1 /* Perform simple optimizations to clean up the result of reload.
2    Copyright (C) 1987-2018 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "predict.h"
28 #include "df.h"
29 #include "memmodel.h"
30 #include "tm_p.h"
31 #include "optabs.h"
32 #include "regs.h"
33 #include "emit-rtl.h"
34 #include "recog.h"
35 
36 #include "cfgrtl.h"
37 #include "cfgbuild.h"
38 #include "cfgcleanup.h"
39 #include "reload.h"
40 #include "cselib.h"
41 #include "tree-pass.h"
42 #include "dbgcnt.h"
43 
44 static int reload_cse_noop_set_p (rtx);
45 static bool reload_cse_simplify (rtx_insn *, rtx);
46 static void reload_cse_regs_1 (void);
47 static int reload_cse_simplify_set (rtx, rtx_insn *);
48 static int reload_cse_simplify_operands (rtx_insn *, rtx);
49 
50 static void reload_combine (void);
51 static void reload_combine_note_use (rtx *, rtx_insn *, int, rtx);
52 static void reload_combine_note_store (rtx, const_rtx, void *);
53 
54 static bool reload_cse_move2add (rtx_insn *);
55 static void move2add_note_store (rtx, const_rtx, void *);
56 
57 /* Call cse / combine like post-reload optimization phases.
58    FIRST is the first instruction.  */
59 
60 static void
reload_cse_regs(rtx_insn * first ATTRIBUTE_UNUSED)61 reload_cse_regs (rtx_insn *first ATTRIBUTE_UNUSED)
62 {
63   bool moves_converted;
64   reload_cse_regs_1 ();
65   reload_combine ();
66   moves_converted = reload_cse_move2add (first);
67   if (flag_expensive_optimizations)
68     {
69       if (moves_converted)
70 	reload_combine ();
71       reload_cse_regs_1 ();
72     }
73 }
74 
75 /* See whether a single set SET is a noop.  */
76 static int
reload_cse_noop_set_p(rtx set)77 reload_cse_noop_set_p (rtx set)
78 {
79   if (cselib_reg_set_mode (SET_DEST (set)) != GET_MODE (SET_DEST (set)))
80     return 0;
81 
82   return rtx_equal_for_cselib_p (SET_DEST (set), SET_SRC (set));
83 }
84 
85 /* Try to simplify INSN.  Return true if the CFG may have changed.  */
86 static bool
reload_cse_simplify(rtx_insn * insn,rtx testreg)87 reload_cse_simplify (rtx_insn *insn, rtx testreg)
88 {
89   rtx body = PATTERN (insn);
90   basic_block insn_bb = BLOCK_FOR_INSN (insn);
91   unsigned insn_bb_succs = EDGE_COUNT (insn_bb->succs);
92 
93   /* If NO_FUNCTION_CSE has been set by the target, then we should not try
94      to cse function calls.  */
95   if (NO_FUNCTION_CSE && CALL_P (insn))
96     return false;
97 
98   if (GET_CODE (body) == SET)
99     {
100       int count = 0;
101 
102       /* Simplify even if we may think it is a no-op.
103          We may think a memory load of a value smaller than WORD_SIZE
104          is redundant because we haven't taken into account possible
105          implicit extension.  reload_cse_simplify_set() will bring
106          this out, so it's safer to simplify before we delete.  */
107       count += reload_cse_simplify_set (body, insn);
108 
109       if (!count && reload_cse_noop_set_p (body))
110 	{
111 	  if (check_for_inc_dec (insn))
112 	    delete_insn_and_edges (insn);
113 	  /* We're done with this insn.  */
114 	  goto done;
115 	}
116 
117       if (count > 0)
118 	apply_change_group ();
119       else
120 	reload_cse_simplify_operands (insn, testreg);
121     }
122   else if (GET_CODE (body) == PARALLEL)
123     {
124       int i;
125       int count = 0;
126       rtx value = NULL_RTX;
127 
128       /* Registers mentioned in the clobber list for an asm cannot be reused
129 	 within the body of the asm.  Invalidate those registers now so that
130 	 we don't try to substitute values for them.  */
131       if (asm_noperands (body) >= 0)
132 	{
133 	  for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
134 	    {
135 	      rtx part = XVECEXP (body, 0, i);
136 	      if (GET_CODE (part) == CLOBBER && REG_P (XEXP (part, 0)))
137 		cselib_invalidate_rtx (XEXP (part, 0));
138 	    }
139 	}
140 
141       /* If every action in a PARALLEL is a noop, we can delete
142 	 the entire PARALLEL.  */
143       for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
144 	{
145 	  rtx part = XVECEXP (body, 0, i);
146 	  if (GET_CODE (part) == SET)
147 	    {
148 	      if (! reload_cse_noop_set_p (part))
149 		break;
150 	      if (REG_P (SET_DEST (part))
151 		  && REG_FUNCTION_VALUE_P (SET_DEST (part)))
152 		{
153 		  if (value)
154 		    break;
155 		  value = SET_DEST (part);
156 		}
157 	    }
158 	  else if (GET_CODE (part) != CLOBBER
159 		   && GET_CODE (part) != USE)
160 	    break;
161 	}
162 
163       if (i < 0)
164 	{
165 	  if (check_for_inc_dec (insn))
166 	    delete_insn_and_edges (insn);
167 	  /* We're done with this insn.  */
168 	  goto done;
169 	}
170 
171       /* It's not a no-op, but we can try to simplify it.  */
172       for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
173 	if (GET_CODE (XVECEXP (body, 0, i)) == SET)
174 	  count += reload_cse_simplify_set (XVECEXP (body, 0, i), insn);
175 
176       if (count > 0)
177 	apply_change_group ();
178       else
179 	reload_cse_simplify_operands (insn, testreg);
180     }
181 
182 done:
183   return (EDGE_COUNT (insn_bb->succs) != insn_bb_succs);
184 }
185 
186 /* Do a very simple CSE pass over the hard registers.
187 
188    This function detects no-op moves where we happened to assign two
189    different pseudo-registers to the same hard register, and then
190    copied one to the other.  Reload will generate a useless
191    instruction copying a register to itself.
192 
193    This function also detects cases where we load a value from memory
194    into two different registers, and (if memory is more expensive than
195    registers) changes it to simply copy the first register into the
196    second register.
197 
198    Another optimization is performed that scans the operands of each
199    instruction to see whether the value is already available in a
200    hard register.  It then replaces the operand with the hard register
201    if possible, much like an optional reload would.  */
202 
203 static void
reload_cse_regs_1(void)204 reload_cse_regs_1 (void)
205 {
206   bool cfg_changed = false;
207   basic_block bb;
208   rtx_insn *insn;
209   rtx testreg = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
210 
211   cselib_init (CSELIB_RECORD_MEMORY);
212   init_alias_analysis ();
213 
214   FOR_EACH_BB_FN (bb, cfun)
215     FOR_BB_INSNS (bb, insn)
216       {
217 	if (INSN_P (insn))
218 	  cfg_changed |= reload_cse_simplify (insn, testreg);
219 
220 	cselib_process_insn (insn);
221       }
222 
223   /* Clean up.  */
224   end_alias_analysis ();
225   cselib_finish ();
226   if (cfg_changed)
227     cleanup_cfg (0);
228 }
229 
230 /* Try to simplify a single SET instruction.  SET is the set pattern.
231    INSN is the instruction it came from.
232    This function only handles one case: if we set a register to a value
233    which is not a register, we try to find that value in some other register
234    and change the set into a register copy.  */
235 
236 static int
reload_cse_simplify_set(rtx set,rtx_insn * insn)237 reload_cse_simplify_set (rtx set, rtx_insn *insn)
238 {
239   int did_change = 0;
240   int dreg;
241   rtx src;
242   reg_class_t dclass;
243   int old_cost;
244   cselib_val *val;
245   struct elt_loc_list *l;
246   enum rtx_code extend_op = UNKNOWN;
247   bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
248 
249   dreg = true_regnum (SET_DEST (set));
250   if (dreg < 0)
251     return 0;
252 
253   src = SET_SRC (set);
254   if (side_effects_p (src) || true_regnum (src) >= 0)
255     return 0;
256 
257   dclass = REGNO_REG_CLASS (dreg);
258 
259   /* When replacing a memory with a register, we need to honor assumptions
260      that combine made wrt the contents of sign bits.  We'll do this by
261      generating an extend instruction instead of a reg->reg copy.  Thus
262      the destination must be a register that we can widen.  */
263   if (MEM_P (src)
264       && (extend_op = load_extend_op (GET_MODE (src))) != UNKNOWN
265       && !REG_P (SET_DEST (set)))
266     return 0;
267 
268   val = cselib_lookup (src, GET_MODE (SET_DEST (set)), 0, VOIDmode);
269   if (! val)
270     return 0;
271 
272   /* If memory loads are cheaper than register copies, don't change them.  */
273   if (MEM_P (src))
274     old_cost = memory_move_cost (GET_MODE (src), dclass, true);
275   else if (REG_P (src))
276     old_cost = register_move_cost (GET_MODE (src),
277 				   REGNO_REG_CLASS (REGNO (src)), dclass);
278   else
279     old_cost = set_src_cost (src, GET_MODE (SET_DEST (set)), speed);
280 
281   for (l = val->locs; l; l = l->next)
282     {
283       rtx this_rtx = l->loc;
284       int this_cost;
285 
286       if (CONSTANT_P (this_rtx) && ! references_value_p (this_rtx, 0))
287 	{
288 	  if (extend_op != UNKNOWN)
289 	    {
290 	      wide_int result;
291 
292 	      if (!CONST_SCALAR_INT_P (this_rtx))
293 		continue;
294 
295 	      switch (extend_op)
296 		{
297 		case ZERO_EXTEND:
298 		  result = wide_int::from (rtx_mode_t (this_rtx,
299 						       GET_MODE (src)),
300 					   BITS_PER_WORD, UNSIGNED);
301 		  break;
302 		case SIGN_EXTEND:
303 		  result = wide_int::from (rtx_mode_t (this_rtx,
304 						       GET_MODE (src)),
305 					   BITS_PER_WORD, SIGNED);
306 		  break;
307 		default:
308 		  gcc_unreachable ();
309 		}
310 	      this_rtx = immed_wide_int_const (result, word_mode);
311 	    }
312 
313 	  this_cost = set_src_cost (this_rtx, GET_MODE (SET_DEST (set)), speed);
314 	}
315       else if (REG_P (this_rtx))
316 	{
317 	  if (extend_op != UNKNOWN)
318 	    {
319 	      this_rtx = gen_rtx_fmt_e (extend_op, word_mode, this_rtx);
320 	      this_cost = set_src_cost (this_rtx, word_mode, speed);
321 	    }
322 	  else
323 	    this_cost = register_move_cost (GET_MODE (this_rtx),
324 					    REGNO_REG_CLASS (REGNO (this_rtx)),
325 					    dclass);
326 	}
327       else
328 	continue;
329 
330       /* If equal costs, prefer registers over anything else.  That
331 	 tends to lead to smaller instructions on some machines.  */
332       if (this_cost < old_cost
333 	  || (this_cost == old_cost
334 	      && REG_P (this_rtx)
335 	      && !REG_P (SET_SRC (set))))
336 	{
337 	  if (extend_op != UNKNOWN
338 	      && REG_CAN_CHANGE_MODE_P (REGNO (SET_DEST (set)),
339 					GET_MODE (SET_DEST (set)), word_mode))
340 	    {
341 	      rtx wide_dest = gen_rtx_REG (word_mode, REGNO (SET_DEST (set)));
342 	      ORIGINAL_REGNO (wide_dest) = ORIGINAL_REGNO (SET_DEST (set));
343 	      validate_change (insn, &SET_DEST (set), wide_dest, 1);
344 	    }
345 
346 	  validate_unshare_change (insn, &SET_SRC (set), this_rtx, 1);
347 	  old_cost = this_cost, did_change = 1;
348 	}
349     }
350 
351   return did_change;
352 }
353 
354 /* Try to replace operands in INSN with equivalent values that are already
355    in registers.  This can be viewed as optional reloading.
356 
357    For each non-register operand in the insn, see if any hard regs are
358    known to be equivalent to that operand.  Record the alternatives which
359    can accept these hard registers.  Among all alternatives, select the
360    ones which are better or equal to the one currently matching, where
361    "better" is in terms of '?' and '!' constraints.  Among the remaining
362    alternatives, select the one which replaces most operands with
363    hard registers.  */
364 
365 static int
reload_cse_simplify_operands(rtx_insn * insn,rtx testreg)366 reload_cse_simplify_operands (rtx_insn *insn, rtx testreg)
367 {
368   int i, j;
369 
370   /* For each operand, all registers that are equivalent to it.  */
371   HARD_REG_SET equiv_regs[MAX_RECOG_OPERANDS];
372 
373   const char *constraints[MAX_RECOG_OPERANDS];
374 
375   /* Vector recording how bad an alternative is.  */
376   int *alternative_reject;
377   /* Vector recording how many registers can be introduced by choosing
378      this alternative.  */
379   int *alternative_nregs;
380   /* Array of vectors recording, for each operand and each alternative,
381      which hard register to substitute, or -1 if the operand should be
382      left as it is.  */
383   int *op_alt_regno[MAX_RECOG_OPERANDS];
384   /* Array of alternatives, sorted in order of decreasing desirability.  */
385   int *alternative_order;
386 
387   extract_constrain_insn (insn);
388 
389   if (recog_data.n_alternatives == 0 || recog_data.n_operands == 0)
390     return 0;
391 
392   alternative_reject = XALLOCAVEC (int, recog_data.n_alternatives);
393   alternative_nregs = XALLOCAVEC (int, recog_data.n_alternatives);
394   alternative_order = XALLOCAVEC (int, recog_data.n_alternatives);
395   memset (alternative_reject, 0, recog_data.n_alternatives * sizeof (int));
396   memset (alternative_nregs, 0, recog_data.n_alternatives * sizeof (int));
397 
398   /* For each operand, find out which regs are equivalent.  */
399   for (i = 0; i < recog_data.n_operands; i++)
400     {
401       cselib_val *v;
402       struct elt_loc_list *l;
403       rtx op;
404 
405       CLEAR_HARD_REG_SET (equiv_regs[i]);
406 
407       /* cselib blows up on CODE_LABELs.  Trying to fix that doesn't seem
408 	 right, so avoid the problem here.  Similarly NOTE_INSN_DELETED_LABEL.
409 	 Likewise if we have a constant and the insn pattern doesn't tell us
410 	 the mode we need.  */
411       if (LABEL_P (recog_data.operand[i])
412 	  || (NOTE_P (recog_data.operand[i])
413 	      && NOTE_KIND (recog_data.operand[i]) == NOTE_INSN_DELETED_LABEL)
414 	  || (CONSTANT_P (recog_data.operand[i])
415 	      && recog_data.operand_mode[i] == VOIDmode))
416 	continue;
417 
418       op = recog_data.operand[i];
419       if (MEM_P (op) && load_extend_op (GET_MODE (op)) != UNKNOWN)
420 	{
421 	  rtx set = single_set (insn);
422 
423 	  /* We might have multiple sets, some of which do implicit
424 	     extension.  Punt on this for now.  */
425 	  if (! set)
426 	    continue;
427 	  /* If the destination is also a MEM or a STRICT_LOW_PART, no
428 	     extension applies.
429 	     Also, if there is an explicit extension, we don't have to
430 	     worry about an implicit one.  */
431 	  else if (MEM_P (SET_DEST (set))
432 		   || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART
433 		   || GET_CODE (SET_SRC (set)) == ZERO_EXTEND
434 		   || GET_CODE (SET_SRC (set)) == SIGN_EXTEND)
435 	    ; /* Continue ordinary processing.  */
436 	  /* If the register cannot change mode to word_mode, it follows that
437 	     it cannot have been used in word_mode.  */
438 	  else if (REG_P (SET_DEST (set))
439 		   && !REG_CAN_CHANGE_MODE_P (REGNO (SET_DEST (set)),
440 					      GET_MODE (SET_DEST (set)),
441 					      word_mode))
442 	    ; /* Continue ordinary processing.  */
443 	  /* If this is a straight load, make the extension explicit.  */
444 	  else if (REG_P (SET_DEST (set))
445 		   && recog_data.n_operands == 2
446 		   && SET_SRC (set) == op
447 		   && SET_DEST (set) == recog_data.operand[1-i])
448 	    {
449 	      validate_change (insn, recog_data.operand_loc[i],
450 			       gen_rtx_fmt_e (load_extend_op (GET_MODE (op)),
451 					      word_mode, op),
452 			       1);
453 	      validate_change (insn, recog_data.operand_loc[1-i],
454 			       gen_rtx_REG (word_mode, REGNO (SET_DEST (set))),
455 			       1);
456 	      if (! apply_change_group ())
457 		return 0;
458 	      return reload_cse_simplify_operands (insn, testreg);
459 	    }
460 	  else
461 	    /* ??? There might be arithmetic operations with memory that are
462 	       safe to optimize, but is it worth the trouble?  */
463 	    continue;
464 	}
465 
466       if (side_effects_p (op))
467 	continue;
468       v = cselib_lookup (op, recog_data.operand_mode[i], 0, VOIDmode);
469       if (! v)
470 	continue;
471 
472       for (l = v->locs; l; l = l->next)
473 	if (REG_P (l->loc))
474 	  SET_HARD_REG_BIT (equiv_regs[i], REGNO (l->loc));
475     }
476 
477   alternative_mask preferred = get_preferred_alternatives (insn);
478   for (i = 0; i < recog_data.n_operands; i++)
479     {
480       machine_mode mode;
481       int regno;
482       const char *p;
483 
484       op_alt_regno[i] = XALLOCAVEC (int, recog_data.n_alternatives);
485       for (j = 0; j < recog_data.n_alternatives; j++)
486 	op_alt_regno[i][j] = -1;
487 
488       p = constraints[i] = recog_data.constraints[i];
489       mode = recog_data.operand_mode[i];
490 
491       /* Add the reject values for each alternative given by the constraints
492 	 for this operand.  */
493       j = 0;
494       while (*p != '\0')
495 	{
496 	  char c = *p++;
497 	  if (c == ',')
498 	    j++;
499 	  else if (c == '?')
500 	    alternative_reject[j] += 3;
501 	  else if (c == '!')
502 	    alternative_reject[j] += 300;
503 	}
504 
505       /* We won't change operands which are already registers.  We
506 	 also don't want to modify output operands.  */
507       regno = true_regnum (recog_data.operand[i]);
508       if (regno >= 0
509 	  || constraints[i][0] == '='
510 	  || constraints[i][0] == '+')
511 	continue;
512 
513       for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
514 	{
515 	  enum reg_class rclass = NO_REGS;
516 
517 	  if (! TEST_HARD_REG_BIT (equiv_regs[i], regno))
518 	    continue;
519 
520 	  set_mode_and_regno (testreg, mode, regno);
521 
522 	  /* We found a register equal to this operand.  Now look for all
523 	     alternatives that can accept this register and have not been
524 	     assigned a register they can use yet.  */
525 	  j = 0;
526 	  p = constraints[i];
527 	  for (;;)
528 	    {
529 	      char c = *p;
530 
531 	      switch (c)
532 		{
533 		case 'g':
534 		  rclass = reg_class_subunion[rclass][GENERAL_REGS];
535 		  break;
536 
537 		default:
538 		  rclass
539 		    = (reg_class_subunion
540 		       [rclass]
541 		       [reg_class_for_constraint (lookup_constraint (p))]);
542 		  break;
543 
544 		case ',': case '\0':
545 		  /* See if REGNO fits this alternative, and set it up as the
546 		     replacement register if we don't have one for this
547 		     alternative yet and the operand being replaced is not
548 		     a cheap CONST_INT.  */
549 		  if (op_alt_regno[i][j] == -1
550 		      && TEST_BIT (preferred, j)
551 		      && reg_fits_class_p (testreg, rclass, 0, mode)
552 		      && (!CONST_INT_P (recog_data.operand[i])
553 			  || (set_src_cost (recog_data.operand[i], mode,
554 					    optimize_bb_for_speed_p
555 					     (BLOCK_FOR_INSN (insn)))
556 			      > set_src_cost (testreg, mode,
557 					      optimize_bb_for_speed_p
558 					       (BLOCK_FOR_INSN (insn))))))
559 		    {
560 		      alternative_nregs[j]++;
561 		      op_alt_regno[i][j] = regno;
562 		    }
563 		  j++;
564 		  rclass = NO_REGS;
565 		  break;
566 		}
567 	      p += CONSTRAINT_LEN (c, p);
568 
569 	      if (c == '\0')
570 		break;
571 	    }
572 	}
573     }
574 
575   /* Record all alternatives which are better or equal to the currently
576      matching one in the alternative_order array.  */
577   for (i = j = 0; i < recog_data.n_alternatives; i++)
578     if (alternative_reject[i] <= alternative_reject[which_alternative])
579       alternative_order[j++] = i;
580   recog_data.n_alternatives = j;
581 
582   /* Sort it.  Given a small number of alternatives, a dumb algorithm
583      won't hurt too much.  */
584   for (i = 0; i < recog_data.n_alternatives - 1; i++)
585     {
586       int best = i;
587       int best_reject = alternative_reject[alternative_order[i]];
588       int best_nregs = alternative_nregs[alternative_order[i]];
589 
590       for (j = i + 1; j < recog_data.n_alternatives; j++)
591 	{
592 	  int this_reject = alternative_reject[alternative_order[j]];
593 	  int this_nregs = alternative_nregs[alternative_order[j]];
594 
595 	  if (this_reject < best_reject
596 	      || (this_reject == best_reject && this_nregs > best_nregs))
597 	    {
598 	      best = j;
599 	      best_reject = this_reject;
600 	      best_nregs = this_nregs;
601 	    }
602 	}
603 
604       std::swap (alternative_order[best], alternative_order[i]);
605     }
606 
607   /* Substitute the operands as determined by op_alt_regno for the best
608      alternative.  */
609   j = alternative_order[0];
610 
611   for (i = 0; i < recog_data.n_operands; i++)
612     {
613       machine_mode mode = recog_data.operand_mode[i];
614       if (op_alt_regno[i][j] == -1)
615 	continue;
616 
617       validate_change (insn, recog_data.operand_loc[i],
618 		       gen_rtx_REG (mode, op_alt_regno[i][j]), 1);
619     }
620 
621   for (i = recog_data.n_dups - 1; i >= 0; i--)
622     {
623       int op = recog_data.dup_num[i];
624       machine_mode mode = recog_data.operand_mode[op];
625 
626       if (op_alt_regno[op][j] == -1)
627 	continue;
628 
629       validate_change (insn, recog_data.dup_loc[i],
630 		       gen_rtx_REG (mode, op_alt_regno[op][j]), 1);
631     }
632 
633   return apply_change_group ();
634 }
635 
636 /* If reload couldn't use reg+reg+offset addressing, try to use reg+reg
637    addressing now.
638    This code might also be useful when reload gave up on reg+reg addressing
639    because of clashes between the return register and INDEX_REG_CLASS.  */
640 
641 /* The maximum number of uses of a register we can keep track of to
642    replace them with reg+reg addressing.  */
643 #define RELOAD_COMBINE_MAX_USES 16
644 
645 /* Describes a recorded use of a register.  */
646 struct reg_use
647 {
648   /* The insn where a register has been used.  */
649   rtx_insn *insn;
650   /* Points to the memory reference enclosing the use, if any, NULL_RTX
651      otherwise.  */
652   rtx containing_mem;
653   /* Location of the register within INSN.  */
654   rtx *usep;
655   /* The reverse uid of the insn.  */
656   int ruid;
657 };
658 
659 /* If the register is used in some unknown fashion, USE_INDEX is negative.
660    If it is dead, USE_INDEX is RELOAD_COMBINE_MAX_USES, and STORE_RUID
661    indicates where it is first set or clobbered.
662    Otherwise, USE_INDEX is the index of the last encountered use of the
663    register (which is first among these we have seen since we scan backwards).
664    USE_RUID indicates the first encountered, i.e. last, of these uses.
665    If ALL_OFFSETS_MATCH is true, all encountered uses were inside a PLUS
666    with a constant offset; OFFSET contains this constant in that case.
667    STORE_RUID is always meaningful if we only want to use a value in a
668    register in a different place: it denotes the next insn in the insn
669    stream (i.e. the last encountered) that sets or clobbers the register.
670    REAL_STORE_RUID is similar, but clobbers are ignored when updating it.  */
671 static struct
672   {
673     struct reg_use reg_use[RELOAD_COMBINE_MAX_USES];
674     rtx offset;
675     int use_index;
676     int store_ruid;
677     int real_store_ruid;
678     int use_ruid;
679     bool all_offsets_match;
680   } reg_state[FIRST_PSEUDO_REGISTER];
681 
682 /* Reverse linear uid.  This is increased in reload_combine while scanning
683    the instructions from last to first.  It is used to set last_label_ruid
684    and the store_ruid / use_ruid fields in reg_state.  */
685 static int reload_combine_ruid;
686 
687 /* The RUID of the last label we encountered in reload_combine.  */
688 static int last_label_ruid;
689 
690 /* The RUID of the last jump we encountered in reload_combine.  */
691 static int last_jump_ruid;
692 
693 /* The register numbers of the first and last index register.  A value of
694    -1 in LAST_INDEX_REG indicates that we've previously computed these
695    values and found no suitable index registers.  */
696 static int first_index_reg = -1;
697 static int last_index_reg;
698 
699 #define LABEL_LIVE(LABEL) \
700   (label_live[CODE_LABEL_NUMBER (LABEL) - min_labelno])
701 
702 /* Subroutine of reload_combine_split_ruids, called to fix up a single
703    ruid pointed to by *PRUID if it is higher than SPLIT_RUID.  */
704 
705 static inline void
reload_combine_split_one_ruid(int * pruid,int split_ruid)706 reload_combine_split_one_ruid (int *pruid, int split_ruid)
707 {
708   if (*pruid > split_ruid)
709     (*pruid)++;
710 }
711 
712 /* Called when we insert a new insn in a position we've already passed in
713    the scan.  Examine all our state, increasing all ruids that are higher
714    than SPLIT_RUID by one in order to make room for a new insn.  */
715 
716 static void
reload_combine_split_ruids(int split_ruid)717 reload_combine_split_ruids (int split_ruid)
718 {
719   unsigned i;
720 
721   reload_combine_split_one_ruid (&reload_combine_ruid, split_ruid);
722   reload_combine_split_one_ruid (&last_label_ruid, split_ruid);
723   reload_combine_split_one_ruid (&last_jump_ruid, split_ruid);
724 
725   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
726     {
727       int j, idx = reg_state[i].use_index;
728       reload_combine_split_one_ruid (&reg_state[i].use_ruid, split_ruid);
729       reload_combine_split_one_ruid (&reg_state[i].store_ruid, split_ruid);
730       reload_combine_split_one_ruid (&reg_state[i].real_store_ruid,
731 				     split_ruid);
732       if (idx < 0)
733 	continue;
734       for (j = idx; j < RELOAD_COMBINE_MAX_USES; j++)
735 	{
736 	  reload_combine_split_one_ruid (&reg_state[i].reg_use[j].ruid,
737 					 split_ruid);
738 	}
739     }
740 }
741 
742 /* Called when we are about to rescan a previously encountered insn with
743    reload_combine_note_use after modifying some part of it.  This clears all
744    information about uses in that particular insn.  */
745 
746 static void
reload_combine_purge_insn_uses(rtx_insn * insn)747 reload_combine_purge_insn_uses (rtx_insn *insn)
748 {
749   unsigned i;
750 
751   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
752     {
753       int j, k, idx = reg_state[i].use_index;
754       if (idx < 0)
755 	continue;
756       j = k = RELOAD_COMBINE_MAX_USES;
757       while (j-- > idx)
758 	{
759 	  if (reg_state[i].reg_use[j].insn != insn)
760 	    {
761 	      k--;
762 	      if (k != j)
763 		reg_state[i].reg_use[k] = reg_state[i].reg_use[j];
764 	    }
765 	}
766       reg_state[i].use_index = k;
767     }
768 }
769 
770 /* Called when we need to forget about all uses of REGNO after an insn
771    which is identified by RUID.  */
772 
773 static void
reload_combine_purge_reg_uses_after_ruid(unsigned regno,int ruid)774 reload_combine_purge_reg_uses_after_ruid (unsigned regno, int ruid)
775 {
776   int j, k, idx = reg_state[regno].use_index;
777   if (idx < 0)
778     return;
779   j = k = RELOAD_COMBINE_MAX_USES;
780   while (j-- > idx)
781     {
782       if (reg_state[regno].reg_use[j].ruid >= ruid)
783 	{
784 	  k--;
785 	  if (k != j)
786 	    reg_state[regno].reg_use[k] = reg_state[regno].reg_use[j];
787 	}
788     }
789   reg_state[regno].use_index = k;
790 }
791 
792 /* Find the use of REGNO with the ruid that is highest among those
793    lower than RUID_LIMIT, and return it if it is the only use of this
794    reg in the insn.  Return NULL otherwise.  */
795 
796 static struct reg_use *
reload_combine_closest_single_use(unsigned regno,int ruid_limit)797 reload_combine_closest_single_use (unsigned regno, int ruid_limit)
798 {
799   int i, best_ruid = 0;
800   int use_idx = reg_state[regno].use_index;
801   struct reg_use *retval;
802 
803   if (use_idx < 0)
804     return NULL;
805   retval = NULL;
806   for (i = use_idx; i < RELOAD_COMBINE_MAX_USES; i++)
807     {
808       struct reg_use *use = reg_state[regno].reg_use + i;
809       int this_ruid = use->ruid;
810       if (this_ruid >= ruid_limit)
811 	continue;
812       if (this_ruid > best_ruid)
813 	{
814 	  best_ruid = this_ruid;
815 	  retval = use;
816 	}
817       else if (this_ruid == best_ruid)
818 	retval = NULL;
819     }
820   if (last_label_ruid >= best_ruid)
821     return NULL;
822   return retval;
823 }
824 
825 /* After we've moved an add insn, fix up any debug insns that occur
826    between the old location of the add and the new location.  REG is
827    the destination register of the add insn; REPLACEMENT is the
828    SET_SRC of the add.  FROM and TO specify the range in which we
829    should make this change on debug insns.  */
830 
831 static void
fixup_debug_insns(rtx reg,rtx replacement,rtx_insn * from,rtx_insn * to)832 fixup_debug_insns (rtx reg, rtx replacement, rtx_insn *from, rtx_insn *to)
833 {
834   rtx_insn *insn;
835   for (insn = from; insn != to; insn = NEXT_INSN (insn))
836     {
837       rtx t;
838 
839       if (!DEBUG_BIND_INSN_P (insn))
840 	continue;
841 
842       t = INSN_VAR_LOCATION_LOC (insn);
843       t = simplify_replace_rtx (t, reg, replacement);
844       validate_change (insn, &INSN_VAR_LOCATION_LOC (insn), t, 0);
845     }
846 }
847 
848 /* Subroutine of reload_combine_recognize_const_pattern.  Try to replace REG
849    with SRC in the insn described by USE, taking costs into account.  Return
850    true if we made the replacement.  */
851 
852 static bool
try_replace_in_use(struct reg_use * use,rtx reg,rtx src)853 try_replace_in_use (struct reg_use *use, rtx reg, rtx src)
854 {
855   rtx_insn *use_insn = use->insn;
856   rtx mem = use->containing_mem;
857   bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn));
858 
859   if (mem != NULL_RTX)
860     {
861       addr_space_t as = MEM_ADDR_SPACE (mem);
862       rtx oldaddr = XEXP (mem, 0);
863       rtx newaddr = NULL_RTX;
864       int old_cost = address_cost (oldaddr, GET_MODE (mem), as, speed);
865       int new_cost;
866 
867       newaddr = simplify_replace_rtx (oldaddr, reg, src);
868       if (memory_address_addr_space_p (GET_MODE (mem), newaddr, as))
869 	{
870 	  XEXP (mem, 0) = newaddr;
871 	  new_cost = address_cost (newaddr, GET_MODE (mem), as, speed);
872 	  XEXP (mem, 0) = oldaddr;
873 	  if (new_cost <= old_cost
874 	      && validate_change (use_insn,
875 				  &XEXP (mem, 0), newaddr, 0))
876 	    return true;
877 	}
878     }
879   else
880     {
881       rtx new_set = single_set (use_insn);
882       if (new_set
883 	  && REG_P (SET_DEST (new_set))
884 	  && GET_CODE (SET_SRC (new_set)) == PLUS
885 	  && REG_P (XEXP (SET_SRC (new_set), 0))
886 	  && CONSTANT_P (XEXP (SET_SRC (new_set), 1)))
887 	{
888 	  rtx new_src;
889 	  machine_mode mode = GET_MODE (SET_DEST (new_set));
890 	  int old_cost = set_src_cost (SET_SRC (new_set), mode, speed);
891 
892 	  gcc_assert (rtx_equal_p (XEXP (SET_SRC (new_set), 0), reg));
893 	  new_src = simplify_replace_rtx (SET_SRC (new_set), reg, src);
894 
895 	  if (set_src_cost (new_src, mode, speed) <= old_cost
896 	      && validate_change (use_insn, &SET_SRC (new_set),
897 				  new_src, 0))
898 	    return true;
899 	}
900     }
901   return false;
902 }
903 
904 /* Called by reload_combine when scanning INSN.  This function tries to detect
905    patterns where a constant is added to a register, and the result is used
906    in an address.
907    Return true if no further processing is needed on INSN; false if it wasn't
908    recognized and should be handled normally.  */
909 
910 static bool
reload_combine_recognize_const_pattern(rtx_insn * insn)911 reload_combine_recognize_const_pattern (rtx_insn *insn)
912 {
913   int from_ruid = reload_combine_ruid;
914   rtx set, pat, reg, src, addreg;
915   unsigned int regno;
916   struct reg_use *use;
917   bool must_move_add;
918   rtx_insn *add_moved_after_insn = NULL;
919   int add_moved_after_ruid = 0;
920   int clobbered_regno = -1;
921 
922   set = single_set (insn);
923   if (set == NULL_RTX)
924     return false;
925 
926   reg = SET_DEST (set);
927   src = SET_SRC (set);
928   if (!REG_P (reg)
929       || REG_NREGS (reg) != 1
930       || GET_MODE (reg) != Pmode
931       || reg == stack_pointer_rtx)
932     return false;
933 
934   regno = REGNO (reg);
935 
936   /* We look for a REG1 = REG2 + CONSTANT insn, followed by either
937      uses of REG1 inside an address, or inside another add insn.  If
938      possible and profitable, merge the addition into subsequent
939      uses.  */
940   if (GET_CODE (src) != PLUS
941       || !REG_P (XEXP (src, 0))
942       || !CONSTANT_P (XEXP (src, 1)))
943     return false;
944 
945   addreg = XEXP (src, 0);
946   must_move_add = rtx_equal_p (reg, addreg);
947 
948   pat = PATTERN (insn);
949   if (must_move_add && set != pat)
950     {
951       /* We have to be careful when moving the add; apart from the
952 	 single_set there may also be clobbers.  Recognize one special
953 	 case, that of one clobber alongside the set (likely a clobber
954 	 of the CC register).  */
955       gcc_assert (GET_CODE (PATTERN (insn)) == PARALLEL);
956       if (XVECLEN (pat, 0) != 2 || XVECEXP (pat, 0, 0) != set
957 	  || GET_CODE (XVECEXP (pat, 0, 1)) != CLOBBER
958 	  || !REG_P (XEXP (XVECEXP (pat, 0, 1), 0)))
959 	return false;
960       clobbered_regno = REGNO (XEXP (XVECEXP (pat, 0, 1), 0));
961     }
962 
963   do
964     {
965       use = reload_combine_closest_single_use (regno, from_ruid);
966 
967       if (use)
968 	/* Start the search for the next use from here.  */
969 	from_ruid = use->ruid;
970 
971       if (use && GET_MODE (*use->usep) == Pmode)
972 	{
973 	  bool delete_add = false;
974 	  rtx_insn *use_insn = use->insn;
975 	  int use_ruid = use->ruid;
976 
977 	  /* Avoid moving the add insn past a jump.  */
978 	  if (must_move_add && use_ruid <= last_jump_ruid)
979 	    break;
980 
981 	  /* If the add clobbers another hard reg in parallel, don't move
982 	     it past a real set of this hard reg.  */
983 	  if (must_move_add && clobbered_regno >= 0
984 	      && reg_state[clobbered_regno].real_store_ruid >= use_ruid)
985 	    break;
986 
987 	  /* Do not separate cc0 setter and cc0 user on HAVE_cc0 targets.  */
988 	  if (HAVE_cc0 && must_move_add && sets_cc0_p (PATTERN (use_insn)))
989 	    break;
990 
991 	  gcc_assert (reg_state[regno].store_ruid <= use_ruid);
992 	  /* Avoid moving a use of ADDREG past a point where it is stored.  */
993 	  if (reg_state[REGNO (addreg)].store_ruid > use_ruid)
994 	    break;
995 
996 	  /* We also must not move the addition past an insn that sets
997 	     the same register, unless we can combine two add insns.  */
998 	  if (must_move_add && reg_state[regno].store_ruid == use_ruid)
999 	    {
1000 	      if (use->containing_mem == NULL_RTX)
1001 		delete_add = true;
1002 	      else
1003 		break;
1004 	    }
1005 
1006 	  if (try_replace_in_use (use, reg, src))
1007 	    {
1008 	      reload_combine_purge_insn_uses (use_insn);
1009 	      reload_combine_note_use (&PATTERN (use_insn), use_insn,
1010 				       use_ruid, NULL_RTX);
1011 
1012 	      if (delete_add)
1013 		{
1014 		  fixup_debug_insns (reg, src, insn, use_insn);
1015 		  delete_insn (insn);
1016 		  return true;
1017 		}
1018 	      if (must_move_add)
1019 		{
1020 		  add_moved_after_insn = use_insn;
1021 		  add_moved_after_ruid = use_ruid;
1022 		}
1023 	      continue;
1024 	    }
1025 	}
1026       /* If we get here, we couldn't handle this use.  */
1027       if (must_move_add)
1028 	break;
1029     }
1030   while (use);
1031 
1032   if (!must_move_add || add_moved_after_insn == NULL_RTX)
1033     /* Process the add normally.  */
1034     return false;
1035 
1036   fixup_debug_insns (reg, src, insn, add_moved_after_insn);
1037 
1038   reorder_insns (insn, insn, add_moved_after_insn);
1039   reload_combine_purge_reg_uses_after_ruid (regno, add_moved_after_ruid);
1040   reload_combine_split_ruids (add_moved_after_ruid - 1);
1041   reload_combine_note_use (&PATTERN (insn), insn,
1042 			   add_moved_after_ruid, NULL_RTX);
1043   reg_state[regno].store_ruid = add_moved_after_ruid;
1044 
1045   return true;
1046 }
1047 
1048 /* Called by reload_combine when scanning INSN.  Try to detect a pattern we
1049    can handle and improve.  Return true if no further processing is needed on
1050    INSN; false if it wasn't recognized and should be handled normally.  */
1051 
1052 static bool
reload_combine_recognize_pattern(rtx_insn * insn)1053 reload_combine_recognize_pattern (rtx_insn *insn)
1054 {
1055   rtx set, reg, src;
1056 
1057   set = single_set (insn);
1058   if (set == NULL_RTX)
1059     return false;
1060 
1061   reg = SET_DEST (set);
1062   src = SET_SRC (set);
1063   if (!REG_P (reg) || REG_NREGS (reg) != 1)
1064     return false;
1065 
1066   unsigned int regno = REGNO (reg);
1067   machine_mode mode = GET_MODE (reg);
1068 
1069   if (reg_state[regno].use_index < 0
1070       || reg_state[regno].use_index >= RELOAD_COMBINE_MAX_USES)
1071     return false;
1072 
1073   for (int i = reg_state[regno].use_index;
1074        i < RELOAD_COMBINE_MAX_USES; i++)
1075     {
1076       struct reg_use *use = reg_state[regno].reg_use + i;
1077       if (GET_MODE (*use->usep) != mode)
1078 	return false;
1079       /* Don't try to adjust (use (REGX)).  */
1080       if (GET_CODE (PATTERN (use->insn)) == USE
1081 	  && &XEXP (PATTERN (use->insn), 0) == use->usep)
1082 	return false;
1083     }
1084 
1085   /* Look for (set (REGX) (CONST_INT))
1086      (set (REGX) (PLUS (REGX) (REGY)))
1087      ...
1088      ... (MEM (REGX)) ...
1089      and convert it to
1090      (set (REGZ) (CONST_INT))
1091      ...
1092      ... (MEM (PLUS (REGZ) (REGY)))... .
1093 
1094      First, check that we have (set (REGX) (PLUS (REGX) (REGY)))
1095      and that we know all uses of REGX before it dies.
1096      Also, explicitly check that REGX != REGY; our life information
1097      does not yet show whether REGY changes in this insn.  */
1098 
1099   if (GET_CODE (src) == PLUS
1100       && reg_state[regno].all_offsets_match
1101       && last_index_reg != -1
1102       && REG_P (XEXP (src, 1))
1103       && rtx_equal_p (XEXP (src, 0), reg)
1104       && !rtx_equal_p (XEXP (src, 1), reg)
1105       && last_label_ruid < reg_state[regno].use_ruid)
1106     {
1107       rtx base = XEXP (src, 1);
1108       rtx_insn *prev = prev_nonnote_nondebug_insn (insn);
1109       rtx prev_set = prev ? single_set (prev) : NULL_RTX;
1110       rtx index_reg = NULL_RTX;
1111       rtx reg_sum = NULL_RTX;
1112       int i;
1113 
1114       /* Now we need to set INDEX_REG to an index register (denoted as
1115 	 REGZ in the illustration above) and REG_SUM to the expression
1116 	 register+register that we want to use to substitute uses of REG
1117 	 (typically in MEMs) with.  First check REG and BASE for being
1118 	 index registers; we can use them even if they are not dead.  */
1119       if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], regno)
1120 	  || TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
1121 				REGNO (base)))
1122 	{
1123 	  index_reg = reg;
1124 	  reg_sum = src;
1125 	}
1126       else
1127 	{
1128 	  /* Otherwise, look for a free index register.  Since we have
1129 	     checked above that neither REG nor BASE are index registers,
1130 	     if we find anything at all, it will be different from these
1131 	     two registers.  */
1132 	  for (i = first_index_reg; i <= last_index_reg; i++)
1133 	    {
1134 	      if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], i)
1135 		  && reg_state[i].use_index == RELOAD_COMBINE_MAX_USES
1136 		  && reg_state[i].store_ruid <= reg_state[regno].use_ruid
1137 		  && (call_used_regs[i] || df_regs_ever_live_p (i))
1138 		  && (!frame_pointer_needed || i != HARD_FRAME_POINTER_REGNUM)
1139 		  && !fixed_regs[i] && !global_regs[i]
1140 		  && hard_regno_nregs (i, GET_MODE (reg)) == 1
1141 		  && targetm.hard_regno_scratch_ok (i))
1142 		{
1143 		  index_reg = gen_rtx_REG (GET_MODE (reg), i);
1144 		  reg_sum = gen_rtx_PLUS (GET_MODE (reg), index_reg, base);
1145 		  break;
1146 		}
1147 	    }
1148 	}
1149 
1150       /* Check that PREV_SET is indeed (set (REGX) (CONST_INT)) and that
1151 	 (REGY), i.e. BASE, is not clobbered before the last use we'll
1152 	 create.  */
1153       if (reg_sum
1154 	  && prev_set
1155 	  && CONST_INT_P (SET_SRC (prev_set))
1156 	  && rtx_equal_p (SET_DEST (prev_set), reg)
1157 	  && (reg_state[REGNO (base)].store_ruid
1158 	      <= reg_state[regno].use_ruid))
1159 	{
1160 	  /* Change destination register and, if necessary, the constant
1161 	     value in PREV, the constant loading instruction.  */
1162 	  validate_change (prev, &SET_DEST (prev_set), index_reg, 1);
1163 	  if (reg_state[regno].offset != const0_rtx)
1164 	    {
1165 	      HOST_WIDE_INT c
1166 		= trunc_int_for_mode (UINTVAL (SET_SRC (prev_set))
1167 				      + UINTVAL (reg_state[regno].offset),
1168 				      GET_MODE (index_reg));
1169 	      validate_change (prev, &SET_SRC (prev_set), GEN_INT (c), 1);
1170 	    }
1171 
1172 	  /* Now for every use of REG that we have recorded, replace REG
1173 	     with REG_SUM.  */
1174 	  for (i = reg_state[regno].use_index;
1175 	       i < RELOAD_COMBINE_MAX_USES; i++)
1176 	    validate_unshare_change (reg_state[regno].reg_use[i].insn,
1177 				     reg_state[regno].reg_use[i].usep,
1178 				     /* Each change must have its own
1179 					replacement.  */
1180 				     reg_sum, 1);
1181 
1182 	  if (apply_change_group ())
1183 	    {
1184 	      struct reg_use *lowest_ruid = NULL;
1185 
1186 	      /* For every new use of REG_SUM, we have to record the use
1187 		 of BASE therein, i.e. operand 1.  */
1188 	      for (i = reg_state[regno].use_index;
1189 		   i < RELOAD_COMBINE_MAX_USES; i++)
1190 		{
1191 		  struct reg_use *use = reg_state[regno].reg_use + i;
1192 		  reload_combine_note_use (&XEXP (*use->usep, 1), use->insn,
1193 					   use->ruid, use->containing_mem);
1194 		  if (lowest_ruid == NULL || use->ruid < lowest_ruid->ruid)
1195 		    lowest_ruid = use;
1196 		}
1197 
1198 	      fixup_debug_insns (reg, reg_sum, insn, lowest_ruid->insn);
1199 
1200 	      /* Delete the reg-reg addition.  */
1201 	      delete_insn (insn);
1202 
1203 	      if (reg_state[regno].offset != const0_rtx
1204 		  /* Previous REG_EQUIV / REG_EQUAL notes for PREV
1205 		     are now invalid.  */
1206 		  && remove_reg_equal_equiv_notes (prev))
1207 		df_notes_rescan (prev);
1208 
1209 	      reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES;
1210 	      return true;
1211 	    }
1212 	}
1213     }
1214   return false;
1215 }
1216 
1217 static void
reload_combine(void)1218 reload_combine (void)
1219 {
1220   rtx_insn *insn, *prev;
1221   basic_block bb;
1222   unsigned int r;
1223   int min_labelno, n_labels;
1224   HARD_REG_SET ever_live_at_start, *label_live;
1225 
1226   /* To avoid wasting too much time later searching for an index register,
1227      determine the minimum and maximum index register numbers.  */
1228   if (INDEX_REG_CLASS == NO_REGS)
1229     last_index_reg = -1;
1230   else if (first_index_reg == -1 && last_index_reg == 0)
1231     {
1232       for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1233 	if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], r))
1234 	  {
1235 	    if (first_index_reg == -1)
1236 	      first_index_reg = r;
1237 
1238 	    last_index_reg = r;
1239 	  }
1240 
1241       /* If no index register is available, we can quit now.  Set LAST_INDEX_REG
1242 	 to -1 so we'll know to quit early the next time we get here.  */
1243       if (first_index_reg == -1)
1244 	{
1245 	  last_index_reg = -1;
1246 	  return;
1247 	}
1248     }
1249 
1250   /* Set up LABEL_LIVE and EVER_LIVE_AT_START.  The register lifetime
1251      information is a bit fuzzy immediately after reload, but it's
1252      still good enough to determine which registers are live at a jump
1253      destination.  */
1254   min_labelno = get_first_label_num ();
1255   n_labels = max_label_num () - min_labelno;
1256   label_live = XNEWVEC (HARD_REG_SET, n_labels);
1257   CLEAR_HARD_REG_SET (ever_live_at_start);
1258 
1259   FOR_EACH_BB_REVERSE_FN (bb, cfun)
1260     {
1261       insn = BB_HEAD (bb);
1262       if (LABEL_P (insn))
1263 	{
1264 	  HARD_REG_SET live;
1265 	  bitmap live_in = df_get_live_in (bb);
1266 
1267 	  REG_SET_TO_HARD_REG_SET (live, live_in);
1268 	  compute_use_by_pseudos (&live, live_in);
1269 	  COPY_HARD_REG_SET (LABEL_LIVE (insn), live);
1270 	  IOR_HARD_REG_SET (ever_live_at_start, live);
1271 	}
1272     }
1273 
1274   /* Initialize last_label_ruid, reload_combine_ruid and reg_state.  */
1275   last_label_ruid = last_jump_ruid = reload_combine_ruid = 0;
1276   for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1277     {
1278       reg_state[r].store_ruid = 0;
1279       reg_state[r].real_store_ruid = 0;
1280       if (fixed_regs[r])
1281 	reg_state[r].use_index = -1;
1282       else
1283 	reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1284     }
1285 
1286   for (insn = get_last_insn (); insn; insn = prev)
1287     {
1288       bool control_flow_insn;
1289       rtx note;
1290 
1291       prev = PREV_INSN (insn);
1292 
1293       /* We cannot do our optimization across labels.  Invalidating all the use
1294 	 information we have would be costly, so we just note where the label
1295 	 is and then later disable any optimization that would cross it.  */
1296       if (LABEL_P (insn))
1297 	last_label_ruid = reload_combine_ruid;
1298       else if (BARRIER_P (insn))
1299 	{
1300 	  /* Crossing a barrier resets all the use information.  */
1301 	  for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1302 	    if (! fixed_regs[r])
1303 	      reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1304 	}
1305       else if (INSN_P (insn) && volatile_insn_p (PATTERN (insn)))
1306 	/* Optimizations across insns being marked as volatile must be
1307 	   prevented.  All the usage information is invalidated
1308 	   here.  */
1309 	for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1310 	  if (! fixed_regs[r]
1311 	      && reg_state[r].use_index != RELOAD_COMBINE_MAX_USES)
1312 	    reg_state[r].use_index = -1;
1313 
1314       if (! NONDEBUG_INSN_P (insn))
1315 	continue;
1316 
1317       reload_combine_ruid++;
1318 
1319       control_flow_insn = control_flow_insn_p (insn);
1320       if (control_flow_insn)
1321 	last_jump_ruid = reload_combine_ruid;
1322 
1323       if (reload_combine_recognize_const_pattern (insn)
1324 	  || reload_combine_recognize_pattern (insn))
1325 	continue;
1326 
1327       note_stores (PATTERN (insn), reload_combine_note_store, NULL);
1328 
1329       if (CALL_P (insn))
1330 	{
1331 	  rtx link;
1332 	  HARD_REG_SET used_regs;
1333 
1334 	  get_call_reg_set_usage (insn, &used_regs, call_used_reg_set);
1335 
1336 	  for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1337 	    if (TEST_HARD_REG_BIT (used_regs, r))
1338 	      {
1339 		reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1340 		reg_state[r].store_ruid = reload_combine_ruid;
1341 	      }
1342 
1343 	  for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
1344 	       link = XEXP (link, 1))
1345 	    {
1346 	      rtx setuse = XEXP (link, 0);
1347 	      rtx usage_rtx = XEXP (setuse, 0);
1348 	      if ((GET_CODE (setuse) == USE || GET_CODE (setuse) == CLOBBER)
1349 		  && REG_P (usage_rtx))
1350 	        {
1351 		  unsigned int end_regno = END_REGNO (usage_rtx);
1352 		  for (unsigned int i = REGNO (usage_rtx); i < end_regno; ++i)
1353 		    if (GET_CODE (XEXP (link, 0)) == CLOBBER)
1354 		      {
1355 		        reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
1356 		        reg_state[i].store_ruid = reload_combine_ruid;
1357 		      }
1358 		    else
1359 		      reg_state[i].use_index = -1;
1360 	         }
1361 	     }
1362 	}
1363 
1364       if (control_flow_insn && !ANY_RETURN_P (PATTERN (insn)))
1365 	{
1366 	  /* Non-spill registers might be used at the call destination in
1367 	     some unknown fashion, so we have to mark the unknown use.  */
1368 	  HARD_REG_SET *live;
1369 
1370 	  if ((condjump_p (insn) || condjump_in_parallel_p (insn))
1371 	      && JUMP_LABEL (insn))
1372 	    {
1373 	      if (ANY_RETURN_P (JUMP_LABEL (insn)))
1374 		live = NULL;
1375 	      else
1376 		live = &LABEL_LIVE (JUMP_LABEL (insn));
1377 	    }
1378 	  else
1379 	    live = &ever_live_at_start;
1380 
1381 	  if (live)
1382 	    for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1383 	      if (TEST_HARD_REG_BIT (*live, r))
1384 		reg_state[r].use_index = -1;
1385 	}
1386 
1387       reload_combine_note_use (&PATTERN (insn), insn, reload_combine_ruid,
1388 			       NULL_RTX);
1389 
1390       for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1391 	{
1392 	  if (REG_NOTE_KIND (note) == REG_INC && REG_P (XEXP (note, 0)))
1393 	    {
1394 	      int regno = REGNO (XEXP (note, 0));
1395 	      reg_state[regno].store_ruid = reload_combine_ruid;
1396 	      reg_state[regno].real_store_ruid = reload_combine_ruid;
1397 	      reg_state[regno].use_index = -1;
1398 	    }
1399 	}
1400     }
1401 
1402   free (label_live);
1403 }
1404 
1405 /* Check if DST is a register or a subreg of a register; if it is,
1406    update store_ruid, real_store_ruid and use_index in the reg_state
1407    structure accordingly.  Called via note_stores from reload_combine.  */
1408 
1409 static void
reload_combine_note_store(rtx dst,const_rtx set,void * data ATTRIBUTE_UNUSED)1410 reload_combine_note_store (rtx dst, const_rtx set, void *data ATTRIBUTE_UNUSED)
1411 {
1412   int regno = 0;
1413   int i;
1414   machine_mode mode = GET_MODE (dst);
1415 
1416   if (GET_CODE (dst) == SUBREG)
1417     {
1418       regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
1419 				   GET_MODE (SUBREG_REG (dst)),
1420 				   SUBREG_BYTE (dst),
1421 				   GET_MODE (dst));
1422       dst = SUBREG_REG (dst);
1423     }
1424 
1425   /* Some targets do argument pushes without adding REG_INC notes.  */
1426 
1427   if (MEM_P (dst))
1428     {
1429       dst = XEXP (dst, 0);
1430       if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
1431 	  || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC
1432 	  || GET_CODE (dst) == PRE_MODIFY || GET_CODE (dst) == POST_MODIFY)
1433 	{
1434 	  unsigned int end_regno = END_REGNO (XEXP (dst, 0));
1435 	  for (unsigned int i = REGNO (XEXP (dst, 0)); i < end_regno; ++i)
1436 	    {
1437 	      /* We could probably do better, but for now mark the register
1438 		 as used in an unknown fashion and set/clobbered at this
1439 		 insn.  */
1440 	      reg_state[i].use_index = -1;
1441 	      reg_state[i].store_ruid = reload_combine_ruid;
1442 	      reg_state[i].real_store_ruid = reload_combine_ruid;
1443 	    }
1444 	}
1445       else
1446         return;
1447     }
1448 
1449   if (!REG_P (dst))
1450     return;
1451   regno += REGNO (dst);
1452 
1453   /* note_stores might have stripped a STRICT_LOW_PART, so we have to be
1454      careful with registers / register parts that are not full words.
1455      Similarly for ZERO_EXTRACT.  */
1456   if (GET_CODE (SET_DEST (set)) == ZERO_EXTRACT
1457       || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART)
1458     {
1459       for (i = end_hard_regno (mode, regno) - 1; i >= regno; i--)
1460 	{
1461 	  reg_state[i].use_index = -1;
1462 	  reg_state[i].store_ruid = reload_combine_ruid;
1463 	  reg_state[i].real_store_ruid = reload_combine_ruid;
1464 	}
1465     }
1466   else
1467     {
1468       for (i = end_hard_regno (mode, regno) - 1; i >= regno; i--)
1469 	{
1470 	  reg_state[i].store_ruid = reload_combine_ruid;
1471 	  if (GET_CODE (set) == SET)
1472 	    reg_state[i].real_store_ruid = reload_combine_ruid;
1473 	  reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
1474 	}
1475     }
1476 }
1477 
1478 /* XP points to a piece of rtl that has to be checked for any uses of
1479    registers.
1480    *XP is the pattern of INSN, or a part of it.
1481    Called from reload_combine, and recursively by itself.  */
1482 static void
reload_combine_note_use(rtx * xp,rtx_insn * insn,int ruid,rtx containing_mem)1483 reload_combine_note_use (rtx *xp, rtx_insn *insn, int ruid, rtx containing_mem)
1484 {
1485   rtx x = *xp;
1486   enum rtx_code code = x->code;
1487   const char *fmt;
1488   int i, j;
1489   rtx offset = const0_rtx; /* For the REG case below.  */
1490 
1491   switch (code)
1492     {
1493     case SET:
1494       if (REG_P (SET_DEST (x)))
1495 	{
1496 	  reload_combine_note_use (&SET_SRC (x), insn, ruid, NULL_RTX);
1497 	  return;
1498 	}
1499       break;
1500 
1501     case USE:
1502       /* If this is the USE of a return value, we can't change it.  */
1503       if (REG_P (XEXP (x, 0)) && REG_FUNCTION_VALUE_P (XEXP (x, 0)))
1504 	{
1505 	  /* Mark the return register as used in an unknown fashion.  */
1506 	  rtx reg = XEXP (x, 0);
1507 	  unsigned int end_regno = END_REGNO (reg);
1508 	  for (unsigned int regno = REGNO (reg); regno < end_regno; ++regno)
1509 	    reg_state[regno].use_index = -1;
1510 	  return;
1511 	}
1512       break;
1513 
1514     case CLOBBER:
1515       if (REG_P (SET_DEST (x)))
1516 	{
1517 	  /* No spurious CLOBBERs of pseudo registers may remain.  */
1518 	  gcc_assert (REGNO (SET_DEST (x)) < FIRST_PSEUDO_REGISTER);
1519 	  return;
1520 	}
1521       break;
1522 
1523     case PLUS:
1524       /* We are interested in (plus (reg) (const_int)) .  */
1525       if (!REG_P (XEXP (x, 0))
1526 	  || !CONST_INT_P (XEXP (x, 1)))
1527 	break;
1528       offset = XEXP (x, 1);
1529       x = XEXP (x, 0);
1530       /* Fall through.  */
1531     case REG:
1532       {
1533 	int regno = REGNO (x);
1534 	int use_index;
1535 	int nregs;
1536 
1537 	/* No spurious USEs of pseudo registers may remain.  */
1538 	gcc_assert (regno < FIRST_PSEUDO_REGISTER);
1539 
1540 	nregs = REG_NREGS (x);
1541 
1542 	/* We can't substitute into multi-hard-reg uses.  */
1543 	if (nregs > 1)
1544 	  {
1545 	    while (--nregs >= 0)
1546 	      reg_state[regno + nregs].use_index = -1;
1547 	    return;
1548 	  }
1549 
1550 	/* We may be called to update uses in previously seen insns.
1551 	   Don't add uses beyond the last store we saw.  */
1552 	if (ruid < reg_state[regno].store_ruid)
1553 	  return;
1554 
1555 	/* If this register is already used in some unknown fashion, we
1556 	   can't do anything.
1557 	   If we decrement the index from zero to -1, we can't store more
1558 	   uses, so this register becomes used in an unknown fashion.  */
1559 	use_index = --reg_state[regno].use_index;
1560 	if (use_index < 0)
1561 	  return;
1562 
1563 	if (use_index == RELOAD_COMBINE_MAX_USES - 1)
1564 	  {
1565 	    /* This is the first use of this register we have seen since we
1566 	       marked it as dead.  */
1567 	    reg_state[regno].offset = offset;
1568 	    reg_state[regno].all_offsets_match = true;
1569 	    reg_state[regno].use_ruid = ruid;
1570 	  }
1571 	else
1572 	  {
1573 	    if (reg_state[regno].use_ruid > ruid)
1574 	      reg_state[regno].use_ruid = ruid;
1575 
1576 	    if (! rtx_equal_p (offset, reg_state[regno].offset))
1577 	      reg_state[regno].all_offsets_match = false;
1578 	  }
1579 
1580 	reg_state[regno].reg_use[use_index].insn = insn;
1581 	reg_state[regno].reg_use[use_index].ruid = ruid;
1582 	reg_state[regno].reg_use[use_index].containing_mem = containing_mem;
1583 	reg_state[regno].reg_use[use_index].usep = xp;
1584 	return;
1585       }
1586 
1587     case MEM:
1588       containing_mem = x;
1589       break;
1590 
1591     default:
1592       break;
1593     }
1594 
1595   /* Recursively process the components of X.  */
1596   fmt = GET_RTX_FORMAT (code);
1597   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1598     {
1599       if (fmt[i] == 'e')
1600 	reload_combine_note_use (&XEXP (x, i), insn, ruid, containing_mem);
1601       else if (fmt[i] == 'E')
1602 	{
1603 	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1604 	    reload_combine_note_use (&XVECEXP (x, i, j), insn, ruid,
1605 				     containing_mem);
1606 	}
1607     }
1608 }
1609 
1610 /* See if we can reduce the cost of a constant by replacing a move
1611    with an add.  We track situations in which a register is set to a
1612    constant or to a register plus a constant.  */
1613 /* We cannot do our optimization across labels.  Invalidating all the
1614    information about register contents we have would be costly, so we
1615    use move2add_last_label_luid to note where the label is and then
1616    later disable any optimization that would cross it.
1617    reg_offset[n] / reg_base_reg[n] / reg_symbol_ref[n] / reg_mode[n]
1618    are only valid if reg_set_luid[n] is greater than
1619    move2add_last_label_luid.
1620    For a set that established a new (potential) base register with
1621    non-constant value, we use move2add_luid from the place where the
1622    setting insn is encountered; registers based off that base then
1623    get the same reg_set_luid.  Constants all get
1624    move2add_last_label_luid + 1 as their reg_set_luid.  */
1625 static int reg_set_luid[FIRST_PSEUDO_REGISTER];
1626 
1627 /* If reg_base_reg[n] is negative, register n has been set to
1628    reg_offset[n] or reg_symbol_ref[n] + reg_offset[n] in mode reg_mode[n].
1629    If reg_base_reg[n] is non-negative, register n has been set to the
1630    sum of reg_offset[n] and the value of register reg_base_reg[n]
1631    before reg_set_luid[n], calculated in mode reg_mode[n] .
1632    For multi-hard-register registers, all but the first one are
1633    recorded as BLKmode in reg_mode.  Setting reg_mode to VOIDmode
1634    marks it as invalid.  */
1635 static HOST_WIDE_INT reg_offset[FIRST_PSEUDO_REGISTER];
1636 static int reg_base_reg[FIRST_PSEUDO_REGISTER];
1637 static rtx reg_symbol_ref[FIRST_PSEUDO_REGISTER];
1638 static machine_mode reg_mode[FIRST_PSEUDO_REGISTER];
1639 
1640 /* move2add_luid is linearly increased while scanning the instructions
1641    from first to last.  It is used to set reg_set_luid in
1642    reload_cse_move2add and move2add_note_store.  */
1643 static int move2add_luid;
1644 
1645 /* move2add_last_label_luid is set whenever a label is found.  Labels
1646    invalidate all previously collected reg_offset data.  */
1647 static int move2add_last_label_luid;
1648 
1649 /* ??? We don't know how zero / sign extension is handled, hence we
1650    can't go from a narrower to a wider mode.  */
1651 #define MODES_OK_FOR_MOVE2ADD(OUTMODE, INMODE) \
1652   (GET_MODE_SIZE (OUTMODE) == GET_MODE_SIZE (INMODE) \
1653    || (GET_MODE_SIZE (OUTMODE) <= GET_MODE_SIZE (INMODE) \
1654        && TRULY_NOOP_TRUNCATION_MODES_P (OUTMODE, INMODE)))
1655 
1656 /* Record that REG is being set to a value with the mode of REG.  */
1657 
1658 static void
move2add_record_mode(rtx reg)1659 move2add_record_mode (rtx reg)
1660 {
1661   int regno, nregs;
1662   machine_mode mode = GET_MODE (reg);
1663 
1664   if (GET_CODE (reg) == SUBREG)
1665     {
1666       regno = subreg_regno (reg);
1667       nregs = subreg_nregs (reg);
1668     }
1669   else if (REG_P (reg))
1670     {
1671       regno = REGNO (reg);
1672       nregs = REG_NREGS (reg);
1673     }
1674   else
1675     gcc_unreachable ();
1676   for (int i = nregs - 1; i > 0; i--)
1677     reg_mode[regno + i] = BLKmode;
1678   reg_mode[regno] = mode;
1679 }
1680 
1681 /* Record that REG is being set to the sum of SYM and OFF.  */
1682 
1683 static void
move2add_record_sym_value(rtx reg,rtx sym,rtx off)1684 move2add_record_sym_value (rtx reg, rtx sym, rtx off)
1685 {
1686   int regno = REGNO (reg);
1687 
1688   move2add_record_mode (reg);
1689   reg_set_luid[regno] = move2add_luid;
1690   reg_base_reg[regno] = -1;
1691   reg_symbol_ref[regno] = sym;
1692   reg_offset[regno] = INTVAL (off);
1693 }
1694 
1695 /* Check if REGNO contains a valid value in MODE.  */
1696 
1697 static bool
move2add_valid_value_p(int regno,scalar_int_mode mode)1698 move2add_valid_value_p (int regno, scalar_int_mode mode)
1699 {
1700   if (reg_set_luid[regno] <= move2add_last_label_luid)
1701     return false;
1702 
1703   if (mode != reg_mode[regno])
1704     {
1705       scalar_int_mode old_mode;
1706       if (!is_a <scalar_int_mode> (reg_mode[regno], &old_mode)
1707 	  || !MODES_OK_FOR_MOVE2ADD (mode, old_mode)
1708 	  || !REG_CAN_CHANGE_MODE_P (regno, old_mode, mode))
1709 	return false;
1710       /* The value loaded into regno in reg_mode[regno] is also valid in
1711 	 mode after truncation only if (REG:mode regno) is the lowpart of
1712 	 (REG:reg_mode[regno] regno).  Now, for big endian, the starting
1713 	 regno of the lowpart might be different.  */
1714       poly_int64 s_off = subreg_lowpart_offset (mode, old_mode);
1715       s_off = subreg_regno_offset (regno, old_mode, s_off, mode);
1716       if (maybe_ne (s_off, 0))
1717 	/* We could in principle adjust regno, check reg_mode[regno] to be
1718 	   BLKmode, and return s_off to the caller (vs. -1 for failure),
1719 	   but we currently have no callers that could make use of this
1720 	   information.  */
1721 	return false;
1722     }
1723 
1724   for (int i = end_hard_regno (mode, regno) - 1; i > regno; i--)
1725     if (reg_mode[i] != BLKmode)
1726       return false;
1727   return true;
1728 }
1729 
1730 /* This function is called with INSN that sets REG (of mode MODE)
1731    to (SYM + OFF), while REG is known to already have value (SYM + offset).
1732    This function tries to change INSN into an add instruction
1733    (set (REG) (plus (REG) (OFF - offset))) using the known value.
1734    It also updates the information about REG's known value.
1735    Return true if we made a change.  */
1736 
1737 static bool
move2add_use_add2_insn(scalar_int_mode mode,rtx reg,rtx sym,rtx off,rtx_insn * insn)1738 move2add_use_add2_insn (scalar_int_mode mode, rtx reg, rtx sym, rtx off,
1739 			rtx_insn *insn)
1740 {
1741   rtx pat = PATTERN (insn);
1742   rtx src = SET_SRC (pat);
1743   int regno = REGNO (reg);
1744   rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[regno], mode);
1745   bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
1746   bool changed = false;
1747 
1748   /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1749      use (set (reg) (reg)) instead.
1750      We don't delete this insn, nor do we convert it into a
1751      note, to avoid losing register notes or the return
1752      value flag.  jump2 already knows how to get rid of
1753      no-op moves.  */
1754   if (new_src == const0_rtx)
1755     {
1756       /* If the constants are different, this is a
1757 	 truncation, that, if turned into (set (reg)
1758 	 (reg)), would be discarded.  Maybe we should
1759 	 try a truncMN pattern?  */
1760       if (INTVAL (off) == reg_offset [regno])
1761 	changed = validate_change (insn, &SET_SRC (pat), reg, 0);
1762     }
1763   else
1764     {
1765       struct full_rtx_costs oldcst, newcst;
1766       rtx tem = gen_rtx_PLUS (mode, reg, new_src);
1767 
1768       get_full_set_rtx_cost (pat, &oldcst);
1769       SET_SRC (pat) = tem;
1770       get_full_set_rtx_cost (pat, &newcst);
1771       SET_SRC (pat) = src;
1772 
1773       if (costs_lt_p (&newcst, &oldcst, speed)
1774 	  && have_add2_insn (reg, new_src))
1775 	changed = validate_change (insn, &SET_SRC (pat), tem, 0);
1776       else if (sym == NULL_RTX && mode != BImode)
1777 	{
1778 	  scalar_int_mode narrow_mode;
1779 	  FOR_EACH_MODE_UNTIL (narrow_mode, mode)
1780 	    {
1781 	      if (have_insn_for (STRICT_LOW_PART, narrow_mode)
1782 		  && ((reg_offset[regno] & ~GET_MODE_MASK (narrow_mode))
1783 		      == (INTVAL (off) & ~GET_MODE_MASK (narrow_mode))))
1784 		{
1785 		  rtx narrow_reg = gen_lowpart_common (narrow_mode, reg);
1786 		  rtx narrow_src = gen_int_mode (INTVAL (off),
1787 						 narrow_mode);
1788 		  rtx new_set
1789 		    = gen_rtx_SET (gen_rtx_STRICT_LOW_PART (VOIDmode,
1790 							    narrow_reg),
1791 				   narrow_src);
1792 		  get_full_set_rtx_cost (new_set, &newcst);
1793 		  if (costs_lt_p (&newcst, &oldcst, speed))
1794 		    {
1795 		      changed = validate_change (insn, &PATTERN (insn),
1796 						 new_set, 0);
1797 		      if (changed)
1798 			break;
1799 		    }
1800 		}
1801 	    }
1802 	}
1803     }
1804   move2add_record_sym_value (reg, sym, off);
1805   return changed;
1806 }
1807 
1808 
1809 /* This function is called with INSN that sets REG (of mode MODE) to
1810    (SYM + OFF), but REG doesn't have known value (SYM + offset).  This
1811    function tries to find another register which is known to already have
1812    value (SYM + offset) and change INSN into an add instruction
1813    (set (REG) (plus (the found register) (OFF - offset))) if such
1814    a register is found.  It also updates the information about
1815    REG's known value.
1816    Return true iff we made a change.  */
1817 
1818 static bool
move2add_use_add3_insn(scalar_int_mode mode,rtx reg,rtx sym,rtx off,rtx_insn * insn)1819 move2add_use_add3_insn (scalar_int_mode mode, rtx reg, rtx sym, rtx off,
1820 			rtx_insn *insn)
1821 {
1822   rtx pat = PATTERN (insn);
1823   rtx src = SET_SRC (pat);
1824   int regno = REGNO (reg);
1825   int min_regno = 0;
1826   bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
1827   int i;
1828   bool changed = false;
1829   struct full_rtx_costs oldcst, newcst, mincst;
1830   rtx plus_expr;
1831 
1832   init_costs_to_max (&mincst);
1833   get_full_set_rtx_cost (pat, &oldcst);
1834 
1835   plus_expr = gen_rtx_PLUS (GET_MODE (reg), reg, const0_rtx);
1836   SET_SRC (pat) = plus_expr;
1837 
1838   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1839     if (move2add_valid_value_p (i, mode)
1840 	&& reg_base_reg[i] < 0
1841 	&& reg_symbol_ref[i] != NULL_RTX
1842 	&& rtx_equal_p (sym, reg_symbol_ref[i]))
1843       {
1844 	rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[i],
1845 				    GET_MODE (reg));
1846 	/* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1847 	   use (set (reg) (reg)) instead.
1848 	   We don't delete this insn, nor do we convert it into a
1849 	   note, to avoid losing register notes or the return
1850 	   value flag.  jump2 already knows how to get rid of
1851 	   no-op moves.  */
1852 	if (new_src == const0_rtx)
1853 	  {
1854 	    init_costs_to_zero (&mincst);
1855 	    min_regno = i;
1856 	    break;
1857 	  }
1858 	else
1859 	  {
1860 	    XEXP (plus_expr, 1) = new_src;
1861 	    get_full_set_rtx_cost (pat, &newcst);
1862 
1863 	    if (costs_lt_p (&newcst, &mincst, speed))
1864 	      {
1865 		mincst = newcst;
1866 		min_regno = i;
1867 	      }
1868 	  }
1869       }
1870   SET_SRC (pat) = src;
1871 
1872   if (costs_lt_p (&mincst, &oldcst, speed))
1873     {
1874       rtx tem;
1875 
1876       tem = gen_rtx_REG (GET_MODE (reg), min_regno);
1877       if (i != min_regno)
1878 	{
1879 	  rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[min_regno],
1880 				      GET_MODE (reg));
1881 	  tem = gen_rtx_PLUS (GET_MODE (reg), tem, new_src);
1882 	}
1883       if (validate_change (insn, &SET_SRC (pat), tem, 0))
1884 	changed = true;
1885     }
1886   reg_set_luid[regno] = move2add_luid;
1887   move2add_record_sym_value (reg, sym, off);
1888   return changed;
1889 }
1890 
1891 /* Convert move insns with constant inputs to additions if they are cheaper.
1892    Return true if any changes were made.  */
1893 static bool
reload_cse_move2add(rtx_insn * first)1894 reload_cse_move2add (rtx_insn *first)
1895 {
1896   int i;
1897   rtx_insn *insn;
1898   bool changed = false;
1899 
1900   for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
1901     {
1902       reg_set_luid[i] = 0;
1903       reg_offset[i] = 0;
1904       reg_base_reg[i] = 0;
1905       reg_symbol_ref[i] = NULL_RTX;
1906       reg_mode[i] = VOIDmode;
1907     }
1908 
1909   move2add_last_label_luid = 0;
1910   move2add_luid = 2;
1911   for (insn = first; insn; insn = NEXT_INSN (insn), move2add_luid++)
1912     {
1913       rtx pat, note;
1914 
1915       if (LABEL_P (insn))
1916 	{
1917 	  move2add_last_label_luid = move2add_luid;
1918 	  /* We're going to increment move2add_luid twice after a
1919 	     label, so that we can use move2add_last_label_luid + 1 as
1920 	     the luid for constants.  */
1921 	  move2add_luid++;
1922 	  continue;
1923 	}
1924       if (! INSN_P (insn))
1925 	continue;
1926       pat = PATTERN (insn);
1927       /* For simplicity, we only perform this optimization on
1928 	 straightforward SETs.  */
1929       scalar_int_mode mode;
1930       if (GET_CODE (pat) == SET
1931 	  && REG_P (SET_DEST (pat))
1932 	  && is_a <scalar_int_mode> (GET_MODE (SET_DEST (pat)), &mode))
1933 	{
1934 	  rtx reg = SET_DEST (pat);
1935 	  int regno = REGNO (reg);
1936 	  rtx src = SET_SRC (pat);
1937 
1938 	  /* Check if we have valid information on the contents of this
1939 	     register in the mode of REG.  */
1940 	  if (move2add_valid_value_p (regno, mode)
1941               && dbg_cnt (cse2_move2add))
1942 	    {
1943 	      /* Try to transform (set (REGX) (CONST_INT A))
1944 				  ...
1945 				  (set (REGX) (CONST_INT B))
1946 		 to
1947 				  (set (REGX) (CONST_INT A))
1948 				  ...
1949 				  (set (REGX) (plus (REGX) (CONST_INT B-A)))
1950 		 or
1951 				  (set (REGX) (CONST_INT A))
1952 				  ...
1953 				  (set (STRICT_LOW_PART (REGX)) (CONST_INT B))
1954 	      */
1955 
1956 	      if (CONST_INT_P (src)
1957 		  && reg_base_reg[regno] < 0
1958 		  && reg_symbol_ref[regno] == NULL_RTX)
1959 		{
1960 		  changed |= move2add_use_add2_insn (mode, reg, NULL_RTX,
1961 						     src, insn);
1962 		  continue;
1963 		}
1964 
1965 	      /* Try to transform (set (REGX) (REGY))
1966 				  (set (REGX) (PLUS (REGX) (CONST_INT A)))
1967 				  ...
1968 				  (set (REGX) (REGY))
1969 				  (set (REGX) (PLUS (REGX) (CONST_INT B)))
1970 		 to
1971 				  (set (REGX) (REGY))
1972 				  (set (REGX) (PLUS (REGX) (CONST_INT A)))
1973 				  ...
1974 				  (set (REGX) (plus (REGX) (CONST_INT B-A)))  */
1975 	      else if (REG_P (src)
1976 		       && reg_set_luid[regno] == reg_set_luid[REGNO (src)]
1977 		       && reg_base_reg[regno] == reg_base_reg[REGNO (src)]
1978 		       && move2add_valid_value_p (REGNO (src), mode))
1979 		{
1980 		  rtx_insn *next = next_nonnote_nondebug_insn (insn);
1981 		  rtx set = NULL_RTX;
1982 		  if (next)
1983 		    set = single_set (next);
1984 		  if (set
1985 		      && SET_DEST (set) == reg
1986 		      && GET_CODE (SET_SRC (set)) == PLUS
1987 		      && XEXP (SET_SRC (set), 0) == reg
1988 		      && CONST_INT_P (XEXP (SET_SRC (set), 1)))
1989 		    {
1990 		      rtx src3 = XEXP (SET_SRC (set), 1);
1991 		      unsigned HOST_WIDE_INT added_offset = UINTVAL (src3);
1992 		      HOST_WIDE_INT base_offset = reg_offset[REGNO (src)];
1993 		      HOST_WIDE_INT regno_offset = reg_offset[regno];
1994 		      rtx new_src =
1995 			gen_int_mode (added_offset
1996 				      + base_offset
1997 				      - regno_offset,
1998 				      mode);
1999 		      bool success = false;
2000 		      bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
2001 
2002 		      if (new_src == const0_rtx)
2003 			/* See above why we create (set (reg) (reg)) here.  */
2004 			success
2005 			  = validate_change (next, &SET_SRC (set), reg, 0);
2006 		      else
2007 			{
2008 			  rtx old_src = SET_SRC (set);
2009 			  struct full_rtx_costs oldcst, newcst;
2010 			  rtx tem = gen_rtx_PLUS (mode, reg, new_src);
2011 
2012 			  get_full_set_rtx_cost (set, &oldcst);
2013 			  SET_SRC (set) = tem;
2014 			  get_full_set_src_cost (tem, mode, &newcst);
2015 			  SET_SRC (set) = old_src;
2016 			  costs_add_n_insns (&oldcst, 1);
2017 
2018 			  if (costs_lt_p (&newcst, &oldcst, speed)
2019 			      && have_add2_insn (reg, new_src))
2020 			    {
2021 			      rtx newpat = gen_rtx_SET (reg, tem);
2022 			      success
2023 				= validate_change (next, &PATTERN (next),
2024 						   newpat, 0);
2025 			    }
2026 			}
2027 		      if (success)
2028 			delete_insn (insn);
2029 		      changed |= success;
2030 		      insn = next;
2031 		      move2add_record_mode (reg);
2032 		      reg_offset[regno]
2033 			= trunc_int_for_mode (added_offset + base_offset,
2034 					      mode);
2035 		      continue;
2036 		    }
2037 		}
2038 	    }
2039 
2040 	  /* Try to transform
2041 	     (set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
2042 	     ...
2043 	     (set (REGY) (CONST (PLUS (SYMBOL_REF) (CONST_INT B))))
2044 	     to
2045 	     (set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
2046 	     ...
2047 	     (set (REGY) (CONST (PLUS (REGX) (CONST_INT B-A))))  */
2048 	  if ((GET_CODE (src) == SYMBOL_REF
2049 	       || (GET_CODE (src) == CONST
2050 		   && GET_CODE (XEXP (src, 0)) == PLUS
2051 		   && GET_CODE (XEXP (XEXP (src, 0), 0)) == SYMBOL_REF
2052 		   && CONST_INT_P (XEXP (XEXP (src, 0), 1))))
2053 	      && dbg_cnt (cse2_move2add))
2054 	    {
2055 	      rtx sym, off;
2056 
2057 	      if (GET_CODE (src) == SYMBOL_REF)
2058 		{
2059 		  sym = src;
2060 		  off = const0_rtx;
2061 		}
2062 	      else
2063 		{
2064 		  sym = XEXP (XEXP (src, 0), 0);
2065 		  off = XEXP (XEXP (src, 0), 1);
2066 		}
2067 
2068 	      /* If the reg already contains the value which is sum of
2069 		 sym and some constant value, we can use an add2 insn.  */
2070 	      if (move2add_valid_value_p (regno, mode)
2071 		  && reg_base_reg[regno] < 0
2072 		  && reg_symbol_ref[regno] != NULL_RTX
2073 		  && rtx_equal_p (sym, reg_symbol_ref[regno]))
2074 		changed |= move2add_use_add2_insn (mode, reg, sym, off, insn);
2075 
2076 	      /* Otherwise, we have to find a register whose value is sum
2077 		 of sym and some constant value.  */
2078 	      else
2079 		changed |= move2add_use_add3_insn (mode, reg, sym, off, insn);
2080 
2081 	      continue;
2082 	    }
2083 	}
2084 
2085       for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2086 	{
2087 	  if (REG_NOTE_KIND (note) == REG_INC
2088 	      && REG_P (XEXP (note, 0)))
2089 	    {
2090 	      /* Reset the information about this register.  */
2091 	      int regno = REGNO (XEXP (note, 0));
2092 	      if (regno < FIRST_PSEUDO_REGISTER)
2093 		{
2094 		  move2add_record_mode (XEXP (note, 0));
2095 		  reg_mode[regno] = VOIDmode;
2096 		}
2097 	    }
2098 	}
2099       note_stores (PATTERN (insn), move2add_note_store, insn);
2100 
2101       /* If INSN is a conditional branch, we try to extract an
2102 	 implicit set out of it.  */
2103       if (any_condjump_p (insn))
2104 	{
2105 	  rtx cnd = fis_get_condition (insn);
2106 
2107 	  if (cnd != NULL_RTX
2108 	      && GET_CODE (cnd) == NE
2109 	      && REG_P (XEXP (cnd, 0))
2110 	      && !reg_set_p (XEXP (cnd, 0), insn)
2111 	      /* The following two checks, which are also in
2112 		 move2add_note_store, are intended to reduce the
2113 		 number of calls to gen_rtx_SET to avoid memory
2114 		 allocation if possible.  */
2115 	      && SCALAR_INT_MODE_P (GET_MODE (XEXP (cnd, 0)))
2116 	      && REG_NREGS (XEXP (cnd, 0)) == 1
2117 	      && CONST_INT_P (XEXP (cnd, 1)))
2118 	    {
2119 	      rtx implicit_set =
2120 		gen_rtx_SET (XEXP (cnd, 0), XEXP (cnd, 1));
2121 	      move2add_note_store (SET_DEST (implicit_set), implicit_set, insn);
2122 	    }
2123 	}
2124 
2125       /* If this is a CALL_INSN, all call used registers are stored with
2126 	 unknown values.  */
2127       if (CALL_P (insn))
2128 	{
2129 	  rtx link;
2130 
2131 	  for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
2132 	    {
2133 	      if (call_used_regs[i])
2134 		/* Reset the information about this register.  */
2135 		reg_mode[i] = VOIDmode;
2136 	    }
2137 
2138 	  for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
2139 	       link = XEXP (link, 1))
2140 	    {
2141 	      rtx setuse = XEXP (link, 0);
2142 	      rtx usage_rtx = XEXP (setuse, 0);
2143 	      if (GET_CODE (setuse) == CLOBBER
2144 		  && REG_P (usage_rtx))
2145 	        {
2146 		  unsigned int end_regno = END_REGNO (usage_rtx);
2147 		  for (unsigned int r = REGNO (usage_rtx); r < end_regno; ++r)
2148 		    /* Reset the information about this register.  */
2149 		    reg_mode[r] = VOIDmode;
2150 		}
2151 	    }
2152 	}
2153     }
2154   return changed;
2155 }
2156 
2157 /* SET is a SET or CLOBBER that sets DST.  DATA is the insn which
2158    contains SET.
2159    Update reg_set_luid, reg_offset and reg_base_reg accordingly.
2160    Called from reload_cse_move2add via note_stores.  */
2161 
2162 static void
move2add_note_store(rtx dst,const_rtx set,void * data)2163 move2add_note_store (rtx dst, const_rtx set, void *data)
2164 {
2165   rtx_insn *insn = (rtx_insn *) data;
2166   unsigned int regno = 0;
2167   scalar_int_mode mode;
2168 
2169   /* Some targets do argument pushes without adding REG_INC notes.  */
2170 
2171   if (MEM_P (dst))
2172     {
2173       dst = XEXP (dst, 0);
2174       if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
2175 	  || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC)
2176 	reg_mode[REGNO (XEXP (dst, 0))] = VOIDmode;
2177       return;
2178     }
2179 
2180   if (GET_CODE (dst) == SUBREG)
2181     regno = subreg_regno (dst);
2182   else if (REG_P (dst))
2183     regno = REGNO (dst);
2184   else
2185     return;
2186 
2187   if (!is_a <scalar_int_mode> (GET_MODE (dst), &mode))
2188     goto invalidate;
2189 
2190   if (GET_CODE (set) == SET)
2191     {
2192       rtx note, sym = NULL_RTX;
2193       rtx off;
2194 
2195       note = find_reg_equal_equiv_note (insn);
2196       if (note && GET_CODE (XEXP (note, 0)) == SYMBOL_REF)
2197 	{
2198 	  sym = XEXP (note, 0);
2199 	  off = const0_rtx;
2200 	}
2201       else if (note && GET_CODE (XEXP (note, 0)) == CONST
2202 	       && GET_CODE (XEXP (XEXP (note, 0), 0)) == PLUS
2203 	       && GET_CODE (XEXP (XEXP (XEXP (note, 0), 0), 0)) == SYMBOL_REF
2204 	       && CONST_INT_P (XEXP (XEXP (XEXP (note, 0), 0), 1)))
2205 	{
2206 	  sym = XEXP (XEXP (XEXP (note, 0), 0), 0);
2207 	  off = XEXP (XEXP (XEXP (note, 0), 0), 1);
2208 	}
2209 
2210       if (sym != NULL_RTX)
2211 	{
2212 	  move2add_record_sym_value (dst, sym, off);
2213 	  return;
2214 	}
2215     }
2216 
2217   if (GET_CODE (set) == SET
2218       && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
2219       && GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
2220     {
2221       rtx src = SET_SRC (set);
2222       rtx base_reg;
2223       unsigned HOST_WIDE_INT offset;
2224       int base_regno;
2225 
2226       switch (GET_CODE (src))
2227 	{
2228 	case PLUS:
2229 	  if (REG_P (XEXP (src, 0)))
2230 	    {
2231 	      base_reg = XEXP (src, 0);
2232 
2233 	      if (CONST_INT_P (XEXP (src, 1)))
2234 		offset = UINTVAL (XEXP (src, 1));
2235 	      else if (REG_P (XEXP (src, 1))
2236 		       && move2add_valid_value_p (REGNO (XEXP (src, 1)), mode))
2237 		{
2238 		  if (reg_base_reg[REGNO (XEXP (src, 1))] < 0
2239 		      && reg_symbol_ref[REGNO (XEXP (src, 1))] == NULL_RTX)
2240 		    offset = reg_offset[REGNO (XEXP (src, 1))];
2241 		  /* Maybe the first register is known to be a
2242 		     constant.  */
2243 		  else if (move2add_valid_value_p (REGNO (base_reg), mode)
2244 			   && reg_base_reg[REGNO (base_reg)] < 0
2245 			   && reg_symbol_ref[REGNO (base_reg)] == NULL_RTX)
2246 		    {
2247 		      offset = reg_offset[REGNO (base_reg)];
2248 		      base_reg = XEXP (src, 1);
2249 		    }
2250 		  else
2251 		    goto invalidate;
2252 		}
2253 	      else
2254 		goto invalidate;
2255 
2256 	      break;
2257 	    }
2258 
2259 	  goto invalidate;
2260 
2261 	case REG:
2262 	  base_reg = src;
2263 	  offset = 0;
2264 	  break;
2265 
2266 	case CONST_INT:
2267 	  /* Start tracking the register as a constant.  */
2268 	  reg_base_reg[regno] = -1;
2269 	  reg_symbol_ref[regno] = NULL_RTX;
2270 	  reg_offset[regno] = INTVAL (SET_SRC (set));
2271 	  /* We assign the same luid to all registers set to constants.  */
2272 	  reg_set_luid[regno] = move2add_last_label_luid + 1;
2273 	  move2add_record_mode (dst);
2274 	  return;
2275 
2276 	default:
2277 	  goto invalidate;
2278 	}
2279 
2280       base_regno = REGNO (base_reg);
2281       /* If information about the base register is not valid, set it
2282 	 up as a new base register, pretending its value is known
2283 	 starting from the current insn.  */
2284       if (!move2add_valid_value_p (base_regno, mode))
2285 	{
2286 	  reg_base_reg[base_regno] = base_regno;
2287 	  reg_symbol_ref[base_regno] = NULL_RTX;
2288 	  reg_offset[base_regno] = 0;
2289 	  reg_set_luid[base_regno] = move2add_luid;
2290 	  gcc_assert (GET_MODE (base_reg) == mode);
2291 	  move2add_record_mode (base_reg);
2292 	}
2293 
2294       /* Copy base information from our base register.  */
2295       reg_set_luid[regno] = reg_set_luid[base_regno];
2296       reg_base_reg[regno] = reg_base_reg[base_regno];
2297       reg_symbol_ref[regno] = reg_symbol_ref[base_regno];
2298 
2299       /* Compute the sum of the offsets or constants.  */
2300       reg_offset[regno]
2301 	= trunc_int_for_mode (offset + reg_offset[base_regno], mode);
2302 
2303       move2add_record_mode (dst);
2304     }
2305   else
2306     {
2307     invalidate:
2308       /* Invalidate the contents of the register.  */
2309       move2add_record_mode (dst);
2310       reg_mode[regno] = VOIDmode;
2311     }
2312 }
2313 
2314 namespace {
2315 
2316 const pass_data pass_data_postreload_cse =
2317 {
2318   RTL_PASS, /* type */
2319   "postreload", /* name */
2320   OPTGROUP_NONE, /* optinfo_flags */
2321   TV_RELOAD_CSE_REGS, /* tv_id */
2322   0, /* properties_required */
2323   0, /* properties_provided */
2324   0, /* properties_destroyed */
2325   0, /* todo_flags_start */
2326   TODO_df_finish, /* todo_flags_finish */
2327 };
2328 
2329 class pass_postreload_cse : public rtl_opt_pass
2330 {
2331 public:
pass_postreload_cse(gcc::context * ctxt)2332   pass_postreload_cse (gcc::context *ctxt)
2333     : rtl_opt_pass (pass_data_postreload_cse, ctxt)
2334   {}
2335 
2336   /* opt_pass methods: */
gate(function *)2337   virtual bool gate (function *) { return (optimize > 0 && reload_completed); }
2338 
2339   virtual unsigned int execute (function *);
2340 
2341 }; // class pass_postreload_cse
2342 
2343 unsigned int
execute(function * fun)2344 pass_postreload_cse::execute (function *fun)
2345 {
2346   if (!dbg_cnt (postreload_cse))
2347     return 0;
2348 
2349   /* Do a very simple CSE pass over just the hard registers.  */
2350   reload_cse_regs (get_insns ());
2351   /* Reload_cse_regs can eliminate potentially-trapping MEMs.
2352      Remove any EH edges associated with them.  */
2353   if (fun->can_throw_non_call_exceptions
2354       && purge_all_dead_edges ())
2355     cleanup_cfg (0);
2356 
2357   return 0;
2358 }
2359 
2360 } // anon namespace
2361 
2362 rtl_opt_pass *
make_pass_postreload_cse(gcc::context * ctxt)2363 make_pass_postreload_cse (gcc::context *ctxt)
2364 {
2365   return new pass_postreload_cse (ctxt);
2366 }
2367