1 /* Subroutines used by or related to instruction recognition.
2    Copyright (C) 1987-2018 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "cfghooks.h"
29 #include "df.h"
30 #include "memmodel.h"
31 #include "tm_p.h"
32 #include "insn-config.h"
33 #include "regs.h"
34 #include "emit-rtl.h"
35 #include "recog.h"
36 #include "insn-attr.h"
37 #include "addresses.h"
38 #include "cfgrtl.h"
39 #include "cfgbuild.h"
40 #include "cfgcleanup.h"
41 #include "reload.h"
42 #include "tree-pass.h"
43 
44 #ifndef STACK_POP_CODE
45 #if STACK_GROWS_DOWNWARD
46 #define STACK_POP_CODE POST_INC
47 #else
48 #define STACK_POP_CODE POST_DEC
49 #endif
50 #endif
51 
52 static void validate_replace_rtx_1 (rtx *, rtx, rtx, rtx_insn *, bool);
53 static void validate_replace_src_1 (rtx *, void *);
54 static rtx_insn *split_insn (rtx_insn *);
55 
56 struct target_recog default_target_recog;
57 #if SWITCHABLE_TARGET
58 struct target_recog *this_target_recog = &default_target_recog;
59 #endif
60 
61 /* Nonzero means allow operands to be volatile.
62    This should be 0 if you are generating rtl, such as if you are calling
63    the functions in optabs.c and expmed.c (most of the time).
64    This should be 1 if all valid insns need to be recognized,
65    such as in reginfo.c and final.c and reload.c.
66 
67    init_recog and init_recog_no_volatile are responsible for setting this.  */
68 
69 int volatile_ok;
70 
71 struct recog_data_d recog_data;
72 
73 /* Contains a vector of operand_alternative structures, such that
74    operand OP of alternative A is at index A * n_operands + OP.
75    Set up by preprocess_constraints.  */
76 const operand_alternative *recog_op_alt;
77 
78 /* Used to provide recog_op_alt for asms.  */
79 static operand_alternative asm_op_alt[MAX_RECOG_OPERANDS
80 				      * MAX_RECOG_ALTERNATIVES];
81 
82 /* On return from `constrain_operands', indicate which alternative
83    was satisfied.  */
84 
85 int which_alternative;
86 
87 /* Nonzero after end of reload pass.
88    Set to 1 or 0 by toplev.c.
89    Controls the significance of (SUBREG (MEM)).  */
90 
91 int reload_completed;
92 
93 /* Nonzero after thread_prologue_and_epilogue_insns has run.  */
94 int epilogue_completed;
95 
96 /* Initialize data used by the function `recog'.
97    This must be called once in the compilation of a function
98    before any insn recognition may be done in the function.  */
99 
100 void
init_recog_no_volatile(void)101 init_recog_no_volatile (void)
102 {
103   volatile_ok = 0;
104 }
105 
106 void
init_recog(void)107 init_recog (void)
108 {
109   volatile_ok = 1;
110 }
111 
112 
113 /* Return true if labels in asm operands BODY are LABEL_REFs.  */
114 
115 static bool
asm_labels_ok(rtx body)116 asm_labels_ok (rtx body)
117 {
118   rtx asmop;
119   int i;
120 
121   asmop = extract_asm_operands (body);
122   if (asmop == NULL_RTX)
123     return true;
124 
125   for (i = 0; i < ASM_OPERANDS_LABEL_LENGTH (asmop); i++)
126     if (GET_CODE (ASM_OPERANDS_LABEL (asmop, i)) != LABEL_REF)
127       return false;
128 
129   return true;
130 }
131 
132 /* Check that X is an insn-body for an `asm' with operands
133    and that the operands mentioned in it are legitimate.  */
134 
135 int
check_asm_operands(rtx x)136 check_asm_operands (rtx x)
137 {
138   int noperands;
139   rtx *operands;
140   const char **constraints;
141   int i;
142 
143   if (!asm_labels_ok (x))
144     return 0;
145 
146   /* Post-reload, be more strict with things.  */
147   if (reload_completed)
148     {
149       /* ??? Doh!  We've not got the wrapping insn.  Cook one up.  */
150       rtx_insn *insn = make_insn_raw (x);
151       extract_insn (insn);
152       constrain_operands (1, get_enabled_alternatives (insn));
153       return which_alternative >= 0;
154     }
155 
156   noperands = asm_noperands (x);
157   if (noperands < 0)
158     return 0;
159   if (noperands == 0)
160     return 1;
161 
162   operands = XALLOCAVEC (rtx, noperands);
163   constraints = XALLOCAVEC (const char *, noperands);
164 
165   decode_asm_operands (x, operands, NULL, constraints, NULL, NULL);
166 
167   for (i = 0; i < noperands; i++)
168     {
169       const char *c = constraints[i];
170       if (c[0] == '%')
171 	c++;
172       if (! asm_operand_ok (operands[i], c, constraints))
173 	return 0;
174     }
175 
176   return 1;
177 }
178 
179 /* Static data for the next two routines.  */
180 
181 struct change_t
182 {
183   rtx object;
184   int old_code;
185   bool unshare;
186   rtx *loc;
187   rtx old;
188 };
189 
190 static change_t *changes;
191 static int changes_allocated;
192 
193 static int num_changes = 0;
194 
195 /* Validate a proposed change to OBJECT.  LOC is the location in the rtl
196    at which NEW_RTX will be placed.  If OBJECT is zero, no validation is done,
197    the change is simply made.
198 
199    Two types of objects are supported:  If OBJECT is a MEM, memory_address_p
200    will be called with the address and mode as parameters.  If OBJECT is
201    an INSN, CALL_INSN, or JUMP_INSN, the insn will be re-recognized with
202    the change in place.
203 
204    IN_GROUP is nonzero if this is part of a group of changes that must be
205    performed as a group.  In that case, the changes will be stored.  The
206    function `apply_change_group' will validate and apply the changes.
207 
208    If IN_GROUP is zero, this is a single change.  Try to recognize the insn
209    or validate the memory reference with the change applied.  If the result
210    is not valid for the machine, suppress the change and return zero.
211    Otherwise, perform the change and return 1.  */
212 
213 static bool
validate_change_1(rtx object,rtx * loc,rtx new_rtx,bool in_group,bool unshare)214 validate_change_1 (rtx object, rtx *loc, rtx new_rtx, bool in_group, bool unshare)
215 {
216   rtx old = *loc;
217 
218   if (old == new_rtx || rtx_equal_p (old, new_rtx))
219     return 1;
220 
221   gcc_assert (in_group != 0 || num_changes == 0);
222 
223   *loc = new_rtx;
224 
225   /* Save the information describing this change.  */
226   if (num_changes >= changes_allocated)
227     {
228       if (changes_allocated == 0)
229 	/* This value allows for repeated substitutions inside complex
230 	   indexed addresses, or changes in up to 5 insns.  */
231 	changes_allocated = MAX_RECOG_OPERANDS * 5;
232       else
233 	changes_allocated *= 2;
234 
235       changes = XRESIZEVEC (change_t, changes, changes_allocated);
236     }
237 
238   changes[num_changes].object = object;
239   changes[num_changes].loc = loc;
240   changes[num_changes].old = old;
241   changes[num_changes].unshare = unshare;
242 
243   if (object && !MEM_P (object))
244     {
245       /* Set INSN_CODE to force rerecognition of insn.  Save old code in
246 	 case invalid.  */
247       changes[num_changes].old_code = INSN_CODE (object);
248       INSN_CODE (object) = -1;
249     }
250 
251   num_changes++;
252 
253   /* If we are making a group of changes, return 1.  Otherwise, validate the
254      change group we made.  */
255 
256   if (in_group)
257     return 1;
258   else
259     return apply_change_group ();
260 }
261 
262 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
263    UNSHARE to false.  */
264 
265 bool
validate_change(rtx object,rtx * loc,rtx new_rtx,bool in_group)266 validate_change (rtx object, rtx *loc, rtx new_rtx, bool in_group)
267 {
268   return validate_change_1 (object, loc, new_rtx, in_group, false);
269 }
270 
271 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
272    UNSHARE to true.  */
273 
274 bool
validate_unshare_change(rtx object,rtx * loc,rtx new_rtx,bool in_group)275 validate_unshare_change (rtx object, rtx *loc, rtx new_rtx, bool in_group)
276 {
277   return validate_change_1 (object, loc, new_rtx, in_group, true);
278 }
279 
280 
281 /* Keep X canonicalized if some changes have made it non-canonical; only
282    modifies the operands of X, not (for example) its code.  Simplifications
283    are not the job of this routine.
284 
285    Return true if anything was changed.  */
286 bool
canonicalize_change_group(rtx_insn * insn,rtx x)287 canonicalize_change_group (rtx_insn *insn, rtx x)
288 {
289   if (COMMUTATIVE_P (x)
290       && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
291     {
292       /* Oops, the caller has made X no longer canonical.
293 	 Let's redo the changes in the correct order.  */
294       rtx tem = XEXP (x, 0);
295       validate_unshare_change (insn, &XEXP (x, 0), XEXP (x, 1), 1);
296       validate_unshare_change (insn, &XEXP (x, 1), tem, 1);
297       return true;
298     }
299   else
300     return false;
301 }
302 
303 
304 /* This subroutine of apply_change_group verifies whether the changes to INSN
305    were valid; i.e. whether INSN can still be recognized.
306 
307    If IN_GROUP is true clobbers which have to be added in order to
308    match the instructions will be added to the current change group.
309    Otherwise the changes will take effect immediately.  */
310 
311 int
insn_invalid_p(rtx_insn * insn,bool in_group)312 insn_invalid_p (rtx_insn *insn, bool in_group)
313 {
314   rtx pat = PATTERN (insn);
315   int num_clobbers = 0;
316   /* If we are before reload and the pattern is a SET, see if we can add
317      clobbers.  */
318   int icode = recog (pat, insn,
319 		     (GET_CODE (pat) == SET
320 		      && ! reload_completed
321                       && ! reload_in_progress)
322 		     ? &num_clobbers : 0);
323   int is_asm = icode < 0 && asm_noperands (PATTERN (insn)) >= 0;
324 
325 
326   /* If this is an asm and the operand aren't legal, then fail.  Likewise if
327      this is not an asm and the insn wasn't recognized.  */
328   if ((is_asm && ! check_asm_operands (PATTERN (insn)))
329       || (!is_asm && icode < 0))
330     return 1;
331 
332   /* If we have to add CLOBBERs, fail if we have to add ones that reference
333      hard registers since our callers can't know if they are live or not.
334      Otherwise, add them.  */
335   if (num_clobbers > 0)
336     {
337       rtx newpat;
338 
339       if (added_clobbers_hard_reg_p (icode))
340 	return 1;
341 
342       newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (num_clobbers + 1));
343       XVECEXP (newpat, 0, 0) = pat;
344       add_clobbers (newpat, icode);
345       if (in_group)
346 	validate_change (insn, &PATTERN (insn), newpat, 1);
347       else
348 	PATTERN (insn) = pat = newpat;
349     }
350 
351   /* After reload, verify that all constraints are satisfied.  */
352   if (reload_completed)
353     {
354       extract_insn (insn);
355 
356       if (! constrain_operands (1, get_preferred_alternatives (insn)))
357 	return 1;
358     }
359 
360   INSN_CODE (insn) = icode;
361   return 0;
362 }
363 
364 /* Return number of changes made and not validated yet.  */
365 int
num_changes_pending(void)366 num_changes_pending (void)
367 {
368   return num_changes;
369 }
370 
371 /* Tentatively apply the changes numbered NUM and up.
372    Return 1 if all changes are valid, zero otherwise.  */
373 
374 int
verify_changes(int num)375 verify_changes (int num)
376 {
377   int i;
378   rtx last_validated = NULL_RTX;
379 
380   /* The changes have been applied and all INSN_CODEs have been reset to force
381      rerecognition.
382 
383      The changes are valid if we aren't given an object, or if we are
384      given a MEM and it still is a valid address, or if this is in insn
385      and it is recognized.  In the latter case, if reload has completed,
386      we also require that the operands meet the constraints for
387      the insn.  */
388 
389   for (i = num; i < num_changes; i++)
390     {
391       rtx object = changes[i].object;
392 
393       /* If there is no object to test or if it is the same as the one we
394          already tested, ignore it.  */
395       if (object == 0 || object == last_validated)
396 	continue;
397 
398       if (MEM_P (object))
399 	{
400 	  if (! memory_address_addr_space_p (GET_MODE (object),
401 					     XEXP (object, 0),
402 					     MEM_ADDR_SPACE (object)))
403 	    break;
404 	}
405       else if (/* changes[i].old might be zero, e.g. when putting a
406 	       REG_FRAME_RELATED_EXPR into a previously empty list.  */
407 	       changes[i].old
408 	       && REG_P (changes[i].old)
409 	       && asm_noperands (PATTERN (object)) > 0
410 	       && REG_EXPR (changes[i].old) != NULL_TREE
411 	       && HAS_DECL_ASSEMBLER_NAME_P (REG_EXPR (changes[i].old))
412 	       && DECL_ASSEMBLER_NAME_SET_P (REG_EXPR (changes[i].old))
413 	       && DECL_REGISTER (REG_EXPR (changes[i].old)))
414 	{
415 	  /* Don't allow changes of hard register operands to inline
416 	     assemblies if they have been defined as register asm ("x").  */
417 	  break;
418 	}
419       else if (DEBUG_INSN_P (object))
420 	continue;
421       else if (insn_invalid_p (as_a <rtx_insn *> (object), true))
422 	{
423 	  rtx pat = PATTERN (object);
424 
425 	  /* Perhaps we couldn't recognize the insn because there were
426 	     extra CLOBBERs at the end.  If so, try to re-recognize
427 	     without the last CLOBBER (later iterations will cause each of
428 	     them to be eliminated, in turn).  But don't do this if we
429 	     have an ASM_OPERAND.  */
430 	  if (GET_CODE (pat) == PARALLEL
431 	      && GET_CODE (XVECEXP (pat, 0, XVECLEN (pat, 0) - 1)) == CLOBBER
432 	      && asm_noperands (PATTERN (object)) < 0)
433 	    {
434 	      rtx newpat;
435 
436 	      if (XVECLEN (pat, 0) == 2)
437 		newpat = XVECEXP (pat, 0, 0);
438 	      else
439 		{
440 		  int j;
441 
442 		  newpat
443 		    = gen_rtx_PARALLEL (VOIDmode,
444 					rtvec_alloc (XVECLEN (pat, 0) - 1));
445 		  for (j = 0; j < XVECLEN (newpat, 0); j++)
446 		    XVECEXP (newpat, 0, j) = XVECEXP (pat, 0, j);
447 		}
448 
449 	      /* Add a new change to this group to replace the pattern
450 		 with this new pattern.  Then consider this change
451 		 as having succeeded.  The change we added will
452 		 cause the entire call to fail if things remain invalid.
453 
454 		 Note that this can lose if a later change than the one
455 		 we are processing specified &XVECEXP (PATTERN (object), 0, X)
456 		 but this shouldn't occur.  */
457 
458 	      validate_change (object, &PATTERN (object), newpat, 1);
459 	      continue;
460 	    }
461 	  else if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER
462 		   || GET_CODE (pat) == VAR_LOCATION)
463 	    /* If this insn is a CLOBBER or USE, it is always valid, but is
464 	       never recognized.  */
465 	    continue;
466 	  else
467 	    break;
468 	}
469       last_validated = object;
470     }
471 
472   return (i == num_changes);
473 }
474 
475 /* A group of changes has previously been issued with validate_change
476    and verified with verify_changes.  Call df_insn_rescan for each of
477    the insn changed and clear num_changes.  */
478 
479 void
confirm_change_group(void)480 confirm_change_group (void)
481 {
482   int i;
483   rtx last_object = NULL;
484 
485   for (i = 0; i < num_changes; i++)
486     {
487       rtx object = changes[i].object;
488 
489       if (changes[i].unshare)
490 	*changes[i].loc = copy_rtx (*changes[i].loc);
491 
492       /* Avoid unnecessary rescanning when multiple changes to same instruction
493          are made.  */
494       if (object)
495 	{
496 	  if (object != last_object && last_object && INSN_P (last_object))
497 	    df_insn_rescan (as_a <rtx_insn *> (last_object));
498 	  last_object = object;
499 	}
500     }
501 
502   if (last_object && INSN_P (last_object))
503     df_insn_rescan (as_a <rtx_insn *> (last_object));
504   num_changes = 0;
505 }
506 
507 /* Apply a group of changes previously issued with `validate_change'.
508    If all changes are valid, call confirm_change_group and return 1,
509    otherwise, call cancel_changes and return 0.  */
510 
511 int
apply_change_group(void)512 apply_change_group (void)
513 {
514   if (verify_changes (0))
515     {
516       confirm_change_group ();
517       return 1;
518     }
519   else
520     {
521       cancel_changes (0);
522       return 0;
523     }
524 }
525 
526 
527 /* Return the number of changes so far in the current group.  */
528 
529 int
num_validated_changes(void)530 num_validated_changes (void)
531 {
532   return num_changes;
533 }
534 
535 /* Retract the changes numbered NUM and up.  */
536 
537 void
cancel_changes(int num)538 cancel_changes (int num)
539 {
540   int i;
541 
542   /* Back out all the changes.  Do this in the opposite order in which
543      they were made.  */
544   for (i = num_changes - 1; i >= num; i--)
545     {
546       *changes[i].loc = changes[i].old;
547       if (changes[i].object && !MEM_P (changes[i].object))
548 	INSN_CODE (changes[i].object) = changes[i].old_code;
549     }
550   num_changes = num;
551 }
552 
553 /* Reduce conditional compilation elsewhere.  */
554 /* A subroutine of validate_replace_rtx_1 that tries to simplify the resulting
555    rtx.  */
556 
557 static void
simplify_while_replacing(rtx * loc,rtx to,rtx_insn * object,machine_mode op0_mode)558 simplify_while_replacing (rtx *loc, rtx to, rtx_insn *object,
559                           machine_mode op0_mode)
560 {
561   rtx x = *loc;
562   enum rtx_code code = GET_CODE (x);
563   rtx new_rtx = NULL_RTX;
564   scalar_int_mode is_mode;
565 
566   if (SWAPPABLE_OPERANDS_P (x)
567       && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
568     {
569       validate_unshare_change (object, loc,
570 			       gen_rtx_fmt_ee (COMMUTATIVE_ARITH_P (x) ? code
571 					       : swap_condition (code),
572 					       GET_MODE (x), XEXP (x, 1),
573 					       XEXP (x, 0)), 1);
574       x = *loc;
575       code = GET_CODE (x);
576     }
577 
578   /* Canonicalize arithmetics with all constant operands.  */
579   switch (GET_RTX_CLASS (code))
580     {
581     case RTX_UNARY:
582       if (CONSTANT_P (XEXP (x, 0)))
583 	new_rtx = simplify_unary_operation (code, GET_MODE (x), XEXP (x, 0),
584 					    op0_mode);
585       break;
586     case RTX_COMM_ARITH:
587     case RTX_BIN_ARITH:
588       if (CONSTANT_P (XEXP (x, 0)) && CONSTANT_P (XEXP (x, 1)))
589 	new_rtx = simplify_binary_operation (code, GET_MODE (x), XEXP (x, 0),
590 					     XEXP (x, 1));
591       break;
592     case RTX_COMPARE:
593     case RTX_COMM_COMPARE:
594       if (CONSTANT_P (XEXP (x, 0)) && CONSTANT_P (XEXP (x, 1)))
595 	new_rtx = simplify_relational_operation (code, GET_MODE (x), op0_mode,
596 						 XEXP (x, 0), XEXP (x, 1));
597       break;
598     default:
599       break;
600     }
601   if (new_rtx)
602     {
603       validate_change (object, loc, new_rtx, 1);
604       return;
605     }
606 
607   switch (code)
608     {
609     case PLUS:
610       /* If we have a PLUS whose second operand is now a CONST_INT, use
611          simplify_gen_binary to try to simplify it.
612          ??? We may want later to remove this, once simplification is
613          separated from this function.  */
614       if (CONST_INT_P (XEXP (x, 1)) && XEXP (x, 1) == to)
615 	validate_change (object, loc,
616 			 simplify_gen_binary
617 			 (PLUS, GET_MODE (x), XEXP (x, 0), XEXP (x, 1)), 1);
618       break;
619     case MINUS:
620       if (CONST_SCALAR_INT_P (XEXP (x, 1)))
621 	validate_change (object, loc,
622 			 simplify_gen_binary
623 			 (PLUS, GET_MODE (x), XEXP (x, 0),
624 			  simplify_gen_unary (NEG,
625 					      GET_MODE (x), XEXP (x, 1),
626 					      GET_MODE (x))), 1);
627       break;
628     case ZERO_EXTEND:
629     case SIGN_EXTEND:
630       if (GET_MODE (XEXP (x, 0)) == VOIDmode)
631 	{
632 	  new_rtx = simplify_gen_unary (code, GET_MODE (x), XEXP (x, 0),
633 				    op0_mode);
634 	  /* If any of the above failed, substitute in something that
635 	     we know won't be recognized.  */
636 	  if (!new_rtx)
637 	    new_rtx = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
638 	  validate_change (object, loc, new_rtx, 1);
639 	}
640       break;
641     case SUBREG:
642       /* All subregs possible to simplify should be simplified.  */
643       new_rtx = simplify_subreg (GET_MODE (x), SUBREG_REG (x), op0_mode,
644 			     SUBREG_BYTE (x));
645 
646       /* Subregs of VOIDmode operands are incorrect.  */
647       if (!new_rtx && GET_MODE (SUBREG_REG (x)) == VOIDmode)
648 	new_rtx = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
649       if (new_rtx)
650 	validate_change (object, loc, new_rtx, 1);
651       break;
652     case ZERO_EXTRACT:
653     case SIGN_EXTRACT:
654       /* If we are replacing a register with memory, try to change the memory
655          to be the mode required for memory in extract operations (this isn't
656          likely to be an insertion operation; if it was, nothing bad will
657          happen, we might just fail in some cases).  */
658 
659       if (MEM_P (XEXP (x, 0))
660 	  && is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &is_mode)
661 	  && CONST_INT_P (XEXP (x, 1))
662 	  && CONST_INT_P (XEXP (x, 2))
663 	  && !mode_dependent_address_p (XEXP (XEXP (x, 0), 0),
664 					MEM_ADDR_SPACE (XEXP (x, 0)))
665 	  && !MEM_VOLATILE_P (XEXP (x, 0)))
666 	{
667 	  int pos = INTVAL (XEXP (x, 2));
668 	  machine_mode new_mode = is_mode;
669 	  if (GET_CODE (x) == ZERO_EXTRACT && targetm.have_extzv ())
670 	    new_mode = insn_data[targetm.code_for_extzv].operand[1].mode;
671 	  else if (GET_CODE (x) == SIGN_EXTRACT && targetm.have_extv ())
672 	    new_mode = insn_data[targetm.code_for_extv].operand[1].mode;
673 	  scalar_int_mode wanted_mode = (new_mode == VOIDmode
674 					 ? word_mode
675 					 : as_a <scalar_int_mode> (new_mode));
676 
677 	  /* If we have a narrower mode, we can do something.  */
678 	  if (GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
679 	    {
680 	      int offset = pos / BITS_PER_UNIT;
681 	      rtx newmem;
682 
683 	      /* If the bytes and bits are counted differently, we
684 	         must adjust the offset.  */
685 	      if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
686 		offset =
687 		  (GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (wanted_mode) -
688 		   offset);
689 
690 	      gcc_assert (GET_MODE_PRECISION (wanted_mode)
691 			  == GET_MODE_BITSIZE (wanted_mode));
692 	      pos %= GET_MODE_BITSIZE (wanted_mode);
693 
694 	      newmem = adjust_address_nv (XEXP (x, 0), wanted_mode, offset);
695 
696 	      validate_change (object, &XEXP (x, 2), GEN_INT (pos), 1);
697 	      validate_change (object, &XEXP (x, 0), newmem, 1);
698 	    }
699 	}
700 
701       break;
702 
703     default:
704       break;
705     }
706 }
707 
708 /* Replace every occurrence of FROM in X with TO.  Mark each change with
709    validate_change passing OBJECT.  */
710 
711 static void
validate_replace_rtx_1(rtx * loc,rtx from,rtx to,rtx_insn * object,bool simplify)712 validate_replace_rtx_1 (rtx *loc, rtx from, rtx to, rtx_insn *object,
713                         bool simplify)
714 {
715   int i, j;
716   const char *fmt;
717   rtx x = *loc;
718   enum rtx_code code;
719   machine_mode op0_mode = VOIDmode;
720   int prev_changes = num_changes;
721 
722   if (!x)
723     return;
724 
725   code = GET_CODE (x);
726   fmt = GET_RTX_FORMAT (code);
727   if (fmt[0] == 'e')
728     op0_mode = GET_MODE (XEXP (x, 0));
729 
730   /* X matches FROM if it is the same rtx or they are both referring to the
731      same register in the same mode.  Avoid calling rtx_equal_p unless the
732      operands look similar.  */
733 
734   if (x == from
735       || (REG_P (x) && REG_P (from)
736 	  && GET_MODE (x) == GET_MODE (from)
737 	  && REGNO (x) == REGNO (from))
738       || (GET_CODE (x) == GET_CODE (from) && GET_MODE (x) == GET_MODE (from)
739 	  && rtx_equal_p (x, from)))
740     {
741       validate_unshare_change (object, loc, to, 1);
742       return;
743     }
744 
745   /* Call ourself recursively to perform the replacements.
746      We must not replace inside already replaced expression, otherwise we
747      get infinite recursion for replacements like (reg X)->(subreg (reg X))
748      so we must special case shared ASM_OPERANDS.  */
749 
750   if (GET_CODE (x) == PARALLEL)
751     {
752       for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
753 	{
754 	  if (j && GET_CODE (XVECEXP (x, 0, j)) == SET
755 	      && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == ASM_OPERANDS)
756 	    {
757 	      /* Verify that operands are really shared.  */
758 	      gcc_assert (ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (x, 0, 0)))
759 			  == ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP
760 							      (x, 0, j))));
761 	      validate_replace_rtx_1 (&SET_DEST (XVECEXP (x, 0, j)),
762 				      from, to, object, simplify);
763 	    }
764 	  else
765 	    validate_replace_rtx_1 (&XVECEXP (x, 0, j), from, to, object,
766                                     simplify);
767 	}
768     }
769   else
770     for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
771       {
772 	if (fmt[i] == 'e')
773 	  validate_replace_rtx_1 (&XEXP (x, i), from, to, object, simplify);
774 	else if (fmt[i] == 'E')
775 	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
776 	    validate_replace_rtx_1 (&XVECEXP (x, i, j), from, to, object,
777                                     simplify);
778       }
779 
780   /* If we didn't substitute, there is nothing more to do.  */
781   if (num_changes == prev_changes)
782     return;
783 
784   /* ??? The regmove is no more, so is this aberration still necessary?  */
785   /* Allow substituted expression to have different mode.  This is used by
786      regmove to change mode of pseudo register.  */
787   if (fmt[0] == 'e' && GET_MODE (XEXP (x, 0)) != VOIDmode)
788     op0_mode = GET_MODE (XEXP (x, 0));
789 
790   /* Do changes needed to keep rtx consistent.  Don't do any other
791      simplifications, as it is not our job.  */
792   if (simplify)
793     simplify_while_replacing (loc, to, object, op0_mode);
794 }
795 
796 /* Try replacing every occurrence of FROM in subexpression LOC of INSN
797    with TO.  After all changes have been made, validate by seeing
798    if INSN is still valid.  */
799 
800 int
validate_replace_rtx_subexp(rtx from,rtx to,rtx_insn * insn,rtx * loc)801 validate_replace_rtx_subexp (rtx from, rtx to, rtx_insn *insn, rtx *loc)
802 {
803   validate_replace_rtx_1 (loc, from, to, insn, true);
804   return apply_change_group ();
805 }
806 
807 /* Try replacing every occurrence of FROM in INSN with TO.  After all
808    changes have been made, validate by seeing if INSN is still valid.  */
809 
810 int
validate_replace_rtx(rtx from,rtx to,rtx_insn * insn)811 validate_replace_rtx (rtx from, rtx to, rtx_insn *insn)
812 {
813   validate_replace_rtx_1 (&PATTERN (insn), from, to, insn, true);
814   return apply_change_group ();
815 }
816 
817 /* Try replacing every occurrence of FROM in WHERE with TO.  Assume that WHERE
818    is a part of INSN.  After all changes have been made, validate by seeing if
819    INSN is still valid.
820    validate_replace_rtx (from, to, insn) is equivalent to
821    validate_replace_rtx_part (from, to, &PATTERN (insn), insn).  */
822 
823 int
validate_replace_rtx_part(rtx from,rtx to,rtx * where,rtx_insn * insn)824 validate_replace_rtx_part (rtx from, rtx to, rtx *where, rtx_insn *insn)
825 {
826   validate_replace_rtx_1 (where, from, to, insn, true);
827   return apply_change_group ();
828 }
829 
830 /* Same as above, but do not simplify rtx afterwards.  */
831 int
validate_replace_rtx_part_nosimplify(rtx from,rtx to,rtx * where,rtx_insn * insn)832 validate_replace_rtx_part_nosimplify (rtx from, rtx to, rtx *where,
833 				      rtx_insn *insn)
834 {
835   validate_replace_rtx_1 (where, from, to, insn, false);
836   return apply_change_group ();
837 
838 }
839 
840 /* Try replacing every occurrence of FROM in INSN with TO.  This also
841    will replace in REG_EQUAL and REG_EQUIV notes.  */
842 
843 void
validate_replace_rtx_group(rtx from,rtx to,rtx_insn * insn)844 validate_replace_rtx_group (rtx from, rtx to, rtx_insn *insn)
845 {
846   rtx note;
847   validate_replace_rtx_1 (&PATTERN (insn), from, to, insn, true);
848   for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
849     if (REG_NOTE_KIND (note) == REG_EQUAL
850 	|| REG_NOTE_KIND (note) == REG_EQUIV)
851       validate_replace_rtx_1 (&XEXP (note, 0), from, to, insn, true);
852 }
853 
854 /* Function called by note_uses to replace used subexpressions.  */
855 struct validate_replace_src_data
856 {
857   rtx from;			/* Old RTX */
858   rtx to;			/* New RTX */
859   rtx_insn *insn;			/* Insn in which substitution is occurring.  */
860 };
861 
862 static void
validate_replace_src_1(rtx * x,void * data)863 validate_replace_src_1 (rtx *x, void *data)
864 {
865   struct validate_replace_src_data *d
866     = (struct validate_replace_src_data *) data;
867 
868   validate_replace_rtx_1 (x, d->from, d->to, d->insn, true);
869 }
870 
871 /* Try replacing every occurrence of FROM in INSN with TO, avoiding
872    SET_DESTs.  */
873 
874 void
validate_replace_src_group(rtx from,rtx to,rtx_insn * insn)875 validate_replace_src_group (rtx from, rtx to, rtx_insn *insn)
876 {
877   struct validate_replace_src_data d;
878 
879   d.from = from;
880   d.to = to;
881   d.insn = insn;
882   note_uses (&PATTERN (insn), validate_replace_src_1, &d);
883 }
884 
885 /* Try simplify INSN.
886    Invoke simplify_rtx () on every SET_SRC and SET_DEST inside the INSN's
887    pattern and return true if something was simplified.  */
888 
889 bool
validate_simplify_insn(rtx_insn * insn)890 validate_simplify_insn (rtx_insn *insn)
891 {
892   int i;
893   rtx pat = NULL;
894   rtx newpat = NULL;
895 
896   pat = PATTERN (insn);
897 
898   if (GET_CODE (pat) == SET)
899     {
900       newpat = simplify_rtx (SET_SRC (pat));
901       if (newpat && !rtx_equal_p (SET_SRC (pat), newpat))
902 	validate_change (insn, &SET_SRC (pat), newpat, 1);
903       newpat = simplify_rtx (SET_DEST (pat));
904       if (newpat && !rtx_equal_p (SET_DEST (pat), newpat))
905 	validate_change (insn, &SET_DEST (pat), newpat, 1);
906     }
907   else if (GET_CODE (pat) == PARALLEL)
908     for (i = 0; i < XVECLEN (pat, 0); i++)
909       {
910 	rtx s = XVECEXP (pat, 0, i);
911 
912 	if (GET_CODE (XVECEXP (pat, 0, i)) == SET)
913 	  {
914 	    newpat = simplify_rtx (SET_SRC (s));
915 	    if (newpat && !rtx_equal_p (SET_SRC (s), newpat))
916 	      validate_change (insn, &SET_SRC (s), newpat, 1);
917 	    newpat = simplify_rtx (SET_DEST (s));
918 	    if (newpat && !rtx_equal_p (SET_DEST (s), newpat))
919 	      validate_change (insn, &SET_DEST (s), newpat, 1);
920 	  }
921       }
922   return ((num_changes_pending () > 0) && (apply_change_group () > 0));
923 }
924 
925 /* Return 1 if the insn using CC0 set by INSN does not contain
926    any ordered tests applied to the condition codes.
927    EQ and NE tests do not count.  */
928 
929 int
next_insn_tests_no_inequality(rtx_insn * insn)930 next_insn_tests_no_inequality (rtx_insn *insn)
931 {
932   rtx_insn *next = next_cc0_user (insn);
933 
934   /* If there is no next insn, we have to take the conservative choice.  */
935   if (next == 0)
936     return 0;
937 
938   return (INSN_P (next)
939 	  && ! inequality_comparisons_p (PATTERN (next)));
940 }
941 
942 /* Return 1 if OP is a valid general operand for machine mode MODE.
943    This is either a register reference, a memory reference,
944    or a constant.  In the case of a memory reference, the address
945    is checked for general validity for the target machine.
946 
947    Register and memory references must have mode MODE in order to be valid,
948    but some constants have no machine mode and are valid for any mode.
949 
950    If MODE is VOIDmode, OP is checked for validity for whatever mode
951    it has.
952 
953    The main use of this function is as a predicate in match_operand
954    expressions in the machine description.  */
955 
956 int
general_operand(rtx op,machine_mode mode)957 general_operand (rtx op, machine_mode mode)
958 {
959   enum rtx_code code = GET_CODE (op);
960 
961   if (mode == VOIDmode)
962     mode = GET_MODE (op);
963 
964   /* Don't accept CONST_INT or anything similar
965      if the caller wants something floating.  */
966   if (GET_MODE (op) == VOIDmode && mode != VOIDmode
967       && GET_MODE_CLASS (mode) != MODE_INT
968       && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
969     return 0;
970 
971   if (CONST_INT_P (op)
972       && mode != VOIDmode
973       && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
974     return 0;
975 
976   if (CONSTANT_P (op))
977     return ((GET_MODE (op) == VOIDmode || GET_MODE (op) == mode
978 	     || mode == VOIDmode)
979 	    && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
980 	    && targetm.legitimate_constant_p (mode == VOIDmode
981 					      ? GET_MODE (op)
982 					      : mode, op));
983 
984   /* Except for certain constants with VOIDmode, already checked for,
985      OP's mode must match MODE if MODE specifies a mode.  */
986 
987   if (GET_MODE (op) != mode)
988     return 0;
989 
990   if (code == SUBREG)
991     {
992       rtx sub = SUBREG_REG (op);
993 
994 #ifdef INSN_SCHEDULING
995       /* On machines that have insn scheduling, we want all memory
996 	 reference to be explicit, so outlaw paradoxical SUBREGs.
997 	 However, we must allow them after reload so that they can
998 	 get cleaned up by cleanup_subreg_operands.  */
999       if (!reload_completed && MEM_P (sub)
1000 	  && paradoxical_subreg_p (op))
1001 	return 0;
1002 #endif
1003       /* Avoid memories with nonzero SUBREG_BYTE, as offsetting the memory
1004          may result in incorrect reference.  We should simplify all valid
1005          subregs of MEM anyway.  But allow this after reload because we
1006 	 might be called from cleanup_subreg_operands.
1007 
1008 	 ??? This is a kludge.  */
1009       if (!reload_completed
1010 	  && maybe_ne (SUBREG_BYTE (op), 0)
1011 	  && MEM_P (sub))
1012 	return 0;
1013 
1014       if (REG_P (sub)
1015 	  && REGNO (sub) < FIRST_PSEUDO_REGISTER
1016 	  && !REG_CAN_CHANGE_MODE_P (REGNO (sub), GET_MODE (sub), mode)
1017 	  && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_INT
1018 	  && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_FLOAT
1019 	  /* LRA can generate some invalid SUBREGS just for matched
1020 	     operand reload presentation.  LRA needs to treat them as
1021 	     valid.  */
1022 	  && ! LRA_SUBREG_P (op))
1023 	return 0;
1024 
1025       /* FLOAT_MODE subregs can't be paradoxical.  Combine will occasionally
1026 	 create such rtl, and we must reject it.  */
1027       if (SCALAR_FLOAT_MODE_P (GET_MODE (op))
1028 	  /* LRA can use subreg to store a floating point value in an
1029 	     integer mode.  Although the floating point and the
1030 	     integer modes need the same number of hard registers, the
1031 	     size of floating point mode can be less than the integer
1032 	     mode.  */
1033 	  && ! lra_in_progress
1034 	  && paradoxical_subreg_p (op))
1035 	return 0;
1036 
1037       op = sub;
1038       code = GET_CODE (op);
1039     }
1040 
1041   if (code == REG)
1042     return (REGNO (op) >= FIRST_PSEUDO_REGISTER
1043 	    || in_hard_reg_set_p (operand_reg_set, GET_MODE (op), REGNO (op)));
1044 
1045   if (code == MEM)
1046     {
1047       rtx y = XEXP (op, 0);
1048 
1049       if (! volatile_ok && MEM_VOLATILE_P (op))
1050 	return 0;
1051 
1052       /* Use the mem's mode, since it will be reloaded thus.  LRA can
1053 	 generate move insn with invalid addresses which is made valid
1054 	 and efficiently calculated by LRA through further numerous
1055 	 transformations.  */
1056       if (lra_in_progress
1057 	  || memory_address_addr_space_p (GET_MODE (op), y, MEM_ADDR_SPACE (op)))
1058 	return 1;
1059     }
1060 
1061   return 0;
1062 }
1063 
1064 /* Return 1 if OP is a valid memory address for a memory reference
1065    of mode MODE.
1066 
1067    The main use of this function is as a predicate in match_operand
1068    expressions in the machine description.  */
1069 
1070 int
address_operand(rtx op,machine_mode mode)1071 address_operand (rtx op, machine_mode mode)
1072 {
1073   /* Wrong mode for an address expr.  */
1074   if (GET_MODE (op) != VOIDmode
1075       && ! SCALAR_INT_MODE_P (GET_MODE (op)))
1076     return false;
1077 
1078   return memory_address_p (mode, op);
1079 }
1080 
1081 /* Return 1 if OP is a register reference of mode MODE.
1082    If MODE is VOIDmode, accept a register in any mode.
1083 
1084    The main use of this function is as a predicate in match_operand
1085    expressions in the machine description.  */
1086 
1087 int
register_operand(rtx op,machine_mode mode)1088 register_operand (rtx op, machine_mode mode)
1089 {
1090   if (GET_CODE (op) == SUBREG)
1091     {
1092       rtx sub = SUBREG_REG (op);
1093 
1094       /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1095 	 because it is guaranteed to be reloaded into one.
1096 	 Just make sure the MEM is valid in itself.
1097 	 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1098 	 but currently it does result from (SUBREG (REG)...) where the
1099 	 reg went on the stack.)  */
1100       if (!REG_P (sub) && (reload_completed || !MEM_P (sub)))
1101 	return 0;
1102     }
1103   else if (!REG_P (op))
1104     return 0;
1105   return general_operand (op, mode);
1106 }
1107 
1108 /* Return 1 for a register in Pmode; ignore the tested mode.  */
1109 
1110 int
pmode_register_operand(rtx op,machine_mode mode ATTRIBUTE_UNUSED)1111 pmode_register_operand (rtx op, machine_mode mode ATTRIBUTE_UNUSED)
1112 {
1113   return register_operand (op, Pmode);
1114 }
1115 
1116 /* Return 1 if OP should match a MATCH_SCRATCH, i.e., if it is a SCRATCH
1117    or a hard register.  */
1118 
1119 int
scratch_operand(rtx op,machine_mode mode)1120 scratch_operand (rtx op, machine_mode mode)
1121 {
1122   if (GET_MODE (op) != mode && mode != VOIDmode)
1123     return 0;
1124 
1125   return (GET_CODE (op) == SCRATCH
1126 	  || (REG_P (op)
1127 	      && (lra_in_progress
1128 		  || (REGNO (op) < FIRST_PSEUDO_REGISTER
1129 		      && REGNO_REG_CLASS (REGNO (op)) != NO_REGS))));
1130 }
1131 
1132 /* Return 1 if OP is a valid immediate operand for mode MODE.
1133 
1134    The main use of this function is as a predicate in match_operand
1135    expressions in the machine description.  */
1136 
1137 int
immediate_operand(rtx op,machine_mode mode)1138 immediate_operand (rtx op, machine_mode mode)
1139 {
1140   /* Don't accept CONST_INT or anything similar
1141      if the caller wants something floating.  */
1142   if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1143       && GET_MODE_CLASS (mode) != MODE_INT
1144       && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1145     return 0;
1146 
1147   if (CONST_INT_P (op)
1148       && mode != VOIDmode
1149       && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1150     return 0;
1151 
1152   return (CONSTANT_P (op)
1153 	  && (GET_MODE (op) == mode || mode == VOIDmode
1154 	      || GET_MODE (op) == VOIDmode)
1155 	  && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1156 	  && targetm.legitimate_constant_p (mode == VOIDmode
1157 					    ? GET_MODE (op)
1158 					    : mode, op));
1159 }
1160 
1161 /* Returns 1 if OP is an operand that is a CONST_INT of mode MODE.  */
1162 
1163 int
const_int_operand(rtx op,machine_mode mode)1164 const_int_operand (rtx op, machine_mode mode)
1165 {
1166   if (!CONST_INT_P (op))
1167     return 0;
1168 
1169   if (mode != VOIDmode
1170       && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1171     return 0;
1172 
1173   return 1;
1174 }
1175 
1176 #if TARGET_SUPPORTS_WIDE_INT
1177 /* Returns 1 if OP is an operand that is a CONST_INT or CONST_WIDE_INT
1178    of mode MODE.  */
1179 int
const_scalar_int_operand(rtx op,machine_mode mode)1180 const_scalar_int_operand (rtx op, machine_mode mode)
1181 {
1182   if (!CONST_SCALAR_INT_P (op))
1183     return 0;
1184 
1185   if (CONST_INT_P (op))
1186     return const_int_operand (op, mode);
1187 
1188   if (mode != VOIDmode)
1189     {
1190       scalar_int_mode int_mode = as_a <scalar_int_mode> (mode);
1191       int prec = GET_MODE_PRECISION (int_mode);
1192       int bitsize = GET_MODE_BITSIZE (int_mode);
1193 
1194       if (CONST_WIDE_INT_NUNITS (op) * HOST_BITS_PER_WIDE_INT > bitsize)
1195 	return 0;
1196 
1197       if (prec == bitsize)
1198 	return 1;
1199       else
1200 	{
1201 	  /* Multiword partial int.  */
1202 	  HOST_WIDE_INT x
1203 	    = CONST_WIDE_INT_ELT (op, CONST_WIDE_INT_NUNITS (op) - 1);
1204 	  return (sext_hwi (x, prec & (HOST_BITS_PER_WIDE_INT - 1)) == x);
1205 	}
1206     }
1207   return 1;
1208 }
1209 
1210 /* Returns 1 if OP is an operand that is a constant integer or constant
1211    floating-point number of MODE.  */
1212 
1213 int
const_double_operand(rtx op,machine_mode mode)1214 const_double_operand (rtx op, machine_mode mode)
1215 {
1216   return (GET_CODE (op) == CONST_DOUBLE)
1217 	  && (GET_MODE (op) == mode || mode == VOIDmode);
1218 }
1219 #else
1220 /* Returns 1 if OP is an operand that is a constant integer or constant
1221    floating-point number of MODE.  */
1222 
1223 int
const_double_operand(rtx op,machine_mode mode)1224 const_double_operand (rtx op, machine_mode mode)
1225 {
1226   /* Don't accept CONST_INT or anything similar
1227      if the caller wants something floating.  */
1228   if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1229       && GET_MODE_CLASS (mode) != MODE_INT
1230       && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1231     return 0;
1232 
1233   return ((CONST_DOUBLE_P (op) || CONST_INT_P (op))
1234 	  && (mode == VOIDmode || GET_MODE (op) == mode
1235 	      || GET_MODE (op) == VOIDmode));
1236 }
1237 #endif
1238 /* Return 1 if OP is a general operand that is not an immediate
1239    operand of mode MODE.  */
1240 
1241 int
nonimmediate_operand(rtx op,machine_mode mode)1242 nonimmediate_operand (rtx op, machine_mode mode)
1243 {
1244   return (general_operand (op, mode) && ! CONSTANT_P (op));
1245 }
1246 
1247 /* Return 1 if OP is a register reference or immediate value of mode MODE.  */
1248 
1249 int
nonmemory_operand(rtx op,machine_mode mode)1250 nonmemory_operand (rtx op, machine_mode mode)
1251 {
1252   if (CONSTANT_P (op))
1253     return immediate_operand (op, mode);
1254   return register_operand (op, mode);
1255 }
1256 
1257 /* Return 1 if OP is a valid operand that stands for pushing a
1258    value of mode MODE onto the stack.
1259 
1260    The main use of this function is as a predicate in match_operand
1261    expressions in the machine description.  */
1262 
1263 int
push_operand(rtx op,machine_mode mode)1264 push_operand (rtx op, machine_mode mode)
1265 {
1266   if (!MEM_P (op))
1267     return 0;
1268 
1269   if (mode != VOIDmode && GET_MODE (op) != mode)
1270     return 0;
1271 
1272   poly_int64 rounded_size = GET_MODE_SIZE (mode);
1273 
1274 #ifdef PUSH_ROUNDING
1275   rounded_size = PUSH_ROUNDING (MACRO_INT (rounded_size));
1276 #endif
1277 
1278   op = XEXP (op, 0);
1279 
1280   if (known_eq (rounded_size, GET_MODE_SIZE (mode)))
1281     {
1282       if (GET_CODE (op) != STACK_PUSH_CODE)
1283 	return 0;
1284     }
1285   else
1286     {
1287       poly_int64 offset;
1288       if (GET_CODE (op) != PRE_MODIFY
1289 	  || GET_CODE (XEXP (op, 1)) != PLUS
1290 	  || XEXP (XEXP (op, 1), 0) != XEXP (op, 0)
1291 	  || !poly_int_rtx_p (XEXP (XEXP (op, 1), 1), &offset)
1292 	  || (STACK_GROWS_DOWNWARD
1293 	      ? maybe_ne (offset, -rounded_size)
1294 	      : maybe_ne (offset, rounded_size)))
1295 	return 0;
1296     }
1297 
1298   return XEXP (op, 0) == stack_pointer_rtx;
1299 }
1300 
1301 /* Return 1 if OP is a valid operand that stands for popping a
1302    value of mode MODE off the stack.
1303 
1304    The main use of this function is as a predicate in match_operand
1305    expressions in the machine description.  */
1306 
1307 int
pop_operand(rtx op,machine_mode mode)1308 pop_operand (rtx op, machine_mode mode)
1309 {
1310   if (!MEM_P (op))
1311     return 0;
1312 
1313   if (mode != VOIDmode && GET_MODE (op) != mode)
1314     return 0;
1315 
1316   op = XEXP (op, 0);
1317 
1318   if (GET_CODE (op) != STACK_POP_CODE)
1319     return 0;
1320 
1321   return XEXP (op, 0) == stack_pointer_rtx;
1322 }
1323 
1324 /* Return 1 if ADDR is a valid memory address
1325    for mode MODE in address space AS.  */
1326 
1327 int
memory_address_addr_space_p(machine_mode mode ATTRIBUTE_UNUSED,rtx addr,addr_space_t as)1328 memory_address_addr_space_p (machine_mode mode ATTRIBUTE_UNUSED,
1329 			     rtx addr, addr_space_t as)
1330 {
1331 #ifdef GO_IF_LEGITIMATE_ADDRESS
1332   gcc_assert (ADDR_SPACE_GENERIC_P (as));
1333   GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
1334   return 0;
1335 
1336  win:
1337   return 1;
1338 #else
1339   return targetm.addr_space.legitimate_address_p (mode, addr, 0, as);
1340 #endif
1341 }
1342 
1343 /* Return 1 if OP is a valid memory reference with mode MODE,
1344    including a valid address.
1345 
1346    The main use of this function is as a predicate in match_operand
1347    expressions in the machine description.  */
1348 
1349 int
memory_operand(rtx op,machine_mode mode)1350 memory_operand (rtx op, machine_mode mode)
1351 {
1352   rtx inner;
1353 
1354   if (! reload_completed)
1355     /* Note that no SUBREG is a memory operand before end of reload pass,
1356        because (SUBREG (MEM...)) forces reloading into a register.  */
1357     return MEM_P (op) && general_operand (op, mode);
1358 
1359   if (mode != VOIDmode && GET_MODE (op) != mode)
1360     return 0;
1361 
1362   inner = op;
1363   if (GET_CODE (inner) == SUBREG)
1364     inner = SUBREG_REG (inner);
1365 
1366   return (MEM_P (inner) && general_operand (op, mode));
1367 }
1368 
1369 /* Return 1 if OP is a valid indirect memory reference with mode MODE;
1370    that is, a memory reference whose address is a general_operand.  */
1371 
1372 int
indirect_operand(rtx op,machine_mode mode)1373 indirect_operand (rtx op, machine_mode mode)
1374 {
1375   /* Before reload, a SUBREG isn't in memory (see memory_operand, above).  */
1376   if (! reload_completed
1377       && GET_CODE (op) == SUBREG && MEM_P (SUBREG_REG (op)))
1378     {
1379       if (mode != VOIDmode && GET_MODE (op) != mode)
1380 	return 0;
1381 
1382       /* The only way that we can have a general_operand as the resulting
1383 	 address is if OFFSET is zero and the address already is an operand
1384 	 or if the address is (plus Y (const_int -OFFSET)) and Y is an
1385 	 operand.  */
1386       poly_int64 offset;
1387       rtx addr = strip_offset (XEXP (SUBREG_REG (op), 0), &offset);
1388       return (known_eq (offset + SUBREG_BYTE (op), 0)
1389 	      && general_operand (addr, Pmode));
1390     }
1391 
1392   return (MEM_P (op)
1393 	  && memory_operand (op, mode)
1394 	  && general_operand (XEXP (op, 0), Pmode));
1395 }
1396 
1397 /* Return 1 if this is an ordered comparison operator (not including
1398    ORDERED and UNORDERED).  */
1399 
1400 int
ordered_comparison_operator(rtx op,machine_mode mode)1401 ordered_comparison_operator (rtx op, machine_mode mode)
1402 {
1403   if (mode != VOIDmode && GET_MODE (op) != mode)
1404     return false;
1405   switch (GET_CODE (op))
1406     {
1407     case EQ:
1408     case NE:
1409     case LT:
1410     case LTU:
1411     case LE:
1412     case LEU:
1413     case GT:
1414     case GTU:
1415     case GE:
1416     case GEU:
1417       return true;
1418     default:
1419       return false;
1420     }
1421 }
1422 
1423 /* Return 1 if this is a comparison operator.  This allows the use of
1424    MATCH_OPERATOR to recognize all the branch insns.  */
1425 
1426 int
comparison_operator(rtx op,machine_mode mode)1427 comparison_operator (rtx op, machine_mode mode)
1428 {
1429   return ((mode == VOIDmode || GET_MODE (op) == mode)
1430 	  && COMPARISON_P (op));
1431 }
1432 
1433 /* If BODY is an insn body that uses ASM_OPERANDS, return it.  */
1434 
1435 rtx
extract_asm_operands(rtx body)1436 extract_asm_operands (rtx body)
1437 {
1438   rtx tmp;
1439   switch (GET_CODE (body))
1440     {
1441     case ASM_OPERANDS:
1442       return body;
1443 
1444     case SET:
1445       /* Single output operand: BODY is (set OUTPUT (asm_operands ...)).  */
1446       tmp = SET_SRC (body);
1447       if (GET_CODE (tmp) == ASM_OPERANDS)
1448 	return tmp;
1449       break;
1450 
1451     case PARALLEL:
1452       tmp = XVECEXP (body, 0, 0);
1453       if (GET_CODE (tmp) == ASM_OPERANDS)
1454 	return tmp;
1455       if (GET_CODE (tmp) == SET)
1456 	{
1457 	  tmp = SET_SRC (tmp);
1458 	  if (GET_CODE (tmp) == ASM_OPERANDS)
1459 	    return tmp;
1460 	}
1461       break;
1462 
1463     default:
1464       break;
1465     }
1466   return NULL;
1467 }
1468 
1469 /* If BODY is an insn body that uses ASM_OPERANDS,
1470    return the number of operands (both input and output) in the insn.
1471    If BODY is an insn body that uses ASM_INPUT with CLOBBERS in PARALLEL,
1472    return 0.
1473    Otherwise return -1.  */
1474 
1475 int
asm_noperands(const_rtx body)1476 asm_noperands (const_rtx body)
1477 {
1478   rtx asm_op = extract_asm_operands (CONST_CAST_RTX (body));
1479   int i, n_sets = 0;
1480 
1481   if (asm_op == NULL)
1482     {
1483       if (GET_CODE (body) == PARALLEL && XVECLEN (body, 0) >= 2
1484 	  && GET_CODE (XVECEXP (body, 0, 0)) == ASM_INPUT)
1485 	{
1486 	  /* body is [(asm_input ...) (clobber (reg ...))...].  */
1487 	  for (i = XVECLEN (body, 0) - 1; i > 0; i--)
1488 	    if (GET_CODE (XVECEXP (body, 0, i)) != CLOBBER)
1489 	      return -1;
1490 	  return 0;
1491 	}
1492       return -1;
1493     }
1494 
1495   if (GET_CODE (body) == SET)
1496     n_sets = 1;
1497   else if (GET_CODE (body) == PARALLEL)
1498     {
1499       if (GET_CODE (XVECEXP (body, 0, 0)) == SET)
1500 	{
1501 	  /* Multiple output operands, or 1 output plus some clobbers:
1502 	     body is
1503 	     [(set OUTPUT (asm_operands ...))... (clobber (reg ...))...].  */
1504 	  /* Count backwards through CLOBBERs to determine number of SETs.  */
1505 	  for (i = XVECLEN (body, 0); i > 0; i--)
1506 	    {
1507 	      if (GET_CODE (XVECEXP (body, 0, i - 1)) == SET)
1508 		break;
1509 	      if (GET_CODE (XVECEXP (body, 0, i - 1)) != CLOBBER)
1510 		return -1;
1511 	    }
1512 
1513 	  /* N_SETS is now number of output operands.  */
1514 	  n_sets = i;
1515 
1516 	  /* Verify that all the SETs we have
1517 	     came from a single original asm_operands insn
1518 	     (so that invalid combinations are blocked).  */
1519 	  for (i = 0; i < n_sets; i++)
1520 	    {
1521 	      rtx elt = XVECEXP (body, 0, i);
1522 	      if (GET_CODE (elt) != SET)
1523 		return -1;
1524 	      if (GET_CODE (SET_SRC (elt)) != ASM_OPERANDS)
1525 		return -1;
1526 	      /* If these ASM_OPERANDS rtx's came from different original insns
1527 	         then they aren't allowed together.  */
1528 	      if (ASM_OPERANDS_INPUT_VEC (SET_SRC (elt))
1529 		  != ASM_OPERANDS_INPUT_VEC (asm_op))
1530 		return -1;
1531 	    }
1532 	}
1533       else
1534 	{
1535 	  /* 0 outputs, but some clobbers:
1536 	     body is [(asm_operands ...) (clobber (reg ...))...].  */
1537 	  /* Make sure all the other parallel things really are clobbers.  */
1538 	  for (i = XVECLEN (body, 0) - 1; i > 0; i--)
1539 	    if (GET_CODE (XVECEXP (body, 0, i)) != CLOBBER)
1540 	      return -1;
1541 	}
1542     }
1543 
1544   return (ASM_OPERANDS_INPUT_LENGTH (asm_op)
1545 	  + ASM_OPERANDS_LABEL_LENGTH (asm_op) + n_sets);
1546 }
1547 
1548 /* Assuming BODY is an insn body that uses ASM_OPERANDS,
1549    copy its operands (both input and output) into the vector OPERANDS,
1550    the locations of the operands within the insn into the vector OPERAND_LOCS,
1551    and the constraints for the operands into CONSTRAINTS.
1552    Write the modes of the operands into MODES.
1553    Write the location info into LOC.
1554    Return the assembler-template.
1555    If BODY is an insn body that uses ASM_INPUT with CLOBBERS in PARALLEL,
1556    return the basic assembly string.
1557 
1558    If LOC, MODES, OPERAND_LOCS, CONSTRAINTS or OPERANDS is 0,
1559    we don't store that info.  */
1560 
1561 const char *
decode_asm_operands(rtx body,rtx * operands,rtx ** operand_locs,const char ** constraints,machine_mode * modes,location_t * loc)1562 decode_asm_operands (rtx body, rtx *operands, rtx **operand_locs,
1563 		     const char **constraints, machine_mode *modes,
1564 		     location_t *loc)
1565 {
1566   int nbase = 0, n, i;
1567   rtx asmop;
1568 
1569   switch (GET_CODE (body))
1570     {
1571     case ASM_OPERANDS:
1572       /* Zero output asm: BODY is (asm_operands ...).  */
1573       asmop = body;
1574       break;
1575 
1576     case SET:
1577       /* Single output asm: BODY is (set OUTPUT (asm_operands ...)).  */
1578       asmop = SET_SRC (body);
1579 
1580       /* The output is in the SET.
1581 	 Its constraint is in the ASM_OPERANDS itself.  */
1582       if (operands)
1583 	operands[0] = SET_DEST (body);
1584       if (operand_locs)
1585 	operand_locs[0] = &SET_DEST (body);
1586       if (constraints)
1587 	constraints[0] = ASM_OPERANDS_OUTPUT_CONSTRAINT (asmop);
1588       if (modes)
1589 	modes[0] = GET_MODE (SET_DEST (body));
1590       nbase = 1;
1591       break;
1592 
1593     case PARALLEL:
1594       {
1595 	int nparallel = XVECLEN (body, 0); /* Includes CLOBBERs.  */
1596 
1597 	asmop = XVECEXP (body, 0, 0);
1598 	if (GET_CODE (asmop) == SET)
1599 	  {
1600 	    asmop = SET_SRC (asmop);
1601 
1602 	    /* At least one output, plus some CLOBBERs.  The outputs are in
1603 	       the SETs.  Their constraints are in the ASM_OPERANDS itself.  */
1604 	    for (i = 0; i < nparallel; i++)
1605 	      {
1606 		if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
1607 		  break;		/* Past last SET */
1608 		if (operands)
1609 		  operands[i] = SET_DEST (XVECEXP (body, 0, i));
1610 		if (operand_locs)
1611 		  operand_locs[i] = &SET_DEST (XVECEXP (body, 0, i));
1612 		if (constraints)
1613 		  constraints[i] = XSTR (SET_SRC (XVECEXP (body, 0, i)), 1);
1614 		if (modes)
1615 		  modes[i] = GET_MODE (SET_DEST (XVECEXP (body, 0, i)));
1616 	      }
1617 	    nbase = i;
1618 	  }
1619 	else if (GET_CODE (asmop) == ASM_INPUT)
1620 	  {
1621 	    if (loc)
1622 	      *loc = ASM_INPUT_SOURCE_LOCATION (asmop);
1623 	    return XSTR (asmop, 0);
1624 	  }
1625 	break;
1626       }
1627 
1628     default:
1629       gcc_unreachable ();
1630     }
1631 
1632   n = ASM_OPERANDS_INPUT_LENGTH (asmop);
1633   for (i = 0; i < n; i++)
1634     {
1635       if (operand_locs)
1636 	operand_locs[nbase + i] = &ASM_OPERANDS_INPUT (asmop, i);
1637       if (operands)
1638 	operands[nbase + i] = ASM_OPERANDS_INPUT (asmop, i);
1639       if (constraints)
1640 	constraints[nbase + i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
1641       if (modes)
1642 	modes[nbase + i] = ASM_OPERANDS_INPUT_MODE (asmop, i);
1643     }
1644   nbase += n;
1645 
1646   n = ASM_OPERANDS_LABEL_LENGTH (asmop);
1647   for (i = 0; i < n; i++)
1648     {
1649       if (operand_locs)
1650 	operand_locs[nbase + i] = &ASM_OPERANDS_LABEL (asmop, i);
1651       if (operands)
1652 	operands[nbase + i] = ASM_OPERANDS_LABEL (asmop, i);
1653       if (constraints)
1654 	constraints[nbase + i] = "";
1655       if (modes)
1656 	modes[nbase + i] = Pmode;
1657     }
1658 
1659   if (loc)
1660     *loc = ASM_OPERANDS_SOURCE_LOCATION (asmop);
1661 
1662   return ASM_OPERANDS_TEMPLATE (asmop);
1663 }
1664 
1665 /* Parse inline assembly string STRING and determine which operands are
1666    referenced by % markers.  For the first NOPERANDS operands, set USED[I]
1667    to true if operand I is referenced.
1668 
1669    This is intended to distinguish barrier-like asms such as:
1670 
1671       asm ("" : "=m" (...));
1672 
1673    from real references such as:
1674 
1675       asm ("sw\t$0, %0" : "=m" (...));  */
1676 
1677 void
get_referenced_operands(const char * string,bool * used,unsigned int noperands)1678 get_referenced_operands (const char *string, bool *used,
1679 			 unsigned int noperands)
1680 {
1681   memset (used, 0, sizeof (bool) * noperands);
1682   const char *p = string;
1683   while (*p)
1684     switch (*p)
1685       {
1686       case '%':
1687 	p += 1;
1688 	/* A letter followed by a digit indicates an operand number.  */
1689 	if (ISALPHA (p[0]) && ISDIGIT (p[1]))
1690 	  p += 1;
1691 	if (ISDIGIT (*p))
1692 	  {
1693 	    char *endptr;
1694 	    unsigned long opnum = strtoul (p, &endptr, 10);
1695 	    if (endptr != p && opnum < noperands)
1696 	      used[opnum] = true;
1697 	    p = endptr;
1698 	  }
1699 	else
1700 	  p += 1;
1701 	break;
1702 
1703       default:
1704 	p++;
1705 	break;
1706       }
1707 }
1708 
1709 /* Check if an asm_operand matches its constraints.
1710    Return > 0 if ok, = 0 if bad, < 0 if inconclusive.  */
1711 
1712 int
asm_operand_ok(rtx op,const char * constraint,const char ** constraints)1713 asm_operand_ok (rtx op, const char *constraint, const char **constraints)
1714 {
1715   int result = 0;
1716   bool incdec_ok = false;
1717 
1718   /* Use constrain_operands after reload.  */
1719   gcc_assert (!reload_completed);
1720 
1721   /* Empty constraint string is the same as "X,...,X", i.e. X for as
1722      many alternatives as required to match the other operands.  */
1723   if (*constraint == '\0')
1724     result = 1;
1725 
1726   while (*constraint)
1727     {
1728       enum constraint_num cn;
1729       char c = *constraint;
1730       int len;
1731       switch (c)
1732 	{
1733 	case ',':
1734 	  constraint++;
1735 	  continue;
1736 
1737 	case '0': case '1': case '2': case '3': case '4':
1738 	case '5': case '6': case '7': case '8': case '9':
1739 	  /* If caller provided constraints pointer, look up
1740 	     the matching constraint.  Otherwise, our caller should have
1741 	     given us the proper matching constraint, but we can't
1742 	     actually fail the check if they didn't.  Indicate that
1743 	     results are inconclusive.  */
1744 	  if (constraints)
1745 	    {
1746 	      char *end;
1747 	      unsigned long match;
1748 
1749 	      match = strtoul (constraint, &end, 10);
1750 	      if (!result)
1751 		result = asm_operand_ok (op, constraints[match], NULL);
1752 	      constraint = (const char *) end;
1753 	    }
1754 	  else
1755 	    {
1756 	      do
1757 		constraint++;
1758 	      while (ISDIGIT (*constraint));
1759 	      if (! result)
1760 		result = -1;
1761 	    }
1762 	  continue;
1763 
1764 	  /* The rest of the compiler assumes that reloading the address
1765 	     of a MEM into a register will make it fit an 'o' constraint.
1766 	     That is, if it sees a MEM operand for an 'o' constraint,
1767 	     it assumes that (mem (base-reg)) will fit.
1768 
1769 	     That assumption fails on targets that don't have offsettable
1770 	     addresses at all.  We therefore need to treat 'o' asm
1771 	     constraints as a special case and only accept operands that
1772 	     are already offsettable, thus proving that at least one
1773 	     offsettable address exists.  */
1774 	case 'o': /* offsettable */
1775 	  if (offsettable_nonstrict_memref_p (op))
1776 	    result = 1;
1777 	  break;
1778 
1779 	case 'g':
1780 	  if (general_operand (op, VOIDmode))
1781 	    result = 1;
1782 	  break;
1783 
1784 	case '<':
1785 	case '>':
1786 	  /* ??? Before auto-inc-dec, auto inc/dec insns are not supposed
1787 	     to exist, excepting those that expand_call created.  Further,
1788 	     on some machines which do not have generalized auto inc/dec,
1789 	     an inc/dec is not a memory_operand.
1790 
1791 	     Match any memory and hope things are resolved after reload.  */
1792 	  incdec_ok = true;
1793 	  /* FALLTHRU */
1794 	default:
1795 	  cn = lookup_constraint (constraint);
1796 	  switch (get_constraint_type (cn))
1797 	    {
1798 	    case CT_REGISTER:
1799 	      if (!result
1800 		  && reg_class_for_constraint (cn) != NO_REGS
1801 		  && GET_MODE (op) != BLKmode
1802 		  && register_operand (op, VOIDmode))
1803 		result = 1;
1804 	      break;
1805 
1806 	    case CT_CONST_INT:
1807 	      if (!result
1808 		  && CONST_INT_P (op)
1809 		  && insn_const_int_ok_for_constraint (INTVAL (op), cn))
1810 		result = 1;
1811 	      break;
1812 
1813 	    case CT_MEMORY:
1814 	    case CT_SPECIAL_MEMORY:
1815 	      /* Every memory operand can be reloaded to fit.  */
1816 	      result = result || memory_operand (op, VOIDmode);
1817 	      break;
1818 
1819 	    case CT_ADDRESS:
1820 	      /* Every address operand can be reloaded to fit.  */
1821 	      result = result || address_operand (op, VOIDmode);
1822 	      break;
1823 
1824 	    case CT_FIXED_FORM:
1825 	      result = result || constraint_satisfied_p (op, cn);
1826 	      break;
1827 	    }
1828 	  break;
1829 	}
1830       len = CONSTRAINT_LEN (c, constraint);
1831       do
1832 	constraint++;
1833       while (--len && *constraint && *constraint != ',');
1834       if (len)
1835 	return 0;
1836     }
1837 
1838   /* For operands without < or > constraints reject side-effects.  */
1839   if (AUTO_INC_DEC && !incdec_ok && result && MEM_P (op))
1840     switch (GET_CODE (XEXP (op, 0)))
1841       {
1842       case PRE_INC:
1843       case POST_INC:
1844       case PRE_DEC:
1845       case POST_DEC:
1846       case PRE_MODIFY:
1847       case POST_MODIFY:
1848 	return 0;
1849       default:
1850 	break;
1851       }
1852 
1853   return result;
1854 }
1855 
1856 /* Given an rtx *P, if it is a sum containing an integer constant term,
1857    return the location (type rtx *) of the pointer to that constant term.
1858    Otherwise, return a null pointer.  */
1859 
1860 rtx *
find_constant_term_loc(rtx * p)1861 find_constant_term_loc (rtx *p)
1862 {
1863   rtx *tem;
1864   enum rtx_code code = GET_CODE (*p);
1865 
1866   /* If *P IS such a constant term, P is its location.  */
1867 
1868   if (code == CONST_INT || code == SYMBOL_REF || code == LABEL_REF
1869       || code == CONST)
1870     return p;
1871 
1872   /* Otherwise, if not a sum, it has no constant term.  */
1873 
1874   if (GET_CODE (*p) != PLUS)
1875     return 0;
1876 
1877   /* If one of the summands is constant, return its location.  */
1878 
1879   if (XEXP (*p, 0) && CONSTANT_P (XEXP (*p, 0))
1880       && XEXP (*p, 1) && CONSTANT_P (XEXP (*p, 1)))
1881     return p;
1882 
1883   /* Otherwise, check each summand for containing a constant term.  */
1884 
1885   if (XEXP (*p, 0) != 0)
1886     {
1887       tem = find_constant_term_loc (&XEXP (*p, 0));
1888       if (tem != 0)
1889 	return tem;
1890     }
1891 
1892   if (XEXP (*p, 1) != 0)
1893     {
1894       tem = find_constant_term_loc (&XEXP (*p, 1));
1895       if (tem != 0)
1896 	return tem;
1897     }
1898 
1899   return 0;
1900 }
1901 
1902 /* Return 1 if OP is a memory reference
1903    whose address contains no side effects
1904    and remains valid after the addition
1905    of a positive integer less than the
1906    size of the object being referenced.
1907 
1908    We assume that the original address is valid and do not check it.
1909 
1910    This uses strict_memory_address_p as a subroutine, so
1911    don't use it before reload.  */
1912 
1913 int
offsettable_memref_p(rtx op)1914 offsettable_memref_p (rtx op)
1915 {
1916   return ((MEM_P (op))
1917 	  && offsettable_address_addr_space_p (1, GET_MODE (op), XEXP (op, 0),
1918 					       MEM_ADDR_SPACE (op)));
1919 }
1920 
1921 /* Similar, but don't require a strictly valid mem ref:
1922    consider pseudo-regs valid as index or base regs.  */
1923 
1924 int
offsettable_nonstrict_memref_p(rtx op)1925 offsettable_nonstrict_memref_p (rtx op)
1926 {
1927   return ((MEM_P (op))
1928 	  && offsettable_address_addr_space_p (0, GET_MODE (op), XEXP (op, 0),
1929 					       MEM_ADDR_SPACE (op)));
1930 }
1931 
1932 /* Return 1 if Y is a memory address which contains no side effects
1933    and would remain valid for address space AS after the addition of
1934    a positive integer less than the size of that mode.
1935 
1936    We assume that the original address is valid and do not check it.
1937    We do check that it is valid for narrower modes.
1938 
1939    If STRICTP is nonzero, we require a strictly valid address,
1940    for the sake of use in reload.c.  */
1941 
1942 int
offsettable_address_addr_space_p(int strictp,machine_mode mode,rtx y,addr_space_t as)1943 offsettable_address_addr_space_p (int strictp, machine_mode mode, rtx y,
1944 				  addr_space_t as)
1945 {
1946   enum rtx_code ycode = GET_CODE (y);
1947   rtx z;
1948   rtx y1 = y;
1949   rtx *y2;
1950   int (*addressp) (machine_mode, rtx, addr_space_t) =
1951     (strictp ? strict_memory_address_addr_space_p
1952 	     : memory_address_addr_space_p);
1953   poly_int64 mode_sz = GET_MODE_SIZE (mode);
1954 
1955   if (CONSTANT_ADDRESS_P (y))
1956     return 1;
1957 
1958   /* Adjusting an offsettable address involves changing to a narrower mode.
1959      Make sure that's OK.  */
1960 
1961   if (mode_dependent_address_p (y, as))
1962     return 0;
1963 
1964   machine_mode address_mode = GET_MODE (y);
1965   if (address_mode == VOIDmode)
1966     address_mode = targetm.addr_space.address_mode (as);
1967 #ifdef POINTERS_EXTEND_UNSIGNED
1968   machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
1969 #endif
1970 
1971   /* ??? How much offset does an offsettable BLKmode reference need?
1972      Clearly that depends on the situation in which it's being used.
1973      However, the current situation in which we test 0xffffffff is
1974      less than ideal.  Caveat user.  */
1975   if (known_eq (mode_sz, 0))
1976     mode_sz = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
1977 
1978   /* If the expression contains a constant term,
1979      see if it remains valid when max possible offset is added.  */
1980 
1981   if ((ycode == PLUS) && (y2 = find_constant_term_loc (&y1)))
1982     {
1983       int good;
1984 
1985       y1 = *y2;
1986       *y2 = plus_constant (address_mode, *y2, mode_sz - 1);
1987       /* Use QImode because an odd displacement may be automatically invalid
1988 	 for any wider mode.  But it should be valid for a single byte.  */
1989       good = (*addressp) (QImode, y, as);
1990 
1991       /* In any case, restore old contents of memory.  */
1992       *y2 = y1;
1993       return good;
1994     }
1995 
1996   if (GET_RTX_CLASS (ycode) == RTX_AUTOINC)
1997     return 0;
1998 
1999   /* The offset added here is chosen as the maximum offset that
2000      any instruction could need to add when operating on something
2001      of the specified mode.  We assume that if Y and Y+c are
2002      valid addresses then so is Y+d for all 0<d<c.  adjust_address will
2003      go inside a LO_SUM here, so we do so as well.  */
2004   if (GET_CODE (y) == LO_SUM
2005       && mode != BLKmode
2006       && known_le (mode_sz, GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT))
2007     z = gen_rtx_LO_SUM (address_mode, XEXP (y, 0),
2008 			plus_constant (address_mode, XEXP (y, 1),
2009 				       mode_sz - 1));
2010 #ifdef POINTERS_EXTEND_UNSIGNED
2011   /* Likewise for a ZERO_EXTEND from pointer_mode.  */
2012   else if (POINTERS_EXTEND_UNSIGNED > 0
2013 	   && GET_CODE (y) == ZERO_EXTEND
2014 	   && GET_MODE (XEXP (y, 0)) == pointer_mode)
2015     z = gen_rtx_ZERO_EXTEND (address_mode,
2016 			     plus_constant (pointer_mode, XEXP (y, 0),
2017 					    mode_sz - 1));
2018 #endif
2019   else
2020     z = plus_constant (address_mode, y, mode_sz - 1);
2021 
2022   /* Use QImode because an odd displacement may be automatically invalid
2023      for any wider mode.  But it should be valid for a single byte.  */
2024   return (*addressp) (QImode, z, as);
2025 }
2026 
2027 /* Return 1 if ADDR is an address-expression whose effect depends
2028    on the mode of the memory reference it is used in.
2029 
2030    ADDRSPACE is the address space associated with the address.
2031 
2032    Autoincrement addressing is a typical example of mode-dependence
2033    because the amount of the increment depends on the mode.  */
2034 
2035 bool
mode_dependent_address_p(rtx addr,addr_space_t addrspace)2036 mode_dependent_address_p (rtx addr, addr_space_t addrspace)
2037 {
2038   /* Auto-increment addressing with anything other than post_modify
2039      or pre_modify always introduces a mode dependency.  Catch such
2040      cases now instead of deferring to the target.  */
2041   if (GET_CODE (addr) == PRE_INC
2042       || GET_CODE (addr) == POST_INC
2043       || GET_CODE (addr) == PRE_DEC
2044       || GET_CODE (addr) == POST_DEC)
2045     return true;
2046 
2047   return targetm.mode_dependent_address_p (addr, addrspace);
2048 }
2049 
2050 /* Return true if boolean attribute ATTR is supported.  */
2051 
2052 static bool
have_bool_attr(bool_attr attr)2053 have_bool_attr (bool_attr attr)
2054 {
2055   switch (attr)
2056     {
2057     case BA_ENABLED:
2058       return HAVE_ATTR_enabled;
2059     case BA_PREFERRED_FOR_SIZE:
2060       return HAVE_ATTR_enabled || HAVE_ATTR_preferred_for_size;
2061     case BA_PREFERRED_FOR_SPEED:
2062       return HAVE_ATTR_enabled || HAVE_ATTR_preferred_for_speed;
2063     }
2064   gcc_unreachable ();
2065 }
2066 
2067 /* Return the value of ATTR for instruction INSN.  */
2068 
2069 static bool
get_bool_attr(rtx_insn * insn,bool_attr attr)2070 get_bool_attr (rtx_insn *insn, bool_attr attr)
2071 {
2072   switch (attr)
2073     {
2074     case BA_ENABLED:
2075       return get_attr_enabled (insn);
2076     case BA_PREFERRED_FOR_SIZE:
2077       return get_attr_enabled (insn) && get_attr_preferred_for_size (insn);
2078     case BA_PREFERRED_FOR_SPEED:
2079       return get_attr_enabled (insn) && get_attr_preferred_for_speed (insn);
2080     }
2081   gcc_unreachable ();
2082 }
2083 
2084 /* Like get_bool_attr_mask, but don't use the cache.  */
2085 
2086 static alternative_mask
get_bool_attr_mask_uncached(rtx_insn * insn,bool_attr attr)2087 get_bool_attr_mask_uncached (rtx_insn *insn, bool_attr attr)
2088 {
2089   /* Temporarily install enough information for get_attr_<foo> to assume
2090      that the insn operands are already cached.  As above, the attribute
2091      mustn't depend on the values of operands, so we don't provide their
2092      real values here.  */
2093   rtx_insn *old_insn = recog_data.insn;
2094   int old_alternative = which_alternative;
2095 
2096   recog_data.insn = insn;
2097   alternative_mask mask = ALL_ALTERNATIVES;
2098   int n_alternatives = insn_data[INSN_CODE (insn)].n_alternatives;
2099   for (int i = 0; i < n_alternatives; i++)
2100     {
2101       which_alternative = i;
2102       if (!get_bool_attr (insn, attr))
2103 	mask &= ~ALTERNATIVE_BIT (i);
2104     }
2105 
2106   recog_data.insn = old_insn;
2107   which_alternative = old_alternative;
2108   return mask;
2109 }
2110 
2111 /* Return the mask of operand alternatives that are allowed for INSN
2112    by boolean attribute ATTR.  This mask depends only on INSN and on
2113    the current target; it does not depend on things like the values of
2114    operands.  */
2115 
2116 static alternative_mask
get_bool_attr_mask(rtx_insn * insn,bool_attr attr)2117 get_bool_attr_mask (rtx_insn *insn, bool_attr attr)
2118 {
2119   /* Quick exit for asms and for targets that don't use these attributes.  */
2120   int code = INSN_CODE (insn);
2121   if (code < 0 || !have_bool_attr (attr))
2122     return ALL_ALTERNATIVES;
2123 
2124   /* Calling get_attr_<foo> can be expensive, so cache the mask
2125      for speed.  */
2126   if (!this_target_recog->x_bool_attr_masks[code][attr])
2127     this_target_recog->x_bool_attr_masks[code][attr]
2128       = get_bool_attr_mask_uncached (insn, attr);
2129   return this_target_recog->x_bool_attr_masks[code][attr];
2130 }
2131 
2132 /* Return the set of alternatives of INSN that are allowed by the current
2133    target.  */
2134 
2135 alternative_mask
get_enabled_alternatives(rtx_insn * insn)2136 get_enabled_alternatives (rtx_insn *insn)
2137 {
2138   return get_bool_attr_mask (insn, BA_ENABLED);
2139 }
2140 
2141 /* Return the set of alternatives of INSN that are allowed by the current
2142    target and are preferred for the current size/speed optimization
2143    choice.  */
2144 
2145 alternative_mask
get_preferred_alternatives(rtx_insn * insn)2146 get_preferred_alternatives (rtx_insn *insn)
2147 {
2148   if (optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn)))
2149     return get_bool_attr_mask (insn, BA_PREFERRED_FOR_SPEED);
2150   else
2151     return get_bool_attr_mask (insn, BA_PREFERRED_FOR_SIZE);
2152 }
2153 
2154 /* Return the set of alternatives of INSN that are allowed by the current
2155    target and are preferred for the size/speed optimization choice
2156    associated with BB.  Passing a separate BB is useful if INSN has not
2157    been emitted yet or if we are considering moving it to a different
2158    block.  */
2159 
2160 alternative_mask
get_preferred_alternatives(rtx_insn * insn,basic_block bb)2161 get_preferred_alternatives (rtx_insn *insn, basic_block bb)
2162 {
2163   if (optimize_bb_for_speed_p (bb))
2164     return get_bool_attr_mask (insn, BA_PREFERRED_FOR_SPEED);
2165   else
2166     return get_bool_attr_mask (insn, BA_PREFERRED_FOR_SIZE);
2167 }
2168 
2169 /* Assert that the cached boolean attributes for INSN are still accurate.
2170    The backend is required to define these attributes in a way that only
2171    depends on the current target (rather than operands, compiler phase,
2172    etc.).  */
2173 
2174 bool
check_bool_attrs(rtx_insn * insn)2175 check_bool_attrs (rtx_insn *insn)
2176 {
2177   int code = INSN_CODE (insn);
2178   if (code >= 0)
2179     for (int i = 0; i <= BA_LAST; ++i)
2180       {
2181 	enum bool_attr attr = (enum bool_attr) i;
2182 	if (this_target_recog->x_bool_attr_masks[code][attr])
2183 	  gcc_assert (this_target_recog->x_bool_attr_masks[code][attr]
2184 		      == get_bool_attr_mask_uncached (insn, attr));
2185       }
2186   return true;
2187 }
2188 
2189 /* Like extract_insn, but save insn extracted and don't extract again, when
2190    called again for the same insn expecting that recog_data still contain the
2191    valid information.  This is used primary by gen_attr infrastructure that
2192    often does extract insn again and again.  */
2193 void
extract_insn_cached(rtx_insn * insn)2194 extract_insn_cached (rtx_insn *insn)
2195 {
2196   if (recog_data.insn == insn && INSN_CODE (insn) >= 0)
2197     return;
2198   extract_insn (insn);
2199   recog_data.insn = insn;
2200 }
2201 
2202 /* Do uncached extract_insn, constrain_operands and complain about failures.
2203    This should be used when extracting a pre-existing constrained instruction
2204    if the caller wants to know which alternative was chosen.  */
2205 void
extract_constrain_insn(rtx_insn * insn)2206 extract_constrain_insn (rtx_insn *insn)
2207 {
2208   extract_insn (insn);
2209   if (!constrain_operands (reload_completed, get_enabled_alternatives (insn)))
2210     fatal_insn_not_found (insn);
2211 }
2212 
2213 /* Do cached extract_insn, constrain_operands and complain about failures.
2214    Used by insn_attrtab.  */
2215 void
extract_constrain_insn_cached(rtx_insn * insn)2216 extract_constrain_insn_cached (rtx_insn *insn)
2217 {
2218   extract_insn_cached (insn);
2219   if (which_alternative == -1
2220       && !constrain_operands (reload_completed,
2221 			      get_enabled_alternatives (insn)))
2222     fatal_insn_not_found (insn);
2223 }
2224 
2225 /* Do cached constrain_operands on INSN and complain about failures.  */
2226 int
constrain_operands_cached(rtx_insn * insn,int strict)2227 constrain_operands_cached (rtx_insn *insn, int strict)
2228 {
2229   if (which_alternative == -1)
2230     return constrain_operands (strict, get_enabled_alternatives (insn));
2231   else
2232     return 1;
2233 }
2234 
2235 /* Analyze INSN and fill in recog_data.  */
2236 
2237 void
extract_insn(rtx_insn * insn)2238 extract_insn (rtx_insn *insn)
2239 {
2240   int i;
2241   int icode;
2242   int noperands;
2243   rtx body = PATTERN (insn);
2244 
2245   recog_data.n_operands = 0;
2246   recog_data.n_alternatives = 0;
2247   recog_data.n_dups = 0;
2248   recog_data.is_asm = false;
2249 
2250   switch (GET_CODE (body))
2251     {
2252     case USE:
2253     case CLOBBER:
2254     case ASM_INPUT:
2255     case ADDR_VEC:
2256     case ADDR_DIFF_VEC:
2257     case VAR_LOCATION:
2258     case DEBUG_MARKER:
2259       return;
2260 
2261     case SET:
2262       if (GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
2263 	goto asm_insn;
2264       else
2265 	goto normal_insn;
2266     case PARALLEL:
2267       if ((GET_CODE (XVECEXP (body, 0, 0)) == SET
2268 	   && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) == ASM_OPERANDS)
2269 	  || GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS
2270 	  || GET_CODE (XVECEXP (body, 0, 0)) == ASM_INPUT)
2271 	goto asm_insn;
2272       else
2273 	goto normal_insn;
2274     case ASM_OPERANDS:
2275     asm_insn:
2276       recog_data.n_operands = noperands = asm_noperands (body);
2277       if (noperands >= 0)
2278 	{
2279 	  /* This insn is an `asm' with operands.  */
2280 
2281 	  /* expand_asm_operands makes sure there aren't too many operands.  */
2282 	  gcc_assert (noperands <= MAX_RECOG_OPERANDS);
2283 
2284 	  /* Now get the operand values and constraints out of the insn.  */
2285 	  decode_asm_operands (body, recog_data.operand,
2286 			       recog_data.operand_loc,
2287 			       recog_data.constraints,
2288 			       recog_data.operand_mode, NULL);
2289 	  memset (recog_data.is_operator, 0, sizeof recog_data.is_operator);
2290 	  if (noperands > 0)
2291 	    {
2292 	      const char *p =  recog_data.constraints[0];
2293 	      recog_data.n_alternatives = 1;
2294 	      while (*p)
2295 		recog_data.n_alternatives += (*p++ == ',');
2296 	    }
2297 	  recog_data.is_asm = true;
2298 	  break;
2299 	}
2300       fatal_insn_not_found (insn);
2301 
2302     default:
2303     normal_insn:
2304       /* Ordinary insn: recognize it, get the operands via insn_extract
2305 	 and get the constraints.  */
2306 
2307       icode = recog_memoized (insn);
2308       if (icode < 0)
2309 	fatal_insn_not_found (insn);
2310 
2311       recog_data.n_operands = noperands = insn_data[icode].n_operands;
2312       recog_data.n_alternatives = insn_data[icode].n_alternatives;
2313       recog_data.n_dups = insn_data[icode].n_dups;
2314 
2315       insn_extract (insn);
2316 
2317       for (i = 0; i < noperands; i++)
2318 	{
2319 	  recog_data.constraints[i] = insn_data[icode].operand[i].constraint;
2320 	  recog_data.is_operator[i] = insn_data[icode].operand[i].is_operator;
2321 	  recog_data.operand_mode[i] = insn_data[icode].operand[i].mode;
2322 	  /* VOIDmode match_operands gets mode from their real operand.  */
2323 	  if (recog_data.operand_mode[i] == VOIDmode)
2324 	    recog_data.operand_mode[i] = GET_MODE (recog_data.operand[i]);
2325 	}
2326     }
2327   for (i = 0; i < noperands; i++)
2328     recog_data.operand_type[i]
2329       = (recog_data.constraints[i][0] == '=' ? OP_OUT
2330 	 : recog_data.constraints[i][0] == '+' ? OP_INOUT
2331 	 : OP_IN);
2332 
2333   gcc_assert (recog_data.n_alternatives <= MAX_RECOG_ALTERNATIVES);
2334 
2335   recog_data.insn = NULL;
2336   which_alternative = -1;
2337 }
2338 
2339 /* Fill in OP_ALT_BASE for an instruction that has N_OPERANDS
2340    operands, N_ALTERNATIVES alternatives and constraint strings
2341    CONSTRAINTS.  OP_ALT_BASE has N_ALTERNATIVES * N_OPERANDS entries
2342    and CONSTRAINTS has N_OPERANDS entries.  OPLOC should be passed in
2343    if the insn is an asm statement and preprocessing should take the
2344    asm operands into account, e.g. to determine whether they could be
2345    addresses in constraints that require addresses; it should then
2346    point to an array of pointers to each operand.  */
2347 
2348 void
preprocess_constraints(int n_operands,int n_alternatives,const char ** constraints,operand_alternative * op_alt_base,rtx ** oploc)2349 preprocess_constraints (int n_operands, int n_alternatives,
2350 			const char **constraints,
2351 			operand_alternative *op_alt_base,
2352 			rtx **oploc)
2353 {
2354   for (int i = 0; i < n_operands; i++)
2355     {
2356       int j;
2357       struct operand_alternative *op_alt;
2358       const char *p = constraints[i];
2359 
2360       op_alt = op_alt_base;
2361 
2362       for (j = 0; j < n_alternatives; j++, op_alt += n_operands)
2363 	{
2364 	  op_alt[i].cl = NO_REGS;
2365 	  op_alt[i].constraint = p;
2366 	  op_alt[i].matches = -1;
2367 	  op_alt[i].matched = -1;
2368 
2369 	  if (*p == '\0' || *p == ',')
2370 	    {
2371 	      op_alt[i].anything_ok = 1;
2372 	      continue;
2373 	    }
2374 
2375 	  for (;;)
2376 	    {
2377 	      char c = *p;
2378 	      if (c == '#')
2379 		do
2380 		  c = *++p;
2381 		while (c != ',' && c != '\0');
2382 	      if (c == ',' || c == '\0')
2383 		{
2384 		  p++;
2385 		  break;
2386 		}
2387 
2388 	      switch (c)
2389 		{
2390 		case '?':
2391 		  op_alt[i].reject += 6;
2392 		  break;
2393 		case '!':
2394 		  op_alt[i].reject += 600;
2395 		  break;
2396 		case '&':
2397 		  op_alt[i].earlyclobber = 1;
2398 		  break;
2399 
2400 		case '0': case '1': case '2': case '3': case '4':
2401 		case '5': case '6': case '7': case '8': case '9':
2402 		  {
2403 		    char *end;
2404 		    op_alt[i].matches = strtoul (p, &end, 10);
2405 		    op_alt[op_alt[i].matches].matched = i;
2406 		    p = end;
2407 		  }
2408 		  continue;
2409 
2410 		case 'X':
2411 		  op_alt[i].anything_ok = 1;
2412 		  break;
2413 
2414 		case 'g':
2415 		  op_alt[i].cl =
2416 		   reg_class_subunion[(int) op_alt[i].cl][(int) GENERAL_REGS];
2417 		  break;
2418 
2419 		default:
2420 		  enum constraint_num cn = lookup_constraint (p);
2421 		  enum reg_class cl;
2422 		  switch (get_constraint_type (cn))
2423 		    {
2424 		    case CT_REGISTER:
2425 		      cl = reg_class_for_constraint (cn);
2426 		      if (cl != NO_REGS)
2427 			op_alt[i].cl = reg_class_subunion[op_alt[i].cl][cl];
2428 		      break;
2429 
2430 		    case CT_CONST_INT:
2431 		      break;
2432 
2433 		    case CT_MEMORY:
2434 		    case CT_SPECIAL_MEMORY:
2435 		      op_alt[i].memory_ok = 1;
2436 		      break;
2437 
2438 		    case CT_ADDRESS:
2439 		      if (oploc && !address_operand (*oploc[i], VOIDmode))
2440 			break;
2441 
2442 		      op_alt[i].is_address = 1;
2443 		      op_alt[i].cl
2444 			= (reg_class_subunion
2445 			   [(int) op_alt[i].cl]
2446 			   [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
2447 						  ADDRESS, SCRATCH)]);
2448 		      break;
2449 
2450 		    case CT_FIXED_FORM:
2451 		      break;
2452 		    }
2453 		  break;
2454 		}
2455 	      p += CONSTRAINT_LEN (c, p);
2456 	    }
2457 	}
2458     }
2459 }
2460 
2461 /* Return an array of operand_alternative instructions for
2462    instruction ICODE.  */
2463 
2464 const operand_alternative *
preprocess_insn_constraints(unsigned int icode)2465 preprocess_insn_constraints (unsigned int icode)
2466 {
2467   gcc_checking_assert (IN_RANGE (icode, 0, NUM_INSN_CODES - 1));
2468   if (this_target_recog->x_op_alt[icode])
2469     return this_target_recog->x_op_alt[icode];
2470 
2471   int n_operands = insn_data[icode].n_operands;
2472   if (n_operands == 0)
2473     return 0;
2474   /* Always provide at least one alternative so that which_op_alt ()
2475      works correctly.  If the instruction has 0 alternatives (i.e. all
2476      constraint strings are empty) then each operand in this alternative
2477      will have anything_ok set.  */
2478   int n_alternatives = MAX (insn_data[icode].n_alternatives, 1);
2479   int n_entries = n_operands * n_alternatives;
2480 
2481   operand_alternative *op_alt = XCNEWVEC (operand_alternative, n_entries);
2482   const char **constraints = XALLOCAVEC (const char *, n_operands);
2483 
2484   for (int i = 0; i < n_operands; ++i)
2485     constraints[i] = insn_data[icode].operand[i].constraint;
2486   preprocess_constraints (n_operands, n_alternatives, constraints, op_alt,
2487 			  NULL);
2488 
2489   this_target_recog->x_op_alt[icode] = op_alt;
2490   return op_alt;
2491 }
2492 
2493 /* After calling extract_insn, you can use this function to extract some
2494    information from the constraint strings into a more usable form.
2495    The collected data is stored in recog_op_alt.  */
2496 
2497 void
preprocess_constraints(rtx_insn * insn)2498 preprocess_constraints (rtx_insn *insn)
2499 {
2500   int icode = INSN_CODE (insn);
2501   if (icode >= 0)
2502     recog_op_alt = preprocess_insn_constraints (icode);
2503   else
2504     {
2505       int n_operands = recog_data.n_operands;
2506       int n_alternatives = recog_data.n_alternatives;
2507       int n_entries = n_operands * n_alternatives;
2508       memset (asm_op_alt, 0, n_entries * sizeof (operand_alternative));
2509       preprocess_constraints (n_operands, n_alternatives,
2510 			      recog_data.constraints, asm_op_alt,
2511 			      NULL);
2512       recog_op_alt = asm_op_alt;
2513     }
2514 }
2515 
2516 /* Check the operands of an insn against the insn's operand constraints
2517    and return 1 if they match any of the alternatives in ALTERNATIVES.
2518 
2519    The information about the insn's operands, constraints, operand modes
2520    etc. is obtained from the global variables set up by extract_insn.
2521 
2522    WHICH_ALTERNATIVE is set to a number which indicates which
2523    alternative of constraints was matched: 0 for the first alternative,
2524    1 for the next, etc.
2525 
2526    In addition, when two operands are required to match
2527    and it happens that the output operand is (reg) while the
2528    input operand is --(reg) or ++(reg) (a pre-inc or pre-dec),
2529    make the output operand look like the input.
2530    This is because the output operand is the one the template will print.
2531 
2532    This is used in final, just before printing the assembler code and by
2533    the routines that determine an insn's attribute.
2534 
2535    If STRICT is a positive nonzero value, it means that we have been
2536    called after reload has been completed.  In that case, we must
2537    do all checks strictly.  If it is zero, it means that we have been called
2538    before reload has completed.  In that case, we first try to see if we can
2539    find an alternative that matches strictly.  If not, we try again, this
2540    time assuming that reload will fix up the insn.  This provides a "best
2541    guess" for the alternative and is used to compute attributes of insns prior
2542    to reload.  A negative value of STRICT is used for this internal call.  */
2543 
2544 struct funny_match
2545 {
2546   int this_op, other;
2547 };
2548 
2549 int
constrain_operands(int strict,alternative_mask alternatives)2550 constrain_operands (int strict, alternative_mask alternatives)
2551 {
2552   const char *constraints[MAX_RECOG_OPERANDS];
2553   int matching_operands[MAX_RECOG_OPERANDS];
2554   int earlyclobber[MAX_RECOG_OPERANDS];
2555   int c;
2556 
2557   struct funny_match funny_match[MAX_RECOG_OPERANDS];
2558   int funny_match_index;
2559 
2560   which_alternative = 0;
2561   if (recog_data.n_operands == 0 || recog_data.n_alternatives == 0)
2562     return 1;
2563 
2564   for (c = 0; c < recog_data.n_operands; c++)
2565     {
2566       constraints[c] = recog_data.constraints[c];
2567       matching_operands[c] = -1;
2568     }
2569 
2570   do
2571     {
2572       int seen_earlyclobber_at = -1;
2573       int opno;
2574       int lose = 0;
2575       funny_match_index = 0;
2576 
2577       if (!TEST_BIT (alternatives, which_alternative))
2578 	{
2579 	  int i;
2580 
2581 	  for (i = 0; i < recog_data.n_operands; i++)
2582 	    constraints[i] = skip_alternative (constraints[i]);
2583 
2584 	  which_alternative++;
2585 	  continue;
2586 	}
2587 
2588       for (opno = 0; opno < recog_data.n_operands; opno++)
2589 	{
2590 	  rtx op = recog_data.operand[opno];
2591 	  machine_mode mode = GET_MODE (op);
2592 	  const char *p = constraints[opno];
2593 	  int offset = 0;
2594 	  int win = 0;
2595 	  int val;
2596 	  int len;
2597 
2598 	  earlyclobber[opno] = 0;
2599 
2600 	  /* A unary operator may be accepted by the predicate, but it
2601 	     is irrelevant for matching constraints.  */
2602 	  if (UNARY_P (op))
2603 	    op = XEXP (op, 0);
2604 
2605 	  if (GET_CODE (op) == SUBREG)
2606 	    {
2607 	      if (REG_P (SUBREG_REG (op))
2608 		  && REGNO (SUBREG_REG (op)) < FIRST_PSEUDO_REGISTER)
2609 		offset = subreg_regno_offset (REGNO (SUBREG_REG (op)),
2610 					      GET_MODE (SUBREG_REG (op)),
2611 					      SUBREG_BYTE (op),
2612 					      GET_MODE (op));
2613 	      op = SUBREG_REG (op);
2614 	    }
2615 
2616 	  /* An empty constraint or empty alternative
2617 	     allows anything which matched the pattern.  */
2618 	  if (*p == 0 || *p == ',')
2619 	    win = 1;
2620 
2621 	  do
2622 	    switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
2623 	      {
2624 	      case '\0':
2625 		len = 0;
2626 		break;
2627 	      case ',':
2628 		c = '\0';
2629 		break;
2630 
2631 	      case '#':
2632 		/* Ignore rest of this alternative as far as
2633 		   constraint checking is concerned.  */
2634 		do
2635 		  p++;
2636 		while (*p && *p != ',');
2637 		len = 0;
2638 		break;
2639 
2640 	      case '&':
2641 		earlyclobber[opno] = 1;
2642 		if (seen_earlyclobber_at < 0)
2643 		  seen_earlyclobber_at = opno;
2644 		break;
2645 
2646 	      case '0':  case '1':  case '2':  case '3':  case '4':
2647 	      case '5':  case '6':  case '7':  case '8':  case '9':
2648 		{
2649 		  /* This operand must be the same as a previous one.
2650 		     This kind of constraint is used for instructions such
2651 		     as add when they take only two operands.
2652 
2653 		     Note that the lower-numbered operand is passed first.
2654 
2655 		     If we are not testing strictly, assume that this
2656 		     constraint will be satisfied.  */
2657 
2658 		  char *end;
2659 		  int match;
2660 
2661 		  match = strtoul (p, &end, 10);
2662 		  p = end;
2663 
2664 		  if (strict < 0)
2665 		    val = 1;
2666 		  else
2667 		    {
2668 		      rtx op1 = recog_data.operand[match];
2669 		      rtx op2 = recog_data.operand[opno];
2670 
2671 		      /* A unary operator may be accepted by the predicate,
2672 			 but it is irrelevant for matching constraints.  */
2673 		      if (UNARY_P (op1))
2674 			op1 = XEXP (op1, 0);
2675 		      if (UNARY_P (op2))
2676 			op2 = XEXP (op2, 0);
2677 
2678 		      val = operands_match_p (op1, op2);
2679 		    }
2680 
2681 		  matching_operands[opno] = match;
2682 		  matching_operands[match] = opno;
2683 
2684 		  if (val != 0)
2685 		    win = 1;
2686 
2687 		  /* If output is *x and input is *--x, arrange later
2688 		     to change the output to *--x as well, since the
2689 		     output op is the one that will be printed.  */
2690 		  if (val == 2 && strict > 0)
2691 		    {
2692 		      funny_match[funny_match_index].this_op = opno;
2693 		      funny_match[funny_match_index++].other = match;
2694 		    }
2695 		}
2696 		len = 0;
2697 		break;
2698 
2699 	      case 'p':
2700 		/* p is used for address_operands.  When we are called by
2701 		   gen_reload, no one will have checked that the address is
2702 		   strictly valid, i.e., that all pseudos requiring hard regs
2703 		   have gotten them.  We also want to make sure we have a
2704 		   valid mode.  */
2705 		if ((GET_MODE (op) == VOIDmode
2706 		     || SCALAR_INT_MODE_P (GET_MODE (op)))
2707 		    && (strict <= 0
2708 			|| (strict_memory_address_p
2709 			     (recog_data.operand_mode[opno], op))))
2710 		  win = 1;
2711 		break;
2712 
2713 		/* No need to check general_operand again;
2714 		   it was done in insn-recog.c.  Well, except that reload
2715 		   doesn't check the validity of its replacements, but
2716 		   that should only matter when there's a bug.  */
2717 	      case 'g':
2718 		/* Anything goes unless it is a REG and really has a hard reg
2719 		   but the hard reg is not in the class GENERAL_REGS.  */
2720 		if (REG_P (op))
2721 		  {
2722 		    if (strict < 0
2723 			|| GENERAL_REGS == ALL_REGS
2724 			|| (reload_in_progress
2725 			    && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2726 			|| reg_fits_class_p (op, GENERAL_REGS, offset, mode))
2727 		      win = 1;
2728 		  }
2729 		else if (strict < 0 || general_operand (op, mode))
2730 		  win = 1;
2731 		break;
2732 
2733 	      default:
2734 		{
2735 		  enum constraint_num cn = lookup_constraint (p);
2736 		  enum reg_class cl = reg_class_for_constraint (cn);
2737 		  if (cl != NO_REGS)
2738 		    {
2739 		      if (strict < 0
2740 			  || (strict == 0
2741 			      && REG_P (op)
2742 			      && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2743 			  || (strict == 0 && GET_CODE (op) == SCRATCH)
2744 			  || (REG_P (op)
2745 			      && reg_fits_class_p (op, cl, offset, mode)))
2746 		        win = 1;
2747 		    }
2748 
2749 		  else if (constraint_satisfied_p (op, cn))
2750 		    win = 1;
2751 
2752 		  else if (insn_extra_memory_constraint (cn)
2753 			   /* Every memory operand can be reloaded to fit.  */
2754 			   && ((strict < 0 && MEM_P (op))
2755 			       /* Before reload, accept what reload can turn
2756 				  into a mem.  */
2757 			       || (strict < 0 && CONSTANT_P (op))
2758 			       /* Before reload, accept a pseudo,
2759 				  since LRA can turn it into a mem.  */
2760 			       || (strict < 0 && targetm.lra_p () && REG_P (op)
2761 				   && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2762 			       /* During reload, accept a pseudo  */
2763 			       || (reload_in_progress && REG_P (op)
2764 				   && REGNO (op) >= FIRST_PSEUDO_REGISTER)))
2765 		    win = 1;
2766 		  else if (insn_extra_address_constraint (cn)
2767 			   /* Every address operand can be reloaded to fit.  */
2768 			   && strict < 0)
2769 		    win = 1;
2770 		  /* Cater to architectures like IA-64 that define extra memory
2771 		     constraints without using define_memory_constraint.  */
2772 		  else if (reload_in_progress
2773 			   && REG_P (op)
2774 			   && REGNO (op) >= FIRST_PSEUDO_REGISTER
2775 			   && reg_renumber[REGNO (op)] < 0
2776 			   && reg_equiv_mem (REGNO (op)) != 0
2777 			   && constraint_satisfied_p
2778 			      (reg_equiv_mem (REGNO (op)), cn))
2779 		    win = 1;
2780 		  break;
2781 		}
2782 	      }
2783 	  while (p += len, c);
2784 
2785 	  constraints[opno] = p;
2786 	  /* If this operand did not win somehow,
2787 	     this alternative loses.  */
2788 	  if (! win)
2789 	    lose = 1;
2790 	}
2791       /* This alternative won; the operands are ok.
2792 	 Change whichever operands this alternative says to change.  */
2793       if (! lose)
2794 	{
2795 	  int opno, eopno;
2796 
2797 	  /* See if any earlyclobber operand conflicts with some other
2798 	     operand.  */
2799 
2800 	  if (strict > 0  && seen_earlyclobber_at >= 0)
2801 	    for (eopno = seen_earlyclobber_at;
2802 		 eopno < recog_data.n_operands;
2803 		 eopno++)
2804 	      /* Ignore earlyclobber operands now in memory,
2805 		 because we would often report failure when we have
2806 		 two memory operands, one of which was formerly a REG.  */
2807 	      if (earlyclobber[eopno]
2808 		  && REG_P (recog_data.operand[eopno]))
2809 		for (opno = 0; opno < recog_data.n_operands; opno++)
2810 		  if ((MEM_P (recog_data.operand[opno])
2811 		       || recog_data.operand_type[opno] != OP_OUT)
2812 		      && opno != eopno
2813 		      /* Ignore things like match_operator operands.  */
2814 		      && *recog_data.constraints[opno] != 0
2815 		      && ! (matching_operands[opno] == eopno
2816 			    && operands_match_p (recog_data.operand[opno],
2817 						 recog_data.operand[eopno]))
2818 		      && ! safe_from_earlyclobber (recog_data.operand[opno],
2819 						   recog_data.operand[eopno]))
2820 		    lose = 1;
2821 
2822 	  if (! lose)
2823 	    {
2824 	      while (--funny_match_index >= 0)
2825 		{
2826 		  recog_data.operand[funny_match[funny_match_index].other]
2827 		    = recog_data.operand[funny_match[funny_match_index].this_op];
2828 		}
2829 
2830 	      /* For operands without < or > constraints reject side-effects.  */
2831 	      if (AUTO_INC_DEC && recog_data.is_asm)
2832 		{
2833 		  for (opno = 0; opno < recog_data.n_operands; opno++)
2834 		    if (MEM_P (recog_data.operand[opno]))
2835 		      switch (GET_CODE (XEXP (recog_data.operand[opno], 0)))
2836 			{
2837 			case PRE_INC:
2838 			case POST_INC:
2839 			case PRE_DEC:
2840 			case POST_DEC:
2841 			case PRE_MODIFY:
2842 			case POST_MODIFY:
2843 			  if (strchr (recog_data.constraints[opno], '<') == NULL
2844 			      && strchr (recog_data.constraints[opno], '>')
2845 				 == NULL)
2846 			    return 0;
2847 			  break;
2848 			default:
2849 			  break;
2850 			}
2851 		}
2852 
2853 	      return 1;
2854 	    }
2855 	}
2856 
2857       which_alternative++;
2858     }
2859   while (which_alternative < recog_data.n_alternatives);
2860 
2861   which_alternative = -1;
2862   /* If we are about to reject this, but we are not to test strictly,
2863      try a very loose test.  Only return failure if it fails also.  */
2864   if (strict == 0)
2865     return constrain_operands (-1, alternatives);
2866   else
2867     return 0;
2868 }
2869 
2870 /* Return true iff OPERAND (assumed to be a REG rtx)
2871    is a hard reg in class CLASS when its regno is offset by OFFSET
2872    and changed to mode MODE.
2873    If REG occupies multiple hard regs, all of them must be in CLASS.  */
2874 
2875 bool
reg_fits_class_p(const_rtx operand,reg_class_t cl,int offset,machine_mode mode)2876 reg_fits_class_p (const_rtx operand, reg_class_t cl, int offset,
2877 		  machine_mode mode)
2878 {
2879   unsigned int regno = REGNO (operand);
2880 
2881   if (cl == NO_REGS)
2882     return false;
2883 
2884   /* Regno must not be a pseudo register.  Offset may be negative.  */
2885   return (HARD_REGISTER_NUM_P (regno)
2886 	  && HARD_REGISTER_NUM_P (regno + offset)
2887 	  && in_hard_reg_set_p (reg_class_contents[(int) cl], mode,
2888 				regno + offset));
2889 }
2890 
2891 /* Split single instruction.  Helper function for split_all_insns and
2892    split_all_insns_noflow.  Return last insn in the sequence if successful,
2893    or NULL if unsuccessful.  */
2894 
2895 static rtx_insn *
split_insn(rtx_insn * insn)2896 split_insn (rtx_insn *insn)
2897 {
2898   /* Split insns here to get max fine-grain parallelism.  */
2899   rtx_insn *first = PREV_INSN (insn);
2900   rtx_insn *last = try_split (PATTERN (insn), insn, 1);
2901   rtx insn_set, last_set, note;
2902 
2903   if (last == insn)
2904     return NULL;
2905 
2906   /* If the original instruction was a single set that was known to be
2907      equivalent to a constant, see if we can say the same about the last
2908      instruction in the split sequence.  The two instructions must set
2909      the same destination.  */
2910   insn_set = single_set (insn);
2911   if (insn_set)
2912     {
2913       last_set = single_set (last);
2914       if (last_set && rtx_equal_p (SET_DEST (last_set), SET_DEST (insn_set)))
2915 	{
2916 	  note = find_reg_equal_equiv_note (insn);
2917 	  if (note && CONSTANT_P (XEXP (note, 0)))
2918 	    set_unique_reg_note (last, REG_EQUAL, XEXP (note, 0));
2919 	  else if (CONSTANT_P (SET_SRC (insn_set)))
2920 	    set_unique_reg_note (last, REG_EQUAL,
2921 				 copy_rtx (SET_SRC (insn_set)));
2922 	}
2923     }
2924 
2925   /* try_split returns the NOTE that INSN became.  */
2926   SET_INSN_DELETED (insn);
2927 
2928   /* ??? Coddle to md files that generate subregs in post-reload
2929      splitters instead of computing the proper hard register.  */
2930   if (reload_completed && first != last)
2931     {
2932       first = NEXT_INSN (first);
2933       for (;;)
2934 	{
2935 	  if (INSN_P (first))
2936 	    cleanup_subreg_operands (first);
2937 	  if (first == last)
2938 	    break;
2939 	  first = NEXT_INSN (first);
2940 	}
2941     }
2942 
2943   return last;
2944 }
2945 
2946 /* Split all insns in the function.  If UPD_LIFE, update life info after.  */
2947 
2948 void
split_all_insns(void)2949 split_all_insns (void)
2950 {
2951   bool changed;
2952   bool need_cfg_cleanup = false;
2953   basic_block bb;
2954 
2955   auto_sbitmap blocks (last_basic_block_for_fn (cfun));
2956   bitmap_clear (blocks);
2957   changed = false;
2958 
2959   FOR_EACH_BB_REVERSE_FN (bb, cfun)
2960     {
2961       rtx_insn *insn, *next;
2962       bool finish = false;
2963 
2964       rtl_profile_for_bb (bb);
2965       for (insn = BB_HEAD (bb); !finish ; insn = next)
2966 	{
2967 	  /* Can't use `next_real_insn' because that might go across
2968 	     CODE_LABELS and short-out basic blocks.  */
2969 	  next = NEXT_INSN (insn);
2970 	  finish = (insn == BB_END (bb));
2971 
2972 	  /* If INSN has a REG_EH_REGION note and we split INSN, the
2973 	     resulting split may not have/need REG_EH_REGION notes.
2974 
2975 	     If that happens and INSN was the last reference to the
2976 	     given EH region, then the EH region will become unreachable.
2977 	     We can not leave the unreachable blocks in the CFG as that
2978 	     will trigger a checking failure.
2979 
2980 	     So track if INSN has a REG_EH_REGION note.  If so and we
2981 	     split INSN, then trigger a CFG cleanup.  */
2982 	  rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
2983 	  if (INSN_P (insn))
2984 	    {
2985 	      rtx set = single_set (insn);
2986 
2987 	      /* Don't split no-op move insns.  These should silently
2988 		 disappear later in final.  Splitting such insns would
2989 		 break the code that handles LIBCALL blocks.  */
2990 	      if (set && set_noop_p (set))
2991 		{
2992 		  /* Nops get in the way while scheduling, so delete them
2993 		     now if register allocation has already been done.  It
2994 		     is too risky to try to do this before register
2995 		     allocation, and there are unlikely to be very many
2996 		     nops then anyways.  */
2997 		  if (reload_completed)
2998 		      delete_insn_and_edges (insn);
2999 		  if (note)
3000 		    need_cfg_cleanup = true;
3001 		}
3002 	      else
3003 		{
3004 		  if (split_insn (insn))
3005 		    {
3006 		      bitmap_set_bit (blocks, bb->index);
3007 		      changed = true;
3008 		      if (note)
3009 			need_cfg_cleanup = true;
3010 		    }
3011 		}
3012 	    }
3013 	}
3014     }
3015 
3016   default_rtl_profile ();
3017   if (changed)
3018     {
3019       find_many_sub_basic_blocks (blocks);
3020 
3021       /* Splitting could drop an REG_EH_REGION if it potentially
3022 	 trapped in its original form, but does not in its split
3023 	 form.  Consider a FLOAT_TRUNCATE which splits into a memory
3024 	 store/load pair and -fnon-call-exceptions.  */
3025       if (need_cfg_cleanup)
3026 	cleanup_cfg (0);
3027     }
3028 
3029   checking_verify_flow_info ();
3030 }
3031 
3032 /* Same as split_all_insns, but do not expect CFG to be available.
3033    Used by machine dependent reorg passes.  */
3034 
3035 unsigned int
split_all_insns_noflow(void)3036 split_all_insns_noflow (void)
3037 {
3038   rtx_insn *next, *insn;
3039 
3040   for (insn = get_insns (); insn; insn = next)
3041     {
3042       next = NEXT_INSN (insn);
3043       if (INSN_P (insn))
3044 	{
3045 	  /* Don't split no-op move insns.  These should silently
3046 	     disappear later in final.  Splitting such insns would
3047 	     break the code that handles LIBCALL blocks.  */
3048 	  rtx set = single_set (insn);
3049 	  if (set && set_noop_p (set))
3050 	    {
3051 	      /* Nops get in the way while scheduling, so delete them
3052 		 now if register allocation has already been done.  It
3053 		 is too risky to try to do this before register
3054 		 allocation, and there are unlikely to be very many
3055 		 nops then anyways.
3056 
3057 		 ??? Should we use delete_insn when the CFG isn't valid?  */
3058 	      if (reload_completed)
3059 		delete_insn_and_edges (insn);
3060 	    }
3061 	  else
3062 	    split_insn (insn);
3063 	}
3064     }
3065   return 0;
3066 }
3067 
3068 struct peep2_insn_data
3069 {
3070   rtx_insn *insn;
3071   regset live_before;
3072 };
3073 
3074 static struct peep2_insn_data peep2_insn_data[MAX_INSNS_PER_PEEP2 + 1];
3075 static int peep2_current;
3076 
3077 static bool peep2_do_rebuild_jump_labels;
3078 static bool peep2_do_cleanup_cfg;
3079 
3080 /* The number of instructions available to match a peep2.  */
3081 int peep2_current_count;
3082 
3083 /* A marker indicating the last insn of the block.  The live_before regset
3084    for this element is correct, indicating DF_LIVE_OUT for the block.  */
3085 #define PEEP2_EOB invalid_insn_rtx
3086 
3087 /* Wrap N to fit into the peep2_insn_data buffer.  */
3088 
3089 static int
peep2_buf_position(int n)3090 peep2_buf_position (int n)
3091 {
3092   if (n >= MAX_INSNS_PER_PEEP2 + 1)
3093     n -= MAX_INSNS_PER_PEEP2 + 1;
3094   return n;
3095 }
3096 
3097 /* Return the Nth non-note insn after `current', or return NULL_RTX if it
3098    does not exist.  Used by the recognizer to find the next insn to match
3099    in a multi-insn pattern.  */
3100 
3101 rtx_insn *
peep2_next_insn(int n)3102 peep2_next_insn (int n)
3103 {
3104   gcc_assert (n <= peep2_current_count);
3105 
3106   n = peep2_buf_position (peep2_current + n);
3107 
3108   return peep2_insn_data[n].insn;
3109 }
3110 
3111 /* Return true if REGNO is dead before the Nth non-note insn
3112    after `current'.  */
3113 
3114 int
peep2_regno_dead_p(int ofs,int regno)3115 peep2_regno_dead_p (int ofs, int regno)
3116 {
3117   gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
3118 
3119   ofs = peep2_buf_position (peep2_current + ofs);
3120 
3121   gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
3122 
3123   return ! REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno);
3124 }
3125 
3126 /* Similarly for a REG.  */
3127 
3128 int
peep2_reg_dead_p(int ofs,rtx reg)3129 peep2_reg_dead_p (int ofs, rtx reg)
3130 {
3131   gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
3132 
3133   ofs = peep2_buf_position (peep2_current + ofs);
3134 
3135   gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
3136 
3137   unsigned int end_regno = END_REGNO (reg);
3138   for (unsigned int regno = REGNO (reg); regno < end_regno; ++regno)
3139     if (REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno))
3140       return 0;
3141   return 1;
3142 }
3143 
3144 /* Regno offset to be used in the register search.  */
3145 static int search_ofs;
3146 
3147 /* Try to find a hard register of mode MODE, matching the register class in
3148    CLASS_STR, which is available at the beginning of insn CURRENT_INSN and
3149    remains available until the end of LAST_INSN.  LAST_INSN may be NULL_RTX,
3150    in which case the only condition is that the register must be available
3151    before CURRENT_INSN.
3152    Registers that already have bits set in REG_SET will not be considered.
3153 
3154    If an appropriate register is available, it will be returned and the
3155    corresponding bit(s) in REG_SET will be set; otherwise, NULL_RTX is
3156    returned.  */
3157 
3158 rtx
peep2_find_free_register(int from,int to,const char * class_str,machine_mode mode,HARD_REG_SET * reg_set)3159 peep2_find_free_register (int from, int to, const char *class_str,
3160 			  machine_mode mode, HARD_REG_SET *reg_set)
3161 {
3162   enum reg_class cl;
3163   HARD_REG_SET live;
3164   df_ref def;
3165   int i;
3166 
3167   gcc_assert (from < MAX_INSNS_PER_PEEP2 + 1);
3168   gcc_assert (to < MAX_INSNS_PER_PEEP2 + 1);
3169 
3170   from = peep2_buf_position (peep2_current + from);
3171   to = peep2_buf_position (peep2_current + to);
3172 
3173   gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
3174   REG_SET_TO_HARD_REG_SET (live, peep2_insn_data[from].live_before);
3175 
3176   while (from != to)
3177     {
3178       gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
3179 
3180       /* Don't use registers set or clobbered by the insn.  */
3181       FOR_EACH_INSN_DEF (def, peep2_insn_data[from].insn)
3182 	SET_HARD_REG_BIT (live, DF_REF_REGNO (def));
3183 
3184       from = peep2_buf_position (from + 1);
3185     }
3186 
3187   cl = reg_class_for_constraint (lookup_constraint (class_str));
3188 
3189   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3190     {
3191       int raw_regno, regno, success, j;
3192 
3193       /* Distribute the free registers as much as possible.  */
3194       raw_regno = search_ofs + i;
3195       if (raw_regno >= FIRST_PSEUDO_REGISTER)
3196 	raw_regno -= FIRST_PSEUDO_REGISTER;
3197 #ifdef REG_ALLOC_ORDER
3198       regno = reg_alloc_order[raw_regno];
3199 #else
3200       regno = raw_regno;
3201 #endif
3202 
3203       /* Can it support the mode we need?  */
3204       if (!targetm.hard_regno_mode_ok (regno, mode))
3205 	continue;
3206 
3207       success = 1;
3208       for (j = 0; success && j < hard_regno_nregs (regno, mode); j++)
3209 	{
3210 	  /* Don't allocate fixed registers.  */
3211 	  if (fixed_regs[regno + j])
3212 	    {
3213 	      success = 0;
3214 	      break;
3215 	    }
3216 	  /* Don't allocate global registers.  */
3217 	  if (global_regs[regno + j])
3218 	    {
3219 	      success = 0;
3220 	      break;
3221 	    }
3222 	  /* Make sure the register is of the right class.  */
3223 	  if (! TEST_HARD_REG_BIT (reg_class_contents[cl], regno + j))
3224 	    {
3225 	      success = 0;
3226 	      break;
3227 	    }
3228 	  /* And that we don't create an extra save/restore.  */
3229 	  if (! call_used_regs[regno + j] && ! df_regs_ever_live_p (regno + j))
3230 	    {
3231 	      success = 0;
3232 	      break;
3233 	    }
3234 
3235 	  if (! targetm.hard_regno_scratch_ok (regno + j))
3236 	    {
3237 	      success = 0;
3238 	      break;
3239 	    }
3240 
3241 	  /* And we don't clobber traceback for noreturn functions.  */
3242 	  if ((regno + j == FRAME_POINTER_REGNUM
3243 	       || regno + j == HARD_FRAME_POINTER_REGNUM)
3244 	      && (! reload_completed || frame_pointer_needed))
3245 	    {
3246 	      success = 0;
3247 	      break;
3248 	    }
3249 
3250 	  if (TEST_HARD_REG_BIT (*reg_set, regno + j)
3251 	      || TEST_HARD_REG_BIT (live, regno + j))
3252 	    {
3253 	      success = 0;
3254 	      break;
3255 	    }
3256 	}
3257 
3258       if (success)
3259 	{
3260 	  add_to_hard_reg_set (reg_set, mode, regno);
3261 
3262 	  /* Start the next search with the next register.  */
3263 	  if (++raw_regno >= FIRST_PSEUDO_REGISTER)
3264 	    raw_regno = 0;
3265 	  search_ofs = raw_regno;
3266 
3267 	  return gen_rtx_REG (mode, regno);
3268 	}
3269     }
3270 
3271   search_ofs = 0;
3272   return NULL_RTX;
3273 }
3274 
3275 /* Forget all currently tracked instructions, only remember current
3276    LIVE regset.  */
3277 
3278 static void
peep2_reinit_state(regset live)3279 peep2_reinit_state (regset live)
3280 {
3281   int i;
3282 
3283   /* Indicate that all slots except the last holds invalid data.  */
3284   for (i = 0; i < MAX_INSNS_PER_PEEP2; ++i)
3285     peep2_insn_data[i].insn = NULL;
3286   peep2_current_count = 0;
3287 
3288   /* Indicate that the last slot contains live_after data.  */
3289   peep2_insn_data[MAX_INSNS_PER_PEEP2].insn = PEEP2_EOB;
3290   peep2_current = MAX_INSNS_PER_PEEP2;
3291 
3292   COPY_REG_SET (peep2_insn_data[MAX_INSNS_PER_PEEP2].live_before, live);
3293 }
3294 
3295 /* While scanning basic block BB, we found a match of length MATCH_LEN,
3296    starting at INSN.  Perform the replacement, removing the old insns and
3297    replacing them with ATTEMPT.  Returns the last insn emitted, or NULL
3298    if the replacement is rejected.  */
3299 
3300 static rtx_insn *
peep2_attempt(basic_block bb,rtx_insn * insn,int match_len,rtx_insn * attempt)3301 peep2_attempt (basic_block bb, rtx_insn *insn, int match_len, rtx_insn *attempt)
3302 {
3303   int i;
3304   rtx_insn *last, *before_try, *x;
3305   rtx eh_note, as_note;
3306   rtx_insn *old_insn;
3307   rtx_insn *new_insn;
3308   bool was_call = false;
3309 
3310   /* If we are splitting an RTX_FRAME_RELATED_P insn, do not allow it to
3311      match more than one insn, or to be split into more than one insn.  */
3312   old_insn = peep2_insn_data[peep2_current].insn;
3313   if (RTX_FRAME_RELATED_P (old_insn))
3314     {
3315       bool any_note = false;
3316       rtx note;
3317 
3318       if (match_len != 0)
3319 	return NULL;
3320 
3321       /* Look for one "active" insn.  I.e. ignore any "clobber" insns that
3322 	 may be in the stream for the purpose of register allocation.  */
3323       if (active_insn_p (attempt))
3324 	new_insn = attempt;
3325       else
3326 	new_insn = next_active_insn (attempt);
3327       if (next_active_insn (new_insn))
3328 	return NULL;
3329 
3330       /* We have a 1-1 replacement.  Copy over any frame-related info.  */
3331       RTX_FRAME_RELATED_P (new_insn) = 1;
3332 
3333       /* Allow the backend to fill in a note during the split.  */
3334       for (note = REG_NOTES (new_insn); note ; note = XEXP (note, 1))
3335 	switch (REG_NOTE_KIND (note))
3336 	  {
3337 	  case REG_FRAME_RELATED_EXPR:
3338 	  case REG_CFA_DEF_CFA:
3339 	  case REG_CFA_ADJUST_CFA:
3340 	  case REG_CFA_OFFSET:
3341 	  case REG_CFA_REGISTER:
3342 	  case REG_CFA_EXPRESSION:
3343 	  case REG_CFA_RESTORE:
3344 	  case REG_CFA_SET_VDRAP:
3345 	    any_note = true;
3346 	    break;
3347 	  default:
3348 	    break;
3349 	  }
3350 
3351       /* If the backend didn't supply a note, copy one over.  */
3352       if (!any_note)
3353         for (note = REG_NOTES (old_insn); note ; note = XEXP (note, 1))
3354 	  switch (REG_NOTE_KIND (note))
3355 	    {
3356 	    case REG_FRAME_RELATED_EXPR:
3357 	    case REG_CFA_DEF_CFA:
3358 	    case REG_CFA_ADJUST_CFA:
3359 	    case REG_CFA_OFFSET:
3360 	    case REG_CFA_REGISTER:
3361 	    case REG_CFA_EXPRESSION:
3362 	    case REG_CFA_RESTORE:
3363 	    case REG_CFA_SET_VDRAP:
3364 	      add_reg_note (new_insn, REG_NOTE_KIND (note), XEXP (note, 0));
3365 	      any_note = true;
3366 	      break;
3367 	    default:
3368 	      break;
3369 	    }
3370 
3371       /* If there still isn't a note, make sure the unwind info sees the
3372 	 same expression as before the split.  */
3373       if (!any_note)
3374 	{
3375 	  rtx old_set, new_set;
3376 
3377 	  /* The old insn had better have been simple, or annotated.  */
3378 	  old_set = single_set (old_insn);
3379 	  gcc_assert (old_set != NULL);
3380 
3381 	  new_set = single_set (new_insn);
3382 	  if (!new_set || !rtx_equal_p (new_set, old_set))
3383 	    add_reg_note (new_insn, REG_FRAME_RELATED_EXPR, old_set);
3384 	}
3385 
3386       /* Copy prologue/epilogue status.  This is required in order to keep
3387 	 proper placement of EPILOGUE_BEG and the DW_CFA_remember_state.  */
3388       maybe_copy_prologue_epilogue_insn (old_insn, new_insn);
3389     }
3390 
3391   /* If we are splitting a CALL_INSN, look for the CALL_INSN
3392      in SEQ and copy our CALL_INSN_FUNCTION_USAGE and other
3393      cfg-related call notes.  */
3394   for (i = 0; i <= match_len; ++i)
3395     {
3396       int j;
3397       rtx note;
3398 
3399       j = peep2_buf_position (peep2_current + i);
3400       old_insn = peep2_insn_data[j].insn;
3401       if (!CALL_P (old_insn))
3402 	continue;
3403       was_call = true;
3404 
3405       new_insn = attempt;
3406       while (new_insn != NULL_RTX)
3407 	{
3408 	  if (CALL_P (new_insn))
3409 	    break;
3410 	  new_insn = NEXT_INSN (new_insn);
3411 	}
3412 
3413       gcc_assert (new_insn != NULL_RTX);
3414 
3415       CALL_INSN_FUNCTION_USAGE (new_insn)
3416 	= CALL_INSN_FUNCTION_USAGE (old_insn);
3417       SIBLING_CALL_P (new_insn) = SIBLING_CALL_P (old_insn);
3418 
3419       for (note = REG_NOTES (old_insn);
3420 	   note;
3421 	   note = XEXP (note, 1))
3422 	switch (REG_NOTE_KIND (note))
3423 	  {
3424 	  case REG_NORETURN:
3425 	  case REG_SETJMP:
3426 	  case REG_TM:
3427 	  case REG_CALL_NOCF_CHECK:
3428 	    add_reg_note (new_insn, REG_NOTE_KIND (note),
3429 			  XEXP (note, 0));
3430 	    break;
3431 	  default:
3432 	    /* Discard all other reg notes.  */
3433 	    break;
3434 	  }
3435 
3436       /* Croak if there is another call in the sequence.  */
3437       while (++i <= match_len)
3438 	{
3439 	  j = peep2_buf_position (peep2_current + i);
3440 	  old_insn = peep2_insn_data[j].insn;
3441 	  gcc_assert (!CALL_P (old_insn));
3442 	}
3443       break;
3444     }
3445 
3446   /* If we matched any instruction that had a REG_ARGS_SIZE, then
3447      move those notes over to the new sequence.  */
3448   as_note = NULL;
3449   for (i = match_len; i >= 0; --i)
3450     {
3451       int j = peep2_buf_position (peep2_current + i);
3452       old_insn = peep2_insn_data[j].insn;
3453 
3454       as_note = find_reg_note (old_insn, REG_ARGS_SIZE, NULL);
3455       if (as_note)
3456 	break;
3457     }
3458 
3459   i = peep2_buf_position (peep2_current + match_len);
3460   eh_note = find_reg_note (peep2_insn_data[i].insn, REG_EH_REGION, NULL_RTX);
3461 
3462   /* Replace the old sequence with the new.  */
3463   rtx_insn *peepinsn = peep2_insn_data[i].insn;
3464   last = emit_insn_after_setloc (attempt,
3465 				 peep2_insn_data[i].insn,
3466 				 INSN_LOCATION (peepinsn));
3467   if (JUMP_P (peepinsn) && JUMP_P (last))
3468     CROSSING_JUMP_P (last) = CROSSING_JUMP_P (peepinsn);
3469   before_try = PREV_INSN (insn);
3470   delete_insn_chain (insn, peep2_insn_data[i].insn, false);
3471 
3472   /* Re-insert the EH_REGION notes.  */
3473   if (eh_note || (was_call && nonlocal_goto_handler_labels))
3474     {
3475       edge eh_edge;
3476       edge_iterator ei;
3477 
3478       FOR_EACH_EDGE (eh_edge, ei, bb->succs)
3479 	if (eh_edge->flags & (EDGE_EH | EDGE_ABNORMAL_CALL))
3480 	  break;
3481 
3482       if (eh_note)
3483 	copy_reg_eh_region_note_backward (eh_note, last, before_try);
3484 
3485       if (eh_edge)
3486 	for (x = last; x != before_try; x = PREV_INSN (x))
3487 	  if (x != BB_END (bb)
3488 	      && (can_throw_internal (x)
3489 		  || can_nonlocal_goto (x)))
3490 	    {
3491 	      edge nfte, nehe;
3492 	      int flags;
3493 
3494 	      nfte = split_block (bb, x);
3495 	      flags = (eh_edge->flags
3496 		       & (EDGE_EH | EDGE_ABNORMAL));
3497 	      if (CALL_P (x))
3498 		flags |= EDGE_ABNORMAL_CALL;
3499 	      nehe = make_edge (nfte->src, eh_edge->dest,
3500 				flags);
3501 
3502 	      nehe->probability = eh_edge->probability;
3503 	      nfte->probability = nehe->probability.invert ();
3504 
3505 	      peep2_do_cleanup_cfg |= purge_dead_edges (nfte->dest);
3506 	      bb = nfte->src;
3507 	      eh_edge = nehe;
3508 	    }
3509 
3510       /* Converting possibly trapping insn to non-trapping is
3511 	 possible.  Zap dummy outgoing edges.  */
3512       peep2_do_cleanup_cfg |= purge_dead_edges (bb);
3513     }
3514 
3515   /* Re-insert the ARGS_SIZE notes.  */
3516   if (as_note)
3517     fixup_args_size_notes (before_try, last, get_args_size (as_note));
3518 
3519   /* If we generated a jump instruction, it won't have
3520      JUMP_LABEL set.  Recompute after we're done.  */
3521   for (x = last; x != before_try; x = PREV_INSN (x))
3522     if (JUMP_P (x))
3523       {
3524 	peep2_do_rebuild_jump_labels = true;
3525 	break;
3526       }
3527 
3528   return last;
3529 }
3530 
3531 /* After performing a replacement in basic block BB, fix up the life
3532    information in our buffer.  LAST is the last of the insns that we
3533    emitted as a replacement.  PREV is the insn before the start of
3534    the replacement.  MATCH_LEN is the number of instructions that were
3535    matched, and which now need to be replaced in the buffer.  */
3536 
3537 static void
peep2_update_life(basic_block bb,int match_len,rtx_insn * last,rtx_insn * prev)3538 peep2_update_life (basic_block bb, int match_len, rtx_insn *last,
3539 		   rtx_insn *prev)
3540 {
3541   int i = peep2_buf_position (peep2_current + match_len + 1);
3542   rtx_insn *x;
3543   regset_head live;
3544 
3545   INIT_REG_SET (&live);
3546   COPY_REG_SET (&live, peep2_insn_data[i].live_before);
3547 
3548   gcc_assert (peep2_current_count >= match_len + 1);
3549   peep2_current_count -= match_len + 1;
3550 
3551   x = last;
3552   do
3553     {
3554       if (INSN_P (x))
3555 	{
3556 	  df_insn_rescan (x);
3557 	  if (peep2_current_count < MAX_INSNS_PER_PEEP2)
3558 	    {
3559 	      peep2_current_count++;
3560 	      if (--i < 0)
3561 		i = MAX_INSNS_PER_PEEP2;
3562 	      peep2_insn_data[i].insn = x;
3563 	      df_simulate_one_insn_backwards (bb, x, &live);
3564 	      COPY_REG_SET (peep2_insn_data[i].live_before, &live);
3565 	    }
3566 	}
3567       x = PREV_INSN (x);
3568     }
3569   while (x != prev);
3570   CLEAR_REG_SET (&live);
3571 
3572   peep2_current = i;
3573 }
3574 
3575 /* Add INSN, which is in BB, at the end of the peep2 insn buffer if possible.
3576    Return true if we added it, false otherwise.  The caller will try to match
3577    peepholes against the buffer if we return false; otherwise it will try to
3578    add more instructions to the buffer.  */
3579 
3580 static bool
peep2_fill_buffer(basic_block bb,rtx_insn * insn,regset live)3581 peep2_fill_buffer (basic_block bb, rtx_insn *insn, regset live)
3582 {
3583   int pos;
3584 
3585   /* Once we have filled the maximum number of insns the buffer can hold,
3586      allow the caller to match the insns against peepholes.  We wait until
3587      the buffer is full in case the target has similar peepholes of different
3588      length; we always want to match the longest if possible.  */
3589   if (peep2_current_count == MAX_INSNS_PER_PEEP2)
3590     return false;
3591 
3592   /* If an insn has RTX_FRAME_RELATED_P set, do not allow it to be matched with
3593      any other pattern, lest it change the semantics of the frame info.  */
3594   if (RTX_FRAME_RELATED_P (insn))
3595     {
3596       /* Let the buffer drain first.  */
3597       if (peep2_current_count > 0)
3598 	return false;
3599       /* Now the insn will be the only thing in the buffer.  */
3600     }
3601 
3602   pos = peep2_buf_position (peep2_current + peep2_current_count);
3603   peep2_insn_data[pos].insn = insn;
3604   COPY_REG_SET (peep2_insn_data[pos].live_before, live);
3605   peep2_current_count++;
3606 
3607   df_simulate_one_insn_forwards (bb, insn, live);
3608   return true;
3609 }
3610 
3611 /* Perform the peephole2 optimization pass.  */
3612 
3613 static void
peephole2_optimize(void)3614 peephole2_optimize (void)
3615 {
3616   rtx_insn *insn;
3617   bitmap live;
3618   int i;
3619   basic_block bb;
3620 
3621   peep2_do_cleanup_cfg = false;
3622   peep2_do_rebuild_jump_labels = false;
3623 
3624   df_set_flags (DF_LR_RUN_DCE);
3625   df_note_add_problem ();
3626   df_analyze ();
3627 
3628   /* Initialize the regsets we're going to use.  */
3629   for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3630     peep2_insn_data[i].live_before = BITMAP_ALLOC (&reg_obstack);
3631   search_ofs = 0;
3632   live = BITMAP_ALLOC (&reg_obstack);
3633 
3634   FOR_EACH_BB_REVERSE_FN (bb, cfun)
3635     {
3636       bool past_end = false;
3637       int pos;
3638 
3639       rtl_profile_for_bb (bb);
3640 
3641       /* Start up propagation.  */
3642       bitmap_copy (live, DF_LR_IN (bb));
3643       df_simulate_initialize_forwards (bb, live);
3644       peep2_reinit_state (live);
3645 
3646       insn = BB_HEAD (bb);
3647       for (;;)
3648 	{
3649 	  rtx_insn *attempt, *head;
3650 	  int match_len;
3651 
3652 	  if (!past_end && !NONDEBUG_INSN_P (insn))
3653 	    {
3654 	    next_insn:
3655 	      insn = NEXT_INSN (insn);
3656 	      if (insn == NEXT_INSN (BB_END (bb)))
3657 		past_end = true;
3658 	      continue;
3659 	    }
3660 	  if (!past_end && peep2_fill_buffer (bb, insn, live))
3661 	    goto next_insn;
3662 
3663 	  /* If we did not fill an empty buffer, it signals the end of the
3664 	     block.  */
3665 	  if (peep2_current_count == 0)
3666 	    break;
3667 
3668 	  /* The buffer filled to the current maximum, so try to match.  */
3669 
3670 	  pos = peep2_buf_position (peep2_current + peep2_current_count);
3671 	  peep2_insn_data[pos].insn = PEEP2_EOB;
3672 	  COPY_REG_SET (peep2_insn_data[pos].live_before, live);
3673 
3674 	  /* Match the peephole.  */
3675 	  head = peep2_insn_data[peep2_current].insn;
3676 	  attempt = peephole2_insns (PATTERN (head), head, &match_len);
3677 	  if (attempt != NULL)
3678 	    {
3679 	      rtx_insn *last = peep2_attempt (bb, head, match_len, attempt);
3680 	      if (last)
3681 		{
3682 		  peep2_update_life (bb, match_len, last, PREV_INSN (attempt));
3683 		  continue;
3684 		}
3685 	    }
3686 
3687 	  /* No match: advance the buffer by one insn.  */
3688 	  peep2_current = peep2_buf_position (peep2_current + 1);
3689 	  peep2_current_count--;
3690 	}
3691     }
3692 
3693   default_rtl_profile ();
3694   for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3695     BITMAP_FREE (peep2_insn_data[i].live_before);
3696   BITMAP_FREE (live);
3697   if (peep2_do_rebuild_jump_labels)
3698     rebuild_jump_labels (get_insns ());
3699   if (peep2_do_cleanup_cfg)
3700     cleanup_cfg (CLEANUP_CFG_CHANGED);
3701 }
3702 
3703 /* Common predicates for use with define_bypass.  */
3704 
3705 /* Helper function for store_data_bypass_p, handle just a single SET
3706    IN_SET.  */
3707 
3708 static bool
store_data_bypass_p_1(rtx_insn * out_insn,rtx in_set)3709 store_data_bypass_p_1 (rtx_insn *out_insn, rtx in_set)
3710 {
3711   if (!MEM_P (SET_DEST (in_set)))
3712     return false;
3713 
3714   rtx out_set = single_set (out_insn);
3715   if (out_set)
3716     return !reg_mentioned_p (SET_DEST (out_set), SET_DEST (in_set));
3717 
3718   rtx out_pat = PATTERN (out_insn);
3719   if (GET_CODE (out_pat) != PARALLEL)
3720     return false;
3721 
3722   for (int i = 0; i < XVECLEN (out_pat, 0); i++)
3723     {
3724       rtx out_exp = XVECEXP (out_pat, 0, i);
3725 
3726       if (GET_CODE (out_exp) == CLOBBER || GET_CODE (out_exp) == USE)
3727 	continue;
3728 
3729       gcc_assert (GET_CODE (out_exp) == SET);
3730 
3731       if (reg_mentioned_p (SET_DEST (out_exp), SET_DEST (in_set)))
3732 	return false;
3733     }
3734 
3735   return true;
3736 }
3737 
3738 /* True if the dependency between OUT_INSN and IN_INSN is on the store
3739    data not the address operand(s) of the store.  IN_INSN and OUT_INSN
3740    must be either a single_set or a PARALLEL with SETs inside.  */
3741 
3742 int
store_data_bypass_p(rtx_insn * out_insn,rtx_insn * in_insn)3743 store_data_bypass_p (rtx_insn *out_insn, rtx_insn *in_insn)
3744 {
3745   rtx in_set = single_set (in_insn);
3746   if (in_set)
3747     return store_data_bypass_p_1 (out_insn, in_set);
3748 
3749   rtx in_pat = PATTERN (in_insn);
3750   if (GET_CODE (in_pat) != PARALLEL)
3751     return false;
3752 
3753   for (int i = 0; i < XVECLEN (in_pat, 0); i++)
3754     {
3755       rtx in_exp = XVECEXP (in_pat, 0, i);
3756 
3757       if (GET_CODE (in_exp) == CLOBBER || GET_CODE (in_exp) == USE)
3758 	continue;
3759 
3760       gcc_assert (GET_CODE (in_exp) == SET);
3761 
3762       if (!store_data_bypass_p_1 (out_insn, in_exp))
3763 	return false;
3764     }
3765 
3766   return true;
3767 }
3768 
3769 /* True if the dependency between OUT_INSN and IN_INSN is in the IF_THEN_ELSE
3770    condition, and not the THEN or ELSE branch.  OUT_INSN may be either a single
3771    or multiple set; IN_INSN should be single_set for truth, but for convenience
3772    of insn categorization may be any JUMP or CALL insn.  */
3773 
3774 int
if_test_bypass_p(rtx_insn * out_insn,rtx_insn * in_insn)3775 if_test_bypass_p (rtx_insn *out_insn, rtx_insn *in_insn)
3776 {
3777   rtx out_set, in_set;
3778 
3779   in_set = single_set (in_insn);
3780   if (! in_set)
3781     {
3782       gcc_assert (JUMP_P (in_insn) || CALL_P (in_insn));
3783       return false;
3784     }
3785 
3786   if (GET_CODE (SET_SRC (in_set)) != IF_THEN_ELSE)
3787     return false;
3788   in_set = SET_SRC (in_set);
3789 
3790   out_set = single_set (out_insn);
3791   if (out_set)
3792     {
3793       if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3794 	  || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3795 	return false;
3796     }
3797   else
3798     {
3799       rtx out_pat;
3800       int i;
3801 
3802       out_pat = PATTERN (out_insn);
3803       gcc_assert (GET_CODE (out_pat) == PARALLEL);
3804 
3805       for (i = 0; i < XVECLEN (out_pat, 0); i++)
3806 	{
3807 	  rtx exp = XVECEXP (out_pat, 0, i);
3808 
3809 	  if (GET_CODE (exp) == CLOBBER)
3810 	    continue;
3811 
3812 	  gcc_assert (GET_CODE (exp) == SET);
3813 
3814 	  if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3815 	      || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3816 	    return false;
3817 	}
3818     }
3819 
3820   return true;
3821 }
3822 
3823 static unsigned int
rest_of_handle_peephole2(void)3824 rest_of_handle_peephole2 (void)
3825 {
3826   if (HAVE_peephole2)
3827     peephole2_optimize ();
3828 
3829   return 0;
3830 }
3831 
3832 namespace {
3833 
3834 const pass_data pass_data_peephole2 =
3835 {
3836   RTL_PASS, /* type */
3837   "peephole2", /* name */
3838   OPTGROUP_NONE, /* optinfo_flags */
3839   TV_PEEPHOLE2, /* tv_id */
3840   0, /* properties_required */
3841   0, /* properties_provided */
3842   0, /* properties_destroyed */
3843   0, /* todo_flags_start */
3844   TODO_df_finish, /* todo_flags_finish */
3845 };
3846 
3847 class pass_peephole2 : public rtl_opt_pass
3848 {
3849 public:
pass_peephole2(gcc::context * ctxt)3850   pass_peephole2 (gcc::context *ctxt)
3851     : rtl_opt_pass (pass_data_peephole2, ctxt)
3852   {}
3853 
3854   /* opt_pass methods: */
3855   /* The epiphany backend creates a second instance of this pass, so we need
3856      a clone method.  */
clone()3857   opt_pass * clone () { return new pass_peephole2 (m_ctxt); }
gate(function *)3858   virtual bool gate (function *) { return (optimize > 0 && flag_peephole2); }
execute(function *)3859   virtual unsigned int execute (function *)
3860     {
3861       return rest_of_handle_peephole2 ();
3862     }
3863 
3864 }; // class pass_peephole2
3865 
3866 } // anon namespace
3867 
3868 rtl_opt_pass *
make_pass_peephole2(gcc::context * ctxt)3869 make_pass_peephole2 (gcc::context *ctxt)
3870 {
3871   return new pass_peephole2 (ctxt);
3872 }
3873 
3874 namespace {
3875 
3876 const pass_data pass_data_split_all_insns =
3877 {
3878   RTL_PASS, /* type */
3879   "split1", /* name */
3880   OPTGROUP_NONE, /* optinfo_flags */
3881   TV_NONE, /* tv_id */
3882   0, /* properties_required */
3883   PROP_rtl_split_insns, /* properties_provided */
3884   0, /* properties_destroyed */
3885   0, /* todo_flags_start */
3886   0, /* todo_flags_finish */
3887 };
3888 
3889 class pass_split_all_insns : public rtl_opt_pass
3890 {
3891 public:
pass_split_all_insns(gcc::context * ctxt)3892   pass_split_all_insns (gcc::context *ctxt)
3893     : rtl_opt_pass (pass_data_split_all_insns, ctxt)
3894   {}
3895 
3896   /* opt_pass methods: */
3897   /* The epiphany backend creates a second instance of this pass, so
3898      we need a clone method.  */
clone()3899   opt_pass * clone () { return new pass_split_all_insns (m_ctxt); }
execute(function *)3900   virtual unsigned int execute (function *)
3901     {
3902       split_all_insns ();
3903       return 0;
3904     }
3905 
3906 }; // class pass_split_all_insns
3907 
3908 } // anon namespace
3909 
3910 rtl_opt_pass *
make_pass_split_all_insns(gcc::context * ctxt)3911 make_pass_split_all_insns (gcc::context *ctxt)
3912 {
3913   return new pass_split_all_insns (ctxt);
3914 }
3915 
3916 namespace {
3917 
3918 const pass_data pass_data_split_after_reload =
3919 {
3920   RTL_PASS, /* type */
3921   "split2", /* name */
3922   OPTGROUP_NONE, /* optinfo_flags */
3923   TV_NONE, /* tv_id */
3924   0, /* properties_required */
3925   0, /* properties_provided */
3926   0, /* properties_destroyed */
3927   0, /* todo_flags_start */
3928   0, /* todo_flags_finish */
3929 };
3930 
3931 class pass_split_after_reload : public rtl_opt_pass
3932 {
3933 public:
pass_split_after_reload(gcc::context * ctxt)3934   pass_split_after_reload (gcc::context *ctxt)
3935     : rtl_opt_pass (pass_data_split_after_reload, ctxt)
3936   {}
3937 
3938   /* opt_pass methods: */
gate(function *)3939   virtual bool gate (function *)
3940     {
3941       /* If optimizing, then go ahead and split insns now.  */
3942       if (optimize > 0)
3943 	return true;
3944 
3945 #ifdef STACK_REGS
3946       return true;
3947 #else
3948       return false;
3949 #endif
3950     }
3951 
execute(function *)3952   virtual unsigned int execute (function *)
3953     {
3954       split_all_insns ();
3955       return 0;
3956     }
3957 
3958 }; // class pass_split_after_reload
3959 
3960 } // anon namespace
3961 
3962 rtl_opt_pass *
make_pass_split_after_reload(gcc::context * ctxt)3963 make_pass_split_after_reload (gcc::context *ctxt)
3964 {
3965   return new pass_split_after_reload (ctxt);
3966 }
3967 
3968 namespace {
3969 
3970 const pass_data pass_data_split_before_regstack =
3971 {
3972   RTL_PASS, /* type */
3973   "split3", /* name */
3974   OPTGROUP_NONE, /* optinfo_flags */
3975   TV_NONE, /* tv_id */
3976   0, /* properties_required */
3977   0, /* properties_provided */
3978   0, /* properties_destroyed */
3979   0, /* todo_flags_start */
3980   0, /* todo_flags_finish */
3981 };
3982 
3983 class pass_split_before_regstack : public rtl_opt_pass
3984 {
3985 public:
pass_split_before_regstack(gcc::context * ctxt)3986   pass_split_before_regstack (gcc::context *ctxt)
3987     : rtl_opt_pass (pass_data_split_before_regstack, ctxt)
3988   {}
3989 
3990   /* opt_pass methods: */
3991   virtual bool gate (function *);
execute(function *)3992   virtual unsigned int execute (function *)
3993     {
3994       split_all_insns ();
3995       return 0;
3996     }
3997 
3998 }; // class pass_split_before_regstack
3999 
4000 bool
gate(function *)4001 pass_split_before_regstack::gate (function *)
4002 {
4003 #if HAVE_ATTR_length && defined (STACK_REGS)
4004   /* If flow2 creates new instructions which need splitting
4005      and scheduling after reload is not done, they might not be
4006      split until final which doesn't allow splitting
4007      if HAVE_ATTR_length.  */
4008 # ifdef INSN_SCHEDULING
4009   return (optimize && !flag_schedule_insns_after_reload);
4010 # else
4011   return (optimize);
4012 # endif
4013 #else
4014   return 0;
4015 #endif
4016 }
4017 
4018 } // anon namespace
4019 
4020 rtl_opt_pass *
make_pass_split_before_regstack(gcc::context * ctxt)4021 make_pass_split_before_regstack (gcc::context *ctxt)
4022 {
4023   return new pass_split_before_regstack (ctxt);
4024 }
4025 
4026 static unsigned int
rest_of_handle_split_before_sched2(void)4027 rest_of_handle_split_before_sched2 (void)
4028 {
4029 #ifdef INSN_SCHEDULING
4030   split_all_insns ();
4031 #endif
4032   return 0;
4033 }
4034 
4035 namespace {
4036 
4037 const pass_data pass_data_split_before_sched2 =
4038 {
4039   RTL_PASS, /* type */
4040   "split4", /* name */
4041   OPTGROUP_NONE, /* optinfo_flags */
4042   TV_NONE, /* tv_id */
4043   0, /* properties_required */
4044   0, /* properties_provided */
4045   0, /* properties_destroyed */
4046   0, /* todo_flags_start */
4047   0, /* todo_flags_finish */
4048 };
4049 
4050 class pass_split_before_sched2 : public rtl_opt_pass
4051 {
4052 public:
pass_split_before_sched2(gcc::context * ctxt)4053   pass_split_before_sched2 (gcc::context *ctxt)
4054     : rtl_opt_pass (pass_data_split_before_sched2, ctxt)
4055   {}
4056 
4057   /* opt_pass methods: */
gate(function *)4058   virtual bool gate (function *)
4059     {
4060 #ifdef INSN_SCHEDULING
4061       return optimize > 0 && flag_schedule_insns_after_reload;
4062 #else
4063       return false;
4064 #endif
4065     }
4066 
execute(function *)4067   virtual unsigned int execute (function *)
4068     {
4069       return rest_of_handle_split_before_sched2 ();
4070     }
4071 
4072 }; // class pass_split_before_sched2
4073 
4074 } // anon namespace
4075 
4076 rtl_opt_pass *
make_pass_split_before_sched2(gcc::context * ctxt)4077 make_pass_split_before_sched2 (gcc::context *ctxt)
4078 {
4079   return new pass_split_before_sched2 (ctxt);
4080 }
4081 
4082 namespace {
4083 
4084 const pass_data pass_data_split_for_shorten_branches =
4085 {
4086   RTL_PASS, /* type */
4087   "split5", /* name */
4088   OPTGROUP_NONE, /* optinfo_flags */
4089   TV_NONE, /* tv_id */
4090   0, /* properties_required */
4091   0, /* properties_provided */
4092   0, /* properties_destroyed */
4093   0, /* todo_flags_start */
4094   0, /* todo_flags_finish */
4095 };
4096 
4097 class pass_split_for_shorten_branches : public rtl_opt_pass
4098 {
4099 public:
pass_split_for_shorten_branches(gcc::context * ctxt)4100   pass_split_for_shorten_branches (gcc::context *ctxt)
4101     : rtl_opt_pass (pass_data_split_for_shorten_branches, ctxt)
4102   {}
4103 
4104   /* opt_pass methods: */
gate(function *)4105   virtual bool gate (function *)
4106     {
4107       /* The placement of the splitting that we do for shorten_branches
4108 	 depends on whether regstack is used by the target or not.  */
4109 #if HAVE_ATTR_length && !defined (STACK_REGS)
4110       return true;
4111 #else
4112       return false;
4113 #endif
4114     }
4115 
execute(function *)4116   virtual unsigned int execute (function *)
4117     {
4118       return split_all_insns_noflow ();
4119     }
4120 
4121 }; // class pass_split_for_shorten_branches
4122 
4123 } // anon namespace
4124 
4125 rtl_opt_pass *
make_pass_split_for_shorten_branches(gcc::context * ctxt)4126 make_pass_split_for_shorten_branches (gcc::context *ctxt)
4127 {
4128   return new pass_split_for_shorten_branches (ctxt);
4129 }
4130 
4131 /* (Re)initialize the target information after a change in target.  */
4132 
4133 void
recog_init()4134 recog_init ()
4135 {
4136   /* The information is zero-initialized, so we don't need to do anything
4137      first time round.  */
4138   if (!this_target_recog->x_initialized)
4139     {
4140       this_target_recog->x_initialized = true;
4141       return;
4142     }
4143   memset (this_target_recog->x_bool_attr_masks, 0,
4144 	  sizeof (this_target_recog->x_bool_attr_masks));
4145   for (unsigned int i = 0; i < NUM_INSN_CODES; ++i)
4146     if (this_target_recog->x_op_alt[i])
4147       {
4148 	free (this_target_recog->x_op_alt[i]);
4149 	this_target_recog->x_op_alt[i] = 0;
4150       }
4151 }
4152