1 // backend.h -- Go frontend interface to backend  -*- C++ -*-
2 
3 // Copyright 2011 The Go Authors. All rights reserved.
4 // Use of this source code is governed by a BSD-style
5 // license that can be found in the LICENSE file.
6 
7 #ifndef GO_BACKEND_H
8 #define GO_BACKEND_H
9 
10 #include <gmp.h>
11 #include <mpfr.h>
12 #include <mpc.h>
13 
14 #include "operator.h"
15 
16 // Pointers to these types are created by the backend, passed to the
17 // frontend, and passed back to the backend.  The types must be
18 // defined by the backend using these names.
19 
20 // The backend representation of a type.
21 class Btype;
22 
23 // The backend represention of an expression.
24 class Bexpression;
25 
26 // The backend representation of a statement.
27 class Bstatement;
28 
29 // The backend representation of a function definition or declaration.
30 class Bfunction;
31 
32 // The backend representation of a block.
33 class Bblock;
34 
35 // The backend representation of a variable.
36 class Bvariable;
37 
38 // The backend representation of a label.
39 class Blabel;
40 
41 // The backend interface.  This is a pure abstract class that a
42 // specific backend will implement.
43 
44 class Backend
45 {
46  public:
~Backend()47   virtual ~Backend() { }
48 
49   // Name/type/location.  Used for function parameters, struct fields,
50   // interface methods.
51   struct Btyped_identifier
52   {
53     std::string name;
54     Btype* btype;
55     Location location;
56 
Btyped_identifierBtyped_identifier57     Btyped_identifier()
58         : name(), btype(NULL), location(Linemap::unknown_location())
59     { }
60 
Btyped_identifierBtyped_identifier61     Btyped_identifier(const std::string& a_name, Btype* a_btype,
62 		     Location a_location)
63       : name(a_name), btype(a_btype), location(a_location)
64     { }
65   };
66 
67   // Types.
68 
69   // Produce an error type.  Actually the backend could probably just
70   // crash if this is called.
71   virtual Btype*
72   error_type() = 0;
73 
74   // Get a void type.  This is used in (at least) two ways: 1) as the
75   // return type of a function with no result parameters; 2)
76   // unsafe.Pointer is represented as *void.
77   virtual Btype*
78   void_type() = 0;
79 
80   // Get the unnamed boolean type.
81   virtual Btype*
82   bool_type() = 0;
83 
84   // Get an unnamed integer type with the given signedness and number
85   // of bits.
86   virtual Btype*
87   integer_type(bool is_unsigned, int bits) = 0;
88 
89   // Get an unnamed floating point type with the given number of bits
90   // (32 or 64).
91   virtual Btype*
92   float_type(int bits) = 0;
93 
94   // Get an unnamed complex type with the given number of bits (64 or 128).
95   virtual Btype*
96   complex_type(int bits) = 0;
97 
98   // Get a pointer type.
99   virtual Btype*
100   pointer_type(Btype* to_type) = 0;
101 
102   // Get a function type.  The receiver, parameter, and results are
103   // generated from the types in the Function_type.  The Function_type
104   // is provided so that the names are available.  This should return
105   // not the type of a Go function (which is a pointer to a struct)
106   // but the type of a C function pointer (which will be used as the
107   // type of the first field of the struct).  If there is more than
108   // one result, RESULT_STRUCT is a struct type to hold the results,
109   // and RESULTS may be ignored; if there are zero or one results,
110   // RESULT_STRUCT is NULL.
111   virtual Btype*
112   function_type(const Btyped_identifier& receiver,
113 		const std::vector<Btyped_identifier>& parameters,
114 		const std::vector<Btyped_identifier>& results,
115 		Btype* result_struct,
116 		Location location) = 0;
117 
118   // Get a struct type.
119   virtual Btype*
120   struct_type(const std::vector<Btyped_identifier>& fields) = 0;
121 
122   // Get an array type.
123   virtual Btype*
124   array_type(Btype* element_type, Bexpression* length) = 0;
125 
126   // Create a placeholder pointer type.  This is used for a named
127   // pointer type, since in Go a pointer type may refer to itself.
128   // NAME is the name of the type, and the location is where the named
129   // type is defined.  This function is also used for unnamed function
130   // types with multiple results, in which case the type has no name
131   // and NAME will be empty.  FOR_FUNCTION is true if this is for a C
132   // pointer to function type.  A Go func type is represented as a
133   // pointer to a struct, and the first field of the struct is a C
134   // pointer to function.  The return value will later be passed as
135   // the first parameter to set_placeholder_pointer_type or
136   // set_placeholder_function_type.
137   virtual Btype*
138   placeholder_pointer_type(const std::string& name, Location,
139 			   bool for_function) = 0;
140 
141   // Fill in a placeholder pointer type as a pointer.  This takes a
142   // type returned by placeholder_pointer_type and arranges for it to
143   // point to the type that TO_TYPE points to (that is, PLACEHOLDER
144   // becomes the same type as TO_TYPE).  Returns true on success,
145   // false on failure.
146   virtual bool
147   set_placeholder_pointer_type(Btype* placeholder, Btype* to_type) = 0;
148 
149   // Fill in a placeholder pointer type as a function.  This takes a
150   // type returned by placeholder_pointer_type and arranges for it to
151   // become a real Go function type (which corresponds to a C/C++
152   // pointer to function type).  FT will be something returned by the
153   // function_type method.  Returns true on success, false on failure.
154   virtual bool
155   set_placeholder_function_type(Btype* placeholder, Btype* ft) = 0;
156 
157   // Create a placeholder struct type.  This is used for a named
158   // struct type, as with placeholder_pointer_type.  It is also used
159   // for interface types, in which case NAME will be the empty string.
160   virtual Btype*
161   placeholder_struct_type(const std::string& name, Location) = 0;
162 
163   // Fill in a placeholder struct type.  This takes a type returned by
164   // placeholder_struct_type and arranges for it to become a real
165   // struct type.  The parameter is as for struct_type.  Returns true
166   // on success, false on failure.
167   virtual bool
168   set_placeholder_struct_type(Btype* placeholder,
169 			      const std::vector<Btyped_identifier>& fields)
170   			= 0;
171 
172   // Create a placeholder array type.  This is used for a named array
173   // type, as with placeholder_pointer_type, to handle cases like
174   // type A []*A.
175   virtual Btype*
176   placeholder_array_type(const std::string& name, Location) = 0;
177 
178   // Fill in a placeholder array type.  This takes a type returned by
179   // placeholder_array_type and arranges for it to become a real array
180   // type.  The parameters are as for array_type.  Returns true on
181   // success, false on failure.
182   virtual bool
183   set_placeholder_array_type(Btype* placeholder, Btype* element_type,
184 			     Bexpression* length) = 0;
185 
186   // Return a named version of a type.  The location is the location
187   // of the type definition.  This will not be called for a type
188   // created via placeholder_pointer_type, placeholder_struct_type, or
189   // placeholder_array_type..  (It may be called for a pointer,
190   // struct, or array type in a case like "type P *byte; type Q P".)
191   virtual Btype*
192   named_type(const std::string& name, Btype*, Location) = 0;
193 
194   // Create a marker for a circular pointer type.  Go pointer and
195   // function types can refer to themselves in ways that are not
196   // permitted in C/C++.  When a circular type is found, this function
197   // is called for the circular reference.  This permits the backend
198   // to decide how to handle such a type.  PLACEHOLDER is the
199   // placeholder type which has already been created; if the backend
200   // is prepared to handle a circular pointer type, it may simply
201   // return PLACEHOLDER.  FOR_FUNCTION is true if this is for a
202   // function type.
203   //
204   // For "type P *P" the sequence of calls will be
205   //   bt1 = placeholder_pointer_type();
206   //   bt2 = circular_pointer_type(bt1, false);
207   //   set_placeholder_pointer_type(bt1, bt2);
208   virtual Btype*
209   circular_pointer_type(Btype* placeholder, bool for_function) = 0;
210 
211   // Return whether the argument could be a special type created by
212   // circular_pointer_type.  This is used to introduce explicit type
213   // conversions where needed.  If circular_pointer_type returns its
214   // PLACEHOLDER parameter, this may safely always return false.
215   virtual bool
216   is_circular_pointer_type(Btype*) = 0;
217 
218   // Return the size of a type.
219   virtual int64_t
220   type_size(Btype*) = 0;
221 
222   // Return the alignment of a type.
223   virtual int64_t
224   type_alignment(Btype*) = 0;
225 
226   // Return the alignment of a struct field of this type.  This is
227   // normally the same as type_alignment, but not always.
228   virtual int64_t
229   type_field_alignment(Btype*) = 0;
230 
231   // Return the offset of field INDEX in a struct type.  INDEX is the
232   // entry in the FIELDS std::vector parameter of struct_type or
233   // set_placeholder_struct_type.
234   virtual int64_t
235   type_field_offset(Btype*, size_t index) = 0;
236 
237   // Expressions.
238 
239   // Return an expression for a zero value of the given type.  This is
240   // used for cases such as local variable initialization and
241   // converting nil to other types.
242   virtual Bexpression*
243   zero_expression(Btype*) = 0;
244 
245   // Create an error expression. This is used for cases which should
246   // not occur in a correct program, in order to keep the compilation
247   // going without crashing.
248   virtual Bexpression*
249   error_expression() = 0;
250 
251   // Create a nil pointer expression.
252   virtual Bexpression*
253   nil_pointer_expression() = 0;
254 
255   // Create a reference to a variable.
256   virtual Bexpression*
257   var_expression(Bvariable* var, Location) = 0;
258 
259   // Create an expression that indirects through the pointer expression EXPR
260   // (i.e., return the expression for *EXPR). KNOWN_VALID is true if the pointer
261   // is known to point to a valid memory location.  BTYPE is the expected type
262   // of the indirected EXPR.
263   virtual Bexpression*
264   indirect_expression(Btype* btype, Bexpression* expr, bool known_valid,
265 		      Location) = 0;
266 
267   // Return an expression that declares a constant named NAME with the
268   // constant value VAL in BTYPE.
269   virtual Bexpression*
270   named_constant_expression(Btype* btype, const std::string& name,
271                              Bexpression* val, Location) = 0;
272 
273   // Return an expression for the multi-precision integer VAL in BTYPE.
274   virtual Bexpression*
275   integer_constant_expression(Btype* btype, mpz_t val) = 0;
276 
277   // Return an expression for the floating point value VAL in BTYPE.
278   virtual Bexpression*
279   float_constant_expression(Btype* btype, mpfr_t val) = 0;
280 
281   // Return an expression for the complex value VAL in BTYPE.
282   virtual Bexpression*
283   complex_constant_expression(Btype* btype, mpc_t val) = 0;
284 
285   // Return an expression for the string value VAL.
286   virtual Bexpression*
287   string_constant_expression(const std::string& val) = 0;
288 
289   // Return an expression for the boolean value VAL.
290   virtual Bexpression*
291   boolean_constant_expression(bool val) = 0;
292 
293   // Return an expression for the real part of BCOMPLEX.
294   virtual Bexpression*
295   real_part_expression(Bexpression* bcomplex, Location) = 0;
296 
297   // Return an expression for the imaginary part of BCOMPLEX.
298   virtual Bexpression*
299   imag_part_expression(Bexpression* bcomplex, Location) = 0;
300 
301   // Return an expression for the complex number (BREAL, BIMAG).
302   virtual Bexpression*
303   complex_expression(Bexpression* breal, Bexpression* bimag, Location) = 0;
304 
305   // Return an expression that converts EXPR to TYPE.
306   virtual Bexpression*
307   convert_expression(Btype* type, Bexpression* expr, Location) = 0;
308 
309   // Create an expression for the address of a function.  This is used to
310   // get the address of the code for a function.
311   virtual Bexpression*
312   function_code_expression(Bfunction*, Location) = 0;
313 
314   // Create an expression that takes the address of an expression.
315   virtual Bexpression*
316   address_expression(Bexpression*, Location) = 0;
317 
318   // Return an expression for the field at INDEX in BSTRUCT.
319   virtual Bexpression*
320   struct_field_expression(Bexpression* bstruct, size_t index, Location) = 0;
321 
322   // Create an expression that executes BSTAT before BEXPR.
323   virtual Bexpression*
324   compound_expression(Bstatement* bstat, Bexpression* bexpr, Location) = 0;
325 
326   // Return an expression that executes THEN_EXPR if CONDITION is true, or
327   // ELSE_EXPR otherwise and returns the result as type BTYPE, within the
328   // specified function FUNCTION.  ELSE_EXPR may be NULL.  BTYPE may be NULL.
329   virtual Bexpression*
330   conditional_expression(Bfunction* function, Btype* btype,
331                          Bexpression* condition, Bexpression* then_expr,
332                          Bexpression* else_expr, Location) = 0;
333 
334   // Return an expression for the unary operation OP EXPR.
335   // Supported values of OP are (from operators.h):
336   //    MINUS, NOT, XOR.
337   virtual Bexpression*
338   unary_expression(Operator op, Bexpression* expr, Location) = 0;
339 
340   // Return an expression for the binary operation LEFT OP RIGHT.
341   // Supported values of OP are (from operators.h):
342   //    EQEQ, NOTEQ, LT, LE, GT, GE, PLUS, MINUS, OR, XOR, MULT, DIV, MOD,
343   //    LSHIFT, RSHIFT, AND, NOT.
344   virtual Bexpression*
345   binary_expression(Operator op, Bexpression* left, Bexpression* right,
346                     Location) = 0;
347 
348   // Return an expression that constructs BTYPE with VALS.  BTYPE must be the
349   // backend representation a of struct.  VALS must be in the same order as the
350   // corresponding fields in BTYPE.
351   virtual Bexpression*
352   constructor_expression(Btype* btype, const std::vector<Bexpression*>& vals,
353                          Location) = 0;
354 
355   // Return an expression that constructs an array of BTYPE with INDEXES and
356   // VALS.  INDEXES and VALS must have the same amount of elements. Each index
357   // in INDEXES must be in the same order as the corresponding value in VALS.
358   virtual Bexpression*
359   array_constructor_expression(Btype* btype,
360                                const std::vector<unsigned long>& indexes,
361                                const std::vector<Bexpression*>& vals,
362                                Location) = 0;
363 
364   // Return an expression for the address of BASE[INDEX].
365   // BASE has a pointer type.  This is used for slice indexing.
366   virtual Bexpression*
367   pointer_offset_expression(Bexpression* base, Bexpression* index,
368                             Location) = 0;
369 
370   // Return an expression for ARRAY[INDEX] as an l-value.  ARRAY is a valid
371   // fixed-length array, not a slice.
372   virtual Bexpression*
373   array_index_expression(Bexpression* array, Bexpression* index, Location) = 0;
374 
375   // Create an expression for a call to FN with ARGS, taking place within
376   // caller CALLER.
377   virtual Bexpression*
378   call_expression(Bfunction *caller, Bexpression* fn,
379                   const std::vector<Bexpression*>& args,
380 		  Bexpression* static_chain, Location) = 0;
381 
382   // Return an expression that allocates SIZE bytes on the stack.
383   virtual Bexpression*
384   stack_allocation_expression(int64_t size, Location) = 0;
385 
386   // Statements.
387 
388   // Create an error statement.  This is used for cases which should
389   // not occur in a correct program, in order to keep the compilation
390   // going without crashing.
391   virtual Bstatement*
392   error_statement() = 0;
393 
394   // Create an expression statement within the specified function.
395   virtual Bstatement*
396   expression_statement(Bfunction*, Bexpression*) = 0;
397 
398   // Create a variable initialization statement in the specified
399   // function.  This initializes a local variable at the point in the
400   // program flow where it is declared.
401   virtual Bstatement*
402   init_statement(Bfunction*, Bvariable* var, Bexpression* init) = 0;
403 
404   // Create an assignment statement within the specified function.
405   virtual Bstatement*
406   assignment_statement(Bfunction*, Bexpression* lhs, Bexpression* rhs,
407 		       Location) = 0;
408 
409   // Create a return statement, passing the representation of the
410   // function and the list of values to return.
411   virtual Bstatement*
412   return_statement(Bfunction*, const std::vector<Bexpression*>&,
413 		   Location) = 0;
414 
415   // Create an if statement within a function.  ELSE_BLOCK may be NULL.
416   virtual Bstatement*
417   if_statement(Bfunction*, Bexpression* condition,
418                Bblock* then_block, Bblock* else_block,
419 	       Location) = 0;
420 
421   // Create a switch statement where the case values are constants.
422   // CASES and STATEMENTS must have the same number of entries.  If
423   // VALUE matches any of the list in CASES[i], which will all be
424   // integers, then STATEMENTS[i] is executed.  STATEMENTS[i] will
425   // either end with a goto statement or will fall through into
426   // STATEMENTS[i + 1].  CASES[i] is empty for the default clause,
427   // which need not be last.  FUNCTION is the current function.
428   virtual Bstatement*
429   switch_statement(Bfunction* function, Bexpression* value,
430 		   const std::vector<std::vector<Bexpression*> >& cases,
431 		   const std::vector<Bstatement*>& statements,
432 		   Location) = 0;
433 
434   // Create a single statement from two statements.
435   virtual Bstatement*
436   compound_statement(Bstatement*, Bstatement*) = 0;
437 
438   // Create a single statement from a list of statements.
439   virtual Bstatement*
440   statement_list(const std::vector<Bstatement*>&) = 0;
441 
442   // Create a statement that attempts to execute BSTAT and calls EXCEPT_STMT if
443   // an exception occurs. EXCEPT_STMT may be NULL.  FINALLY_STMT may be NULL and
444   // if not NULL, it will always be executed.  This is used for handling defers
445   // in Go functions.  In C++, the resulting code is of this form:
446   //   try { BSTAT; } catch { EXCEPT_STMT; } finally { FINALLY_STMT; }
447   virtual Bstatement*
448   exception_handler_statement(Bstatement* bstat, Bstatement* except_stmt,
449                               Bstatement* finally_stmt, Location) = 0;
450 
451   // Blocks.
452 
453   // Create a block.  The frontend will call this function when it
454   // starts converting a block within a function.  FUNCTION is the
455   // current function.  ENCLOSING is the enclosing block; it will be
456   // NULL for the top-level block in a function.  VARS is the list of
457   // local variables defined within this block; each entry will be
458   // created by the local_variable function.  START_LOCATION is the
459   // location of the start of the block, more or less the location of
460   // the initial curly brace.  END_LOCATION is the location of the end
461   // of the block, more or less the location of the final curly brace.
462   // The statements will be added after the block is created.
463   virtual Bblock*
464   block(Bfunction* function, Bblock* enclosing,
465 	const std::vector<Bvariable*>& vars,
466 	Location start_location, Location end_location) = 0;
467 
468   // Add the statements to a block.  The block is created first.  Then
469   // the statements are created.  Then the statements are added to the
470   // block.  This will called exactly once per block.  The vector may
471   // be empty if there are no statements.
472   virtual void
473   block_add_statements(Bblock*, const std::vector<Bstatement*>&) = 0;
474 
475   // Return the block as a statement.  This is used to include a block
476   // in a list of statements.
477   virtual Bstatement*
478   block_statement(Bblock*) = 0;
479 
480   // Variables.
481 
482   // Create an error variable.  This is used for cases which should
483   // not occur in a correct program, in order to keep the compilation
484   // going without crashing.
485   virtual Bvariable*
486   error_variable() = 0;
487 
488   // Create a global variable. NAME is the package-qualified name of
489   // the variable.  ASM_NAME is the encoded identifier for the
490   // variable, incorporating the package, and made safe for the
491   // assembler.  BTYPE is the type of the variable.  IS_EXTERNAL is
492   // true if the variable is defined in some other package.  IS_HIDDEN
493   // is true if the variable is not exported (name begins with a lower
494   // case letter).  IN_UNIQUE_SECTION is true if the variable should
495   // be put into a unique section if possible; this is intended to
496   // permit the linker to garbage collect the variable if it is not
497   // referenced.  LOCATION is where the variable was defined.
498   virtual Bvariable*
499   global_variable(const std::string& name,
500                   const std::string& asm_name,
501 		  Btype* btype,
502 		  bool is_external,
503 		  bool is_hidden,
504 		  bool in_unique_section,
505 		  Location location) = 0;
506 
507   // A global variable will 1) be initialized to zero, or 2) be
508   // initialized to a constant value, or 3) be initialized in the init
509   // function.  In case 2, the frontend will call
510   // global_variable_set_init to set the initial value.  If this is
511   // not called, the backend should initialize a global variable to 0.
512   // The init function may then assign a value to it.
513   virtual void
514   global_variable_set_init(Bvariable*, Bexpression*) = 0;
515 
516   // Create a local variable.  The frontend will create the local
517   // variables first, and then create the block which contains them.
518   // FUNCTION is the function in which the variable is defined.  NAME
519   // is the name of the variable.  TYPE is the type.  DECL_VAR, if not
520   // null, gives the location at which the value of this variable may
521   // be found, typically used to create an inner-scope reference to an
522   // outer-scope variable, to extend the lifetime of the variable beyond
523   // the inner scope.  IS_ADDRESS_TAKEN is true if the address of this
524   // variable is taken (this implies that the address does not escape
525   // the function, as otherwise the variable would be on the heap).
526   // LOCATION is where the variable is defined.  For each local variable
527   // the frontend will call init_statement to set the initial value.
528   virtual Bvariable*
529   local_variable(Bfunction* function, const std::string& name, Btype* type,
530 		 Bvariable* decl_var, bool is_address_taken, Location location) = 0;
531 
532   // Create a function parameter.  This is an incoming parameter, not
533   // a result parameter (result parameters are treated as local
534   // variables).  The arguments are as for local_variable.
535   virtual Bvariable*
536   parameter_variable(Bfunction* function, const std::string& name,
537 		     Btype* type, bool is_address_taken,
538 		     Location location) = 0;
539 
540   // Create a static chain parameter.  This is the closure parameter.
541   virtual Bvariable*
542   static_chain_variable(Bfunction* function, const std::string& name,
543 		        Btype* type, Location location) = 0;
544 
545   // Create a temporary variable.  A temporary variable has no name,
546   // just a type.  We pass in FUNCTION and BLOCK in case they are
547   // needed.  If INIT is not NULL, the variable should be initialized
548   // to that value.  Otherwise the initial value is irrelevant--the
549   // backend does not have to explicitly initialize it to zero.
550   // ADDRESS_IS_TAKEN is true if the programs needs to take the
551   // address of this temporary variable.  LOCATION is the location of
552   // the statement or expression which requires creating the temporary
553   // variable, and may not be very useful.  This function should
554   // return a variable which can be referenced later and should set
555   // *PSTATEMENT to a statement which initializes the variable.
556   virtual Bvariable*
557   temporary_variable(Bfunction*, Bblock*, Btype*, Bexpression* init,
558 		     bool address_is_taken, Location location,
559 		     Bstatement** pstatement) = 0;
560 
561   // Create an implicit variable that is compiler-defined.  This is
562   // used when generating GC data and roots, when storing the values
563   // of a slice constructor, and for the zero value of types.  This returns a
564   // Bvariable because it corresponds to an initialized variable in C.
565   //
566   // NAME is the name to use for the initialized variable this will create.
567   //
568   // ASM_NAME is encoded assembler-friendly version of the name, or the
569   // empty string if no encoding is needed.
570   //
571   // TYPE is the type of the implicit variable.
572   //
573   // IS_HIDDEN will be true if the descriptor should only be visible
574   // within the current object.
575   //
576   // IS_CONSTANT is true if the implicit variable should be treated like it is
577   // immutable.  For slice initializers, if the values must be copied to the
578   // heap, the variable IS_CONSTANT.
579   //
580   // IS_COMMON is true if the implicit variable should
581   // be treated as a common variable (multiple definitions with
582   // different sizes permitted in different object files, all merged
583   // into the largest definition at link time); this will be true for
584   // the zero value.  IS_HIDDEN and IS_COMMON will never both be true.
585   //
586   // If ALIGNMENT is not zero, it is the desired alignment of the variable.
587   virtual Bvariable*
588   implicit_variable(const std::string& name, const std::string& asm_name,
589                     Btype* type, bool is_hidden, bool is_constant,
590                     bool is_common, int64_t alignment) = 0;
591 
592 
593   // Set the initial value of a variable created by implicit_variable.
594   // This must be called even if there is no initializer, i.e., INIT is NULL.
595   // The NAME, TYPE, IS_HIDDEN, IS_CONSTANT, and IS_COMMON parameters are
596   // the same ones passed to implicit_variable.  INIT will be a composite
597   // literal of type TYPE.  It will not contain any function calls or anything
598   // else that can not be put into a read-only data section.
599   // It may contain the address of variables created by implicit_variable.
600   //
601   // If IS_COMMON is true, INIT will be NULL, and the
602   // variable should be initialized to all zeros.
603   virtual void
604   implicit_variable_set_init(Bvariable*, const std::string& name, Btype* type,
605 			     bool is_hidden, bool is_constant, bool is_common,
606 			     Bexpression* init) = 0;
607 
608   // Create a reference to a named implicit variable defined in some
609   // other package.  This will be a variable created by a call to
610   // implicit_variable with the same NAME, ASM_NAME and TYPE and with
611   // IS_COMMON passed as false.  This corresponds to an extern global
612   // variable in C.
613   virtual Bvariable*
614   implicit_variable_reference(const std::string& name,
615                               const std::string& asm_name,
616                               Btype* type) = 0;
617 
618   // Create a named immutable initialized data structure.  This is
619   // used for type descriptors, map descriptors, and function
620   // descriptors.  This returns a Bvariable because it corresponds to
621   // an initialized const variable in C.
622   //
623   // NAME is the name to use for the initialized global variable which
624   // this call will create.
625   //
626   // ASM_NAME is the encoded, assembler-friendly version of NAME, or
627   // the empty string if no encoding is needed.
628   //
629   // IS_HIDDEN will be true if the descriptor should only be visible
630   // within the current object.
631   //
632   // IS_COMMON is true if NAME may be defined by several packages, and
633   // the linker should merge all such definitions.  If IS_COMMON is
634   // false, NAME should be defined in only one file.  In general
635   // IS_COMMON will be true for the type descriptor of an unnamed type
636   // or a builtin type.  IS_HIDDEN and IS_COMMON will never both be
637   // true.
638   //
639   // TYPE will be a struct type; the type of the returned expression
640   // must be a pointer to this struct type.
641   //
642   // We must create the named structure before we know its
643   // initializer, because the initializer may refer to its own
644   // address.  After calling this the frontend will call
645   // immutable_struct_set_init.
646   virtual Bvariable*
647   immutable_struct(const std::string& name,
648                    const std::string& asm_name,
649                    bool is_hidden, bool is_common,
650 		   Btype* type, Location) = 0;
651 
652   // Set the initial value of a variable created by immutable_struct.
653   // The NAME, IS_HIDDEN, IS_COMMON, TYPE, and location parameters are
654   // the same ones passed to immutable_struct.  INITIALIZER will be a
655   // composite literal of type TYPE.  It will not contain any function
656   // calls or anything else that can not be put into a read-only data
657   // section.  It may contain the address of variables created by
658   // immutable_struct.
659   virtual void
660   immutable_struct_set_init(Bvariable*, const std::string& name,
661 			    bool is_hidden, bool is_common, Btype* type,
662 			    Location, Bexpression* initializer) = 0;
663 
664   // Create a reference to a named immutable initialized data
665   // structure defined in some other package.  This will be a
666   // structure created by a call to immutable_struct with the same
667   // NAME, ASM_NAME and TYPE and with IS_COMMON passed as false.  This
668   // corresponds to an extern const global variable in C.
669   virtual Bvariable*
670   immutable_struct_reference(const std::string& name,
671                              const std::string& asm_name,
672                              Btype* type, Location) = 0;
673 
674   // Labels.
675 
676   // Create a new label.  NAME will be empty if this is a label
677   // created by the frontend for a loop construct.  The location is
678   // where the label is defined.
679   virtual Blabel*
680   label(Bfunction*, const std::string& name, Location) = 0;
681 
682   // Create a statement which defines a label.  This statement will be
683   // put into the codestream at the point where the label should be
684   // defined.
685   virtual Bstatement*
686   label_definition_statement(Blabel*) = 0;
687 
688   // Create a goto statement to a label.
689   virtual Bstatement*
690   goto_statement(Blabel*, Location) = 0;
691 
692   // Create an expression for the address of a label.  This is used to
693   // get the return address of a deferred function which may call
694   // recover.
695   virtual Bexpression*
696   label_address(Blabel*, Location) = 0;
697 
698   // Functions.
699 
700   // Create an error function.  This is used for cases which should
701   // not occur in a correct program, in order to keep the compilation
702   // going without crashing.
703   virtual Bfunction*
704   error_function() = 0;
705 
706   // Declare or define a function of FNTYPE.
707   // NAME is the Go name of the function. ASM_NAME, if not the empty string, is
708   // the name that should be used in the symbol table; this will be non-empty if
709   // a magic extern comment is used.
710   // IS_VISIBLE is true if this function should be visible outside of the
711   // current compilation unit. IS_DECLARATION is true if this is a function
712   // declaration rather than a definition; the function definition will be in
713   // another compilation unit.
714   // IS_INLINABLE is true if the function can be inlined.
715   // DISABLE_SPLIT_STACK is true if this function may not split the stack; this
716   // is used for the implementation of recover.
717   // DOES_NOT_RETURN is true for a function that does not return; this is used
718   // for the implementation of panic.
719   // IN_UNIQUE_SECTION is true if this function should be put into a unique
720   // location if possible; this is used for field tracking.
721   virtual Bfunction*
722   function(Btype* fntype, const std::string& name, const std::string& asm_name,
723            bool is_visible, bool is_declaration, bool is_inlinable,
724            bool disable_split_stack, bool does_not_return,
725 	   bool in_unique_section, Location) = 0;
726 
727   // Create a statement that runs all deferred calls for FUNCTION.  This should
728   // be a statement that looks like this in C++:
729   //   finish:
730   //     try { DEFER_RETURN; } catch { CHECK_DEFER; goto finish; }
731   virtual Bstatement*
732   function_defer_statement(Bfunction* function, Bexpression* undefer,
733                            Bexpression* check_defer, Location) = 0;
734 
735   // Record PARAM_VARS as the variables to use for the parameters of FUNCTION.
736   // This will only be called for a function definition.  Returns true on
737   // success, false on failure.
738   virtual bool
739   function_set_parameters(Bfunction* function,
740                          const std::vector<Bvariable*>& param_vars) = 0;
741 
742   // Set the function body for FUNCTION using the code in CODE_STMT.  Returns
743   // true on success, false on failure.
744   virtual bool
745   function_set_body(Bfunction* function, Bstatement* code_stmt) = 0;
746 
747   // Look up a named built-in function in the current backend implementation.
748   // Returns NULL if no built-in function by that name exists.
749   virtual Bfunction*
750   lookup_builtin(const std::string&) = 0;
751 
752   // Utility.
753 
754   // Write the definitions for all TYPE_DECLS, CONSTANT_DECLS,
755   // FUNCTION_DECLS, and VARIABLE_DECLS declared globally.
756   virtual void
757   write_global_definitions(const std::vector<Btype*>& type_decls,
758                            const std::vector<Bexpression*>& constant_decls,
759                            const std::vector<Bfunction*>& function_decls,
760                            const std::vector<Bvariable*>& variable_decls) = 0;
761 
762   // Write SIZE bytes of export data from BYTES to the proper
763   // section in the output object file.
764   virtual void
765   write_export_data(const char* bytes, unsigned int size) = 0;
766 };
767 
768 #endif // !defined(GO_BACKEND_H)
769