1 /* C-compiler utilities for types and variables storage layout
2 Copyright (C) 1987-2018 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "target.h"
25 #include "function.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "memmodel.h"
29 #include "tm_p.h"
30 #include "stringpool.h"
31 #include "regs.h"
32 #include "emit-rtl.h"
33 #include "cgraph.h"
34 #include "diagnostic-core.h"
35 #include "fold-const.h"
36 #include "stor-layout.h"
37 #include "varasm.h"
38 #include "print-tree.h"
39 #include "langhooks.h"
40 #include "tree-inline.h"
41 #include "dumpfile.h"
42 #include "gimplify.h"
43 #include "attribs.h"
44 #include "debug.h"
45
46 /* Data type for the expressions representing sizes of data types.
47 It is the first integer type laid out. */
48 tree sizetype_tab[(int) stk_type_kind_last];
49
50 /* If nonzero, this is an upper limit on alignment of structure fields.
51 The value is measured in bits. */
52 unsigned int maximum_field_alignment = TARGET_DEFAULT_PACK_STRUCT * BITS_PER_UNIT;
53
54 static tree self_referential_size (tree);
55 static void finalize_record_size (record_layout_info);
56 static void finalize_type_size (tree);
57 static void place_union_field (record_layout_info, tree);
58 static int excess_unit_span (HOST_WIDE_INT, HOST_WIDE_INT, HOST_WIDE_INT,
59 HOST_WIDE_INT, tree);
60 extern void debug_rli (record_layout_info);
61
62 /* Given a size SIZE that may not be a constant, return a SAVE_EXPR
63 to serve as the actual size-expression for a type or decl. */
64
65 tree
variable_size(tree size)66 variable_size (tree size)
67 {
68 /* Obviously. */
69 if (TREE_CONSTANT (size))
70 return size;
71
72 /* If the size is self-referential, we can't make a SAVE_EXPR (see
73 save_expr for the rationale). But we can do something else. */
74 if (CONTAINS_PLACEHOLDER_P (size))
75 return self_referential_size (size);
76
77 /* If we are in the global binding level, we can't make a SAVE_EXPR
78 since it may end up being shared across functions, so it is up
79 to the front-end to deal with this case. */
80 if (lang_hooks.decls.global_bindings_p ())
81 return size;
82
83 return save_expr (size);
84 }
85
86 /* An array of functions used for self-referential size computation. */
87 static GTY(()) vec<tree, va_gc> *size_functions;
88
89 /* Return true if T is a self-referential component reference. */
90
91 static bool
self_referential_component_ref_p(tree t)92 self_referential_component_ref_p (tree t)
93 {
94 if (TREE_CODE (t) != COMPONENT_REF)
95 return false;
96
97 while (REFERENCE_CLASS_P (t))
98 t = TREE_OPERAND (t, 0);
99
100 return (TREE_CODE (t) == PLACEHOLDER_EXPR);
101 }
102
103 /* Similar to copy_tree_r but do not copy component references involving
104 PLACEHOLDER_EXPRs. These nodes are spotted in find_placeholder_in_expr
105 and substituted in substitute_in_expr. */
106
107 static tree
copy_self_referential_tree_r(tree * tp,int * walk_subtrees,void * data)108 copy_self_referential_tree_r (tree *tp, int *walk_subtrees, void *data)
109 {
110 enum tree_code code = TREE_CODE (*tp);
111
112 /* Stop at types, decls, constants like copy_tree_r. */
113 if (TREE_CODE_CLASS (code) == tcc_type
114 || TREE_CODE_CLASS (code) == tcc_declaration
115 || TREE_CODE_CLASS (code) == tcc_constant)
116 {
117 *walk_subtrees = 0;
118 return NULL_TREE;
119 }
120
121 /* This is the pattern built in ada/make_aligning_type. */
122 else if (code == ADDR_EXPR
123 && TREE_CODE (TREE_OPERAND (*tp, 0)) == PLACEHOLDER_EXPR)
124 {
125 *walk_subtrees = 0;
126 return NULL_TREE;
127 }
128
129 /* Default case: the component reference. */
130 else if (self_referential_component_ref_p (*tp))
131 {
132 *walk_subtrees = 0;
133 return NULL_TREE;
134 }
135
136 /* We're not supposed to have them in self-referential size trees
137 because we wouldn't properly control when they are evaluated.
138 However, not creating superfluous SAVE_EXPRs requires accurate
139 tracking of readonly-ness all the way down to here, which we
140 cannot always guarantee in practice. So punt in this case. */
141 else if (code == SAVE_EXPR)
142 return error_mark_node;
143
144 else if (code == STATEMENT_LIST)
145 gcc_unreachable ();
146
147 return copy_tree_r (tp, walk_subtrees, data);
148 }
149
150 /* Given a SIZE expression that is self-referential, return an equivalent
151 expression to serve as the actual size expression for a type. */
152
153 static tree
self_referential_size(tree size)154 self_referential_size (tree size)
155 {
156 static unsigned HOST_WIDE_INT fnno = 0;
157 vec<tree> self_refs = vNULL;
158 tree param_type_list = NULL, param_decl_list = NULL;
159 tree t, ref, return_type, fntype, fnname, fndecl;
160 unsigned int i;
161 char buf[128];
162 vec<tree, va_gc> *args = NULL;
163
164 /* Do not factor out simple operations. */
165 t = skip_simple_constant_arithmetic (size);
166 if (TREE_CODE (t) == CALL_EXPR || self_referential_component_ref_p (t))
167 return size;
168
169 /* Collect the list of self-references in the expression. */
170 find_placeholder_in_expr (size, &self_refs);
171 gcc_assert (self_refs.length () > 0);
172
173 /* Obtain a private copy of the expression. */
174 t = size;
175 if (walk_tree (&t, copy_self_referential_tree_r, NULL, NULL) != NULL_TREE)
176 return size;
177 size = t;
178
179 /* Build the parameter and argument lists in parallel; also
180 substitute the former for the latter in the expression. */
181 vec_alloc (args, self_refs.length ());
182 FOR_EACH_VEC_ELT (self_refs, i, ref)
183 {
184 tree subst, param_name, param_type, param_decl;
185
186 if (DECL_P (ref))
187 {
188 /* We shouldn't have true variables here. */
189 gcc_assert (TREE_READONLY (ref));
190 subst = ref;
191 }
192 /* This is the pattern built in ada/make_aligning_type. */
193 else if (TREE_CODE (ref) == ADDR_EXPR)
194 subst = ref;
195 /* Default case: the component reference. */
196 else
197 subst = TREE_OPERAND (ref, 1);
198
199 sprintf (buf, "p%d", i);
200 param_name = get_identifier (buf);
201 param_type = TREE_TYPE (ref);
202 param_decl
203 = build_decl (input_location, PARM_DECL, param_name, param_type);
204 DECL_ARG_TYPE (param_decl) = param_type;
205 DECL_ARTIFICIAL (param_decl) = 1;
206 TREE_READONLY (param_decl) = 1;
207
208 size = substitute_in_expr (size, subst, param_decl);
209
210 param_type_list = tree_cons (NULL_TREE, param_type, param_type_list);
211 param_decl_list = chainon (param_decl, param_decl_list);
212 args->quick_push (ref);
213 }
214
215 self_refs.release ();
216
217 /* Append 'void' to indicate that the number of parameters is fixed. */
218 param_type_list = tree_cons (NULL_TREE, void_type_node, param_type_list);
219
220 /* The 3 lists have been created in reverse order. */
221 param_type_list = nreverse (param_type_list);
222 param_decl_list = nreverse (param_decl_list);
223
224 /* Build the function type. */
225 return_type = TREE_TYPE (size);
226 fntype = build_function_type (return_type, param_type_list);
227
228 /* Build the function declaration. */
229 sprintf (buf, "SZ" HOST_WIDE_INT_PRINT_UNSIGNED, fnno++);
230 fnname = get_file_function_name (buf);
231 fndecl = build_decl (input_location, FUNCTION_DECL, fnname, fntype);
232 for (t = param_decl_list; t; t = DECL_CHAIN (t))
233 DECL_CONTEXT (t) = fndecl;
234 DECL_ARGUMENTS (fndecl) = param_decl_list;
235 DECL_RESULT (fndecl)
236 = build_decl (input_location, RESULT_DECL, 0, return_type);
237 DECL_CONTEXT (DECL_RESULT (fndecl)) = fndecl;
238
239 /* The function has been created by the compiler and we don't
240 want to emit debug info for it. */
241 DECL_ARTIFICIAL (fndecl) = 1;
242 DECL_IGNORED_P (fndecl) = 1;
243
244 /* It is supposed to be "const" and never throw. */
245 TREE_READONLY (fndecl) = 1;
246 TREE_NOTHROW (fndecl) = 1;
247
248 /* We want it to be inlined when this is deemed profitable, as
249 well as discarded if every call has been integrated. */
250 DECL_DECLARED_INLINE_P (fndecl) = 1;
251
252 /* It is made up of a unique return statement. */
253 DECL_INITIAL (fndecl) = make_node (BLOCK);
254 BLOCK_SUPERCONTEXT (DECL_INITIAL (fndecl)) = fndecl;
255 t = build2 (MODIFY_EXPR, return_type, DECL_RESULT (fndecl), size);
256 DECL_SAVED_TREE (fndecl) = build1 (RETURN_EXPR, void_type_node, t);
257 TREE_STATIC (fndecl) = 1;
258
259 /* Put it onto the list of size functions. */
260 vec_safe_push (size_functions, fndecl);
261
262 /* Replace the original expression with a call to the size function. */
263 return build_call_expr_loc_vec (UNKNOWN_LOCATION, fndecl, args);
264 }
265
266 /* Take, queue and compile all the size functions. It is essential that
267 the size functions be gimplified at the very end of the compilation
268 in order to guarantee transparent handling of self-referential sizes.
269 Otherwise the GENERIC inliner would not be able to inline them back
270 at each of their call sites, thus creating artificial non-constant
271 size expressions which would trigger nasty problems later on. */
272
273 void
finalize_size_functions(void)274 finalize_size_functions (void)
275 {
276 unsigned int i;
277 tree fndecl;
278
279 for (i = 0; size_functions && size_functions->iterate (i, &fndecl); i++)
280 {
281 allocate_struct_function (fndecl, false);
282 set_cfun (NULL);
283 dump_function (TDI_original, fndecl);
284
285 /* As these functions are used to describe the layout of variable-length
286 structures, debug info generation needs their implementation. */
287 debug_hooks->size_function (fndecl);
288 gimplify_function_tree (fndecl);
289 cgraph_node::finalize_function (fndecl, false);
290 }
291
292 vec_free (size_functions);
293 }
294
295 /* Return a machine mode of class MCLASS with SIZE bits of precision,
296 if one exists. The mode may have padding bits as well the SIZE
297 value bits. If LIMIT is nonzero, disregard modes wider than
298 MAX_FIXED_MODE_SIZE. */
299
300 opt_machine_mode
mode_for_size(poly_uint64 size,enum mode_class mclass,int limit)301 mode_for_size (poly_uint64 size, enum mode_class mclass, int limit)
302 {
303 machine_mode mode;
304 int i;
305
306 if (limit && maybe_gt (size, (unsigned int) MAX_FIXED_MODE_SIZE))
307 return opt_machine_mode ();
308
309 /* Get the first mode which has this size, in the specified class. */
310 FOR_EACH_MODE_IN_CLASS (mode, mclass)
311 if (known_eq (GET_MODE_PRECISION (mode), size))
312 return mode;
313
314 if (mclass == MODE_INT || mclass == MODE_PARTIAL_INT)
315 for (i = 0; i < NUM_INT_N_ENTS; i ++)
316 if (known_eq (int_n_data[i].bitsize, size)
317 && int_n_enabled_p[i])
318 return int_n_data[i].m;
319
320 return opt_machine_mode ();
321 }
322
323 /* Similar, except passed a tree node. */
324
325 opt_machine_mode
mode_for_size_tree(const_tree size,enum mode_class mclass,int limit)326 mode_for_size_tree (const_tree size, enum mode_class mclass, int limit)
327 {
328 unsigned HOST_WIDE_INT uhwi;
329 unsigned int ui;
330
331 if (!tree_fits_uhwi_p (size))
332 return opt_machine_mode ();
333 uhwi = tree_to_uhwi (size);
334 ui = uhwi;
335 if (uhwi != ui)
336 return opt_machine_mode ();
337 return mode_for_size (ui, mclass, limit);
338 }
339
340 /* Return the narrowest mode of class MCLASS that contains at least
341 SIZE bits. Abort if no such mode exists. */
342
343 machine_mode
smallest_mode_for_size(poly_uint64 size,enum mode_class mclass)344 smallest_mode_for_size (poly_uint64 size, enum mode_class mclass)
345 {
346 machine_mode mode = VOIDmode;
347 int i;
348
349 /* Get the first mode which has at least this size, in the
350 specified class. */
351 FOR_EACH_MODE_IN_CLASS (mode, mclass)
352 if (known_ge (GET_MODE_PRECISION (mode), size))
353 break;
354
355 gcc_assert (mode != VOIDmode);
356
357 if (mclass == MODE_INT || mclass == MODE_PARTIAL_INT)
358 for (i = 0; i < NUM_INT_N_ENTS; i ++)
359 if (known_ge (int_n_data[i].bitsize, size)
360 && known_lt (int_n_data[i].bitsize, GET_MODE_PRECISION (mode))
361 && int_n_enabled_p[i])
362 mode = int_n_data[i].m;
363
364 return mode;
365 }
366
367 /* Return an integer mode of exactly the same size as MODE, if one exists. */
368
369 opt_scalar_int_mode
int_mode_for_mode(machine_mode mode)370 int_mode_for_mode (machine_mode mode)
371 {
372 switch (GET_MODE_CLASS (mode))
373 {
374 case MODE_INT:
375 case MODE_PARTIAL_INT:
376 return as_a <scalar_int_mode> (mode);
377
378 case MODE_COMPLEX_INT:
379 case MODE_COMPLEX_FLOAT:
380 case MODE_FLOAT:
381 case MODE_DECIMAL_FLOAT:
382 case MODE_FRACT:
383 case MODE_ACCUM:
384 case MODE_UFRACT:
385 case MODE_UACCUM:
386 case MODE_VECTOR_BOOL:
387 case MODE_VECTOR_INT:
388 case MODE_VECTOR_FLOAT:
389 case MODE_VECTOR_FRACT:
390 case MODE_VECTOR_ACCUM:
391 case MODE_VECTOR_UFRACT:
392 case MODE_VECTOR_UACCUM:
393 case MODE_POINTER_BOUNDS:
394 return int_mode_for_size (GET_MODE_BITSIZE (mode), 0);
395
396 case MODE_RANDOM:
397 if (mode == BLKmode)
398 return opt_scalar_int_mode ();
399
400 /* fall through */
401
402 case MODE_CC:
403 default:
404 gcc_unreachable ();
405 }
406 }
407
408 /* Find a mode that can be used for efficient bitwise operations on MODE,
409 if one exists. */
410
411 opt_machine_mode
bitwise_mode_for_mode(machine_mode mode)412 bitwise_mode_for_mode (machine_mode mode)
413 {
414 /* Quick exit if we already have a suitable mode. */
415 scalar_int_mode int_mode;
416 if (is_a <scalar_int_mode> (mode, &int_mode)
417 && GET_MODE_BITSIZE (int_mode) <= MAX_FIXED_MODE_SIZE)
418 return int_mode;
419
420 /* Reuse the sanity checks from int_mode_for_mode. */
421 gcc_checking_assert ((int_mode_for_mode (mode), true));
422
423 poly_int64 bitsize = GET_MODE_BITSIZE (mode);
424
425 /* Try to replace complex modes with complex modes. In general we
426 expect both components to be processed independently, so we only
427 care whether there is a register for the inner mode. */
428 if (COMPLEX_MODE_P (mode))
429 {
430 machine_mode trial = mode;
431 if ((GET_MODE_CLASS (trial) == MODE_COMPLEX_INT
432 || mode_for_size (bitsize, MODE_COMPLEX_INT, false).exists (&trial))
433 && have_regs_of_mode[GET_MODE_INNER (trial)])
434 return trial;
435 }
436
437 /* Try to replace vector modes with vector modes. Also try using vector
438 modes if an integer mode would be too big. */
439 if (VECTOR_MODE_P (mode)
440 || maybe_gt (bitsize, MAX_FIXED_MODE_SIZE))
441 {
442 machine_mode trial = mode;
443 if ((GET_MODE_CLASS (trial) == MODE_VECTOR_INT
444 || mode_for_size (bitsize, MODE_VECTOR_INT, 0).exists (&trial))
445 && have_regs_of_mode[trial]
446 && targetm.vector_mode_supported_p (trial))
447 return trial;
448 }
449
450 /* Otherwise fall back on integers while honoring MAX_FIXED_MODE_SIZE. */
451 return mode_for_size (bitsize, MODE_INT, true);
452 }
453
454 /* Find a type that can be used for efficient bitwise operations on MODE.
455 Return null if no such mode exists. */
456
457 tree
bitwise_type_for_mode(machine_mode mode)458 bitwise_type_for_mode (machine_mode mode)
459 {
460 if (!bitwise_mode_for_mode (mode).exists (&mode))
461 return NULL_TREE;
462
463 unsigned int inner_size = GET_MODE_UNIT_BITSIZE (mode);
464 tree inner_type = build_nonstandard_integer_type (inner_size, true);
465
466 if (VECTOR_MODE_P (mode))
467 return build_vector_type_for_mode (inner_type, mode);
468
469 if (COMPLEX_MODE_P (mode))
470 return build_complex_type (inner_type);
471
472 gcc_checking_assert (GET_MODE_INNER (mode) == mode);
473 return inner_type;
474 }
475
476 /* Find a mode that is suitable for representing a vector with NUNITS
477 elements of mode INNERMODE, if one exists. The returned mode can be
478 either an integer mode or a vector mode. */
479
480 opt_machine_mode
mode_for_vector(scalar_mode innermode,poly_uint64 nunits)481 mode_for_vector (scalar_mode innermode, poly_uint64 nunits)
482 {
483 machine_mode mode;
484
485 /* First, look for a supported vector type. */
486 if (SCALAR_FLOAT_MODE_P (innermode))
487 mode = MIN_MODE_VECTOR_FLOAT;
488 else if (SCALAR_FRACT_MODE_P (innermode))
489 mode = MIN_MODE_VECTOR_FRACT;
490 else if (SCALAR_UFRACT_MODE_P (innermode))
491 mode = MIN_MODE_VECTOR_UFRACT;
492 else if (SCALAR_ACCUM_MODE_P (innermode))
493 mode = MIN_MODE_VECTOR_ACCUM;
494 else if (SCALAR_UACCUM_MODE_P (innermode))
495 mode = MIN_MODE_VECTOR_UACCUM;
496 else
497 mode = MIN_MODE_VECTOR_INT;
498
499 /* Do not check vector_mode_supported_p here. We'll do that
500 later in vector_type_mode. */
501 FOR_EACH_MODE_FROM (mode, mode)
502 if (known_eq (GET_MODE_NUNITS (mode), nunits)
503 && GET_MODE_INNER (mode) == innermode)
504 return mode;
505
506 /* For integers, try mapping it to a same-sized scalar mode. */
507 if (GET_MODE_CLASS (innermode) == MODE_INT)
508 {
509 poly_uint64 nbits = nunits * GET_MODE_BITSIZE (innermode);
510 if (int_mode_for_size (nbits, 0).exists (&mode)
511 && have_regs_of_mode[mode])
512 return mode;
513 }
514
515 return opt_machine_mode ();
516 }
517
518 /* Return the mode for a vector that has NUNITS integer elements of
519 INT_BITS bits each, if such a mode exists. The mode can be either
520 an integer mode or a vector mode. */
521
522 opt_machine_mode
mode_for_int_vector(unsigned int int_bits,poly_uint64 nunits)523 mode_for_int_vector (unsigned int int_bits, poly_uint64 nunits)
524 {
525 scalar_int_mode int_mode;
526 machine_mode vec_mode;
527 if (int_mode_for_size (int_bits, 0).exists (&int_mode)
528 && mode_for_vector (int_mode, nunits).exists (&vec_mode))
529 return vec_mode;
530 return opt_machine_mode ();
531 }
532
533 /* Return the alignment of MODE. This will be bounded by 1 and
534 BIGGEST_ALIGNMENT. */
535
536 unsigned int
get_mode_alignment(machine_mode mode)537 get_mode_alignment (machine_mode mode)
538 {
539 return MIN (BIGGEST_ALIGNMENT, MAX (1, mode_base_align[mode]*BITS_PER_UNIT));
540 }
541
542 /* Return the natural mode of an array, given that it is SIZE bytes in
543 total and has elements of type ELEM_TYPE. */
544
545 static machine_mode
mode_for_array(tree elem_type,tree size)546 mode_for_array (tree elem_type, tree size)
547 {
548 tree elem_size;
549 poly_uint64 int_size, int_elem_size;
550 unsigned HOST_WIDE_INT num_elems;
551 bool limit_p;
552
553 /* One-element arrays get the component type's mode. */
554 elem_size = TYPE_SIZE (elem_type);
555 if (simple_cst_equal (size, elem_size))
556 return TYPE_MODE (elem_type);
557
558 limit_p = true;
559 if (poly_int_tree_p (size, &int_size)
560 && poly_int_tree_p (elem_size, &int_elem_size)
561 && maybe_ne (int_elem_size, 0U)
562 && constant_multiple_p (int_size, int_elem_size, &num_elems))
563 {
564 machine_mode elem_mode = TYPE_MODE (elem_type);
565 machine_mode mode;
566 if (targetm.array_mode (elem_mode, num_elems).exists (&mode))
567 return mode;
568 if (targetm.array_mode_supported_p (elem_mode, num_elems))
569 limit_p = false;
570 }
571 return mode_for_size_tree (size, MODE_INT, limit_p).else_blk ();
572 }
573
574 /* Subroutine of layout_decl: Force alignment required for the data type.
575 But if the decl itself wants greater alignment, don't override that. */
576
577 static inline void
do_type_align(tree type,tree decl)578 do_type_align (tree type, tree decl)
579 {
580 if (TYPE_ALIGN (type) > DECL_ALIGN (decl))
581 {
582 SET_DECL_ALIGN (decl, TYPE_ALIGN (type));
583 if (TREE_CODE (decl) == FIELD_DECL)
584 DECL_USER_ALIGN (decl) = TYPE_USER_ALIGN (type);
585 }
586 if (TYPE_WARN_IF_NOT_ALIGN (type) > DECL_WARN_IF_NOT_ALIGN (decl))
587 SET_DECL_WARN_IF_NOT_ALIGN (decl, TYPE_WARN_IF_NOT_ALIGN (type));
588 }
589
590 /* Set the size, mode and alignment of a ..._DECL node.
591 TYPE_DECL does need this for C++.
592 Note that LABEL_DECL and CONST_DECL nodes do not need this,
593 and FUNCTION_DECL nodes have them set up in a special (and simple) way.
594 Don't call layout_decl for them.
595
596 KNOWN_ALIGN is the amount of alignment we can assume this
597 decl has with no special effort. It is relevant only for FIELD_DECLs
598 and depends on the previous fields.
599 All that matters about KNOWN_ALIGN is which powers of 2 divide it.
600 If KNOWN_ALIGN is 0, it means, "as much alignment as you like":
601 the record will be aligned to suit. */
602
603 void
layout_decl(tree decl,unsigned int known_align)604 layout_decl (tree decl, unsigned int known_align)
605 {
606 tree type = TREE_TYPE (decl);
607 enum tree_code code = TREE_CODE (decl);
608 rtx rtl = NULL_RTX;
609 location_t loc = DECL_SOURCE_LOCATION (decl);
610
611 if (code == CONST_DECL)
612 return;
613
614 gcc_assert (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL
615 || code == TYPE_DECL || code == FIELD_DECL);
616
617 rtl = DECL_RTL_IF_SET (decl);
618
619 if (type == error_mark_node)
620 type = void_type_node;
621
622 /* Usually the size and mode come from the data type without change,
623 however, the front-end may set the explicit width of the field, so its
624 size may not be the same as the size of its type. This happens with
625 bitfields, of course (an `int' bitfield may be only 2 bits, say), but it
626 also happens with other fields. For example, the C++ front-end creates
627 zero-sized fields corresponding to empty base classes, and depends on
628 layout_type setting DECL_FIELD_BITPOS correctly for the field. Set the
629 size in bytes from the size in bits. If we have already set the mode,
630 don't set it again since we can be called twice for FIELD_DECLs. */
631
632 DECL_UNSIGNED (decl) = TYPE_UNSIGNED (type);
633 if (DECL_MODE (decl) == VOIDmode)
634 SET_DECL_MODE (decl, TYPE_MODE (type));
635
636 if (DECL_SIZE (decl) == 0)
637 {
638 DECL_SIZE (decl) = TYPE_SIZE (type);
639 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (type);
640 }
641 else if (DECL_SIZE_UNIT (decl) == 0)
642 DECL_SIZE_UNIT (decl)
643 = fold_convert_loc (loc, sizetype,
644 size_binop_loc (loc, CEIL_DIV_EXPR, DECL_SIZE (decl),
645 bitsize_unit_node));
646
647 if (code != FIELD_DECL)
648 /* For non-fields, update the alignment from the type. */
649 do_type_align (type, decl);
650 else
651 /* For fields, it's a bit more complicated... */
652 {
653 bool old_user_align = DECL_USER_ALIGN (decl);
654 bool zero_bitfield = false;
655 bool packed_p = DECL_PACKED (decl);
656 unsigned int mfa;
657
658 if (DECL_BIT_FIELD (decl))
659 {
660 DECL_BIT_FIELD_TYPE (decl) = type;
661
662 /* A zero-length bit-field affects the alignment of the next
663 field. In essence such bit-fields are not influenced by
664 any packing due to #pragma pack or attribute packed. */
665 if (integer_zerop (DECL_SIZE (decl))
666 && ! targetm.ms_bitfield_layout_p (DECL_FIELD_CONTEXT (decl)))
667 {
668 zero_bitfield = true;
669 packed_p = false;
670 if (PCC_BITFIELD_TYPE_MATTERS)
671 do_type_align (type, decl);
672 else
673 {
674 #ifdef EMPTY_FIELD_BOUNDARY
675 if (EMPTY_FIELD_BOUNDARY > DECL_ALIGN (decl))
676 {
677 SET_DECL_ALIGN (decl, EMPTY_FIELD_BOUNDARY);
678 DECL_USER_ALIGN (decl) = 0;
679 }
680 #endif
681 }
682 }
683
684 /* See if we can use an ordinary integer mode for a bit-field.
685 Conditions are: a fixed size that is correct for another mode,
686 occupying a complete byte or bytes on proper boundary. */
687 if (TYPE_SIZE (type) != 0
688 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
689 && GET_MODE_CLASS (TYPE_MODE (type)) == MODE_INT)
690 {
691 machine_mode xmode;
692 if (mode_for_size_tree (DECL_SIZE (decl),
693 MODE_INT, 1).exists (&xmode))
694 {
695 unsigned int xalign = GET_MODE_ALIGNMENT (xmode);
696 if (!(xalign > BITS_PER_UNIT && DECL_PACKED (decl))
697 && (known_align == 0 || known_align >= xalign))
698 {
699 SET_DECL_ALIGN (decl, MAX (xalign, DECL_ALIGN (decl)));
700 SET_DECL_MODE (decl, xmode);
701 DECL_BIT_FIELD (decl) = 0;
702 }
703 }
704 }
705
706 /* Turn off DECL_BIT_FIELD if we won't need it set. */
707 if (TYPE_MODE (type) == BLKmode && DECL_MODE (decl) == BLKmode
708 && known_align >= TYPE_ALIGN (type)
709 && DECL_ALIGN (decl) >= TYPE_ALIGN (type))
710 DECL_BIT_FIELD (decl) = 0;
711 }
712 else if (packed_p && DECL_USER_ALIGN (decl))
713 /* Don't touch DECL_ALIGN. For other packed fields, go ahead and
714 round up; we'll reduce it again below. We want packing to
715 supersede USER_ALIGN inherited from the type, but defer to
716 alignment explicitly specified on the field decl. */;
717 else
718 do_type_align (type, decl);
719
720 /* If the field is packed and not explicitly aligned, give it the
721 minimum alignment. Note that do_type_align may set
722 DECL_USER_ALIGN, so we need to check old_user_align instead. */
723 if (packed_p
724 && !old_user_align)
725 SET_DECL_ALIGN (decl, MIN (DECL_ALIGN (decl), BITS_PER_UNIT));
726
727 if (! packed_p && ! DECL_USER_ALIGN (decl))
728 {
729 /* Some targets (i.e. i386, VMS) limit struct field alignment
730 to a lower boundary than alignment of variables unless
731 it was overridden by attribute aligned. */
732 #ifdef BIGGEST_FIELD_ALIGNMENT
733 SET_DECL_ALIGN (decl, MIN (DECL_ALIGN (decl),
734 (unsigned) BIGGEST_FIELD_ALIGNMENT));
735 #endif
736 #ifdef ADJUST_FIELD_ALIGN
737 SET_DECL_ALIGN (decl, ADJUST_FIELD_ALIGN (decl, TREE_TYPE (decl),
738 DECL_ALIGN (decl)));
739 #endif
740 }
741
742 if (zero_bitfield)
743 mfa = initial_max_fld_align * BITS_PER_UNIT;
744 else
745 mfa = maximum_field_alignment;
746 /* Should this be controlled by DECL_USER_ALIGN, too? */
747 if (mfa != 0)
748 SET_DECL_ALIGN (decl, MIN (DECL_ALIGN (decl), mfa));
749 }
750
751 /* Evaluate nonconstant size only once, either now or as soon as safe. */
752 if (DECL_SIZE (decl) != 0 && TREE_CODE (DECL_SIZE (decl)) != INTEGER_CST)
753 DECL_SIZE (decl) = variable_size (DECL_SIZE (decl));
754 if (DECL_SIZE_UNIT (decl) != 0
755 && TREE_CODE (DECL_SIZE_UNIT (decl)) != INTEGER_CST)
756 DECL_SIZE_UNIT (decl) = variable_size (DECL_SIZE_UNIT (decl));
757
758 /* If requested, warn about definitions of large data objects. */
759 if (warn_larger_than
760 && (code == VAR_DECL || code == PARM_DECL)
761 && ! DECL_EXTERNAL (decl))
762 {
763 tree size = DECL_SIZE_UNIT (decl);
764
765 if (size != 0 && TREE_CODE (size) == INTEGER_CST
766 && compare_tree_int (size, larger_than_size) > 0)
767 {
768 int size_as_int = TREE_INT_CST_LOW (size);
769
770 if (compare_tree_int (size, size_as_int) == 0)
771 warning (OPT_Wlarger_than_, "size of %q+D is %d bytes", decl, size_as_int);
772 else
773 warning (OPT_Wlarger_than_, "size of %q+D is larger than %wd bytes",
774 decl, larger_than_size);
775 }
776 }
777
778 /* If the RTL was already set, update its mode and mem attributes. */
779 if (rtl)
780 {
781 PUT_MODE (rtl, DECL_MODE (decl));
782 SET_DECL_RTL (decl, 0);
783 if (MEM_P (rtl))
784 set_mem_attributes (rtl, decl, 1);
785 SET_DECL_RTL (decl, rtl);
786 }
787 }
788
789 /* Given a VAR_DECL, PARM_DECL, RESULT_DECL, or FIELD_DECL, clears the
790 results of a previous call to layout_decl and calls it again. */
791
792 void
relayout_decl(tree decl)793 relayout_decl (tree decl)
794 {
795 DECL_SIZE (decl) = DECL_SIZE_UNIT (decl) = 0;
796 SET_DECL_MODE (decl, VOIDmode);
797 if (!DECL_USER_ALIGN (decl))
798 SET_DECL_ALIGN (decl, 0);
799 if (DECL_RTL_SET_P (decl))
800 SET_DECL_RTL (decl, 0);
801
802 layout_decl (decl, 0);
803 }
804
805 /* Begin laying out type T, which may be a RECORD_TYPE, UNION_TYPE, or
806 QUAL_UNION_TYPE. Return a pointer to a struct record_layout_info which
807 is to be passed to all other layout functions for this record. It is the
808 responsibility of the caller to call `free' for the storage returned.
809 Note that garbage collection is not permitted until we finish laying
810 out the record. */
811
812 record_layout_info
start_record_layout(tree t)813 start_record_layout (tree t)
814 {
815 record_layout_info rli = XNEW (struct record_layout_info_s);
816
817 rli->t = t;
818
819 /* If the type has a minimum specified alignment (via an attribute
820 declaration, for example) use it -- otherwise, start with a
821 one-byte alignment. */
822 rli->record_align = MAX (BITS_PER_UNIT, TYPE_ALIGN (t));
823 rli->unpacked_align = rli->record_align;
824 rli->offset_align = MAX (rli->record_align, BIGGEST_ALIGNMENT);
825
826 #ifdef STRUCTURE_SIZE_BOUNDARY
827 /* Packed structures don't need to have minimum size. */
828 if (! TYPE_PACKED (t))
829 {
830 unsigned tmp;
831
832 /* #pragma pack overrides STRUCTURE_SIZE_BOUNDARY. */
833 tmp = (unsigned) STRUCTURE_SIZE_BOUNDARY;
834 if (maximum_field_alignment != 0)
835 tmp = MIN (tmp, maximum_field_alignment);
836 rli->record_align = MAX (rli->record_align, tmp);
837 }
838 #endif
839
840 rli->offset = size_zero_node;
841 rli->bitpos = bitsize_zero_node;
842 rli->prev_field = 0;
843 rli->pending_statics = 0;
844 rli->packed_maybe_necessary = 0;
845 rli->remaining_in_alignment = 0;
846
847 return rli;
848 }
849
850 /* Fold sizetype value X to bitsizetype, given that X represents a type
851 size or offset. */
852
853 static tree
bits_from_bytes(tree x)854 bits_from_bytes (tree x)
855 {
856 if (POLY_INT_CST_P (x))
857 /* The runtime calculation isn't allowed to overflow sizetype;
858 increasing the runtime values must always increase the size
859 or offset of the object. This means that the object imposes
860 a maximum value on the runtime parameters, but we don't record
861 what that is. */
862 return build_poly_int_cst
863 (bitsizetype,
864 poly_wide_int::from (poly_int_cst_value (x),
865 TYPE_PRECISION (bitsizetype),
866 TYPE_SIGN (TREE_TYPE (x))));
867 x = fold_convert (bitsizetype, x);
868 gcc_checking_assert (x);
869 return x;
870 }
871
872 /* Return the combined bit position for the byte offset OFFSET and the
873 bit position BITPOS.
874
875 These functions operate on byte and bit positions present in FIELD_DECLs
876 and assume that these expressions result in no (intermediate) overflow.
877 This assumption is necessary to fold the expressions as much as possible,
878 so as to avoid creating artificially variable-sized types in languages
879 supporting variable-sized types like Ada. */
880
881 tree
bit_from_pos(tree offset,tree bitpos)882 bit_from_pos (tree offset, tree bitpos)
883 {
884 return size_binop (PLUS_EXPR, bitpos,
885 size_binop (MULT_EXPR, bits_from_bytes (offset),
886 bitsize_unit_node));
887 }
888
889 /* Return the combined truncated byte position for the byte offset OFFSET and
890 the bit position BITPOS. */
891
892 tree
byte_from_pos(tree offset,tree bitpos)893 byte_from_pos (tree offset, tree bitpos)
894 {
895 tree bytepos;
896 if (TREE_CODE (bitpos) == MULT_EXPR
897 && tree_int_cst_equal (TREE_OPERAND (bitpos, 1), bitsize_unit_node))
898 bytepos = TREE_OPERAND (bitpos, 0);
899 else
900 bytepos = size_binop (TRUNC_DIV_EXPR, bitpos, bitsize_unit_node);
901 return size_binop (PLUS_EXPR, offset, fold_convert (sizetype, bytepos));
902 }
903
904 /* Split the bit position POS into a byte offset *POFFSET and a bit
905 position *PBITPOS with the byte offset aligned to OFF_ALIGN bits. */
906
907 void
pos_from_bit(tree * poffset,tree * pbitpos,unsigned int off_align,tree pos)908 pos_from_bit (tree *poffset, tree *pbitpos, unsigned int off_align,
909 tree pos)
910 {
911 tree toff_align = bitsize_int (off_align);
912 if (TREE_CODE (pos) == MULT_EXPR
913 && tree_int_cst_equal (TREE_OPERAND (pos, 1), toff_align))
914 {
915 *poffset = size_binop (MULT_EXPR,
916 fold_convert (sizetype, TREE_OPERAND (pos, 0)),
917 size_int (off_align / BITS_PER_UNIT));
918 *pbitpos = bitsize_zero_node;
919 }
920 else
921 {
922 *poffset = size_binop (MULT_EXPR,
923 fold_convert (sizetype,
924 size_binop (FLOOR_DIV_EXPR, pos,
925 toff_align)),
926 size_int (off_align / BITS_PER_UNIT));
927 *pbitpos = size_binop (FLOOR_MOD_EXPR, pos, toff_align);
928 }
929 }
930
931 /* Given a pointer to bit and byte offsets and an offset alignment,
932 normalize the offsets so they are within the alignment. */
933
934 void
normalize_offset(tree * poffset,tree * pbitpos,unsigned int off_align)935 normalize_offset (tree *poffset, tree *pbitpos, unsigned int off_align)
936 {
937 /* If the bit position is now larger than it should be, adjust it
938 downwards. */
939 if (compare_tree_int (*pbitpos, off_align) >= 0)
940 {
941 tree offset, bitpos;
942 pos_from_bit (&offset, &bitpos, off_align, *pbitpos);
943 *poffset = size_binop (PLUS_EXPR, *poffset, offset);
944 *pbitpos = bitpos;
945 }
946 }
947
948 /* Print debugging information about the information in RLI. */
949
950 DEBUG_FUNCTION void
debug_rli(record_layout_info rli)951 debug_rli (record_layout_info rli)
952 {
953 print_node_brief (stderr, "type", rli->t, 0);
954 print_node_brief (stderr, "\noffset", rli->offset, 0);
955 print_node_brief (stderr, " bitpos", rli->bitpos, 0);
956
957 fprintf (stderr, "\naligns: rec = %u, unpack = %u, off = %u\n",
958 rli->record_align, rli->unpacked_align,
959 rli->offset_align);
960
961 /* The ms_struct code is the only that uses this. */
962 if (targetm.ms_bitfield_layout_p (rli->t))
963 fprintf (stderr, "remaining in alignment = %u\n", rli->remaining_in_alignment);
964
965 if (rli->packed_maybe_necessary)
966 fprintf (stderr, "packed may be necessary\n");
967
968 if (!vec_safe_is_empty (rli->pending_statics))
969 {
970 fprintf (stderr, "pending statics:\n");
971 debug (rli->pending_statics);
972 }
973 }
974
975 /* Given an RLI with a possibly-incremented BITPOS, adjust OFFSET and
976 BITPOS if necessary to keep BITPOS below OFFSET_ALIGN. */
977
978 void
normalize_rli(record_layout_info rli)979 normalize_rli (record_layout_info rli)
980 {
981 normalize_offset (&rli->offset, &rli->bitpos, rli->offset_align);
982 }
983
984 /* Returns the size in bytes allocated so far. */
985
986 tree
rli_size_unit_so_far(record_layout_info rli)987 rli_size_unit_so_far (record_layout_info rli)
988 {
989 return byte_from_pos (rli->offset, rli->bitpos);
990 }
991
992 /* Returns the size in bits allocated so far. */
993
994 tree
rli_size_so_far(record_layout_info rli)995 rli_size_so_far (record_layout_info rli)
996 {
997 return bit_from_pos (rli->offset, rli->bitpos);
998 }
999
1000 /* FIELD is about to be added to RLI->T. The alignment (in bits) of
1001 the next available location within the record is given by KNOWN_ALIGN.
1002 Update the variable alignment fields in RLI, and return the alignment
1003 to give the FIELD. */
1004
1005 unsigned int
update_alignment_for_field(record_layout_info rli,tree field,unsigned int known_align)1006 update_alignment_for_field (record_layout_info rli, tree field,
1007 unsigned int known_align)
1008 {
1009 /* The alignment required for FIELD. */
1010 unsigned int desired_align;
1011 /* The type of this field. */
1012 tree type = TREE_TYPE (field);
1013 /* True if the field was explicitly aligned by the user. */
1014 bool user_align;
1015 bool is_bitfield;
1016
1017 /* Do not attempt to align an ERROR_MARK node */
1018 if (TREE_CODE (type) == ERROR_MARK)
1019 return 0;
1020
1021 /* Lay out the field so we know what alignment it needs. */
1022 layout_decl (field, known_align);
1023 desired_align = DECL_ALIGN (field);
1024 user_align = DECL_USER_ALIGN (field);
1025
1026 is_bitfield = (type != error_mark_node
1027 && DECL_BIT_FIELD_TYPE (field)
1028 && ! integer_zerop (TYPE_SIZE (type)));
1029
1030 /* Record must have at least as much alignment as any field.
1031 Otherwise, the alignment of the field within the record is
1032 meaningless. */
1033 if (targetm.ms_bitfield_layout_p (rli->t))
1034 {
1035 /* Here, the alignment of the underlying type of a bitfield can
1036 affect the alignment of a record; even a zero-sized field
1037 can do this. The alignment should be to the alignment of
1038 the type, except that for zero-size bitfields this only
1039 applies if there was an immediately prior, nonzero-size
1040 bitfield. (That's the way it is, experimentally.) */
1041 if (!is_bitfield
1042 || ((DECL_SIZE (field) == NULL_TREE
1043 || !integer_zerop (DECL_SIZE (field)))
1044 ? !DECL_PACKED (field)
1045 : (rli->prev_field
1046 && DECL_BIT_FIELD_TYPE (rli->prev_field)
1047 && ! integer_zerop (DECL_SIZE (rli->prev_field)))))
1048 {
1049 unsigned int type_align = TYPE_ALIGN (type);
1050 if (!is_bitfield && DECL_PACKED (field))
1051 type_align = desired_align;
1052 else
1053 type_align = MAX (type_align, desired_align);
1054 if (maximum_field_alignment != 0)
1055 type_align = MIN (type_align, maximum_field_alignment);
1056 rli->record_align = MAX (rli->record_align, type_align);
1057 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1058 }
1059 }
1060 else if (is_bitfield && PCC_BITFIELD_TYPE_MATTERS)
1061 {
1062 /* Named bit-fields cause the entire structure to have the
1063 alignment implied by their type. Some targets also apply the same
1064 rules to unnamed bitfields. */
1065 if (DECL_NAME (field) != 0
1066 || targetm.align_anon_bitfield ())
1067 {
1068 unsigned int type_align = TYPE_ALIGN (type);
1069
1070 #ifdef ADJUST_FIELD_ALIGN
1071 if (! TYPE_USER_ALIGN (type))
1072 type_align = ADJUST_FIELD_ALIGN (field, type, type_align);
1073 #endif
1074
1075 /* Targets might chose to handle unnamed and hence possibly
1076 zero-width bitfield. Those are not influenced by #pragmas
1077 or packed attributes. */
1078 if (integer_zerop (DECL_SIZE (field)))
1079 {
1080 if (initial_max_fld_align)
1081 type_align = MIN (type_align,
1082 initial_max_fld_align * BITS_PER_UNIT);
1083 }
1084 else if (maximum_field_alignment != 0)
1085 type_align = MIN (type_align, maximum_field_alignment);
1086 else if (DECL_PACKED (field))
1087 type_align = MIN (type_align, BITS_PER_UNIT);
1088
1089 /* The alignment of the record is increased to the maximum
1090 of the current alignment, the alignment indicated on the
1091 field (i.e., the alignment specified by an __aligned__
1092 attribute), and the alignment indicated by the type of
1093 the field. */
1094 rli->record_align = MAX (rli->record_align, desired_align);
1095 rli->record_align = MAX (rli->record_align, type_align);
1096
1097 if (warn_packed)
1098 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1099 user_align |= TYPE_USER_ALIGN (type);
1100 }
1101 }
1102 else
1103 {
1104 rli->record_align = MAX (rli->record_align, desired_align);
1105 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1106 }
1107
1108 TYPE_USER_ALIGN (rli->t) |= user_align;
1109
1110 return desired_align;
1111 }
1112
1113 /* Issue a warning if the record alignment, RECORD_ALIGN, is less than
1114 the field alignment of FIELD or FIELD isn't aligned. */
1115
1116 static void
handle_warn_if_not_align(tree field,unsigned int record_align)1117 handle_warn_if_not_align (tree field, unsigned int record_align)
1118 {
1119 tree type = TREE_TYPE (field);
1120
1121 if (type == error_mark_node)
1122 return;
1123
1124 unsigned int warn_if_not_align = 0;
1125
1126 int opt_w = 0;
1127
1128 if (warn_if_not_aligned)
1129 {
1130 warn_if_not_align = DECL_WARN_IF_NOT_ALIGN (field);
1131 if (!warn_if_not_align)
1132 warn_if_not_align = TYPE_WARN_IF_NOT_ALIGN (type);
1133 if (warn_if_not_align)
1134 opt_w = OPT_Wif_not_aligned;
1135 }
1136
1137 if (!warn_if_not_align
1138 && warn_packed_not_aligned
1139 && lookup_attribute ("aligned", TYPE_ATTRIBUTES (type)))
1140 {
1141 warn_if_not_align = TYPE_ALIGN (type);
1142 opt_w = OPT_Wpacked_not_aligned;
1143 }
1144
1145 if (!warn_if_not_align)
1146 return;
1147
1148 tree context = DECL_CONTEXT (field);
1149
1150 warn_if_not_align /= BITS_PER_UNIT;
1151 record_align /= BITS_PER_UNIT;
1152 if ((record_align % warn_if_not_align) != 0)
1153 warning (opt_w, "alignment %u of %qT is less than %u",
1154 record_align, context, warn_if_not_align);
1155
1156 tree off = byte_position (field);
1157 if (!multiple_of_p (TREE_TYPE (off), off, size_int (warn_if_not_align)))
1158 {
1159 if (TREE_CODE (off) == INTEGER_CST)
1160 warning (opt_w, "%q+D offset %E in %qT isn%'t aligned to %u",
1161 field, off, context, warn_if_not_align);
1162 else
1163 warning (opt_w, "%q+D offset %E in %qT may not be aligned to %u",
1164 field, off, context, warn_if_not_align);
1165 }
1166 }
1167
1168 /* Called from place_field to handle unions. */
1169
1170 static void
place_union_field(record_layout_info rli,tree field)1171 place_union_field (record_layout_info rli, tree field)
1172 {
1173 update_alignment_for_field (rli, field, /*known_align=*/0);
1174
1175 DECL_FIELD_OFFSET (field) = size_zero_node;
1176 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
1177 SET_DECL_OFFSET_ALIGN (field, BIGGEST_ALIGNMENT);
1178 handle_warn_if_not_align (field, rli->record_align);
1179
1180 /* If this is an ERROR_MARK return *after* having set the
1181 field at the start of the union. This helps when parsing
1182 invalid fields. */
1183 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK)
1184 return;
1185
1186 if (AGGREGATE_TYPE_P (TREE_TYPE (field))
1187 && TYPE_TYPELESS_STORAGE (TREE_TYPE (field)))
1188 TYPE_TYPELESS_STORAGE (rli->t) = 1;
1189
1190 /* We assume the union's size will be a multiple of a byte so we don't
1191 bother with BITPOS. */
1192 if (TREE_CODE (rli->t) == UNION_TYPE)
1193 rli->offset = size_binop (MAX_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1194 else if (TREE_CODE (rli->t) == QUAL_UNION_TYPE)
1195 rli->offset = fold_build3 (COND_EXPR, sizetype, DECL_QUALIFIER (field),
1196 DECL_SIZE_UNIT (field), rli->offset);
1197 }
1198
1199 /* A bitfield of SIZE with a required access alignment of ALIGN is allocated
1200 at BYTE_OFFSET / BIT_OFFSET. Return nonzero if the field would span more
1201 units of alignment than the underlying TYPE. */
1202 static int
excess_unit_span(HOST_WIDE_INT byte_offset,HOST_WIDE_INT bit_offset,HOST_WIDE_INT size,HOST_WIDE_INT align,tree type)1203 excess_unit_span (HOST_WIDE_INT byte_offset, HOST_WIDE_INT bit_offset,
1204 HOST_WIDE_INT size, HOST_WIDE_INT align, tree type)
1205 {
1206 /* Note that the calculation of OFFSET might overflow; we calculate it so
1207 that we still get the right result as long as ALIGN is a power of two. */
1208 unsigned HOST_WIDE_INT offset = byte_offset * BITS_PER_UNIT + bit_offset;
1209
1210 offset = offset % align;
1211 return ((offset + size + align - 1) / align
1212 > tree_to_uhwi (TYPE_SIZE (type)) / align);
1213 }
1214
1215 /* RLI contains information about the layout of a RECORD_TYPE. FIELD
1216 is a FIELD_DECL to be added after those fields already present in
1217 T. (FIELD is not actually added to the TYPE_FIELDS list here;
1218 callers that desire that behavior must manually perform that step.) */
1219
1220 void
place_field(record_layout_info rli,tree field)1221 place_field (record_layout_info rli, tree field)
1222 {
1223 /* The alignment required for FIELD. */
1224 unsigned int desired_align;
1225 /* The alignment FIELD would have if we just dropped it into the
1226 record as it presently stands. */
1227 unsigned int known_align;
1228 unsigned int actual_align;
1229 /* The type of this field. */
1230 tree type = TREE_TYPE (field);
1231
1232 gcc_assert (TREE_CODE (field) != ERROR_MARK);
1233
1234 /* If FIELD is static, then treat it like a separate variable, not
1235 really like a structure field. If it is a FUNCTION_DECL, it's a
1236 method. In both cases, all we do is lay out the decl, and we do
1237 it *after* the record is laid out. */
1238 if (VAR_P (field))
1239 {
1240 vec_safe_push (rli->pending_statics, field);
1241 return;
1242 }
1243
1244 /* Enumerators and enum types which are local to this class need not
1245 be laid out. Likewise for initialized constant fields. */
1246 else if (TREE_CODE (field) != FIELD_DECL)
1247 return;
1248
1249 /* Unions are laid out very differently than records, so split
1250 that code off to another function. */
1251 else if (TREE_CODE (rli->t) != RECORD_TYPE)
1252 {
1253 place_union_field (rli, field);
1254 return;
1255 }
1256
1257 else if (TREE_CODE (type) == ERROR_MARK)
1258 {
1259 /* Place this field at the current allocation position, so we
1260 maintain monotonicity. */
1261 DECL_FIELD_OFFSET (field) = rli->offset;
1262 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1263 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1264 handle_warn_if_not_align (field, rli->record_align);
1265 return;
1266 }
1267
1268 if (AGGREGATE_TYPE_P (type)
1269 && TYPE_TYPELESS_STORAGE (type))
1270 TYPE_TYPELESS_STORAGE (rli->t) = 1;
1271
1272 /* Work out the known alignment so far. Note that A & (-A) is the
1273 value of the least-significant bit in A that is one. */
1274 if (! integer_zerop (rli->bitpos))
1275 known_align = least_bit_hwi (tree_to_uhwi (rli->bitpos));
1276 else if (integer_zerop (rli->offset))
1277 known_align = 0;
1278 else if (tree_fits_uhwi_p (rli->offset))
1279 known_align = (BITS_PER_UNIT
1280 * least_bit_hwi (tree_to_uhwi (rli->offset)));
1281 else
1282 known_align = rli->offset_align;
1283
1284 desired_align = update_alignment_for_field (rli, field, known_align);
1285 if (known_align == 0)
1286 known_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1287
1288 if (warn_packed && DECL_PACKED (field))
1289 {
1290 if (known_align >= TYPE_ALIGN (type))
1291 {
1292 if (TYPE_ALIGN (type) > desired_align)
1293 {
1294 if (STRICT_ALIGNMENT)
1295 warning (OPT_Wattributes, "packed attribute causes "
1296 "inefficient alignment for %q+D", field);
1297 /* Don't warn if DECL_PACKED was set by the type. */
1298 else if (!TYPE_PACKED (rli->t))
1299 warning (OPT_Wattributes, "packed attribute is "
1300 "unnecessary for %q+D", field);
1301 }
1302 }
1303 else
1304 rli->packed_maybe_necessary = 1;
1305 }
1306
1307 /* Does this field automatically have alignment it needs by virtue
1308 of the fields that precede it and the record's own alignment? */
1309 if (known_align < desired_align
1310 && (! targetm.ms_bitfield_layout_p (rli->t)
1311 || rli->prev_field == NULL))
1312 {
1313 /* No, we need to skip space before this field.
1314 Bump the cumulative size to multiple of field alignment. */
1315
1316 if (!targetm.ms_bitfield_layout_p (rli->t)
1317 && DECL_SOURCE_LOCATION (field) != BUILTINS_LOCATION
1318 && !TYPE_ARTIFICIAL (rli->t))
1319 warning (OPT_Wpadded, "padding struct to align %q+D", field);
1320
1321 /* If the alignment is still within offset_align, just align
1322 the bit position. */
1323 if (desired_align < rli->offset_align)
1324 rli->bitpos = round_up (rli->bitpos, desired_align);
1325 else
1326 {
1327 /* First adjust OFFSET by the partial bits, then align. */
1328 rli->offset
1329 = size_binop (PLUS_EXPR, rli->offset,
1330 fold_convert (sizetype,
1331 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1332 bitsize_unit_node)));
1333 rli->bitpos = bitsize_zero_node;
1334
1335 rli->offset = round_up (rli->offset, desired_align / BITS_PER_UNIT);
1336 }
1337
1338 if (! TREE_CONSTANT (rli->offset))
1339 rli->offset_align = desired_align;
1340 }
1341
1342 /* Handle compatibility with PCC. Note that if the record has any
1343 variable-sized fields, we need not worry about compatibility. */
1344 if (PCC_BITFIELD_TYPE_MATTERS
1345 && ! targetm.ms_bitfield_layout_p (rli->t)
1346 && TREE_CODE (field) == FIELD_DECL
1347 && type != error_mark_node
1348 && DECL_BIT_FIELD (field)
1349 && (! DECL_PACKED (field)
1350 /* Enter for these packed fields only to issue a warning. */
1351 || TYPE_ALIGN (type) <= BITS_PER_UNIT)
1352 && maximum_field_alignment == 0
1353 && ! integer_zerop (DECL_SIZE (field))
1354 && tree_fits_uhwi_p (DECL_SIZE (field))
1355 && tree_fits_uhwi_p (rli->offset)
1356 && tree_fits_uhwi_p (TYPE_SIZE (type)))
1357 {
1358 unsigned int type_align = TYPE_ALIGN (type);
1359 tree dsize = DECL_SIZE (field);
1360 HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
1361 HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
1362 HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
1363
1364 #ifdef ADJUST_FIELD_ALIGN
1365 if (! TYPE_USER_ALIGN (type))
1366 type_align = ADJUST_FIELD_ALIGN (field, type, type_align);
1367 #endif
1368
1369 /* A bit field may not span more units of alignment of its type
1370 than its type itself. Advance to next boundary if necessary. */
1371 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1372 {
1373 if (DECL_PACKED (field))
1374 {
1375 if (warn_packed_bitfield_compat == 1)
1376 inform
1377 (input_location,
1378 "offset of packed bit-field %qD has changed in GCC 4.4",
1379 field);
1380 }
1381 else
1382 rli->bitpos = round_up (rli->bitpos, type_align);
1383 }
1384
1385 if (! DECL_PACKED (field))
1386 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1387
1388 SET_TYPE_WARN_IF_NOT_ALIGN (rli->t,
1389 TYPE_WARN_IF_NOT_ALIGN (type));
1390 }
1391
1392 #ifdef BITFIELD_NBYTES_LIMITED
1393 if (BITFIELD_NBYTES_LIMITED
1394 && ! targetm.ms_bitfield_layout_p (rli->t)
1395 && TREE_CODE (field) == FIELD_DECL
1396 && type != error_mark_node
1397 && DECL_BIT_FIELD_TYPE (field)
1398 && ! DECL_PACKED (field)
1399 && ! integer_zerop (DECL_SIZE (field))
1400 && tree_fits_uhwi_p (DECL_SIZE (field))
1401 && tree_fits_uhwi_p (rli->offset)
1402 && tree_fits_uhwi_p (TYPE_SIZE (type)))
1403 {
1404 unsigned int type_align = TYPE_ALIGN (type);
1405 tree dsize = DECL_SIZE (field);
1406 HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
1407 HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
1408 HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
1409
1410 #ifdef ADJUST_FIELD_ALIGN
1411 if (! TYPE_USER_ALIGN (type))
1412 type_align = ADJUST_FIELD_ALIGN (field, type, type_align);
1413 #endif
1414
1415 if (maximum_field_alignment != 0)
1416 type_align = MIN (type_align, maximum_field_alignment);
1417 /* ??? This test is opposite the test in the containing if
1418 statement, so this code is unreachable currently. */
1419 else if (DECL_PACKED (field))
1420 type_align = MIN (type_align, BITS_PER_UNIT);
1421
1422 /* A bit field may not span the unit of alignment of its type.
1423 Advance to next boundary if necessary. */
1424 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1425 rli->bitpos = round_up (rli->bitpos, type_align);
1426
1427 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1428 SET_TYPE_WARN_IF_NOT_ALIGN (rli->t,
1429 TYPE_WARN_IF_NOT_ALIGN (type));
1430 }
1431 #endif
1432
1433 /* See the docs for TARGET_MS_BITFIELD_LAYOUT_P for details.
1434 A subtlety:
1435 When a bit field is inserted into a packed record, the whole
1436 size of the underlying type is used by one or more same-size
1437 adjacent bitfields. (That is, if its long:3, 32 bits is
1438 used in the record, and any additional adjacent long bitfields are
1439 packed into the same chunk of 32 bits. However, if the size
1440 changes, a new field of that size is allocated.) In an unpacked
1441 record, this is the same as using alignment, but not equivalent
1442 when packing.
1443
1444 Note: for compatibility, we use the type size, not the type alignment
1445 to determine alignment, since that matches the documentation */
1446
1447 if (targetm.ms_bitfield_layout_p (rli->t))
1448 {
1449 tree prev_saved = rli->prev_field;
1450 tree prev_type = prev_saved ? DECL_BIT_FIELD_TYPE (prev_saved) : NULL;
1451
1452 /* This is a bitfield if it exists. */
1453 if (rli->prev_field)
1454 {
1455 bool realign_p = known_align < desired_align;
1456
1457 /* If both are bitfields, nonzero, and the same size, this is
1458 the middle of a run. Zero declared size fields are special
1459 and handled as "end of run". (Note: it's nonzero declared
1460 size, but equal type sizes!) (Since we know that both
1461 the current and previous fields are bitfields by the
1462 time we check it, DECL_SIZE must be present for both.) */
1463 if (DECL_BIT_FIELD_TYPE (field)
1464 && !integer_zerop (DECL_SIZE (field))
1465 && !integer_zerop (DECL_SIZE (rli->prev_field))
1466 && tree_fits_shwi_p (DECL_SIZE (rli->prev_field))
1467 && tree_fits_uhwi_p (TYPE_SIZE (type))
1468 && simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type)))
1469 {
1470 /* We're in the middle of a run of equal type size fields; make
1471 sure we realign if we run out of bits. (Not decl size,
1472 type size!) */
1473 HOST_WIDE_INT bitsize = tree_to_uhwi (DECL_SIZE (field));
1474
1475 if (rli->remaining_in_alignment < bitsize)
1476 {
1477 HOST_WIDE_INT typesize = tree_to_uhwi (TYPE_SIZE (type));
1478
1479 /* out of bits; bump up to next 'word'. */
1480 rli->bitpos
1481 = size_binop (PLUS_EXPR, rli->bitpos,
1482 bitsize_int (rli->remaining_in_alignment));
1483 rli->prev_field = field;
1484 if (typesize < bitsize)
1485 rli->remaining_in_alignment = 0;
1486 else
1487 rli->remaining_in_alignment = typesize - bitsize;
1488 }
1489 else
1490 {
1491 rli->remaining_in_alignment -= bitsize;
1492 realign_p = false;
1493 }
1494 }
1495 else
1496 {
1497 /* End of a run: if leaving a run of bitfields of the same type
1498 size, we have to "use up" the rest of the bits of the type
1499 size.
1500
1501 Compute the new position as the sum of the size for the prior
1502 type and where we first started working on that type.
1503 Note: since the beginning of the field was aligned then
1504 of course the end will be too. No round needed. */
1505
1506 if (!integer_zerop (DECL_SIZE (rli->prev_field)))
1507 {
1508 rli->bitpos
1509 = size_binop (PLUS_EXPR, rli->bitpos,
1510 bitsize_int (rli->remaining_in_alignment));
1511 }
1512 else
1513 /* We "use up" size zero fields; the code below should behave
1514 as if the prior field was not a bitfield. */
1515 prev_saved = NULL;
1516
1517 /* Cause a new bitfield to be captured, either this time (if
1518 currently a bitfield) or next time we see one. */
1519 if (!DECL_BIT_FIELD_TYPE (field)
1520 || integer_zerop (DECL_SIZE (field)))
1521 rli->prev_field = NULL;
1522 }
1523
1524 /* Does this field automatically have alignment it needs by virtue
1525 of the fields that precede it and the record's own alignment? */
1526 if (realign_p)
1527 {
1528 /* If the alignment is still within offset_align, just align
1529 the bit position. */
1530 if (desired_align < rli->offset_align)
1531 rli->bitpos = round_up (rli->bitpos, desired_align);
1532 else
1533 {
1534 /* First adjust OFFSET by the partial bits, then align. */
1535 tree d = size_binop (CEIL_DIV_EXPR, rli->bitpos,
1536 bitsize_unit_node);
1537 rli->offset = size_binop (PLUS_EXPR, rli->offset,
1538 fold_convert (sizetype, d));
1539 rli->bitpos = bitsize_zero_node;
1540
1541 rli->offset = round_up (rli->offset,
1542 desired_align / BITS_PER_UNIT);
1543 }
1544
1545 if (! TREE_CONSTANT (rli->offset))
1546 rli->offset_align = desired_align;
1547 }
1548
1549 normalize_rli (rli);
1550 }
1551
1552 /* If we're starting a new run of same type size bitfields
1553 (or a run of non-bitfields), set up the "first of the run"
1554 fields.
1555
1556 That is, if the current field is not a bitfield, or if there
1557 was a prior bitfield the type sizes differ, or if there wasn't
1558 a prior bitfield the size of the current field is nonzero.
1559
1560 Note: we must be sure to test ONLY the type size if there was
1561 a prior bitfield and ONLY for the current field being zero if
1562 there wasn't. */
1563
1564 if (!DECL_BIT_FIELD_TYPE (field)
1565 || (prev_saved != NULL
1566 ? !simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type))
1567 : !integer_zerop (DECL_SIZE (field))))
1568 {
1569 /* Never smaller than a byte for compatibility. */
1570 unsigned int type_align = BITS_PER_UNIT;
1571
1572 /* (When not a bitfield), we could be seeing a flex array (with
1573 no DECL_SIZE). Since we won't be using remaining_in_alignment
1574 until we see a bitfield (and come by here again) we just skip
1575 calculating it. */
1576 if (DECL_SIZE (field) != NULL
1577 && tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (field)))
1578 && tree_fits_uhwi_p (DECL_SIZE (field)))
1579 {
1580 unsigned HOST_WIDE_INT bitsize
1581 = tree_to_uhwi (DECL_SIZE (field));
1582 unsigned HOST_WIDE_INT typesize
1583 = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (field)));
1584
1585 if (typesize < bitsize)
1586 rli->remaining_in_alignment = 0;
1587 else
1588 rli->remaining_in_alignment = typesize - bitsize;
1589 }
1590
1591 /* Now align (conventionally) for the new type. */
1592 if (! DECL_PACKED (field))
1593 type_align = TYPE_ALIGN (TREE_TYPE (field));
1594
1595 if (maximum_field_alignment != 0)
1596 type_align = MIN (type_align, maximum_field_alignment);
1597
1598 rli->bitpos = round_up (rli->bitpos, type_align);
1599
1600 /* If we really aligned, don't allow subsequent bitfields
1601 to undo that. */
1602 rli->prev_field = NULL;
1603 }
1604 }
1605
1606 /* Offset so far becomes the position of this field after normalizing. */
1607 normalize_rli (rli);
1608 DECL_FIELD_OFFSET (field) = rli->offset;
1609 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1610 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1611 handle_warn_if_not_align (field, rli->record_align);
1612
1613 /* Evaluate nonconstant offsets only once, either now or as soon as safe. */
1614 if (TREE_CODE (DECL_FIELD_OFFSET (field)) != INTEGER_CST)
1615 DECL_FIELD_OFFSET (field) = variable_size (DECL_FIELD_OFFSET (field));
1616
1617 /* If this field ended up more aligned than we thought it would be (we
1618 approximate this by seeing if its position changed), lay out the field
1619 again; perhaps we can use an integral mode for it now. */
1620 if (! integer_zerop (DECL_FIELD_BIT_OFFSET (field)))
1621 actual_align = least_bit_hwi (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field)));
1622 else if (integer_zerop (DECL_FIELD_OFFSET (field)))
1623 actual_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1624 else if (tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
1625 actual_align = (BITS_PER_UNIT
1626 * least_bit_hwi (tree_to_uhwi (DECL_FIELD_OFFSET (field))));
1627 else
1628 actual_align = DECL_OFFSET_ALIGN (field);
1629 /* ACTUAL_ALIGN is still the actual alignment *within the record* .
1630 store / extract bit field operations will check the alignment of the
1631 record against the mode of bit fields. */
1632
1633 if (known_align != actual_align)
1634 layout_decl (field, actual_align);
1635
1636 if (rli->prev_field == NULL && DECL_BIT_FIELD_TYPE (field))
1637 rli->prev_field = field;
1638
1639 /* Now add size of this field to the size of the record. If the size is
1640 not constant, treat the field as being a multiple of bytes and just
1641 adjust the offset, resetting the bit position. Otherwise, apportion the
1642 size amongst the bit position and offset. First handle the case of an
1643 unspecified size, which can happen when we have an invalid nested struct
1644 definition, such as struct j { struct j { int i; } }. The error message
1645 is printed in finish_struct. */
1646 if (DECL_SIZE (field) == 0)
1647 /* Do nothing. */;
1648 else if (TREE_CODE (DECL_SIZE (field)) != INTEGER_CST
1649 || TREE_OVERFLOW (DECL_SIZE (field)))
1650 {
1651 rli->offset
1652 = size_binop (PLUS_EXPR, rli->offset,
1653 fold_convert (sizetype,
1654 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1655 bitsize_unit_node)));
1656 rli->offset
1657 = size_binop (PLUS_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1658 rli->bitpos = bitsize_zero_node;
1659 rli->offset_align = MIN (rli->offset_align, desired_align);
1660
1661 if (!multiple_of_p (bitsizetype, DECL_SIZE (field),
1662 bitsize_int (rli->offset_align)))
1663 {
1664 tree type = strip_array_types (TREE_TYPE (field));
1665 /* The above adjusts offset_align just based on the start of the
1666 field. The field might not have a size that is a multiple of
1667 that offset_align though. If the field is an array of fixed
1668 sized elements, assume there can be any multiple of those
1669 sizes. If it is a variable length aggregate or array of
1670 variable length aggregates, assume worst that the end is
1671 just BITS_PER_UNIT aligned. */
1672 if (TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST)
1673 {
1674 if (TREE_INT_CST_LOW (TYPE_SIZE (type)))
1675 {
1676 unsigned HOST_WIDE_INT sz
1677 = least_bit_hwi (TREE_INT_CST_LOW (TYPE_SIZE (type)));
1678 rli->offset_align = MIN (rli->offset_align, sz);
1679 }
1680 }
1681 else
1682 rli->offset_align = MIN (rli->offset_align, BITS_PER_UNIT);
1683 }
1684 }
1685 else if (targetm.ms_bitfield_layout_p (rli->t))
1686 {
1687 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1688
1689 /* If FIELD is the last field and doesn't end at the full length
1690 of the type then pad the struct out to the full length of the
1691 last type. */
1692 if (DECL_BIT_FIELD_TYPE (field)
1693 && !integer_zerop (DECL_SIZE (field)))
1694 {
1695 /* We have to scan, because non-field DECLS are also here. */
1696 tree probe = field;
1697 while ((probe = DECL_CHAIN (probe)))
1698 if (TREE_CODE (probe) == FIELD_DECL)
1699 break;
1700 if (!probe)
1701 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos,
1702 bitsize_int (rli->remaining_in_alignment));
1703 }
1704
1705 normalize_rli (rli);
1706 }
1707 else
1708 {
1709 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1710 normalize_rli (rli);
1711 }
1712 }
1713
1714 /* Assuming that all the fields have been laid out, this function uses
1715 RLI to compute the final TYPE_SIZE, TYPE_ALIGN, etc. for the type
1716 indicated by RLI. */
1717
1718 static void
finalize_record_size(record_layout_info rli)1719 finalize_record_size (record_layout_info rli)
1720 {
1721 tree unpadded_size, unpadded_size_unit;
1722
1723 /* Now we want just byte and bit offsets, so set the offset alignment
1724 to be a byte and then normalize. */
1725 rli->offset_align = BITS_PER_UNIT;
1726 normalize_rli (rli);
1727
1728 /* Determine the desired alignment. */
1729 #ifdef ROUND_TYPE_ALIGN
1730 SET_TYPE_ALIGN (rli->t, ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t),
1731 rli->record_align));
1732 #else
1733 SET_TYPE_ALIGN (rli->t, MAX (TYPE_ALIGN (rli->t), rli->record_align));
1734 #endif
1735
1736 /* Compute the size so far. Be sure to allow for extra bits in the
1737 size in bytes. We have guaranteed above that it will be no more
1738 than a single byte. */
1739 unpadded_size = rli_size_so_far (rli);
1740 unpadded_size_unit = rli_size_unit_so_far (rli);
1741 if (! integer_zerop (rli->bitpos))
1742 unpadded_size_unit
1743 = size_binop (PLUS_EXPR, unpadded_size_unit, size_one_node);
1744
1745 /* Round the size up to be a multiple of the required alignment. */
1746 TYPE_SIZE (rli->t) = round_up (unpadded_size, TYPE_ALIGN (rli->t));
1747 TYPE_SIZE_UNIT (rli->t)
1748 = round_up (unpadded_size_unit, TYPE_ALIGN_UNIT (rli->t));
1749
1750 if (TREE_CONSTANT (unpadded_size)
1751 && simple_cst_equal (unpadded_size, TYPE_SIZE (rli->t)) == 0
1752 && input_location != BUILTINS_LOCATION
1753 && !TYPE_ARTIFICIAL (rli->t))
1754 warning (OPT_Wpadded, "padding struct size to alignment boundary");
1755
1756 if (warn_packed && TREE_CODE (rli->t) == RECORD_TYPE
1757 && TYPE_PACKED (rli->t) && ! rli->packed_maybe_necessary
1758 && TREE_CONSTANT (unpadded_size))
1759 {
1760 tree unpacked_size;
1761
1762 #ifdef ROUND_TYPE_ALIGN
1763 rli->unpacked_align
1764 = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t), rli->unpacked_align);
1765 #else
1766 rli->unpacked_align = MAX (TYPE_ALIGN (rli->t), rli->unpacked_align);
1767 #endif
1768
1769 unpacked_size = round_up (TYPE_SIZE (rli->t), rli->unpacked_align);
1770 if (simple_cst_equal (unpacked_size, TYPE_SIZE (rli->t)))
1771 {
1772 if (TYPE_NAME (rli->t))
1773 {
1774 tree name;
1775
1776 if (TREE_CODE (TYPE_NAME (rli->t)) == IDENTIFIER_NODE)
1777 name = TYPE_NAME (rli->t);
1778 else
1779 name = DECL_NAME (TYPE_NAME (rli->t));
1780
1781 if (STRICT_ALIGNMENT)
1782 warning (OPT_Wpacked, "packed attribute causes inefficient "
1783 "alignment for %qE", name);
1784 else
1785 warning (OPT_Wpacked,
1786 "packed attribute is unnecessary for %qE", name);
1787 }
1788 else
1789 {
1790 if (STRICT_ALIGNMENT)
1791 warning (OPT_Wpacked,
1792 "packed attribute causes inefficient alignment");
1793 else
1794 warning (OPT_Wpacked, "packed attribute is unnecessary");
1795 }
1796 }
1797 }
1798 }
1799
1800 /* Compute the TYPE_MODE for the TYPE (which is a RECORD_TYPE). */
1801
1802 void
compute_record_mode(tree type)1803 compute_record_mode (tree type)
1804 {
1805 tree field;
1806 machine_mode mode = VOIDmode;
1807
1808 /* Most RECORD_TYPEs have BLKmode, so we start off assuming that.
1809 However, if possible, we use a mode that fits in a register
1810 instead, in order to allow for better optimization down the
1811 line. */
1812 SET_TYPE_MODE (type, BLKmode);
1813
1814 if (! tree_fits_uhwi_p (TYPE_SIZE (type)))
1815 return;
1816
1817 /* A record which has any BLKmode members must itself be
1818 BLKmode; it can't go in a register. Unless the member is
1819 BLKmode only because it isn't aligned. */
1820 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
1821 {
1822 if (TREE_CODE (field) != FIELD_DECL)
1823 continue;
1824
1825 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK
1826 || (TYPE_MODE (TREE_TYPE (field)) == BLKmode
1827 && ! TYPE_NO_FORCE_BLK (TREE_TYPE (field))
1828 && !(TYPE_SIZE (TREE_TYPE (field)) != 0
1829 && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))))
1830 || ! tree_fits_uhwi_p (bit_position (field))
1831 || DECL_SIZE (field) == 0
1832 || ! tree_fits_uhwi_p (DECL_SIZE (field)))
1833 return;
1834
1835 /* If this field is the whole struct, remember its mode so
1836 that, say, we can put a double in a class into a DF
1837 register instead of forcing it to live in the stack. */
1838 if (simple_cst_equal (TYPE_SIZE (type), DECL_SIZE (field)))
1839 mode = DECL_MODE (field);
1840
1841 /* With some targets, it is sub-optimal to access an aligned
1842 BLKmode structure as a scalar. */
1843 if (targetm.member_type_forces_blk (field, mode))
1844 return;
1845 }
1846
1847 /* If we only have one real field; use its mode if that mode's size
1848 matches the type's size. This only applies to RECORD_TYPE. This
1849 does not apply to unions. */
1850 if (TREE_CODE (type) == RECORD_TYPE && mode != VOIDmode
1851 && tree_fits_uhwi_p (TYPE_SIZE (type))
1852 && known_eq (GET_MODE_BITSIZE (mode), tree_to_uhwi (TYPE_SIZE (type))))
1853 ;
1854 else
1855 mode = mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1).else_blk ();
1856
1857 /* If structure's known alignment is less than what the scalar
1858 mode would need, and it matters, then stick with BLKmode. */
1859 if (mode != BLKmode
1860 && STRICT_ALIGNMENT
1861 && ! (TYPE_ALIGN (type) >= BIGGEST_ALIGNMENT
1862 || TYPE_ALIGN (type) >= GET_MODE_ALIGNMENT (mode)))
1863 {
1864 /* If this is the only reason this type is BLKmode, then
1865 don't force containing types to be BLKmode. */
1866 TYPE_NO_FORCE_BLK (type) = 1;
1867 mode = BLKmode;
1868 }
1869
1870 SET_TYPE_MODE (type, mode);
1871 }
1872
1873 /* Compute TYPE_SIZE and TYPE_ALIGN for TYPE, once it has been laid
1874 out. */
1875
1876 static void
finalize_type_size(tree type)1877 finalize_type_size (tree type)
1878 {
1879 /* Normally, use the alignment corresponding to the mode chosen.
1880 However, where strict alignment is not required, avoid
1881 over-aligning structures, since most compilers do not do this
1882 alignment. */
1883 if (TYPE_MODE (type) != BLKmode
1884 && TYPE_MODE (type) != VOIDmode
1885 && (STRICT_ALIGNMENT || !AGGREGATE_TYPE_P (type)))
1886 {
1887 unsigned mode_align = GET_MODE_ALIGNMENT (TYPE_MODE (type));
1888
1889 /* Don't override a larger alignment requirement coming from a user
1890 alignment of one of the fields. */
1891 if (mode_align >= TYPE_ALIGN (type))
1892 {
1893 SET_TYPE_ALIGN (type, mode_align);
1894 TYPE_USER_ALIGN (type) = 0;
1895 }
1896 }
1897
1898 /* Do machine-dependent extra alignment. */
1899 #ifdef ROUND_TYPE_ALIGN
1900 SET_TYPE_ALIGN (type,
1901 ROUND_TYPE_ALIGN (type, TYPE_ALIGN (type), BITS_PER_UNIT));
1902 #endif
1903
1904 /* If we failed to find a simple way to calculate the unit size
1905 of the type, find it by division. */
1906 if (TYPE_SIZE_UNIT (type) == 0 && TYPE_SIZE (type) != 0)
1907 /* TYPE_SIZE (type) is computed in bitsizetype. After the division, the
1908 result will fit in sizetype. We will get more efficient code using
1909 sizetype, so we force a conversion. */
1910 TYPE_SIZE_UNIT (type)
1911 = fold_convert (sizetype,
1912 size_binop (FLOOR_DIV_EXPR, TYPE_SIZE (type),
1913 bitsize_unit_node));
1914
1915 if (TYPE_SIZE (type) != 0)
1916 {
1917 TYPE_SIZE (type) = round_up (TYPE_SIZE (type), TYPE_ALIGN (type));
1918 TYPE_SIZE_UNIT (type)
1919 = round_up (TYPE_SIZE_UNIT (type), TYPE_ALIGN_UNIT (type));
1920 }
1921
1922 /* Evaluate nonconstant sizes only once, either now or as soon as safe. */
1923 if (TYPE_SIZE (type) != 0 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1924 TYPE_SIZE (type) = variable_size (TYPE_SIZE (type));
1925 if (TYPE_SIZE_UNIT (type) != 0
1926 && TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST)
1927 TYPE_SIZE_UNIT (type) = variable_size (TYPE_SIZE_UNIT (type));
1928
1929 /* Handle empty records as per the x86-64 psABI. */
1930 TYPE_EMPTY_P (type) = targetm.calls.empty_record_p (type);
1931
1932 /* Also layout any other variants of the type. */
1933 if (TYPE_NEXT_VARIANT (type)
1934 || type != TYPE_MAIN_VARIANT (type))
1935 {
1936 tree variant;
1937 /* Record layout info of this variant. */
1938 tree size = TYPE_SIZE (type);
1939 tree size_unit = TYPE_SIZE_UNIT (type);
1940 unsigned int align = TYPE_ALIGN (type);
1941 unsigned int precision = TYPE_PRECISION (type);
1942 unsigned int user_align = TYPE_USER_ALIGN (type);
1943 machine_mode mode = TYPE_MODE (type);
1944 bool empty_p = TYPE_EMPTY_P (type);
1945
1946 /* Copy it into all variants. */
1947 for (variant = TYPE_MAIN_VARIANT (type);
1948 variant != 0;
1949 variant = TYPE_NEXT_VARIANT (variant))
1950 {
1951 TYPE_SIZE (variant) = size;
1952 TYPE_SIZE_UNIT (variant) = size_unit;
1953 unsigned valign = align;
1954 if (TYPE_USER_ALIGN (variant))
1955 valign = MAX (valign, TYPE_ALIGN (variant));
1956 else
1957 TYPE_USER_ALIGN (variant) = user_align;
1958 SET_TYPE_ALIGN (variant, valign);
1959 TYPE_PRECISION (variant) = precision;
1960 SET_TYPE_MODE (variant, mode);
1961 TYPE_EMPTY_P (variant) = empty_p;
1962 }
1963 }
1964 }
1965
1966 /* Return a new underlying object for a bitfield started with FIELD. */
1967
1968 static tree
start_bitfield_representative(tree field)1969 start_bitfield_representative (tree field)
1970 {
1971 tree repr = make_node (FIELD_DECL);
1972 DECL_FIELD_OFFSET (repr) = DECL_FIELD_OFFSET (field);
1973 /* Force the representative to begin at a BITS_PER_UNIT aligned
1974 boundary - C++ may use tail-padding of a base object to
1975 continue packing bits so the bitfield region does not start
1976 at bit zero (see g++.dg/abi/bitfield5.C for example).
1977 Unallocated bits may happen for other reasons as well,
1978 for example Ada which allows explicit bit-granular structure layout. */
1979 DECL_FIELD_BIT_OFFSET (repr)
1980 = size_binop (BIT_AND_EXPR,
1981 DECL_FIELD_BIT_OFFSET (field),
1982 bitsize_int (~(BITS_PER_UNIT - 1)));
1983 SET_DECL_OFFSET_ALIGN (repr, DECL_OFFSET_ALIGN (field));
1984 DECL_SIZE (repr) = DECL_SIZE (field);
1985 DECL_SIZE_UNIT (repr) = DECL_SIZE_UNIT (field);
1986 DECL_PACKED (repr) = DECL_PACKED (field);
1987 DECL_CONTEXT (repr) = DECL_CONTEXT (field);
1988 /* There are no indirect accesses to this field. If we introduce
1989 some then they have to use the record alias set. This makes
1990 sure to properly conflict with [indirect] accesses to addressable
1991 fields of the bitfield group. */
1992 DECL_NONADDRESSABLE_P (repr) = 1;
1993 return repr;
1994 }
1995
1996 /* Finish up a bitfield group that was started by creating the underlying
1997 object REPR with the last field in the bitfield group FIELD. */
1998
1999 static void
finish_bitfield_representative(tree repr,tree field)2000 finish_bitfield_representative (tree repr, tree field)
2001 {
2002 unsigned HOST_WIDE_INT bitsize, maxbitsize;
2003 tree nextf, size;
2004
2005 size = size_diffop (DECL_FIELD_OFFSET (field),
2006 DECL_FIELD_OFFSET (repr));
2007 while (TREE_CODE (size) == COMPOUND_EXPR)
2008 size = TREE_OPERAND (size, 1);
2009 gcc_assert (tree_fits_uhwi_p (size));
2010 bitsize = (tree_to_uhwi (size) * BITS_PER_UNIT
2011 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
2012 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr))
2013 + tree_to_uhwi (DECL_SIZE (field)));
2014
2015 /* Round up bitsize to multiples of BITS_PER_UNIT. */
2016 bitsize = (bitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
2017
2018 /* Now nothing tells us how to pad out bitsize ... */
2019 nextf = DECL_CHAIN (field);
2020 while (nextf && TREE_CODE (nextf) != FIELD_DECL)
2021 nextf = DECL_CHAIN (nextf);
2022 if (nextf)
2023 {
2024 tree maxsize;
2025 /* If there was an error, the field may be not laid out
2026 correctly. Don't bother to do anything. */
2027 if (TREE_TYPE (nextf) == error_mark_node)
2028 return;
2029 maxsize = size_diffop (DECL_FIELD_OFFSET (nextf),
2030 DECL_FIELD_OFFSET (repr));
2031 if (tree_fits_uhwi_p (maxsize))
2032 {
2033 maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
2034 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (nextf))
2035 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
2036 /* If the group ends within a bitfield nextf does not need to be
2037 aligned to BITS_PER_UNIT. Thus round up. */
2038 maxbitsize = (maxbitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
2039 }
2040 else
2041 maxbitsize = bitsize;
2042 }
2043 else
2044 {
2045 /* Note that if the C++ FE sets up tail-padding to be re-used it
2046 creates a as-base variant of the type with TYPE_SIZE adjusted
2047 accordingly. So it is safe to include tail-padding here. */
2048 tree aggsize = lang_hooks.types.unit_size_without_reusable_padding
2049 (DECL_CONTEXT (field));
2050 tree maxsize = size_diffop (aggsize, DECL_FIELD_OFFSET (repr));
2051 /* We cannot generally rely on maxsize to fold to an integer constant,
2052 so use bitsize as fallback for this case. */
2053 if (tree_fits_uhwi_p (maxsize))
2054 maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
2055 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
2056 else
2057 maxbitsize = bitsize;
2058 }
2059
2060 /* Only if we don't artificially break up the representative in
2061 the middle of a large bitfield with different possibly
2062 overlapping representatives. And all representatives start
2063 at byte offset. */
2064 gcc_assert (maxbitsize % BITS_PER_UNIT == 0);
2065
2066 /* Find the smallest nice mode to use. */
2067 opt_scalar_int_mode mode_iter;
2068 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
2069 if (GET_MODE_BITSIZE (mode_iter.require ()) >= bitsize)
2070 break;
2071
2072 scalar_int_mode mode;
2073 if (!mode_iter.exists (&mode)
2074 || GET_MODE_BITSIZE (mode) > maxbitsize
2075 || GET_MODE_BITSIZE (mode) > MAX_FIXED_MODE_SIZE)
2076 {
2077 /* We really want a BLKmode representative only as a last resort,
2078 considering the member b in
2079 struct { int a : 7; int b : 17; int c; } __attribute__((packed));
2080 Otherwise we simply want to split the representative up
2081 allowing for overlaps within the bitfield region as required for
2082 struct { int a : 7; int b : 7;
2083 int c : 10; int d; } __attribute__((packed));
2084 [0, 15] HImode for a and b, [8, 23] HImode for c. */
2085 DECL_SIZE (repr) = bitsize_int (bitsize);
2086 DECL_SIZE_UNIT (repr) = size_int (bitsize / BITS_PER_UNIT);
2087 SET_DECL_MODE (repr, BLKmode);
2088 TREE_TYPE (repr) = build_array_type_nelts (unsigned_char_type_node,
2089 bitsize / BITS_PER_UNIT);
2090 }
2091 else
2092 {
2093 unsigned HOST_WIDE_INT modesize = GET_MODE_BITSIZE (mode);
2094 DECL_SIZE (repr) = bitsize_int (modesize);
2095 DECL_SIZE_UNIT (repr) = size_int (modesize / BITS_PER_UNIT);
2096 SET_DECL_MODE (repr, mode);
2097 TREE_TYPE (repr) = lang_hooks.types.type_for_mode (mode, 1);
2098 }
2099
2100 /* Remember whether the bitfield group is at the end of the
2101 structure or not. */
2102 DECL_CHAIN (repr) = nextf;
2103 }
2104
2105 /* Compute and set FIELD_DECLs for the underlying objects we should
2106 use for bitfield access for the structure T. */
2107
2108 void
finish_bitfield_layout(tree t)2109 finish_bitfield_layout (tree t)
2110 {
2111 tree field, prev;
2112 tree repr = NULL_TREE;
2113
2114 /* Unions would be special, for the ease of type-punning optimizations
2115 we could use the underlying type as hint for the representative
2116 if the bitfield would fit and the representative would not exceed
2117 the union in size. */
2118 if (TREE_CODE (t) != RECORD_TYPE)
2119 return;
2120
2121 for (prev = NULL_TREE, field = TYPE_FIELDS (t);
2122 field; field = DECL_CHAIN (field))
2123 {
2124 if (TREE_CODE (field) != FIELD_DECL)
2125 continue;
2126
2127 /* In the C++ memory model, consecutive bit fields in a structure are
2128 considered one memory location and updating a memory location
2129 may not store into adjacent memory locations. */
2130 if (!repr
2131 && DECL_BIT_FIELD_TYPE (field))
2132 {
2133 /* Start new representative. */
2134 repr = start_bitfield_representative (field);
2135 }
2136 else if (repr
2137 && ! DECL_BIT_FIELD_TYPE (field))
2138 {
2139 /* Finish off new representative. */
2140 finish_bitfield_representative (repr, prev);
2141 repr = NULL_TREE;
2142 }
2143 else if (DECL_BIT_FIELD_TYPE (field))
2144 {
2145 gcc_assert (repr != NULL_TREE);
2146
2147 /* Zero-size bitfields finish off a representative and
2148 do not have a representative themselves. This is
2149 required by the C++ memory model. */
2150 if (integer_zerop (DECL_SIZE (field)))
2151 {
2152 finish_bitfield_representative (repr, prev);
2153 repr = NULL_TREE;
2154 }
2155
2156 /* We assume that either DECL_FIELD_OFFSET of the representative
2157 and each bitfield member is a constant or they are equal.
2158 This is because we need to be able to compute the bit-offset
2159 of each field relative to the representative in get_bit_range
2160 during RTL expansion.
2161 If these constraints are not met, simply force a new
2162 representative to be generated. That will at most
2163 generate worse code but still maintain correctness with
2164 respect to the C++ memory model. */
2165 else if (!((tree_fits_uhwi_p (DECL_FIELD_OFFSET (repr))
2166 && tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
2167 || operand_equal_p (DECL_FIELD_OFFSET (repr),
2168 DECL_FIELD_OFFSET (field), 0)))
2169 {
2170 finish_bitfield_representative (repr, prev);
2171 repr = start_bitfield_representative (field);
2172 }
2173 }
2174 else
2175 continue;
2176
2177 if (repr)
2178 DECL_BIT_FIELD_REPRESENTATIVE (field) = repr;
2179
2180 prev = field;
2181 }
2182
2183 if (repr)
2184 finish_bitfield_representative (repr, prev);
2185 }
2186
2187 /* Do all of the work required to layout the type indicated by RLI,
2188 once the fields have been laid out. This function will call `free'
2189 for RLI, unless FREE_P is false. Passing a value other than false
2190 for FREE_P is bad practice; this option only exists to support the
2191 G++ 3.2 ABI. */
2192
2193 void
finish_record_layout(record_layout_info rli,int free_p)2194 finish_record_layout (record_layout_info rli, int free_p)
2195 {
2196 tree variant;
2197
2198 /* Compute the final size. */
2199 finalize_record_size (rli);
2200
2201 /* Compute the TYPE_MODE for the record. */
2202 compute_record_mode (rli->t);
2203
2204 /* Perform any last tweaks to the TYPE_SIZE, etc. */
2205 finalize_type_size (rli->t);
2206
2207 /* Compute bitfield representatives. */
2208 finish_bitfield_layout (rli->t);
2209
2210 /* Propagate TYPE_PACKED and TYPE_REVERSE_STORAGE_ORDER to variants.
2211 With C++ templates, it is too early to do this when the attribute
2212 is being parsed. */
2213 for (variant = TYPE_NEXT_VARIANT (rli->t); variant;
2214 variant = TYPE_NEXT_VARIANT (variant))
2215 {
2216 TYPE_PACKED (variant) = TYPE_PACKED (rli->t);
2217 TYPE_REVERSE_STORAGE_ORDER (variant)
2218 = TYPE_REVERSE_STORAGE_ORDER (rli->t);
2219 }
2220
2221 /* Lay out any static members. This is done now because their type
2222 may use the record's type. */
2223 while (!vec_safe_is_empty (rli->pending_statics))
2224 layout_decl (rli->pending_statics->pop (), 0);
2225
2226 /* Clean up. */
2227 if (free_p)
2228 {
2229 vec_free (rli->pending_statics);
2230 free (rli);
2231 }
2232 }
2233
2234
2235 /* Finish processing a builtin RECORD_TYPE type TYPE. It's name is
2236 NAME, its fields are chained in reverse on FIELDS.
2237
2238 If ALIGN_TYPE is non-null, it is given the same alignment as
2239 ALIGN_TYPE. */
2240
2241 void
finish_builtin_struct(tree type,const char * name,tree fields,tree align_type)2242 finish_builtin_struct (tree type, const char *name, tree fields,
2243 tree align_type)
2244 {
2245 tree tail, next;
2246
2247 for (tail = NULL_TREE; fields; tail = fields, fields = next)
2248 {
2249 DECL_FIELD_CONTEXT (fields) = type;
2250 next = DECL_CHAIN (fields);
2251 DECL_CHAIN (fields) = tail;
2252 }
2253 TYPE_FIELDS (type) = tail;
2254
2255 if (align_type)
2256 {
2257 SET_TYPE_ALIGN (type, TYPE_ALIGN (align_type));
2258 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (align_type);
2259 SET_TYPE_WARN_IF_NOT_ALIGN (type,
2260 TYPE_WARN_IF_NOT_ALIGN (align_type));
2261 }
2262
2263 layout_type (type);
2264 #if 0 /* not yet, should get fixed properly later */
2265 TYPE_NAME (type) = make_type_decl (get_identifier (name), type);
2266 #else
2267 TYPE_NAME (type) = build_decl (BUILTINS_LOCATION,
2268 TYPE_DECL, get_identifier (name), type);
2269 #endif
2270 TYPE_STUB_DECL (type) = TYPE_NAME (type);
2271 layout_decl (TYPE_NAME (type), 0);
2272 }
2273
2274 /* Calculate the mode, size, and alignment for TYPE.
2275 For an array type, calculate the element separation as well.
2276 Record TYPE on the chain of permanent or temporary types
2277 so that dbxout will find out about it.
2278
2279 TYPE_SIZE of a type is nonzero if the type has been laid out already.
2280 layout_type does nothing on such a type.
2281
2282 If the type is incomplete, its TYPE_SIZE remains zero. */
2283
2284 void
layout_type(tree type)2285 layout_type (tree type)
2286 {
2287 gcc_assert (type);
2288
2289 if (type == error_mark_node)
2290 return;
2291
2292 /* We don't want finalize_type_size to copy an alignment attribute to
2293 variants that don't have it. */
2294 type = TYPE_MAIN_VARIANT (type);
2295
2296 /* Do nothing if type has been laid out before. */
2297 if (TYPE_SIZE (type))
2298 return;
2299
2300 switch (TREE_CODE (type))
2301 {
2302 case LANG_TYPE:
2303 /* This kind of type is the responsibility
2304 of the language-specific code. */
2305 gcc_unreachable ();
2306
2307 case BOOLEAN_TYPE:
2308 case INTEGER_TYPE:
2309 case ENUMERAL_TYPE:
2310 {
2311 scalar_int_mode mode
2312 = smallest_int_mode_for_size (TYPE_PRECISION (type));
2313 SET_TYPE_MODE (type, mode);
2314 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2315 /* Don't set TYPE_PRECISION here, as it may be set by a bitfield. */
2316 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2317 break;
2318 }
2319
2320 case REAL_TYPE:
2321 {
2322 /* Allow the caller to choose the type mode, which is how decimal
2323 floats are distinguished from binary ones. */
2324 if (TYPE_MODE (type) == VOIDmode)
2325 SET_TYPE_MODE
2326 (type, float_mode_for_size (TYPE_PRECISION (type)).require ());
2327 scalar_float_mode mode = as_a <scalar_float_mode> (TYPE_MODE (type));
2328 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2329 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2330 break;
2331 }
2332
2333 case FIXED_POINT_TYPE:
2334 {
2335 /* TYPE_MODE (type) has been set already. */
2336 scalar_mode mode = SCALAR_TYPE_MODE (type);
2337 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2338 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2339 break;
2340 }
2341
2342 case COMPLEX_TYPE:
2343 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2344 SET_TYPE_MODE (type,
2345 GET_MODE_COMPLEX_MODE (TYPE_MODE (TREE_TYPE (type))));
2346
2347 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2348 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2349 break;
2350
2351 case VECTOR_TYPE:
2352 {
2353 poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (type);
2354 tree innertype = TREE_TYPE (type);
2355
2356 /* Find an appropriate mode for the vector type. */
2357 if (TYPE_MODE (type) == VOIDmode)
2358 SET_TYPE_MODE (type,
2359 mode_for_vector (SCALAR_TYPE_MODE (innertype),
2360 nunits).else_blk ());
2361
2362 TYPE_SATURATING (type) = TYPE_SATURATING (TREE_TYPE (type));
2363 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2364 /* Several boolean vector elements may fit in a single unit. */
2365 if (VECTOR_BOOLEAN_TYPE_P (type)
2366 && type->type_common.mode != BLKmode)
2367 TYPE_SIZE_UNIT (type)
2368 = size_int (GET_MODE_SIZE (type->type_common.mode));
2369 else
2370 TYPE_SIZE_UNIT (type) = int_const_binop (MULT_EXPR,
2371 TYPE_SIZE_UNIT (innertype),
2372 size_int (nunits));
2373 TYPE_SIZE (type) = int_const_binop
2374 (MULT_EXPR,
2375 bits_from_bytes (TYPE_SIZE_UNIT (type)),
2376 bitsize_int (BITS_PER_UNIT));
2377
2378 /* For vector types, we do not default to the mode's alignment.
2379 Instead, query a target hook, defaulting to natural alignment.
2380 This prevents ABI changes depending on whether or not native
2381 vector modes are supported. */
2382 SET_TYPE_ALIGN (type, targetm.vector_alignment (type));
2383
2384 /* However, if the underlying mode requires a bigger alignment than
2385 what the target hook provides, we cannot use the mode. For now,
2386 simply reject that case. */
2387 gcc_assert (TYPE_ALIGN (type)
2388 >= GET_MODE_ALIGNMENT (TYPE_MODE (type)));
2389 break;
2390 }
2391
2392 case VOID_TYPE:
2393 /* This is an incomplete type and so doesn't have a size. */
2394 SET_TYPE_ALIGN (type, 1);
2395 TYPE_USER_ALIGN (type) = 0;
2396 SET_TYPE_MODE (type, VOIDmode);
2397 break;
2398
2399 case POINTER_BOUNDS_TYPE:
2400 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2401 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2402 break;
2403
2404 case OFFSET_TYPE:
2405 TYPE_SIZE (type) = bitsize_int (POINTER_SIZE);
2406 TYPE_SIZE_UNIT (type) = size_int (POINTER_SIZE_UNITS);
2407 /* A pointer might be MODE_PARTIAL_INT, but ptrdiff_t must be
2408 integral, which may be an __intN. */
2409 SET_TYPE_MODE (type, int_mode_for_size (POINTER_SIZE, 0).require ());
2410 TYPE_PRECISION (type) = POINTER_SIZE;
2411 break;
2412
2413 case FUNCTION_TYPE:
2414 case METHOD_TYPE:
2415 /* It's hard to see what the mode and size of a function ought to
2416 be, but we do know the alignment is FUNCTION_BOUNDARY, so
2417 make it consistent with that. */
2418 SET_TYPE_MODE (type,
2419 int_mode_for_size (FUNCTION_BOUNDARY, 0).else_blk ());
2420 TYPE_SIZE (type) = bitsize_int (FUNCTION_BOUNDARY);
2421 TYPE_SIZE_UNIT (type) = size_int (FUNCTION_BOUNDARY / BITS_PER_UNIT);
2422 break;
2423
2424 case POINTER_TYPE:
2425 case REFERENCE_TYPE:
2426 {
2427 scalar_int_mode mode = SCALAR_INT_TYPE_MODE (type);
2428 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2429 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2430 TYPE_UNSIGNED (type) = 1;
2431 TYPE_PRECISION (type) = GET_MODE_PRECISION (mode);
2432 }
2433 break;
2434
2435 case ARRAY_TYPE:
2436 {
2437 tree index = TYPE_DOMAIN (type);
2438 tree element = TREE_TYPE (type);
2439
2440 /* We need to know both bounds in order to compute the size. */
2441 if (index && TYPE_MAX_VALUE (index) && TYPE_MIN_VALUE (index)
2442 && TYPE_SIZE (element))
2443 {
2444 tree ub = TYPE_MAX_VALUE (index);
2445 tree lb = TYPE_MIN_VALUE (index);
2446 tree element_size = TYPE_SIZE (element);
2447 tree length;
2448
2449 /* Make sure that an array of zero-sized element is zero-sized
2450 regardless of its extent. */
2451 if (integer_zerop (element_size))
2452 length = size_zero_node;
2453
2454 /* The computation should happen in the original signedness so
2455 that (possible) negative values are handled appropriately
2456 when determining overflow. */
2457 else
2458 {
2459 /* ??? When it is obvious that the range is signed
2460 represent it using ssizetype. */
2461 if (TREE_CODE (lb) == INTEGER_CST
2462 && TREE_CODE (ub) == INTEGER_CST
2463 && TYPE_UNSIGNED (TREE_TYPE (lb))
2464 && tree_int_cst_lt (ub, lb))
2465 {
2466 lb = wide_int_to_tree (ssizetype,
2467 offset_int::from (wi::to_wide (lb),
2468 SIGNED));
2469 ub = wide_int_to_tree (ssizetype,
2470 offset_int::from (wi::to_wide (ub),
2471 SIGNED));
2472 }
2473 length
2474 = fold_convert (sizetype,
2475 size_binop (PLUS_EXPR,
2476 build_int_cst (TREE_TYPE (lb), 1),
2477 size_binop (MINUS_EXPR, ub, lb)));
2478 }
2479
2480 /* ??? We have no way to distinguish a null-sized array from an
2481 array spanning the whole sizetype range, so we arbitrarily
2482 decide that [0, -1] is the only valid representation. */
2483 if (integer_zerop (length)
2484 && TREE_OVERFLOW (length)
2485 && integer_zerop (lb))
2486 length = size_zero_node;
2487
2488 TYPE_SIZE (type) = size_binop (MULT_EXPR, element_size,
2489 bits_from_bytes (length));
2490
2491 /* If we know the size of the element, calculate the total size
2492 directly, rather than do some division thing below. This
2493 optimization helps Fortran assumed-size arrays (where the
2494 size of the array is determined at runtime) substantially. */
2495 if (TYPE_SIZE_UNIT (element))
2496 TYPE_SIZE_UNIT (type)
2497 = size_binop (MULT_EXPR, TYPE_SIZE_UNIT (element), length);
2498 }
2499
2500 /* Now round the alignment and size,
2501 using machine-dependent criteria if any. */
2502
2503 unsigned align = TYPE_ALIGN (element);
2504 if (TYPE_USER_ALIGN (type))
2505 align = MAX (align, TYPE_ALIGN (type));
2506 else
2507 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (element);
2508 if (!TYPE_WARN_IF_NOT_ALIGN (type))
2509 SET_TYPE_WARN_IF_NOT_ALIGN (type,
2510 TYPE_WARN_IF_NOT_ALIGN (element));
2511 #ifdef ROUND_TYPE_ALIGN
2512 align = ROUND_TYPE_ALIGN (type, align, BITS_PER_UNIT);
2513 #else
2514 align = MAX (align, BITS_PER_UNIT);
2515 #endif
2516 SET_TYPE_ALIGN (type, align);
2517 SET_TYPE_MODE (type, BLKmode);
2518 if (TYPE_SIZE (type) != 0
2519 && ! targetm.member_type_forces_blk (type, VOIDmode)
2520 /* BLKmode elements force BLKmode aggregate;
2521 else extract/store fields may lose. */
2522 && (TYPE_MODE (TREE_TYPE (type)) != BLKmode
2523 || TYPE_NO_FORCE_BLK (TREE_TYPE (type))))
2524 {
2525 SET_TYPE_MODE (type, mode_for_array (TREE_TYPE (type),
2526 TYPE_SIZE (type)));
2527 if (TYPE_MODE (type) != BLKmode
2528 && STRICT_ALIGNMENT && TYPE_ALIGN (type) < BIGGEST_ALIGNMENT
2529 && TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (TYPE_MODE (type)))
2530 {
2531 TYPE_NO_FORCE_BLK (type) = 1;
2532 SET_TYPE_MODE (type, BLKmode);
2533 }
2534 }
2535 if (AGGREGATE_TYPE_P (element))
2536 TYPE_TYPELESS_STORAGE (type) = TYPE_TYPELESS_STORAGE (element);
2537 /* When the element size is constant, check that it is at least as
2538 large as the element alignment. */
2539 if (TYPE_SIZE_UNIT (element)
2540 && TREE_CODE (TYPE_SIZE_UNIT (element)) == INTEGER_CST
2541 /* If TYPE_SIZE_UNIT overflowed, then it is certainly larger than
2542 TYPE_ALIGN_UNIT. */
2543 && !TREE_OVERFLOW (TYPE_SIZE_UNIT (element))
2544 && !integer_zerop (TYPE_SIZE_UNIT (element))
2545 && compare_tree_int (TYPE_SIZE_UNIT (element),
2546 TYPE_ALIGN_UNIT (element)) < 0)
2547 error ("alignment of array elements is greater than element size");
2548 break;
2549 }
2550
2551 case RECORD_TYPE:
2552 case UNION_TYPE:
2553 case QUAL_UNION_TYPE:
2554 {
2555 tree field;
2556 record_layout_info rli;
2557
2558 /* Initialize the layout information. */
2559 rli = start_record_layout (type);
2560
2561 /* If this is a QUAL_UNION_TYPE, we want to process the fields
2562 in the reverse order in building the COND_EXPR that denotes
2563 its size. We reverse them again later. */
2564 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2565 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2566
2567 /* Place all the fields. */
2568 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2569 place_field (rli, field);
2570
2571 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2572 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2573
2574 /* Finish laying out the record. */
2575 finish_record_layout (rli, /*free_p=*/true);
2576 }
2577 break;
2578
2579 default:
2580 gcc_unreachable ();
2581 }
2582
2583 /* Compute the final TYPE_SIZE, TYPE_ALIGN, etc. for TYPE. For
2584 records and unions, finish_record_layout already called this
2585 function. */
2586 if (!RECORD_OR_UNION_TYPE_P (type))
2587 finalize_type_size (type);
2588
2589 /* We should never see alias sets on incomplete aggregates. And we
2590 should not call layout_type on not incomplete aggregates. */
2591 if (AGGREGATE_TYPE_P (type))
2592 gcc_assert (!TYPE_ALIAS_SET_KNOWN_P (type));
2593 }
2594
2595 /* Return the least alignment required for type TYPE. */
2596
2597 unsigned int
min_align_of_type(tree type)2598 min_align_of_type (tree type)
2599 {
2600 unsigned int align = TYPE_ALIGN (type);
2601 if (!TYPE_USER_ALIGN (type))
2602 {
2603 align = MIN (align, BIGGEST_ALIGNMENT);
2604 #ifdef BIGGEST_FIELD_ALIGNMENT
2605 align = MIN (align, BIGGEST_FIELD_ALIGNMENT);
2606 #endif
2607 unsigned int field_align = align;
2608 #ifdef ADJUST_FIELD_ALIGN
2609 field_align = ADJUST_FIELD_ALIGN (NULL_TREE, type, field_align);
2610 #endif
2611 align = MIN (align, field_align);
2612 }
2613 return align / BITS_PER_UNIT;
2614 }
2615
2616 /* Create and return a type for signed integers of PRECISION bits. */
2617
2618 tree
make_signed_type(int precision)2619 make_signed_type (int precision)
2620 {
2621 tree type = make_node (INTEGER_TYPE);
2622
2623 TYPE_PRECISION (type) = precision;
2624
2625 fixup_signed_type (type);
2626 return type;
2627 }
2628
2629 /* Create and return a type for unsigned integers of PRECISION bits. */
2630
2631 tree
make_unsigned_type(int precision)2632 make_unsigned_type (int precision)
2633 {
2634 tree type = make_node (INTEGER_TYPE);
2635
2636 TYPE_PRECISION (type) = precision;
2637
2638 fixup_unsigned_type (type);
2639 return type;
2640 }
2641
2642 /* Create and return a type for fract of PRECISION bits, UNSIGNEDP,
2643 and SATP. */
2644
2645 tree
make_fract_type(int precision,int unsignedp,int satp)2646 make_fract_type (int precision, int unsignedp, int satp)
2647 {
2648 tree type = make_node (FIXED_POINT_TYPE);
2649
2650 TYPE_PRECISION (type) = precision;
2651
2652 if (satp)
2653 TYPE_SATURATING (type) = 1;
2654
2655 /* Lay out the type: set its alignment, size, etc. */
2656 TYPE_UNSIGNED (type) = unsignedp;
2657 enum mode_class mclass = unsignedp ? MODE_UFRACT : MODE_FRACT;
2658 SET_TYPE_MODE (type, mode_for_size (precision, mclass, 0).require ());
2659 layout_type (type);
2660
2661 return type;
2662 }
2663
2664 /* Create and return a type for accum of PRECISION bits, UNSIGNEDP,
2665 and SATP. */
2666
2667 tree
make_accum_type(int precision,int unsignedp,int satp)2668 make_accum_type (int precision, int unsignedp, int satp)
2669 {
2670 tree type = make_node (FIXED_POINT_TYPE);
2671
2672 TYPE_PRECISION (type) = precision;
2673
2674 if (satp)
2675 TYPE_SATURATING (type) = 1;
2676
2677 /* Lay out the type: set its alignment, size, etc. */
2678 TYPE_UNSIGNED (type) = unsignedp;
2679 enum mode_class mclass = unsignedp ? MODE_UACCUM : MODE_ACCUM;
2680 SET_TYPE_MODE (type, mode_for_size (precision, mclass, 0).require ());
2681 layout_type (type);
2682
2683 return type;
2684 }
2685
2686 /* Initialize sizetypes so layout_type can use them. */
2687
2688 void
initialize_sizetypes(void)2689 initialize_sizetypes (void)
2690 {
2691 int precision, bprecision;
2692
2693 /* Get sizetypes precision from the SIZE_TYPE target macro. */
2694 if (strcmp (SIZETYPE, "unsigned int") == 0)
2695 precision = INT_TYPE_SIZE;
2696 else if (strcmp (SIZETYPE, "long unsigned int") == 0)
2697 precision = LONG_TYPE_SIZE;
2698 else if (strcmp (SIZETYPE, "long long unsigned int") == 0)
2699 precision = LONG_LONG_TYPE_SIZE;
2700 else if (strcmp (SIZETYPE, "short unsigned int") == 0)
2701 precision = SHORT_TYPE_SIZE;
2702 else
2703 {
2704 int i;
2705
2706 precision = -1;
2707 for (i = 0; i < NUM_INT_N_ENTS; i++)
2708 if (int_n_enabled_p[i])
2709 {
2710 char name[50];
2711 sprintf (name, "__int%d unsigned", int_n_data[i].bitsize);
2712
2713 if (strcmp (name, SIZETYPE) == 0)
2714 {
2715 precision = int_n_data[i].bitsize;
2716 }
2717 }
2718 if (precision == -1)
2719 gcc_unreachable ();
2720 }
2721
2722 bprecision
2723 = MIN (precision + LOG2_BITS_PER_UNIT + 1, MAX_FIXED_MODE_SIZE);
2724 bprecision = GET_MODE_PRECISION (smallest_int_mode_for_size (bprecision));
2725 if (bprecision > HOST_BITS_PER_DOUBLE_INT)
2726 bprecision = HOST_BITS_PER_DOUBLE_INT;
2727
2728 /* Create stubs for sizetype and bitsizetype so we can create constants. */
2729 sizetype = make_node (INTEGER_TYPE);
2730 TYPE_NAME (sizetype) = get_identifier ("sizetype");
2731 TYPE_PRECISION (sizetype) = precision;
2732 TYPE_UNSIGNED (sizetype) = 1;
2733 bitsizetype = make_node (INTEGER_TYPE);
2734 TYPE_NAME (bitsizetype) = get_identifier ("bitsizetype");
2735 TYPE_PRECISION (bitsizetype) = bprecision;
2736 TYPE_UNSIGNED (bitsizetype) = 1;
2737
2738 /* Now layout both types manually. */
2739 scalar_int_mode mode = smallest_int_mode_for_size (precision);
2740 SET_TYPE_MODE (sizetype, mode);
2741 SET_TYPE_ALIGN (sizetype, GET_MODE_ALIGNMENT (TYPE_MODE (sizetype)));
2742 TYPE_SIZE (sizetype) = bitsize_int (precision);
2743 TYPE_SIZE_UNIT (sizetype) = size_int (GET_MODE_SIZE (mode));
2744 set_min_and_max_values_for_integral_type (sizetype, precision, UNSIGNED);
2745
2746 mode = smallest_int_mode_for_size (bprecision);
2747 SET_TYPE_MODE (bitsizetype, mode);
2748 SET_TYPE_ALIGN (bitsizetype, GET_MODE_ALIGNMENT (TYPE_MODE (bitsizetype)));
2749 TYPE_SIZE (bitsizetype) = bitsize_int (bprecision);
2750 TYPE_SIZE_UNIT (bitsizetype) = size_int (GET_MODE_SIZE (mode));
2751 set_min_and_max_values_for_integral_type (bitsizetype, bprecision, UNSIGNED);
2752
2753 /* Create the signed variants of *sizetype. */
2754 ssizetype = make_signed_type (TYPE_PRECISION (sizetype));
2755 TYPE_NAME (ssizetype) = get_identifier ("ssizetype");
2756 sbitsizetype = make_signed_type (TYPE_PRECISION (bitsizetype));
2757 TYPE_NAME (sbitsizetype) = get_identifier ("sbitsizetype");
2758 }
2759
2760 /* TYPE is an integral type, i.e., an INTEGRAL_TYPE, ENUMERAL_TYPE
2761 or BOOLEAN_TYPE. Set TYPE_MIN_VALUE and TYPE_MAX_VALUE
2762 for TYPE, based on the PRECISION and whether or not the TYPE
2763 IS_UNSIGNED. PRECISION need not correspond to a width supported
2764 natively by the hardware; for example, on a machine with 8-bit,
2765 16-bit, and 32-bit register modes, PRECISION might be 7, 23, or
2766 61. */
2767
2768 void
set_min_and_max_values_for_integral_type(tree type,int precision,signop sgn)2769 set_min_and_max_values_for_integral_type (tree type,
2770 int precision,
2771 signop sgn)
2772 {
2773 /* For bitfields with zero width we end up creating integer types
2774 with zero precision. Don't assign any minimum/maximum values
2775 to those types, they don't have any valid value. */
2776 if (precision < 1)
2777 return;
2778
2779 TYPE_MIN_VALUE (type)
2780 = wide_int_to_tree (type, wi::min_value (precision, sgn));
2781 TYPE_MAX_VALUE (type)
2782 = wide_int_to_tree (type, wi::max_value (precision, sgn));
2783 }
2784
2785 /* Set the extreme values of TYPE based on its precision in bits,
2786 then lay it out. Used when make_signed_type won't do
2787 because the tree code is not INTEGER_TYPE. */
2788
2789 void
fixup_signed_type(tree type)2790 fixup_signed_type (tree type)
2791 {
2792 int precision = TYPE_PRECISION (type);
2793
2794 set_min_and_max_values_for_integral_type (type, precision, SIGNED);
2795
2796 /* Lay out the type: set its alignment, size, etc. */
2797 layout_type (type);
2798 }
2799
2800 /* Set the extreme values of TYPE based on its precision in bits,
2801 then lay it out. This is used both in `make_unsigned_type'
2802 and for enumeral types. */
2803
2804 void
fixup_unsigned_type(tree type)2805 fixup_unsigned_type (tree type)
2806 {
2807 int precision = TYPE_PRECISION (type);
2808
2809 TYPE_UNSIGNED (type) = 1;
2810
2811 set_min_and_max_values_for_integral_type (type, precision, UNSIGNED);
2812
2813 /* Lay out the type: set its alignment, size, etc. */
2814 layout_type (type);
2815 }
2816
2817 /* Construct an iterator for a bitfield that spans BITSIZE bits,
2818 starting at BITPOS.
2819
2820 BITREGION_START is the bit position of the first bit in this
2821 sequence of bit fields. BITREGION_END is the last bit in this
2822 sequence. If these two fields are non-zero, we should restrict the
2823 memory access to that range. Otherwise, we are allowed to touch
2824 any adjacent non bit-fields.
2825
2826 ALIGN is the alignment of the underlying object in bits.
2827 VOLATILEP says whether the bitfield is volatile. */
2828
2829 bit_field_mode_iterator
bit_field_mode_iterator(HOST_WIDE_INT bitsize,HOST_WIDE_INT bitpos,poly_int64 bitregion_start,poly_int64 bitregion_end,unsigned int align,bool volatilep)2830 ::bit_field_mode_iterator (HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
2831 poly_int64 bitregion_start,
2832 poly_int64 bitregion_end,
2833 unsigned int align, bool volatilep)
2834 : m_mode (NARROWEST_INT_MODE), m_bitsize (bitsize),
2835 m_bitpos (bitpos), m_bitregion_start (bitregion_start),
2836 m_bitregion_end (bitregion_end), m_align (align),
2837 m_volatilep (volatilep), m_count (0)
2838 {
2839 if (known_eq (m_bitregion_end, 0))
2840 {
2841 /* We can assume that any aligned chunk of ALIGN bits that overlaps
2842 the bitfield is mapped and won't trap, provided that ALIGN isn't
2843 too large. The cap is the biggest required alignment for data,
2844 or at least the word size. And force one such chunk at least. */
2845 unsigned HOST_WIDE_INT units
2846 = MIN (align, MAX (BIGGEST_ALIGNMENT, BITS_PER_WORD));
2847 if (bitsize <= 0)
2848 bitsize = 1;
2849 HOST_WIDE_INT end = bitpos + bitsize + units - 1;
2850 m_bitregion_end = end - end % units - 1;
2851 }
2852 }
2853
2854 /* Calls to this function return successively larger modes that can be used
2855 to represent the bitfield. Return true if another bitfield mode is
2856 available, storing it in *OUT_MODE if so. */
2857
2858 bool
next_mode(scalar_int_mode * out_mode)2859 bit_field_mode_iterator::next_mode (scalar_int_mode *out_mode)
2860 {
2861 scalar_int_mode mode;
2862 for (; m_mode.exists (&mode); m_mode = GET_MODE_WIDER_MODE (mode))
2863 {
2864 unsigned int unit = GET_MODE_BITSIZE (mode);
2865
2866 /* Skip modes that don't have full precision. */
2867 if (unit != GET_MODE_PRECISION (mode))
2868 continue;
2869
2870 /* Stop if the mode is too wide to handle efficiently. */
2871 if (unit > MAX_FIXED_MODE_SIZE)
2872 break;
2873
2874 /* Don't deliver more than one multiword mode; the smallest one
2875 should be used. */
2876 if (m_count > 0 && unit > BITS_PER_WORD)
2877 break;
2878
2879 /* Skip modes that are too small. */
2880 unsigned HOST_WIDE_INT substart = (unsigned HOST_WIDE_INT) m_bitpos % unit;
2881 unsigned HOST_WIDE_INT subend = substart + m_bitsize;
2882 if (subend > unit)
2883 continue;
2884
2885 /* Stop if the mode goes outside the bitregion. */
2886 HOST_WIDE_INT start = m_bitpos - substart;
2887 if (maybe_ne (m_bitregion_start, 0)
2888 && maybe_lt (start, m_bitregion_start))
2889 break;
2890 HOST_WIDE_INT end = start + unit;
2891 if (maybe_gt (end, m_bitregion_end + 1))
2892 break;
2893
2894 /* Stop if the mode requires too much alignment. */
2895 if (GET_MODE_ALIGNMENT (mode) > m_align
2896 && targetm.slow_unaligned_access (mode, m_align))
2897 break;
2898
2899 *out_mode = mode;
2900 m_mode = GET_MODE_WIDER_MODE (mode);
2901 m_count++;
2902 return true;
2903 }
2904 return false;
2905 }
2906
2907 /* Return true if smaller modes are generally preferred for this kind
2908 of bitfield. */
2909
2910 bool
prefer_smaller_modes()2911 bit_field_mode_iterator::prefer_smaller_modes ()
2912 {
2913 return (m_volatilep
2914 ? targetm.narrow_volatile_bitfield ()
2915 : !SLOW_BYTE_ACCESS);
2916 }
2917
2918 /* Find the best machine mode to use when referencing a bit field of length
2919 BITSIZE bits starting at BITPOS.
2920
2921 BITREGION_START is the bit position of the first bit in this
2922 sequence of bit fields. BITREGION_END is the last bit in this
2923 sequence. If these two fields are non-zero, we should restrict the
2924 memory access to that range. Otherwise, we are allowed to touch
2925 any adjacent non bit-fields.
2926
2927 The chosen mode must have no more than LARGEST_MODE_BITSIZE bits.
2928 INT_MAX is a suitable value for LARGEST_MODE_BITSIZE if the caller
2929 doesn't want to apply a specific limit.
2930
2931 If no mode meets all these conditions, we return VOIDmode.
2932
2933 The underlying object is known to be aligned to a boundary of ALIGN bits.
2934
2935 If VOLATILEP is false and SLOW_BYTE_ACCESS is false, we return the
2936 smallest mode meeting these conditions.
2937
2938 If VOLATILEP is false and SLOW_BYTE_ACCESS is true, we return the
2939 largest mode (but a mode no wider than UNITS_PER_WORD) that meets
2940 all the conditions.
2941
2942 If VOLATILEP is true the narrow_volatile_bitfields target hook is used to
2943 decide which of the above modes should be used. */
2944
2945 bool
get_best_mode(int bitsize,int bitpos,poly_uint64 bitregion_start,poly_uint64 bitregion_end,unsigned int align,unsigned HOST_WIDE_INT largest_mode_bitsize,bool volatilep,scalar_int_mode * best_mode)2946 get_best_mode (int bitsize, int bitpos,
2947 poly_uint64 bitregion_start, poly_uint64 bitregion_end,
2948 unsigned int align,
2949 unsigned HOST_WIDE_INT largest_mode_bitsize, bool volatilep,
2950 scalar_int_mode *best_mode)
2951 {
2952 bit_field_mode_iterator iter (bitsize, bitpos, bitregion_start,
2953 bitregion_end, align, volatilep);
2954 scalar_int_mode mode;
2955 bool found = false;
2956 while (iter.next_mode (&mode)
2957 /* ??? For historical reasons, reject modes that would normally
2958 receive greater alignment, even if unaligned accesses are
2959 acceptable. This has both advantages and disadvantages.
2960 Removing this check means that something like:
2961
2962 struct s { unsigned int x; unsigned int y; };
2963 int f (struct s *s) { return s->x == 0 && s->y == 0; }
2964
2965 can be implemented using a single load and compare on
2966 64-bit machines that have no alignment restrictions.
2967 For example, on powerpc64-linux-gnu, we would generate:
2968
2969 ld 3,0(3)
2970 cntlzd 3,3
2971 srdi 3,3,6
2972 blr
2973
2974 rather than:
2975
2976 lwz 9,0(3)
2977 cmpwi 7,9,0
2978 bne 7,.L3
2979 lwz 3,4(3)
2980 cntlzw 3,3
2981 srwi 3,3,5
2982 extsw 3,3
2983 blr
2984 .p2align 4,,15
2985 .L3:
2986 li 3,0
2987 blr
2988
2989 However, accessing more than one field can make life harder
2990 for the gimple optimizers. For example, gcc.dg/vect/bb-slp-5.c
2991 has a series of unsigned short copies followed by a series of
2992 unsigned short comparisons. With this check, both the copies
2993 and comparisons remain 16-bit accesses and FRE is able
2994 to eliminate the latter. Without the check, the comparisons
2995 can be done using 2 64-bit operations, which FRE isn't able
2996 to handle in the same way.
2997
2998 Either way, it would probably be worth disabling this check
2999 during expand. One particular example where removing the
3000 check would help is the get_best_mode call in store_bit_field.
3001 If we are given a memory bitregion of 128 bits that is aligned
3002 to a 64-bit boundary, and the bitfield we want to modify is
3003 in the second half of the bitregion, this check causes
3004 store_bitfield to turn the memory into a 64-bit reference
3005 to the _first_ half of the region. We later use
3006 adjust_bitfield_address to get a reference to the correct half,
3007 but doing so looks to adjust_bitfield_address as though we are
3008 moving past the end of the original object, so it drops the
3009 associated MEM_EXPR and MEM_OFFSET. Removing the check
3010 causes store_bit_field to keep a 128-bit memory reference,
3011 so that the final bitfield reference still has a MEM_EXPR
3012 and MEM_OFFSET. */
3013 && GET_MODE_ALIGNMENT (mode) <= align
3014 && GET_MODE_BITSIZE (mode) <= largest_mode_bitsize)
3015 {
3016 *best_mode = mode;
3017 found = true;
3018 if (iter.prefer_smaller_modes ())
3019 break;
3020 }
3021
3022 return found;
3023 }
3024
3025 /* Gets minimal and maximal values for MODE (signed or unsigned depending on
3026 SIGN). The returned constants are made to be usable in TARGET_MODE. */
3027
3028 void
get_mode_bounds(scalar_int_mode mode,int sign,scalar_int_mode target_mode,rtx * mmin,rtx * mmax)3029 get_mode_bounds (scalar_int_mode mode, int sign,
3030 scalar_int_mode target_mode,
3031 rtx *mmin, rtx *mmax)
3032 {
3033 unsigned size = GET_MODE_PRECISION (mode);
3034 unsigned HOST_WIDE_INT min_val, max_val;
3035
3036 gcc_assert (size <= HOST_BITS_PER_WIDE_INT);
3037
3038 /* Special case BImode, which has values 0 and STORE_FLAG_VALUE. */
3039 if (mode == BImode)
3040 {
3041 if (STORE_FLAG_VALUE < 0)
3042 {
3043 min_val = STORE_FLAG_VALUE;
3044 max_val = 0;
3045 }
3046 else
3047 {
3048 min_val = 0;
3049 max_val = STORE_FLAG_VALUE;
3050 }
3051 }
3052 else if (sign)
3053 {
3054 min_val = -(HOST_WIDE_INT_1U << (size - 1));
3055 max_val = (HOST_WIDE_INT_1U << (size - 1)) - 1;
3056 }
3057 else
3058 {
3059 min_val = 0;
3060 max_val = (HOST_WIDE_INT_1U << (size - 1) << 1) - 1;
3061 }
3062
3063 *mmin = gen_int_mode (min_val, target_mode);
3064 *mmax = gen_int_mode (max_val, target_mode);
3065 }
3066
3067 #include "gt-stor-layout.h"
3068