1 /* C-compiler utilities for types and variables storage layout
2    Copyright (C) 1987-2018 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "target.h"
25 #include "function.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "memmodel.h"
29 #include "tm_p.h"
30 #include "stringpool.h"
31 #include "regs.h"
32 #include "emit-rtl.h"
33 #include "cgraph.h"
34 #include "diagnostic-core.h"
35 #include "fold-const.h"
36 #include "stor-layout.h"
37 #include "varasm.h"
38 #include "print-tree.h"
39 #include "langhooks.h"
40 #include "tree-inline.h"
41 #include "dumpfile.h"
42 #include "gimplify.h"
43 #include "attribs.h"
44 #include "debug.h"
45 
46 /* Data type for the expressions representing sizes of data types.
47    It is the first integer type laid out.  */
48 tree sizetype_tab[(int) stk_type_kind_last];
49 
50 /* If nonzero, this is an upper limit on alignment of structure fields.
51    The value is measured in bits.  */
52 unsigned int maximum_field_alignment = TARGET_DEFAULT_PACK_STRUCT * BITS_PER_UNIT;
53 
54 static tree self_referential_size (tree);
55 static void finalize_record_size (record_layout_info);
56 static void finalize_type_size (tree);
57 static void place_union_field (record_layout_info, tree);
58 static int excess_unit_span (HOST_WIDE_INT, HOST_WIDE_INT, HOST_WIDE_INT,
59 			     HOST_WIDE_INT, tree);
60 extern void debug_rli (record_layout_info);
61 
62 /* Given a size SIZE that may not be a constant, return a SAVE_EXPR
63    to serve as the actual size-expression for a type or decl.  */
64 
65 tree
variable_size(tree size)66 variable_size (tree size)
67 {
68   /* Obviously.  */
69   if (TREE_CONSTANT (size))
70     return size;
71 
72   /* If the size is self-referential, we can't make a SAVE_EXPR (see
73      save_expr for the rationale).  But we can do something else.  */
74   if (CONTAINS_PLACEHOLDER_P (size))
75     return self_referential_size (size);
76 
77   /* If we are in the global binding level, we can't make a SAVE_EXPR
78      since it may end up being shared across functions, so it is up
79      to the front-end to deal with this case.  */
80   if (lang_hooks.decls.global_bindings_p ())
81     return size;
82 
83   return save_expr (size);
84 }
85 
86 /* An array of functions used for self-referential size computation.  */
87 static GTY(()) vec<tree, va_gc> *size_functions;
88 
89 /* Return true if T is a self-referential component reference.  */
90 
91 static bool
self_referential_component_ref_p(tree t)92 self_referential_component_ref_p (tree t)
93 {
94   if (TREE_CODE (t) != COMPONENT_REF)
95     return false;
96 
97   while (REFERENCE_CLASS_P (t))
98     t = TREE_OPERAND (t, 0);
99 
100   return (TREE_CODE (t) == PLACEHOLDER_EXPR);
101 }
102 
103 /* Similar to copy_tree_r but do not copy component references involving
104    PLACEHOLDER_EXPRs.  These nodes are spotted in find_placeholder_in_expr
105    and substituted in substitute_in_expr.  */
106 
107 static tree
copy_self_referential_tree_r(tree * tp,int * walk_subtrees,void * data)108 copy_self_referential_tree_r (tree *tp, int *walk_subtrees, void *data)
109 {
110   enum tree_code code = TREE_CODE (*tp);
111 
112   /* Stop at types, decls, constants like copy_tree_r.  */
113   if (TREE_CODE_CLASS (code) == tcc_type
114       || TREE_CODE_CLASS (code) == tcc_declaration
115       || TREE_CODE_CLASS (code) == tcc_constant)
116     {
117       *walk_subtrees = 0;
118       return NULL_TREE;
119     }
120 
121   /* This is the pattern built in ada/make_aligning_type.  */
122   else if (code == ADDR_EXPR
123 	   && TREE_CODE (TREE_OPERAND (*tp, 0)) == PLACEHOLDER_EXPR)
124     {
125       *walk_subtrees = 0;
126       return NULL_TREE;
127     }
128 
129   /* Default case: the component reference.  */
130   else if (self_referential_component_ref_p (*tp))
131     {
132       *walk_subtrees = 0;
133       return NULL_TREE;
134     }
135 
136   /* We're not supposed to have them in self-referential size trees
137      because we wouldn't properly control when they are evaluated.
138      However, not creating superfluous SAVE_EXPRs requires accurate
139      tracking of readonly-ness all the way down to here, which we
140      cannot always guarantee in practice.  So punt in this case.  */
141   else if (code == SAVE_EXPR)
142     return error_mark_node;
143 
144   else if (code == STATEMENT_LIST)
145     gcc_unreachable ();
146 
147   return copy_tree_r (tp, walk_subtrees, data);
148 }
149 
150 /* Given a SIZE expression that is self-referential, return an equivalent
151    expression to serve as the actual size expression for a type.  */
152 
153 static tree
self_referential_size(tree size)154 self_referential_size (tree size)
155 {
156   static unsigned HOST_WIDE_INT fnno = 0;
157   vec<tree> self_refs = vNULL;
158   tree param_type_list = NULL, param_decl_list = NULL;
159   tree t, ref, return_type, fntype, fnname, fndecl;
160   unsigned int i;
161   char buf[128];
162   vec<tree, va_gc> *args = NULL;
163 
164   /* Do not factor out simple operations.  */
165   t = skip_simple_constant_arithmetic (size);
166   if (TREE_CODE (t) == CALL_EXPR || self_referential_component_ref_p (t))
167     return size;
168 
169   /* Collect the list of self-references in the expression.  */
170   find_placeholder_in_expr (size, &self_refs);
171   gcc_assert (self_refs.length () > 0);
172 
173   /* Obtain a private copy of the expression.  */
174   t = size;
175   if (walk_tree (&t, copy_self_referential_tree_r, NULL, NULL) != NULL_TREE)
176     return size;
177   size = t;
178 
179   /* Build the parameter and argument lists in parallel; also
180      substitute the former for the latter in the expression.  */
181   vec_alloc (args, self_refs.length ());
182   FOR_EACH_VEC_ELT (self_refs, i, ref)
183     {
184       tree subst, param_name, param_type, param_decl;
185 
186       if (DECL_P (ref))
187 	{
188 	  /* We shouldn't have true variables here.  */
189 	  gcc_assert (TREE_READONLY (ref));
190 	  subst = ref;
191 	}
192       /* This is the pattern built in ada/make_aligning_type.  */
193       else if (TREE_CODE (ref) == ADDR_EXPR)
194         subst = ref;
195       /* Default case: the component reference.  */
196       else
197 	subst = TREE_OPERAND (ref, 1);
198 
199       sprintf (buf, "p%d", i);
200       param_name = get_identifier (buf);
201       param_type = TREE_TYPE (ref);
202       param_decl
203 	= build_decl (input_location, PARM_DECL, param_name, param_type);
204       DECL_ARG_TYPE (param_decl) = param_type;
205       DECL_ARTIFICIAL (param_decl) = 1;
206       TREE_READONLY (param_decl) = 1;
207 
208       size = substitute_in_expr (size, subst, param_decl);
209 
210       param_type_list = tree_cons (NULL_TREE, param_type, param_type_list);
211       param_decl_list = chainon (param_decl, param_decl_list);
212       args->quick_push (ref);
213     }
214 
215   self_refs.release ();
216 
217   /* Append 'void' to indicate that the number of parameters is fixed.  */
218   param_type_list = tree_cons (NULL_TREE, void_type_node, param_type_list);
219 
220   /* The 3 lists have been created in reverse order.  */
221   param_type_list = nreverse (param_type_list);
222   param_decl_list = nreverse (param_decl_list);
223 
224   /* Build the function type.  */
225   return_type = TREE_TYPE (size);
226   fntype = build_function_type (return_type, param_type_list);
227 
228   /* Build the function declaration.  */
229   sprintf (buf, "SZ" HOST_WIDE_INT_PRINT_UNSIGNED, fnno++);
230   fnname = get_file_function_name (buf);
231   fndecl = build_decl (input_location, FUNCTION_DECL, fnname, fntype);
232   for (t = param_decl_list; t; t = DECL_CHAIN (t))
233     DECL_CONTEXT (t) = fndecl;
234   DECL_ARGUMENTS (fndecl) = param_decl_list;
235   DECL_RESULT (fndecl)
236     = build_decl (input_location, RESULT_DECL, 0, return_type);
237   DECL_CONTEXT (DECL_RESULT (fndecl)) = fndecl;
238 
239   /* The function has been created by the compiler and we don't
240      want to emit debug info for it.  */
241   DECL_ARTIFICIAL (fndecl) = 1;
242   DECL_IGNORED_P (fndecl) = 1;
243 
244   /* It is supposed to be "const" and never throw.  */
245   TREE_READONLY (fndecl) = 1;
246   TREE_NOTHROW (fndecl) = 1;
247 
248   /* We want it to be inlined when this is deemed profitable, as
249      well as discarded if every call has been integrated.  */
250   DECL_DECLARED_INLINE_P (fndecl) = 1;
251 
252   /* It is made up of a unique return statement.  */
253   DECL_INITIAL (fndecl) = make_node (BLOCK);
254   BLOCK_SUPERCONTEXT (DECL_INITIAL (fndecl)) = fndecl;
255   t = build2 (MODIFY_EXPR, return_type, DECL_RESULT (fndecl), size);
256   DECL_SAVED_TREE (fndecl) = build1 (RETURN_EXPR, void_type_node, t);
257   TREE_STATIC (fndecl) = 1;
258 
259   /* Put it onto the list of size functions.  */
260   vec_safe_push (size_functions, fndecl);
261 
262   /* Replace the original expression with a call to the size function.  */
263   return build_call_expr_loc_vec (UNKNOWN_LOCATION, fndecl, args);
264 }
265 
266 /* Take, queue and compile all the size functions.  It is essential that
267    the size functions be gimplified at the very end of the compilation
268    in order to guarantee transparent handling of self-referential sizes.
269    Otherwise the GENERIC inliner would not be able to inline them back
270    at each of their call sites, thus creating artificial non-constant
271    size expressions which would trigger nasty problems later on.  */
272 
273 void
finalize_size_functions(void)274 finalize_size_functions (void)
275 {
276   unsigned int i;
277   tree fndecl;
278 
279   for (i = 0; size_functions && size_functions->iterate (i, &fndecl); i++)
280     {
281       allocate_struct_function (fndecl, false);
282       set_cfun (NULL);
283       dump_function (TDI_original, fndecl);
284 
285       /* As these functions are used to describe the layout of variable-length
286          structures, debug info generation needs their implementation.  */
287       debug_hooks->size_function (fndecl);
288       gimplify_function_tree (fndecl);
289       cgraph_node::finalize_function (fndecl, false);
290     }
291 
292   vec_free (size_functions);
293 }
294 
295 /* Return a machine mode of class MCLASS with SIZE bits of precision,
296    if one exists.  The mode may have padding bits as well the SIZE
297    value bits.  If LIMIT is nonzero, disregard modes wider than
298    MAX_FIXED_MODE_SIZE.  */
299 
300 opt_machine_mode
mode_for_size(poly_uint64 size,enum mode_class mclass,int limit)301 mode_for_size (poly_uint64 size, enum mode_class mclass, int limit)
302 {
303   machine_mode mode;
304   int i;
305 
306   if (limit && maybe_gt (size, (unsigned int) MAX_FIXED_MODE_SIZE))
307     return opt_machine_mode ();
308 
309   /* Get the first mode which has this size, in the specified class.  */
310   FOR_EACH_MODE_IN_CLASS (mode, mclass)
311     if (known_eq (GET_MODE_PRECISION (mode), size))
312       return mode;
313 
314   if (mclass == MODE_INT || mclass == MODE_PARTIAL_INT)
315     for (i = 0; i < NUM_INT_N_ENTS; i ++)
316       if (known_eq (int_n_data[i].bitsize, size)
317 	  && int_n_enabled_p[i])
318 	return int_n_data[i].m;
319 
320   return opt_machine_mode ();
321 }
322 
323 /* Similar, except passed a tree node.  */
324 
325 opt_machine_mode
mode_for_size_tree(const_tree size,enum mode_class mclass,int limit)326 mode_for_size_tree (const_tree size, enum mode_class mclass, int limit)
327 {
328   unsigned HOST_WIDE_INT uhwi;
329   unsigned int ui;
330 
331   if (!tree_fits_uhwi_p (size))
332     return opt_machine_mode ();
333   uhwi = tree_to_uhwi (size);
334   ui = uhwi;
335   if (uhwi != ui)
336     return opt_machine_mode ();
337   return mode_for_size (ui, mclass, limit);
338 }
339 
340 /* Return the narrowest mode of class MCLASS that contains at least
341    SIZE bits.  Abort if no such mode exists.  */
342 
343 machine_mode
smallest_mode_for_size(poly_uint64 size,enum mode_class mclass)344 smallest_mode_for_size (poly_uint64 size, enum mode_class mclass)
345 {
346   machine_mode mode = VOIDmode;
347   int i;
348 
349   /* Get the first mode which has at least this size, in the
350      specified class.  */
351   FOR_EACH_MODE_IN_CLASS (mode, mclass)
352     if (known_ge (GET_MODE_PRECISION (mode), size))
353       break;
354 
355   gcc_assert (mode != VOIDmode);
356 
357   if (mclass == MODE_INT || mclass == MODE_PARTIAL_INT)
358     for (i = 0; i < NUM_INT_N_ENTS; i ++)
359       if (known_ge (int_n_data[i].bitsize, size)
360 	  && known_lt (int_n_data[i].bitsize, GET_MODE_PRECISION (mode))
361 	  && int_n_enabled_p[i])
362 	mode = int_n_data[i].m;
363 
364   return mode;
365 }
366 
367 /* Return an integer mode of exactly the same size as MODE, if one exists.  */
368 
369 opt_scalar_int_mode
int_mode_for_mode(machine_mode mode)370 int_mode_for_mode (machine_mode mode)
371 {
372   switch (GET_MODE_CLASS (mode))
373     {
374     case MODE_INT:
375     case MODE_PARTIAL_INT:
376       return as_a <scalar_int_mode> (mode);
377 
378     case MODE_COMPLEX_INT:
379     case MODE_COMPLEX_FLOAT:
380     case MODE_FLOAT:
381     case MODE_DECIMAL_FLOAT:
382     case MODE_FRACT:
383     case MODE_ACCUM:
384     case MODE_UFRACT:
385     case MODE_UACCUM:
386     case MODE_VECTOR_BOOL:
387     case MODE_VECTOR_INT:
388     case MODE_VECTOR_FLOAT:
389     case MODE_VECTOR_FRACT:
390     case MODE_VECTOR_ACCUM:
391     case MODE_VECTOR_UFRACT:
392     case MODE_VECTOR_UACCUM:
393     case MODE_POINTER_BOUNDS:
394       return int_mode_for_size (GET_MODE_BITSIZE (mode), 0);
395 
396     case MODE_RANDOM:
397       if (mode == BLKmode)
398 	return opt_scalar_int_mode ();
399 
400       /* fall through */
401 
402     case MODE_CC:
403     default:
404       gcc_unreachable ();
405     }
406 }
407 
408 /* Find a mode that can be used for efficient bitwise operations on MODE,
409    if one exists.  */
410 
411 opt_machine_mode
bitwise_mode_for_mode(machine_mode mode)412 bitwise_mode_for_mode (machine_mode mode)
413 {
414   /* Quick exit if we already have a suitable mode.  */
415   scalar_int_mode int_mode;
416   if (is_a <scalar_int_mode> (mode, &int_mode)
417       && GET_MODE_BITSIZE (int_mode) <= MAX_FIXED_MODE_SIZE)
418     return int_mode;
419 
420   /* Reuse the sanity checks from int_mode_for_mode.  */
421   gcc_checking_assert ((int_mode_for_mode (mode), true));
422 
423   poly_int64 bitsize = GET_MODE_BITSIZE (mode);
424 
425   /* Try to replace complex modes with complex modes.  In general we
426      expect both components to be processed independently, so we only
427      care whether there is a register for the inner mode.  */
428   if (COMPLEX_MODE_P (mode))
429     {
430       machine_mode trial = mode;
431       if ((GET_MODE_CLASS (trial) == MODE_COMPLEX_INT
432 	   || mode_for_size (bitsize, MODE_COMPLEX_INT, false).exists (&trial))
433 	  && have_regs_of_mode[GET_MODE_INNER (trial)])
434 	return trial;
435     }
436 
437   /* Try to replace vector modes with vector modes.  Also try using vector
438      modes if an integer mode would be too big.  */
439   if (VECTOR_MODE_P (mode)
440       || maybe_gt (bitsize, MAX_FIXED_MODE_SIZE))
441     {
442       machine_mode trial = mode;
443       if ((GET_MODE_CLASS (trial) == MODE_VECTOR_INT
444 	   || mode_for_size (bitsize, MODE_VECTOR_INT, 0).exists (&trial))
445 	  && have_regs_of_mode[trial]
446 	  && targetm.vector_mode_supported_p (trial))
447 	return trial;
448     }
449 
450   /* Otherwise fall back on integers while honoring MAX_FIXED_MODE_SIZE.  */
451   return mode_for_size (bitsize, MODE_INT, true);
452 }
453 
454 /* Find a type that can be used for efficient bitwise operations on MODE.
455    Return null if no such mode exists.  */
456 
457 tree
bitwise_type_for_mode(machine_mode mode)458 bitwise_type_for_mode (machine_mode mode)
459 {
460   if (!bitwise_mode_for_mode (mode).exists (&mode))
461     return NULL_TREE;
462 
463   unsigned int inner_size = GET_MODE_UNIT_BITSIZE (mode);
464   tree inner_type = build_nonstandard_integer_type (inner_size, true);
465 
466   if (VECTOR_MODE_P (mode))
467     return build_vector_type_for_mode (inner_type, mode);
468 
469   if (COMPLEX_MODE_P (mode))
470     return build_complex_type (inner_type);
471 
472   gcc_checking_assert (GET_MODE_INNER (mode) == mode);
473   return inner_type;
474 }
475 
476 /* Find a mode that is suitable for representing a vector with NUNITS
477    elements of mode INNERMODE, if one exists.  The returned mode can be
478    either an integer mode or a vector mode.  */
479 
480 opt_machine_mode
mode_for_vector(scalar_mode innermode,poly_uint64 nunits)481 mode_for_vector (scalar_mode innermode, poly_uint64 nunits)
482 {
483   machine_mode mode;
484 
485   /* First, look for a supported vector type.  */
486   if (SCALAR_FLOAT_MODE_P (innermode))
487     mode = MIN_MODE_VECTOR_FLOAT;
488   else if (SCALAR_FRACT_MODE_P (innermode))
489     mode = MIN_MODE_VECTOR_FRACT;
490   else if (SCALAR_UFRACT_MODE_P (innermode))
491     mode = MIN_MODE_VECTOR_UFRACT;
492   else if (SCALAR_ACCUM_MODE_P (innermode))
493     mode = MIN_MODE_VECTOR_ACCUM;
494   else if (SCALAR_UACCUM_MODE_P (innermode))
495     mode = MIN_MODE_VECTOR_UACCUM;
496   else
497     mode = MIN_MODE_VECTOR_INT;
498 
499   /* Do not check vector_mode_supported_p here.  We'll do that
500      later in vector_type_mode.  */
501   FOR_EACH_MODE_FROM (mode, mode)
502     if (known_eq (GET_MODE_NUNITS (mode), nunits)
503 	&& GET_MODE_INNER (mode) == innermode)
504       return mode;
505 
506   /* For integers, try mapping it to a same-sized scalar mode.  */
507   if (GET_MODE_CLASS (innermode) == MODE_INT)
508     {
509       poly_uint64 nbits = nunits * GET_MODE_BITSIZE (innermode);
510       if (int_mode_for_size (nbits, 0).exists (&mode)
511 	  && have_regs_of_mode[mode])
512 	return mode;
513     }
514 
515   return opt_machine_mode ();
516 }
517 
518 /* Return the mode for a vector that has NUNITS integer elements of
519    INT_BITS bits each, if such a mode exists.  The mode can be either
520    an integer mode or a vector mode.  */
521 
522 opt_machine_mode
mode_for_int_vector(unsigned int int_bits,poly_uint64 nunits)523 mode_for_int_vector (unsigned int int_bits, poly_uint64 nunits)
524 {
525   scalar_int_mode int_mode;
526   machine_mode vec_mode;
527   if (int_mode_for_size (int_bits, 0).exists (&int_mode)
528       && mode_for_vector (int_mode, nunits).exists (&vec_mode))
529     return vec_mode;
530   return opt_machine_mode ();
531 }
532 
533 /* Return the alignment of MODE. This will be bounded by 1 and
534    BIGGEST_ALIGNMENT.  */
535 
536 unsigned int
get_mode_alignment(machine_mode mode)537 get_mode_alignment (machine_mode mode)
538 {
539   return MIN (BIGGEST_ALIGNMENT, MAX (1, mode_base_align[mode]*BITS_PER_UNIT));
540 }
541 
542 /* Return the natural mode of an array, given that it is SIZE bytes in
543    total and has elements of type ELEM_TYPE.  */
544 
545 static machine_mode
mode_for_array(tree elem_type,tree size)546 mode_for_array (tree elem_type, tree size)
547 {
548   tree elem_size;
549   poly_uint64 int_size, int_elem_size;
550   unsigned HOST_WIDE_INT num_elems;
551   bool limit_p;
552 
553   /* One-element arrays get the component type's mode.  */
554   elem_size = TYPE_SIZE (elem_type);
555   if (simple_cst_equal (size, elem_size))
556     return TYPE_MODE (elem_type);
557 
558   limit_p = true;
559   if (poly_int_tree_p (size, &int_size)
560       && poly_int_tree_p (elem_size, &int_elem_size)
561       && maybe_ne (int_elem_size, 0U)
562       && constant_multiple_p (int_size, int_elem_size, &num_elems))
563     {
564       machine_mode elem_mode = TYPE_MODE (elem_type);
565       machine_mode mode;
566       if (targetm.array_mode (elem_mode, num_elems).exists (&mode))
567 	return mode;
568       if (targetm.array_mode_supported_p (elem_mode, num_elems))
569 	limit_p = false;
570     }
571   return mode_for_size_tree (size, MODE_INT, limit_p).else_blk ();
572 }
573 
574 /* Subroutine of layout_decl: Force alignment required for the data type.
575    But if the decl itself wants greater alignment, don't override that.  */
576 
577 static inline void
do_type_align(tree type,tree decl)578 do_type_align (tree type, tree decl)
579 {
580   if (TYPE_ALIGN (type) > DECL_ALIGN (decl))
581     {
582       SET_DECL_ALIGN (decl, TYPE_ALIGN (type));
583       if (TREE_CODE (decl) == FIELD_DECL)
584 	DECL_USER_ALIGN (decl) = TYPE_USER_ALIGN (type);
585     }
586   if (TYPE_WARN_IF_NOT_ALIGN (type) > DECL_WARN_IF_NOT_ALIGN (decl))
587     SET_DECL_WARN_IF_NOT_ALIGN (decl, TYPE_WARN_IF_NOT_ALIGN (type));
588 }
589 
590 /* Set the size, mode and alignment of a ..._DECL node.
591    TYPE_DECL does need this for C++.
592    Note that LABEL_DECL and CONST_DECL nodes do not need this,
593    and FUNCTION_DECL nodes have them set up in a special (and simple) way.
594    Don't call layout_decl for them.
595 
596    KNOWN_ALIGN is the amount of alignment we can assume this
597    decl has with no special effort.  It is relevant only for FIELD_DECLs
598    and depends on the previous fields.
599    All that matters about KNOWN_ALIGN is which powers of 2 divide it.
600    If KNOWN_ALIGN is 0, it means, "as much alignment as you like":
601    the record will be aligned to suit.  */
602 
603 void
layout_decl(tree decl,unsigned int known_align)604 layout_decl (tree decl, unsigned int known_align)
605 {
606   tree type = TREE_TYPE (decl);
607   enum tree_code code = TREE_CODE (decl);
608   rtx rtl = NULL_RTX;
609   location_t loc = DECL_SOURCE_LOCATION (decl);
610 
611   if (code == CONST_DECL)
612     return;
613 
614   gcc_assert (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL
615 	      || code == TYPE_DECL || code == FIELD_DECL);
616 
617   rtl = DECL_RTL_IF_SET (decl);
618 
619   if (type == error_mark_node)
620     type = void_type_node;
621 
622   /* Usually the size and mode come from the data type without change,
623      however, the front-end may set the explicit width of the field, so its
624      size may not be the same as the size of its type.  This happens with
625      bitfields, of course (an `int' bitfield may be only 2 bits, say), but it
626      also happens with other fields.  For example, the C++ front-end creates
627      zero-sized fields corresponding to empty base classes, and depends on
628      layout_type setting DECL_FIELD_BITPOS correctly for the field.  Set the
629      size in bytes from the size in bits.  If we have already set the mode,
630      don't set it again since we can be called twice for FIELD_DECLs.  */
631 
632   DECL_UNSIGNED (decl) = TYPE_UNSIGNED (type);
633   if (DECL_MODE (decl) == VOIDmode)
634     SET_DECL_MODE (decl, TYPE_MODE (type));
635 
636   if (DECL_SIZE (decl) == 0)
637     {
638       DECL_SIZE (decl) = TYPE_SIZE (type);
639       DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (type);
640     }
641   else if (DECL_SIZE_UNIT (decl) == 0)
642     DECL_SIZE_UNIT (decl)
643       = fold_convert_loc (loc, sizetype,
644 			  size_binop_loc (loc, CEIL_DIV_EXPR, DECL_SIZE (decl),
645 					  bitsize_unit_node));
646 
647   if (code != FIELD_DECL)
648     /* For non-fields, update the alignment from the type.  */
649     do_type_align (type, decl);
650   else
651     /* For fields, it's a bit more complicated...  */
652     {
653       bool old_user_align = DECL_USER_ALIGN (decl);
654       bool zero_bitfield = false;
655       bool packed_p = DECL_PACKED (decl);
656       unsigned int mfa;
657 
658       if (DECL_BIT_FIELD (decl))
659 	{
660 	  DECL_BIT_FIELD_TYPE (decl) = type;
661 
662 	  /* A zero-length bit-field affects the alignment of the next
663 	     field.  In essence such bit-fields are not influenced by
664 	     any packing due to #pragma pack or attribute packed.  */
665 	  if (integer_zerop (DECL_SIZE (decl))
666 	      && ! targetm.ms_bitfield_layout_p (DECL_FIELD_CONTEXT (decl)))
667 	    {
668 	      zero_bitfield = true;
669 	      packed_p = false;
670 	      if (PCC_BITFIELD_TYPE_MATTERS)
671 		do_type_align (type, decl);
672 	      else
673 		{
674 #ifdef EMPTY_FIELD_BOUNDARY
675 		  if (EMPTY_FIELD_BOUNDARY > DECL_ALIGN (decl))
676 		    {
677 		      SET_DECL_ALIGN (decl, EMPTY_FIELD_BOUNDARY);
678 		      DECL_USER_ALIGN (decl) = 0;
679 		    }
680 #endif
681 		}
682 	    }
683 
684 	  /* See if we can use an ordinary integer mode for a bit-field.
685 	     Conditions are: a fixed size that is correct for another mode,
686 	     occupying a complete byte or bytes on proper boundary.  */
687 	  if (TYPE_SIZE (type) != 0
688 	      && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
689 	      && GET_MODE_CLASS (TYPE_MODE (type)) == MODE_INT)
690 	    {
691 	      machine_mode xmode;
692 	      if (mode_for_size_tree (DECL_SIZE (decl),
693 				      MODE_INT, 1).exists (&xmode))
694 		{
695 		  unsigned int xalign = GET_MODE_ALIGNMENT (xmode);
696 		  if (!(xalign > BITS_PER_UNIT && DECL_PACKED (decl))
697 		      && (known_align == 0 || known_align >= xalign))
698 		    {
699 		      SET_DECL_ALIGN (decl, MAX (xalign, DECL_ALIGN (decl)));
700 		      SET_DECL_MODE (decl, xmode);
701 		      DECL_BIT_FIELD (decl) = 0;
702 		    }
703 		}
704 	    }
705 
706 	  /* Turn off DECL_BIT_FIELD if we won't need it set.  */
707 	  if (TYPE_MODE (type) == BLKmode && DECL_MODE (decl) == BLKmode
708 	      && known_align >= TYPE_ALIGN (type)
709 	      && DECL_ALIGN (decl) >= TYPE_ALIGN (type))
710 	    DECL_BIT_FIELD (decl) = 0;
711 	}
712       else if (packed_p && DECL_USER_ALIGN (decl))
713 	/* Don't touch DECL_ALIGN.  For other packed fields, go ahead and
714 	   round up; we'll reduce it again below.  We want packing to
715 	   supersede USER_ALIGN inherited from the type, but defer to
716 	   alignment explicitly specified on the field decl.  */;
717       else
718 	do_type_align (type, decl);
719 
720       /* If the field is packed and not explicitly aligned, give it the
721 	 minimum alignment.  Note that do_type_align may set
722 	 DECL_USER_ALIGN, so we need to check old_user_align instead.  */
723       if (packed_p
724 	  && !old_user_align)
725 	SET_DECL_ALIGN (decl, MIN (DECL_ALIGN (decl), BITS_PER_UNIT));
726 
727       if (! packed_p && ! DECL_USER_ALIGN (decl))
728 	{
729 	  /* Some targets (i.e. i386, VMS) limit struct field alignment
730 	     to a lower boundary than alignment of variables unless
731 	     it was overridden by attribute aligned.  */
732 #ifdef BIGGEST_FIELD_ALIGNMENT
733 	  SET_DECL_ALIGN (decl, MIN (DECL_ALIGN (decl),
734 				     (unsigned) BIGGEST_FIELD_ALIGNMENT));
735 #endif
736 #ifdef ADJUST_FIELD_ALIGN
737 	  SET_DECL_ALIGN (decl, ADJUST_FIELD_ALIGN (decl, TREE_TYPE (decl),
738 						    DECL_ALIGN (decl)));
739 #endif
740 	}
741 
742       if (zero_bitfield)
743         mfa = initial_max_fld_align * BITS_PER_UNIT;
744       else
745 	mfa = maximum_field_alignment;
746       /* Should this be controlled by DECL_USER_ALIGN, too?  */
747       if (mfa != 0)
748 	SET_DECL_ALIGN (decl, MIN (DECL_ALIGN (decl), mfa));
749     }
750 
751   /* Evaluate nonconstant size only once, either now or as soon as safe.  */
752   if (DECL_SIZE (decl) != 0 && TREE_CODE (DECL_SIZE (decl)) != INTEGER_CST)
753     DECL_SIZE (decl) = variable_size (DECL_SIZE (decl));
754   if (DECL_SIZE_UNIT (decl) != 0
755       && TREE_CODE (DECL_SIZE_UNIT (decl)) != INTEGER_CST)
756     DECL_SIZE_UNIT (decl) = variable_size (DECL_SIZE_UNIT (decl));
757 
758   /* If requested, warn about definitions of large data objects.  */
759   if (warn_larger_than
760       && (code == VAR_DECL || code == PARM_DECL)
761       && ! DECL_EXTERNAL (decl))
762     {
763       tree size = DECL_SIZE_UNIT (decl);
764 
765       if (size != 0 && TREE_CODE (size) == INTEGER_CST
766 	  && compare_tree_int (size, larger_than_size) > 0)
767 	{
768 	  int size_as_int = TREE_INT_CST_LOW (size);
769 
770 	  if (compare_tree_int (size, size_as_int) == 0)
771 	    warning (OPT_Wlarger_than_, "size of %q+D is %d bytes", decl, size_as_int);
772 	  else
773 	    warning (OPT_Wlarger_than_, "size of %q+D is larger than %wd bytes",
774                      decl, larger_than_size);
775 	}
776     }
777 
778   /* If the RTL was already set, update its mode and mem attributes.  */
779   if (rtl)
780     {
781       PUT_MODE (rtl, DECL_MODE (decl));
782       SET_DECL_RTL (decl, 0);
783       if (MEM_P (rtl))
784 	set_mem_attributes (rtl, decl, 1);
785       SET_DECL_RTL (decl, rtl);
786     }
787 }
788 
789 /* Given a VAR_DECL, PARM_DECL, RESULT_DECL, or FIELD_DECL, clears the
790    results of a previous call to layout_decl and calls it again.  */
791 
792 void
relayout_decl(tree decl)793 relayout_decl (tree decl)
794 {
795   DECL_SIZE (decl) = DECL_SIZE_UNIT (decl) = 0;
796   SET_DECL_MODE (decl, VOIDmode);
797   if (!DECL_USER_ALIGN (decl))
798     SET_DECL_ALIGN (decl, 0);
799   if (DECL_RTL_SET_P (decl))
800     SET_DECL_RTL (decl, 0);
801 
802   layout_decl (decl, 0);
803 }
804 
805 /* Begin laying out type T, which may be a RECORD_TYPE, UNION_TYPE, or
806    QUAL_UNION_TYPE.  Return a pointer to a struct record_layout_info which
807    is to be passed to all other layout functions for this record.  It is the
808    responsibility of the caller to call `free' for the storage returned.
809    Note that garbage collection is not permitted until we finish laying
810    out the record.  */
811 
812 record_layout_info
start_record_layout(tree t)813 start_record_layout (tree t)
814 {
815   record_layout_info rli = XNEW (struct record_layout_info_s);
816 
817   rli->t = t;
818 
819   /* If the type has a minimum specified alignment (via an attribute
820      declaration, for example) use it -- otherwise, start with a
821      one-byte alignment.  */
822   rli->record_align = MAX (BITS_PER_UNIT, TYPE_ALIGN (t));
823   rli->unpacked_align = rli->record_align;
824   rli->offset_align = MAX (rli->record_align, BIGGEST_ALIGNMENT);
825 
826 #ifdef STRUCTURE_SIZE_BOUNDARY
827   /* Packed structures don't need to have minimum size.  */
828   if (! TYPE_PACKED (t))
829     {
830       unsigned tmp;
831 
832       /* #pragma pack overrides STRUCTURE_SIZE_BOUNDARY.  */
833       tmp = (unsigned) STRUCTURE_SIZE_BOUNDARY;
834       if (maximum_field_alignment != 0)
835 	tmp = MIN (tmp, maximum_field_alignment);
836       rli->record_align = MAX (rli->record_align, tmp);
837     }
838 #endif
839 
840   rli->offset = size_zero_node;
841   rli->bitpos = bitsize_zero_node;
842   rli->prev_field = 0;
843   rli->pending_statics = 0;
844   rli->packed_maybe_necessary = 0;
845   rli->remaining_in_alignment = 0;
846 
847   return rli;
848 }
849 
850 /* Fold sizetype value X to bitsizetype, given that X represents a type
851    size or offset.  */
852 
853 static tree
bits_from_bytes(tree x)854 bits_from_bytes (tree x)
855 {
856   if (POLY_INT_CST_P (x))
857     /* The runtime calculation isn't allowed to overflow sizetype;
858        increasing the runtime values must always increase the size
859        or offset of the object.  This means that the object imposes
860        a maximum value on the runtime parameters, but we don't record
861        what that is.  */
862     return build_poly_int_cst
863       (bitsizetype,
864        poly_wide_int::from (poly_int_cst_value (x),
865 			    TYPE_PRECISION (bitsizetype),
866 			    TYPE_SIGN (TREE_TYPE (x))));
867   x = fold_convert (bitsizetype, x);
868   gcc_checking_assert (x);
869   return x;
870 }
871 
872 /* Return the combined bit position for the byte offset OFFSET and the
873    bit position BITPOS.
874 
875    These functions operate on byte and bit positions present in FIELD_DECLs
876    and assume that these expressions result in no (intermediate) overflow.
877    This assumption is necessary to fold the expressions as much as possible,
878    so as to avoid creating artificially variable-sized types in languages
879    supporting variable-sized types like Ada.  */
880 
881 tree
bit_from_pos(tree offset,tree bitpos)882 bit_from_pos (tree offset, tree bitpos)
883 {
884   return size_binop (PLUS_EXPR, bitpos,
885 		     size_binop (MULT_EXPR, bits_from_bytes (offset),
886 				 bitsize_unit_node));
887 }
888 
889 /* Return the combined truncated byte position for the byte offset OFFSET and
890    the bit position BITPOS.  */
891 
892 tree
byte_from_pos(tree offset,tree bitpos)893 byte_from_pos (tree offset, tree bitpos)
894 {
895   tree bytepos;
896   if (TREE_CODE (bitpos) == MULT_EXPR
897       && tree_int_cst_equal (TREE_OPERAND (bitpos, 1), bitsize_unit_node))
898     bytepos = TREE_OPERAND (bitpos, 0);
899   else
900     bytepos = size_binop (TRUNC_DIV_EXPR, bitpos, bitsize_unit_node);
901   return size_binop (PLUS_EXPR, offset, fold_convert (sizetype, bytepos));
902 }
903 
904 /* Split the bit position POS into a byte offset *POFFSET and a bit
905    position *PBITPOS with the byte offset aligned to OFF_ALIGN bits.  */
906 
907 void
pos_from_bit(tree * poffset,tree * pbitpos,unsigned int off_align,tree pos)908 pos_from_bit (tree *poffset, tree *pbitpos, unsigned int off_align,
909 	      tree pos)
910 {
911   tree toff_align = bitsize_int (off_align);
912   if (TREE_CODE (pos) == MULT_EXPR
913       && tree_int_cst_equal (TREE_OPERAND (pos, 1), toff_align))
914     {
915       *poffset = size_binop (MULT_EXPR,
916 			     fold_convert (sizetype, TREE_OPERAND (pos, 0)),
917 			     size_int (off_align / BITS_PER_UNIT));
918       *pbitpos = bitsize_zero_node;
919     }
920   else
921     {
922       *poffset = size_binop (MULT_EXPR,
923 			     fold_convert (sizetype,
924 					   size_binop (FLOOR_DIV_EXPR, pos,
925 						       toff_align)),
926 			     size_int (off_align / BITS_PER_UNIT));
927       *pbitpos = size_binop (FLOOR_MOD_EXPR, pos, toff_align);
928     }
929 }
930 
931 /* Given a pointer to bit and byte offsets and an offset alignment,
932    normalize the offsets so they are within the alignment.  */
933 
934 void
normalize_offset(tree * poffset,tree * pbitpos,unsigned int off_align)935 normalize_offset (tree *poffset, tree *pbitpos, unsigned int off_align)
936 {
937   /* If the bit position is now larger than it should be, adjust it
938      downwards.  */
939   if (compare_tree_int (*pbitpos, off_align) >= 0)
940     {
941       tree offset, bitpos;
942       pos_from_bit (&offset, &bitpos, off_align, *pbitpos);
943       *poffset = size_binop (PLUS_EXPR, *poffset, offset);
944       *pbitpos = bitpos;
945     }
946 }
947 
948 /* Print debugging information about the information in RLI.  */
949 
950 DEBUG_FUNCTION void
debug_rli(record_layout_info rli)951 debug_rli (record_layout_info rli)
952 {
953   print_node_brief (stderr, "type", rli->t, 0);
954   print_node_brief (stderr, "\noffset", rli->offset, 0);
955   print_node_brief (stderr, " bitpos", rli->bitpos, 0);
956 
957   fprintf (stderr, "\naligns: rec = %u, unpack = %u, off = %u\n",
958 	   rli->record_align, rli->unpacked_align,
959 	   rli->offset_align);
960 
961   /* The ms_struct code is the only that uses this.  */
962   if (targetm.ms_bitfield_layout_p (rli->t))
963     fprintf (stderr, "remaining in alignment = %u\n", rli->remaining_in_alignment);
964 
965   if (rli->packed_maybe_necessary)
966     fprintf (stderr, "packed may be necessary\n");
967 
968   if (!vec_safe_is_empty (rli->pending_statics))
969     {
970       fprintf (stderr, "pending statics:\n");
971       debug (rli->pending_statics);
972     }
973 }
974 
975 /* Given an RLI with a possibly-incremented BITPOS, adjust OFFSET and
976    BITPOS if necessary to keep BITPOS below OFFSET_ALIGN.  */
977 
978 void
normalize_rli(record_layout_info rli)979 normalize_rli (record_layout_info rli)
980 {
981   normalize_offset (&rli->offset, &rli->bitpos, rli->offset_align);
982 }
983 
984 /* Returns the size in bytes allocated so far.  */
985 
986 tree
rli_size_unit_so_far(record_layout_info rli)987 rli_size_unit_so_far (record_layout_info rli)
988 {
989   return byte_from_pos (rli->offset, rli->bitpos);
990 }
991 
992 /* Returns the size in bits allocated so far.  */
993 
994 tree
rli_size_so_far(record_layout_info rli)995 rli_size_so_far (record_layout_info rli)
996 {
997   return bit_from_pos (rli->offset, rli->bitpos);
998 }
999 
1000 /* FIELD is about to be added to RLI->T.  The alignment (in bits) of
1001    the next available location within the record is given by KNOWN_ALIGN.
1002    Update the variable alignment fields in RLI, and return the alignment
1003    to give the FIELD.  */
1004 
1005 unsigned int
update_alignment_for_field(record_layout_info rli,tree field,unsigned int known_align)1006 update_alignment_for_field (record_layout_info rli, tree field,
1007 			    unsigned int known_align)
1008 {
1009   /* The alignment required for FIELD.  */
1010   unsigned int desired_align;
1011   /* The type of this field.  */
1012   tree type = TREE_TYPE (field);
1013   /* True if the field was explicitly aligned by the user.  */
1014   bool user_align;
1015   bool is_bitfield;
1016 
1017   /* Do not attempt to align an ERROR_MARK node */
1018   if (TREE_CODE (type) == ERROR_MARK)
1019     return 0;
1020 
1021   /* Lay out the field so we know what alignment it needs.  */
1022   layout_decl (field, known_align);
1023   desired_align = DECL_ALIGN (field);
1024   user_align = DECL_USER_ALIGN (field);
1025 
1026   is_bitfield = (type != error_mark_node
1027 		 && DECL_BIT_FIELD_TYPE (field)
1028 		 && ! integer_zerop (TYPE_SIZE (type)));
1029 
1030   /* Record must have at least as much alignment as any field.
1031      Otherwise, the alignment of the field within the record is
1032      meaningless.  */
1033   if (targetm.ms_bitfield_layout_p (rli->t))
1034     {
1035       /* Here, the alignment of the underlying type of a bitfield can
1036 	 affect the alignment of a record; even a zero-sized field
1037 	 can do this.  The alignment should be to the alignment of
1038 	 the type, except that for zero-size bitfields this only
1039 	 applies if there was an immediately prior, nonzero-size
1040 	 bitfield.  (That's the way it is, experimentally.) */
1041       if (!is_bitfield
1042 	  || ((DECL_SIZE (field) == NULL_TREE
1043 	       || !integer_zerop (DECL_SIZE (field)))
1044 	      ? !DECL_PACKED (field)
1045 	      : (rli->prev_field
1046 		 && DECL_BIT_FIELD_TYPE (rli->prev_field)
1047 		 && ! integer_zerop (DECL_SIZE (rli->prev_field)))))
1048 	{
1049 	  unsigned int type_align = TYPE_ALIGN (type);
1050 	  if (!is_bitfield && DECL_PACKED (field))
1051 	    type_align = desired_align;
1052 	  else
1053 	    type_align = MAX (type_align, desired_align);
1054 	  if (maximum_field_alignment != 0)
1055 	    type_align = MIN (type_align, maximum_field_alignment);
1056 	  rli->record_align = MAX (rli->record_align, type_align);
1057 	  rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1058 	}
1059     }
1060   else if (is_bitfield && PCC_BITFIELD_TYPE_MATTERS)
1061     {
1062       /* Named bit-fields cause the entire structure to have the
1063 	 alignment implied by their type.  Some targets also apply the same
1064 	 rules to unnamed bitfields.  */
1065       if (DECL_NAME (field) != 0
1066 	  || targetm.align_anon_bitfield ())
1067 	{
1068 	  unsigned int type_align = TYPE_ALIGN (type);
1069 
1070 #ifdef ADJUST_FIELD_ALIGN
1071 	  if (! TYPE_USER_ALIGN (type))
1072 	    type_align = ADJUST_FIELD_ALIGN (field, type, type_align);
1073 #endif
1074 
1075 	  /* Targets might chose to handle unnamed and hence possibly
1076 	     zero-width bitfield.  Those are not influenced by #pragmas
1077 	     or packed attributes.  */
1078 	  if (integer_zerop (DECL_SIZE (field)))
1079 	    {
1080 	      if (initial_max_fld_align)
1081 	        type_align = MIN (type_align,
1082 				  initial_max_fld_align * BITS_PER_UNIT);
1083 	    }
1084 	  else if (maximum_field_alignment != 0)
1085 	    type_align = MIN (type_align, maximum_field_alignment);
1086 	  else if (DECL_PACKED (field))
1087 	    type_align = MIN (type_align, BITS_PER_UNIT);
1088 
1089 	  /* The alignment of the record is increased to the maximum
1090 	     of the current alignment, the alignment indicated on the
1091 	     field (i.e., the alignment specified by an __aligned__
1092 	     attribute), and the alignment indicated by the type of
1093 	     the field.  */
1094 	  rli->record_align = MAX (rli->record_align, desired_align);
1095 	  rli->record_align = MAX (rli->record_align, type_align);
1096 
1097 	  if (warn_packed)
1098 	    rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1099 	  user_align |= TYPE_USER_ALIGN (type);
1100 	}
1101     }
1102   else
1103     {
1104       rli->record_align = MAX (rli->record_align, desired_align);
1105       rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1106     }
1107 
1108   TYPE_USER_ALIGN (rli->t) |= user_align;
1109 
1110   return desired_align;
1111 }
1112 
1113 /* Issue a warning if the record alignment, RECORD_ALIGN, is less than
1114    the field alignment of FIELD or FIELD isn't aligned. */
1115 
1116 static void
handle_warn_if_not_align(tree field,unsigned int record_align)1117 handle_warn_if_not_align (tree field, unsigned int record_align)
1118 {
1119   tree type = TREE_TYPE (field);
1120 
1121   if (type == error_mark_node)
1122     return;
1123 
1124   unsigned int warn_if_not_align = 0;
1125 
1126   int opt_w = 0;
1127 
1128   if (warn_if_not_aligned)
1129     {
1130       warn_if_not_align = DECL_WARN_IF_NOT_ALIGN (field);
1131       if (!warn_if_not_align)
1132 	warn_if_not_align = TYPE_WARN_IF_NOT_ALIGN (type);
1133       if (warn_if_not_align)
1134 	opt_w = OPT_Wif_not_aligned;
1135     }
1136 
1137   if (!warn_if_not_align
1138       && warn_packed_not_aligned
1139       && lookup_attribute ("aligned", TYPE_ATTRIBUTES (type)))
1140     {
1141       warn_if_not_align = TYPE_ALIGN (type);
1142       opt_w = OPT_Wpacked_not_aligned;
1143     }
1144 
1145   if (!warn_if_not_align)
1146     return;
1147 
1148   tree context = DECL_CONTEXT (field);
1149 
1150   warn_if_not_align /= BITS_PER_UNIT;
1151   record_align /= BITS_PER_UNIT;
1152   if ((record_align % warn_if_not_align) != 0)
1153     warning (opt_w, "alignment %u of %qT is less than %u",
1154 	     record_align, context, warn_if_not_align);
1155 
1156   tree off = byte_position (field);
1157   if (!multiple_of_p (TREE_TYPE (off), off, size_int (warn_if_not_align)))
1158     {
1159       if (TREE_CODE (off) == INTEGER_CST)
1160 	warning (opt_w, "%q+D offset %E in %qT isn%'t aligned to %u",
1161 		 field, off, context, warn_if_not_align);
1162       else
1163 	warning (opt_w, "%q+D offset %E in %qT may not be aligned to %u",
1164 		 field, off, context, warn_if_not_align);
1165     }
1166 }
1167 
1168 /* Called from place_field to handle unions.  */
1169 
1170 static void
place_union_field(record_layout_info rli,tree field)1171 place_union_field (record_layout_info rli, tree field)
1172 {
1173   update_alignment_for_field (rli, field, /*known_align=*/0);
1174 
1175   DECL_FIELD_OFFSET (field) = size_zero_node;
1176   DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
1177   SET_DECL_OFFSET_ALIGN (field, BIGGEST_ALIGNMENT);
1178   handle_warn_if_not_align (field, rli->record_align);
1179 
1180   /* If this is an ERROR_MARK return *after* having set the
1181      field at the start of the union. This helps when parsing
1182      invalid fields. */
1183   if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK)
1184     return;
1185 
1186   if (AGGREGATE_TYPE_P (TREE_TYPE (field))
1187       && TYPE_TYPELESS_STORAGE (TREE_TYPE (field)))
1188     TYPE_TYPELESS_STORAGE (rli->t) = 1;
1189 
1190   /* We assume the union's size will be a multiple of a byte so we don't
1191      bother with BITPOS.  */
1192   if (TREE_CODE (rli->t) == UNION_TYPE)
1193     rli->offset = size_binop (MAX_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1194   else if (TREE_CODE (rli->t) == QUAL_UNION_TYPE)
1195     rli->offset = fold_build3 (COND_EXPR, sizetype, DECL_QUALIFIER (field),
1196 			       DECL_SIZE_UNIT (field), rli->offset);
1197 }
1198 
1199 /* A bitfield of SIZE with a required access alignment of ALIGN is allocated
1200    at BYTE_OFFSET / BIT_OFFSET.  Return nonzero if the field would span more
1201    units of alignment than the underlying TYPE.  */
1202 static int
excess_unit_span(HOST_WIDE_INT byte_offset,HOST_WIDE_INT bit_offset,HOST_WIDE_INT size,HOST_WIDE_INT align,tree type)1203 excess_unit_span (HOST_WIDE_INT byte_offset, HOST_WIDE_INT bit_offset,
1204 		  HOST_WIDE_INT size, HOST_WIDE_INT align, tree type)
1205 {
1206   /* Note that the calculation of OFFSET might overflow; we calculate it so
1207      that we still get the right result as long as ALIGN is a power of two.  */
1208   unsigned HOST_WIDE_INT offset = byte_offset * BITS_PER_UNIT + bit_offset;
1209 
1210   offset = offset % align;
1211   return ((offset + size + align - 1) / align
1212 	  > tree_to_uhwi (TYPE_SIZE (type)) / align);
1213 }
1214 
1215 /* RLI contains information about the layout of a RECORD_TYPE.  FIELD
1216    is a FIELD_DECL to be added after those fields already present in
1217    T.  (FIELD is not actually added to the TYPE_FIELDS list here;
1218    callers that desire that behavior must manually perform that step.)  */
1219 
1220 void
place_field(record_layout_info rli,tree field)1221 place_field (record_layout_info rli, tree field)
1222 {
1223   /* The alignment required for FIELD.  */
1224   unsigned int desired_align;
1225   /* The alignment FIELD would have if we just dropped it into the
1226      record as it presently stands.  */
1227   unsigned int known_align;
1228   unsigned int actual_align;
1229   /* The type of this field.  */
1230   tree type = TREE_TYPE (field);
1231 
1232   gcc_assert (TREE_CODE (field) != ERROR_MARK);
1233 
1234   /* If FIELD is static, then treat it like a separate variable, not
1235      really like a structure field.  If it is a FUNCTION_DECL, it's a
1236      method.  In both cases, all we do is lay out the decl, and we do
1237      it *after* the record is laid out.  */
1238   if (VAR_P (field))
1239     {
1240       vec_safe_push (rli->pending_statics, field);
1241       return;
1242     }
1243 
1244   /* Enumerators and enum types which are local to this class need not
1245      be laid out.  Likewise for initialized constant fields.  */
1246   else if (TREE_CODE (field) != FIELD_DECL)
1247     return;
1248 
1249   /* Unions are laid out very differently than records, so split
1250      that code off to another function.  */
1251   else if (TREE_CODE (rli->t) != RECORD_TYPE)
1252     {
1253       place_union_field (rli, field);
1254       return;
1255     }
1256 
1257   else if (TREE_CODE (type) == ERROR_MARK)
1258     {
1259       /* Place this field at the current allocation position, so we
1260 	 maintain monotonicity.  */
1261       DECL_FIELD_OFFSET (field) = rli->offset;
1262       DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1263       SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1264       handle_warn_if_not_align (field, rli->record_align);
1265       return;
1266     }
1267 
1268   if (AGGREGATE_TYPE_P (type)
1269       && TYPE_TYPELESS_STORAGE (type))
1270     TYPE_TYPELESS_STORAGE (rli->t) = 1;
1271 
1272   /* Work out the known alignment so far.  Note that A & (-A) is the
1273      value of the least-significant bit in A that is one.  */
1274   if (! integer_zerop (rli->bitpos))
1275     known_align = least_bit_hwi (tree_to_uhwi (rli->bitpos));
1276   else if (integer_zerop (rli->offset))
1277     known_align = 0;
1278   else if (tree_fits_uhwi_p (rli->offset))
1279     known_align = (BITS_PER_UNIT
1280 		   * least_bit_hwi (tree_to_uhwi (rli->offset)));
1281   else
1282     known_align = rli->offset_align;
1283 
1284   desired_align = update_alignment_for_field (rli, field, known_align);
1285   if (known_align == 0)
1286     known_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1287 
1288   if (warn_packed && DECL_PACKED (field))
1289     {
1290       if (known_align >= TYPE_ALIGN (type))
1291 	{
1292 	  if (TYPE_ALIGN (type) > desired_align)
1293 	    {
1294 	      if (STRICT_ALIGNMENT)
1295 		warning (OPT_Wattributes, "packed attribute causes "
1296                          "inefficient alignment for %q+D", field);
1297 	      /* Don't warn if DECL_PACKED was set by the type.  */
1298 	      else if (!TYPE_PACKED (rli->t))
1299 		warning (OPT_Wattributes, "packed attribute is "
1300 			 "unnecessary for %q+D", field);
1301 	    }
1302 	}
1303       else
1304 	rli->packed_maybe_necessary = 1;
1305     }
1306 
1307   /* Does this field automatically have alignment it needs by virtue
1308      of the fields that precede it and the record's own alignment?  */
1309   if (known_align < desired_align
1310       && (! targetm.ms_bitfield_layout_p (rli->t)
1311 	  || rli->prev_field == NULL))
1312     {
1313       /* No, we need to skip space before this field.
1314 	 Bump the cumulative size to multiple of field alignment.  */
1315 
1316       if (!targetm.ms_bitfield_layout_p (rli->t)
1317 	  && DECL_SOURCE_LOCATION (field) != BUILTINS_LOCATION
1318 	  && !TYPE_ARTIFICIAL (rli->t))
1319 	warning (OPT_Wpadded, "padding struct to align %q+D", field);
1320 
1321       /* If the alignment is still within offset_align, just align
1322 	 the bit position.  */
1323       if (desired_align < rli->offset_align)
1324 	rli->bitpos = round_up (rli->bitpos, desired_align);
1325       else
1326 	{
1327 	  /* First adjust OFFSET by the partial bits, then align.  */
1328 	  rli->offset
1329 	    = size_binop (PLUS_EXPR, rli->offset,
1330 			  fold_convert (sizetype,
1331 					size_binop (CEIL_DIV_EXPR, rli->bitpos,
1332 						    bitsize_unit_node)));
1333 	  rli->bitpos = bitsize_zero_node;
1334 
1335 	  rli->offset = round_up (rli->offset, desired_align / BITS_PER_UNIT);
1336 	}
1337 
1338       if (! TREE_CONSTANT (rli->offset))
1339 	rli->offset_align = desired_align;
1340     }
1341 
1342   /* Handle compatibility with PCC.  Note that if the record has any
1343      variable-sized fields, we need not worry about compatibility.  */
1344   if (PCC_BITFIELD_TYPE_MATTERS
1345       && ! targetm.ms_bitfield_layout_p (rli->t)
1346       && TREE_CODE (field) == FIELD_DECL
1347       && type != error_mark_node
1348       && DECL_BIT_FIELD (field)
1349       && (! DECL_PACKED (field)
1350 	  /* Enter for these packed fields only to issue a warning.  */
1351 	  || TYPE_ALIGN (type) <= BITS_PER_UNIT)
1352       && maximum_field_alignment == 0
1353       && ! integer_zerop (DECL_SIZE (field))
1354       && tree_fits_uhwi_p (DECL_SIZE (field))
1355       && tree_fits_uhwi_p (rli->offset)
1356       && tree_fits_uhwi_p (TYPE_SIZE (type)))
1357     {
1358       unsigned int type_align = TYPE_ALIGN (type);
1359       tree dsize = DECL_SIZE (field);
1360       HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
1361       HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
1362       HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
1363 
1364 #ifdef ADJUST_FIELD_ALIGN
1365       if (! TYPE_USER_ALIGN (type))
1366 	type_align = ADJUST_FIELD_ALIGN (field, type, type_align);
1367 #endif
1368 
1369       /* A bit field may not span more units of alignment of its type
1370 	 than its type itself.  Advance to next boundary if necessary.  */
1371       if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1372 	{
1373 	  if (DECL_PACKED (field))
1374 	    {
1375 	      if (warn_packed_bitfield_compat == 1)
1376 		inform
1377 		  (input_location,
1378 		   "offset of packed bit-field %qD has changed in GCC 4.4",
1379 		   field);
1380 	    }
1381 	  else
1382 	    rli->bitpos = round_up (rli->bitpos, type_align);
1383 	}
1384 
1385       if (! DECL_PACKED (field))
1386 	TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1387 
1388       SET_TYPE_WARN_IF_NOT_ALIGN (rli->t,
1389 				  TYPE_WARN_IF_NOT_ALIGN (type));
1390     }
1391 
1392 #ifdef BITFIELD_NBYTES_LIMITED
1393   if (BITFIELD_NBYTES_LIMITED
1394       && ! targetm.ms_bitfield_layout_p (rli->t)
1395       && TREE_CODE (field) == FIELD_DECL
1396       && type != error_mark_node
1397       && DECL_BIT_FIELD_TYPE (field)
1398       && ! DECL_PACKED (field)
1399       && ! integer_zerop (DECL_SIZE (field))
1400       && tree_fits_uhwi_p (DECL_SIZE (field))
1401       && tree_fits_uhwi_p (rli->offset)
1402       && tree_fits_uhwi_p (TYPE_SIZE (type)))
1403     {
1404       unsigned int type_align = TYPE_ALIGN (type);
1405       tree dsize = DECL_SIZE (field);
1406       HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
1407       HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
1408       HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
1409 
1410 #ifdef ADJUST_FIELD_ALIGN
1411       if (! TYPE_USER_ALIGN (type))
1412 	type_align = ADJUST_FIELD_ALIGN (field, type, type_align);
1413 #endif
1414 
1415       if (maximum_field_alignment != 0)
1416 	type_align = MIN (type_align, maximum_field_alignment);
1417       /* ??? This test is opposite the test in the containing if
1418 	 statement, so this code is unreachable currently.  */
1419       else if (DECL_PACKED (field))
1420 	type_align = MIN (type_align, BITS_PER_UNIT);
1421 
1422       /* A bit field may not span the unit of alignment of its type.
1423 	 Advance to next boundary if necessary.  */
1424       if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1425 	rli->bitpos = round_up (rli->bitpos, type_align);
1426 
1427       TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1428       SET_TYPE_WARN_IF_NOT_ALIGN (rli->t,
1429 				  TYPE_WARN_IF_NOT_ALIGN (type));
1430     }
1431 #endif
1432 
1433   /* See the docs for TARGET_MS_BITFIELD_LAYOUT_P for details.
1434      A subtlety:
1435 	When a bit field is inserted into a packed record, the whole
1436 	size of the underlying type is used by one or more same-size
1437 	adjacent bitfields.  (That is, if its long:3, 32 bits is
1438 	used in the record, and any additional adjacent long bitfields are
1439 	packed into the same chunk of 32 bits. However, if the size
1440 	changes, a new field of that size is allocated.)  In an unpacked
1441 	record, this is the same as using alignment, but not equivalent
1442 	when packing.
1443 
1444      Note: for compatibility, we use the type size, not the type alignment
1445      to determine alignment, since that matches the documentation */
1446 
1447   if (targetm.ms_bitfield_layout_p (rli->t))
1448     {
1449       tree prev_saved = rli->prev_field;
1450       tree prev_type = prev_saved ? DECL_BIT_FIELD_TYPE (prev_saved) : NULL;
1451 
1452       /* This is a bitfield if it exists.  */
1453       if (rli->prev_field)
1454 	{
1455 	  bool realign_p = known_align < desired_align;
1456 
1457 	  /* If both are bitfields, nonzero, and the same size, this is
1458 	     the middle of a run.  Zero declared size fields are special
1459 	     and handled as "end of run". (Note: it's nonzero declared
1460 	     size, but equal type sizes!) (Since we know that both
1461 	     the current and previous fields are bitfields by the
1462 	     time we check it, DECL_SIZE must be present for both.) */
1463 	  if (DECL_BIT_FIELD_TYPE (field)
1464 	      && !integer_zerop (DECL_SIZE (field))
1465 	      && !integer_zerop (DECL_SIZE (rli->prev_field))
1466 	      && tree_fits_shwi_p (DECL_SIZE (rli->prev_field))
1467 	      && tree_fits_uhwi_p (TYPE_SIZE (type))
1468 	      && simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type)))
1469 	    {
1470 	      /* We're in the middle of a run of equal type size fields; make
1471 		 sure we realign if we run out of bits.  (Not decl size,
1472 		 type size!) */
1473 	      HOST_WIDE_INT bitsize = tree_to_uhwi (DECL_SIZE (field));
1474 
1475 	      if (rli->remaining_in_alignment < bitsize)
1476 		{
1477 		  HOST_WIDE_INT typesize = tree_to_uhwi (TYPE_SIZE (type));
1478 
1479 		  /* out of bits; bump up to next 'word'.  */
1480 		  rli->bitpos
1481 		    = size_binop (PLUS_EXPR, rli->bitpos,
1482 				  bitsize_int (rli->remaining_in_alignment));
1483 		  rli->prev_field = field;
1484 		  if (typesize < bitsize)
1485 		    rli->remaining_in_alignment = 0;
1486 		  else
1487 		    rli->remaining_in_alignment = typesize - bitsize;
1488 		}
1489 	      else
1490 		{
1491 		  rli->remaining_in_alignment -= bitsize;
1492 		  realign_p = false;
1493 		}
1494 	    }
1495 	  else
1496 	    {
1497 	      /* End of a run: if leaving a run of bitfields of the same type
1498 		 size, we have to "use up" the rest of the bits of the type
1499 		 size.
1500 
1501 		 Compute the new position as the sum of the size for the prior
1502 		 type and where we first started working on that type.
1503 		 Note: since the beginning of the field was aligned then
1504 		 of course the end will be too.  No round needed.  */
1505 
1506 	      if (!integer_zerop (DECL_SIZE (rli->prev_field)))
1507 		{
1508 		  rli->bitpos
1509 		    = size_binop (PLUS_EXPR, rli->bitpos,
1510 				  bitsize_int (rli->remaining_in_alignment));
1511 		}
1512 	      else
1513 		/* We "use up" size zero fields; the code below should behave
1514 		   as if the prior field was not a bitfield.  */
1515 		prev_saved = NULL;
1516 
1517 	      /* Cause a new bitfield to be captured, either this time (if
1518 		 currently a bitfield) or next time we see one.  */
1519 	      if (!DECL_BIT_FIELD_TYPE (field)
1520 		  || integer_zerop (DECL_SIZE (field)))
1521 		rli->prev_field = NULL;
1522 	    }
1523 
1524 	  /* Does this field automatically have alignment it needs by virtue
1525 	     of the fields that precede it and the record's own alignment?  */
1526 	  if (realign_p)
1527 	    {
1528 	      /* If the alignment is still within offset_align, just align
1529 		 the bit position.  */
1530 	      if (desired_align < rli->offset_align)
1531 		rli->bitpos = round_up (rli->bitpos, desired_align);
1532 	      else
1533 		{
1534 		  /* First adjust OFFSET by the partial bits, then align.  */
1535 		  tree d = size_binop (CEIL_DIV_EXPR, rli->bitpos,
1536 				       bitsize_unit_node);
1537 		  rli->offset = size_binop (PLUS_EXPR, rli->offset,
1538 					    fold_convert (sizetype, d));
1539 		  rli->bitpos = bitsize_zero_node;
1540 
1541 		  rli->offset = round_up (rli->offset,
1542 					  desired_align / BITS_PER_UNIT);
1543 		}
1544 
1545 	      if (! TREE_CONSTANT (rli->offset))
1546 		rli->offset_align = desired_align;
1547 	    }
1548 
1549 	  normalize_rli (rli);
1550         }
1551 
1552       /* If we're starting a new run of same type size bitfields
1553 	 (or a run of non-bitfields), set up the "first of the run"
1554 	 fields.
1555 
1556 	 That is, if the current field is not a bitfield, or if there
1557 	 was a prior bitfield the type sizes differ, or if there wasn't
1558 	 a prior bitfield the size of the current field is nonzero.
1559 
1560 	 Note: we must be sure to test ONLY the type size if there was
1561 	 a prior bitfield and ONLY for the current field being zero if
1562 	 there wasn't.  */
1563 
1564       if (!DECL_BIT_FIELD_TYPE (field)
1565 	  || (prev_saved != NULL
1566 	      ? !simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type))
1567 	      : !integer_zerop (DECL_SIZE (field))))
1568 	{
1569 	  /* Never smaller than a byte for compatibility.  */
1570 	  unsigned int type_align = BITS_PER_UNIT;
1571 
1572 	  /* (When not a bitfield), we could be seeing a flex array (with
1573 	     no DECL_SIZE).  Since we won't be using remaining_in_alignment
1574 	     until we see a bitfield (and come by here again) we just skip
1575 	     calculating it.  */
1576 	  if (DECL_SIZE (field) != NULL
1577 	      && tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (field)))
1578 	      && tree_fits_uhwi_p (DECL_SIZE (field)))
1579 	    {
1580 	      unsigned HOST_WIDE_INT bitsize
1581 		= tree_to_uhwi (DECL_SIZE (field));
1582 	      unsigned HOST_WIDE_INT typesize
1583 		= tree_to_uhwi (TYPE_SIZE (TREE_TYPE (field)));
1584 
1585 	      if (typesize < bitsize)
1586 		rli->remaining_in_alignment = 0;
1587 	      else
1588 		rli->remaining_in_alignment = typesize - bitsize;
1589 	    }
1590 
1591 	  /* Now align (conventionally) for the new type.  */
1592 	  if (! DECL_PACKED (field))
1593 	    type_align = TYPE_ALIGN (TREE_TYPE (field));
1594 
1595 	  if (maximum_field_alignment != 0)
1596 	    type_align = MIN (type_align, maximum_field_alignment);
1597 
1598 	  rli->bitpos = round_up (rli->bitpos, type_align);
1599 
1600           /* If we really aligned, don't allow subsequent bitfields
1601 	     to undo that.  */
1602 	  rli->prev_field = NULL;
1603 	}
1604     }
1605 
1606   /* Offset so far becomes the position of this field after normalizing.  */
1607   normalize_rli (rli);
1608   DECL_FIELD_OFFSET (field) = rli->offset;
1609   DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1610   SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1611   handle_warn_if_not_align (field, rli->record_align);
1612 
1613   /* Evaluate nonconstant offsets only once, either now or as soon as safe.  */
1614   if (TREE_CODE (DECL_FIELD_OFFSET (field)) != INTEGER_CST)
1615     DECL_FIELD_OFFSET (field) = variable_size (DECL_FIELD_OFFSET (field));
1616 
1617   /* If this field ended up more aligned than we thought it would be (we
1618      approximate this by seeing if its position changed), lay out the field
1619      again; perhaps we can use an integral mode for it now.  */
1620   if (! integer_zerop (DECL_FIELD_BIT_OFFSET (field)))
1621     actual_align = least_bit_hwi (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field)));
1622   else if (integer_zerop (DECL_FIELD_OFFSET (field)))
1623     actual_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1624   else if (tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
1625     actual_align = (BITS_PER_UNIT
1626 		    * least_bit_hwi (tree_to_uhwi (DECL_FIELD_OFFSET (field))));
1627   else
1628     actual_align = DECL_OFFSET_ALIGN (field);
1629   /* ACTUAL_ALIGN is still the actual alignment *within the record* .
1630      store / extract bit field operations will check the alignment of the
1631      record against the mode of bit fields.  */
1632 
1633   if (known_align != actual_align)
1634     layout_decl (field, actual_align);
1635 
1636   if (rli->prev_field == NULL && DECL_BIT_FIELD_TYPE (field))
1637     rli->prev_field = field;
1638 
1639   /* Now add size of this field to the size of the record.  If the size is
1640      not constant, treat the field as being a multiple of bytes and just
1641      adjust the offset, resetting the bit position.  Otherwise, apportion the
1642      size amongst the bit position and offset.  First handle the case of an
1643      unspecified size, which can happen when we have an invalid nested struct
1644      definition, such as struct j { struct j { int i; } }.  The error message
1645      is printed in finish_struct.  */
1646   if (DECL_SIZE (field) == 0)
1647     /* Do nothing.  */;
1648   else if (TREE_CODE (DECL_SIZE (field)) != INTEGER_CST
1649 	   || TREE_OVERFLOW (DECL_SIZE (field)))
1650     {
1651       rli->offset
1652 	= size_binop (PLUS_EXPR, rli->offset,
1653 		      fold_convert (sizetype,
1654 				    size_binop (CEIL_DIV_EXPR, rli->bitpos,
1655 						bitsize_unit_node)));
1656       rli->offset
1657 	= size_binop (PLUS_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1658       rli->bitpos = bitsize_zero_node;
1659       rli->offset_align = MIN (rli->offset_align, desired_align);
1660 
1661       if (!multiple_of_p (bitsizetype, DECL_SIZE (field),
1662 			  bitsize_int (rli->offset_align)))
1663 	{
1664 	  tree type = strip_array_types (TREE_TYPE (field));
1665 	  /* The above adjusts offset_align just based on the start of the
1666 	     field.  The field might not have a size that is a multiple of
1667 	     that offset_align though.  If the field is an array of fixed
1668 	     sized elements, assume there can be any multiple of those
1669 	     sizes.  If it is a variable length aggregate or array of
1670 	     variable length aggregates, assume worst that the end is
1671 	     just BITS_PER_UNIT aligned.  */
1672 	  if (TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST)
1673 	    {
1674 	      if (TREE_INT_CST_LOW (TYPE_SIZE (type)))
1675 		{
1676 		  unsigned HOST_WIDE_INT sz
1677 		    = least_bit_hwi (TREE_INT_CST_LOW (TYPE_SIZE (type)));
1678 		  rli->offset_align = MIN (rli->offset_align, sz);
1679 		}
1680 	    }
1681 	  else
1682 	    rli->offset_align = MIN (rli->offset_align, BITS_PER_UNIT);
1683 	}
1684     }
1685   else if (targetm.ms_bitfield_layout_p (rli->t))
1686     {
1687       rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1688 
1689       /* If FIELD is the last field and doesn't end at the full length
1690 	 of the type then pad the struct out to the full length of the
1691 	 last type.  */
1692       if (DECL_BIT_FIELD_TYPE (field)
1693 	  && !integer_zerop (DECL_SIZE (field)))
1694 	{
1695 	  /* We have to scan, because non-field DECLS are also here.  */
1696 	  tree probe = field;
1697 	  while ((probe = DECL_CHAIN (probe)))
1698 	    if (TREE_CODE (probe) == FIELD_DECL)
1699 	      break;
1700 	  if (!probe)
1701 	    rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos,
1702 				      bitsize_int (rli->remaining_in_alignment));
1703 	}
1704 
1705       normalize_rli (rli);
1706     }
1707   else
1708     {
1709       rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1710       normalize_rli (rli);
1711     }
1712 }
1713 
1714 /* Assuming that all the fields have been laid out, this function uses
1715    RLI to compute the final TYPE_SIZE, TYPE_ALIGN, etc. for the type
1716    indicated by RLI.  */
1717 
1718 static void
finalize_record_size(record_layout_info rli)1719 finalize_record_size (record_layout_info rli)
1720 {
1721   tree unpadded_size, unpadded_size_unit;
1722 
1723   /* Now we want just byte and bit offsets, so set the offset alignment
1724      to be a byte and then normalize.  */
1725   rli->offset_align = BITS_PER_UNIT;
1726   normalize_rli (rli);
1727 
1728   /* Determine the desired alignment.  */
1729 #ifdef ROUND_TYPE_ALIGN
1730   SET_TYPE_ALIGN (rli->t, ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t),
1731 					    rli->record_align));
1732 #else
1733   SET_TYPE_ALIGN (rli->t, MAX (TYPE_ALIGN (rli->t), rli->record_align));
1734 #endif
1735 
1736   /* Compute the size so far.  Be sure to allow for extra bits in the
1737      size in bytes.  We have guaranteed above that it will be no more
1738      than a single byte.  */
1739   unpadded_size = rli_size_so_far (rli);
1740   unpadded_size_unit = rli_size_unit_so_far (rli);
1741   if (! integer_zerop (rli->bitpos))
1742     unpadded_size_unit
1743       = size_binop (PLUS_EXPR, unpadded_size_unit, size_one_node);
1744 
1745   /* Round the size up to be a multiple of the required alignment.  */
1746   TYPE_SIZE (rli->t) = round_up (unpadded_size, TYPE_ALIGN (rli->t));
1747   TYPE_SIZE_UNIT (rli->t)
1748     = round_up (unpadded_size_unit, TYPE_ALIGN_UNIT (rli->t));
1749 
1750   if (TREE_CONSTANT (unpadded_size)
1751       && simple_cst_equal (unpadded_size, TYPE_SIZE (rli->t)) == 0
1752       && input_location != BUILTINS_LOCATION
1753       && !TYPE_ARTIFICIAL (rli->t))
1754     warning (OPT_Wpadded, "padding struct size to alignment boundary");
1755 
1756   if (warn_packed && TREE_CODE (rli->t) == RECORD_TYPE
1757       && TYPE_PACKED (rli->t) && ! rli->packed_maybe_necessary
1758       && TREE_CONSTANT (unpadded_size))
1759     {
1760       tree unpacked_size;
1761 
1762 #ifdef ROUND_TYPE_ALIGN
1763       rli->unpacked_align
1764 	= ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t), rli->unpacked_align);
1765 #else
1766       rli->unpacked_align = MAX (TYPE_ALIGN (rli->t), rli->unpacked_align);
1767 #endif
1768 
1769       unpacked_size = round_up (TYPE_SIZE (rli->t), rli->unpacked_align);
1770       if (simple_cst_equal (unpacked_size, TYPE_SIZE (rli->t)))
1771 	{
1772 	  if (TYPE_NAME (rli->t))
1773 	    {
1774 	      tree name;
1775 
1776 	      if (TREE_CODE (TYPE_NAME (rli->t)) == IDENTIFIER_NODE)
1777 		name = TYPE_NAME (rli->t);
1778 	      else
1779 		name = DECL_NAME (TYPE_NAME (rli->t));
1780 
1781 	      if (STRICT_ALIGNMENT)
1782 		warning (OPT_Wpacked, "packed attribute causes inefficient "
1783 			 "alignment for %qE", name);
1784 	      else
1785 		warning (OPT_Wpacked,
1786 			 "packed attribute is unnecessary for %qE", name);
1787 	    }
1788 	  else
1789 	    {
1790 	      if (STRICT_ALIGNMENT)
1791 		warning (OPT_Wpacked,
1792 			 "packed attribute causes inefficient alignment");
1793 	      else
1794 		warning (OPT_Wpacked, "packed attribute is unnecessary");
1795 	    }
1796 	}
1797     }
1798 }
1799 
1800 /* Compute the TYPE_MODE for the TYPE (which is a RECORD_TYPE).  */
1801 
1802 void
compute_record_mode(tree type)1803 compute_record_mode (tree type)
1804 {
1805   tree field;
1806   machine_mode mode = VOIDmode;
1807 
1808   /* Most RECORD_TYPEs have BLKmode, so we start off assuming that.
1809      However, if possible, we use a mode that fits in a register
1810      instead, in order to allow for better optimization down the
1811      line.  */
1812   SET_TYPE_MODE (type, BLKmode);
1813 
1814   if (! tree_fits_uhwi_p (TYPE_SIZE (type)))
1815     return;
1816 
1817   /* A record which has any BLKmode members must itself be
1818      BLKmode; it can't go in a register.  Unless the member is
1819      BLKmode only because it isn't aligned.  */
1820   for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
1821     {
1822       if (TREE_CODE (field) != FIELD_DECL)
1823 	continue;
1824 
1825       if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK
1826 	  || (TYPE_MODE (TREE_TYPE (field)) == BLKmode
1827 	      && ! TYPE_NO_FORCE_BLK (TREE_TYPE (field))
1828 	      && !(TYPE_SIZE (TREE_TYPE (field)) != 0
1829 		   && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))))
1830 	  || ! tree_fits_uhwi_p (bit_position (field))
1831 	  || DECL_SIZE (field) == 0
1832 	  || ! tree_fits_uhwi_p (DECL_SIZE (field)))
1833 	return;
1834 
1835       /* If this field is the whole struct, remember its mode so
1836 	 that, say, we can put a double in a class into a DF
1837 	 register instead of forcing it to live in the stack.  */
1838       if (simple_cst_equal (TYPE_SIZE (type), DECL_SIZE (field)))
1839 	mode = DECL_MODE (field);
1840 
1841       /* With some targets, it is sub-optimal to access an aligned
1842 	 BLKmode structure as a scalar.  */
1843       if (targetm.member_type_forces_blk (field, mode))
1844 	return;
1845     }
1846 
1847   /* If we only have one real field; use its mode if that mode's size
1848      matches the type's size.  This only applies to RECORD_TYPE.  This
1849      does not apply to unions.  */
1850   if (TREE_CODE (type) == RECORD_TYPE && mode != VOIDmode
1851       && tree_fits_uhwi_p (TYPE_SIZE (type))
1852       && known_eq (GET_MODE_BITSIZE (mode), tree_to_uhwi (TYPE_SIZE (type))))
1853     ;
1854   else
1855     mode = mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1).else_blk ();
1856 
1857   /* If structure's known alignment is less than what the scalar
1858      mode would need, and it matters, then stick with BLKmode.  */
1859   if (mode != BLKmode
1860       && STRICT_ALIGNMENT
1861       && ! (TYPE_ALIGN (type) >= BIGGEST_ALIGNMENT
1862 	    || TYPE_ALIGN (type) >= GET_MODE_ALIGNMENT (mode)))
1863     {
1864       /* If this is the only reason this type is BLKmode, then
1865 	 don't force containing types to be BLKmode.  */
1866       TYPE_NO_FORCE_BLK (type) = 1;
1867       mode = BLKmode;
1868     }
1869 
1870   SET_TYPE_MODE (type, mode);
1871 }
1872 
1873 /* Compute TYPE_SIZE and TYPE_ALIGN for TYPE, once it has been laid
1874    out.  */
1875 
1876 static void
finalize_type_size(tree type)1877 finalize_type_size (tree type)
1878 {
1879   /* Normally, use the alignment corresponding to the mode chosen.
1880      However, where strict alignment is not required, avoid
1881      over-aligning structures, since most compilers do not do this
1882      alignment.  */
1883   if (TYPE_MODE (type) != BLKmode
1884       && TYPE_MODE (type) != VOIDmode
1885       && (STRICT_ALIGNMENT || !AGGREGATE_TYPE_P (type)))
1886     {
1887       unsigned mode_align = GET_MODE_ALIGNMENT (TYPE_MODE (type));
1888 
1889       /* Don't override a larger alignment requirement coming from a user
1890 	 alignment of one of the fields.  */
1891       if (mode_align >= TYPE_ALIGN (type))
1892 	{
1893 	  SET_TYPE_ALIGN (type, mode_align);
1894 	  TYPE_USER_ALIGN (type) = 0;
1895 	}
1896     }
1897 
1898   /* Do machine-dependent extra alignment.  */
1899 #ifdef ROUND_TYPE_ALIGN
1900   SET_TYPE_ALIGN (type,
1901                   ROUND_TYPE_ALIGN (type, TYPE_ALIGN (type), BITS_PER_UNIT));
1902 #endif
1903 
1904   /* If we failed to find a simple way to calculate the unit size
1905      of the type, find it by division.  */
1906   if (TYPE_SIZE_UNIT (type) == 0 && TYPE_SIZE (type) != 0)
1907     /* TYPE_SIZE (type) is computed in bitsizetype.  After the division, the
1908        result will fit in sizetype.  We will get more efficient code using
1909        sizetype, so we force a conversion.  */
1910     TYPE_SIZE_UNIT (type)
1911       = fold_convert (sizetype,
1912 		      size_binop (FLOOR_DIV_EXPR, TYPE_SIZE (type),
1913 				  bitsize_unit_node));
1914 
1915   if (TYPE_SIZE (type) != 0)
1916     {
1917       TYPE_SIZE (type) = round_up (TYPE_SIZE (type), TYPE_ALIGN (type));
1918       TYPE_SIZE_UNIT (type)
1919 	= round_up (TYPE_SIZE_UNIT (type), TYPE_ALIGN_UNIT (type));
1920     }
1921 
1922   /* Evaluate nonconstant sizes only once, either now or as soon as safe.  */
1923   if (TYPE_SIZE (type) != 0 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1924     TYPE_SIZE (type) = variable_size (TYPE_SIZE (type));
1925   if (TYPE_SIZE_UNIT (type) != 0
1926       && TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST)
1927     TYPE_SIZE_UNIT (type) = variable_size (TYPE_SIZE_UNIT (type));
1928 
1929   /* Handle empty records as per the x86-64 psABI.  */
1930   TYPE_EMPTY_P (type) = targetm.calls.empty_record_p (type);
1931 
1932   /* Also layout any other variants of the type.  */
1933   if (TYPE_NEXT_VARIANT (type)
1934       || type != TYPE_MAIN_VARIANT (type))
1935     {
1936       tree variant;
1937       /* Record layout info of this variant.  */
1938       tree size = TYPE_SIZE (type);
1939       tree size_unit = TYPE_SIZE_UNIT (type);
1940       unsigned int align = TYPE_ALIGN (type);
1941       unsigned int precision = TYPE_PRECISION (type);
1942       unsigned int user_align = TYPE_USER_ALIGN (type);
1943       machine_mode mode = TYPE_MODE (type);
1944       bool empty_p = TYPE_EMPTY_P (type);
1945 
1946       /* Copy it into all variants.  */
1947       for (variant = TYPE_MAIN_VARIANT (type);
1948 	   variant != 0;
1949 	   variant = TYPE_NEXT_VARIANT (variant))
1950 	{
1951 	  TYPE_SIZE (variant) = size;
1952 	  TYPE_SIZE_UNIT (variant) = size_unit;
1953 	  unsigned valign = align;
1954 	  if (TYPE_USER_ALIGN (variant))
1955 	    valign = MAX (valign, TYPE_ALIGN (variant));
1956 	  else
1957 	    TYPE_USER_ALIGN (variant) = user_align;
1958 	  SET_TYPE_ALIGN (variant, valign);
1959 	  TYPE_PRECISION (variant) = precision;
1960 	  SET_TYPE_MODE (variant, mode);
1961 	  TYPE_EMPTY_P (variant) = empty_p;
1962 	}
1963     }
1964 }
1965 
1966 /* Return a new underlying object for a bitfield started with FIELD.  */
1967 
1968 static tree
start_bitfield_representative(tree field)1969 start_bitfield_representative (tree field)
1970 {
1971   tree repr = make_node (FIELD_DECL);
1972   DECL_FIELD_OFFSET (repr) = DECL_FIELD_OFFSET (field);
1973   /* Force the representative to begin at a BITS_PER_UNIT aligned
1974      boundary - C++ may use tail-padding of a base object to
1975      continue packing bits so the bitfield region does not start
1976      at bit zero (see g++.dg/abi/bitfield5.C for example).
1977      Unallocated bits may happen for other reasons as well,
1978      for example Ada which allows explicit bit-granular structure layout.  */
1979   DECL_FIELD_BIT_OFFSET (repr)
1980     = size_binop (BIT_AND_EXPR,
1981 		  DECL_FIELD_BIT_OFFSET (field),
1982 		  bitsize_int (~(BITS_PER_UNIT - 1)));
1983   SET_DECL_OFFSET_ALIGN (repr, DECL_OFFSET_ALIGN (field));
1984   DECL_SIZE (repr) = DECL_SIZE (field);
1985   DECL_SIZE_UNIT (repr) = DECL_SIZE_UNIT (field);
1986   DECL_PACKED (repr) = DECL_PACKED (field);
1987   DECL_CONTEXT (repr) = DECL_CONTEXT (field);
1988   /* There are no indirect accesses to this field.  If we introduce
1989      some then they have to use the record alias set.  This makes
1990      sure to properly conflict with [indirect] accesses to addressable
1991      fields of the bitfield group.  */
1992   DECL_NONADDRESSABLE_P (repr) = 1;
1993   return repr;
1994 }
1995 
1996 /* Finish up a bitfield group that was started by creating the underlying
1997    object REPR with the last field in the bitfield group FIELD.  */
1998 
1999 static void
finish_bitfield_representative(tree repr,tree field)2000 finish_bitfield_representative (tree repr, tree field)
2001 {
2002   unsigned HOST_WIDE_INT bitsize, maxbitsize;
2003   tree nextf, size;
2004 
2005   size = size_diffop (DECL_FIELD_OFFSET (field),
2006 		      DECL_FIELD_OFFSET (repr));
2007   while (TREE_CODE (size) == COMPOUND_EXPR)
2008     size = TREE_OPERAND (size, 1);
2009   gcc_assert (tree_fits_uhwi_p (size));
2010   bitsize = (tree_to_uhwi (size) * BITS_PER_UNIT
2011 	     + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
2012 	     - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr))
2013 	     + tree_to_uhwi (DECL_SIZE (field)));
2014 
2015   /* Round up bitsize to multiples of BITS_PER_UNIT.  */
2016   bitsize = (bitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
2017 
2018   /* Now nothing tells us how to pad out bitsize ...  */
2019   nextf = DECL_CHAIN (field);
2020   while (nextf && TREE_CODE (nextf) != FIELD_DECL)
2021     nextf = DECL_CHAIN (nextf);
2022   if (nextf)
2023     {
2024       tree maxsize;
2025       /* If there was an error, the field may be not laid out
2026          correctly.  Don't bother to do anything.  */
2027       if (TREE_TYPE (nextf) == error_mark_node)
2028 	return;
2029       maxsize = size_diffop (DECL_FIELD_OFFSET (nextf),
2030 			     DECL_FIELD_OFFSET (repr));
2031       if (tree_fits_uhwi_p (maxsize))
2032 	{
2033 	  maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
2034 			+ tree_to_uhwi (DECL_FIELD_BIT_OFFSET (nextf))
2035 			- tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
2036 	  /* If the group ends within a bitfield nextf does not need to be
2037 	     aligned to BITS_PER_UNIT.  Thus round up.  */
2038 	  maxbitsize = (maxbitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
2039 	}
2040       else
2041 	maxbitsize = bitsize;
2042     }
2043   else
2044     {
2045       /* Note that if the C++ FE sets up tail-padding to be re-used it
2046          creates a as-base variant of the type with TYPE_SIZE adjusted
2047 	 accordingly.  So it is safe to include tail-padding here.  */
2048       tree aggsize = lang_hooks.types.unit_size_without_reusable_padding
2049 							(DECL_CONTEXT (field));
2050       tree maxsize = size_diffop (aggsize, DECL_FIELD_OFFSET (repr));
2051       /* We cannot generally rely on maxsize to fold to an integer constant,
2052 	 so use bitsize as fallback for this case.  */
2053       if (tree_fits_uhwi_p (maxsize))
2054 	maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
2055 		      - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
2056       else
2057 	maxbitsize = bitsize;
2058     }
2059 
2060   /* Only if we don't artificially break up the representative in
2061      the middle of a large bitfield with different possibly
2062      overlapping representatives.  And all representatives start
2063      at byte offset.  */
2064   gcc_assert (maxbitsize % BITS_PER_UNIT == 0);
2065 
2066   /* Find the smallest nice mode to use.  */
2067   opt_scalar_int_mode mode_iter;
2068   FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
2069     if (GET_MODE_BITSIZE (mode_iter.require ()) >= bitsize)
2070       break;
2071 
2072   scalar_int_mode mode;
2073   if (!mode_iter.exists (&mode)
2074       || GET_MODE_BITSIZE (mode) > maxbitsize
2075       || GET_MODE_BITSIZE (mode) > MAX_FIXED_MODE_SIZE)
2076     {
2077       /* We really want a BLKmode representative only as a last resort,
2078          considering the member b in
2079 	   struct { int a : 7; int b : 17; int c; } __attribute__((packed));
2080 	 Otherwise we simply want to split the representative up
2081 	 allowing for overlaps within the bitfield region as required for
2082 	   struct { int a : 7; int b : 7;
2083 		    int c : 10; int d; } __attribute__((packed));
2084 	 [0, 15] HImode for a and b, [8, 23] HImode for c.  */
2085       DECL_SIZE (repr) = bitsize_int (bitsize);
2086       DECL_SIZE_UNIT (repr) = size_int (bitsize / BITS_PER_UNIT);
2087       SET_DECL_MODE (repr, BLKmode);
2088       TREE_TYPE (repr) = build_array_type_nelts (unsigned_char_type_node,
2089 						 bitsize / BITS_PER_UNIT);
2090     }
2091   else
2092     {
2093       unsigned HOST_WIDE_INT modesize = GET_MODE_BITSIZE (mode);
2094       DECL_SIZE (repr) = bitsize_int (modesize);
2095       DECL_SIZE_UNIT (repr) = size_int (modesize / BITS_PER_UNIT);
2096       SET_DECL_MODE (repr, mode);
2097       TREE_TYPE (repr) = lang_hooks.types.type_for_mode (mode, 1);
2098     }
2099 
2100   /* Remember whether the bitfield group is at the end of the
2101      structure or not.  */
2102   DECL_CHAIN (repr) = nextf;
2103 }
2104 
2105 /* Compute and set FIELD_DECLs for the underlying objects we should
2106    use for bitfield access for the structure T.  */
2107 
2108 void
finish_bitfield_layout(tree t)2109 finish_bitfield_layout (tree t)
2110 {
2111   tree field, prev;
2112   tree repr = NULL_TREE;
2113 
2114   /* Unions would be special, for the ease of type-punning optimizations
2115      we could use the underlying type as hint for the representative
2116      if the bitfield would fit and the representative would not exceed
2117      the union in size.  */
2118   if (TREE_CODE (t) != RECORD_TYPE)
2119     return;
2120 
2121   for (prev = NULL_TREE, field = TYPE_FIELDS (t);
2122        field; field = DECL_CHAIN (field))
2123     {
2124       if (TREE_CODE (field) != FIELD_DECL)
2125 	continue;
2126 
2127       /* In the C++ memory model, consecutive bit fields in a structure are
2128 	 considered one memory location and updating a memory location
2129 	 may not store into adjacent memory locations.  */
2130       if (!repr
2131 	  && DECL_BIT_FIELD_TYPE (field))
2132 	{
2133 	  /* Start new representative.  */
2134 	  repr = start_bitfield_representative (field);
2135 	}
2136       else if (repr
2137 	       && ! DECL_BIT_FIELD_TYPE (field))
2138 	{
2139 	  /* Finish off new representative.  */
2140 	  finish_bitfield_representative (repr, prev);
2141 	  repr = NULL_TREE;
2142 	}
2143       else if (DECL_BIT_FIELD_TYPE (field))
2144 	{
2145 	  gcc_assert (repr != NULL_TREE);
2146 
2147 	  /* Zero-size bitfields finish off a representative and
2148 	     do not have a representative themselves.  This is
2149 	     required by the C++ memory model.  */
2150 	  if (integer_zerop (DECL_SIZE (field)))
2151 	    {
2152 	      finish_bitfield_representative (repr, prev);
2153 	      repr = NULL_TREE;
2154 	    }
2155 
2156 	  /* We assume that either DECL_FIELD_OFFSET of the representative
2157 	     and each bitfield member is a constant or they are equal.
2158 	     This is because we need to be able to compute the bit-offset
2159 	     of each field relative to the representative in get_bit_range
2160 	     during RTL expansion.
2161 	     If these constraints are not met, simply force a new
2162 	     representative to be generated.  That will at most
2163 	     generate worse code but still maintain correctness with
2164 	     respect to the C++ memory model.  */
2165 	  else if (!((tree_fits_uhwi_p (DECL_FIELD_OFFSET (repr))
2166 		      && tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
2167 		     || operand_equal_p (DECL_FIELD_OFFSET (repr),
2168 					 DECL_FIELD_OFFSET (field), 0)))
2169 	    {
2170 	      finish_bitfield_representative (repr, prev);
2171 	      repr = start_bitfield_representative (field);
2172 	    }
2173 	}
2174       else
2175 	continue;
2176 
2177       if (repr)
2178 	DECL_BIT_FIELD_REPRESENTATIVE (field) = repr;
2179 
2180       prev = field;
2181     }
2182 
2183   if (repr)
2184     finish_bitfield_representative (repr, prev);
2185 }
2186 
2187 /* Do all of the work required to layout the type indicated by RLI,
2188    once the fields have been laid out.  This function will call `free'
2189    for RLI, unless FREE_P is false.  Passing a value other than false
2190    for FREE_P is bad practice; this option only exists to support the
2191    G++ 3.2 ABI.  */
2192 
2193 void
finish_record_layout(record_layout_info rli,int free_p)2194 finish_record_layout (record_layout_info rli, int free_p)
2195 {
2196   tree variant;
2197 
2198   /* Compute the final size.  */
2199   finalize_record_size (rli);
2200 
2201   /* Compute the TYPE_MODE for the record.  */
2202   compute_record_mode (rli->t);
2203 
2204   /* Perform any last tweaks to the TYPE_SIZE, etc.  */
2205   finalize_type_size (rli->t);
2206 
2207   /* Compute bitfield representatives.  */
2208   finish_bitfield_layout (rli->t);
2209 
2210   /* Propagate TYPE_PACKED and TYPE_REVERSE_STORAGE_ORDER to variants.
2211      With C++ templates, it is too early to do this when the attribute
2212      is being parsed.  */
2213   for (variant = TYPE_NEXT_VARIANT (rli->t); variant;
2214        variant = TYPE_NEXT_VARIANT (variant))
2215     {
2216       TYPE_PACKED (variant) = TYPE_PACKED (rli->t);
2217       TYPE_REVERSE_STORAGE_ORDER (variant)
2218 	= TYPE_REVERSE_STORAGE_ORDER (rli->t);
2219     }
2220 
2221   /* Lay out any static members.  This is done now because their type
2222      may use the record's type.  */
2223   while (!vec_safe_is_empty (rli->pending_statics))
2224     layout_decl (rli->pending_statics->pop (), 0);
2225 
2226   /* Clean up.  */
2227   if (free_p)
2228     {
2229       vec_free (rli->pending_statics);
2230       free (rli);
2231     }
2232 }
2233 
2234 
2235 /* Finish processing a builtin RECORD_TYPE type TYPE.  It's name is
2236    NAME, its fields are chained in reverse on FIELDS.
2237 
2238    If ALIGN_TYPE is non-null, it is given the same alignment as
2239    ALIGN_TYPE.  */
2240 
2241 void
finish_builtin_struct(tree type,const char * name,tree fields,tree align_type)2242 finish_builtin_struct (tree type, const char *name, tree fields,
2243 		       tree align_type)
2244 {
2245   tree tail, next;
2246 
2247   for (tail = NULL_TREE; fields; tail = fields, fields = next)
2248     {
2249       DECL_FIELD_CONTEXT (fields) = type;
2250       next = DECL_CHAIN (fields);
2251       DECL_CHAIN (fields) = tail;
2252     }
2253   TYPE_FIELDS (type) = tail;
2254 
2255   if (align_type)
2256     {
2257       SET_TYPE_ALIGN (type, TYPE_ALIGN (align_type));
2258       TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (align_type);
2259       SET_TYPE_WARN_IF_NOT_ALIGN (type,
2260 				  TYPE_WARN_IF_NOT_ALIGN (align_type));
2261     }
2262 
2263   layout_type (type);
2264 #if 0 /* not yet, should get fixed properly later */
2265   TYPE_NAME (type) = make_type_decl (get_identifier (name), type);
2266 #else
2267   TYPE_NAME (type) = build_decl (BUILTINS_LOCATION,
2268 				 TYPE_DECL, get_identifier (name), type);
2269 #endif
2270   TYPE_STUB_DECL (type) = TYPE_NAME (type);
2271   layout_decl (TYPE_NAME (type), 0);
2272 }
2273 
2274 /* Calculate the mode, size, and alignment for TYPE.
2275    For an array type, calculate the element separation as well.
2276    Record TYPE on the chain of permanent or temporary types
2277    so that dbxout will find out about it.
2278 
2279    TYPE_SIZE of a type is nonzero if the type has been laid out already.
2280    layout_type does nothing on such a type.
2281 
2282    If the type is incomplete, its TYPE_SIZE remains zero.  */
2283 
2284 void
layout_type(tree type)2285 layout_type (tree type)
2286 {
2287   gcc_assert (type);
2288 
2289   if (type == error_mark_node)
2290     return;
2291 
2292   /* We don't want finalize_type_size to copy an alignment attribute to
2293      variants that don't have it.  */
2294   type = TYPE_MAIN_VARIANT (type);
2295 
2296   /* Do nothing if type has been laid out before.  */
2297   if (TYPE_SIZE (type))
2298     return;
2299 
2300   switch (TREE_CODE (type))
2301     {
2302     case LANG_TYPE:
2303       /* This kind of type is the responsibility
2304 	 of the language-specific code.  */
2305       gcc_unreachable ();
2306 
2307     case BOOLEAN_TYPE:
2308     case INTEGER_TYPE:
2309     case ENUMERAL_TYPE:
2310       {
2311 	scalar_int_mode mode
2312 	  = smallest_int_mode_for_size (TYPE_PRECISION (type));
2313 	SET_TYPE_MODE (type, mode);
2314 	TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2315 	/* Don't set TYPE_PRECISION here, as it may be set by a bitfield.  */
2316 	TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2317 	break;
2318       }
2319 
2320     case REAL_TYPE:
2321       {
2322 	/* Allow the caller to choose the type mode, which is how decimal
2323 	   floats are distinguished from binary ones.  */
2324 	if (TYPE_MODE (type) == VOIDmode)
2325 	  SET_TYPE_MODE
2326 	    (type, float_mode_for_size (TYPE_PRECISION (type)).require ());
2327 	scalar_float_mode mode = as_a <scalar_float_mode> (TYPE_MODE (type));
2328 	TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2329 	TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2330 	break;
2331       }
2332 
2333    case FIXED_POINT_TYPE:
2334      {
2335        /* TYPE_MODE (type) has been set already.  */
2336        scalar_mode mode = SCALAR_TYPE_MODE (type);
2337        TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2338        TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2339        break;
2340      }
2341 
2342     case COMPLEX_TYPE:
2343       TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2344       SET_TYPE_MODE (type,
2345 		     GET_MODE_COMPLEX_MODE (TYPE_MODE (TREE_TYPE (type))));
2346 
2347       TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2348       TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2349       break;
2350 
2351     case VECTOR_TYPE:
2352       {
2353 	poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (type);
2354 	tree innertype = TREE_TYPE (type);
2355 
2356 	/* Find an appropriate mode for the vector type.  */
2357 	if (TYPE_MODE (type) == VOIDmode)
2358 	  SET_TYPE_MODE (type,
2359 			 mode_for_vector (SCALAR_TYPE_MODE (innertype),
2360 					  nunits).else_blk ());
2361 
2362 	TYPE_SATURATING (type) = TYPE_SATURATING (TREE_TYPE (type));
2363         TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2364 	/* Several boolean vector elements may fit in a single unit.  */
2365 	if (VECTOR_BOOLEAN_TYPE_P (type)
2366 	    && type->type_common.mode != BLKmode)
2367 	  TYPE_SIZE_UNIT (type)
2368 	    = size_int (GET_MODE_SIZE (type->type_common.mode));
2369 	else
2370 	  TYPE_SIZE_UNIT (type) = int_const_binop (MULT_EXPR,
2371 						   TYPE_SIZE_UNIT (innertype),
2372 						   size_int (nunits));
2373 	TYPE_SIZE (type) = int_const_binop
2374 	  (MULT_EXPR,
2375 	   bits_from_bytes (TYPE_SIZE_UNIT (type)),
2376 	   bitsize_int (BITS_PER_UNIT));
2377 
2378 	/* For vector types, we do not default to the mode's alignment.
2379 	   Instead, query a target hook, defaulting to natural alignment.
2380 	   This prevents ABI changes depending on whether or not native
2381 	   vector modes are supported.  */
2382 	SET_TYPE_ALIGN (type, targetm.vector_alignment (type));
2383 
2384 	/* However, if the underlying mode requires a bigger alignment than
2385 	   what the target hook provides, we cannot use the mode.  For now,
2386 	   simply reject that case.  */
2387 	gcc_assert (TYPE_ALIGN (type)
2388 		    >= GET_MODE_ALIGNMENT (TYPE_MODE (type)));
2389         break;
2390       }
2391 
2392     case VOID_TYPE:
2393       /* This is an incomplete type and so doesn't have a size.  */
2394       SET_TYPE_ALIGN (type, 1);
2395       TYPE_USER_ALIGN (type) = 0;
2396       SET_TYPE_MODE (type, VOIDmode);
2397       break;
2398 
2399     case POINTER_BOUNDS_TYPE:
2400       TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2401       TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2402       break;
2403 
2404     case OFFSET_TYPE:
2405       TYPE_SIZE (type) = bitsize_int (POINTER_SIZE);
2406       TYPE_SIZE_UNIT (type) = size_int (POINTER_SIZE_UNITS);
2407       /* A pointer might be MODE_PARTIAL_INT, but ptrdiff_t must be
2408 	 integral, which may be an __intN.  */
2409       SET_TYPE_MODE (type, int_mode_for_size (POINTER_SIZE, 0).require ());
2410       TYPE_PRECISION (type) = POINTER_SIZE;
2411       break;
2412 
2413     case FUNCTION_TYPE:
2414     case METHOD_TYPE:
2415       /* It's hard to see what the mode and size of a function ought to
2416 	 be, but we do know the alignment is FUNCTION_BOUNDARY, so
2417 	 make it consistent with that.  */
2418       SET_TYPE_MODE (type,
2419 		     int_mode_for_size (FUNCTION_BOUNDARY, 0).else_blk ());
2420       TYPE_SIZE (type) = bitsize_int (FUNCTION_BOUNDARY);
2421       TYPE_SIZE_UNIT (type) = size_int (FUNCTION_BOUNDARY / BITS_PER_UNIT);
2422       break;
2423 
2424     case POINTER_TYPE:
2425     case REFERENCE_TYPE:
2426       {
2427 	scalar_int_mode mode = SCALAR_INT_TYPE_MODE (type);
2428 	TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2429 	TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2430 	TYPE_UNSIGNED (type) = 1;
2431 	TYPE_PRECISION (type) = GET_MODE_PRECISION (mode);
2432       }
2433       break;
2434 
2435     case ARRAY_TYPE:
2436       {
2437 	tree index = TYPE_DOMAIN (type);
2438 	tree element = TREE_TYPE (type);
2439 
2440 	/* We need to know both bounds in order to compute the size.  */
2441 	if (index && TYPE_MAX_VALUE (index) && TYPE_MIN_VALUE (index)
2442 	    && TYPE_SIZE (element))
2443 	  {
2444 	    tree ub = TYPE_MAX_VALUE (index);
2445 	    tree lb = TYPE_MIN_VALUE (index);
2446 	    tree element_size = TYPE_SIZE (element);
2447 	    tree length;
2448 
2449 	    /* Make sure that an array of zero-sized element is zero-sized
2450 	       regardless of its extent.  */
2451 	    if (integer_zerop (element_size))
2452 	      length = size_zero_node;
2453 
2454 	    /* The computation should happen in the original signedness so
2455 	       that (possible) negative values are handled appropriately
2456 	       when determining overflow.  */
2457 	    else
2458 	      {
2459 		/* ???  When it is obvious that the range is signed
2460 		   represent it using ssizetype.  */
2461 		if (TREE_CODE (lb) == INTEGER_CST
2462 		    && TREE_CODE (ub) == INTEGER_CST
2463 		    && TYPE_UNSIGNED (TREE_TYPE (lb))
2464 		    && tree_int_cst_lt (ub, lb))
2465 		  {
2466 		    lb = wide_int_to_tree (ssizetype,
2467 					   offset_int::from (wi::to_wide (lb),
2468 							     SIGNED));
2469 		    ub = wide_int_to_tree (ssizetype,
2470 					   offset_int::from (wi::to_wide (ub),
2471 							     SIGNED));
2472 		  }
2473 		length
2474 		  = fold_convert (sizetype,
2475 				  size_binop (PLUS_EXPR,
2476 					      build_int_cst (TREE_TYPE (lb), 1),
2477 					      size_binop (MINUS_EXPR, ub, lb)));
2478 	      }
2479 
2480 	    /* ??? We have no way to distinguish a null-sized array from an
2481 	       array spanning the whole sizetype range, so we arbitrarily
2482 	       decide that [0, -1] is the only valid representation.  */
2483 	    if (integer_zerop (length)
2484 	        && TREE_OVERFLOW (length)
2485 		&& integer_zerop (lb))
2486 	      length = size_zero_node;
2487 
2488 	    TYPE_SIZE (type) = size_binop (MULT_EXPR, element_size,
2489 					   bits_from_bytes (length));
2490 
2491 	    /* If we know the size of the element, calculate the total size
2492 	       directly, rather than do some division thing below.  This
2493 	       optimization helps Fortran assumed-size arrays (where the
2494 	       size of the array is determined at runtime) substantially.  */
2495 	    if (TYPE_SIZE_UNIT (element))
2496 	      TYPE_SIZE_UNIT (type)
2497 		= size_binop (MULT_EXPR, TYPE_SIZE_UNIT (element), length);
2498 	  }
2499 
2500 	/* Now round the alignment and size,
2501 	   using machine-dependent criteria if any.  */
2502 
2503 	unsigned align = TYPE_ALIGN (element);
2504 	if (TYPE_USER_ALIGN (type))
2505 	  align = MAX (align, TYPE_ALIGN (type));
2506 	else
2507 	  TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (element);
2508 	if (!TYPE_WARN_IF_NOT_ALIGN (type))
2509 	  SET_TYPE_WARN_IF_NOT_ALIGN (type,
2510 				      TYPE_WARN_IF_NOT_ALIGN (element));
2511 #ifdef ROUND_TYPE_ALIGN
2512 	align = ROUND_TYPE_ALIGN (type, align, BITS_PER_UNIT);
2513 #else
2514 	align = MAX (align, BITS_PER_UNIT);
2515 #endif
2516 	SET_TYPE_ALIGN (type, align);
2517 	SET_TYPE_MODE (type, BLKmode);
2518 	if (TYPE_SIZE (type) != 0
2519 	    && ! targetm.member_type_forces_blk (type, VOIDmode)
2520 	    /* BLKmode elements force BLKmode aggregate;
2521 	       else extract/store fields may lose.  */
2522 	    && (TYPE_MODE (TREE_TYPE (type)) != BLKmode
2523 		|| TYPE_NO_FORCE_BLK (TREE_TYPE (type))))
2524 	  {
2525 	    SET_TYPE_MODE (type, mode_for_array (TREE_TYPE (type),
2526 						 TYPE_SIZE (type)));
2527 	    if (TYPE_MODE (type) != BLKmode
2528 		&& STRICT_ALIGNMENT && TYPE_ALIGN (type) < BIGGEST_ALIGNMENT
2529 		&& TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (TYPE_MODE (type)))
2530 	      {
2531 		TYPE_NO_FORCE_BLK (type) = 1;
2532 		SET_TYPE_MODE (type, BLKmode);
2533 	      }
2534 	  }
2535 	if (AGGREGATE_TYPE_P (element))
2536 	  TYPE_TYPELESS_STORAGE (type) = TYPE_TYPELESS_STORAGE (element);
2537 	/* When the element size is constant, check that it is at least as
2538 	   large as the element alignment.  */
2539 	if (TYPE_SIZE_UNIT (element)
2540 	    && TREE_CODE (TYPE_SIZE_UNIT (element)) == INTEGER_CST
2541 	    /* If TYPE_SIZE_UNIT overflowed, then it is certainly larger than
2542 	       TYPE_ALIGN_UNIT.  */
2543 	    && !TREE_OVERFLOW (TYPE_SIZE_UNIT (element))
2544 	    && !integer_zerop (TYPE_SIZE_UNIT (element))
2545 	    && compare_tree_int (TYPE_SIZE_UNIT (element),
2546 			  	 TYPE_ALIGN_UNIT (element)) < 0)
2547 	  error ("alignment of array elements is greater than element size");
2548 	break;
2549       }
2550 
2551     case RECORD_TYPE:
2552     case UNION_TYPE:
2553     case QUAL_UNION_TYPE:
2554       {
2555 	tree field;
2556 	record_layout_info rli;
2557 
2558 	/* Initialize the layout information.  */
2559 	rli = start_record_layout (type);
2560 
2561 	/* If this is a QUAL_UNION_TYPE, we want to process the fields
2562 	   in the reverse order in building the COND_EXPR that denotes
2563 	   its size.  We reverse them again later.  */
2564 	if (TREE_CODE (type) == QUAL_UNION_TYPE)
2565 	  TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2566 
2567 	/* Place all the fields.  */
2568 	for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2569 	  place_field (rli, field);
2570 
2571 	if (TREE_CODE (type) == QUAL_UNION_TYPE)
2572 	  TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2573 
2574 	/* Finish laying out the record.  */
2575 	finish_record_layout (rli, /*free_p=*/true);
2576       }
2577       break;
2578 
2579     default:
2580       gcc_unreachable ();
2581     }
2582 
2583   /* Compute the final TYPE_SIZE, TYPE_ALIGN, etc. for TYPE.  For
2584      records and unions, finish_record_layout already called this
2585      function.  */
2586   if (!RECORD_OR_UNION_TYPE_P (type))
2587     finalize_type_size (type);
2588 
2589   /* We should never see alias sets on incomplete aggregates.  And we
2590      should not call layout_type on not incomplete aggregates.  */
2591   if (AGGREGATE_TYPE_P (type))
2592     gcc_assert (!TYPE_ALIAS_SET_KNOWN_P (type));
2593 }
2594 
2595 /* Return the least alignment required for type TYPE.  */
2596 
2597 unsigned int
min_align_of_type(tree type)2598 min_align_of_type (tree type)
2599 {
2600   unsigned int align = TYPE_ALIGN (type);
2601   if (!TYPE_USER_ALIGN (type))
2602     {
2603       align = MIN (align, BIGGEST_ALIGNMENT);
2604 #ifdef BIGGEST_FIELD_ALIGNMENT
2605       align = MIN (align, BIGGEST_FIELD_ALIGNMENT);
2606 #endif
2607       unsigned int field_align = align;
2608 #ifdef ADJUST_FIELD_ALIGN
2609       field_align = ADJUST_FIELD_ALIGN (NULL_TREE, type, field_align);
2610 #endif
2611       align = MIN (align, field_align);
2612     }
2613   return align / BITS_PER_UNIT;
2614 }
2615 
2616 /* Create and return a type for signed integers of PRECISION bits.  */
2617 
2618 tree
make_signed_type(int precision)2619 make_signed_type (int precision)
2620 {
2621   tree type = make_node (INTEGER_TYPE);
2622 
2623   TYPE_PRECISION (type) = precision;
2624 
2625   fixup_signed_type (type);
2626   return type;
2627 }
2628 
2629 /* Create and return a type for unsigned integers of PRECISION bits.  */
2630 
2631 tree
make_unsigned_type(int precision)2632 make_unsigned_type (int precision)
2633 {
2634   tree type = make_node (INTEGER_TYPE);
2635 
2636   TYPE_PRECISION (type) = precision;
2637 
2638   fixup_unsigned_type (type);
2639   return type;
2640 }
2641 
2642 /* Create and return a type for fract of PRECISION bits, UNSIGNEDP,
2643    and SATP.  */
2644 
2645 tree
make_fract_type(int precision,int unsignedp,int satp)2646 make_fract_type (int precision, int unsignedp, int satp)
2647 {
2648   tree type = make_node (FIXED_POINT_TYPE);
2649 
2650   TYPE_PRECISION (type) = precision;
2651 
2652   if (satp)
2653     TYPE_SATURATING (type) = 1;
2654 
2655   /* Lay out the type: set its alignment, size, etc.  */
2656   TYPE_UNSIGNED (type) = unsignedp;
2657   enum mode_class mclass = unsignedp ? MODE_UFRACT : MODE_FRACT;
2658   SET_TYPE_MODE (type, mode_for_size (precision, mclass, 0).require ());
2659   layout_type (type);
2660 
2661   return type;
2662 }
2663 
2664 /* Create and return a type for accum of PRECISION bits, UNSIGNEDP,
2665    and SATP.  */
2666 
2667 tree
make_accum_type(int precision,int unsignedp,int satp)2668 make_accum_type (int precision, int unsignedp, int satp)
2669 {
2670   tree type = make_node (FIXED_POINT_TYPE);
2671 
2672   TYPE_PRECISION (type) = precision;
2673 
2674   if (satp)
2675     TYPE_SATURATING (type) = 1;
2676 
2677   /* Lay out the type: set its alignment, size, etc.  */
2678   TYPE_UNSIGNED (type) = unsignedp;
2679   enum mode_class mclass = unsignedp ? MODE_UACCUM : MODE_ACCUM;
2680   SET_TYPE_MODE (type, mode_for_size (precision, mclass, 0).require ());
2681   layout_type (type);
2682 
2683   return type;
2684 }
2685 
2686 /* Initialize sizetypes so layout_type can use them.  */
2687 
2688 void
initialize_sizetypes(void)2689 initialize_sizetypes (void)
2690 {
2691   int precision, bprecision;
2692 
2693   /* Get sizetypes precision from the SIZE_TYPE target macro.  */
2694   if (strcmp (SIZETYPE, "unsigned int") == 0)
2695     precision = INT_TYPE_SIZE;
2696   else if (strcmp (SIZETYPE, "long unsigned int") == 0)
2697     precision = LONG_TYPE_SIZE;
2698   else if (strcmp (SIZETYPE, "long long unsigned int") == 0)
2699     precision = LONG_LONG_TYPE_SIZE;
2700   else if (strcmp (SIZETYPE, "short unsigned int") == 0)
2701     precision = SHORT_TYPE_SIZE;
2702   else
2703     {
2704       int i;
2705 
2706       precision = -1;
2707       for (i = 0; i < NUM_INT_N_ENTS; i++)
2708 	if (int_n_enabled_p[i])
2709 	  {
2710 	    char name[50];
2711 	    sprintf (name, "__int%d unsigned", int_n_data[i].bitsize);
2712 
2713 	    if (strcmp (name, SIZETYPE) == 0)
2714 	      {
2715 		precision = int_n_data[i].bitsize;
2716 	      }
2717 	  }
2718       if (precision == -1)
2719 	gcc_unreachable ();
2720     }
2721 
2722   bprecision
2723     = MIN (precision + LOG2_BITS_PER_UNIT + 1, MAX_FIXED_MODE_SIZE);
2724   bprecision = GET_MODE_PRECISION (smallest_int_mode_for_size (bprecision));
2725   if (bprecision > HOST_BITS_PER_DOUBLE_INT)
2726     bprecision = HOST_BITS_PER_DOUBLE_INT;
2727 
2728   /* Create stubs for sizetype and bitsizetype so we can create constants.  */
2729   sizetype = make_node (INTEGER_TYPE);
2730   TYPE_NAME (sizetype) = get_identifier ("sizetype");
2731   TYPE_PRECISION (sizetype) = precision;
2732   TYPE_UNSIGNED (sizetype) = 1;
2733   bitsizetype = make_node (INTEGER_TYPE);
2734   TYPE_NAME (bitsizetype) = get_identifier ("bitsizetype");
2735   TYPE_PRECISION (bitsizetype) = bprecision;
2736   TYPE_UNSIGNED (bitsizetype) = 1;
2737 
2738   /* Now layout both types manually.  */
2739   scalar_int_mode mode = smallest_int_mode_for_size (precision);
2740   SET_TYPE_MODE (sizetype, mode);
2741   SET_TYPE_ALIGN (sizetype, GET_MODE_ALIGNMENT (TYPE_MODE (sizetype)));
2742   TYPE_SIZE (sizetype) = bitsize_int (precision);
2743   TYPE_SIZE_UNIT (sizetype) = size_int (GET_MODE_SIZE (mode));
2744   set_min_and_max_values_for_integral_type (sizetype, precision, UNSIGNED);
2745 
2746   mode = smallest_int_mode_for_size (bprecision);
2747   SET_TYPE_MODE (bitsizetype, mode);
2748   SET_TYPE_ALIGN (bitsizetype, GET_MODE_ALIGNMENT (TYPE_MODE (bitsizetype)));
2749   TYPE_SIZE (bitsizetype) = bitsize_int (bprecision);
2750   TYPE_SIZE_UNIT (bitsizetype) = size_int (GET_MODE_SIZE (mode));
2751   set_min_and_max_values_for_integral_type (bitsizetype, bprecision, UNSIGNED);
2752 
2753   /* Create the signed variants of *sizetype.  */
2754   ssizetype = make_signed_type (TYPE_PRECISION (sizetype));
2755   TYPE_NAME (ssizetype) = get_identifier ("ssizetype");
2756   sbitsizetype = make_signed_type (TYPE_PRECISION (bitsizetype));
2757   TYPE_NAME (sbitsizetype) = get_identifier ("sbitsizetype");
2758 }
2759 
2760 /* TYPE is an integral type, i.e., an INTEGRAL_TYPE, ENUMERAL_TYPE
2761    or BOOLEAN_TYPE.  Set TYPE_MIN_VALUE and TYPE_MAX_VALUE
2762    for TYPE, based on the PRECISION and whether or not the TYPE
2763    IS_UNSIGNED.  PRECISION need not correspond to a width supported
2764    natively by the hardware; for example, on a machine with 8-bit,
2765    16-bit, and 32-bit register modes, PRECISION might be 7, 23, or
2766    61.  */
2767 
2768 void
set_min_and_max_values_for_integral_type(tree type,int precision,signop sgn)2769 set_min_and_max_values_for_integral_type (tree type,
2770 					  int precision,
2771 					  signop sgn)
2772 {
2773   /* For bitfields with zero width we end up creating integer types
2774      with zero precision.  Don't assign any minimum/maximum values
2775      to those types, they don't have any valid value.  */
2776   if (precision < 1)
2777     return;
2778 
2779   TYPE_MIN_VALUE (type)
2780     = wide_int_to_tree (type, wi::min_value (precision, sgn));
2781   TYPE_MAX_VALUE (type)
2782     = wide_int_to_tree (type, wi::max_value (precision, sgn));
2783 }
2784 
2785 /* Set the extreme values of TYPE based on its precision in bits,
2786    then lay it out.  Used when make_signed_type won't do
2787    because the tree code is not INTEGER_TYPE.  */
2788 
2789 void
fixup_signed_type(tree type)2790 fixup_signed_type (tree type)
2791 {
2792   int precision = TYPE_PRECISION (type);
2793 
2794   set_min_and_max_values_for_integral_type (type, precision, SIGNED);
2795 
2796   /* Lay out the type: set its alignment, size, etc.  */
2797   layout_type (type);
2798 }
2799 
2800 /* Set the extreme values of TYPE based on its precision in bits,
2801    then lay it out.  This is used both in `make_unsigned_type'
2802    and for enumeral types.  */
2803 
2804 void
fixup_unsigned_type(tree type)2805 fixup_unsigned_type (tree type)
2806 {
2807   int precision = TYPE_PRECISION (type);
2808 
2809   TYPE_UNSIGNED (type) = 1;
2810 
2811   set_min_and_max_values_for_integral_type (type, precision, UNSIGNED);
2812 
2813   /* Lay out the type: set its alignment, size, etc.  */
2814   layout_type (type);
2815 }
2816 
2817 /* Construct an iterator for a bitfield that spans BITSIZE bits,
2818    starting at BITPOS.
2819 
2820    BITREGION_START is the bit position of the first bit in this
2821    sequence of bit fields.  BITREGION_END is the last bit in this
2822    sequence.  If these two fields are non-zero, we should restrict the
2823    memory access to that range.  Otherwise, we are allowed to touch
2824    any adjacent non bit-fields.
2825 
2826    ALIGN is the alignment of the underlying object in bits.
2827    VOLATILEP says whether the bitfield is volatile.  */
2828 
2829 bit_field_mode_iterator
bit_field_mode_iterator(HOST_WIDE_INT bitsize,HOST_WIDE_INT bitpos,poly_int64 bitregion_start,poly_int64 bitregion_end,unsigned int align,bool volatilep)2830 ::bit_field_mode_iterator (HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
2831 			   poly_int64 bitregion_start,
2832 			   poly_int64 bitregion_end,
2833 			   unsigned int align, bool volatilep)
2834 : m_mode (NARROWEST_INT_MODE), m_bitsize (bitsize),
2835   m_bitpos (bitpos), m_bitregion_start (bitregion_start),
2836   m_bitregion_end (bitregion_end), m_align (align),
2837   m_volatilep (volatilep), m_count (0)
2838 {
2839   if (known_eq (m_bitregion_end, 0))
2840     {
2841       /* We can assume that any aligned chunk of ALIGN bits that overlaps
2842 	 the bitfield is mapped and won't trap, provided that ALIGN isn't
2843 	 too large.  The cap is the biggest required alignment for data,
2844 	 or at least the word size.  And force one such chunk at least.  */
2845       unsigned HOST_WIDE_INT units
2846 	= MIN (align, MAX (BIGGEST_ALIGNMENT, BITS_PER_WORD));
2847       if (bitsize <= 0)
2848 	bitsize = 1;
2849       HOST_WIDE_INT end = bitpos + bitsize + units - 1;
2850       m_bitregion_end = end - end % units - 1;
2851     }
2852 }
2853 
2854 /* Calls to this function return successively larger modes that can be used
2855    to represent the bitfield.  Return true if another bitfield mode is
2856    available, storing it in *OUT_MODE if so.  */
2857 
2858 bool
next_mode(scalar_int_mode * out_mode)2859 bit_field_mode_iterator::next_mode (scalar_int_mode *out_mode)
2860 {
2861   scalar_int_mode mode;
2862   for (; m_mode.exists (&mode); m_mode = GET_MODE_WIDER_MODE (mode))
2863     {
2864       unsigned int unit = GET_MODE_BITSIZE (mode);
2865 
2866       /* Skip modes that don't have full precision.  */
2867       if (unit != GET_MODE_PRECISION (mode))
2868 	continue;
2869 
2870       /* Stop if the mode is too wide to handle efficiently.  */
2871       if (unit > MAX_FIXED_MODE_SIZE)
2872 	break;
2873 
2874       /* Don't deliver more than one multiword mode; the smallest one
2875 	 should be used.  */
2876       if (m_count > 0 && unit > BITS_PER_WORD)
2877 	break;
2878 
2879       /* Skip modes that are too small.  */
2880       unsigned HOST_WIDE_INT substart = (unsigned HOST_WIDE_INT) m_bitpos % unit;
2881       unsigned HOST_WIDE_INT subend = substart + m_bitsize;
2882       if (subend > unit)
2883 	continue;
2884 
2885       /* Stop if the mode goes outside the bitregion.  */
2886       HOST_WIDE_INT start = m_bitpos - substart;
2887       if (maybe_ne (m_bitregion_start, 0)
2888 	  && maybe_lt (start, m_bitregion_start))
2889 	break;
2890       HOST_WIDE_INT end = start + unit;
2891       if (maybe_gt (end, m_bitregion_end + 1))
2892 	break;
2893 
2894       /* Stop if the mode requires too much alignment.  */
2895       if (GET_MODE_ALIGNMENT (mode) > m_align
2896 	  && targetm.slow_unaligned_access (mode, m_align))
2897 	break;
2898 
2899       *out_mode = mode;
2900       m_mode = GET_MODE_WIDER_MODE (mode);
2901       m_count++;
2902       return true;
2903     }
2904   return false;
2905 }
2906 
2907 /* Return true if smaller modes are generally preferred for this kind
2908    of bitfield.  */
2909 
2910 bool
prefer_smaller_modes()2911 bit_field_mode_iterator::prefer_smaller_modes ()
2912 {
2913   return (m_volatilep
2914 	  ? targetm.narrow_volatile_bitfield ()
2915 	  : !SLOW_BYTE_ACCESS);
2916 }
2917 
2918 /* Find the best machine mode to use when referencing a bit field of length
2919    BITSIZE bits starting at BITPOS.
2920 
2921    BITREGION_START is the bit position of the first bit in this
2922    sequence of bit fields.  BITREGION_END is the last bit in this
2923    sequence.  If these two fields are non-zero, we should restrict the
2924    memory access to that range.  Otherwise, we are allowed to touch
2925    any adjacent non bit-fields.
2926 
2927    The chosen mode must have no more than LARGEST_MODE_BITSIZE bits.
2928    INT_MAX is a suitable value for LARGEST_MODE_BITSIZE if the caller
2929    doesn't want to apply a specific limit.
2930 
2931    If no mode meets all these conditions, we return VOIDmode.
2932 
2933    The underlying object is known to be aligned to a boundary of ALIGN bits.
2934 
2935    If VOLATILEP is false and SLOW_BYTE_ACCESS is false, we return the
2936    smallest mode meeting these conditions.
2937 
2938    If VOLATILEP is false and SLOW_BYTE_ACCESS is true, we return the
2939    largest mode (but a mode no wider than UNITS_PER_WORD) that meets
2940    all the conditions.
2941 
2942    If VOLATILEP is true the narrow_volatile_bitfields target hook is used to
2943    decide which of the above modes should be used.  */
2944 
2945 bool
get_best_mode(int bitsize,int bitpos,poly_uint64 bitregion_start,poly_uint64 bitregion_end,unsigned int align,unsigned HOST_WIDE_INT largest_mode_bitsize,bool volatilep,scalar_int_mode * best_mode)2946 get_best_mode (int bitsize, int bitpos,
2947 	       poly_uint64 bitregion_start, poly_uint64 bitregion_end,
2948 	       unsigned int align,
2949 	       unsigned HOST_WIDE_INT largest_mode_bitsize, bool volatilep,
2950 	       scalar_int_mode *best_mode)
2951 {
2952   bit_field_mode_iterator iter (bitsize, bitpos, bitregion_start,
2953 				bitregion_end, align, volatilep);
2954   scalar_int_mode mode;
2955   bool found = false;
2956   while (iter.next_mode (&mode)
2957 	 /* ??? For historical reasons, reject modes that would normally
2958 	    receive greater alignment, even if unaligned accesses are
2959 	    acceptable.  This has both advantages and disadvantages.
2960 	    Removing this check means that something like:
2961 
2962 	       struct s { unsigned int x; unsigned int y; };
2963 	       int f (struct s *s) { return s->x == 0 && s->y == 0; }
2964 
2965 	    can be implemented using a single load and compare on
2966 	    64-bit machines that have no alignment restrictions.
2967 	    For example, on powerpc64-linux-gnu, we would generate:
2968 
2969 		    ld 3,0(3)
2970 		    cntlzd 3,3
2971 		    srdi 3,3,6
2972 		    blr
2973 
2974 	    rather than:
2975 
2976 		    lwz 9,0(3)
2977 		    cmpwi 7,9,0
2978 		    bne 7,.L3
2979 		    lwz 3,4(3)
2980 		    cntlzw 3,3
2981 		    srwi 3,3,5
2982 		    extsw 3,3
2983 		    blr
2984 		    .p2align 4,,15
2985 	    .L3:
2986 		    li 3,0
2987 		    blr
2988 
2989 	    However, accessing more than one field can make life harder
2990 	    for the gimple optimizers.  For example, gcc.dg/vect/bb-slp-5.c
2991 	    has a series of unsigned short copies followed by a series of
2992 	    unsigned short comparisons.  With this check, both the copies
2993 	    and comparisons remain 16-bit accesses and FRE is able
2994 	    to eliminate the latter.  Without the check, the comparisons
2995 	    can be done using 2 64-bit operations, which FRE isn't able
2996 	    to handle in the same way.
2997 
2998 	    Either way, it would probably be worth disabling this check
2999 	    during expand.  One particular example where removing the
3000 	    check would help is the get_best_mode call in store_bit_field.
3001 	    If we are given a memory bitregion of 128 bits that is aligned
3002 	    to a 64-bit boundary, and the bitfield we want to modify is
3003 	    in the second half of the bitregion, this check causes
3004 	    store_bitfield to turn the memory into a 64-bit reference
3005 	    to the _first_ half of the region.  We later use
3006 	    adjust_bitfield_address to get a reference to the correct half,
3007 	    but doing so looks to adjust_bitfield_address as though we are
3008 	    moving past the end of the original object, so it drops the
3009 	    associated MEM_EXPR and MEM_OFFSET.  Removing the check
3010 	    causes store_bit_field to keep a 128-bit memory reference,
3011 	    so that the final bitfield reference still has a MEM_EXPR
3012 	    and MEM_OFFSET.  */
3013 	 && GET_MODE_ALIGNMENT (mode) <= align
3014 	 && GET_MODE_BITSIZE (mode) <= largest_mode_bitsize)
3015     {
3016       *best_mode = mode;
3017       found = true;
3018       if (iter.prefer_smaller_modes ())
3019 	break;
3020     }
3021 
3022   return found;
3023 }
3024 
3025 /* Gets minimal and maximal values for MODE (signed or unsigned depending on
3026    SIGN).  The returned constants are made to be usable in TARGET_MODE.  */
3027 
3028 void
get_mode_bounds(scalar_int_mode mode,int sign,scalar_int_mode target_mode,rtx * mmin,rtx * mmax)3029 get_mode_bounds (scalar_int_mode mode, int sign,
3030 		 scalar_int_mode target_mode,
3031 		 rtx *mmin, rtx *mmax)
3032 {
3033   unsigned size = GET_MODE_PRECISION (mode);
3034   unsigned HOST_WIDE_INT min_val, max_val;
3035 
3036   gcc_assert (size <= HOST_BITS_PER_WIDE_INT);
3037 
3038   /* Special case BImode, which has values 0 and STORE_FLAG_VALUE.  */
3039   if (mode == BImode)
3040     {
3041       if (STORE_FLAG_VALUE < 0)
3042 	{
3043 	  min_val = STORE_FLAG_VALUE;
3044 	  max_val = 0;
3045 	}
3046       else
3047 	{
3048 	  min_val = 0;
3049 	  max_val = STORE_FLAG_VALUE;
3050 	}
3051     }
3052   else if (sign)
3053     {
3054       min_val = -(HOST_WIDE_INT_1U << (size - 1));
3055       max_val = (HOST_WIDE_INT_1U << (size - 1)) - 1;
3056     }
3057   else
3058     {
3059       min_val = 0;
3060       max_val = (HOST_WIDE_INT_1U << (size - 1) << 1) - 1;
3061     }
3062 
3063   *mmin = gen_int_mode (min_val, target_mode);
3064   *mmax = gen_int_mode (max_val, target_mode);
3065 }
3066 
3067 #include "gt-stor-layout.h"
3068