comparisons of literals, both of
10628      --  which should accept all literals.
10629
10630      elsif R_Typ = Any_Character then
10631         return;
10632
10633      --  If the type is bit-packed, then we always transform the string
10634      --  literal into a full fledged aggregate.
10635
10636      elsif Is_Bit_Packed_Array (Typ) then
10637         null;
10638
10639      --  Deal with cases of Wide_Wide_String, Wide_String, and String
10640
10641      else
10642         --  For Standard.Wide_Wide_String, or any other type whose component
10643         --  type is Standard.Wide_Wide_Character, we know that all the
10644         --  characters in the string must be acceptable, since the parser
10645         --  accepted the characters as valid character literals.
10646
10647         if R_Typ = Standard_Wide_Wide_Character then
10648            null;
10649
10650         --  For the case of Standard.String, or any other type whose component
10651         --  type is Standard.Character, we must make sure that there are no
10652         --  wide characters in the string, i.e. that it is entirely composed
10653         --  of characters in range of type Character.
10654
10655         --  If the string literal is the result of a static concatenation, the
10656         --  test has already been performed on the components, and need not be
10657         --  repeated.
10658
10659         elsif R_Typ = Standard_Character
10660           and then Nkind (Original_Node (N)) /= N_Op_Concat
10661         then
10662            for J in 1 .. Strlen loop
10663               if not In_Character_Range (Get_String_Char (Str, J)) then
10664
10665                  --  If we are out of range, post error. This is one of the
10666                  --  very few places that we place the flag in the middle of
10667                  --  a token, right under the offending wide character. Not
10668                  --  quite clear if this is right wrt wide character encoding
10669                  --  sequences, but it's only an error message.
10670
10671                  Error_Msg
10672                    ("literal out of range of type Standard.Character",
10673                     Source_Ptr (Int (Loc) + J));
10674                  return;
10675               end if;
10676            end loop;
10677
10678         --  For the case of Standard.Wide_String, or any other type whose
10679         --  component type is Standard.Wide_Character, we must make sure that
10680         --  there are no wide characters in the string, i.e. that it is
10681         --  entirely composed of characters in range of type Wide_Character.
10682
10683         --  If the string literal is the result of a static concatenation,
10684         --  the test has already been performed on the components, and need
10685         --  not be repeated.
10686
10687         elsif R_Typ = Standard_Wide_Character
10688           and then Nkind (Original_Node (N)) /= N_Op_Concat
10689         then
10690            for J in 1 .. Strlen loop
10691               if not In_Wide_Character_Range (Get_String_Char (Str, J)) then
10692
10693                  --  If we are out of range, post error. This is one of the
10694                  --  very few places that we place the flag in the middle of
10695                  --  a token, right under the offending wide character.
10696
10697                  --  This is not quite right, because characters in general
10698                  --  will take more than one character position ???
10699
10700                  Error_Msg
10701                    ("literal out of range of type Standard.Wide_Character",
10702                     Source_Ptr (Int (Loc) + J));
10703                  return;
10704               end if;
10705            end loop;
10706
10707         --  If the root type is not a standard character, then we will convert
10708         --  the string into an aggregate and will let the aggregate code do
10709         --  the checking. Standard Wide_Wide_Character is also OK here.
10710
10711         else
10712            null;
10713         end if;
10714
10715         --  See if the component type of the array corresponding to the string
10716         --  has compile time known bounds. If yes we can directly check
10717         --  whether the evaluation of the string will raise constraint error.
10718         --  Otherwise we need to transform the string literal into the
10719         --  corresponding character aggregate and let the aggregate code do
10720         --  the checking.
10721
10722         if Is_Standard_Character_Type (R_Typ) then
10723
10724            --  Check for the case of full range, where we are definitely OK
10725
10726            if Component_Type (Typ) = Base_Type (Component_Type (Typ)) then
10727               return;
10728            end if;
10729
10730            --  Here the range is not the complete base type range, so check
10731
10732            declare
10733               Comp_Typ_Lo : constant Node_Id :=
10734                               Type_Low_Bound (Component_Type (Typ));
10735               Comp_Typ_Hi : constant Node_Id :=
10736                               Type_High_Bound (Component_Type (Typ));
10737
10738               Char_Val : Uint;
10739
10740            begin
10741               if Compile_Time_Known_Value (Comp_Typ_Lo)
10742                 and then Compile_Time_Known_Value (Comp_Typ_Hi)
10743               then
10744                  for J in 1 .. Strlen loop
10745                     Char_Val := UI_From_Int (Int (Get_String_Char (Str, J)));
10746
10747                     if Char_Val < Expr_Value (Comp_Typ_Lo)
10748                       or else Char_Val > Expr_Value (Comp_Typ_Hi)
10749                     then
10750                        Apply_Compile_Time_Constraint_Error
10751                          (N, "character out of range??",
10752                           CE_Range_Check_Failed,
10753                           Loc => Source_Ptr (Int (Loc) + J));
10754                     end if;
10755                  end loop;
10756
10757                  return;
10758               end if;
10759            end;
10760         end if;
10761      end if;
10762
10763      --  If we got here we meed to transform the string literal into the
10764      --  equivalent qualified positional array aggregate. This is rather
10765      --  heavy artillery for this situation, but it is hard work to avoid.
10766
10767      declare
10768         Lits : constant List_Id    := New_List;
10769         P    : Source_Ptr := Loc + 1;
10770         C    : Char_Code;
10771
10772      begin
10773         --  Build the character literals, we give them source locations that
10774         --  correspond to the string positions, which is a bit tricky given
10775         --  the possible presence of wide character escape sequences.
10776
10777         for J in 1 .. Strlen loop
10778            C := Get_String_Char (Str, J);
10779            Set_Character_Literal_Name (C);
10780
10781            Append_To (Lits,
10782              Make_Character_Literal (P,
10783                Chars              => Name_Find,
10784                Char_Literal_Value => UI_From_CC (C)));
10785
10786            if In_Character_Range (C) then
10787               P := P + 1;
10788
10789            --  Should we have a call to Skip_Wide here ???
10790
10791            --  ???     else
10792            --             Skip_Wide (P);
10793
10794            end if;
10795         end loop;
10796
10797         Rewrite (N,
10798           Make_Qualified_Expression (Loc,
10799             Subtype_Mark => New_Occurrence_Of (Typ, Loc),
10800             Expression   =>
10801               Make_Aggregate (Loc, Expressions => Lits)));
10802
10803         Analyze_And_Resolve (N, Typ);
10804      end;
10805   end Resolve_String_Literal;
10806
10807   -------------------------
10808   -- Resolve_Target_Name --
10809   -------------------------
10810
10811   procedure Resolve_Target_Name (N : Node_Id; Typ : Entity_Id) is
10812   begin
10813      Set_Etype (N, Typ);
10814   end Resolve_Target_Name;
10815
10816   -----------------------------
10817   -- Resolve_Type_Conversion --
10818   -----------------------------
10819
10820   procedure Resolve_Type_Conversion (N : Node_Id; Typ : Entity_Id) is
10821      Conv_OK     : constant Boolean   := Conversion_OK (N);
10822      Operand     : constant Node_Id   := Expression (N);
10823      Operand_Typ : constant Entity_Id := Etype (Operand);
10824      Target_Typ  : constant Entity_Id := Etype (N);
10825      Rop         : Node_Id;
10826      Orig_N      : Node_Id;
10827      Orig_T      : Node_Id;
10828
10829      Test_Redundant : Boolean := Warn_On_Redundant_Constructs;
10830      --  Set to False to suppress cases where we want to suppress the test
10831      --  for redundancy to avoid possible false positives on this warning.
10832
10833   begin
10834      if not Conv_OK
10835        and then not Valid_Conversion (N, Target_Typ, Operand)
10836      then
10837         return;
10838      end if;
10839
10840      --  If the Operand Etype is Universal_Fixed, then the conversion is
10841      --  never redundant. We need this check because by the time we have
10842      --  finished the rather complex transformation, the conversion looks
10843      --  redundant when it is not.
10844
10845      if Operand_Typ = Universal_Fixed then
10846         Test_Redundant := False;
10847
10848      --  If the operand is marked as Any_Fixed, then special processing is
10849      --  required. This is also a case where we suppress the test for a
10850      --  redundant conversion, since most certainly it is not redundant.
10851
10852      elsif Operand_Typ = Any_Fixed then
10853         Test_Redundant := False;
10854
10855         --  Mixed-mode operation involving a literal. Context must be a fixed
10856         --  type which is applied to the literal subsequently.
10857
10858         --  Multiplication and division involving two fixed type operands must
10859         --  yield a universal real because the result is computed in arbitrary
10860         --  precision.
10861
10862         if Is_Fixed_Point_Type (Typ)
10863           and then Nkind_In (Operand, N_Op_Divide, N_Op_Multiply)
10864           and then Etype (Left_Opnd  (Operand)) = Any_Fixed
10865           and then Etype (Right_Opnd (Operand)) = Any_Fixed
10866         then
10867            Set_Etype (Operand, Universal_Real);
10868
10869         elsif Is_Numeric_Type (Typ)
10870           and then Nkind_In (Operand, N_Op_Multiply, N_Op_Divide)
10871           and then (Etype (Right_Opnd (Operand)) = Universal_Real
10872                       or else
10873                     Etype (Left_Opnd  (Operand)) = Universal_Real)
10874         then
10875            --  Return if expression is ambiguous
10876
10877            if Unique_Fixed_Point_Type (N) = Any_Type then
10878               return;
10879
10880            --  If nothing else, the available fixed type is Duration
10881
10882            else
10883               Set_Etype (Operand, Standard_Duration);
10884            end if;
10885
10886            --  Resolve the real operand with largest available precision
10887
10888            if Etype (Right_Opnd (Operand)) = Universal_Real then
10889               Rop := New_Copy_Tree (Right_Opnd (Operand));
10890            else
10891               Rop := New_Copy_Tree (Left_Opnd (Operand));
10892            end if;
10893
10894            Resolve (Rop, Universal_Real);
10895
10896            --  If the operand is a literal (it could be a non-static and
10897            --  illegal exponentiation) check whether the use of Duration
10898            --  is potentially inaccurate.
10899
10900            if Nkind (Rop) = N_Real_Literal
10901              and then Realval (Rop) /= Ureal_0
10902              and then abs (Realval (Rop)) < Delta_Value (Standard_Duration)
10903            then
10904               Error_Msg_N
10905                 ("??universal real operand can only "
10906                  & "be interpreted as Duration!", Rop);
10907               Error_Msg_N
10908                 ("\??precision will be lost in the conversion!", Rop);
10909            end if;
10910
10911         elsif Is_Numeric_Type (Typ)
10912           and then Nkind (Operand) in N_Op
10913           and then Unique_Fixed_Point_Type (N) /= Any_Type
10914         then
10915            Set_Etype (Operand, Standard_Duration);
10916
10917         else
10918            Error_Msg_N ("invalid context for mixed mode operation", N);
10919            Set_Etype (Operand, Any_Type);
10920            return;
10921         end if;
10922      end if;
10923
10924      Resolve (Operand);
10925
10926      --  In SPARK, a type conversion between array types should be restricted
10927      --  to types which have matching static bounds.
10928
10929      --  Protect call to Matching_Static_Array_Bounds to avoid costly
10930      --  operation if not needed.
10931
10932      if Restriction_Check_Required (SPARK_05)
10933        and then Is_Array_Type (Target_Typ)
10934        and then Is_Array_Type (Operand_Typ)
10935        and then Operand_Typ /= Any_Composite  --  or else Operand in error
10936        and then not Matching_Static_Array_Bounds (Target_Typ, Operand_Typ)
10937      then
10938         Check_SPARK_05_Restriction
10939           ("array types should have matching static bounds", N);
10940      end if;
10941
10942      --  In formal mode, the operand of an ancestor type conversion must be an
10943      --  object (not an expression).
10944
10945      if Is_Tagged_Type (Target_Typ)
10946        and then not Is_Class_Wide_Type (Target_Typ)
10947        and then Is_Tagged_Type (Operand_Typ)
10948        and then not Is_Class_Wide_Type (Operand_Typ)
10949        and then Is_Ancestor (Target_Typ, Operand_Typ)
10950        and then not Is_SPARK_05_Object_Reference (Operand)
10951      then
10952         Check_SPARK_05_Restriction ("object required", Operand);
10953      end if;
10954
10955      Analyze_Dimension (N);
10956
10957      --  Note: we do the Eval_Type_Conversion call before applying the
10958      --  required checks for a subtype conversion. This is important, since
10959      --  both are prepared under certain circumstances to change the type
10960      --  conversion to a constraint error node, but in the case of
10961      --  Eval_Type_Conversion this may reflect an illegality in the static
10962      --  case, and we would miss the illegality (getting only a warning
10963      --  message), if we applied the type conversion checks first.
10964
10965      Eval_Type_Conversion (N);
10966
10967      --  Even when evaluation is not possible, we may be able to simplify the
10968      --  conversion or its expression. This needs to be done before applying
10969      --  checks, since otherwise the checks may use the original expression
10970      --  and defeat the simplifications. This is specifically the case for
10971      --  elimination of the floating-point Truncation attribute in
10972      --  float-to-int conversions.
10973
10974      Simplify_Type_Conversion (N);
10975
10976      --  If after evaluation we still have a type conversion, then we may need
10977      --  to apply checks required for a subtype conversion.
10978
10979      --  Skip these type conversion checks if universal fixed operands
10980      --  operands involved, since range checks are handled separately for
10981      --  these cases (in the appropriate Expand routines in unit Exp_Fixd).
10982
10983      if Nkind (N) = N_Type_Conversion
10984        and then not Is_Generic_Type (Root_Type (Target_Typ))
10985        and then Target_Typ  /= Universal_Fixed
10986        and then Operand_Typ /= Universal_Fixed
10987      then
10988         Apply_Type_Conversion_Checks (N);
10989      end if;
10990
10991      --  Issue warning for conversion of simple object to its own type. We
10992      --  have to test the original nodes, since they may have been rewritten
10993      --  by various optimizations.
10994
10995      Orig_N := Original_Node (N);
10996
10997      --  Here we test for a redundant conversion if the warning mode is
10998      --  active (and was not locally reset), and we have a type conversion
10999      --  from source not appearing in a generic instance.
11000
11001      if Test_Redundant
11002        and then Nkind (Orig_N) = N_Type_Conversion
11003        and then Comes_From_Source (Orig_N)
11004        and then not In_Instance
11005      then
11006         Orig_N := Original_Node (Expression (Orig_N));
11007         Orig_T := Target_Typ;
11008
11009         --  If the node is part of a larger expression, the Target_Type
11010         --  may not be the original type of the node if the context is a
11011         --  condition. Recover original type to see if conversion is needed.
11012
11013         if Is_Boolean_Type (Orig_T)
11014          and then Nkind (Parent (N)) in N_Op
11015         then
11016            Orig_T := Etype (Parent (N));
11017         end if;
11018
11019         --  If we have an entity name, then give the warning if the entity
11020         --  is the right type, or if it is a loop parameter covered by the
11021         --  original type (that's needed because loop parameters have an
11022         --  odd subtype coming from the bounds).
11023
11024         if (Is_Entity_Name (Orig_N)
11025              and then
11026                (Etype (Entity (Orig_N)) = Orig_T
11027                  or else
11028                    (Ekind (Entity (Orig_N)) = E_Loop_Parameter
11029                      and then Covers (Orig_T, Etype (Entity (Orig_N))))))
11030
11031           --  If not an entity, then type of expression must match
11032
11033           or else Etype (Orig_N) = Orig_T
11034         then
11035            --  One more check, do not give warning if the analyzed conversion
11036            --  has an expression with non-static bounds, and the bounds of the
11037            --  target are static. This avoids junk warnings in cases where the
11038            --  conversion is necessary to establish staticness, for example in
11039            --  a case statement.
11040
11041            if not Is_OK_Static_Subtype (Operand_Typ)
11042              and then Is_OK_Static_Subtype (Target_Typ)
11043            then
11044               null;
11045
11046            --  Finally, if this type conversion occurs in a context requiring
11047            --  a prefix, and the expression is a qualified expression then the
11048            --  type conversion is not redundant, since a qualified expression
11049            --  is not a prefix, whereas a type conversion is. For example, "X
11050            --  := T'(Funx(...)).Y;" is illegal because a selected component
11051            --  requires a prefix, but a type conversion makes it legal: "X :=
11052            --  T(T'(Funx(...))).Y;"
11053
11054            --  In Ada 2012, a qualified expression is a name, so this idiom is
11055            --  no longer needed, but we still suppress the warning because it
11056            --  seems unfriendly for warnings to pop up when you switch to the
11057            --  newer language version.
11058
11059            elsif Nkind (Orig_N) = N_Qualified_Expression
11060              and then Nkind_In (Parent (N), N_Attribute_Reference,
11061                                             N_Indexed_Component,
11062                                             N_Selected_Component,
11063                                             N_Slice,
11064                                             N_Explicit_Dereference)
11065            then
11066               null;
11067
11068            --  Never warn on conversion to Long_Long_Integer'Base since
11069            --  that is most likely an artifact of the extended overflow
11070            --  checking and comes from complex expanded code.
11071
11072            elsif Orig_T = Base_Type (Standard_Long_Long_Integer) then
11073               null;
11074
11075            --  Here we give the redundant conversion warning. If it is an
11076            --  entity, give the name of the entity in the message. If not,
11077            --  just mention the expression.
11078
11079            --  Shoudn't we test Warn_On_Redundant_Constructs here ???
11080
11081            else
11082               if Is_Entity_Name (Orig_N) then
11083                  Error_Msg_Node_2 := Orig_T;
11084                  Error_Msg_NE -- CODEFIX
11085                    ("??redundant conversion, & is of type &!",
11086                     N, Entity (Orig_N));
11087               else
11088                  Error_Msg_NE
11089                    ("??redundant conversion, expression is of type&!",
11090                     N, Orig_T);
11091               end if;
11092            end if;
11093         end if;
11094      end if;
11095
11096      --  Ada 2005 (AI-251): Handle class-wide interface type conversions.
11097      --  No need to perform any interface conversion if the type of the
11098      --  expression coincides with the target type.
11099
11100      if Ada_Version >= Ada_2005
11101        and then Expander_Active
11102        and then Operand_Typ /= Target_Typ
11103      then
11104         declare
11105            Opnd   : Entity_Id := Operand_Typ;
11106            Target : Entity_Id := Target_Typ;
11107
11108         begin
11109            --  If the type of the operand is a limited view, use nonlimited
11110            --  view when available. If it is a class-wide type, recover the
11111            --  class-wide type of the nonlimited view.
11112
11113            if From_Limited_With (Opnd)
11114              and then Has_Non_Limited_View (Opnd)
11115            then
11116               Opnd := Non_Limited_View (Opnd);
11117               Set_Etype (Expression (N), Opnd);
11118            end if;
11119
11120            if Is_Access_Type (Opnd) then
11121               Opnd := Designated_Type (Opnd);
11122            end if;
11123
11124            if Is_Access_Type (Target_Typ) then
11125               Target := Designated_Type (Target);
11126            end if;
11127
11128            if Opnd = Target then
11129               null;
11130
11131            --  Conversion from interface type
11132
11133            elsif Is_Interface (Opnd) then
11134
11135               --  Ada 2005 (AI-217): Handle entities from limited views
11136
11137               if From_Limited_With (Opnd) then
11138                  Error_Msg_Qual_Level := 99;
11139                  Error_Msg_NE -- CODEFIX
11140                    ("missing WITH clause on package &", N,
11141                    Cunit_Entity (Get_Source_Unit (Base_Type (Opnd))));
11142                  Error_Msg_N
11143                    ("type conversions require visibility of the full view",
11144                     N);
11145
11146               elsif From_Limited_With (Target)
11147                 and then not
11148                   (Is_Access_Type (Target_Typ)
11149                      and then Present (Non_Limited_View (Etype (Target))))
11150               then
11151                  Error_Msg_Qual_Level := 99;
11152                  Error_Msg_NE -- CODEFIX
11153                    ("missing WITH clause on package &", N,
11154                    Cunit_Entity (Get_Source_Unit (Base_Type (Target))));
11155                  Error_Msg_N
11156                    ("type conversions require visibility of the full view",
11157                     N);
11158
11159               else
11160                  Expand_Interface_Conversion (N);
11161               end if;
11162
11163            --  Conversion to interface type
11164
11165            elsif Is_Interface (Target) then
11166
11167               --  Handle subtypes
11168
11169               if Ekind_In (Opnd, E_Protected_Subtype, E_Task_Subtype) then
11170                  Opnd := Etype (Opnd);
11171               end if;
11172
11173               if Is_Class_Wide_Type (Opnd)
11174                 or else Interface_Present_In_Ancestor
11175                           (Typ   => Opnd,
11176                            Iface => Target)
11177               then
11178                  Expand_Interface_Conversion (N);
11179               else
11180                  Error_Msg_Name_1 := Chars (Etype (Target));
11181                  Error_Msg_Name_2 := Chars (Opnd);
11182                  Error_Msg_N
11183                    ("wrong interface conversion (% is not a progenitor "
11184                     & "of %)", N);
11185               end if;
11186            end if;
11187         end;
11188      end if;
11189
11190      --  Ada 2012: once the type conversion is resolved, check whether the
11191      --  operand statisfies the static predicate of the target type.
11192
11193      if Has_Predicates (Target_Typ) then
11194         Check_Expression_Against_Static_Predicate (N, Target_Typ);
11195      end if;
11196
11197      --  If at this stage we have a real to integer conversion, make sure that
11198      --  the Do_Range_Check flag is set, because such conversions in general
11199      --  need a range check. We only need this if expansion is off.
11200      --  In GNATprove mode, we only do that when converting from fixed-point
11201      --  (as floating-point to integer conversions are now handled in
11202      --  GNATprove mode).
11203
11204      if Nkind (N) = N_Type_Conversion
11205        and then not Expander_Active
11206        and then Is_Integer_Type (Target_Typ)
11207        and then (Is_Fixed_Point_Type (Operand_Typ)
11208                   or else (not GNATprove_Mode
11209                             and then Is_Floating_Point_Type (Operand_Typ)))
11210      then
11211         Set_Do_Range_Check (Operand);
11212      end if;
11213
11214      --  Generating C code a type conversion of an access to constrained
11215      --  array type to access to unconstrained array type involves building
11216      --  a fat pointer which in general cannot be generated on the fly. We
11217      --  remove side effects in order to store the result of the conversion
11218      --  into a temporary.
11219
11220      if Modify_Tree_For_C
11221        and then Nkind (N) = N_Type_Conversion
11222        and then Nkind (Parent (N)) /= N_Object_Declaration
11223        and then Is_Access_Type (Etype (N))
11224        and then Is_Array_Type (Designated_Type (Etype (N)))
11225        and then not Is_Constrained (Designated_Type (Etype (N)))
11226        and then Is_Constrained (Designated_Type (Etype (Expression (N))))
11227      then
11228         Remove_Side_Effects (N);
11229      end if;
11230   end Resolve_Type_Conversion;
11231
11232   ----------------------
11233   -- Resolve_Unary_Op --
11234   ----------------------
11235
11236   procedure Resolve_Unary_Op (N : Node_Id; Typ : Entity_Id) is
11237      B_Typ : constant Entity_Id := Base_Type (Typ);
11238      R     : constant Node_Id   := Right_Opnd (N);
11239      OK    : Boolean;
11240      Lo    : Uint;
11241      Hi    : Uint;
11242
11243   begin
11244      if Is_Modular_Integer_Type (Typ) and then Nkind (N) /= N_Op_Not then
11245         Error_Msg_Name_1 := Chars (Typ);
11246         Check_SPARK_05_Restriction
11247           ("unary operator not defined for modular type%", N);
11248      end if;
11249
11250      --  Deal with intrinsic unary operators
11251
11252      if Comes_From_Source (N)
11253        and then Ekind (Entity (N)) = E_Function
11254        and then Is_Imported (Entity (N))
11255        and then Is_Intrinsic_Subprogram (Entity (N))
11256      then
11257         Resolve_Intrinsic_Unary_Operator (N, Typ);
11258         return;
11259      end if;
11260
11261      --  Deal with universal cases
11262
11263      if Etype (R) = Universal_Integer
11264           or else
11265         Etype (R) = Universal_Real
11266      then
11267         Check_For_Visible_Operator (N, B_Typ);
11268      end if;
11269
11270      Set_Etype (N, B_Typ);
11271      Resolve (R, B_Typ);
11272
11273      --  Generate warning for expressions like abs (x mod 2)
11274
11275      if Warn_On_Redundant_Constructs
11276        and then Nkind (N) = N_Op_Abs
11277      then
11278         Determine_Range (Right_Opnd (N), OK, Lo, Hi);
11279
11280         if OK and then Hi >= Lo and then Lo >= 0 then
11281            Error_Msg_N -- CODEFIX
11282             ("?r?abs applied to known non-negative value has no effect", N);
11283         end if;
11284      end if;
11285
11286      --  Deal with reference generation
11287
11288      Check_Unset_Reference (R);
11289      Generate_Operator_Reference (N, B_Typ);
11290      Analyze_Dimension (N);
11291      Eval_Unary_Op (N);
11292
11293      --  Set overflow checking bit. Much cleverer code needed here eventually
11294      --  and perhaps the Resolve routines should be separated for the various
11295      --  arithmetic operations, since they will need different processing ???
11296
11297      if Nkind (N) in N_Op then
11298         if not Overflow_Checks_Suppressed (Etype (N)) then
11299            Enable_Overflow_Check (N);
11300         end if;
11301      end if;
11302
11303      --  Generate warning for expressions like -5 mod 3 for integers. No need
11304      --  to worry in the floating-point case, since parens do not affect the
11305      --  result so there is no point in giving in a warning.
11306
11307      declare
11308         Norig : constant Node_Id := Original_Node (N);
11309         Rorig : Node_Id;
11310         Val   : Uint;
11311         HB    : Uint;
11312         LB    : Uint;
11313         Lval  : Uint;
11314         Opnd  : Node_Id;
11315
11316      begin
11317         if Warn_On_Questionable_Missing_Parens
11318           and then Comes_From_Source (Norig)
11319           and then Is_Integer_Type (Typ)
11320           and then Nkind (Norig) = N_Op_Minus
11321         then
11322            Rorig := Original_Node (Right_Opnd (Norig));
11323
11324            --  We are looking for cases where the right operand is not
11325            --  parenthesized, and is a binary operator, multiply, divide, or
11326            --  mod. These are the cases where the grouping can affect results.
11327
11328            if Paren_Count (Rorig) = 0
11329              and then Nkind_In (Rorig, N_Op_Mod, N_Op_Multiply, N_Op_Divide)
11330            then
11331               --  For mod, we always give the warning, since the value is
11332               --  affected by the parenthesization (e.g. (-5) mod 315 /=
11333               --  -(5 mod 315)). But for the other cases, the only concern is
11334               --  overflow, e.g. for the case of 8 big signed (-(2 * 64)
11335               --  overflows, but (-2) * 64 does not). So we try to give the
11336               --  message only when overflow is possible.
11337
11338               if Nkind (Rorig) /= N_Op_Mod
11339                 and then Compile_Time_Known_Value (R)
11340               then
11341                  Val := Expr_Value (R);
11342
11343                  if Compile_Time_Known_Value (Type_High_Bound (Typ)) then
11344                     HB := Expr_Value (Type_High_Bound (Typ));
11345                  else
11346                     HB := Expr_Value (Type_High_Bound (Base_Type (Typ)));
11347                  end if;
11348
11349                  if Compile_Time_Known_Value (Type_Low_Bound (Typ)) then
11350                     LB := Expr_Value (Type_Low_Bound (Typ));
11351                  else
11352                     LB := Expr_Value (Type_Low_Bound (Base_Type (Typ)));
11353                  end if;
11354
11355                  --  Note that the test below is deliberately excluding the
11356                  --  largest negative number, since that is a potentially
11357                  --  troublesome case (e.g. -2 * x, where the result is the
11358                  --  largest negative integer has an overflow with 2 * x).
11359
11360                  if Val > LB and then Val <= HB then
11361                     return;
11362                  end if;
11363               end if;
11364
11365               --  For the multiplication case, the only case we have to worry
11366               --  about is when (-a)*b is exactly the largest negative number
11367               --  so that -(a*b) can cause overflow. This can only happen if
11368               --  a is a power of 2, and more generally if any operand is a
11369               --  constant that is not a power of 2, then the parentheses
11370               --  cannot affect whether overflow occurs. We only bother to
11371               --  test the left most operand
11372
11373               --  Loop looking at left operands for one that has known value
11374
11375               Opnd := Rorig;
11376               Opnd_Loop : while Nkind (Opnd) = N_Op_Multiply loop
11377                  if Compile_Time_Known_Value (Left_Opnd (Opnd)) then
11378                     Lval := UI_Abs (Expr_Value (Left_Opnd (Opnd)));
11379
11380                     --  Operand value of 0 or 1 skips warning
11381
11382                     if Lval <= 1 then
11383                        return;
11384
11385                     --  Otherwise check power of 2, if power of 2, warn, if
11386                     --  anything else, skip warning.
11387
11388                     else
11389                        while Lval /= 2 loop
11390                           if Lval mod 2 = 1 then
11391                              return;
11392                           else
11393                              Lval := Lval / 2;
11394                           end if;
11395                        end loop;
11396
11397                        exit Opnd_Loop;
11398                     end if;
11399                  end if;
11400
11401                  --  Keep looking at left operands
11402
11403                  Opnd := Left_Opnd (Opnd);
11404               end loop Opnd_Loop;
11405
11406               --  For rem or "/" we can only have a problematic situation
11407               --  if the divisor has a value of minus one or one. Otherwise
11408               --  overflow is impossible (divisor > 1) or we have a case of
11409               --  division by zero in any case.
11410
11411               if Nkind_In (Rorig, N_Op_Divide, N_Op_Rem)
11412                 and then Compile_Time_Known_Value (Right_Opnd (Rorig))
11413                 and then UI_Abs (Expr_Value (Right_Opnd (Rorig))) /= 1
11414               then
11415                  return;
11416               end if;
11417
11418               --  If we fall through warning should be issued
11419
11420               --  Shouldn't we test Warn_On_Questionable_Missing_Parens ???
11421
11422               Error_Msg_N
11423                 ("??unary minus expression should be parenthesized here!", N);
11424            end if;
11425         end if;
11426      end;
11427   end Resolve_Unary_Op;
11428
11429   ----------------------------------
11430   -- Resolve_Unchecked_Expression --
11431   ----------------------------------
11432
11433   procedure Resolve_Unchecked_Expression
11434     (N   : Node_Id;
11435      Typ : Entity_Id)
11436   is
11437   begin
11438      Resolve (Expression (N), Typ, Suppress => All_Checks);
11439      Set_Etype (N, Typ);
11440   end Resolve_Unchecked_Expression;
11441
11442   ---------------------------------------
11443   -- Resolve_Unchecked_Type_Conversion --
11444   ---------------------------------------
11445
11446   procedure Resolve_Unchecked_Type_Conversion
11447     (N   : Node_Id;
11448      Typ : Entity_Id)
11449   is
11450      pragma Warnings (Off, Typ);
11451
11452      Operand   : constant Node_Id   := Expression (N);
11453      Opnd_Type : constant Entity_Id := Etype (Operand);
11454
11455   begin
11456      --  Resolve operand using its own type
11457
11458      Resolve (Operand, Opnd_Type);
11459
11460      --  In an inlined context, the unchecked conversion may be applied
11461      --  to a literal, in which case its type is the type of the context.
11462      --  (In other contexts conversions cannot apply to literals).
11463
11464      if In_Inlined_Body
11465        and then (Opnd_Type = Any_Character or else
11466                  Opnd_Type = Any_Integer   or else
11467                  Opnd_Type = Any_Real)
11468      then
11469         Set_Etype (Operand, Typ);
11470      end if;
11471
11472      Analyze_Dimension (N);
11473      Eval_Unchecked_Conversion (N);
11474   end Resolve_Unchecked_Type_Conversion;
11475
11476   ------------------------------
11477   -- Rewrite_Operator_As_Call --
11478   ------------------------------
11479
11480   procedure Rewrite_Operator_As_Call (N : Node_Id; Nam : Entity_Id) is
11481      Loc     : constant Source_Ptr := Sloc (N);
11482      Actuals : constant List_Id    := New_List;
11483      New_N   : Node_Id;
11484
11485   begin
11486      if Nkind (N) in N_Binary_Op then
11487         Append (Left_Opnd (N), Actuals);
11488      end if;
11489
11490      Append (Right_Opnd (N), Actuals);
11491
11492      New_N :=
11493        Make_Function_Call (Sloc => Loc,
11494          Name => New_Occurrence_Of (Nam, Loc),
11495          Parameter_Associations => Actuals);
11496
11497      Preserve_Comes_From_Source (New_N, N);
11498      Preserve_Comes_From_Source (Name (New_N), N);
11499      Rewrite (N, New_N);
11500      Set_Etype (N, Etype (Nam));
11501   end Rewrite_Operator_As_Call;
11502
11503   ------------------------------
11504   -- Rewrite_Renamed_Operator --
11505   ------------------------------
11506
11507   procedure Rewrite_Renamed_Operator
11508     (N   : Node_Id;
11509      Op  : Entity_Id;
11510      Typ : Entity_Id)
11511   is
11512      Nam       : constant Name_Id := Chars (Op);
11513      Is_Binary : constant Boolean := Nkind (N) in N_Binary_Op;
11514      Op_Node   : Node_Id;
11515
11516   begin
11517      --  Do not perform this transformation within a pre/postcondition,
11518      --  because the expression will be reanalyzed, and the transformation
11519      --  might affect the visibility of the operator, e.g. in an instance.
11520      --  Note that fully analyzed and expanded pre/postconditions appear as
11521      --  pragma Check equivalents.
11522
11523      if In_Pre_Post_Condition (N) then
11524         return;
11525      end if;
11526
11527      --  Likewise when an expression function is being preanalyzed, since the
11528      --  expression will be reanalyzed as part of the generated body.
11529
11530      if In_Spec_Expression then
11531         declare
11532            S : constant Entity_Id := Current_Scope_No_Loops;
11533         begin
11534            if Ekind (S) = E_Function
11535              and then Nkind (Original_Node (Unit_Declaration_Node (S))) =
11536                         N_Expression_Function
11537            then
11538               return;
11539            end if;
11540         end;
11541      end if;
11542
11543      --  Rewrite the operator node using the real operator, not its renaming.
11544      --  Exclude user-defined intrinsic operations of the same name, which are
11545      --  treated separately and rewritten as calls.
11546
11547      if Ekind (Op) /= E_Function or else Chars (N) /= Nam then
11548         Op_Node := New_Node (Operator_Kind (Nam, Is_Binary), Sloc (N));
11549         Set_Chars      (Op_Node, Nam);
11550         Set_Etype      (Op_Node, Etype (N));
11551         Set_Entity     (Op_Node, Op);
11552         Set_Right_Opnd (Op_Node, Right_Opnd (N));
11553
11554         --  Indicate that both the original entity and its renaming are
11555         --  referenced at this point.
11556
11557         Generate_Reference (Entity (N), N);
11558         Generate_Reference (Op, N);
11559
11560         if Is_Binary then
11561            Set_Left_Opnd (Op_Node, Left_Opnd (N));
11562         end if;
11563
11564         Rewrite (N, Op_Node);
11565
11566         --  If the context type is private, add the appropriate conversions so
11567         --  that the operator is applied to the full view. This is done in the
11568         --  routines that resolve intrinsic operators.
11569
11570         if Is_Intrinsic_Subprogram (Op) and then Is_Private_Type (Typ) then
11571            case Nkind (N) is
11572               when N_Op_Add
11573                  | N_Op_Divide
11574                  | N_Op_Expon
11575                  | N_Op_Mod
11576                  | N_Op_Multiply
11577                  | N_Op_Rem
11578                  | N_Op_Subtract
11579               =>
11580                  Resolve_Intrinsic_Operator (N, Typ);
11581
11582               when N_Op_Abs
11583                  | N_Op_Minus
11584                  | N_Op_Plus
11585               =>
11586                  Resolve_Intrinsic_Unary_Operator (N, Typ);
11587
11588               when others =>
11589                  Resolve (N, Typ);
11590            end case;
11591         end if;
11592
11593      elsif Ekind (Op) = E_Function and then Is_Intrinsic_Subprogram (Op) then
11594
11595         --  Operator renames a user-defined operator of the same name. Use the
11596         --  original operator in the node, which is the one Gigi knows about.
11597
11598         Set_Entity (N, Op);
11599         Set_Is_Overloaded (N, False);
11600      end if;
11601   end Rewrite_Renamed_Operator;
11602
11603   -----------------------
11604   -- Set_Slice_Subtype --
11605   -----------------------
11606
11607   --  Build an implicit subtype declaration to represent the type delivered by
11608   --  the slice. This is an abbreviated version of an array subtype. We define
11609   --  an index subtype for the slice, using either the subtype name or the
11610   --  discrete range of the slice. To be consistent with index usage elsewhere
11611   --  we create a list header to hold the single index. This list is not
11612   --  otherwise attached to the syntax tree.
11613
11614   procedure Set_Slice_Subtype (N : Node_Id) is
11615      Loc           : constant Source_Ptr := Sloc (N);
11616      Index_List    : constant List_Id    := New_List;
11617      Index         : Node_Id;
11618      Index_Subtype : Entity_Id;
11619      Index_Type    : Entity_Id;
11620      Slice_Subtype : Entity_Id;
11621      Drange        : constant Node_Id := Discrete_Range (N);
11622
11623   begin
11624      Index_Type := Base_Type (Etype (Drange));
11625
11626      if Is_Entity_Name (Drange) then
11627         Index_Subtype := Entity (Drange);
11628
11629      else
11630         --  We force the evaluation of a range. This is definitely needed in
11631         --  the renamed case, and seems safer to do unconditionally. Note in
11632         --  any case that since we will create and insert an Itype referring
11633         --  to this range, we must make sure any side effect removal actions
11634         --  are inserted before the Itype definition.
11635
11636         if Nkind (Drange) = N_Range then
11637            Force_Evaluation (Low_Bound (Drange));
11638            Force_Evaluation (High_Bound (Drange));
11639
11640         --  If the discrete range is given by a subtype indication, the
11641         --  type of the slice is the base of the subtype mark.
11642
11643         elsif Nkind (Drange) = N_Subtype_Indication then
11644            declare
11645               R : constant Node_Id := Range_Expression (Constraint (Drange));
11646            begin
11647               Index_Type := Base_Type (Entity (Subtype_Mark (Drange)));
11648               Force_Evaluation (Low_Bound  (R));
11649               Force_Evaluation (High_Bound (R));
11650            end;
11651         end if;
11652
11653         Index_Subtype := Create_Itype (Subtype_Kind (Ekind (Index_Type)), N);
11654
11655         --  Take a new copy of Drange (where bounds have been rewritten to
11656         --  reference side-effect-free names). Using a separate tree ensures
11657         --  that further expansion (e.g. while rewriting a slice assignment
11658         --  into a FOR loop) does not attempt to remove side effects on the
11659         --  bounds again (which would cause the bounds in the index subtype
11660         --  definition to refer to temporaries before they are defined) (the
11661         --  reason is that some names are considered side effect free here
11662         --  for the subtype, but not in the context of a loop iteration
11663         --  scheme).
11664
11665         Set_Scalar_Range (Index_Subtype, New_Copy_Tree (Drange));
11666         Set_Parent       (Scalar_Range (Index_Subtype), Index_Subtype);
11667         Set_Etype        (Index_Subtype, Index_Type);
11668         Set_Size_Info    (Index_Subtype, Index_Type);
11669         Set_RM_Size      (Index_Subtype, RM_Size (Index_Type));
11670      end if;
11671
11672      Slice_Subtype := Create_Itype (E_Array_Subtype, N);
11673
11674      Index := New_Occurrence_Of (Index_Subtype, Loc);
11675      Set_Etype (Index, Index_Subtype);
11676      Append (Index, Index_List);
11677
11678      Set_First_Index    (Slice_Subtype, Index);
11679      Set_Etype          (Slice_Subtype, Base_Type (Etype (N)));
11680      Set_Is_Constrained (Slice_Subtype, True);
11681
11682      Check_Compile_Time_Size (Slice_Subtype);
11683
11684      --  The Etype of the existing Slice node is reset to this slice subtype.
11685      --  Its bounds are obtained from its first index.
11686
11687      Set_Etype (N, Slice_Subtype);
11688
11689      --  For bit-packed slice subtypes, freeze immediately (except in the case
11690      --  of being in a "spec expression" where we never freeze when we first
11691      --  see the expression).
11692
11693      if Is_Bit_Packed_Array (Slice_Subtype) and not In_Spec_Expression then
11694         Freeze_Itype (Slice_Subtype, N);
11695
11696      --  For all other cases insert an itype reference in the slice's actions
11697      --  so that the itype is frozen at the proper place in the tree (i.e. at
11698      --  the point where actions for the slice are analyzed). Note that this
11699      --  is different from freezing the itype immediately, which might be
11700      --  premature (e.g. if the slice is within a transient scope). This needs
11701      --  to be done only if expansion is enabled.
11702
11703      elsif Expander_Active then
11704         Ensure_Defined (Typ => Slice_Subtype, N => N);
11705      end if;
11706   end Set_Slice_Subtype;
11707
11708   --------------------------------
11709   -- Set_String_Literal_Subtype --
11710   --------------------------------
11711
11712   procedure Set_String_Literal_Subtype (N : Node_Id; Typ : Entity_Id) is
11713      Loc        : constant Source_Ptr := Sloc (N);
11714      Low_Bound  : constant Node_Id :=
11715                     Type_Low_Bound (Etype (First_Index (Typ)));
11716      Subtype_Id : Entity_Id;
11717
11718   begin
11719      if Nkind (N) /= N_String_Literal then
11720         return;
11721      end if;
11722
11723      Subtype_Id := Create_Itype (E_String_Literal_Subtype, N);
11724      Set_String_Literal_Length (Subtype_Id, UI_From_Int
11725                                               (String_Length (Strval (N))));
11726      Set_Etype          (Subtype_Id, Base_Type (Typ));
11727      Set_Is_Constrained (Subtype_Id);
11728      Set_Etype          (N, Subtype_Id);
11729
11730      --  The low bound is set from the low bound of the corresponding index
11731      --  type. Note that we do not store the high bound in the string literal
11732      --  subtype, but it can be deduced if necessary from the length and the
11733      --  low bound.
11734
11735      if Is_OK_Static_Expression (Low_Bound) then
11736         Set_String_Literal_Low_Bound (Subtype_Id, Low_Bound);
11737
11738      --  If the lower bound is not static we create a range for the string
11739      --  literal, using the index type and the known length of the literal.
11740      --  The index type is not necessarily Positive, so the upper bound is
11741      --  computed as T'Val (T'Pos (Low_Bound) + L - 1).
11742
11743      else
11744         declare
11745            Index_List : constant List_Id   := New_List;
11746            Index_Type : constant Entity_Id := Etype (First_Index (Typ));
11747            High_Bound : constant Node_Id   :=
11748                           Make_Attribute_Reference (Loc,
11749                             Attribute_Name => Name_Val,
11750                             Prefix         =>
11751                               New_Occurrence_Of (Index_Type, Loc),
11752                             Expressions    => New_List (
11753                               Make_Op_Add (Loc,
11754                                 Left_Opnd  =>
11755                                   Make_Attribute_Reference (Loc,
11756                                     Attribute_Name => Name_Pos,
11757                                     Prefix         =>
11758                                       New_Occurrence_Of (Index_Type, Loc),
11759                                     Expressions    =>
11760                                       New_List (New_Copy_Tree (Low_Bound))),
11761                                 Right_Opnd =>
11762                                   Make_Integer_Literal (Loc,
11763                                     String_Length (Strval (N)) - 1))));
11764
11765            Array_Subtype : Entity_Id;
11766            Drange        : Node_Id;
11767            Index         : Node_Id;
11768            Index_Subtype : Entity_Id;
11769
11770         begin
11771            if Is_Integer_Type (Index_Type) then
11772               Set_String_Literal_Low_Bound
11773                 (Subtype_Id, Make_Integer_Literal (Loc, 1));
11774
11775            else
11776               --  If the index type is an enumeration type, build bounds
11777               --  expression with attributes.
11778
11779               Set_String_Literal_Low_Bound
11780                 (Subtype_Id,
11781                  Make_Attribute_Reference (Loc,
11782                    Attribute_Name => Name_First,
11783                    Prefix         =>
11784                      New_Occurrence_Of (Base_Type (Index_Type), Loc)));
11785               Set_Etype (String_Literal_Low_Bound (Subtype_Id), Index_Type);
11786            end if;
11787
11788            Analyze_And_Resolve (String_Literal_Low_Bound (Subtype_Id));
11789
11790            --  Build bona fide subtype for the string, and wrap it in an
11791            --  unchecked conversion, because the backend expects the
11792            --  String_Literal_Subtype to have a static lower bound.
11793
11794            Index_Subtype :=
11795              Create_Itype (Subtype_Kind (Ekind (Index_Type)), N);
11796            Drange := Make_Range (Loc, New_Copy_Tree (Low_Bound), High_Bound);
11797            Set_Scalar_Range (Index_Subtype, Drange);
11798            Set_Parent (Drange, N);
11799            Analyze_And_Resolve (Drange, Index_Type);
11800
11801            --  In the context, the Index_Type may already have a constraint,
11802            --  so use common base type on string subtype. The base type may
11803            --  be used when generating attributes of the string, for example
11804            --  in the context of a slice assignment.
11805
11806            Set_Etype     (Index_Subtype, Base_Type (Index_Type));
11807            Set_Size_Info (Index_Subtype, Index_Type);
11808            Set_RM_Size   (Index_Subtype, RM_Size (Index_Type));
11809
11810            Array_Subtype := Create_Itype (E_Array_Subtype, N);
11811
11812            Index := New_Occurrence_Of (Index_Subtype, Loc);
11813            Set_Etype (Index, Index_Subtype);
11814            Append (Index, Index_List);
11815
11816            Set_First_Index    (Array_Subtype, Index);
11817            Set_Etype          (Array_Subtype, Base_Type (Typ));
11818            Set_Is_Constrained (Array_Subtype, True);
11819
11820            Rewrite (N,
11821              Make_Unchecked_Type_Conversion (Loc,
11822                Subtype_Mark => New_Occurrence_Of (Array_Subtype, Loc),
11823                Expression   => Relocate_Node (N)));
11824            Set_Etype (N, Array_Subtype);
11825         end;
11826      end if;
11827   end Set_String_Literal_Subtype;
11828
11829   ------------------------------
11830   -- Simplify_Type_Conversion --
11831   ------------------------------
11832
11833   procedure Simplify_Type_Conversion (N : Node_Id) is
11834   begin
11835      if Nkind (N) = N_Type_Conversion then
11836         declare
11837            Operand    : constant Node_Id   := Expression (N);
11838            Target_Typ : constant Entity_Id := Etype (N);
11839            Opnd_Typ   : constant Entity_Id := Etype (Operand);
11840
11841         begin
11842            --  Special processing if the conversion is the expression of a
11843            --  Rounding or Truncation attribute reference. In this case we
11844            --  replace:
11845
11846            --     ityp (ftyp'Rounding (x)) or ityp (ftyp'Truncation (x))
11847
11848            --  by
11849
11850            --     ityp (x)
11851
11852            --  with the Float_Truncate flag set to False or True respectively,
11853            --  which is more efficient.
11854
11855            if Is_Floating_Point_Type (Opnd_Typ)
11856              and then
11857                (Is_Integer_Type (Target_Typ)
11858                  or else (Is_Fixed_Point_Type (Target_Typ)
11859                            and then Conversion_OK (N)))
11860              and then Nkind (Operand) = N_Attribute_Reference
11861              and then Nam_In (Attribute_Name (Operand), Name_Rounding,
11862                                                         Name_Truncation)
11863            then
11864               declare
11865                  Truncate : constant Boolean :=
11866                               Attribute_Name (Operand) = Name_Truncation;
11867               begin
11868                  Rewrite (Operand,
11869                    Relocate_Node (First (Expressions (Operand))));
11870                  Set_Float_Truncate (N, Truncate);
11871               end;
11872            end if;
11873         end;
11874      end if;
11875   end Simplify_Type_Conversion;
11876
11877   -----------------------------
11878   -- Unique_Fixed_Point_Type --
11879   -----------------------------
11880
11881   function Unique_Fixed_Point_Type (N : Node_Id) return Entity_Id is
11882      procedure Fixed_Point_Error (T1 : Entity_Id; T2 : Entity_Id);
11883      --  Give error messages for true ambiguity. Messages are posted on node
11884      --  N, and entities T1, T2 are the possible interpretations.
11885
11886      -----------------------
11887      -- Fixed_Point_Error --
11888      -----------------------
11889
11890      procedure Fixed_Point_Error (T1 : Entity_Id; T2 : Entity_Id) is
11891      begin
11892         Error_Msg_N ("ambiguous universal_fixed_expression", N);
11893         Error_Msg_NE ("\\possible interpretation as}", N, T1);
11894         Error_Msg_NE ("\\possible interpretation as}", N, T2);
11895      end Fixed_Point_Error;
11896
11897      --  Local variables
11898
11899      ErrN : Node_Id;
11900      Item : Node_Id;
11901      Scop : Entity_Id;
11902      T1   : Entity_Id;
11903      T2   : Entity_Id;
11904
11905   --  Start of processing for Unique_Fixed_Point_Type
11906
11907   begin
11908      --  The operations on Duration are visible, so Duration is always a
11909      --  possible interpretation.
11910
11911      T1 := Standard_Duration;
11912
11913      --  Look for fixed-point types in enclosing scopes
11914
11915      Scop := Current_Scope;
11916      while Scop /= Standard_Standard loop
11917         T2 := First_Entity (Scop);
11918         while Present (T2) loop
11919            if Is_Fixed_Point_Type (T2)
11920              and then Current_Entity (T2) = T2
11921              and then Scope (Base_Type (T2)) = Scop
11922            then
11923               if Present (T1) then
11924                  Fixed_Point_Error (T1, T2);
11925                  return Any_Type;
11926               else
11927                  T1 := T2;
11928               end if;
11929            end if;
11930
11931            Next_Entity (T2);
11932         end loop;
11933
11934         Scop := Scope (Scop);
11935      end loop;
11936
11937      --  Look for visible fixed type declarations in the context
11938
11939      Item := First (Context_Items (Cunit (Current_Sem_Unit)));
11940      while Present (Item) loop
11941         if Nkind (Item) = N_With_Clause then
11942            Scop := Entity (Name (Item));
11943            T2 := First_Entity (Scop);
11944            while Present (T2) loop
11945               if Is_Fixed_Point_Type (T2)
11946                 and then Scope (Base_Type (T2)) = Scop
11947                 and then (Is_Potentially_Use_Visible (T2) or else In_Use (T2))
11948               then
11949                  if Present (T1) then
11950                     Fixed_Point_Error (T1, T2);
11951                     return Any_Type;
11952                  else
11953                     T1 := T2;
11954                  end if;
11955               end if;
11956
11957               Next_Entity (T2);
11958            end loop;
11959         end if;
11960
11961         Next (Item);
11962      end loop;
11963
11964      if Nkind (N) = N_Real_Literal then
11965         Error_Msg_NE ("??real literal interpreted as }!", N, T1);
11966
11967      else
11968         --  When the context is a type conversion, issue the warning on the
11969         --  expression of the conversion because it is the actual operation.
11970
11971         if Nkind_In (N, N_Type_Conversion, N_Unchecked_Type_Conversion) then
11972            ErrN := Expression (N);
11973         else
11974            ErrN := N;
11975         end if;
11976
11977         Error_Msg_NE
11978           ("??universal_fixed expression interpreted as }!", ErrN, T1);
11979      end if;
11980
11981      return T1;
11982   end Unique_Fixed_Point_Type;
11983
11984   ----------------------
11985   -- Valid_Conversion --
11986   ----------------------
11987
11988   function Valid_Conversion
11989     (N           : Node_Id;
11990      Target      : Entity_Id;
11991      Operand     : Node_Id;
11992      Report_Errs : Boolean := True) return Boolean
11993   is
11994      Target_Type  : constant Entity_Id := Base_Type (Target);
11995      Opnd_Type    : Entity_Id          := Etype (Operand);
11996      Inc_Ancestor : Entity_Id;
11997
11998      function Conversion_Check
11999        (Valid : Boolean;
12000         Msg   : String) return Boolean;
12001      --  Little routine to post Msg if Valid is False, returns Valid value
12002
12003      procedure Conversion_Error_N (Msg : String; N : Node_Or_Entity_Id);
12004      --  If Report_Errs, then calls Errout.Error_Msg_N with its arguments
12005
12006      procedure Conversion_Error_NE
12007        (Msg : String;
12008         N   : Node_Or_Entity_Id;
12009         E   : Node_Or_Entity_Id);
12010      --  If Report_Errs, then calls Errout.Error_Msg_NE with its arguments
12011
12012      function In_Instance_Code return Boolean;
12013      --  Return True if expression is within an instance but is not in one of
12014      --  the actuals of the instantiation. Type conversions within an instance
12015      --  are not rechecked because type visbility may lead to spurious errors,
12016      --  but conversions in an actual for a formal object must be checked.
12017
12018      function Valid_Tagged_Conversion
12019        (Target_Type : Entity_Id;
12020         Opnd_Type   : Entity_Id) return Boolean;
12021      --  Specifically test for validity of tagged conversions
12022
12023      function Valid_Array_Conversion return Boolean;
12024      --  Check index and component conformance, and accessibility levels if
12025      --  the component types are anonymous access types (Ada 2005).
12026
12027      ----------------------
12028      -- Conversion_Check --
12029      ----------------------
12030
12031      function Conversion_Check
12032        (Valid : Boolean;
12033         Msg   : String) return Boolean
12034      is
12035      begin
12036         if not Valid
12037
12038            --  A generic unit has already been analyzed and we have verified
12039            --  that a particular conversion is OK in that context. Since the
12040            --  instance is reanalyzed without relying on the relationships
12041            --  established during the analysis of the generic, it is possible
12042            --  to end up with inconsistent views of private types. Do not emit
12043            --  the error message in such cases. The rest of the machinery in
12044            --  Valid_Conversion still ensures the proper compatibility of
12045            --  target and operand types.
12046
12047           and then not In_Instance_Code
12048         then
12049            Conversion_Error_N (Msg, Operand);
12050         end if;
12051
12052         return Valid;
12053      end Conversion_Check;
12054
12055      ------------------------
12056      -- Conversion_Error_N --
12057      ------------------------
12058
12059      procedure Conversion_Error_N (Msg : String; N : Node_Or_Entity_Id) is
12060      begin
12061         if Report_Errs then
12062            Error_Msg_N (Msg, N);
12063         end if;
12064      end Conversion_Error_N;
12065
12066      -------------------------
12067      -- Conversion_Error_NE --
12068      -------------------------
12069
12070      procedure Conversion_Error_NE
12071        (Msg : String;
12072         N   : Node_Or_Entity_Id;
12073         E   : Node_Or_Entity_Id)
12074      is
12075      begin
12076         if Report_Errs then
12077            Error_Msg_NE (Msg, N, E);
12078         end if;
12079      end Conversion_Error_NE;
12080
12081      ----------------------
12082      -- In_Instance_Code --
12083      ----------------------
12084
12085      function In_Instance_Code return Boolean is
12086         Par : Node_Id;
12087
12088      begin
12089         if not In_Instance then
12090            return False;
12091
12092         else
12093            Par := Parent (N);
12094            while Present (Par) loop
12095
12096               --  The expression is part of an actual object if it appears in
12097               --  the generated object declaration in the instance.
12098
12099               if Nkind (Par) = N_Object_Declaration
12100                 and then Present (Corresponding_Generic_Association (Par))
12101               then
12102                  return False;
12103
12104               else
12105                  exit when
12106                    Nkind (Par) in N_Statement_Other_Than_Procedure_Call
12107                      or else Nkind (Par) in N_Subprogram_Call
12108                      or else Nkind (Par) in N_Declaration;
12109               end if;
12110
12111               Par := Parent (Par);
12112            end loop;
12113
12114            --  Otherwise the expression appears within the instantiated unit
12115
12116            return True;
12117         end if;
12118      end In_Instance_Code;
12119
12120      ----------------------------
12121      -- Valid_Array_Conversion --
12122      ----------------------------
12123
12124      function Valid_Array_Conversion return Boolean is
12125         Opnd_Comp_Type : constant Entity_Id := Component_Type (Opnd_Type);
12126         Opnd_Comp_Base : constant Entity_Id := Base_Type (Opnd_Comp_Type);
12127
12128         Opnd_Index      : Node_Id;
12129         Opnd_Index_Type : Entity_Id;
12130
12131         Target_Comp_Type : constant Entity_Id :=
12132                              Component_Type (Target_Type);
12133         Target_Comp_Base : constant Entity_Id :=
12134                              Base_Type (Target_Comp_Type);
12135
12136         Target_Index      : Node_Id;
12137         Target_Index_Type : Entity_Id;
12138
12139      begin
12140         --  Error if wrong number of dimensions
12141
12142         if
12143           Number_Dimensions (Target_Type) /= Number_Dimensions (Opnd_Type)
12144         then
12145            Conversion_Error_N
12146              ("incompatible number of dimensions for conversion", Operand);
12147            return False;
12148
12149         --  Number of dimensions matches
12150
12151         else
12152            --  Loop through indexes of the two arrays
12153
12154            Target_Index := First_Index (Target_Type);
12155            Opnd_Index   := First_Index (Opnd_Type);
12156            while Present (Target_Index) and then Present (Opnd_Index) loop
12157               Target_Index_Type := Etype (Target_Index);
12158               Opnd_Index_Type   := Etype (Opnd_Index);
12159
12160               --  Error if index types are incompatible
12161
12162               if not (Is_Integer_Type (Target_Index_Type)
12163                       and then Is_Integer_Type (Opnd_Index_Type))
12164                 and then (Root_Type (Target_Index_Type)
12165                           /= Root_Type (Opnd_Index_Type))
12166               then
12167                  Conversion_Error_N
12168                    ("incompatible index types for array conversion",
12169                     Operand);
12170                  return False;
12171               end if;
12172
12173               Next_Index (Target_Index);
12174               Next_Index (Opnd_Index);
12175            end loop;
12176
12177            --  If component types have same base type, all set
12178
12179            if Target_Comp_Base  = Opnd_Comp_Base then
12180               null;
12181
12182               --  Here if base types of components are not the same. The only
12183               --  time this is allowed is if we have anonymous access types.
12184
12185               --  The conversion of arrays of anonymous access types can lead
12186               --  to dangling pointers. AI-392 formalizes the accessibility
12187               --  checks that must be applied to such conversions to prevent
12188               --  out-of-scope references.
12189
12190            elsif Ekind_In
12191                    (Target_Comp_Base, E_Anonymous_Access_Type,
12192                                       E_Anonymous_Access_Subprogram_Type)
12193              and then Ekind (Opnd_Comp_Base) = Ekind (Target_Comp_Base)
12194              and then
12195                Subtypes_Statically_Match (Target_Comp_Type, Opnd_Comp_Type)
12196            then
12197               if Type_Access_Level (Target_Type) <
12198                    Deepest_Type_Access_Level (Opnd_Type)
12199               then
12200                  if In_Instance_Body then
12201                     Error_Msg_Warn := SPARK_Mode /= On;
12202                     Conversion_Error_N
12203                       ("source array type has deeper accessibility "
12204                        & "level than target<<", Operand);
12205                     Conversion_Error_N ("\Program_Error [<<", Operand);
12206                     Rewrite (N,
12207                       Make_Raise_Program_Error (Sloc (N),
12208                         Reason => PE_Accessibility_Check_Failed));
12209                     Set_Etype (N, Target_Type);
12210                     return False;
12211
12212                  --  Conversion not allowed because of accessibility levels
12213
12214                  else
12215                     Conversion_Error_N
12216                       ("source array type has deeper accessibility "
12217                        & "level than target", Operand);
12218                     return False;
12219                  end if;
12220
12221               else
12222                  null;
12223               end if;
12224
12225            --  All other cases where component base types do not match
12226
12227            else
12228               Conversion_Error_N
12229                 ("incompatible component types for array conversion",
12230                  Operand);
12231               return False;
12232            end if;
12233
12234            --  Check that component subtypes statically match. For numeric
12235            --  types this means that both must be either constrained or
12236            --  unconstrained. For enumeration types the bounds must match.
12237            --  All of this is checked in Subtypes_Statically_Match.
12238
12239            if not Subtypes_Statically_Match
12240                     (Target_Comp_Type, Opnd_Comp_Type)
12241            then
12242               Conversion_Error_N
12243                 ("component subtypes must statically match", Operand);
12244               return False;
12245            end if;
12246         end if;
12247
12248         return True;
12249      end Valid_Array_Conversion;
12250
12251      -----------------------------
12252      -- Valid_Tagged_Conversion --
12253      -----------------------------
12254
12255      function Valid_Tagged_Conversion
12256        (Target_Type : Entity_Id;
12257         Opnd_Type   : Entity_Id) return Boolean
12258      is
12259      begin
12260         --  Upward conversions are allowed (RM 4.6(22))
12261
12262         if Covers (Target_Type, Opnd_Type)
12263           or else Is_Ancestor (Target_Type, Opnd_Type)
12264         then
12265            return True;
12266
12267         --  Downward conversion are allowed if the operand is class-wide
12268         --  (RM 4.6(23)).
12269
12270         elsif Is_Class_Wide_Type (Opnd_Type)
12271           and then Covers (Opnd_Type, Target_Type)
12272         then
12273            return True;
12274
12275         elsif Covers (Opnd_Type, Target_Type)
12276           or else Is_Ancestor (Opnd_Type, Target_Type)
12277         then
12278            return
12279              Conversion_Check (False,
12280                "downward conversion of tagged objects not allowed");
12281
12282         --  Ada 2005 (AI-251): The conversion to/from interface types is
12283         --  always valid. The types involved may be class-wide (sub)types.
12284
12285         elsif Is_Interface (Etype (Base_Type (Target_Type)))
12286           or else Is_Interface (Etype (Base_Type (Opnd_Type)))
12287         then
12288            return True;
12289
12290         --  If the operand is a class-wide type obtained through a limited_
12291         --  with clause, and the context includes the nonlimited view, use
12292         --  it to determine whether the conversion is legal.
12293
12294         elsif Is_Class_Wide_Type (Opnd_Type)
12295           and then From_Limited_With (Opnd_Type)
12296           and then Present (Non_Limited_View (Etype (Opnd_Type)))
12297           and then Is_Interface (Non_Limited_View (Etype (Opnd_Type)))
12298         then
12299            return True;
12300
12301         elsif Is_Access_Type (Opnd_Type)
12302           and then Is_Interface (Directly_Designated_Type (Opnd_Type))
12303         then
12304            return True;
12305
12306         else
12307            Conversion_Error_NE
12308              ("invalid tagged conversion, not compatible with}",
12309               N, First_Subtype (Opnd_Type));
12310            return False;
12311         end if;
12312      end Valid_Tagged_Conversion;
12313
12314   --  Start of processing for Valid_Conversion
12315
12316   begin
12317      Check_Parameterless_Call (Operand);
12318
12319      if Is_Overloaded (Operand) then
12320         declare
12321            I   : Interp_Index;
12322            I1  : Interp_Index;
12323            It  : Interp;
12324            It1 : Interp;
12325            N1  : Entity_Id;
12326            T1  : Entity_Id;
12327
12328         begin
12329            --  Remove procedure calls, which syntactically cannot appear in
12330            --  this context, but which cannot be removed by type checking,
12331            --  because the context does not impose a type.
12332
12333            --  The node may be labelled overloaded, but still contain only one
12334            --  interpretation because others were discarded earlier. If this
12335            --  is the case, retain the single interpretation if legal.
12336
12337            Get_First_Interp (Operand, I, It);
12338            Opnd_Type := It.Typ;
12339            Get_Next_Interp (I, It);
12340
12341            if Present (It.Typ)
12342              and then Opnd_Type /= Standard_Void_Type
12343            then
12344               --  More than one candidate interpretation is available
12345
12346               Get_First_Interp (Operand, I, It);
12347               while Present (It.Typ) loop
12348                  if It.Typ = Standard_Void_Type then
12349                     Remove_Interp (I);
12350                  end if;
12351
12352                  --  When compiling for a system where Address is of a visible
12353                  --  integer type, spurious ambiguities can be produced when
12354                  --  arithmetic operations have a literal operand and return
12355                  --  System.Address or a descendant of it. These ambiguities
12356                  --  are usually resolved by the context, but for conversions
12357                  --  there is no context type and the removal of the spurious
12358                  --  operations must be done explicitly here.
12359
12360                  if not Address_Is_Private
12361                    and then Is_Descendant_Of_Address (It.Typ)
12362                  then
12363                     Remove_Interp (I);
12364                  end if;
12365
12366                  Get_Next_Interp (I, It);
12367               end loop;
12368            end if;
12369
12370            Get_First_Interp (Operand, I, It);
12371            I1  := I;
12372            It1 := It;
12373
12374            if No (It.Typ) then
12375               Conversion_Error_N ("illegal operand in conversion", Operand);
12376               return False;
12377            end if;
12378
12379            Get_Next_Interp (I, It);
12380
12381            if Present (It.Typ) then
12382               N1  := It1.Nam;
12383               T1  := It1.Typ;
12384               It1 := Disambiguate (Operand, I1, I, Any_Type);
12385
12386               if It1 = No_Interp then
12387                  Conversion_Error_N
12388                    ("ambiguous operand in conversion", Operand);
12389
12390                  --  If the interpretation involves a standard operator, use
12391                  --  the location of the type, which may be user-defined.
12392
12393                  if Sloc (It.Nam) = Standard_Location then
12394                     Error_Msg_Sloc := Sloc (It.Typ);
12395                  else
12396                     Error_Msg_Sloc := Sloc (It.Nam);
12397                  end if;
12398
12399                  Conversion_Error_N -- CODEFIX
12400                    ("\\possible interpretation#!", Operand);
12401
12402                  if Sloc (N1) = Standard_Location then
12403                     Error_Msg_Sloc := Sloc (T1);
12404                  else
12405                     Error_Msg_Sloc := Sloc (N1);
12406                  end if;
12407
12408                  Conversion_Error_N -- CODEFIX
12409                    ("\\possible interpretation#!", Operand);
12410
12411                  return False;
12412               end if;
12413            end if;
12414
12415            Set_Etype (Operand, It1.Typ);
12416            Opnd_Type := It1.Typ;
12417         end;
12418      end if;
12419
12420      --  Deal with conversion of integer type to address if the pragma
12421      --  Allow_Integer_Address is in effect. We convert the conversion to
12422      --  an unchecked conversion in this case and we are all done.
12423
12424      if Address_Integer_Convert_OK (Opnd_Type, Target_Type) then
12425         Rewrite (N, Unchecked_Convert_To (Target_Type, Expression (N)));
12426         Analyze_And_Resolve (N, Target_Type);
12427         return True;
12428      end if;
12429
12430      --  If we are within a child unit, check whether the type of the
12431      --  expression has an ancestor in a parent unit, in which case it
12432      --  belongs to its derivation class even if the ancestor is private.
12433      --  See RM 7.3.1 (5.2/3).
12434
12435      Inc_Ancestor := Get_Incomplete_View_Of_Ancestor (Opnd_Type);
12436
12437      --  Numeric types
12438
12439      if Is_Numeric_Type (Target_Type) then
12440
12441         --  A universal fixed expression can be converted to any numeric type
12442
12443         if Opnd_Type = Universal_Fixed then
12444            return True;
12445
12446         --  Also no need to check when in an instance or inlined body, because
12447         --  the legality has been established when the template was analyzed.
12448         --  Furthermore, numeric conversions may occur where only a private
12449         --  view of the operand type is visible at the instantiation point.
12450         --  This results in a spurious error if we check that the operand type
12451         --  is a numeric type.
12452
12453         --  Note: in a previous version of this unit, the following tests were
12454         --  applied only for generated code (Comes_From_Source set to False),
12455         --  but in fact the test is required for source code as well, since
12456         --  this situation can arise in source code.
12457
12458         elsif In_Instance_Code or else In_Inlined_Body then
12459            return True;
12460
12461         --  Otherwise we need the conversion check
12462
12463         else
12464            return Conversion_Check
12465                     (Is_Numeric_Type (Opnd_Type)
12466                       or else
12467                         (Present (Inc_Ancestor)
12468                           and then Is_Numeric_Type (Inc_Ancestor)),
12469                      "illegal operand for numeric conversion");
12470         end if;
12471
12472      --  Array types
12473
12474      elsif Is_Array_Type (Target_Type) then
12475         if not Is_Array_Type (Opnd_Type)
12476           or else Opnd_Type = Any_Composite
12477           or else Opnd_Type = Any_String
12478         then
12479            Conversion_Error_N
12480              ("illegal operand for array conversion", Operand);
12481            return False;
12482
12483         else
12484            return Valid_Array_Conversion;
12485         end if;
12486
12487      --  Ada 2005 (AI-251): Internally generated conversions of access to
12488      --  interface types added to force the displacement of the pointer to
12489      --  reference the corresponding dispatch table.
12490
12491      elsif not Comes_From_Source (N)
12492         and then Is_Access_Type (Target_Type)
12493         and then Is_Interface (Designated_Type (Target_Type))
12494      then
12495         return True;
12496
12497      --  Ada 2005 (AI-251): Anonymous access types where target references an
12498      --  interface type.
12499
12500      elsif Is_Access_Type (Opnd_Type)
12501        and then Ekind_In (Target_Type, E_General_Access_Type,
12502                                        E_Anonymous_Access_Type)
12503        and then Is_Interface (Directly_Designated_Type (Target_Type))
12504      then
12505         --  Check the static accessibility rule of 4.6(17). Note that the
12506         --  check is not enforced when within an instance body, since the
12507         --  RM requires such cases to be caught at run time.
12508
12509         --  If the operand is a rewriting of an allocator no check is needed
12510         --  because there are no accessibility issues.
12511
12512         if Nkind (Original_Node (N)) = N_Allocator then
12513            null;
12514
12515         elsif Ekind (Target_Type) /= E_Anonymous_Access_Type then
12516            if Type_Access_Level (Opnd_Type) >
12517               Deepest_Type_Access_Level (Target_Type)
12518            then
12519               --  In an instance, this is a run-time check, but one we know
12520               --  will fail, so generate an appropriate warning. The raise
12521               --  will be generated by Expand_N_Type_Conversion.
12522
12523               if In_Instance_Body then
12524                  Error_Msg_Warn := SPARK_Mode /= On;
12525                  Conversion_Error_N
12526                    ("cannot convert local pointer to non-local access type<<",
12527                     Operand);
12528                  Conversion_Error_N ("\Program_Error [<<", Operand);
12529
12530               else
12531                  Conversion_Error_N
12532                    ("cannot convert local pointer to non-local access type",
12533                     Operand);
12534                  return False;
12535               end if;
12536
12537            --  Special accessibility checks are needed in the case of access
12538            --  discriminants declared for a limited type.
12539
12540            elsif Ekind (Opnd_Type) = E_Anonymous_Access_Type
12541              and then not Is_Local_Anonymous_Access (Opnd_Type)
12542            then
12543               --  When the operand is a selected access discriminant the check
12544               --  needs to be made against the level of the object denoted by
12545               --  the prefix of the selected name (Object_Access_Level handles
12546               --  checking the prefix of the operand for this case).
12547
12548               if Nkind (Operand) = N_Selected_Component
12549                 and then Object_Access_Level (Operand) >
12550                   Deepest_Type_Access_Level (Target_Type)
12551               then
12552                  --  In an instance, this is a run-time check, but one we know
12553                  --  will fail, so generate an appropriate warning. The raise
12554                  --  will be generated by Expand_N_Type_Conversion.
12555
12556                  if In_Instance_Body then
12557                     Error_Msg_Warn := SPARK_Mode /= On;
12558                     Conversion_Error_N
12559                       ("cannot convert access discriminant to non-local "
12560                        & "access type<<", Operand);
12561                     Conversion_Error_N ("\Program_Error [<<", Operand);
12562
12563                  --  Real error if not in instance body
12564
12565                  else
12566                     Conversion_Error_N
12567                       ("cannot convert access discriminant to non-local "
12568                        & "access type", Operand);
12569                     return False;
12570                  end if;
12571               end if;
12572
12573               --  The case of a reference to an access discriminant from
12574               --  within a limited type declaration (which will appear as
12575               --  a discriminal) is always illegal because the level of the
12576               --  discriminant is considered to be deeper than any (nameable)
12577               --  access type.
12578
12579               if Is_Entity_Name (Operand)
12580                 and then not Is_Local_Anonymous_Access (Opnd_Type)
12581                 and then
12582                   Ekind_In (Entity (Operand), E_In_Parameter, E_Constant)
12583                 and then Present (Discriminal_Link (Entity (Operand)))
12584               then
12585                  Conversion_Error_N
12586                    ("discriminant has deeper accessibility level than target",
12587                     Operand);
12588                  return False;
12589               end if;
12590            end if;
12591         end if;
12592
12593         return True;
12594
12595      --  General and anonymous access types
12596
12597      elsif Ekind_In (Target_Type, E_General_Access_Type,
12598                                   E_Anonymous_Access_Type)
12599          and then
12600            Conversion_Check
12601              (Is_Access_Type (Opnd_Type)
12602                and then not
12603                  Ekind_In (Opnd_Type, E_Access_Subprogram_Type,
12604                                       E_Access_Protected_Subprogram_Type),
12605               "must be an access-to-object type")
12606      then
12607         if Is_Access_Constant (Opnd_Type)
12608           and then not Is_Access_Constant (Target_Type)
12609         then
12610            Conversion_Error_N
12611              ("access-to-constant operand type not allowed", Operand);
12612            return False;
12613         end if;
12614
12615         --  Check the static accessibility rule of 4.6(17). Note that the
12616         --  check is not enforced when within an instance body, since the RM
12617         --  requires such cases to be caught at run time.
12618
12619         if Ekind (Target_Type) /= E_Anonymous_Access_Type
12620           or else Is_Local_Anonymous_Access (Target_Type)
12621           or else Nkind (Associated_Node_For_Itype (Target_Type)) =
12622                     N_Object_Declaration
12623         then
12624            --  Ada 2012 (AI05-0149): Perform legality checking on implicit
12625            --  conversions from an anonymous access type to a named general
12626            --  access type. Such conversions are not allowed in the case of
12627            --  access parameters and stand-alone objects of an anonymous
12628            --  access type. The implicit conversion case is recognized by
12629            --  testing that Comes_From_Source is False and that it's been
12630            --  rewritten. The Comes_From_Source test isn't sufficient because
12631            --  nodes in inlined calls to predefined library routines can have
12632            --  Comes_From_Source set to False. (Is there a better way to test
12633            --  for implicit conversions???)
12634
12635            if Ada_Version >= Ada_2012
12636              and then not Comes_From_Source (N)
12637              and then N /= Original_Node (N)
12638              and then Ekind (Target_Type) = E_General_Access_Type
12639              and then Ekind (Opnd_Type) = E_Anonymous_Access_Type
12640            then
12641               if Is_Itype (Opnd_Type) then
12642
12643                  --  Implicit conversions aren't allowed for objects of an
12644                  --  anonymous access type, since such objects have nonstatic
12645                  --  levels in Ada 2012.
12646
12647                  if Nkind (Associated_Node_For_Itype (Opnd_Type)) =
12648                       N_Object_Declaration
12649                  then
12650                     Conversion_Error_N
12651                       ("implicit conversion of stand-alone anonymous "
12652                        & "access object not allowed", Operand);
12653                     return False;
12654
12655                  --  Implicit conversions aren't allowed for anonymous access
12656                  --  parameters. The "not Is_Local_Anonymous_Access_Type" test
12657                  --  is done to exclude anonymous access results.
12658
12659                  elsif not Is_Local_Anonymous_Access (Opnd_Type)
12660                    and then Nkind_In (Associated_Node_For_Itype (Opnd_Type),
12661                                       N_Function_Specification,
12662                                       N_Procedure_Specification)
12663                  then
12664                     Conversion_Error_N
12665                       ("implicit conversion of anonymous access formal "
12666                        & "not allowed", Operand);
12667                     return False;
12668
12669                  --  This is a case where there's an enclosing object whose
12670                  --  to which the "statically deeper than" relationship does
12671                  --  not apply (such as an access discriminant selected from
12672                  --  a dereference of an access parameter).
12673
12674                  elsif Object_Access_Level (Operand)
12675                          = Scope_Depth (Standard_Standard)
12676                  then
12677                     Conversion_Error_N
12678                       ("implicit conversion of anonymous access value "
12679                        & "not allowed", Operand);
12680                     return False;
12681
12682                  --  In other cases, the level of the operand's type must be
12683                  --  statically less deep than that of the target type, else
12684                  --  implicit conversion is disallowed (by RM12-8.6(27.1/3)).
12685
12686                  elsif Type_Access_Level (Opnd_Type) >
12687                        Deepest_Type_Access_Level (Target_Type)
12688                  then
12689                     Conversion_Error_N
12690                       ("implicit conversion of anonymous access value "
12691                        & "violates accessibility", Operand);
12692                     return False;
12693                  end if;
12694               end if;
12695
12696            elsif Type_Access_Level (Opnd_Type) >
12697                    Deepest_Type_Access_Level (Target_Type)
12698            then
12699               --  In an instance, this is a run-time check, but one we know
12700               --  will fail, so generate an appropriate warning. The raise
12701               --  will be generated by Expand_N_Type_Conversion.
12702
12703               if In_Instance_Body then
12704                  Error_Msg_Warn := SPARK_Mode /= On;
12705                  Conversion_Error_N
12706                    ("cannot convert local pointer to non-local access type<<",
12707                     Operand);
12708                  Conversion_Error_N ("\Program_Error [<<", Operand);
12709
12710               --  If not in an instance body, this is a real error
12711
12712               else
12713                  --  Avoid generation of spurious error message
12714
12715                  if not Error_Posted (N) then
12716                     Conversion_Error_N
12717                      ("cannot convert local pointer to non-local access type",
12718                       Operand);
12719                  end if;
12720
12721                  return False;
12722               end if;
12723
12724            --  Special accessibility checks are needed in the case of access
12725            --  discriminants declared for a limited type.
12726
12727            elsif Ekind (Opnd_Type) = E_Anonymous_Access_Type
12728              and then not Is_Local_Anonymous_Access (Opnd_Type)
12729            then
12730               --  When the operand is a selected access discriminant the check
12731               --  needs to be made against the level of the object denoted by
12732               --  the prefix of the selected name (Object_Access_Level handles
12733               --  checking the prefix of the operand for this case).
12734
12735               if Nkind (Operand) = N_Selected_Component
12736                 and then Object_Access_Level (Operand) >
12737                          Deepest_Type_Access_Level (Target_Type)
12738               then
12739                  --  In an instance, this is a run-time check, but one we know
12740                  --  will fail, so generate an appropriate warning. The raise
12741                  --  will be generated by Expand_N_Type_Conversion.
12742
12743                  if In_Instance_Body then
12744                     Error_Msg_Warn := SPARK_Mode /= On;
12745                     Conversion_Error_N
12746                       ("cannot convert access discriminant to non-local "
12747                        & "access type<<", Operand);
12748                     Conversion_Error_N ("\Program_Error [<<", Operand);
12749
12750                  --  If not in an instance body, this is a real error
12751
12752                  else
12753                     Conversion_Error_N
12754                       ("cannot convert access discriminant to non-local "
12755                        & "access type", Operand);
12756                     return False;
12757                  end if;
12758               end if;
12759
12760               --  The case of a reference to an access discriminant from
12761               --  within a limited type declaration (which will appear as
12762               --  a discriminal) is always illegal because the level of the
12763               --  discriminant is considered to be deeper than any (nameable)
12764               --  access type.
12765
12766               if Is_Entity_Name (Operand)
12767                 and then
12768                   Ekind_In (Entity (Operand), E_In_Parameter, E_Constant)
12769                 and then Present (Discriminal_Link (Entity (Operand)))
12770               then
12771                  Conversion_Error_N
12772                    ("discriminant has deeper accessibility level than target",
12773                     Operand);
12774                  return False;
12775               end if;
12776            end if;
12777         end if;
12778
12779         --  In the presence of limited_with clauses we have to use nonlimited
12780         --  views, if available.
12781
12782         Check_Limited : declare
12783            function Full_Designated_Type (T : Entity_Id) return Entity_Id;
12784            --  Helper function to handle limited views
12785
12786            --------------------------
12787            -- Full_Designated_Type --
12788            --------------------------
12789
12790            function Full_Designated_Type (T : Entity_Id) return Entity_Id is
12791               Desig : constant Entity_Id := Designated_Type (T);
12792
12793            begin
12794               --  Handle the limited view of a type
12795
12796               if From_Limited_With (Desig)
12797                 and then Has_Non_Limited_View (Desig)
12798               then
12799                  return Available_View (Desig);
12800               else
12801                  return Desig;
12802               end if;
12803            end Full_Designated_Type;
12804
12805            --  Local Declarations
12806
12807            Target : constant Entity_Id := Full_Designated_Type (Target_Type);
12808            Opnd   : constant Entity_Id := Full_Designated_Type (Opnd_Type);
12809
12810            Same_Base : constant Boolean :=
12811                          Base_Type (Target) = Base_Type (Opnd);
12812
12813         --  Start of processing for Check_Limited
12814
12815         begin
12816            if Is_Tagged_Type (Target) then
12817               return Valid_Tagged_Conversion (Target, Opnd);
12818
12819            else
12820               if not Same_Base then
12821                  Conversion_Error_NE
12822                    ("target designated type not compatible with }",
12823                     N, Base_Type (Opnd));
12824                  return False;
12825
12826               --  Ada 2005 AI-384: legality rule is symmetric in both
12827               --  designated types. The conversion is legal (with possible
12828               --  constraint check) if either designated type is
12829               --  unconstrained.
12830
12831               elsif Subtypes_Statically_Match (Target, Opnd)
12832                 or else
12833                   (Has_Discriminants (Target)
12834                     and then
12835                      (not Is_Constrained (Opnd)
12836                        or else not Is_Constrained (Target)))
12837               then
12838                  --  Special case, if Value_Size has been used to make the
12839                  --  sizes different, the conversion is not allowed even
12840                  --  though the subtypes statically match.
12841
12842                  if Known_Static_RM_Size (Target)
12843                    and then Known_Static_RM_Size (Opnd)
12844                    and then RM_Size (Target) /= RM_Size (Opnd)
12845                  then
12846                     Conversion_Error_NE
12847                       ("target designated subtype not compatible with }",
12848                        N, Opnd);
12849                     Conversion_Error_NE
12850                       ("\because sizes of the two designated subtypes differ",
12851                        N, Opnd);
12852                     return False;
12853
12854                  --  Normal case where conversion is allowed
12855
12856                  else
12857                     return True;
12858                  end if;
12859
12860               else
12861                  Error_Msg_NE
12862                    ("target designated subtype not compatible with }",
12863                     N, Opnd);
12864                  return False;
12865               end if;
12866            end if;
12867         end Check_Limited;
12868
12869      --  Access to subprogram types. If the operand is an access parameter,
12870      --  the type has a deeper accessibility that any master, and cannot be
12871      --  assigned. We must make an exception if the conversion is part of an
12872      --  assignment and the target is the return object of an extended return
12873      --  statement, because in that case the accessibility check takes place
12874      --  after the return.
12875
12876      elsif Is_Access_Subprogram_Type (Target_Type)
12877
12878        --  Note: this test of Opnd_Type is there to prevent entering this
12879        --  branch in the case of a remote access to subprogram type, which
12880        --  is internally represented as an E_Record_Type.
12881
12882        and then Is_Access_Type (Opnd_Type)
12883      then
12884         if Ekind (Base_Type (Opnd_Type)) = E_Anonymous_Access_Subprogram_Type
12885           and then Is_Entity_Name (Operand)
12886           and then Ekind (Entity (Operand)) = E_In_Parameter
12887           and then
12888             (Nkind (Parent (N)) /= N_Assignment_Statement
12889               or else not Is_Entity_Name (Name (Parent (N)))
12890               or else not Is_Return_Object (Entity (Name (Parent (N)))))
12891         then
12892            Conversion_Error_N
12893              ("illegal attempt to store anonymous access to subprogram",
12894               Operand);
12895            Conversion_Error_N
12896              ("\value has deeper accessibility than any master "
12897               & "(RM 3.10.2 (13))",
12898               Operand);
12899
12900            Error_Msg_NE
12901             ("\use named access type for& instead of access parameter",
12902               Operand, Entity (Operand));
12903         end if;
12904
12905         --  Check that the designated types are subtype conformant
12906
12907         Check_Subtype_Conformant (New_Id  => Designated_Type (Target_Type),
12908                                   Old_Id  => Designated_Type (Opnd_Type),
12909                                   Err_Loc => N);
12910
12911         --  Check the static accessibility rule of 4.6(20)
12912
12913         if Type_Access_Level (Opnd_Type) >
12914            Deepest_Type_Access_Level (Target_Type)
12915         then
12916            Conversion_Error_N
12917              ("operand type has deeper accessibility level than target",
12918               Operand);
12919
12920         --  Check that if the operand type is declared in a generic body,
12921         --  then the target type must be declared within that same body
12922         --  (enforces last sentence of 4.6(20)).
12923
12924         elsif Present (Enclosing_Generic_Body (Opnd_Type)) then
12925            declare
12926               O_Gen : constant Node_Id :=
12927                         Enclosing_Generic_Body (Opnd_Type);
12928
12929               T_Gen : Node_Id;
12930
12931            begin
12932               T_Gen := Enclosing_Generic_Body (Target_Type);
12933               while Present (T_Gen) and then T_Gen /= O_Gen loop
12934                  T_Gen := Enclosing_Generic_Body (T_Gen);
12935               end loop;
12936
12937               if T_Gen /= O_Gen then
12938                  Conversion_Error_N
12939                    ("target type must be declared in same generic body "
12940                     & "as operand type", N);
12941               end if;
12942            end;
12943         end if;
12944
12945         return True;
12946
12947      --  Remote access to subprogram types
12948
12949      elsif Is_Remote_Access_To_Subprogram_Type (Target_Type)
12950        and then Is_Remote_Access_To_Subprogram_Type (Opnd_Type)
12951      then
12952         --  It is valid to convert from one RAS type to another provided
12953         --  that their specification statically match.
12954
12955         --  Note: at this point, remote access to subprogram types have been
12956         --  expanded to their E_Record_Type representation, and we need to
12957         --  go back to the original access type definition using the
12958         --  Corresponding_Remote_Type attribute in order to check that the
12959         --  designated profiles match.
12960
12961         pragma Assert (Ekind (Target_Type) = E_Record_Type);
12962         pragma Assert (Ekind (Opnd_Type) = E_Record_Type);
12963
12964         Check_Subtype_Conformant
12965           (New_Id  =>
12966              Designated_Type (Corresponding_Remote_Type (Target_Type)),
12967            Old_Id  =>
12968              Designated_Type (Corresponding_Remote_Type (Opnd_Type)),
12969            Err_Loc =>
12970              N);
12971         return True;
12972
12973      --  If it was legal in the generic, it's legal in the instance
12974
12975      elsif In_Instance_Body then
12976         return True;
12977
12978      --  If both are tagged types, check legality of view conversions
12979
12980      elsif Is_Tagged_Type (Target_Type)
12981              and then
12982            Is_Tagged_Type (Opnd_Type)
12983      then
12984         return Valid_Tagged_Conversion (Target_Type, Opnd_Type);
12985
12986      --  Types derived from the same root type are convertible
12987
12988      elsif Root_Type (Target_Type) = Root_Type (Opnd_Type) then
12989         return True;
12990
12991      --  In an instance or an inlined body, there may be inconsistent views of
12992      --  the same type, or of types derived from a common root.
12993
12994      elsif (In_Instance or In_Inlined_Body)
12995        and then
12996          Root_Type (Underlying_Type (Target_Type)) =
12997          Root_Type (Underlying_Type (Opnd_Type))
12998      then
12999         return True;
13000
13001      --  Special check for common access type error case
13002
13003      elsif Ekind (Target_Type) = E_Access_Type
13004         and then Is_Access_Type (Opnd_Type)
13005      then
13006         Conversion_Error_N ("target type must be general access type!", N);
13007         Conversion_Error_NE -- CODEFIX
13008            ("add ALL to }!", N, Target_Type);
13009         return False;
13010
13011      --  Here we have a real conversion error
13012
13013      else
13014         Conversion_Error_NE
13015           ("invalid conversion, not compatible with }", N, Opnd_Type);
13016         return False;
13017      end if;
13018   end Valid_Conversion;
13019
13020end Sem_Res;
13021