1// Copyright 2011 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5// Package parse builds parse trees for templates as defined by text/template
6// and html/template. Clients should use those packages to construct templates
7// rather than this one, which provides shared internal data structures not
8// intended for general use.
9package parse
10
11import (
12	"bytes"
13	"fmt"
14	"runtime"
15	"strconv"
16	"strings"
17)
18
19// Tree is the representation of a single parsed template.
20type Tree struct {
21	Name      string    // name of the template represented by the tree.
22	ParseName string    // name of the top-level template during parsing, for error messages.
23	Root      *ListNode // top-level root of the tree.
24	text      string    // text parsed to create the template (or its parent)
25	// Parsing only; cleared after parse.
26	funcs     []map[string]interface{}
27	lex       *lexer
28	token     [3]item // three-token lookahead for parser.
29	peekCount int
30	vars      []string // variables defined at the moment.
31	treeSet   map[string]*Tree
32}
33
34// Copy returns a copy of the Tree. Any parsing state is discarded.
35func (t *Tree) Copy() *Tree {
36	if t == nil {
37		return nil
38	}
39	return &Tree{
40		Name:      t.Name,
41		ParseName: t.ParseName,
42		Root:      t.Root.CopyList(),
43		text:      t.text,
44	}
45}
46
47// Parse returns a map from template name to parse.Tree, created by parsing the
48// templates described in the argument string. The top-level template will be
49// given the specified name. If an error is encountered, parsing stops and an
50// empty map is returned with the error.
51func Parse(name, text, leftDelim, rightDelim string, funcs ...map[string]interface{}) (map[string]*Tree, error) {
52	treeSet := make(map[string]*Tree)
53	t := New(name)
54	t.text = text
55	_, err := t.Parse(text, leftDelim, rightDelim, treeSet, funcs...)
56	return treeSet, err
57}
58
59// next returns the next token.
60func (t *Tree) next() item {
61	if t.peekCount > 0 {
62		t.peekCount--
63	} else {
64		t.token[0] = t.lex.nextItem()
65	}
66	return t.token[t.peekCount]
67}
68
69// backup backs the input stream up one token.
70func (t *Tree) backup() {
71	t.peekCount++
72}
73
74// backup2 backs the input stream up two tokens.
75// The zeroth token is already there.
76func (t *Tree) backup2(t1 item) {
77	t.token[1] = t1
78	t.peekCount = 2
79}
80
81// backup3 backs the input stream up three tokens
82// The zeroth token is already there.
83func (t *Tree) backup3(t2, t1 item) { // Reverse order: we're pushing back.
84	t.token[1] = t1
85	t.token[2] = t2
86	t.peekCount = 3
87}
88
89// peek returns but does not consume the next token.
90func (t *Tree) peek() item {
91	if t.peekCount > 0 {
92		return t.token[t.peekCount-1]
93	}
94	t.peekCount = 1
95	t.token[0] = t.lex.nextItem()
96	return t.token[0]
97}
98
99// nextNonSpace returns the next non-space token.
100func (t *Tree) nextNonSpace() (token item) {
101	for {
102		token = t.next()
103		if token.typ != itemSpace {
104			break
105		}
106	}
107	return token
108}
109
110// peekNonSpace returns but does not consume the next non-space token.
111func (t *Tree) peekNonSpace() (token item) {
112	for {
113		token = t.next()
114		if token.typ != itemSpace {
115			break
116		}
117	}
118	t.backup()
119	return token
120}
121
122// Parsing.
123
124// New allocates a new parse tree with the given name.
125func New(name string, funcs ...map[string]interface{}) *Tree {
126	return &Tree{
127		Name:  name,
128		funcs: funcs,
129	}
130}
131
132// ErrorContext returns a textual representation of the location of the node in the input text.
133// The receiver is only used when the node does not have a pointer to the tree inside,
134// which can occur in old code.
135func (t *Tree) ErrorContext(n Node) (location, context string) {
136	pos := int(n.Position())
137	tree := n.tree()
138	if tree == nil {
139		tree = t
140	}
141	text := tree.text[:pos]
142	byteNum := strings.LastIndex(text, "\n")
143	if byteNum == -1 {
144		byteNum = pos // On first line.
145	} else {
146		byteNum++ // After the newline.
147		byteNum = pos - byteNum
148	}
149	lineNum := 1 + strings.Count(text, "\n")
150	context = n.String()
151	if len(context) > 20 {
152		context = fmt.Sprintf("%.20s...", context)
153	}
154	return fmt.Sprintf("%s:%d:%d", tree.ParseName, lineNum, byteNum), context
155}
156
157// errorf formats the error and terminates processing.
158func (t *Tree) errorf(format string, args ...interface{}) {
159	t.Root = nil
160	format = fmt.Sprintf("template: %s:%d: %s", t.ParseName, t.token[0].line, format)
161	panic(fmt.Errorf(format, args...))
162}
163
164// error terminates processing.
165func (t *Tree) error(err error) {
166	t.errorf("%s", err)
167}
168
169// expect consumes the next token and guarantees it has the required type.
170func (t *Tree) expect(expected itemType, context string) item {
171	token := t.nextNonSpace()
172	if token.typ != expected {
173		t.unexpected(token, context)
174	}
175	return token
176}
177
178// expectOneOf consumes the next token and guarantees it has one of the required types.
179func (t *Tree) expectOneOf(expected1, expected2 itemType, context string) item {
180	token := t.nextNonSpace()
181	if token.typ != expected1 && token.typ != expected2 {
182		t.unexpected(token, context)
183	}
184	return token
185}
186
187// unexpected complains about the token and terminates processing.
188func (t *Tree) unexpected(token item, context string) {
189	t.errorf("unexpected %s in %s", token, context)
190}
191
192// recover is the handler that turns panics into returns from the top level of Parse.
193func (t *Tree) recover(errp *error) {
194	e := recover()
195	if e != nil {
196		if _, ok := e.(runtime.Error); ok {
197			panic(e)
198		}
199		if t != nil {
200			t.lex.drain()
201			t.stopParse()
202		}
203		*errp = e.(error)
204	}
205}
206
207// startParse initializes the parser, using the lexer.
208func (t *Tree) startParse(funcs []map[string]interface{}, lex *lexer, treeSet map[string]*Tree) {
209	t.Root = nil
210	t.lex = lex
211	t.vars = []string{"$"}
212	t.funcs = funcs
213	t.treeSet = treeSet
214}
215
216// stopParse terminates parsing.
217func (t *Tree) stopParse() {
218	t.lex = nil
219	t.vars = nil
220	t.funcs = nil
221	t.treeSet = nil
222}
223
224// Parse parses the template definition string to construct a representation of
225// the template for execution. If either action delimiter string is empty, the
226// default ("{{" or "}}") is used. Embedded template definitions are added to
227// the treeSet map.
228func (t *Tree) Parse(text, leftDelim, rightDelim string, treeSet map[string]*Tree, funcs ...map[string]interface{}) (tree *Tree, err error) {
229	defer t.recover(&err)
230	t.ParseName = t.Name
231	t.startParse(funcs, lex(t.Name, text, leftDelim, rightDelim), treeSet)
232	t.text = text
233	t.parse()
234	t.add()
235	t.stopParse()
236	return t, nil
237}
238
239// add adds tree to t.treeSet.
240func (t *Tree) add() {
241	tree := t.treeSet[t.Name]
242	if tree == nil || IsEmptyTree(tree.Root) {
243		t.treeSet[t.Name] = t
244		return
245	}
246	if !IsEmptyTree(t.Root) {
247		t.errorf("template: multiple definition of template %q", t.Name)
248	}
249}
250
251// IsEmptyTree reports whether this tree (node) is empty of everything but space.
252func IsEmptyTree(n Node) bool {
253	switch n := n.(type) {
254	case nil:
255		return true
256	case *ActionNode:
257	case *IfNode:
258	case *ListNode:
259		for _, node := range n.Nodes {
260			if !IsEmptyTree(node) {
261				return false
262			}
263		}
264		return true
265	case *RangeNode:
266	case *TemplateNode:
267	case *TextNode:
268		return len(bytes.TrimSpace(n.Text)) == 0
269	case *WithNode:
270	default:
271		panic("unknown node: " + n.String())
272	}
273	return false
274}
275
276// parse is the top-level parser for a template, essentially the same
277// as itemList except it also parses {{define}} actions.
278// It runs to EOF.
279func (t *Tree) parse() {
280	t.Root = t.newList(t.peek().pos)
281	for t.peek().typ != itemEOF {
282		if t.peek().typ == itemLeftDelim {
283			delim := t.next()
284			if t.nextNonSpace().typ == itemDefine {
285				newT := New("definition") // name will be updated once we know it.
286				newT.text = t.text
287				newT.ParseName = t.ParseName
288				newT.startParse(t.funcs, t.lex, t.treeSet)
289				newT.parseDefinition()
290				continue
291			}
292			t.backup2(delim)
293		}
294		switch n := t.textOrAction(); n.Type() {
295		case nodeEnd, nodeElse:
296			t.errorf("unexpected %s", n)
297		default:
298			t.Root.append(n)
299		}
300	}
301}
302
303// parseDefinition parses a {{define}} ...  {{end}} template definition and
304// installs the definition in t.treeSet. The "define" keyword has already
305// been scanned.
306func (t *Tree) parseDefinition() {
307	const context = "define clause"
308	name := t.expectOneOf(itemString, itemRawString, context)
309	var err error
310	t.Name, err = strconv.Unquote(name.val)
311	if err != nil {
312		t.error(err)
313	}
314	t.expect(itemRightDelim, context)
315	var end Node
316	t.Root, end = t.itemList()
317	if end.Type() != nodeEnd {
318		t.errorf("unexpected %s in %s", end, context)
319	}
320	t.add()
321	t.stopParse()
322}
323
324// itemList:
325//	textOrAction*
326// Terminates at {{end}} or {{else}}, returned separately.
327func (t *Tree) itemList() (list *ListNode, next Node) {
328	list = t.newList(t.peekNonSpace().pos)
329	for t.peekNonSpace().typ != itemEOF {
330		n := t.textOrAction()
331		switch n.Type() {
332		case nodeEnd, nodeElse:
333			return list, n
334		}
335		list.append(n)
336	}
337	t.errorf("unexpected EOF")
338	return
339}
340
341// textOrAction:
342//	text | action
343func (t *Tree) textOrAction() Node {
344	switch token := t.nextNonSpace(); token.typ {
345	case itemText:
346		return t.newText(token.pos, token.val)
347	case itemLeftDelim:
348		return t.action()
349	default:
350		t.unexpected(token, "input")
351	}
352	return nil
353}
354
355// Action:
356//	control
357//	command ("|" command)*
358// Left delim is past. Now get actions.
359// First word could be a keyword such as range.
360func (t *Tree) action() (n Node) {
361	switch token := t.nextNonSpace(); token.typ {
362	case itemBlock:
363		return t.blockControl()
364	case itemElse:
365		return t.elseControl()
366	case itemEnd:
367		return t.endControl()
368	case itemIf:
369		return t.ifControl()
370	case itemRange:
371		return t.rangeControl()
372	case itemTemplate:
373		return t.templateControl()
374	case itemWith:
375		return t.withControl()
376	}
377	t.backup()
378	token := t.peek()
379	// Do not pop variables; they persist until "end".
380	return t.newAction(token.pos, token.line, t.pipeline("command"))
381}
382
383// Pipeline:
384//	declarations? command ('|' command)*
385func (t *Tree) pipeline(context string) (pipe *PipeNode) {
386	var decl []*VariableNode
387	token := t.peekNonSpace()
388	pos := token.pos
389	// Are there declarations?
390	for {
391		if v := t.peekNonSpace(); v.typ == itemVariable {
392			t.next()
393			// Since space is a token, we need 3-token look-ahead here in the worst case:
394			// in "$x foo" we need to read "foo" (as opposed to ":=") to know that $x is an
395			// argument variable rather than a declaration. So remember the token
396			// adjacent to the variable so we can push it back if necessary.
397			tokenAfterVariable := t.peek()
398			if next := t.peekNonSpace(); next.typ == itemColonEquals || (next.typ == itemChar && next.val == ",") {
399				t.nextNonSpace()
400				variable := t.newVariable(v.pos, v.val)
401				decl = append(decl, variable)
402				t.vars = append(t.vars, v.val)
403				if next.typ == itemChar && next.val == "," {
404					if context == "range" && len(decl) < 2 {
405						continue
406					}
407					t.errorf("too many declarations in %s", context)
408				}
409			} else if tokenAfterVariable.typ == itemSpace {
410				t.backup3(v, tokenAfterVariable)
411			} else {
412				t.backup2(v)
413			}
414		}
415		break
416	}
417	pipe = t.newPipeline(pos, token.line, decl)
418	for {
419		switch token := t.nextNonSpace(); token.typ {
420		case itemRightDelim, itemRightParen:
421			// At this point, the pipeline is complete
422			t.checkPipeline(pipe, context)
423			if token.typ == itemRightParen {
424				t.backup()
425			}
426			return
427		case itemBool, itemCharConstant, itemComplex, itemDot, itemField, itemIdentifier,
428			itemNumber, itemNil, itemRawString, itemString, itemVariable, itemLeftParen:
429			t.backup()
430			pipe.append(t.command())
431		default:
432			t.unexpected(token, context)
433		}
434	}
435}
436
437func (t *Tree) checkPipeline(pipe *PipeNode, context string) {
438	// Reject empty pipelines
439	if len(pipe.Cmds) == 0 {
440		t.errorf("missing value for %s", context)
441	}
442	// Only the first command of a pipeline can start with a non executable operand
443	for i, c := range pipe.Cmds[1:] {
444		switch c.Args[0].Type() {
445		case NodeBool, NodeDot, NodeNil, NodeNumber, NodeString:
446			// With A|B|C, pipeline stage 2 is B
447			t.errorf("non executable command in pipeline stage %d", i+2)
448		}
449	}
450}
451
452func (t *Tree) parseControl(allowElseIf bool, context string) (pos Pos, line int, pipe *PipeNode, list, elseList *ListNode) {
453	defer t.popVars(len(t.vars))
454	pipe = t.pipeline(context)
455	var next Node
456	list, next = t.itemList()
457	switch next.Type() {
458	case nodeEnd: //done
459	case nodeElse:
460		if allowElseIf {
461			// Special case for "else if". If the "else" is followed immediately by an "if",
462			// the elseControl will have left the "if" token pending. Treat
463			//	{{if a}}_{{else if b}}_{{end}}
464			// as
465			//	{{if a}}_{{else}}{{if b}}_{{end}}{{end}}.
466			// To do this, parse the if as usual and stop at it {{end}}; the subsequent{{end}}
467			// is assumed. This technique works even for long if-else-if chains.
468			// TODO: Should we allow else-if in with and range?
469			if t.peek().typ == itemIf {
470				t.next() // Consume the "if" token.
471				elseList = t.newList(next.Position())
472				elseList.append(t.ifControl())
473				// Do not consume the next item - only one {{end}} required.
474				break
475			}
476		}
477		elseList, next = t.itemList()
478		if next.Type() != nodeEnd {
479			t.errorf("expected end; found %s", next)
480		}
481	}
482	return pipe.Position(), pipe.Line, pipe, list, elseList
483}
484
485// If:
486//	{{if pipeline}} itemList {{end}}
487//	{{if pipeline}} itemList {{else}} itemList {{end}}
488// If keyword is past.
489func (t *Tree) ifControl() Node {
490	return t.newIf(t.parseControl(true, "if"))
491}
492
493// Range:
494//	{{range pipeline}} itemList {{end}}
495//	{{range pipeline}} itemList {{else}} itemList {{end}}
496// Range keyword is past.
497func (t *Tree) rangeControl() Node {
498	return t.newRange(t.parseControl(false, "range"))
499}
500
501// With:
502//	{{with pipeline}} itemList {{end}}
503//	{{with pipeline}} itemList {{else}} itemList {{end}}
504// If keyword is past.
505func (t *Tree) withControl() Node {
506	return t.newWith(t.parseControl(false, "with"))
507}
508
509// End:
510//	{{end}}
511// End keyword is past.
512func (t *Tree) endControl() Node {
513	return t.newEnd(t.expect(itemRightDelim, "end").pos)
514}
515
516// Else:
517//	{{else}}
518// Else keyword is past.
519func (t *Tree) elseControl() Node {
520	// Special case for "else if".
521	peek := t.peekNonSpace()
522	if peek.typ == itemIf {
523		// We see "{{else if ... " but in effect rewrite it to {{else}}{{if ... ".
524		return t.newElse(peek.pos, peek.line)
525	}
526	token := t.expect(itemRightDelim, "else")
527	return t.newElse(token.pos, token.line)
528}
529
530// Block:
531//	{{block stringValue pipeline}}
532// Block keyword is past.
533// The name must be something that can evaluate to a string.
534// The pipeline is mandatory.
535func (t *Tree) blockControl() Node {
536	const context = "block clause"
537
538	token := t.nextNonSpace()
539	name := t.parseTemplateName(token, context)
540	pipe := t.pipeline(context)
541
542	block := New(name) // name will be updated once we know it.
543	block.text = t.text
544	block.ParseName = t.ParseName
545	block.startParse(t.funcs, t.lex, t.treeSet)
546	var end Node
547	block.Root, end = block.itemList()
548	if end.Type() != nodeEnd {
549		t.errorf("unexpected %s in %s", end, context)
550	}
551	block.add()
552	block.stopParse()
553
554	return t.newTemplate(token.pos, token.line, name, pipe)
555}
556
557// Template:
558//	{{template stringValue pipeline}}
559// Template keyword is past. The name must be something that can evaluate
560// to a string.
561func (t *Tree) templateControl() Node {
562	const context = "template clause"
563	token := t.nextNonSpace()
564	name := t.parseTemplateName(token, context)
565	var pipe *PipeNode
566	if t.nextNonSpace().typ != itemRightDelim {
567		t.backup()
568		// Do not pop variables; they persist until "end".
569		pipe = t.pipeline(context)
570	}
571	return t.newTemplate(token.pos, token.line, name, pipe)
572}
573
574func (t *Tree) parseTemplateName(token item, context string) (name string) {
575	switch token.typ {
576	case itemString, itemRawString:
577		s, err := strconv.Unquote(token.val)
578		if err != nil {
579			t.error(err)
580		}
581		name = s
582	default:
583		t.unexpected(token, context)
584	}
585	return
586}
587
588// command:
589//	operand (space operand)*
590// space-separated arguments up to a pipeline character or right delimiter.
591// we consume the pipe character but leave the right delim to terminate the action.
592func (t *Tree) command() *CommandNode {
593	cmd := t.newCommand(t.peekNonSpace().pos)
594	for {
595		t.peekNonSpace() // skip leading spaces.
596		operand := t.operand()
597		if operand != nil {
598			cmd.append(operand)
599		}
600		switch token := t.next(); token.typ {
601		case itemSpace:
602			continue
603		case itemError:
604			t.errorf("%s", token.val)
605		case itemRightDelim, itemRightParen:
606			t.backup()
607		case itemPipe:
608		default:
609			t.errorf("unexpected %s in operand", token)
610		}
611		break
612	}
613	if len(cmd.Args) == 0 {
614		t.errorf("empty command")
615	}
616	return cmd
617}
618
619// operand:
620//	term .Field*
621// An operand is a space-separated component of a command,
622// a term possibly followed by field accesses.
623// A nil return means the next item is not an operand.
624func (t *Tree) operand() Node {
625	node := t.term()
626	if node == nil {
627		return nil
628	}
629	if t.peek().typ == itemField {
630		chain := t.newChain(t.peek().pos, node)
631		for t.peek().typ == itemField {
632			chain.Add(t.next().val)
633		}
634		// Compatibility with original API: If the term is of type NodeField
635		// or NodeVariable, just put more fields on the original.
636		// Otherwise, keep the Chain node.
637		// Obvious parsing errors involving literal values are detected here.
638		// More complex error cases will have to be handled at execution time.
639		switch node.Type() {
640		case NodeField:
641			node = t.newField(chain.Position(), chain.String())
642		case NodeVariable:
643			node = t.newVariable(chain.Position(), chain.String())
644		case NodeBool, NodeString, NodeNumber, NodeNil, NodeDot:
645			t.errorf("unexpected . after term %q", node.String())
646		default:
647			node = chain
648		}
649	}
650	return node
651}
652
653// term:
654//	literal (number, string, nil, boolean)
655//	function (identifier)
656//	.
657//	.Field
658//	$
659//	'(' pipeline ')'
660// A term is a simple "expression".
661// A nil return means the next item is not a term.
662func (t *Tree) term() Node {
663	switch token := t.nextNonSpace(); token.typ {
664	case itemError:
665		t.errorf("%s", token.val)
666	case itemIdentifier:
667		if !t.hasFunction(token.val) {
668			t.errorf("function %q not defined", token.val)
669		}
670		return NewIdentifier(token.val).SetTree(t).SetPos(token.pos)
671	case itemDot:
672		return t.newDot(token.pos)
673	case itemNil:
674		return t.newNil(token.pos)
675	case itemVariable:
676		return t.useVar(token.pos, token.val)
677	case itemField:
678		return t.newField(token.pos, token.val)
679	case itemBool:
680		return t.newBool(token.pos, token.val == "true")
681	case itemCharConstant, itemComplex, itemNumber:
682		number, err := t.newNumber(token.pos, token.val, token.typ)
683		if err != nil {
684			t.error(err)
685		}
686		return number
687	case itemLeftParen:
688		pipe := t.pipeline("parenthesized pipeline")
689		if token := t.next(); token.typ != itemRightParen {
690			t.errorf("unclosed right paren: unexpected %s", token)
691		}
692		return pipe
693	case itemString, itemRawString:
694		s, err := strconv.Unquote(token.val)
695		if err != nil {
696			t.error(err)
697		}
698		return t.newString(token.pos, token.val, s)
699	}
700	t.backup()
701	return nil
702}
703
704// hasFunction reports if a function name exists in the Tree's maps.
705func (t *Tree) hasFunction(name string) bool {
706	for _, funcMap := range t.funcs {
707		if funcMap == nil {
708			continue
709		}
710		if funcMap[name] != nil {
711			return true
712		}
713	}
714	return false
715}
716
717// popVars trims the variable list to the specified length
718func (t *Tree) popVars(n int) {
719	t.vars = t.vars[:n]
720}
721
722// useVar returns a node for a variable reference. It errors if the
723// variable is not defined.
724func (t *Tree) useVar(pos Pos, name string) Node {
725	v := t.newVariable(pos, name)
726	for _, varName := range t.vars {
727		if varName == v.Ident[0] {
728			return v
729		}
730	}
731	t.errorf("undefined variable %q", v.Ident[0])
732	return nil
733}
734