1------------------------------------------------------------------------------
2--                                                                          --
3--                         GNAT COMPILER COMPONENTS                         --
4--                                                                          --
5--                             E X P _ A T T R                              --
6--                                                                          --
7--                                 B o d y                                  --
8--                                                                          --
9--          Copyright (C) 1992-2019, Free Software Foundation, Inc.         --
10--                                                                          --
11-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12-- terms of the  GNU General Public License as published  by the Free Soft- --
13-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
17-- for  more details.  You should have  received  a copy of the GNU General --
18-- Public License  distributed with GNAT; see file COPYING3.  If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license.          --
20--                                                                          --
21-- GNAT was originally developed  by the GNAT team at  New York University. --
22-- Extensive contributions were provided by Ada Core Technologies Inc.      --
23--                                                                          --
24------------------------------------------------------------------------------
25
26with Aspects;  use Aspects;
27with Atree;    use Atree;
28with Checks;   use Checks;
29with Einfo;    use Einfo;
30with Elists;   use Elists;
31with Exp_Atag; use Exp_Atag;
32with Exp_Ch2;  use Exp_Ch2;
33with Exp_Ch3;  use Exp_Ch3;
34with Exp_Ch6;  use Exp_Ch6;
35with Exp_Ch9;  use Exp_Ch9;
36with Exp_Dist; use Exp_Dist;
37with Exp_Imgv; use Exp_Imgv;
38with Exp_Pakd; use Exp_Pakd;
39with Exp_Strm; use Exp_Strm;
40with Exp_Tss;  use Exp_Tss;
41with Exp_Util; use Exp_Util;
42with Freeze;   use Freeze;
43with Gnatvsn;  use Gnatvsn;
44with Itypes;   use Itypes;
45with Lib;      use Lib;
46with Namet;    use Namet;
47with Nmake;    use Nmake;
48with Nlists;   use Nlists;
49with Opt;      use Opt;
50with Restrict; use Restrict;
51with Rident;   use Rident;
52with Rtsfind;  use Rtsfind;
53with Sem;      use Sem;
54with Sem_Aux;  use Sem_Aux;
55with Sem_Ch6;  use Sem_Ch6;
56with Sem_Ch7;  use Sem_Ch7;
57with Sem_Ch8;  use Sem_Ch8;
58with Sem_Eval; use Sem_Eval;
59with Sem_Res;  use Sem_Res;
60with Sem_Util; use Sem_Util;
61with Sinfo;    use Sinfo;
62with Snames;   use Snames;
63with Stand;    use Stand;
64with Stringt;  use Stringt;
65with Tbuild;   use Tbuild;
66with Ttypes;   use Ttypes;
67with Uintp;    use Uintp;
68with Uname;    use Uname;
69with Validsw;  use Validsw;
70
71package body Exp_Attr is
72
73   -----------------------
74   -- Local Subprograms --
75   -----------------------
76
77   function Build_Array_VS_Func
78     (Attr       : Node_Id;
79      Formal_Typ : Entity_Id;
80      Array_Typ  : Entity_Id;
81      Comp_Typ   : Entity_Id) return Entity_Id;
82   --  Validate the components of an array type by means of a function. Return
83   --  the entity of the validation function. The parameters are as follows:
84   --
85   --    * Attr - the 'Valid_Scalars attribute for which the function is
86   --      generated.
87   --
88   --    * Formal_Typ - the type of the generated function's only formal
89   --      parameter.
90   --
91   --    * Array_Typ - the array type whose components are to be validated
92   --
93   --    * Comp_Typ - the component type of the array
94
95   function Build_Disp_Get_Task_Id_Call (Actual : Node_Id) return Node_Id;
96   --  Build a call to Disp_Get_Task_Id, passing Actual as actual parameter
97
98   function Build_Record_VS_Func
99     (Attr       : Node_Id;
100      Formal_Typ : Entity_Id;
101      Rec_Typ    : Entity_Id) return Entity_Id;
102   --  Validate the components, discriminants, and variants of a record type by
103   --  means of a function. Return the entity of the validation function. The
104   --  parameters are as follows:
105   --
106   --    * Attr - the 'Valid_Scalars attribute for which the function is
107   --      generated.
108   --
109   --    * Formal_Typ - the type of the generated function's only formal
110   --      parameter.
111   --
112   --    * Rec_Typ - the record type whose internals are to be validated
113
114   procedure Compile_Stream_Body_In_Scope
115     (N     : Node_Id;
116      Decl  : Node_Id;
117      Arr   : Entity_Id;
118      Check : Boolean);
119   --  The body for a stream subprogram may be generated outside of the scope
120   --  of the type. If the type is fully private, it may depend on the full
121   --  view of other types (e.g. indexes) that are currently private as well.
122   --  We install the declarations of the package in which the type is declared
123   --  before compiling the body in what is its proper environment. The Check
124   --  parameter indicates if checks are to be suppressed for the stream body.
125   --  We suppress checks for array/record reads, since the rule is that these
126   --  are like assignments, out of range values due to uninitialized storage,
127   --  or other invalid values do NOT cause a Constraint_Error to be raised.
128   --  If we are within an instance body all visibility has been established
129   --  already and there is no need to install the package.
130
131   --  This mechanism is now extended to the component types of the array type,
132   --  when the component type is not in scope and is private, to handle
133   --  properly the case when the full view has defaulted discriminants.
134
135   --  This special processing is ultimately caused by the fact that the
136   --  compiler lacks a well-defined phase when full views are visible
137   --  everywhere. Having such a separate pass would remove much of the
138   --  special-case code that shuffles partial and full views in the middle
139   --  of semantic analysis and expansion.
140
141   procedure Expand_Access_To_Protected_Op
142     (N    : Node_Id;
143      Pref : Node_Id;
144      Typ  : Entity_Id);
145   --  An attribute reference to a protected subprogram is transformed into
146   --  a pair of pointers: one to the object, and one to the operations.
147   --  This expansion is performed for 'Access and for 'Unrestricted_Access.
148
149   procedure Expand_Fpt_Attribute
150     (N    : Node_Id;
151      Pkg  : RE_Id;
152      Nam  : Name_Id;
153      Args : List_Id);
154   --  This procedure expands a call to a floating-point attribute function.
155   --  N is the attribute reference node, and Args is a list of arguments to
156   --  be passed to the function call. Pkg identifies the package containing
157   --  the appropriate instantiation of System.Fat_Gen. Float arguments in Args
158   --  have already been converted to the floating-point type for which Pkg was
159   --  instantiated. The Nam argument is the relevant attribute processing
160   --  routine to be called. This is the same as the attribute name, except in
161   --  the Unaligned_Valid case.
162
163   procedure Expand_Fpt_Attribute_R (N : Node_Id);
164   --  This procedure expands a call to a floating-point attribute function
165   --  that takes a single floating-point argument. The function to be called
166   --  is always the same as the attribute name.
167
168   procedure Expand_Fpt_Attribute_RI (N : Node_Id);
169   --  This procedure expands a call to a floating-point attribute function
170   --  that takes one floating-point argument and one integer argument. The
171   --  function to be called is always the same as the attribute name.
172
173   procedure Expand_Fpt_Attribute_RR (N : Node_Id);
174   --  This procedure expands a call to a floating-point attribute function
175   --  that takes two floating-point arguments. The function to be called
176   --  is always the same as the attribute name.
177
178   procedure Expand_Loop_Entry_Attribute (N : Node_Id);
179   --  Handle the expansion of attribute 'Loop_Entry. As a result, the related
180   --  loop may be converted into a conditional block. See body for details.
181
182   procedure Expand_Min_Max_Attribute (N : Node_Id);
183   --  Handle the expansion of attributes 'Max and 'Min, including expanding
184   --  then out if we are in Modify_Tree_For_C mode.
185
186   procedure Expand_Pred_Succ_Attribute (N : Node_Id);
187   --  Handles expansion of Pred or Succ attributes for case of non-real
188   --  operand with overflow checking required.
189
190   procedure Expand_Update_Attribute (N : Node_Id);
191   --  Handle the expansion of attribute Update
192
193   function Get_Index_Subtype (N : Node_Id) return Entity_Id;
194   --  Used for Last, Last, and Length, when the prefix is an array type.
195   --  Obtains the corresponding index subtype.
196
197   procedure Find_Fat_Info
198     (T        : Entity_Id;
199      Fat_Type : out Entity_Id;
200      Fat_Pkg  : out RE_Id);
201   --  Given a floating-point type T, identifies the package containing the
202   --  attributes for this type (returned in Fat_Pkg), and the corresponding
203   --  type for which this package was instantiated from Fat_Gen. Error if T
204   --  is not a floating-point type.
205
206   function Find_Stream_Subprogram
207     (Typ : Entity_Id;
208      Nam : TSS_Name_Type) return Entity_Id;
209   --  Returns the stream-oriented subprogram attribute for Typ. For tagged
210   --  types, the corresponding primitive operation is looked up, else the
211   --  appropriate TSS from the type itself, or from its closest ancestor
212   --  defining it, is returned. In both cases, inheritance of representation
213   --  aspects is thus taken into account.
214
215   function Full_Base (T : Entity_Id) return Entity_Id;
216   --  The stream functions need to examine the underlying representation of
217   --  composite types. In some cases T may be non-private but its base type
218   --  is, in which case the function returns the corresponding full view.
219
220   function Get_Stream_Convert_Pragma (T : Entity_Id) return Node_Id;
221   --  Given a type, find a corresponding stream convert pragma that applies to
222   --  the implementation base type of this type (Typ). If found, return the
223   --  pragma node, otherwise return Empty if no pragma is found.
224
225   function Is_Constrained_Packed_Array (Typ : Entity_Id) return Boolean;
226   --  Utility for array attributes, returns true on packed constrained
227   --  arrays, and on access to same.
228
229   function Is_Inline_Floating_Point_Attribute (N : Node_Id) return Boolean;
230   --  Returns true iff the given node refers to an attribute call that
231   --  can be expanded directly by the back end and does not need front end
232   --  expansion. Typically used for rounding and truncation attributes that
233   --  appear directly inside a conversion to integer.
234
235   -------------------------
236   -- Build_Array_VS_Func --
237   -------------------------
238
239   function Build_Array_VS_Func
240     (Attr       : Node_Id;
241      Formal_Typ : Entity_Id;
242      Array_Typ  : Entity_Id;
243      Comp_Typ   : Entity_Id) return Entity_Id
244   is
245      Loc : constant Source_Ptr := Sloc (Attr);
246
247      function Validate_Component
248        (Obj_Id  : Entity_Id;
249         Indexes : List_Id) return Node_Id;
250      --  Process a single component denoted by indexes Indexes. Obj_Id denotes
251      --  the entity of the validation parameter. Return the check associated
252      --  with the component.
253
254      function Validate_Dimension
255        (Obj_Id  : Entity_Id;
256         Dim     : Int;
257         Indexes : List_Id) return Node_Id;
258      --  Process dimension Dim of the array type. Obj_Id denotes the entity
259      --  of the validation parameter. Indexes is a list where each dimension
260      --  deposits its loop variable, which will later identify a component.
261      --  Return the loop associated with the current dimension.
262
263      ------------------------
264      -- Validate_Component --
265      ------------------------
266
267      function Validate_Component
268        (Obj_Id  : Entity_Id;
269         Indexes : List_Id) return Node_Id
270      is
271         Attr_Nam : Name_Id;
272
273      begin
274         if Is_Scalar_Type (Comp_Typ) then
275            Attr_Nam := Name_Valid;
276         else
277            Attr_Nam := Name_Valid_Scalars;
278         end if;
279
280         --  Generate:
281         --    if not Array_Typ (Obj_Id) (Indexes)'Valid[_Scalars] then
282         --       return False;
283         --    end if;
284
285         return
286           Make_If_Statement (Loc,
287             Condition =>
288               Make_Op_Not (Loc,
289                 Right_Opnd =>
290                   Make_Attribute_Reference (Loc,
291                     Prefix         =>
292                       Make_Indexed_Component (Loc,
293                         Prefix      =>
294                           Unchecked_Convert_To (Array_Typ,
295                             New_Occurrence_Of (Obj_Id, Loc)),
296                         Expressions => Indexes),
297                     Attribute_Name => Attr_Nam)),
298
299             Then_Statements => New_List (
300               Make_Simple_Return_Statement (Loc,
301                 Expression => New_Occurrence_Of (Standard_False, Loc))));
302      end Validate_Component;
303
304      ------------------------
305      -- Validate_Dimension --
306      ------------------------
307
308      function Validate_Dimension
309        (Obj_Id  : Entity_Id;
310         Dim     : Int;
311         Indexes : List_Id) return Node_Id
312      is
313         Index : Entity_Id;
314
315      begin
316         --  Validate the component once all dimensions have produced their
317         --  individual loops.
318
319         if Dim > Number_Dimensions (Array_Typ) then
320            return Validate_Component (Obj_Id, Indexes);
321
322         --  Process the current dimension
323
324         else
325            Index :=
326              Make_Defining_Identifier (Loc, New_External_Name ('J', Dim));
327
328            Append_To (Indexes, New_Occurrence_Of (Index, Loc));
329
330            --  Generate:
331            --    for J1 in Array_Typ (Obj_Id)'Range (1) loop
332            --       for JN in Array_Typ (Obj_Id)'Range (N) loop
333            --          if not Array_Typ (Obj_Id) (Indexes)'Valid[_Scalars]
334            --          then
335            --             return False;
336            --          end if;
337            --       end loop;
338            --    end loop;
339
340            return
341              Make_Implicit_Loop_Statement (Attr,
342                Identifier       => Empty,
343                Iteration_Scheme =>
344                  Make_Iteration_Scheme (Loc,
345                    Loop_Parameter_Specification =>
346                      Make_Loop_Parameter_Specification (Loc,
347                        Defining_Identifier         => Index,
348                        Discrete_Subtype_Definition =>
349                          Make_Attribute_Reference (Loc,
350                            Prefix          =>
351                              Unchecked_Convert_To (Array_Typ,
352                                New_Occurrence_Of (Obj_Id, Loc)),
353                            Attribute_Name  => Name_Range,
354                            Expressions     => New_List (
355                              Make_Integer_Literal (Loc, Dim))))),
356                Statements       => New_List (
357                  Validate_Dimension (Obj_Id, Dim + 1, Indexes)));
358         end if;
359      end Validate_Dimension;
360
361      --  Local variables
362
363      Func_Id : constant Entity_Id := Make_Temporary (Loc, 'V');
364      Indexes : constant List_Id   := New_List;
365      Obj_Id  : constant Entity_Id := Make_Temporary (Loc, 'A');
366      Stmts   : List_Id;
367
368   --  Start of processing for Build_Array_VS_Func
369
370   begin
371      Stmts := New_List (Validate_Dimension (Obj_Id, 1, Indexes));
372
373      --  Generate:
374      --    return True;
375
376      Append_To (Stmts,
377        Make_Simple_Return_Statement (Loc,
378          Expression => New_Occurrence_Of (Standard_True, Loc)));
379
380      --  Generate:
381      --    function Func_Id (Obj_Id : Formal_Typ) return Boolean is
382      --    begin
383      --       Stmts
384      --    end Func_Id;
385
386      Set_Ekind       (Func_Id, E_Function);
387      Set_Is_Internal (Func_Id);
388      Set_Is_Pure     (Func_Id);
389
390      if not Debug_Generated_Code then
391         Set_Debug_Info_Off (Func_Id);
392      end if;
393
394      Insert_Action (Attr,
395        Make_Subprogram_Body (Loc,
396          Specification              =>
397            Make_Function_Specification (Loc,
398              Defining_Unit_Name       => Func_Id,
399              Parameter_Specifications => New_List (
400                Make_Parameter_Specification (Loc,
401                  Defining_Identifier => Obj_Id,
402                  In_Present          => True,
403                  Out_Present         => False,
404                  Parameter_Type      => New_Occurrence_Of (Formal_Typ, Loc))),
405              Result_Definition        =>
406                New_Occurrence_Of (Standard_Boolean, Loc)),
407          Declarations               => New_List,
408          Handled_Statement_Sequence =>
409            Make_Handled_Sequence_Of_Statements (Loc,
410              Statements => Stmts)));
411
412      return Func_Id;
413   end Build_Array_VS_Func;
414
415   ---------------------------------
416   -- Build_Disp_Get_Task_Id_Call --
417   ---------------------------------
418
419   function Build_Disp_Get_Task_Id_Call (Actual : Node_Id) return Node_Id is
420      Loc  : constant Source_Ptr := Sloc (Actual);
421      Typ  : constant Entity_Id  := Etype (Actual);
422      Subp : constant Entity_Id  := Find_Prim_Op (Typ, Name_uDisp_Get_Task_Id);
423
424   begin
425      --  Generate:
426      --    _Disp_Get_Task_Id (Actual)
427
428      return
429        Make_Function_Call (Loc,
430          Name                   => New_Occurrence_Of (Subp, Loc),
431          Parameter_Associations => New_List (Actual));
432   end Build_Disp_Get_Task_Id_Call;
433
434   --------------------------
435   -- Build_Record_VS_Func --
436   --------------------------
437
438   function Build_Record_VS_Func
439     (Attr       : Node_Id;
440      Formal_Typ : Entity_Id;
441      Rec_Typ    : Entity_Id) return Entity_Id
442   is
443      --  NOTE: The logic of Build_Record_VS_Func is intentionally passive.
444      --  It generates code only when there are components, discriminants,
445      --  or variant parts to validate.
446
447      --  NOTE: The routines within Build_Record_VS_Func are intentionally
448      --  unnested to avoid deep indentation of code.
449
450      Loc : constant Source_Ptr := Sloc (Attr);
451
452      procedure Validate_Component_List
453        (Obj_Id    : Entity_Id;
454         Comp_List : Node_Id;
455         Stmts     : in out List_Id);
456      --  Process all components and variant parts of component list Comp_List.
457      --  Obj_Id denotes the entity of the validation parameter. All new code
458      --  is added to list Stmts.
459
460      procedure Validate_Field
461        (Obj_Id : Entity_Id;
462         Field  : Node_Id;
463         Cond   : in out Node_Id);
464      --  Process component declaration or discriminant specification Field.
465      --  Obj_Id denotes the entity of the validation parameter. Cond denotes
466      --  an "or else" conditional expression which contains the new code (if
467      --  any).
468
469      procedure Validate_Fields
470        (Obj_Id : Entity_Id;
471         Fields : List_Id;
472         Stmts  : in out List_Id);
473      --  Process component declarations or discriminant specifications in list
474      --  Fields. Obj_Id denotes the entity of the validation parameter. All
475      --  new code is added to list Stmts.
476
477      procedure Validate_Variant
478        (Obj_Id : Entity_Id;
479         Var    : Node_Id;
480         Alts   : in out List_Id);
481      --  Process variant Var. Obj_Id denotes the entity of the validation
482      --  parameter. Alts denotes a list of case statement alternatives which
483      --  contains the new code (if any).
484
485      procedure Validate_Variant_Part
486        (Obj_Id   : Entity_Id;
487         Var_Part : Node_Id;
488         Stmts    : in out List_Id);
489      --  Process variant part Var_Part. Obj_Id denotes the entity of the
490      --  validation parameter. All new code is added to list Stmts.
491
492      -----------------------------
493      -- Validate_Component_List --
494      -----------------------------
495
496      procedure Validate_Component_List
497        (Obj_Id    : Entity_Id;
498         Comp_List : Node_Id;
499         Stmts     : in out List_Id)
500      is
501         Var_Part : constant Node_Id := Variant_Part (Comp_List);
502
503      begin
504         --  Validate all components
505
506         Validate_Fields
507           (Obj_Id => Obj_Id,
508            Fields => Component_Items (Comp_List),
509            Stmts  => Stmts);
510
511         --  Validate the variant part
512
513         if Present (Var_Part) then
514            Validate_Variant_Part
515              (Obj_Id   => Obj_Id,
516               Var_Part => Var_Part,
517               Stmts    => Stmts);
518         end if;
519      end Validate_Component_List;
520
521      --------------------
522      -- Validate_Field --
523      --------------------
524
525      procedure Validate_Field
526        (Obj_Id : Entity_Id;
527         Field  : Node_Id;
528         Cond   : in out Node_Id)
529      is
530         Field_Id  : constant Entity_Id := Defining_Entity (Field);
531         Field_Nam : constant Name_Id   := Chars (Field_Id);
532         Field_Typ : constant Entity_Id := Validated_View (Etype (Field_Id));
533         Attr_Nam  : Name_Id;
534
535      begin
536         --  Do not process internally-generated fields. Note that checking for
537         --  Comes_From_Source is not correct because this will eliminate the
538         --  components within the corresponding record of a protected type.
539
540         if Nam_In (Field_Nam, Name_uObject,
541                               Name_uParent,
542                               Name_uTag)
543         then
544            null;
545
546         --  Do not process fields without any scalar components
547
548         elsif not Scalar_Part_Present (Field_Typ) then
549            null;
550
551         --  Otherwise the field needs to be validated. Use Make_Identifier
552         --  rather than New_Occurrence_Of to identify the field because the
553         --  wrong entity may be picked up when private types are involved.
554
555         --  Generate:
556         --    [or else] not Rec_Typ (Obj_Id).Item_Nam'Valid[_Scalars]
557
558         else
559            if Is_Scalar_Type (Field_Typ) then
560               Attr_Nam := Name_Valid;
561            else
562               Attr_Nam := Name_Valid_Scalars;
563            end if;
564
565            Evolve_Or_Else (Cond,
566              Make_Op_Not (Loc,
567                Right_Opnd =>
568                  Make_Attribute_Reference (Loc,
569                    Prefix         =>
570                      Make_Selected_Component (Loc,
571                        Prefix        =>
572                          Unchecked_Convert_To (Rec_Typ,
573                            New_Occurrence_Of (Obj_Id, Loc)),
574                        Selector_Name => Make_Identifier (Loc, Field_Nam)),
575                    Attribute_Name => Attr_Nam)));
576         end if;
577      end Validate_Field;
578
579      ---------------------
580      -- Validate_Fields --
581      ---------------------
582
583      procedure Validate_Fields
584        (Obj_Id : Entity_Id;
585         Fields : List_Id;
586         Stmts  : in out List_Id)
587      is
588         Cond  : Node_Id;
589         Field : Node_Id;
590
591      begin
592         --  Assume that none of the fields are eligible for verification
593
594         Cond := Empty;
595
596         --  Validate all fields
597
598         Field := First_Non_Pragma (Fields);
599         while Present (Field) loop
600            Validate_Field
601              (Obj_Id => Obj_Id,
602               Field  => Field,
603               Cond   => Cond);
604
605            Next_Non_Pragma (Field);
606         end loop;
607
608         --  Generate:
609         --    if        not Rec_Typ (Obj_Id).Item_Nam_1'Valid[_Scalars]
610         --      or else not Rec_Typ (Obj_Id).Item_Nam_N'Valid[_Scalars]
611         --    then
612         --       return False;
613         --    end if;
614
615         if Present (Cond) then
616            Append_New_To (Stmts,
617              Make_Implicit_If_Statement (Attr,
618                Condition       => Cond,
619                Then_Statements => New_List (
620                  Make_Simple_Return_Statement (Loc,
621                    Expression => New_Occurrence_Of (Standard_False, Loc)))));
622         end if;
623      end Validate_Fields;
624
625      ----------------------
626      -- Validate_Variant --
627      ----------------------
628
629      procedure Validate_Variant
630        (Obj_Id : Entity_Id;
631         Var    : Node_Id;
632         Alts   : in out List_Id)
633      is
634         Stmts : List_Id;
635
636      begin
637         --  Assume that none of the components and variants are eligible for
638         --  verification.
639
640         Stmts := No_List;
641
642         --  Validate componants
643
644         Validate_Component_List
645           (Obj_Id    => Obj_Id,
646            Comp_List => Component_List (Var),
647            Stmts     => Stmts);
648
649         --  Generate a null statement in case none of the components were
650         --  verified because this will otherwise eliminate an alternative
651         --  from the variant case statement and render the generated code
652         --  illegal.
653
654         if No (Stmts) then
655            Append_New_To (Stmts, Make_Null_Statement (Loc));
656         end if;
657
658         --  Generate:
659         --    when Discrete_Choices =>
660         --       Stmts
661
662         Append_New_To (Alts,
663           Make_Case_Statement_Alternative (Loc,
664             Discrete_Choices =>
665               New_Copy_List_Tree (Discrete_Choices (Var)),
666             Statements       => Stmts));
667      end Validate_Variant;
668
669      ---------------------------
670      -- Validate_Variant_Part --
671      ---------------------------
672
673      procedure Validate_Variant_Part
674        (Obj_Id   : Entity_Id;
675         Var_Part : Node_Id;
676         Stmts    : in out List_Id)
677      is
678         Vars : constant List_Id := Variants (Var_Part);
679         Alts : List_Id;
680         Var  : Node_Id;
681
682      begin
683         --  Assume that none of the variants are eligible for verification
684
685         Alts := No_List;
686
687         --  Validate variants
688
689         Var := First_Non_Pragma (Vars);
690         while Present (Var) loop
691            Validate_Variant
692              (Obj_Id => Obj_Id,
693               Var    => Var,
694               Alts   => Alts);
695
696            Next_Non_Pragma (Var);
697         end loop;
698
699         --  Even though individual variants may lack eligible components, the
700         --  alternatives must still be generated.
701
702         pragma Assert (Present (Alts));
703
704         --  Generate:
705         --    case Rec_Typ (Obj_Id).Discriminant is
706         --       when Discrete_Choices_1 =>
707         --          Stmts_1
708         --       when Discrete_Choices_N =>
709         --          Stmts_N
710         --    end case;
711
712         Append_New_To (Stmts,
713           Make_Case_Statement (Loc,
714             Expression   =>
715               Make_Selected_Component (Loc,
716                 Prefix        =>
717                   Unchecked_Convert_To (Rec_Typ,
718                     New_Occurrence_Of (Obj_Id, Loc)),
719                 Selector_Name => New_Copy_Tree (Name (Var_Part))),
720             Alternatives => Alts));
721      end Validate_Variant_Part;
722
723      --  Local variables
724
725      Func_Id  : constant Entity_Id := Make_Temporary (Loc, 'V');
726      Obj_Id   : constant Entity_Id := Make_Temporary (Loc, 'R');
727      Comps    : Node_Id;
728      Stmts    : List_Id;
729      Typ      : Entity_Id;
730      Typ_Decl : Node_Id;
731      Typ_Def  : Node_Id;
732      Typ_Ext  : Node_Id;
733
734   --  Start of processing for Build_Record_VS_Func
735
736   begin
737      Typ := Rec_Typ;
738
739      --  Use the root type when dealing with a class-wide type
740
741      if Is_Class_Wide_Type (Typ) then
742         Typ := Root_Type (Typ);
743      end if;
744
745      Typ_Decl := Declaration_Node (Typ);
746      Typ_Def  := Type_Definition (Typ_Decl);
747
748      --  The components of a derived type are located in the extension part
749
750      if Nkind (Typ_Def) = N_Derived_Type_Definition then
751         Typ_Ext := Record_Extension_Part (Typ_Def);
752
753         if Present (Typ_Ext) then
754            Comps := Component_List (Typ_Ext);
755         else
756            Comps := Empty;
757         end if;
758
759      --  Otherwise the components are available in the definition
760
761      else
762         Comps := Component_List (Typ_Def);
763      end if;
764
765      --  The code generated by this routine is as follows:
766      --
767      --    function Func_Id (Obj_Id : Formal_Typ) return Boolean is
768      --    begin
769      --       if not        Rec_Typ (Obj_Id).Discriminant_1'Valid[_Scalars]
770      --         or else not Rec_Typ (Obj_Id).Discriminant_N'Valid[_Scalars]
771      --       then
772      --          return False;
773      --       end if;
774      --
775      --       if not        Rec_Typ (Obj_Id).Component_1'Valid[_Scalars]
776      --         or else not Rec_Typ (Obj_Id).Component_N'Valid[_Scalars]
777      --       then
778      --          return False;
779      --       end if;
780      --
781      --       case Discriminant_1 is
782      --          when Choice_1 =>
783      --             if not        Rec_Typ (Obj_Id).Component_1'Valid[_Scalars]
784      --               or else not Rec_Typ (Obj_Id).Component_N'Valid[_Scalars]
785      --             then
786      --                return False;
787      --             end if;
788      --
789      --             case Discriminant_N is
790      --                ...
791      --          when Choice_N =>
792      --             ...
793      --       end case;
794      --
795      --       return True;
796      --    end Func_Id;
797
798      --  Assume that the record type lacks eligible components, discriminants,
799      --  and variant parts.
800
801      Stmts := No_List;
802
803      --  Validate the discriminants
804
805      if not Is_Unchecked_Union (Rec_Typ) then
806         Validate_Fields
807           (Obj_Id => Obj_Id,
808            Fields => Discriminant_Specifications (Typ_Decl),
809            Stmts  => Stmts);
810      end if;
811
812      --  Validate the components and variant parts
813
814      Validate_Component_List
815        (Obj_Id    => Obj_Id,
816         Comp_List => Comps,
817         Stmts     => Stmts);
818
819      --  Generate:
820      --    return True;
821
822      Append_New_To (Stmts,
823        Make_Simple_Return_Statement (Loc,
824          Expression => New_Occurrence_Of (Standard_True, Loc)));
825
826      --  Generate:
827      --    function Func_Id (Obj_Id : Formal_Typ) return Boolean is
828      --    begin
829      --       Stmts
830      --    end Func_Id;
831
832      Set_Ekind       (Func_Id, E_Function);
833      Set_Is_Internal (Func_Id);
834      Set_Is_Pure     (Func_Id);
835
836      if not Debug_Generated_Code then
837         Set_Debug_Info_Off (Func_Id);
838      end if;
839
840      Insert_Action (Attr,
841        Make_Subprogram_Body (Loc,
842          Specification =>
843            Make_Function_Specification (Loc,
844              Defining_Unit_Name       => Func_Id,
845              Parameter_Specifications => New_List (
846                Make_Parameter_Specification (Loc,
847                  Defining_Identifier => Obj_Id,
848                  Parameter_Type      => New_Occurrence_Of (Formal_Typ, Loc))),
849              Result_Definition        =>
850                New_Occurrence_Of (Standard_Boolean, Loc)),
851          Declarations               => New_List,
852          Handled_Statement_Sequence =>
853            Make_Handled_Sequence_Of_Statements (Loc,
854              Statements => Stmts)),
855        Suppress => Discriminant_Check);
856
857      return Func_Id;
858   end Build_Record_VS_Func;
859
860   ----------------------------------
861   -- Compile_Stream_Body_In_Scope --
862   ----------------------------------
863
864   procedure Compile_Stream_Body_In_Scope
865     (N     : Node_Id;
866      Decl  : Node_Id;
867      Arr   : Entity_Id;
868      Check : Boolean)
869   is
870      C_Type  : constant Entity_Id := Base_Type (Component_Type (Arr));
871      Curr    : constant Entity_Id := Current_Scope;
872      Install : Boolean := False;
873      Scop    : Entity_Id := Scope (Arr);
874
875   begin
876      if Is_Hidden (Arr)
877        and then not In_Open_Scopes (Scop)
878        and then Ekind (Scop) = E_Package
879      then
880         Install := True;
881
882      else
883         --  The component type may be private, in which case we install its
884         --  full view to compile the subprogram.
885
886         --  The component type may be private, in which case we install its
887         --  full view to compile the subprogram. We do not do this if the
888         --  type has a Stream_Convert pragma, which indicates that there are
889         --  special stream-processing operations for that type (for example
890         --  Unbounded_String and its wide varieties).
891
892         Scop := Scope (C_Type);
893
894         if Is_Private_Type (C_Type)
895           and then Present (Full_View (C_Type))
896           and then not In_Open_Scopes (Scop)
897           and then Ekind (Scop) = E_Package
898           and then No (Get_Stream_Convert_Pragma (C_Type))
899         then
900            Install := True;
901         end if;
902      end if;
903
904      --  If we are within an instance body, then all visibility has been
905      --  established already and there is no need to install the package.
906
907      if Install and then not In_Instance_Body then
908         Push_Scope (Scop);
909         Install_Visible_Declarations (Scop);
910         Install_Private_Declarations (Scop);
911
912         --  The entities in the package are now visible, but the generated
913         --  stream entity must appear in the current scope (usually an
914         --  enclosing stream function) so that itypes all have their proper
915         --  scopes.
916
917         Push_Scope (Curr);
918      else
919         Install := False;
920      end if;
921
922      if Check then
923         Insert_Action (N, Decl);
924      else
925         Insert_Action (N, Decl, Suppress => All_Checks);
926      end if;
927
928      if Install then
929
930         --  Remove extra copy of current scope, and package itself
931
932         Pop_Scope;
933         End_Package_Scope (Scop);
934      end if;
935   end Compile_Stream_Body_In_Scope;
936
937   -----------------------------------
938   -- Expand_Access_To_Protected_Op --
939   -----------------------------------
940
941   procedure Expand_Access_To_Protected_Op
942     (N    : Node_Id;
943      Pref : Node_Id;
944      Typ  : Entity_Id)
945   is
946      --  The value of the attribute_reference is a record containing two
947      --  fields: an access to the protected object, and an access to the
948      --  subprogram itself. The prefix is a selected component.
949
950      Loc     : constant Source_Ptr := Sloc (N);
951      Agg     : Node_Id;
952      Btyp    : constant Entity_Id := Base_Type (Typ);
953      Sub     : Entity_Id;
954      Sub_Ref : Node_Id;
955      E_T     : constant Entity_Id := Equivalent_Type (Btyp);
956      Acc     : constant Entity_Id :=
957                  Etype (Next_Component (First_Component (E_T)));
958      Obj_Ref : Node_Id;
959      Curr    : Entity_Id;
960
961   --  Start of processing for Expand_Access_To_Protected_Op
962
963   begin
964      --  Within the body of the protected type, the prefix designates a local
965      --  operation, and the object is the first parameter of the corresponding
966      --  protected body of the current enclosing operation.
967
968      if Is_Entity_Name (Pref) then
969         --  All indirect calls are external calls, so must do locking and
970         --  barrier reevaluation, even if the 'Access occurs within the
971         --  protected body. Hence the call to External_Subprogram, as opposed
972         --  to Protected_Body_Subprogram, below. See RM-9.5(5). This means
973         --  that indirect calls from within the same protected body will
974         --  deadlock, as allowed by RM-9.5.1(8,15,17).
975
976         Sub := New_Occurrence_Of (External_Subprogram (Entity (Pref)), Loc);
977
978         --  Don't traverse the scopes when the attribute occurs within an init
979         --  proc, because we directly use the _init formal of the init proc in
980         --  that case.
981
982         Curr := Current_Scope;
983         if not Is_Init_Proc (Curr) then
984            pragma Assert (In_Open_Scopes (Scope (Entity (Pref))));
985
986            while Scope (Curr) /= Scope (Entity (Pref)) loop
987               Curr := Scope (Curr);
988            end loop;
989         end if;
990
991         --  In case of protected entries the first formal of its Protected_
992         --  Body_Subprogram is the address of the object.
993
994         if Ekind (Curr) = E_Entry then
995            Obj_Ref :=
996               New_Occurrence_Of
997                 (First_Formal
998                   (Protected_Body_Subprogram (Curr)), Loc);
999
1000         --  If the current scope is an init proc, then use the address of the
1001         --  _init formal as the object reference.
1002
1003         elsif Is_Init_Proc (Curr) then
1004            Obj_Ref :=
1005              Make_Attribute_Reference (Loc,
1006                Prefix         => New_Occurrence_Of (First_Formal (Curr), Loc),
1007                Attribute_Name => Name_Address);
1008
1009         --  In case of protected subprograms the first formal of its
1010         --  Protected_Body_Subprogram is the object and we get its address.
1011
1012         else
1013            Obj_Ref :=
1014              Make_Attribute_Reference (Loc,
1015                Prefix =>
1016                   New_Occurrence_Of
1017                     (First_Formal
1018                        (Protected_Body_Subprogram (Curr)), Loc),
1019                Attribute_Name => Name_Address);
1020         end if;
1021
1022      --  Case where the prefix is not an entity name. Find the
1023      --  version of the protected operation to be called from
1024      --  outside the protected object.
1025
1026      else
1027         Sub :=
1028           New_Occurrence_Of
1029             (External_Subprogram
1030               (Entity (Selector_Name (Pref))), Loc);
1031
1032         Obj_Ref :=
1033           Make_Attribute_Reference (Loc,
1034             Prefix => Relocate_Node (Prefix (Pref)),
1035               Attribute_Name => Name_Address);
1036      end if;
1037
1038      Sub_Ref :=
1039        Make_Attribute_Reference (Loc,
1040          Prefix         => Sub,
1041          Attribute_Name => Name_Access);
1042
1043      --  We set the type of the access reference to the already generated
1044      --  access_to_subprogram type, and declare the reference analyzed, to
1045      --  prevent further expansion when the enclosing aggregate is analyzed.
1046
1047      Set_Etype (Sub_Ref, Acc);
1048      Set_Analyzed (Sub_Ref);
1049
1050      Agg :=
1051        Make_Aggregate (Loc,
1052          Expressions => New_List (Obj_Ref, Sub_Ref));
1053
1054      --  Sub_Ref has been marked as analyzed, but we still need to make sure
1055      --  Sub is correctly frozen.
1056
1057      Freeze_Before (N, Entity (Sub));
1058
1059      Rewrite (N, Agg);
1060      Analyze_And_Resolve (N, E_T);
1061
1062      --  For subsequent analysis, the node must retain its type. The backend
1063      --  will replace it with the equivalent type where needed.
1064
1065      Set_Etype (N, Typ);
1066   end Expand_Access_To_Protected_Op;
1067
1068   --------------------------
1069   -- Expand_Fpt_Attribute --
1070   --------------------------
1071
1072   procedure Expand_Fpt_Attribute
1073     (N    : Node_Id;
1074      Pkg  : RE_Id;
1075      Nam  : Name_Id;
1076      Args : List_Id)
1077   is
1078      Loc : constant Source_Ptr := Sloc (N);
1079      Typ : constant Entity_Id  := Etype (N);
1080      Fnm : Node_Id;
1081
1082   begin
1083      --  The function name is the selected component Attr_xxx.yyy where
1084      --  Attr_xxx is the package name, and yyy is the argument Nam.
1085
1086      --  Note: it would be more usual to have separate RE entries for each
1087      --  of the entities in the Fat packages, but first they have identical
1088      --  names (so we would have to have lots of renaming declarations to
1089      --  meet the normal RE rule of separate names for all runtime entities),
1090      --  and second there would be an awful lot of them.
1091
1092      Fnm :=
1093        Make_Selected_Component (Loc,
1094          Prefix        => New_Occurrence_Of (RTE (Pkg), Loc),
1095          Selector_Name => Make_Identifier (Loc, Nam));
1096
1097      --  The generated call is given the provided set of parameters, and then
1098      --  wrapped in a conversion which converts the result to the target type
1099      --  We use the base type as the target because a range check may be
1100      --  required.
1101
1102      Rewrite (N,
1103        Unchecked_Convert_To (Base_Type (Etype (N)),
1104          Make_Function_Call (Loc,
1105            Name                   => Fnm,
1106            Parameter_Associations => Args)));
1107
1108      Analyze_And_Resolve (N, Typ);
1109   end Expand_Fpt_Attribute;
1110
1111   ----------------------------
1112   -- Expand_Fpt_Attribute_R --
1113   ----------------------------
1114
1115   --  The single argument is converted to its root type to call the
1116   --  appropriate runtime function, with the actual call being built
1117   --  by Expand_Fpt_Attribute
1118
1119   procedure Expand_Fpt_Attribute_R (N : Node_Id) is
1120      E1  : constant Node_Id    := First (Expressions (N));
1121      Ftp : Entity_Id;
1122      Pkg : RE_Id;
1123   begin
1124      Find_Fat_Info (Etype (E1), Ftp, Pkg);
1125      Expand_Fpt_Attribute
1126        (N, Pkg, Attribute_Name (N),
1127         New_List (Unchecked_Convert_To (Ftp, Relocate_Node (E1))));
1128   end Expand_Fpt_Attribute_R;
1129
1130   -----------------------------
1131   -- Expand_Fpt_Attribute_RI --
1132   -----------------------------
1133
1134   --  The first argument is converted to its root type and the second
1135   --  argument is converted to standard long long integer to call the
1136   --  appropriate runtime function, with the actual call being built
1137   --  by Expand_Fpt_Attribute
1138
1139   procedure Expand_Fpt_Attribute_RI (N : Node_Id) is
1140      E1  : constant Node_Id   := First (Expressions (N));
1141      Ftp : Entity_Id;
1142      Pkg : RE_Id;
1143      E2  : constant Node_Id   := Next (E1);
1144   begin
1145      Find_Fat_Info (Etype (E1), Ftp, Pkg);
1146      Expand_Fpt_Attribute
1147        (N, Pkg, Attribute_Name (N),
1148         New_List (
1149           Unchecked_Convert_To (Ftp, Relocate_Node (E1)),
1150           Unchecked_Convert_To (Standard_Integer, Relocate_Node (E2))));
1151   end Expand_Fpt_Attribute_RI;
1152
1153   -----------------------------
1154   -- Expand_Fpt_Attribute_RR --
1155   -----------------------------
1156
1157   --  The two arguments are converted to their root types to call the
1158   --  appropriate runtime function, with the actual call being built
1159   --  by Expand_Fpt_Attribute
1160
1161   procedure Expand_Fpt_Attribute_RR (N : Node_Id) is
1162      E1  : constant Node_Id := First (Expressions (N));
1163      E2  : constant Node_Id := Next (E1);
1164      Ftp : Entity_Id;
1165      Pkg : RE_Id;
1166
1167   begin
1168      Find_Fat_Info (Etype (E1), Ftp, Pkg);
1169      Expand_Fpt_Attribute
1170        (N, Pkg, Attribute_Name (N),
1171         New_List (
1172           Unchecked_Convert_To (Ftp, Relocate_Node (E1)),
1173           Unchecked_Convert_To (Ftp, Relocate_Node (E2))));
1174   end Expand_Fpt_Attribute_RR;
1175
1176   ---------------------------------
1177   -- Expand_Loop_Entry_Attribute --
1178   ---------------------------------
1179
1180   procedure Expand_Loop_Entry_Attribute (N : Node_Id) is
1181      procedure Build_Conditional_Block
1182        (Loc       : Source_Ptr;
1183         Cond      : Node_Id;
1184         Loop_Stmt : Node_Id;
1185         If_Stmt   : out Node_Id;
1186         Blk_Stmt  : out Node_Id);
1187      --  Create a block Blk_Stmt with an empty declarative list and a single
1188      --  loop Loop_Stmt. The block is encased in an if statement If_Stmt with
1189      --  condition Cond. If_Stmt is Empty when there is no condition provided.
1190
1191      function Is_Array_Iteration (N : Node_Id) return Boolean;
1192      --  Determine whether loop statement N denotes an Ada 2012 iteration over
1193      --  an array object.
1194
1195      -----------------------------
1196      -- Build_Conditional_Block --
1197      -----------------------------
1198
1199      procedure Build_Conditional_Block
1200        (Loc       : Source_Ptr;
1201         Cond      : Node_Id;
1202         Loop_Stmt : Node_Id;
1203         If_Stmt   : out Node_Id;
1204         Blk_Stmt  : out Node_Id)
1205      is
1206      begin
1207         --  Do not reanalyze the original loop statement because it is simply
1208         --  being relocated.
1209
1210         Set_Analyzed (Loop_Stmt);
1211
1212         Blk_Stmt :=
1213           Make_Block_Statement (Loc,
1214             Declarations               => New_List,
1215             Handled_Statement_Sequence =>
1216               Make_Handled_Sequence_Of_Statements (Loc,
1217                 Statements => New_List (Loop_Stmt)));
1218
1219         if Present (Cond) then
1220            If_Stmt :=
1221              Make_If_Statement (Loc,
1222                Condition       => Cond,
1223                Then_Statements => New_List (Blk_Stmt));
1224         else
1225            If_Stmt := Empty;
1226         end if;
1227      end Build_Conditional_Block;
1228
1229      ------------------------
1230      -- Is_Array_Iteration --
1231      ------------------------
1232
1233      function Is_Array_Iteration (N : Node_Id) return Boolean is
1234         Stmt : constant Node_Id := Original_Node (N);
1235         Iter : Node_Id;
1236
1237      begin
1238         if Nkind (Stmt) = N_Loop_Statement
1239           and then Present (Iteration_Scheme (Stmt))
1240           and then Present (Iterator_Specification (Iteration_Scheme (Stmt)))
1241         then
1242            Iter := Iterator_Specification (Iteration_Scheme (Stmt));
1243
1244            return
1245              Of_Present (Iter) and then Is_Array_Type (Etype (Name (Iter)));
1246         end if;
1247
1248         return False;
1249      end Is_Array_Iteration;
1250
1251      --  Local variables
1252
1253      Pref      : constant Node_Id   := Prefix (N);
1254      Base_Typ  : constant Entity_Id := Base_Type (Etype (Pref));
1255      Exprs     : constant List_Id   := Expressions (N);
1256      Aux_Decl  : Node_Id;
1257      Blk       : Node_Id := Empty;
1258      Decls     : List_Id;
1259      Installed : Boolean;
1260      Loc       : Source_Ptr;
1261      Loop_Id   : Entity_Id;
1262      Loop_Stmt : Node_Id;
1263      Result    : Node_Id := Empty;
1264      Scheme    : Node_Id;
1265      Temp_Decl : Node_Id;
1266      Temp_Id   : Entity_Id;
1267
1268   --  Start of processing for Expand_Loop_Entry_Attribute
1269
1270   begin
1271      --  Step 1: Find the related loop
1272
1273      --  The loop label variant of attribute 'Loop_Entry already has all the
1274      --  information in its expression.
1275
1276      if Present (Exprs) then
1277         Loop_Id   := Entity (First (Exprs));
1278         Loop_Stmt := Label_Construct (Parent (Loop_Id));
1279
1280      --  Climb the parent chain to find the nearest enclosing loop. Skip
1281      --  all internally generated loops for quantified expressions and for
1282      --  element iterators over multidimensional arrays because the pragma
1283      --  applies to source loop.
1284
1285      else
1286         Loop_Stmt := N;
1287         while Present (Loop_Stmt) loop
1288            if Nkind (Loop_Stmt) = N_Loop_Statement
1289              and then Nkind (Original_Node (Loop_Stmt)) = N_Loop_Statement
1290              and then Comes_From_Source (Original_Node (Loop_Stmt))
1291            then
1292               exit;
1293            end if;
1294
1295            Loop_Stmt := Parent (Loop_Stmt);
1296         end loop;
1297
1298         Loop_Id := Entity (Identifier (Loop_Stmt));
1299      end if;
1300
1301      Loc := Sloc (Loop_Stmt);
1302
1303      --  Step 2: Transform the loop
1304
1305      --  The loop has already been transformed during the expansion of a prior
1306      --  'Loop_Entry attribute. Retrieve the declarative list of the block.
1307
1308      if Has_Loop_Entry_Attributes (Loop_Id) then
1309
1310         --  When the related loop name appears as the argument of attribute
1311         --  Loop_Entry, the corresponding label construct is the generated
1312         --  block statement. This is because the expander reuses the label.
1313
1314         if Nkind (Loop_Stmt) = N_Block_Statement then
1315            Decls := Declarations (Loop_Stmt);
1316
1317         --  In all other cases, the loop must appear in the handled sequence
1318         --  of statements of the generated block.
1319
1320         else
1321            pragma Assert
1322              (Nkind (Parent (Loop_Stmt)) = N_Handled_Sequence_Of_Statements
1323                and then
1324                  Nkind (Parent (Parent (Loop_Stmt))) = N_Block_Statement);
1325
1326            Decls := Declarations (Parent (Parent (Loop_Stmt)));
1327         end if;
1328
1329      --  Transform the loop into a conditional block
1330
1331      else
1332         Set_Has_Loop_Entry_Attributes (Loop_Id);
1333         Scheme := Iteration_Scheme (Loop_Stmt);
1334
1335         --  Infinite loops are transformed into:
1336
1337         --    declare
1338         --       Temp1 : constant <type of Pref1> := <Pref1>;
1339         --       . . .
1340         --       TempN : constant <type of PrefN> := <PrefN>;
1341         --    begin
1342         --       loop
1343         --          <original source statements with attribute rewrites>
1344         --       end loop;
1345         --    end;
1346
1347         if No (Scheme) then
1348            Build_Conditional_Block (Loc,
1349              Cond      => Empty,
1350              Loop_Stmt => Relocate_Node (Loop_Stmt),
1351              If_Stmt   => Result,
1352              Blk_Stmt  => Blk);
1353
1354            Result := Blk;
1355
1356         --  While loops are transformed into:
1357
1358         --    function Fnn return Boolean is
1359         --    begin
1360         --       <condition actions>
1361         --       return <condition>;
1362         --    end Fnn;
1363
1364         --    if Fnn then
1365         --       declare
1366         --          Temp1 : constant <type of Pref1> := <Pref1>;
1367         --          . . .
1368         --          TempN : constant <type of PrefN> := <PrefN>;
1369         --       begin
1370         --          loop
1371         --             <original source statements with attribute rewrites>
1372         --             exit when not Fnn;
1373         --          end loop;
1374         --       end;
1375         --    end if;
1376
1377         --  Note that loops over iterators and containers are already
1378         --  converted into while loops.
1379
1380         elsif Present (Condition (Scheme)) then
1381            declare
1382               Func_Decl : Node_Id;
1383               Func_Id   : Entity_Id;
1384               Stmts     : List_Id;
1385
1386            begin
1387               --  Wrap the condition of the while loop in a Boolean function.
1388               --  This avoids the duplication of the same code which may lead
1389               --  to gigi issues with respect to multiple declaration of the
1390               --  same entity in the presence of side effects or checks. Note
1391               --  that the condition actions must also be relocated to the
1392               --  wrapping function.
1393
1394               --  Generate:
1395               --    <condition actions>
1396               --    return <condition>;
1397
1398               if Present (Condition_Actions (Scheme)) then
1399                  Stmts := Condition_Actions (Scheme);
1400               else
1401                  Stmts := New_List;
1402               end if;
1403
1404               Append_To (Stmts,
1405                 Make_Simple_Return_Statement (Loc,
1406                   Expression => Relocate_Node (Condition (Scheme))));
1407
1408               --  Generate:
1409               --    function Fnn return Boolean is
1410               --    begin
1411               --       <Stmts>
1412               --    end Fnn;
1413
1414               Func_Id   := Make_Temporary (Loc, 'F');
1415               Func_Decl :=
1416                 Make_Subprogram_Body (Loc,
1417                   Specification              =>
1418                     Make_Function_Specification (Loc,
1419                       Defining_Unit_Name => Func_Id,
1420                       Result_Definition  =>
1421                         New_Occurrence_Of (Standard_Boolean, Loc)),
1422                   Declarations               => Empty_List,
1423                   Handled_Statement_Sequence =>
1424                     Make_Handled_Sequence_Of_Statements (Loc,
1425                       Statements => Stmts));
1426
1427               --  The function is inserted before the related loop. Make sure
1428               --  to analyze it in the context of the loop's enclosing scope.
1429
1430               Push_Scope (Scope (Loop_Id));
1431               Insert_Action (Loop_Stmt, Func_Decl);
1432               Pop_Scope;
1433
1434               --  Transform the original while loop into an infinite loop
1435               --  where the last statement checks the negated condition. This
1436               --  placement ensures that the condition will not be evaluated
1437               --  twice on the first iteration.
1438
1439               Set_Iteration_Scheme (Loop_Stmt, Empty);
1440               Scheme := Empty;
1441
1442               --  Generate:
1443               --    exit when not Fnn;
1444
1445               Append_To (Statements (Loop_Stmt),
1446                 Make_Exit_Statement (Loc,
1447                   Condition =>
1448                     Make_Op_Not (Loc,
1449                       Right_Opnd =>
1450                         Make_Function_Call (Loc,
1451                           Name => New_Occurrence_Of (Func_Id, Loc)))));
1452
1453               Build_Conditional_Block (Loc,
1454                 Cond      =>
1455                   Make_Function_Call (Loc,
1456                     Name => New_Occurrence_Of (Func_Id, Loc)),
1457                 Loop_Stmt => Relocate_Node (Loop_Stmt),
1458                 If_Stmt   => Result,
1459                 Blk_Stmt  => Blk);
1460            end;
1461
1462         --  Ada 2012 iteration over an array is transformed into:
1463
1464         --    if <Array_Nam>'Length (1) > 0
1465         --      and then <Array_Nam>'Length (N) > 0
1466         --    then
1467         --       declare
1468         --          Temp1 : constant <type of Pref1> := <Pref1>;
1469         --          . . .
1470         --          TempN : constant <type of PrefN> := <PrefN>;
1471         --       begin
1472         --          for X in ... loop  --  multiple loops depending on dims
1473         --             <original source statements with attribute rewrites>
1474         --          end loop;
1475         --       end;
1476         --    end if;
1477
1478         elsif Is_Array_Iteration (Loop_Stmt) then
1479            declare
1480               Array_Nam : constant Entity_Id :=
1481                             Entity (Name (Iterator_Specification
1482                              (Iteration_Scheme (Original_Node (Loop_Stmt)))));
1483               Num_Dims  : constant Pos :=
1484                             Number_Dimensions (Etype (Array_Nam));
1485               Cond      : Node_Id := Empty;
1486               Check     : Node_Id;
1487
1488            begin
1489               --  Generate a check which determines whether all dimensions of
1490               --  the array are non-null.
1491
1492               for Dim in 1 .. Num_Dims loop
1493                  Check :=
1494                    Make_Op_Gt (Loc,
1495                      Left_Opnd  =>
1496                        Make_Attribute_Reference (Loc,
1497                          Prefix         => New_Occurrence_Of (Array_Nam, Loc),
1498                          Attribute_Name => Name_Length,
1499                          Expressions    => New_List (
1500                            Make_Integer_Literal (Loc, Dim))),
1501                      Right_Opnd =>
1502                        Make_Integer_Literal (Loc, 0));
1503
1504                  if No (Cond) then
1505                     Cond := Check;
1506                  else
1507                     Cond :=
1508                       Make_And_Then (Loc,
1509                         Left_Opnd  => Cond,
1510                         Right_Opnd => Check);
1511                  end if;
1512               end loop;
1513
1514               Build_Conditional_Block (Loc,
1515                 Cond      => Cond,
1516                 Loop_Stmt => Relocate_Node (Loop_Stmt),
1517                 If_Stmt   => Result,
1518                 Blk_Stmt  => Blk);
1519            end;
1520
1521         --  For loops are transformed into:
1522
1523         --    if <Low> <= <High> then
1524         --       declare
1525         --          Temp1 : constant <type of Pref1> := <Pref1>;
1526         --          . . .
1527         --          TempN : constant <type of PrefN> := <PrefN>;
1528         --       begin
1529         --          for <Def_Id> in <Low> .. <High> loop
1530         --             <original source statements with attribute rewrites>
1531         --          end loop;
1532         --       end;
1533         --    end if;
1534
1535         elsif Present (Loop_Parameter_Specification (Scheme)) then
1536            declare
1537               Loop_Spec : constant Node_Id :=
1538                             Loop_Parameter_Specification (Scheme);
1539               Cond      : Node_Id;
1540               Subt_Def  : Node_Id;
1541
1542            begin
1543               Subt_Def := Discrete_Subtype_Definition (Loop_Spec);
1544
1545               --  When the loop iterates over a subtype indication with a
1546               --  range, use the low and high bounds of the subtype itself.
1547
1548               if Nkind (Subt_Def) = N_Subtype_Indication then
1549                  Subt_Def := Scalar_Range (Etype (Subt_Def));
1550               end if;
1551
1552               pragma Assert (Nkind (Subt_Def) = N_Range);
1553
1554               --  Generate
1555               --    Low <= High
1556
1557               Cond :=
1558                 Make_Op_Le (Loc,
1559                   Left_Opnd  => New_Copy_Tree (Low_Bound (Subt_Def)),
1560                   Right_Opnd => New_Copy_Tree (High_Bound (Subt_Def)));
1561
1562               Build_Conditional_Block (Loc,
1563                 Cond      => Cond,
1564                 Loop_Stmt => Relocate_Node (Loop_Stmt),
1565                 If_Stmt   => Result,
1566                 Blk_Stmt  => Blk);
1567            end;
1568         end if;
1569
1570         Decls := Declarations (Blk);
1571      end if;
1572
1573      --  Step 3: Create a constant to capture the value of the prefix at the
1574      --  entry point into the loop.
1575
1576      Temp_Id := Make_Temporary (Loc, 'P');
1577
1578      --  Preserve the tag of the prefix by offering a specific view of the
1579      --  class-wide version of the prefix.
1580
1581      if Is_Tagged_Type (Base_Typ) then
1582         Tagged_Case : declare
1583            CW_Temp : Entity_Id;
1584            CW_Typ  : Entity_Id;
1585
1586         begin
1587            --  Generate:
1588            --    CW_Temp : constant Base_Typ'Class := Base_Typ'Class (Pref);
1589
1590            CW_Temp := Make_Temporary (Loc, 'T');
1591            CW_Typ  := Class_Wide_Type (Base_Typ);
1592
1593            Aux_Decl :=
1594              Make_Object_Declaration (Loc,
1595                Defining_Identifier => CW_Temp,
1596                Constant_Present    => True,
1597                Object_Definition   => New_Occurrence_Of (CW_Typ, Loc),
1598                Expression          =>
1599                  Convert_To (CW_Typ, Relocate_Node (Pref)));
1600            Append_To (Decls, Aux_Decl);
1601
1602            --  Generate:
1603            --    Temp : Base_Typ renames Base_Typ (CW_Temp);
1604
1605            Temp_Decl :=
1606              Make_Object_Renaming_Declaration (Loc,
1607                Defining_Identifier => Temp_Id,
1608                Subtype_Mark        => New_Occurrence_Of (Base_Typ, Loc),
1609                Name                =>
1610                  Convert_To (Base_Typ, New_Occurrence_Of (CW_Temp, Loc)));
1611            Append_To (Decls, Temp_Decl);
1612         end Tagged_Case;
1613
1614      --  Untagged case
1615
1616      else
1617         Untagged_Case : declare
1618            Temp_Expr : Node_Id;
1619
1620         begin
1621            Aux_Decl := Empty;
1622
1623            --  Generate a nominal type for the constant when the prefix is of
1624            --  a constrained type. This is achieved by setting the Etype of
1625            --  the relocated prefix to its base type. Since the prefix is now
1626            --  the initialization expression of the constant, its freezing
1627            --  will produce a proper nominal type.
1628
1629            Temp_Expr := Relocate_Node (Pref);
1630            Set_Etype (Temp_Expr, Base_Typ);
1631
1632            --  Generate:
1633            --    Temp : constant Base_Typ := Pref;
1634
1635            Temp_Decl :=
1636              Make_Object_Declaration (Loc,
1637                Defining_Identifier => Temp_Id,
1638                Constant_Present    => True,
1639                Object_Definition   => New_Occurrence_Of (Base_Typ, Loc),
1640                Expression          => Temp_Expr);
1641            Append_To (Decls, Temp_Decl);
1642         end Untagged_Case;
1643      end if;
1644
1645      --  Step 4: Analyze all bits
1646
1647      Installed := Current_Scope = Scope (Loop_Id);
1648
1649      --  Depending on the pracement of attribute 'Loop_Entry relative to the
1650      --  associated loop, ensure the proper visibility for analysis.
1651
1652      if not Installed then
1653         Push_Scope (Scope (Loop_Id));
1654      end if;
1655
1656      --  The analysis of the conditional block takes care of the constant
1657      --  declaration.
1658
1659      if Present (Result) then
1660         Rewrite (Loop_Stmt, Result);
1661         Analyze (Loop_Stmt);
1662
1663      --  The conditional block was analyzed when a previous 'Loop_Entry was
1664      --  expanded. There is no point in reanalyzing the block, simply analyze
1665      --  the declaration of the constant.
1666
1667      else
1668         if Present (Aux_Decl) then
1669            Analyze (Aux_Decl);
1670         end if;
1671
1672         Analyze (Temp_Decl);
1673      end if;
1674
1675      Rewrite (N, New_Occurrence_Of (Temp_Id, Loc));
1676      Analyze (N);
1677
1678      if not Installed then
1679         Pop_Scope;
1680      end if;
1681   end Expand_Loop_Entry_Attribute;
1682
1683   ------------------------------
1684   -- Expand_Min_Max_Attribute --
1685   ------------------------------
1686
1687   procedure Expand_Min_Max_Attribute (N : Node_Id) is
1688   begin
1689      --  Min and Max are handled by the back end (except that static cases
1690      --  have already been evaluated during semantic processing, although the
1691      --  back end should not count on this). The one bit of special processing
1692      --  required in the normal case is that these two attributes typically
1693      --  generate conditionals in the code, so check the relevant restriction.
1694
1695      Check_Restriction (No_Implicit_Conditionals, N);
1696
1697      --  In Modify_Tree_For_C mode, we rewrite as an if expression
1698
1699      if Modify_Tree_For_C then
1700         declare
1701            Loc   : constant Source_Ptr := Sloc (N);
1702            Typ   : constant Entity_Id  := Etype (N);
1703            Expr  : constant Node_Id    := First (Expressions (N));
1704            Left  : constant Node_Id    := Relocate_Node (Expr);
1705            Right : constant Node_Id    := Relocate_Node (Next (Expr));
1706
1707            function Make_Compare (Left, Right : Node_Id) return Node_Id;
1708            --  Returns Left >= Right for Max, Left <= Right for Min
1709
1710            ------------------
1711            -- Make_Compare --
1712            ------------------
1713
1714            function Make_Compare (Left, Right : Node_Id) return Node_Id is
1715            begin
1716               if Attribute_Name (N) = Name_Max then
1717                  return
1718                    Make_Op_Ge (Loc,
1719                      Left_Opnd  => Left,
1720                      Right_Opnd => Right);
1721               else
1722                  return
1723                    Make_Op_Le (Loc,
1724                      Left_Opnd  => Left,
1725                      Right_Opnd => Right);
1726               end if;
1727            end Make_Compare;
1728
1729         --  Start of processing for Min_Max
1730
1731         begin
1732            --  If both Left and Right are side effect free, then we can just
1733            --  use Duplicate_Expr to duplicate the references and return
1734
1735            --    (if Left >=|<= Right then Left else Right)
1736
1737            if Side_Effect_Free (Left) and then Side_Effect_Free (Right) then
1738               Rewrite (N,
1739                 Make_If_Expression (Loc,
1740                   Expressions => New_List (
1741                     Make_Compare (Left, Right),
1742                     Duplicate_Subexpr_No_Checks (Left),
1743                     Duplicate_Subexpr_No_Checks (Right))));
1744
1745            --  Otherwise we generate declarations to capture the values.
1746
1747            --  The translation is
1748
1749            --    do
1750            --      T1 : constant typ := Left;
1751            --      T2 : constant typ := Right;
1752            --    in
1753            --      (if T1 >=|<= T2 then T1 else T2)
1754            --    end;
1755
1756            else
1757               declare
1758                  T1 : constant Entity_Id := Make_Temporary (Loc, 'T', Left);
1759                  T2 : constant Entity_Id := Make_Temporary (Loc, 'T', Right);
1760
1761               begin
1762                  Rewrite (N,
1763                    Make_Expression_With_Actions (Loc,
1764                      Actions    => New_List (
1765                        Make_Object_Declaration (Loc,
1766                          Defining_Identifier => T1,
1767                          Constant_Present    => True,
1768                          Object_Definition   =>
1769                            New_Occurrence_Of (Etype (Left), Loc),
1770                          Expression          => Relocate_Node (Left)),
1771
1772                        Make_Object_Declaration (Loc,
1773                          Defining_Identifier => T2,
1774                          Constant_Present    => True,
1775                          Object_Definition   =>
1776                            New_Occurrence_Of (Etype (Right), Loc),
1777                          Expression          => Relocate_Node (Right))),
1778
1779                      Expression =>
1780                        Make_If_Expression (Loc,
1781                          Expressions => New_List (
1782                            Make_Compare
1783                              (New_Occurrence_Of (T1, Loc),
1784                               New_Occurrence_Of (T2, Loc)),
1785                               New_Occurrence_Of (T1, Loc),
1786                               New_Occurrence_Of (T2, Loc)))));
1787               end;
1788            end if;
1789
1790            Analyze_And_Resolve (N, Typ);
1791         end;
1792      end if;
1793   end Expand_Min_Max_Attribute;
1794
1795   ----------------------------------
1796   -- Expand_N_Attribute_Reference --
1797   ----------------------------------
1798
1799   procedure Expand_N_Attribute_Reference (N : Node_Id) is
1800      Loc   : constant Source_Ptr   := Sloc (N);
1801      Typ   : constant Entity_Id    := Etype (N);
1802      Btyp  : constant Entity_Id    := Base_Type (Typ);
1803      Pref  : constant Node_Id      := Prefix (N);
1804      Ptyp  : constant Entity_Id    := Etype (Pref);
1805      Exprs : constant List_Id      := Expressions (N);
1806      Id    : constant Attribute_Id := Get_Attribute_Id (Attribute_Name (N));
1807
1808      procedure Rewrite_Stream_Proc_Call (Pname : Entity_Id);
1809      --  Rewrites a stream attribute for Read, Write or Output with the
1810      --  procedure call. Pname is the entity for the procedure to call.
1811
1812      ------------------------------
1813      -- Rewrite_Stream_Proc_Call --
1814      ------------------------------
1815
1816      procedure Rewrite_Stream_Proc_Call (Pname : Entity_Id) is
1817         Item       : constant Node_Id   := Next (First (Exprs));
1818         Item_Typ   : constant Entity_Id := Etype (Item);
1819         Formal     : constant Entity_Id := Next_Formal (First_Formal (Pname));
1820         Formal_Typ : constant Entity_Id := Etype (Formal);
1821         Is_Written : constant Boolean   := Ekind (Formal) /= E_In_Parameter;
1822
1823      begin
1824         --  The expansion depends on Item, the second actual, which is
1825         --  the object being streamed in or out.
1826
1827         --  If the item is a component of a packed array type, and
1828         --  a conversion is needed on exit, we introduce a temporary to
1829         --  hold the value, because otherwise the packed reference will
1830         --  not be properly expanded.
1831
1832         if Nkind (Item) = N_Indexed_Component
1833           and then Is_Packed (Base_Type (Etype (Prefix (Item))))
1834           and then Base_Type (Item_Typ) /= Base_Type (Formal_Typ)
1835           and then Is_Written
1836         then
1837            declare
1838               Temp : constant Entity_Id := Make_Temporary (Loc, 'V');
1839               Decl : Node_Id;
1840               Assn : Node_Id;
1841
1842            begin
1843               Decl :=
1844                 Make_Object_Declaration (Loc,
1845                   Defining_Identifier => Temp,
1846                   Object_Definition   => New_Occurrence_Of (Formal_Typ, Loc));
1847               Set_Etype (Temp, Formal_Typ);
1848
1849               Assn :=
1850                 Make_Assignment_Statement (Loc,
1851                   Name       => New_Copy_Tree (Item),
1852                   Expression =>
1853                     Unchecked_Convert_To
1854                       (Item_Typ, New_Occurrence_Of (Temp, Loc)));
1855
1856               Rewrite (Item, New_Occurrence_Of (Temp, Loc));
1857               Insert_Actions (N,
1858                 New_List (
1859                   Decl,
1860                   Make_Procedure_Call_Statement (Loc,
1861                     Name                   => New_Occurrence_Of (Pname, Loc),
1862                     Parameter_Associations => Exprs),
1863                   Assn));
1864
1865               Rewrite (N, Make_Null_Statement (Loc));
1866               return;
1867            end;
1868         end if;
1869
1870         --  For the class-wide dispatching cases, and for cases in which
1871         --  the base type of the second argument matches the base type of
1872         --  the corresponding formal parameter (that is to say the stream
1873         --  operation is not inherited), we are all set, and can use the
1874         --  argument unchanged.
1875
1876         if not Is_Class_Wide_Type (Entity (Pref))
1877           and then not Is_Class_Wide_Type (Etype (Item))
1878           and then Base_Type (Item_Typ) /= Base_Type (Formal_Typ)
1879         then
1880            --  Perform a view conversion when either the argument or the
1881            --  formal parameter are of a private type.
1882
1883            if Is_Private_Type (Base_Type (Formal_Typ))
1884              or else Is_Private_Type (Base_Type (Item_Typ))
1885            then
1886               Rewrite (Item,
1887                 Unchecked_Convert_To (Formal_Typ, Relocate_Node (Item)));
1888
1889            --  Otherwise perform a regular type conversion to ensure that all
1890            --  relevant checks are installed.
1891
1892            else
1893               Rewrite (Item, Convert_To (Formal_Typ, Relocate_Node (Item)));
1894            end if;
1895
1896            --  For untagged derived types set Assignment_OK, to prevent
1897            --  copies from being created when the unchecked conversion
1898            --  is expanded (which would happen in Remove_Side_Effects
1899            --  if Expand_N_Unchecked_Conversion were allowed to call
1900            --  Force_Evaluation). The copy could violate Ada semantics in
1901            --  cases such as an actual that is an out parameter. Note that
1902            --  this approach is also used in exp_ch7 for calls to controlled
1903            --  type operations to prevent problems with actuals wrapped in
1904            --  unchecked conversions.
1905
1906            if Is_Untagged_Derivation (Etype (Expression (Item))) then
1907               Set_Assignment_OK (Item);
1908            end if;
1909         end if;
1910
1911         --  The stream operation to call may be a renaming created by an
1912         --  attribute definition clause, and may not be frozen yet. Ensure
1913         --  that it has the necessary extra formals.
1914
1915         if not Is_Frozen (Pname) then
1916            Create_Extra_Formals (Pname);
1917         end if;
1918
1919         --  And now rewrite the call
1920
1921         Rewrite (N,
1922           Make_Procedure_Call_Statement (Loc,
1923             Name                   => New_Occurrence_Of (Pname, Loc),
1924             Parameter_Associations => Exprs));
1925
1926         Analyze (N);
1927      end Rewrite_Stream_Proc_Call;
1928
1929   --  Start of processing for Expand_N_Attribute_Reference
1930
1931   begin
1932      --  Do required validity checking, if enabled. Do not apply check to
1933      --  output parameters of an Asm instruction, since the value of this
1934      --  is not set till after the attribute has been elaborated, and do
1935      --  not apply the check to the arguments of a 'Read or 'Input attribute
1936      --  reference since the scalar argument is an OUT scalar.
1937
1938      if Validity_Checks_On and then Validity_Check_Operands
1939        and then Id /= Attribute_Asm_Output
1940        and then Id /= Attribute_Read
1941        and then Id /= Attribute_Input
1942      then
1943         declare
1944            Expr : Node_Id;
1945         begin
1946            Expr := First (Expressions (N));
1947            while Present (Expr) loop
1948               Ensure_Valid (Expr);
1949               Next (Expr);
1950            end loop;
1951         end;
1952      end if;
1953
1954      --  Ada 2005 (AI-318-02): If attribute prefix is a call to a build-in-
1955      --  place function, then a temporary return object needs to be created
1956      --  and access to it must be passed to the function.
1957
1958      if Is_Build_In_Place_Function_Call (Pref) then
1959
1960         --  If attribute is 'Old, the context is a postcondition, and
1961         --  the temporary must go in the corresponding subprogram, not
1962         --  the postcondition function or any created blocks, as when
1963         --  the attribute appears in a quantified expression. This is
1964         --  handled below in the expansion of the attribute.
1965
1966         if Attribute_Name (Parent (Pref)) = Name_Old then
1967            null;
1968         else
1969            Make_Build_In_Place_Call_In_Anonymous_Context (Pref);
1970         end if;
1971
1972      --  Ada 2005 (AI-318-02): Specialization of the previous case for prefix
1973      --  containing build-in-place function calls whose returned object covers
1974      --  interface types.
1975
1976      elsif Present (Unqual_BIP_Iface_Function_Call (Pref)) then
1977         Make_Build_In_Place_Iface_Call_In_Anonymous_Context (Pref);
1978      end if;
1979
1980      --  If prefix is a protected type name, this is a reference to the
1981      --  current instance of the type. For a component definition, nothing
1982      --  to do (expansion will occur in the init proc). In other contexts,
1983      --  rewrite into reference to current instance.
1984
1985      if Is_Protected_Self_Reference (Pref)
1986        and then not
1987          (Nkind_In (Parent (N), N_Index_Or_Discriminant_Constraint,
1988                                 N_Discriminant_Association)
1989            and then Nkind (Parent (Parent (Parent (Parent (N))))) =
1990                                                      N_Component_Definition)
1991
1992         --  No action needed for these attributes since the current instance
1993         --  will be rewritten to be the name of the _object parameter
1994         --  associated with the enclosing protected subprogram (see below).
1995
1996        and then Id /= Attribute_Access
1997        and then Id /= Attribute_Unchecked_Access
1998        and then Id /= Attribute_Unrestricted_Access
1999      then
2000         Rewrite (Pref, Concurrent_Ref (Pref));
2001         Analyze (Pref);
2002      end if;
2003
2004      --  Remaining processing depends on specific attribute
2005
2006      --  Note: individual sections of the following case statement are
2007      --  allowed to assume there is no code after the case statement, and
2008      --  are legitimately allowed to execute return statements if they have
2009      --  nothing more to do.
2010
2011      case Id is
2012
2013      --  Attributes related to Ada 2012 iterators
2014
2015      when Attribute_Constant_Indexing
2016         | Attribute_Default_Iterator
2017         | Attribute_Implicit_Dereference
2018         | Attribute_Iterable
2019         | Attribute_Iterator_Element
2020         | Attribute_Variable_Indexing
2021      =>
2022         null;
2023
2024      --  Internal attributes used to deal with Ada 2012 delayed aspects. These
2025      --  were already rejected by the parser. Thus they shouldn't appear here.
2026
2027      when Internal_Attribute_Id =>
2028         raise Program_Error;
2029
2030      ------------
2031      -- Access --
2032      ------------
2033
2034      when Attribute_Access
2035         | Attribute_Unchecked_Access
2036         | Attribute_Unrestricted_Access
2037      =>
2038         Access_Cases : declare
2039            Ref_Object : constant Node_Id := Get_Referenced_Object (Pref);
2040            Btyp_DDT   : Entity_Id;
2041
2042            function Enclosing_Object (N : Node_Id) return Node_Id;
2043            --  If N denotes a compound name (selected component, indexed
2044            --  component, or slice), returns the name of the outermost such
2045            --  enclosing object. Otherwise returns N. If the object is a
2046            --  renaming, then the renamed object is returned.
2047
2048            ----------------------
2049            -- Enclosing_Object --
2050            ----------------------
2051
2052            function Enclosing_Object (N : Node_Id) return Node_Id is
2053               Obj_Name : Node_Id;
2054
2055            begin
2056               Obj_Name := N;
2057               while Nkind_In (Obj_Name, N_Selected_Component,
2058                                         N_Indexed_Component,
2059                                         N_Slice)
2060               loop
2061                  Obj_Name := Prefix (Obj_Name);
2062               end loop;
2063
2064               return Get_Referenced_Object (Obj_Name);
2065            end Enclosing_Object;
2066
2067            --  Local declarations
2068
2069            Enc_Object : constant Node_Id := Enclosing_Object (Ref_Object);
2070
2071         --  Start of processing for Access_Cases
2072
2073         begin
2074            Btyp_DDT := Designated_Type (Btyp);
2075
2076            --  Handle designated types that come from the limited view
2077
2078            if From_Limited_With (Btyp_DDT)
2079              and then Has_Non_Limited_View (Btyp_DDT)
2080            then
2081               Btyp_DDT := Non_Limited_View (Btyp_DDT);
2082            end if;
2083
2084            --  In order to improve the text of error messages, the designated
2085            --  type of access-to-subprogram itypes is set by the semantics as
2086            --  the associated subprogram entity (see sem_attr). Now we replace
2087            --  such node with the proper E_Subprogram_Type itype.
2088
2089            if Id = Attribute_Unrestricted_Access
2090              and then Is_Subprogram (Directly_Designated_Type (Typ))
2091            then
2092               --  The following conditions ensure that this special management
2093               --  is done only for "Address!(Prim'Unrestricted_Access)" nodes.
2094               --  At this stage other cases in which the designated type is
2095               --  still a subprogram (instead of an E_Subprogram_Type) are
2096               --  wrong because the semantics must have overridden the type of
2097               --  the node with the type imposed by the context.
2098
2099               if Nkind (Parent (N)) = N_Unchecked_Type_Conversion
2100                 and then Etype (Parent (N)) = RTE (RE_Prim_Ptr)
2101               then
2102                  Set_Etype (N, RTE (RE_Prim_Ptr));
2103
2104               else
2105                  declare
2106                     Subp       : constant Entity_Id :=
2107                                    Directly_Designated_Type (Typ);
2108                     Etyp       : Entity_Id;
2109                     Extra      : Entity_Id := Empty;
2110                     New_Formal : Entity_Id;
2111                     Old_Formal : Entity_Id := First_Formal (Subp);
2112                     Subp_Typ   : Entity_Id;
2113
2114                  begin
2115                     Subp_Typ := Create_Itype (E_Subprogram_Type, N);
2116                     Set_Etype (Subp_Typ, Etype (Subp));
2117                     Set_Returns_By_Ref (Subp_Typ, Returns_By_Ref (Subp));
2118
2119                     if Present (Old_Formal) then
2120                        New_Formal := New_Copy (Old_Formal);
2121                        Set_First_Entity (Subp_Typ, New_Formal);
2122
2123                        loop
2124                           Set_Scope (New_Formal, Subp_Typ);
2125                           Etyp := Etype (New_Formal);
2126
2127                           --  Handle itypes. There is no need to duplicate
2128                           --  here the itypes associated with record types
2129                           --  (i.e the implicit full view of private types).
2130
2131                           if Is_Itype (Etyp)
2132                             and then Ekind (Base_Type (Etyp)) /= E_Record_Type
2133                           then
2134                              Extra := New_Copy (Etyp);
2135                              Set_Parent (Extra, New_Formal);
2136                              Set_Etype (New_Formal, Extra);
2137                              Set_Scope (Extra, Subp_Typ);
2138                           end if;
2139
2140                           Extra := New_Formal;
2141                           Next_Formal (Old_Formal);
2142                           exit when No (Old_Formal);
2143
2144                           Link_Entities (New_Formal, New_Copy (Old_Formal));
2145                           Next_Entity   (New_Formal);
2146                        end loop;
2147
2148                        Unlink_Next_Entity (New_Formal);
2149                        Set_Last_Entity (Subp_Typ, Extra);
2150                     end if;
2151
2152                     --  Now that the explicit formals have been duplicated,
2153                     --  any extra formals needed by the subprogram must be
2154                     --  created.
2155
2156                     if Present (Extra) then
2157                        Set_Extra_Formal (Extra, Empty);
2158                     end if;
2159
2160                     Create_Extra_Formals (Subp_Typ);
2161                     Set_Directly_Designated_Type (Typ, Subp_Typ);
2162                  end;
2163               end if;
2164            end if;
2165
2166            if Is_Access_Protected_Subprogram_Type (Btyp) then
2167               Expand_Access_To_Protected_Op (N, Pref, Typ);
2168
2169            --  If prefix is a type name, this is a reference to the current
2170            --  instance of the type, within its initialization procedure.
2171
2172            elsif Is_Entity_Name (Pref)
2173              and then Is_Type (Entity (Pref))
2174            then
2175               declare
2176                  Par    : Node_Id;
2177                  Formal : Entity_Id;
2178
2179               begin
2180                  --  If the current instance name denotes a task type, then
2181                  --  the access attribute is rewritten to be the name of the
2182                  --  "_task" parameter associated with the task type's task
2183                  --  procedure. An unchecked conversion is applied to ensure
2184                  --  a type match in cases of expander-generated calls (e.g.
2185                  --  init procs).
2186
2187                  if Is_Task_Type (Entity (Pref)) then
2188                     Formal :=
2189                       First_Entity (Get_Task_Body_Procedure (Entity (Pref)));
2190                     while Present (Formal) loop
2191                        exit when Chars (Formal) = Name_uTask;
2192                        Next_Entity (Formal);
2193                     end loop;
2194
2195                     pragma Assert (Present (Formal));
2196
2197                     Rewrite (N,
2198                       Unchecked_Convert_To (Typ,
2199                         New_Occurrence_Of (Formal, Loc)));
2200                     Set_Etype (N, Typ);
2201
2202                  elsif Is_Protected_Type (Entity (Pref)) then
2203
2204                     --  No action needed for current instance located in a
2205                     --  component definition (expansion will occur in the
2206                     --  init proc)
2207
2208                     if Is_Protected_Type (Current_Scope) then
2209                        null;
2210
2211                     --  If the current instance reference is located in a
2212                     --  protected subprogram or entry then rewrite the access
2213                     --  attribute to be the name of the "_object" parameter.
2214                     --  An unchecked conversion is applied to ensure a type
2215                     --  match in cases of expander-generated calls (e.g. init
2216                     --  procs).
2217
2218                     --  The code may be nested in a block, so find enclosing
2219                     --  scope that is a protected operation.
2220
2221                     else
2222                        declare
2223                           Subp : Entity_Id;
2224
2225                        begin
2226                           Subp := Current_Scope;
2227                           while Ekind_In (Subp, E_Loop, E_Block) loop
2228                              Subp := Scope (Subp);
2229                           end loop;
2230
2231                           Formal :=
2232                             First_Entity
2233                               (Protected_Body_Subprogram (Subp));
2234
2235                           --  For a protected subprogram the _Object parameter
2236                           --  is the protected record, so we create an access
2237                           --  to it. The _Object parameter of an entry is an
2238                           --  address.
2239
2240                           if Ekind (Subp) = E_Entry then
2241                              Rewrite (N,
2242                                Unchecked_Convert_To (Typ,
2243                                  New_Occurrence_Of (Formal, Loc)));
2244                              Set_Etype (N, Typ);
2245
2246                           else
2247                              Rewrite (N,
2248                                Unchecked_Convert_To (Typ,
2249                                  Make_Attribute_Reference (Loc,
2250                                    Attribute_Name => Name_Unrestricted_Access,
2251                                    Prefix         =>
2252                                      New_Occurrence_Of (Formal, Loc))));
2253                              Analyze_And_Resolve (N);
2254                           end if;
2255                        end;
2256                     end if;
2257
2258                  --  The expression must appear in a default expression,
2259                  --  (which in the initialization procedure is the right-hand
2260                  --  side of an assignment), and not in a discriminant
2261                  --  constraint.
2262
2263                  else
2264                     Par := Parent (N);
2265                     while Present (Par) loop
2266                        exit when Nkind (Par) = N_Assignment_Statement;
2267
2268                        if Nkind (Par) = N_Component_Declaration then
2269                           return;
2270                        end if;
2271
2272                        Par := Parent (Par);
2273                     end loop;
2274
2275                     if Present (Par) then
2276                        Rewrite (N,
2277                          Make_Attribute_Reference (Loc,
2278                            Prefix => Make_Identifier (Loc, Name_uInit),
2279                            Attribute_Name  => Attribute_Name (N)));
2280
2281                        Analyze_And_Resolve (N, Typ);
2282                     end if;
2283                  end if;
2284               end;
2285
2286            --  If the prefix of an Access attribute is a dereference of an
2287            --  access parameter (or a renaming of such a dereference, or a
2288            --  subcomponent of such a dereference) and the context is a
2289            --  general access type (including the type of an object or
2290            --  component with an access_definition, but not the anonymous
2291            --  type of an access parameter or access discriminant), then
2292            --  apply an accessibility check to the access parameter. We used
2293            --  to rewrite the access parameter as a type conversion, but that
2294            --  could only be done if the immediate prefix of the Access
2295            --  attribute was the dereference, and didn't handle cases where
2296            --  the attribute is applied to a subcomponent of the dereference,
2297            --  since there's generally no available, appropriate access type
2298            --  to convert to in that case. The attribute is passed as the
2299            --  point to insert the check, because the access parameter may
2300            --  come from a renaming, possibly in a different scope, and the
2301            --  check must be associated with the attribute itself.
2302
2303            elsif Id = Attribute_Access
2304              and then Nkind (Enc_Object) = N_Explicit_Dereference
2305              and then Is_Entity_Name (Prefix (Enc_Object))
2306              and then (Ekind (Btyp) = E_General_Access_Type
2307                         or else Is_Local_Anonymous_Access (Btyp))
2308              and then Ekind (Entity (Prefix (Enc_Object))) in Formal_Kind
2309              and then Ekind (Etype (Entity (Prefix (Enc_Object))))
2310                         = E_Anonymous_Access_Type
2311              and then Present (Extra_Accessibility
2312                                (Entity (Prefix (Enc_Object))))
2313            then
2314               Apply_Accessibility_Check (Prefix (Enc_Object), Typ, N);
2315
2316            --  Ada 2005 (AI-251): If the designated type is an interface we
2317            --  add an implicit conversion to force the displacement of the
2318            --  pointer to reference the secondary dispatch table.
2319
2320            elsif Is_Interface (Btyp_DDT)
2321              and then (Comes_From_Source (N)
2322                         or else Comes_From_Source (Ref_Object)
2323                         or else (Nkind (Ref_Object) in N_Has_Chars
2324                                   and then Chars (Ref_Object) = Name_uInit))
2325            then
2326               if Nkind (Ref_Object) /= N_Explicit_Dereference then
2327
2328                  --  No implicit conversion required if types match, or if
2329                  --  the prefix is the class_wide_type of the interface. In
2330                  --  either case passing an object of the interface type has
2331                  --  already set the pointer correctly.
2332
2333                  if Btyp_DDT = Etype (Ref_Object)
2334                    or else (Is_Class_Wide_Type (Etype (Ref_Object))
2335                              and then
2336                               Class_Wide_Type (Btyp_DDT) = Etype (Ref_Object))
2337                  then
2338                     null;
2339
2340                  else
2341                     Rewrite (Prefix (N),
2342                       Convert_To (Btyp_DDT,
2343                         New_Copy_Tree (Prefix (N))));
2344
2345                     Analyze_And_Resolve (Prefix (N), Btyp_DDT);
2346                  end if;
2347
2348               --  When the object is an explicit dereference, convert the
2349               --  dereference's prefix.
2350
2351               else
2352                  declare
2353                     Obj_DDT : constant Entity_Id :=
2354                                 Base_Type
2355                                   (Directly_Designated_Type
2356                                     (Etype (Prefix (Ref_Object))));
2357                  begin
2358                     --  No implicit conversion required if designated types
2359                     --  match.
2360
2361                     if Obj_DDT /= Btyp_DDT
2362                       and then not (Is_Class_Wide_Type (Obj_DDT)
2363                                      and then Etype (Obj_DDT) = Btyp_DDT)
2364                     then
2365                        Rewrite (N,
2366                          Convert_To (Typ,
2367                            New_Copy_Tree (Prefix (Ref_Object))));
2368                        Analyze_And_Resolve (N, Typ);
2369                     end if;
2370                  end;
2371               end if;
2372            end if;
2373         end Access_Cases;
2374
2375      --------------
2376      -- Adjacent --
2377      --------------
2378
2379      --  Transforms 'Adjacent into a call to the floating-point attribute
2380      --  function Adjacent in Fat_xxx (where xxx is the root type)
2381
2382      when Attribute_Adjacent =>
2383         Expand_Fpt_Attribute_RR (N);
2384
2385      -------------
2386      -- Address --
2387      -------------
2388
2389      when Attribute_Address => Address : declare
2390         Task_Proc : Entity_Id;
2391
2392      begin
2393         --  If the prefix is a task or a task type, the useful address is that
2394         --  of the procedure for the task body, i.e. the actual program unit.
2395         --  We replace the original entity with that of the procedure.
2396
2397         if Is_Entity_Name (Pref)
2398           and then Is_Task_Type (Entity (Pref))
2399         then
2400            Task_Proc := Next_Entity (Root_Type (Ptyp));
2401
2402            while Present (Task_Proc) loop
2403               exit when Ekind (Task_Proc) = E_Procedure
2404                 and then Etype (First_Formal (Task_Proc)) =
2405                                  Corresponding_Record_Type (Ptyp);
2406               Next_Entity (Task_Proc);
2407            end loop;
2408
2409            if Present (Task_Proc) then
2410               Set_Entity (Pref, Task_Proc);
2411               Set_Etype  (Pref, Etype (Task_Proc));
2412            end if;
2413
2414         --  Similarly, the address of a protected operation is the address
2415         --  of the corresponding protected body, regardless of the protected
2416         --  object from which it is selected.
2417
2418         elsif Nkind (Pref) = N_Selected_Component
2419           and then Is_Subprogram (Entity (Selector_Name (Pref)))
2420           and then Is_Protected_Type (Scope (Entity (Selector_Name (Pref))))
2421         then
2422            Rewrite (Pref,
2423              New_Occurrence_Of (
2424                External_Subprogram (Entity (Selector_Name (Pref))), Loc));
2425
2426         elsif Nkind (Pref) = N_Explicit_Dereference
2427           and then Ekind (Ptyp) = E_Subprogram_Type
2428           and then Convention (Ptyp) = Convention_Protected
2429         then
2430            --  The prefix is be a dereference of an access_to_protected_
2431            --  subprogram. The desired address is the second component of
2432            --  the record that represents the access.
2433
2434            declare
2435               Addr : constant Entity_Id := Etype (N);
2436               Ptr  : constant Node_Id   := Prefix (Pref);
2437               T    : constant Entity_Id :=
2438                        Equivalent_Type (Base_Type (Etype (Ptr)));
2439
2440            begin
2441               Rewrite (N,
2442                 Unchecked_Convert_To (Addr,
2443                   Make_Selected_Component (Loc,
2444                     Prefix => Unchecked_Convert_To (T, Ptr),
2445                     Selector_Name => New_Occurrence_Of (
2446                       Next_Entity (First_Entity (T)), Loc))));
2447
2448               Analyze_And_Resolve (N, Addr);
2449            end;
2450
2451         --  Ada 2005 (AI-251): Class-wide interface objects are always
2452         --  "displaced" to reference the tag associated with the interface
2453         --  type. In order to obtain the real address of such objects we
2454         --  generate a call to a run-time subprogram that returns the base
2455         --  address of the object.
2456
2457         --  This processing is not needed in the VM case, where dispatching
2458         --  issues are taken care of by the virtual machine.
2459
2460         elsif Is_Class_Wide_Type (Ptyp)
2461           and then Is_Interface (Underlying_Type (Ptyp))
2462           and then Tagged_Type_Expansion
2463           and then not (Nkind (Pref) in N_Has_Entity
2464                          and then Is_Subprogram (Entity (Pref)))
2465         then
2466            Rewrite (N,
2467              Make_Function_Call (Loc,
2468                Name => New_Occurrence_Of (RTE (RE_Base_Address), Loc),
2469                Parameter_Associations => New_List (
2470                  Relocate_Node (N))));
2471            Analyze (N);
2472            return;
2473         end if;
2474
2475         --  Deal with packed array reference, other cases are handled by
2476         --  the back end.
2477
2478         if Involves_Packed_Array_Reference (Pref) then
2479            Expand_Packed_Address_Reference (N);
2480         end if;
2481      end Address;
2482
2483      ---------------
2484      -- Alignment --
2485      ---------------
2486
2487      when Attribute_Alignment => Alignment : declare
2488         New_Node : Node_Id;
2489
2490      begin
2491         --  For class-wide types, X'Class'Alignment is transformed into a
2492         --  direct reference to the Alignment of the class type, so that the
2493         --  back end does not have to deal with the X'Class'Alignment
2494         --  reference.
2495
2496         if Is_Entity_Name (Pref)
2497           and then Is_Class_Wide_Type (Entity (Pref))
2498         then
2499            Rewrite (Prefix (N), New_Occurrence_Of (Entity (Pref), Loc));
2500            return;
2501
2502         --  For x'Alignment applied to an object of a class wide type,
2503         --  transform X'Alignment into a call to the predefined primitive
2504         --  operation _Alignment applied to X.
2505
2506         elsif Is_Class_Wide_Type (Ptyp) then
2507            New_Node :=
2508              Make_Attribute_Reference (Loc,
2509                Prefix         => Pref,
2510                Attribute_Name => Name_Tag);
2511
2512            New_Node := Build_Get_Alignment (Loc, New_Node);
2513
2514            --  Case where the context is a specific integer type with which
2515            --  the original attribute was compatible. The function has a
2516            --  specific type as well, so to preserve the compatibility we
2517            --  must convert explicitly.
2518
2519            if Typ /= Standard_Integer then
2520               New_Node := Convert_To (Typ, New_Node);
2521            end if;
2522
2523            Rewrite (N, New_Node);
2524            Analyze_And_Resolve (N, Typ);
2525            return;
2526
2527         --  For all other cases, we just have to deal with the case of
2528         --  the fact that the result can be universal.
2529
2530         else
2531            Apply_Universal_Integer_Attribute_Checks (N);
2532         end if;
2533      end Alignment;
2534
2535      ---------
2536      -- Bit --
2537      ---------
2538
2539      --  We compute this if a packed array reference was present, otherwise we
2540      --  leave the computation up to the back end.
2541
2542      when Attribute_Bit =>
2543         if Involves_Packed_Array_Reference (Pref) then
2544            Expand_Packed_Bit_Reference (N);
2545         else
2546            Apply_Universal_Integer_Attribute_Checks (N);
2547         end if;
2548
2549      ------------------
2550      -- Bit_Position --
2551      ------------------
2552
2553      --  We compute this if a component clause was present, otherwise we leave
2554      --  the computation up to the back end, since we don't know what layout
2555      --  will be chosen.
2556
2557      --  Note that the attribute can apply to a naked record component
2558      --  in generated code (i.e. the prefix is an identifier that
2559      --  references the component or discriminant entity).
2560
2561      when Attribute_Bit_Position => Bit_Position : declare
2562         CE : Entity_Id;
2563
2564      begin
2565         if Nkind (Pref) = N_Identifier then
2566            CE := Entity (Pref);
2567         else
2568            CE := Entity (Selector_Name (Pref));
2569         end if;
2570
2571         if Known_Static_Component_Bit_Offset (CE) then
2572            Rewrite (N,
2573              Make_Integer_Literal (Loc,
2574                Intval => Component_Bit_Offset (CE)));
2575            Analyze_And_Resolve (N, Typ);
2576
2577         else
2578            Apply_Universal_Integer_Attribute_Checks (N);
2579         end if;
2580      end Bit_Position;
2581
2582      ------------------
2583      -- Body_Version --
2584      ------------------
2585
2586      --  A reference to P'Body_Version or P'Version is expanded to
2587
2588      --     Vnn : Unsigned;
2589      --     pragma Import (C, Vnn, "uuuuT");
2590      --     ...
2591      --     Get_Version_String (Vnn)
2592
2593      --  where uuuu is the unit name (dots replaced by double underscore)
2594      --  and T is B for the cases of Body_Version, or Version applied to a
2595      --  subprogram acting as its own spec, and S for Version applied to a
2596      --  subprogram spec or package. This sequence of code references the
2597      --  unsigned constant created in the main program by the binder.
2598
2599      --  A special exception occurs for Standard, where the string returned
2600      --  is a copy of the library string in gnatvsn.ads.
2601
2602      when Attribute_Body_Version
2603         | Attribute_Version
2604      =>
2605         Version : declare
2606            E    : constant Entity_Id := Make_Temporary (Loc, 'V');
2607            Pent : Entity_Id;
2608            S    : String_Id;
2609
2610         begin
2611            --  If not library unit, get to containing library unit
2612
2613            Pent := Entity (Pref);
2614            while Pent /= Standard_Standard
2615              and then Scope (Pent) /= Standard_Standard
2616              and then not Is_Child_Unit (Pent)
2617            loop
2618               Pent := Scope (Pent);
2619            end loop;
2620
2621            --  Special case Standard and Standard.ASCII
2622
2623            if Pent = Standard_Standard or else Pent = Standard_ASCII then
2624               Rewrite (N,
2625                 Make_String_Literal (Loc,
2626                   Strval => Verbose_Library_Version));
2627
2628            --  All other cases
2629
2630            else
2631               --  Build required string constant
2632
2633               Get_Name_String (Get_Unit_Name (Pent));
2634
2635               Start_String;
2636               for J in 1 .. Name_Len - 2 loop
2637                  if Name_Buffer (J) = '.' then
2638                     Store_String_Chars ("__");
2639                  else
2640                     Store_String_Char (Get_Char_Code (Name_Buffer (J)));
2641                  end if;
2642               end loop;
2643
2644               --  Case of subprogram acting as its own spec, always use body
2645
2646               if Nkind (Declaration_Node (Pent)) in N_Subprogram_Specification
2647                 and then Nkind (Parent (Declaration_Node (Pent))) =
2648                            N_Subprogram_Body
2649                 and then Acts_As_Spec (Parent (Declaration_Node (Pent)))
2650               then
2651                  Store_String_Chars ("B");
2652
2653               --  Case of no body present, always use spec
2654
2655               elsif not Unit_Requires_Body (Pent) then
2656                  Store_String_Chars ("S");
2657
2658               --  Otherwise use B for Body_Version, S for spec
2659
2660               elsif Id = Attribute_Body_Version then
2661                  Store_String_Chars ("B");
2662               else
2663                  Store_String_Chars ("S");
2664               end if;
2665
2666               S := End_String;
2667               Lib.Version_Referenced (S);
2668
2669               --  Insert the object declaration
2670
2671               Insert_Actions (N, New_List (
2672                 Make_Object_Declaration (Loc,
2673                   Defining_Identifier => E,
2674                   Object_Definition   =>
2675                     New_Occurrence_Of (RTE (RE_Unsigned), Loc))));
2676
2677               --  Set entity as imported with correct external name
2678
2679               Set_Is_Imported (E);
2680               Set_Interface_Name (E, Make_String_Literal (Loc, S));
2681
2682               --  Set entity as internal to ensure proper Sprint output of its
2683               --  implicit importation.
2684
2685               Set_Is_Internal (E);
2686
2687               --  And now rewrite original reference
2688
2689               Rewrite (N,
2690                 Make_Function_Call (Loc,
2691                   Name                   =>
2692                     New_Occurrence_Of (RTE (RE_Get_Version_String), Loc),
2693                   Parameter_Associations => New_List (
2694                     New_Occurrence_Of (E, Loc))));
2695            end if;
2696
2697            Analyze_And_Resolve (N, RTE (RE_Version_String));
2698         end Version;
2699
2700      -------------
2701      -- Ceiling --
2702      -------------
2703
2704      --  Transforms 'Ceiling into a call to the floating-point attribute
2705      --  function Ceiling in Fat_xxx (where xxx is the root type)
2706
2707      when Attribute_Ceiling =>
2708         Expand_Fpt_Attribute_R (N);
2709
2710      --------------
2711      -- Callable --
2712      --------------
2713
2714      --  Transforms 'Callable attribute into a call to the Callable function
2715
2716      when Attribute_Callable =>
2717
2718         --  We have an object of a task interface class-wide type as a prefix
2719         --  to Callable. Generate:
2720         --    callable (Task_Id (Pref._disp_get_task_id));
2721
2722         if Ada_Version >= Ada_2005
2723           and then Ekind (Ptyp) = E_Class_Wide_Type
2724           and then Is_Interface (Ptyp)
2725           and then Is_Task_Interface (Ptyp)
2726         then
2727            Rewrite (N,
2728              Make_Function_Call (Loc,
2729                Name                   =>
2730                  New_Occurrence_Of (RTE (RE_Callable), Loc),
2731                Parameter_Associations => New_List (
2732                  Make_Unchecked_Type_Conversion (Loc,
2733                    Subtype_Mark =>
2734                      New_Occurrence_Of (RTE (RO_ST_Task_Id), Loc),
2735                    Expression   => Build_Disp_Get_Task_Id_Call (Pref)))));
2736
2737         else
2738            Rewrite (N, Build_Call_With_Task (Pref, RTE (RE_Callable)));
2739         end if;
2740
2741         Analyze_And_Resolve (N, Standard_Boolean);
2742
2743      ------------
2744      -- Caller --
2745      ------------
2746
2747      --  Transforms 'Caller attribute into a call to either the
2748      --  Task_Entry_Caller or the Protected_Entry_Caller function.
2749
2750      when Attribute_Caller => Caller : declare
2751         Id_Kind    : constant Entity_Id := RTE (RO_AT_Task_Id);
2752         Ent        : constant Entity_Id := Entity (Pref);
2753         Conctype   : constant Entity_Id := Scope (Ent);
2754         Nest_Depth : Integer := 0;
2755         Name       : Node_Id;
2756         S          : Entity_Id;
2757
2758      begin
2759         --  Protected case
2760
2761         if Is_Protected_Type (Conctype) then
2762            case Corresponding_Runtime_Package (Conctype) is
2763               when System_Tasking_Protected_Objects_Entries =>
2764                  Name :=
2765                    New_Occurrence_Of
2766                      (RTE (RE_Protected_Entry_Caller), Loc);
2767
2768               when System_Tasking_Protected_Objects_Single_Entry =>
2769                  Name :=
2770                    New_Occurrence_Of
2771                      (RTE (RE_Protected_Single_Entry_Caller), Loc);
2772
2773               when others =>
2774                  raise Program_Error;
2775            end case;
2776
2777            Rewrite (N,
2778              Unchecked_Convert_To (Id_Kind,
2779                Make_Function_Call (Loc,
2780                  Name => Name,
2781                  Parameter_Associations => New_List (
2782                    New_Occurrence_Of
2783                      (Find_Protection_Object (Current_Scope), Loc)))));
2784
2785         --  Task case
2786
2787         else
2788            --  Determine the nesting depth of the E'Caller attribute, that
2789            --  is, how many accept statements are nested within the accept
2790            --  statement for E at the point of E'Caller. The runtime uses
2791            --  this depth to find the specified entry call.
2792
2793            for J in reverse 0 .. Scope_Stack.Last loop
2794               S := Scope_Stack.Table (J).Entity;
2795
2796               --  We should not reach the scope of the entry, as it should
2797               --  already have been checked in Sem_Attr that this attribute
2798               --  reference is within a matching accept statement.
2799
2800               pragma Assert (S /= Conctype);
2801
2802               if S = Ent then
2803                  exit;
2804
2805               elsif Is_Entry (S) then
2806                  Nest_Depth := Nest_Depth + 1;
2807               end if;
2808            end loop;
2809
2810            Rewrite (N,
2811              Unchecked_Convert_To (Id_Kind,
2812                Make_Function_Call (Loc,
2813                  Name =>
2814                    New_Occurrence_Of (RTE (RE_Task_Entry_Caller), Loc),
2815                  Parameter_Associations => New_List (
2816                    Make_Integer_Literal (Loc,
2817                      Intval => Int (Nest_Depth))))));
2818         end if;
2819
2820         Analyze_And_Resolve (N, Id_Kind);
2821      end Caller;
2822
2823      -------------
2824      -- Compose --
2825      -------------
2826
2827      --  Transforms 'Compose into a call to the floating-point attribute
2828      --  function Compose in Fat_xxx (where xxx is the root type)
2829
2830      --  Note: we strictly should have special code here to deal with the
2831      --  case of absurdly negative arguments (less than Integer'First)
2832      --  which will return a (signed) zero value, but it hardly seems
2833      --  worth the effort. Absurdly large positive arguments will raise
2834      --  constraint error which is fine.
2835
2836      when Attribute_Compose =>
2837         Expand_Fpt_Attribute_RI (N);
2838
2839      -----------------
2840      -- Constrained --
2841      -----------------
2842
2843      when Attribute_Constrained => Constrained : declare
2844         Formal_Ent : constant Entity_Id := Param_Entity (Pref);
2845
2846         function Is_Constrained_Aliased_View (Obj : Node_Id) return Boolean;
2847         --  Ada 2005 (AI-363): Returns True if the object name Obj denotes a
2848         --  view of an aliased object whose subtype is constrained.
2849
2850         ---------------------------------
2851         -- Is_Constrained_Aliased_View --
2852         ---------------------------------
2853
2854         function Is_Constrained_Aliased_View (Obj : Node_Id) return Boolean is
2855            E : Entity_Id;
2856
2857         begin
2858            if Is_Entity_Name (Obj) then
2859               E := Entity (Obj);
2860
2861               if Present (Renamed_Object (E)) then
2862                  return Is_Constrained_Aliased_View (Renamed_Object (E));
2863               else
2864                  return Is_Aliased (E) and then Is_Constrained (Etype (E));
2865               end if;
2866
2867            else
2868               return Is_Aliased_View (Obj)
2869                        and then
2870                      (Is_Constrained (Etype (Obj))
2871                         or else
2872                           (Nkind (Obj) = N_Explicit_Dereference
2873                              and then
2874                                not Object_Type_Has_Constrained_Partial_View
2875                                      (Typ  => Base_Type (Etype (Obj)),
2876                                       Scop => Current_Scope)));
2877            end if;
2878         end Is_Constrained_Aliased_View;
2879
2880      --  Start of processing for Constrained
2881
2882      begin
2883         --  Reference to a parameter where the value is passed as an extra
2884         --  actual, corresponding to the extra formal referenced by the
2885         --  Extra_Constrained field of the corresponding formal. If this
2886         --  is an entry in-parameter, it is replaced by a constant renaming
2887         --  for which Extra_Constrained is never created.
2888
2889         if Present (Formal_Ent)
2890           and then Ekind (Formal_Ent) /= E_Constant
2891           and then Present (Extra_Constrained (Formal_Ent))
2892         then
2893            Rewrite (N,
2894              New_Occurrence_Of
2895                (Extra_Constrained (Formal_Ent), Sloc (N)));
2896
2897         --  If the prefix is an access to object, the attribute applies to
2898         --  the designated object, so rewrite with an explicit dereference.
2899
2900         elsif Is_Access_Type (Etype (Pref))
2901           and then
2902             (not Is_Entity_Name (Pref) or else Is_Object (Entity (Pref)))
2903         then
2904            Rewrite (Pref,
2905              Make_Explicit_Dereference (Loc, Relocate_Node (Pref)));
2906            Analyze_And_Resolve (N, Standard_Boolean);
2907            return;
2908
2909         --  For variables with a Extra_Constrained field, we use the
2910         --  corresponding entity.
2911
2912         elsif Nkind (Pref) = N_Identifier
2913           and then Ekind (Entity (Pref)) = E_Variable
2914           and then Present (Extra_Constrained (Entity (Pref)))
2915         then
2916            Rewrite (N,
2917              New_Occurrence_Of
2918                (Extra_Constrained (Entity (Pref)), Sloc (N)));
2919
2920         --  For all other entity names, we can tell at compile time
2921
2922         elsif Is_Entity_Name (Pref) then
2923            declare
2924               Ent : constant Entity_Id   := Entity (Pref);
2925               Res : Boolean;
2926
2927            begin
2928               --  (RM J.4) obsolescent cases
2929
2930               if Is_Type (Ent) then
2931
2932                  --  Private type
2933
2934                  if Is_Private_Type (Ent) then
2935                     Res := not Has_Discriminants (Ent)
2936                              or else Is_Constrained (Ent);
2937
2938                  --  It not a private type, must be a generic actual type
2939                  --  that corresponded to a private type. We know that this
2940                  --  correspondence holds, since otherwise the reference
2941                  --  within the generic template would have been illegal.
2942
2943                  else
2944                     if Is_Composite_Type (Underlying_Type (Ent)) then
2945                        Res := Is_Constrained (Ent);
2946                     else
2947                        Res := True;
2948                     end if;
2949                  end if;
2950
2951               else
2952                  --  For access type, apply access check as needed
2953
2954                  if Is_Access_Type (Ptyp) then
2955                     Apply_Access_Check (N);
2956                  end if;
2957
2958                  --  If the prefix is not a variable or is aliased, then
2959                  --  definitely true; if it's a formal parameter without an
2960                  --  associated extra formal, then treat it as constrained.
2961
2962                  --  Ada 2005 (AI-363): An aliased prefix must be known to be
2963                  --  constrained in order to set the attribute to True.
2964
2965                  if not Is_Variable (Pref)
2966                    or else Present (Formal_Ent)
2967                    or else (Ada_Version < Ada_2005
2968                              and then Is_Aliased_View (Pref))
2969                    or else (Ada_Version >= Ada_2005
2970                              and then Is_Constrained_Aliased_View (Pref))
2971                  then
2972                     Res := True;
2973
2974                  --  Variable case, look at type to see if it is constrained.
2975                  --  Note that the one case where this is not accurate (the
2976                  --  procedure formal case), has been handled above.
2977
2978                  --  We use the Underlying_Type here (and below) in case the
2979                  --  type is private without discriminants, but the full type
2980                  --  has discriminants. This case is illegal, but we generate
2981                  --  it internally for passing to the Extra_Constrained
2982                  --  parameter.
2983
2984                  else
2985                     --  In Ada 2012, test for case of a limited tagged type,
2986                     --  in which case the attribute is always required to
2987                     --  return True. The underlying type is tested, to make
2988                     --  sure we also return True for cases where there is an
2989                     --  unconstrained object with an untagged limited partial
2990                     --  view which has defaulted discriminants (such objects
2991                     --  always produce a False in earlier versions of
2992                     --  Ada). (Ada 2012: AI05-0214)
2993
2994                     Res :=
2995                       Is_Constrained (Underlying_Type (Etype (Ent)))
2996                         or else
2997                           (Ada_Version >= Ada_2012
2998                             and then Is_Tagged_Type (Underlying_Type (Ptyp))
2999                             and then Is_Limited_Type (Ptyp));
3000                  end if;
3001               end if;
3002
3003               Rewrite (N, New_Occurrence_Of (Boolean_Literals (Res), Loc));
3004            end;
3005
3006         --  Prefix is not an entity name. These are also cases where we can
3007         --  always tell at compile time by looking at the form and type of the
3008         --  prefix. If an explicit dereference of an object with constrained
3009         --  partial view, this is unconstrained (Ada 2005: AI95-0363). If the
3010         --  underlying type is a limited tagged type, then Constrained is
3011         --  required to always return True (Ada 2012: AI05-0214).
3012
3013         else
3014            Rewrite (N,
3015              New_Occurrence_Of (
3016                Boolean_Literals (
3017                  not Is_Variable (Pref)
3018                    or else
3019                     (Nkind (Pref) = N_Explicit_Dereference
3020                       and then
3021                         not Object_Type_Has_Constrained_Partial_View
3022                               (Typ  => Base_Type (Ptyp),
3023                                Scop => Current_Scope))
3024                    or else Is_Constrained (Underlying_Type (Ptyp))
3025                    or else (Ada_Version >= Ada_2012
3026                              and then Is_Tagged_Type (Underlying_Type (Ptyp))
3027                              and then Is_Limited_Type (Ptyp))),
3028                Loc));
3029         end if;
3030
3031         Analyze_And_Resolve (N, Standard_Boolean);
3032      end Constrained;
3033
3034      ---------------
3035      -- Copy_Sign --
3036      ---------------
3037
3038      --  Transforms 'Copy_Sign into a call to the floating-point attribute
3039      --  function Copy_Sign in Fat_xxx (where xxx is the root type)
3040
3041      when Attribute_Copy_Sign =>
3042         Expand_Fpt_Attribute_RR (N);
3043
3044      -----------
3045      -- Count --
3046      -----------
3047
3048      --  Transforms 'Count attribute into a call to the Count function
3049
3050      when Attribute_Count => Count : declare
3051         Call     : Node_Id;
3052         Conctyp  : Entity_Id;
3053         Entnam   : Node_Id;
3054         Entry_Id : Entity_Id;
3055         Index    : Node_Id;
3056         Name     : Node_Id;
3057
3058      begin
3059         --  If the prefix is a member of an entry family, retrieve both
3060         --  entry name and index. For a simple entry there is no index.
3061
3062         if Nkind (Pref) = N_Indexed_Component then
3063            Entnam := Prefix (Pref);
3064            Index := First (Expressions (Pref));
3065         else
3066            Entnam := Pref;
3067            Index := Empty;
3068         end if;
3069
3070         Entry_Id := Entity (Entnam);
3071
3072         --  Find the concurrent type in which this attribute is referenced
3073         --  (there had better be one).
3074
3075         Conctyp := Current_Scope;
3076         while not Is_Concurrent_Type (Conctyp) loop
3077            Conctyp := Scope (Conctyp);
3078         end loop;
3079
3080         --  Protected case
3081
3082         if Is_Protected_Type (Conctyp) then
3083
3084            --  No need to transform 'Count into a function call if the current
3085            --  scope has been eliminated. In this case such transformation is
3086            --  also not viable because the enclosing protected object is not
3087            --  available.
3088
3089            if Is_Eliminated (Current_Scope) then
3090               return;
3091            end if;
3092
3093            case Corresponding_Runtime_Package (Conctyp) is
3094               when System_Tasking_Protected_Objects_Entries =>
3095                  Name := New_Occurrence_Of (RTE (RE_Protected_Count), Loc);
3096
3097                  Call :=
3098                    Make_Function_Call (Loc,
3099                      Name                   => Name,
3100                      Parameter_Associations => New_List (
3101                        New_Occurrence_Of
3102                          (Find_Protection_Object (Current_Scope), Loc),
3103                        Entry_Index_Expression
3104                          (Loc, Entry_Id, Index, Scope (Entry_Id))));
3105
3106               when System_Tasking_Protected_Objects_Single_Entry =>
3107                  Name :=
3108                    New_Occurrence_Of (RTE (RE_Protected_Count_Entry), Loc);
3109
3110                  Call :=
3111                    Make_Function_Call (Loc,
3112                      Name                   => Name,
3113                      Parameter_Associations => New_List (
3114                        New_Occurrence_Of
3115                          (Find_Protection_Object (Current_Scope), Loc)));
3116
3117               when others =>
3118                  raise Program_Error;
3119            end case;
3120
3121         --  Task case
3122
3123         else
3124            Call :=
3125              Make_Function_Call (Loc,
3126                Name => New_Occurrence_Of (RTE (RE_Task_Count), Loc),
3127                Parameter_Associations => New_List (
3128                  Entry_Index_Expression (Loc,
3129                    Entry_Id, Index, Scope (Entry_Id))));
3130         end if;
3131
3132         --  The call returns type Natural but the context is universal integer
3133         --  so any integer type is allowed. The attribute was already resolved
3134         --  so its Etype is the required result type. If the base type of the
3135         --  context type is other than Standard.Integer we put in a conversion
3136         --  to the required type. This can be a normal typed conversion since
3137         --  both input and output types of the conversion are integer types
3138
3139         if Base_Type (Typ) /= Base_Type (Standard_Integer) then
3140            Rewrite (N, Convert_To (Typ, Call));
3141         else
3142            Rewrite (N, Call);
3143         end if;
3144
3145         Analyze_And_Resolve (N, Typ);
3146      end Count;
3147
3148      ---------------------
3149      -- Descriptor_Size --
3150      ---------------------
3151
3152      when Attribute_Descriptor_Size =>
3153
3154         --  Attribute Descriptor_Size is handled by the back end when applied
3155         --  to an unconstrained array type.
3156
3157         if Is_Array_Type (Ptyp)
3158           and then not Is_Constrained (Ptyp)
3159         then
3160            Apply_Universal_Integer_Attribute_Checks (N);
3161
3162         --  For any other type, the descriptor size is 0 because there is no
3163         --  actual descriptor, but the result is not formally static.
3164
3165         else
3166            Rewrite (N, Make_Integer_Literal (Loc, 0));
3167            Analyze (N);
3168            Set_Is_Static_Expression (N, False);
3169         end if;
3170
3171      ---------------
3172      -- Elab_Body --
3173      ---------------
3174
3175      --  This processing is shared by Elab_Spec
3176
3177      --  What we do is to insert the following declarations
3178
3179      --     procedure tnn;
3180      --     pragma Import (C, enn, "name___elabb/s");
3181
3182      --  and then the Elab_Body/Spec attribute is replaced by a reference
3183      --  to this defining identifier.
3184
3185      when Attribute_Elab_Body
3186         | Attribute_Elab_Spec
3187      =>
3188         --  Leave attribute unexpanded in CodePeer mode: the gnat2scil
3189         --  back-end knows how to handle these attributes directly.
3190
3191         if CodePeer_Mode then
3192            return;
3193         end if;
3194
3195         Elab_Body : declare
3196            Ent  : constant Entity_Id := Make_Temporary (Loc, 'E');
3197            Str  : String_Id;
3198            Lang : Node_Id;
3199
3200            procedure Make_Elab_String (Nod : Node_Id);
3201            --  Given Nod, an identifier, or a selected component, put the
3202            --  image into the current string literal, with double underline
3203            --  between components.
3204
3205            ----------------------
3206            -- Make_Elab_String --
3207            ----------------------
3208
3209            procedure Make_Elab_String (Nod : Node_Id) is
3210            begin
3211               if Nkind (Nod) = N_Selected_Component then
3212                  Make_Elab_String (Prefix (Nod));
3213                  Store_String_Char ('_');
3214                  Store_String_Char ('_');
3215                  Get_Name_String (Chars (Selector_Name (Nod)));
3216
3217               else
3218                  pragma Assert (Nkind (Nod) = N_Identifier);
3219                  Get_Name_String (Chars (Nod));
3220               end if;
3221
3222               Store_String_Chars (Name_Buffer (1 .. Name_Len));
3223            end Make_Elab_String;
3224
3225         --  Start of processing for Elab_Body/Elab_Spec
3226
3227         begin
3228            --  First we need to prepare the string literal for the name of
3229            --  the elaboration routine to be referenced.
3230
3231            Start_String;
3232            Make_Elab_String (Pref);
3233            Store_String_Chars ("___elab");
3234            Lang := Make_Identifier (Loc, Name_C);
3235
3236            if Id = Attribute_Elab_Body then
3237               Store_String_Char ('b');
3238            else
3239               Store_String_Char ('s');
3240            end if;
3241
3242            Str := End_String;
3243
3244            Insert_Actions (N, New_List (
3245              Make_Subprogram_Declaration (Loc,
3246                Specification =>
3247                  Make_Procedure_Specification (Loc,
3248                    Defining_Unit_Name => Ent)),
3249
3250              Make_Pragma (Loc,
3251                Chars                        => Name_Import,
3252                Pragma_Argument_Associations => New_List (
3253                  Make_Pragma_Argument_Association (Loc, Expression => Lang),
3254
3255                  Make_Pragma_Argument_Association (Loc,
3256                    Expression => Make_Identifier (Loc, Chars (Ent))),
3257
3258                  Make_Pragma_Argument_Association (Loc,
3259                    Expression => Make_String_Literal (Loc, Str))))));
3260
3261            Set_Entity (N, Ent);
3262            Rewrite (N, New_Occurrence_Of (Ent, Loc));
3263         end Elab_Body;
3264
3265      --------------------
3266      -- Elab_Subp_Body --
3267      --------------------
3268
3269      --  Always ignored. In CodePeer mode, gnat2scil knows how to handle
3270      --  this attribute directly, and if we are not in CodePeer mode it is
3271      --  entirely ignored ???
3272
3273      when Attribute_Elab_Subp_Body =>
3274         return;
3275
3276      ----------------
3277      -- Elaborated --
3278      ----------------
3279
3280      --  Elaborated is always True for preelaborated units, predefined units,
3281      --  pure units and units which have Elaborate_Body pragmas. These units
3282      --  have no elaboration entity.
3283
3284      --  Note: The Elaborated attribute is never passed to the back end
3285
3286      when Attribute_Elaborated => Elaborated : declare
3287         Elab_Id : constant Entity_Id := Elaboration_Entity (Entity (Pref));
3288
3289      begin
3290         if Present (Elab_Id) then
3291            Rewrite (N,
3292              Make_Op_Ne (Loc,
3293                Left_Opnd  => New_Occurrence_Of (Elab_Id, Loc),
3294                Right_Opnd => Make_Integer_Literal (Loc, Uint_0)));
3295
3296            Analyze_And_Resolve (N, Typ);
3297         else
3298            Rewrite (N, New_Occurrence_Of (Standard_True, Loc));
3299         end if;
3300      end Elaborated;
3301
3302      --------------
3303      -- Enum_Rep --
3304      --------------
3305
3306      when Attribute_Enum_Rep => Enum_Rep : declare
3307         Expr : Node_Id;
3308
3309      begin
3310         --  Get the expression, which is X for Enum_Type'Enum_Rep (X) or
3311         --  X'Enum_Rep.
3312
3313         if Is_Non_Empty_List (Exprs) then
3314            Expr := First (Exprs);
3315         else
3316            Expr := Pref;
3317         end if;
3318
3319         --  If the expression is an enumeration literal, it is replaced by the
3320         --  literal value.
3321
3322         if Nkind (Expr) in N_Has_Entity
3323           and then Ekind (Entity (Expr)) = E_Enumeration_Literal
3324         then
3325            Rewrite (N,
3326              Make_Integer_Literal (Loc, Enumeration_Rep (Entity (Expr))));
3327
3328         --  If this is a renaming of a literal, recover the representation
3329         --  of the original. If it renames an expression there is nothing to
3330         --  fold.
3331
3332         elsif Nkind (Expr) in N_Has_Entity
3333           and then Ekind (Entity (Expr)) = E_Constant
3334           and then Present (Renamed_Object (Entity (Expr)))
3335           and then Is_Entity_Name (Renamed_Object (Entity (Expr)))
3336           and then Ekind (Entity (Renamed_Object (Entity (Expr)))) =
3337                      E_Enumeration_Literal
3338         then
3339            Rewrite (N,
3340              Make_Integer_Literal (Loc,
3341                Enumeration_Rep (Entity (Renamed_Object (Entity (Expr))))));
3342
3343         --  If not constant-folded above, Enum_Type'Enum_Rep (X) or
3344         --  X'Enum_Rep expands to
3345
3346         --    target-type (X)
3347
3348         --  This is simply a direct conversion from the enumeration type to
3349         --  the target integer type, which is treated by the back end as a
3350         --  normal integer conversion, treating the enumeration type as an
3351         --  integer, which is exactly what we want. We set Conversion_OK to
3352         --  make sure that the analyzer does not complain about what otherwise
3353         --  might be an illegal conversion.
3354
3355         else
3356            Rewrite (N, OK_Convert_To (Typ, Relocate_Node (Expr)));
3357         end if;
3358
3359         Set_Etype (N, Typ);
3360         Analyze_And_Resolve (N, Typ);
3361      end Enum_Rep;
3362
3363      --------------
3364      -- Enum_Val --
3365      --------------
3366
3367      when Attribute_Enum_Val => Enum_Val : declare
3368         Expr : Node_Id;
3369         Btyp : constant Entity_Id  := Base_Type (Ptyp);
3370
3371      begin
3372         --  X'Enum_Val (Y) expands to
3373
3374         --    [constraint_error when _rep_to_pos (Y, False) = -1, msg]
3375         --    X!(Y);
3376
3377         Expr := Unchecked_Convert_To (Ptyp, First (Exprs));
3378
3379         Insert_Action (N,
3380           Make_Raise_Constraint_Error (Loc,
3381             Condition =>
3382               Make_Op_Eq (Loc,
3383                 Left_Opnd =>
3384                   Make_Function_Call (Loc,
3385                     Name =>
3386                       New_Occurrence_Of (TSS (Btyp, TSS_Rep_To_Pos), Loc),
3387                     Parameter_Associations => New_List (
3388                       Relocate_Node (Duplicate_Subexpr (Expr)),
3389                         New_Occurrence_Of (Standard_False, Loc))),
3390
3391                 Right_Opnd => Make_Integer_Literal (Loc, -1)),
3392             Reason => CE_Range_Check_Failed));
3393
3394         Rewrite (N, Expr);
3395         Analyze_And_Resolve (N, Ptyp);
3396      end Enum_Val;
3397
3398      --------------
3399      -- Exponent --
3400      --------------
3401
3402      --  Transforms 'Exponent into a call to the floating-point attribute
3403      --  function Exponent in Fat_xxx (where xxx is the root type)
3404
3405      when Attribute_Exponent =>
3406         Expand_Fpt_Attribute_R (N);
3407
3408      ------------------
3409      -- External_Tag --
3410      ------------------
3411
3412      --  transforme X'External_Tag into Ada.Tags.External_Tag (X'tag)
3413
3414      when Attribute_External_Tag =>
3415         Rewrite (N,
3416           Make_Function_Call (Loc,
3417             Name                   =>
3418               New_Occurrence_Of (RTE (RE_External_Tag), Loc),
3419             Parameter_Associations => New_List (
3420               Make_Attribute_Reference (Loc,
3421                 Attribute_Name => Name_Tag,
3422                 Prefix         => Prefix (N)))));
3423
3424         Analyze_And_Resolve (N, Standard_String);
3425
3426      -----------------------
3427      -- Finalization_Size --
3428      -----------------------
3429
3430      when Attribute_Finalization_Size => Finalization_Size : declare
3431         function Calculate_Header_Size return Node_Id;
3432         --  Generate a runtime call to calculate the size of the hidden header
3433         --  along with any added padding which would precede a heap-allocated
3434         --  object of the prefix type.
3435
3436         ---------------------------
3437         -- Calculate_Header_Size --
3438         ---------------------------
3439
3440         function Calculate_Header_Size return Node_Id is
3441         begin
3442            --  Generate:
3443            --    Universal_Integer
3444            --      (Header_Size_With_Padding (Pref'Alignment))
3445
3446            return
3447              Convert_To (Universal_Integer,
3448                Make_Function_Call (Loc,
3449                  Name                   =>
3450                    New_Occurrence_Of (RTE (RE_Header_Size_With_Padding), Loc),
3451
3452                  Parameter_Associations => New_List (
3453                    Make_Attribute_Reference (Loc,
3454                      Prefix         => New_Copy_Tree (Pref),
3455                      Attribute_Name => Name_Alignment))));
3456         end Calculate_Header_Size;
3457
3458         --  Local variables
3459
3460         Size : Entity_Id;
3461
3462      --  Start of Finalization_Size
3463
3464      begin
3465         --  An object of a class-wide type first requires a runtime check to
3466         --  determine whether it is actually controlled or not. Depending on
3467         --  the outcome of this check, the Finalization_Size of the object
3468         --  may be zero or some positive value.
3469         --
3470         --  In this scenario, Pref'Finalization_Size is expanded into
3471         --
3472         --    Size : Integer := 0;
3473         --
3474         --    if Needs_Finalization (Pref'Tag) then
3475         --       Size :=
3476         --         Universal_Integer
3477         --           (Header_Size_With_Padding (Pref'Alignment));
3478         --    end if;
3479         --
3480         --  and the attribute reference is replaced with a reference to Size.
3481
3482         if Is_Class_Wide_Type (Ptyp) then
3483            Size := Make_Temporary (Loc, 'S');
3484
3485            Insert_Actions (N, New_List (
3486
3487              --  Generate:
3488              --    Size : Integer := 0;
3489
3490              Make_Object_Declaration (Loc,
3491                Defining_Identifier => Size,
3492                Object_Definition   =>
3493                  New_Occurrence_Of (Standard_Integer, Loc),
3494                Expression          => Make_Integer_Literal (Loc, 0)),
3495
3496              --  Generate:
3497              --    if Needs_Finalization (Pref'Tag) then
3498              --       Size :=
3499              --         Universal_Integer
3500              --           (Header_Size_With_Padding (Pref'Alignment));
3501              --    end if;
3502
3503              Make_If_Statement (Loc,
3504                Condition              =>
3505                  Make_Function_Call (Loc,
3506                    Name                   =>
3507                      New_Occurrence_Of (RTE (RE_Needs_Finalization), Loc),
3508
3509                    Parameter_Associations => New_List (
3510                      Make_Attribute_Reference (Loc,
3511                        Prefix         => New_Copy_Tree (Pref),
3512                        Attribute_Name => Name_Tag))),
3513
3514                Then_Statements        => New_List (
3515                   Make_Assignment_Statement (Loc,
3516                     Name       => New_Occurrence_Of (Size, Loc),
3517                     Expression => Calculate_Header_Size)))));
3518
3519            Rewrite (N, New_Occurrence_Of (Size, Loc));
3520
3521         --  The prefix is known to be controlled at compile time. Calculate
3522         --  Finalization_Size by calling function Header_Size_With_Padding.
3523
3524         elsif Needs_Finalization (Ptyp) then
3525            Rewrite (N, Calculate_Header_Size);
3526
3527         --  The prefix is not an object with controlled parts, so its
3528         --  Finalization_Size is zero.
3529
3530         else
3531            Rewrite (N, Make_Integer_Literal (Loc, 0));
3532         end if;
3533
3534         --  Due to cases where the entity type of the attribute is already
3535         --  resolved the rewritten N must get re-resolved to its appropriate
3536         --  type.
3537
3538         Analyze_And_Resolve (N, Typ);
3539      end Finalization_Size;
3540
3541      -----------
3542      -- First --
3543      -----------
3544
3545      when Attribute_First =>
3546
3547         --  If the prefix type is a constrained packed array type which
3548         --  already has a Packed_Array_Impl_Type representation defined, then
3549         --  replace this attribute with a direct reference to 'First of the
3550         --  appropriate index subtype (since otherwise the back end will try
3551         --  to give us the value of 'First for this implementation type).
3552
3553         if Is_Constrained_Packed_Array (Ptyp) then
3554            Rewrite (N,
3555              Make_Attribute_Reference (Loc,
3556                Attribute_Name => Name_First,
3557                Prefix         =>
3558                  New_Occurrence_Of (Get_Index_Subtype (N), Loc)));
3559            Analyze_And_Resolve (N, Typ);
3560
3561         --  For access type, apply access check as needed
3562
3563         elsif Is_Access_Type (Ptyp) then
3564            Apply_Access_Check (N);
3565
3566         --  For scalar type, if low bound is a reference to an entity, just
3567         --  replace with a direct reference. Note that we can only have a
3568         --  reference to a constant entity at this stage, anything else would
3569         --  have already been rewritten.
3570
3571         elsif Is_Scalar_Type (Ptyp) then
3572            declare
3573               Lo : constant Node_Id := Type_Low_Bound (Ptyp);
3574            begin
3575               if Is_Entity_Name (Lo) then
3576                  Rewrite (N, New_Occurrence_Of (Entity (Lo), Loc));
3577               end if;
3578            end;
3579         end if;
3580
3581      ---------------
3582      -- First_Bit --
3583      ---------------
3584
3585      --  Compute this if component clause was present, otherwise we leave the
3586      --  computation to be completed in the back-end, since we don't know what
3587      --  layout will be chosen.
3588
3589      when Attribute_First_Bit => First_Bit_Attr : declare
3590         CE : constant Entity_Id := Entity (Selector_Name (Pref));
3591
3592      begin
3593         --  In Ada 2005 (or later) if we have the non-default bit order, then
3594         --  we return the original value as given in the component clause
3595         --  (RM 2005 13.5.2(3/2)).
3596
3597         if Present (Component_Clause (CE))
3598           and then Ada_Version >= Ada_2005
3599           and then Reverse_Bit_Order (Scope (CE))
3600         then
3601            Rewrite (N,
3602              Make_Integer_Literal (Loc,
3603                Intval => Expr_Value (First_Bit (Component_Clause (CE)))));
3604            Analyze_And_Resolve (N, Typ);
3605
3606         --  Otherwise (Ada 83/95 or Ada 2005 or later with default bit order),
3607         --  rewrite with normalized value if we know it statically.
3608
3609         elsif Known_Static_Component_Bit_Offset (CE) then
3610            Rewrite (N,
3611              Make_Integer_Literal (Loc,
3612                Component_Bit_Offset (CE) mod System_Storage_Unit));
3613            Analyze_And_Resolve (N, Typ);
3614
3615         --  Otherwise left to back end, just do universal integer checks
3616
3617         else
3618            Apply_Universal_Integer_Attribute_Checks (N);
3619         end if;
3620      end First_Bit_Attr;
3621
3622      --------------------------------
3623      -- Fixed_Value, Integer_Value --
3624      --------------------------------
3625
3626      --  We transform
3627
3628      --     fixtype'Fixed_Value (integer-value)
3629      --     inttype'Fixed_Value (fixed-value)
3630
3631      --  into
3632
3633      --     fixtype (integer-value)
3634      --     inttype (fixed-value)
3635
3636      --  respectively.
3637
3638      --  We do all the required analysis of the conversion here, because we do
3639      --  not want this to go through the fixed-point conversion circuits. Note
3640      --  that the back end always treats fixed-point as equivalent to the
3641      --  corresponding integer type anyway.
3642      --  However, in order to remove the handling of Do_Range_Check from the
3643      --  backend, we force the generation of a check on the result by
3644      --  setting the result type appropriately. Apply_Conversion_Checks
3645      --  will generate the required expansion.
3646
3647      when Attribute_Fixed_Value
3648         | Attribute_Integer_Value
3649      =>
3650         Rewrite (N,
3651           Make_Type_Conversion (Loc,
3652             Subtype_Mark => New_Occurrence_Of (Entity (Pref), Loc),
3653             Expression   => Relocate_Node (First (Exprs))));
3654
3655         --  Indicate that the result of the conversion may require a
3656         --  range check (see below);
3657
3658         Set_Etype (N, Base_Type (Entity (Pref)));
3659         Set_Analyzed (N);
3660
3661         --  Note: it might appear that a properly analyzed unchecked
3662         --  conversion would be just fine here, but that's not the case,
3663         --  since the full range checks performed by the following code
3664         --  are critical.
3665         --  Given that Fixed-point conversions are not further expanded
3666         --  to prevent the involvement of real type operations we have to
3667         --  construct two checks explicitly: one on the operand, and one
3668         --  on the result. This used to be done in part in the back-end,
3669         --  but for other targets (E.g. LLVM) it is preferable to create
3670         --  the tests in full in the front-end.
3671
3672         if Is_Fixed_Point_Type (Etype (N)) then
3673            declare
3674               Loc     : constant Source_Ptr := Sloc (N);
3675               Equiv_T : constant Entity_Id  := Make_Temporary (Loc, 'T', N);
3676               Expr    : constant Node_Id    := Expression (N);
3677               Fst     : constant Entity_Id  := Root_Type (Etype (N));
3678               Decl    : Node_Id;
3679
3680            begin
3681               Decl :=
3682                 Make_Full_Type_Declaration (Sloc (N),
3683                 Defining_Identifier => Equiv_T,
3684                 Type_Definition     =>
3685                   Make_Signed_Integer_Type_Definition (Loc,
3686                     Low_Bound  =>
3687                       Make_Integer_Literal (Loc,
3688                         Intval =>
3689                           Corresponding_Integer_Value
3690                             (Type_Low_Bound (Fst))),
3691                     High_Bound =>
3692                       Make_Integer_Literal (Loc,
3693                         Intval =>
3694                           Corresponding_Integer_Value
3695                             (Type_High_Bound (Fst)))));
3696               Insert_Action (N, Decl);
3697
3698               --  Verify that the conversion is possible
3699
3700               Generate_Range_Check (Expr, Equiv_T, CE_Overflow_Check_Failed);
3701
3702               --  and verify that the result is in range
3703
3704               Generate_Range_Check (N, Etype (N), CE_Range_Check_Failed);
3705            end;
3706         end if;
3707
3708      -----------
3709      -- Floor --
3710      -----------
3711
3712      --  Transforms 'Floor into a call to the floating-point attribute
3713      --  function Floor in Fat_xxx (where xxx is the root type)
3714
3715      when Attribute_Floor =>
3716         Expand_Fpt_Attribute_R (N);
3717
3718      ----------
3719      -- Fore --
3720      ----------
3721
3722      --  For the fixed-point type Typ:
3723
3724      --    Typ'Fore
3725
3726      --  expands into
3727
3728      --    Result_Type (System.Fore (Universal_Real (Type'First)),
3729      --                              Universal_Real (Type'Last))
3730
3731      --  Note that we know that the type is a non-static subtype, or Fore
3732      --  would have itself been computed dynamically in Eval_Attribute.
3733
3734      when Attribute_Fore =>
3735         Rewrite (N,
3736           Convert_To (Typ,
3737             Make_Function_Call (Loc,
3738               Name                   =>
3739                 New_Occurrence_Of (RTE (RE_Fore), Loc),
3740
3741               Parameter_Associations => New_List (
3742                 Convert_To (Universal_Real,
3743                   Make_Attribute_Reference (Loc,
3744                     Prefix         => New_Occurrence_Of (Ptyp, Loc),
3745                     Attribute_Name => Name_First)),
3746
3747                 Convert_To (Universal_Real,
3748                   Make_Attribute_Reference (Loc,
3749                     Prefix         => New_Occurrence_Of (Ptyp, Loc),
3750                     Attribute_Name => Name_Last))))));
3751
3752         Analyze_And_Resolve (N, Typ);
3753
3754      --------------
3755      -- Fraction --
3756      --------------
3757
3758      --  Transforms 'Fraction into a call to the floating-point attribute
3759      --  function Fraction in Fat_xxx (where xxx is the root type)
3760
3761      when Attribute_Fraction =>
3762         Expand_Fpt_Attribute_R (N);
3763
3764      --------------
3765      -- From_Any --
3766      --------------
3767
3768      when Attribute_From_Any => From_Any : declare
3769         P_Type : constant Entity_Id := Etype (Pref);
3770         Decls  : constant List_Id   := New_List;
3771
3772      begin
3773         Rewrite (N,
3774           Build_From_Any_Call (P_Type,
3775             Relocate_Node (First (Exprs)),
3776             Decls));
3777         Insert_Actions (N, Decls);
3778         Analyze_And_Resolve (N, P_Type);
3779      end From_Any;
3780
3781      ----------------------
3782      -- Has_Same_Storage --
3783      ----------------------
3784
3785      when Attribute_Has_Same_Storage => Has_Same_Storage : declare
3786         Loc : constant Source_Ptr := Sloc (N);
3787
3788         X   : constant Node_Id := Prefix (N);
3789         Y   : constant Node_Id := First (Expressions (N));
3790         --  The arguments
3791
3792         X_Addr : Node_Id;
3793         Y_Addr : Node_Id;
3794         --  Rhe expressions for their addresses
3795
3796         X_Size : Node_Id;
3797         Y_Size : Node_Id;
3798         --  Rhe expressions for their sizes
3799
3800      begin
3801         --  The attribute is expanded as:
3802
3803         --    (X'address = Y'address)
3804         --      and then (X'Size = Y'Size)
3805
3806         --  If both arguments have the same Etype the second conjunct can be
3807         --  omitted.
3808
3809         X_Addr :=
3810           Make_Attribute_Reference (Loc,
3811             Attribute_Name => Name_Address,
3812             Prefix         => New_Copy_Tree (X));
3813
3814         Y_Addr :=
3815           Make_Attribute_Reference (Loc,
3816             Attribute_Name => Name_Address,
3817             Prefix         => New_Copy_Tree (Y));
3818
3819         X_Size :=
3820           Make_Attribute_Reference (Loc,
3821             Attribute_Name => Name_Size,
3822             Prefix         => New_Copy_Tree (X));
3823
3824         Y_Size :=
3825           Make_Attribute_Reference (Loc,
3826             Attribute_Name => Name_Size,
3827             Prefix         => New_Copy_Tree (Y));
3828
3829         if Etype (X) = Etype (Y) then
3830            Rewrite (N,
3831              Make_Op_Eq (Loc,
3832                Left_Opnd  => X_Addr,
3833                Right_Opnd => Y_Addr));
3834         else
3835            Rewrite (N,
3836              Make_Op_And (Loc,
3837                Left_Opnd  =>
3838                  Make_Op_Eq (Loc,
3839                    Left_Opnd  => X_Addr,
3840                    Right_Opnd => Y_Addr),
3841                Right_Opnd =>
3842                  Make_Op_Eq (Loc,
3843                    Left_Opnd  => X_Size,
3844                    Right_Opnd => Y_Size)));
3845         end if;
3846
3847         Analyze_And_Resolve (N, Standard_Boolean);
3848      end Has_Same_Storage;
3849
3850      --------------
3851      -- Identity --
3852      --------------
3853
3854      --  For an exception returns a reference to the exception data:
3855      --      Exception_Id!(Prefix'Reference)
3856
3857      --  For a task it returns a reference to the _task_id component of
3858      --  corresponding record:
3859
3860      --    taskV!(Prefix)._Task_Id, converted to the type Task_Id defined
3861
3862      --  in Ada.Task_Identification
3863
3864      when Attribute_Identity => Identity : declare
3865         Id_Kind : Entity_Id;
3866
3867      begin
3868         if Ptyp = Standard_Exception_Type then
3869            Id_Kind := RTE (RE_Exception_Id);
3870
3871            if Present (Renamed_Object (Entity (Pref))) then
3872               Set_Entity (Pref, Renamed_Object (Entity (Pref)));
3873            end if;
3874
3875            Rewrite (N,
3876              Unchecked_Convert_To (Id_Kind, Make_Reference (Loc, Pref)));
3877         else
3878            Id_Kind := RTE (RO_AT_Task_Id);
3879
3880            --  If the prefix is a task interface, the Task_Id is obtained
3881            --  dynamically through a dispatching call, as for other task
3882            --  attributes applied to interfaces.
3883
3884            if Ada_Version >= Ada_2005
3885              and then Ekind (Ptyp) = E_Class_Wide_Type
3886              and then Is_Interface (Ptyp)
3887              and then Is_Task_Interface (Ptyp)
3888            then
3889               Rewrite (N,
3890                 Unchecked_Convert_To
3891                   (Id_Kind, Build_Disp_Get_Task_Id_Call (Pref)));
3892
3893            else
3894               Rewrite (N,
3895                 Unchecked_Convert_To (Id_Kind, Concurrent_Ref (Pref)));
3896            end if;
3897         end if;
3898
3899         Analyze_And_Resolve (N, Id_Kind);
3900      end Identity;
3901
3902      -----------
3903      -- Image --
3904      -----------
3905
3906      --  Image attribute is handled in separate unit Exp_Imgv
3907
3908      when Attribute_Image =>
3909
3910         --  Leave attribute unexpanded in CodePeer mode: the gnat2scil
3911         --  back-end knows how to handle this attribute directly.
3912
3913         if CodePeer_Mode then
3914            return;
3915         end if;
3916
3917         Expand_Image_Attribute (N);
3918
3919      ---------
3920      -- Img --
3921      ---------
3922
3923      --  X'Img is expanded to typ'Image (X), where typ is the type of X
3924
3925      when Attribute_Img =>
3926         Expand_Image_Attribute (N);
3927
3928      -----------
3929      -- Input --
3930      -----------
3931
3932      when Attribute_Input => Input : declare
3933         P_Type : constant Entity_Id := Entity (Pref);
3934         B_Type : constant Entity_Id := Base_Type (P_Type);
3935         U_Type : constant Entity_Id := Underlying_Type (P_Type);
3936         Strm   : constant Node_Id   := First (Exprs);
3937         Fname  : Entity_Id;
3938         Decl   : Node_Id;
3939         Call   : Node_Id;
3940         Prag   : Node_Id;
3941         Arg2   : Node_Id;
3942         Rfunc  : Node_Id;
3943
3944         Cntrl  : Node_Id := Empty;
3945         --  Value for controlling argument in call. Always Empty except in
3946         --  the dispatching (class-wide type) case, where it is a reference
3947         --  to the dummy object initialized to the right internal tag.
3948
3949         procedure Freeze_Stream_Subprogram (F : Entity_Id);
3950         --  The expansion of the attribute reference may generate a call to
3951         --  a user-defined stream subprogram that is frozen by the call. This
3952         --  can lead to access-before-elaboration problem if the reference
3953         --  appears in an object declaration and the subprogram body has not
3954         --  been seen. The freezing of the subprogram requires special code
3955         --  because it appears in an expanded context where expressions do
3956         --  not freeze their constituents.
3957
3958         ------------------------------
3959         -- Freeze_Stream_Subprogram --
3960         ------------------------------
3961
3962         procedure Freeze_Stream_Subprogram (F : Entity_Id) is
3963            Decl : constant Node_Id := Unit_Declaration_Node (F);
3964            Bod  : Node_Id;
3965
3966         begin
3967            --  If this is user-defined subprogram, the corresponding
3968            --  stream function appears as a renaming-as-body, and the
3969            --  user subprogram must be retrieved by tree traversal.
3970
3971            if Present (Decl)
3972              and then Nkind (Decl) = N_Subprogram_Declaration
3973              and then Present (Corresponding_Body (Decl))
3974            then
3975               Bod := Corresponding_Body (Decl);
3976
3977               if Nkind (Unit_Declaration_Node (Bod)) =
3978                 N_Subprogram_Renaming_Declaration
3979               then
3980                  Set_Is_Frozen (Entity (Name (Unit_Declaration_Node (Bod))));
3981               end if;
3982            end if;
3983         end Freeze_Stream_Subprogram;
3984
3985      --  Start of processing for Input
3986
3987      begin
3988         --  If no underlying type, we have an error that will be diagnosed
3989         --  elsewhere, so here we just completely ignore the expansion.
3990
3991         if No (U_Type) then
3992            return;
3993         end if;
3994
3995         --  Stream operations can appear in user code even if the restriction
3996         --  No_Streams is active (for example, when instantiating a predefined
3997         --  container). In that case rewrite the attribute as a Raise to
3998         --  prevent any run-time use.
3999
4000         if Restriction_Active (No_Streams) then
4001            Rewrite (N,
4002              Make_Raise_Program_Error (Sloc (N),
4003                Reason => PE_Stream_Operation_Not_Allowed));
4004            Set_Etype (N, B_Type);
4005            return;
4006         end if;
4007
4008         --  If there is a TSS for Input, just call it
4009
4010         Fname := Find_Stream_Subprogram (P_Type, TSS_Stream_Input);
4011
4012         if Present (Fname) then
4013            null;
4014
4015         else
4016            --  If there is a Stream_Convert pragma, use it, we rewrite
4017
4018            --     sourcetyp'Input (stream)
4019
4020            --  as
4021
4022            --     sourcetyp (streamread (strmtyp'Input (stream)));
4023
4024            --  where streamread is the given Read function that converts an
4025            --  argument of type strmtyp to type sourcetyp or a type from which
4026            --  it is derived (extra conversion required for the derived case).
4027
4028            Prag := Get_Stream_Convert_Pragma (P_Type);
4029
4030            if Present (Prag) then
4031               Arg2  := Next (First (Pragma_Argument_Associations (Prag)));
4032               Rfunc := Entity (Expression (Arg2));
4033
4034               Rewrite (N,
4035                 Convert_To (B_Type,
4036                   Make_Function_Call (Loc,
4037                     Name => New_Occurrence_Of (Rfunc, Loc),
4038                     Parameter_Associations => New_List (
4039                       Make_Attribute_Reference (Loc,
4040                         Prefix =>
4041                           New_Occurrence_Of
4042                             (Etype (First_Formal (Rfunc)), Loc),
4043                         Attribute_Name => Name_Input,
4044                         Expressions => Exprs)))));
4045
4046               Analyze_And_Resolve (N, B_Type);
4047               return;
4048
4049            --  Elementary types
4050
4051            elsif Is_Elementary_Type (U_Type) then
4052
4053               --  A special case arises if we have a defined _Read routine,
4054               --  since in this case we are required to call this routine.
4055
4056               declare
4057                  Typ : Entity_Id := P_Type;
4058               begin
4059                  if Present (Full_View (Typ)) then
4060                     Typ := Full_View (Typ);
4061                  end if;
4062
4063                  if Present (TSS (Base_Type (Typ), TSS_Stream_Read)) then
4064                     Build_Record_Or_Elementary_Input_Function
4065                       (Loc, Typ, Decl, Fname, Use_Underlying => False);
4066                     Insert_Action (N, Decl);
4067
4068                  --  For normal cases, we call the I_xxx routine directly
4069
4070                  else
4071                     Rewrite (N, Build_Elementary_Input_Call (N));
4072                     Analyze_And_Resolve (N, P_Type);
4073                     return;
4074                  end if;
4075               end;
4076
4077            --  Array type case
4078
4079            elsif Is_Array_Type (U_Type) then
4080               Build_Array_Input_Function (Loc, U_Type, Decl, Fname);
4081               Compile_Stream_Body_In_Scope (N, Decl, U_Type, Check => False);
4082
4083            --  Dispatching case with class-wide type
4084
4085            elsif Is_Class_Wide_Type (P_Type) then
4086
4087               --  No need to do anything else compiling under restriction
4088               --  No_Dispatching_Calls. During the semantic analysis we
4089               --  already notified such violation.
4090
4091               if Restriction_Active (No_Dispatching_Calls) then
4092                  return;
4093               end if;
4094
4095               declare
4096                  Rtyp : constant Entity_Id := Root_Type (P_Type);
4097                  Expr : Node_Id;
4098
4099               begin
4100                  --  Read the internal tag (RM 13.13.2(34)) and use it to
4101                  --  initialize a dummy tag value. We used to generate:
4102                  --
4103                  --     Descendant_Tag (String'Input (Strm), P_Type);
4104                  --
4105                  --  which turns into a call to String_Input_Blk_IO. However,
4106                  --  if the input is malformed, that could try to read an
4107                  --  enormous String, causing chaos. So instead we call
4108                  --  String_Input_Tag, which does the same thing as
4109                  --  String_Input_Blk_IO, except that if the String is
4110                  --  absurdly long, it raises an exception.
4111                  --
4112                  --  This value is used only to provide a controlling
4113                  --  argument for the eventual _Input call. Descendant_Tag is
4114                  --  called rather than Internal_Tag to ensure that we have a
4115                  --  tag for a type that is descended from the prefix type and
4116                  --  declared at the same accessibility level (the exception
4117                  --  Tag_Error will be raised otherwise). The level check is
4118                  --  required for Ada 2005 because tagged types can be
4119                  --  extended in nested scopes (AI-344).
4120
4121                  --  Note: we used to generate an explicit declaration of a
4122                  --  constant Ada.Tags.Tag object, and use an occurrence of
4123                  --  this constant in Cntrl, but this caused a secondary stack
4124                  --  leak.
4125
4126                  Expr :=
4127                    Make_Function_Call (Loc,
4128                      Name                   =>
4129                        New_Occurrence_Of (RTE (RE_Descendant_Tag), Loc),
4130                      Parameter_Associations => New_List (
4131                        Make_Function_Call (Loc,
4132                          Name                   =>
4133                            New_Occurrence_Of
4134                              (RTE (RE_String_Input_Tag), Loc),
4135                          Parameter_Associations => New_List (
4136                            Relocate_Node (Duplicate_Subexpr (Strm)))),
4137
4138                        Make_Attribute_Reference (Loc,
4139                          Prefix         => New_Occurrence_Of (P_Type, Loc),
4140                          Attribute_Name => Name_Tag)));
4141
4142                  Set_Etype (Expr, RTE (RE_Tag));
4143
4144                  --  Now we need to get the entity for the call, and construct
4145                  --  a function call node, where we preset a reference to Dnn
4146                  --  as the controlling argument (doing an unchecked convert
4147                  --  to the class-wide tagged type to make it look like a real
4148                  --  tagged object).
4149
4150                  Fname := Find_Prim_Op (Rtyp, TSS_Stream_Input);
4151                  Cntrl := Unchecked_Convert_To (P_Type, Expr);
4152                  Set_Etype (Cntrl, P_Type);
4153                  Set_Parent (Cntrl, N);
4154               end;
4155
4156            --  For tagged types, use the primitive Input function
4157
4158            elsif Is_Tagged_Type (U_Type) then
4159               Fname := Find_Prim_Op (U_Type, TSS_Stream_Input);
4160
4161            --  All other record type cases, including protected records. The
4162            --  latter only arise for expander generated code for handling
4163            --  shared passive partition access.
4164
4165            else
4166               pragma Assert
4167                 (Is_Record_Type (U_Type) or else Is_Protected_Type (U_Type));
4168
4169               --  Ada 2005 (AI-216): Program_Error is raised executing default
4170               --  implementation of the Input attribute of an unchecked union
4171               --  type if the type lacks default discriminant values.
4172
4173               if Is_Unchecked_Union (Base_Type (U_Type))
4174                 and then No (Discriminant_Constraint (U_Type))
4175               then
4176                  Insert_Action (N,
4177                    Make_Raise_Program_Error (Loc,
4178                      Reason => PE_Unchecked_Union_Restriction));
4179
4180                  return;
4181               end if;
4182
4183               --  Build the type's Input function, passing the subtype rather
4184               --  than its base type, because checks are needed in the case of
4185               --  constrained discriminants (see Ada 2012 AI05-0192).
4186
4187               Build_Record_Or_Elementary_Input_Function
4188                 (Loc, U_Type, Decl, Fname);
4189               Insert_Action (N, Decl);
4190
4191               if Nkind (Parent (N)) = N_Object_Declaration
4192                 and then Is_Record_Type (U_Type)
4193               then
4194                  --  The stream function may contain calls to user-defined
4195                  --  Read procedures for individual components.
4196
4197                  declare
4198                     Comp : Entity_Id;
4199                     Func : Entity_Id;
4200
4201                  begin
4202                     Comp := First_Component (U_Type);
4203                     while Present (Comp) loop
4204                        Func :=
4205                          Find_Stream_Subprogram
4206                            (Etype (Comp), TSS_Stream_Read);
4207
4208                        if Present (Func) then
4209                           Freeze_Stream_Subprogram (Func);
4210                        end if;
4211
4212                        Next_Component (Comp);
4213                     end loop;
4214                  end;
4215               end if;
4216            end if;
4217         end if;
4218
4219         --  If we fall through, Fname is the function to be called. The result
4220         --  is obtained by calling the appropriate function, then converting
4221         --  the result. The conversion does a subtype check.
4222
4223         Call :=
4224           Make_Function_Call (Loc,
4225             Name => New_Occurrence_Of (Fname, Loc),
4226             Parameter_Associations => New_List (
4227                Relocate_Node (Strm)));
4228
4229         Set_Controlling_Argument (Call, Cntrl);
4230         Rewrite (N, Unchecked_Convert_To (P_Type, Call));
4231         Analyze_And_Resolve (N, P_Type);
4232
4233         if Nkind (Parent (N)) = N_Object_Declaration then
4234            Freeze_Stream_Subprogram (Fname);
4235         end if;
4236      end Input;
4237
4238      -------------------
4239      -- Invalid_Value --
4240      -------------------
4241
4242      when Attribute_Invalid_Value =>
4243         Rewrite (N, Get_Simple_Init_Val (Ptyp, N));
4244
4245      ----------
4246      -- Last --
4247      ----------
4248
4249      when Attribute_Last =>
4250
4251         --  If the prefix type is a constrained packed array type which
4252         --  already has a Packed_Array_Impl_Type representation defined, then
4253         --  replace this attribute with a direct reference to 'Last of the
4254         --  appropriate index subtype (since otherwise the back end will try
4255         --  to give us the value of 'Last for this implementation type).
4256
4257         if Is_Constrained_Packed_Array (Ptyp) then
4258            Rewrite (N,
4259              Make_Attribute_Reference (Loc,
4260                Attribute_Name => Name_Last,
4261                Prefix => New_Occurrence_Of (Get_Index_Subtype (N), Loc)));
4262            Analyze_And_Resolve (N, Typ);
4263
4264         --  For access type, apply access check as needed
4265
4266         elsif Is_Access_Type (Ptyp) then
4267            Apply_Access_Check (N);
4268
4269         --  For scalar type, if low bound is a reference to an entity, just
4270         --  replace with a direct reference. Note that we can only have a
4271         --  reference to a constant entity at this stage, anything else would
4272         --  have already been rewritten.
4273
4274         elsif Is_Scalar_Type (Ptyp) then
4275            declare
4276               Hi : constant Node_Id := Type_High_Bound (Ptyp);
4277            begin
4278               if Is_Entity_Name (Hi) then
4279                  Rewrite (N, New_Occurrence_Of (Entity (Hi), Loc));
4280               end if;
4281            end;
4282         end if;
4283
4284      --------------
4285      -- Last_Bit --
4286      --------------
4287
4288      --  We compute this if a component clause was present, otherwise we leave
4289      --  the computation up to the back end, since we don't know what layout
4290      --  will be chosen.
4291
4292      when Attribute_Last_Bit => Last_Bit_Attr : declare
4293         CE : constant Entity_Id := Entity (Selector_Name (Pref));
4294
4295      begin
4296         --  In Ada 2005 (or later) if we have the non-default bit order, then
4297         --  we return the original value as given in the component clause
4298         --  (RM 2005 13.5.2(3/2)).
4299
4300         if Present (Component_Clause (CE))
4301           and then Ada_Version >= Ada_2005
4302           and then Reverse_Bit_Order (Scope (CE))
4303         then
4304            Rewrite (N,
4305              Make_Integer_Literal (Loc,
4306                Intval => Expr_Value (Last_Bit (Component_Clause (CE)))));
4307            Analyze_And_Resolve (N, Typ);
4308
4309         --  Otherwise (Ada 83/95 or Ada 2005 or later with default bit order),
4310         --  rewrite with normalized value if we know it statically.
4311
4312         elsif Known_Static_Component_Bit_Offset (CE)
4313           and then Known_Static_Esize (CE)
4314         then
4315            Rewrite (N,
4316              Make_Integer_Literal (Loc,
4317               Intval => (Component_Bit_Offset (CE) mod System_Storage_Unit)
4318                                + Esize (CE) - 1));
4319            Analyze_And_Resolve (N, Typ);
4320
4321         --  Otherwise leave to back end, just apply universal integer checks
4322
4323         else
4324            Apply_Universal_Integer_Attribute_Checks (N);
4325         end if;
4326      end Last_Bit_Attr;
4327
4328      ------------------
4329      -- Leading_Part --
4330      ------------------
4331
4332      --  Transforms 'Leading_Part into a call to the floating-point attribute
4333      --  function Leading_Part in Fat_xxx (where xxx is the root type)
4334
4335      --  Note: strictly, we should generate special case code to deal with
4336      --  absurdly large positive arguments (greater than Integer'Last), which
4337      --  result in returning the first argument unchanged, but it hardly seems
4338      --  worth the effort. We raise constraint error for absurdly negative
4339      --  arguments which is fine.
4340
4341      when Attribute_Leading_Part =>
4342         Expand_Fpt_Attribute_RI (N);
4343
4344      ------------
4345      -- Length --
4346      ------------
4347
4348      when Attribute_Length => Length : declare
4349         Ityp : Entity_Id;
4350         Xnum : Uint;
4351
4352      begin
4353         --  Processing for packed array types
4354
4355         if Is_Array_Type (Ptyp) and then Is_Packed (Ptyp) then
4356            Ityp := Get_Index_Subtype (N);
4357
4358            --  If the index type, Ityp, is an enumeration type with holes,
4359            --  then we calculate X'Length explicitly using
4360
4361            --     Typ'Max
4362            --       (0, Ityp'Pos (X'Last  (N)) -
4363            --           Ityp'Pos (X'First (N)) + 1);
4364
4365            --  Since the bounds in the template are the representation values
4366            --  and the back end would get the wrong value.
4367
4368            if Is_Enumeration_Type (Ityp)
4369              and then Present (Enum_Pos_To_Rep (Base_Type (Ityp)))
4370            then
4371               if No (Exprs) then
4372                  Xnum := Uint_1;
4373               else
4374                  Xnum := Expr_Value (First (Expressions (N)));
4375               end if;
4376
4377               Rewrite (N,
4378                 Make_Attribute_Reference (Loc,
4379                   Prefix         => New_Occurrence_Of (Typ, Loc),
4380                   Attribute_Name => Name_Max,
4381                   Expressions    => New_List
4382                     (Make_Integer_Literal (Loc, 0),
4383
4384                      Make_Op_Add (Loc,
4385                        Left_Opnd =>
4386                          Make_Op_Subtract (Loc,
4387                            Left_Opnd =>
4388                              Make_Attribute_Reference (Loc,
4389                                Prefix => New_Occurrence_Of (Ityp, Loc),
4390                                Attribute_Name => Name_Pos,
4391
4392                                Expressions => New_List (
4393                                  Make_Attribute_Reference (Loc,
4394                                    Prefix => Duplicate_Subexpr (Pref),
4395                                   Attribute_Name => Name_Last,
4396                                    Expressions => New_List (
4397                                      Make_Integer_Literal (Loc, Xnum))))),
4398
4399                            Right_Opnd =>
4400                              Make_Attribute_Reference (Loc,
4401                                Prefix => New_Occurrence_Of (Ityp, Loc),
4402                                Attribute_Name => Name_Pos,
4403
4404                                Expressions => New_List (
4405                                  Make_Attribute_Reference (Loc,
4406                                    Prefix =>
4407                                      Duplicate_Subexpr_No_Checks (Pref),
4408                                   Attribute_Name => Name_First,
4409                                    Expressions => New_List (
4410                                      Make_Integer_Literal (Loc, Xnum)))))),
4411
4412                        Right_Opnd => Make_Integer_Literal (Loc, 1)))));
4413
4414               Analyze_And_Resolve (N, Typ, Suppress => All_Checks);
4415               return;
4416
4417            --  If the prefix type is a constrained packed array type which
4418            --  already has a Packed_Array_Impl_Type representation defined,
4419            --  then replace this attribute with a reference to 'Range_Length
4420            --  of the appropriate index subtype (since otherwise the
4421            --  back end will try to give us the value of 'Length for
4422            --  this implementation type).s
4423
4424            elsif Is_Constrained (Ptyp) then
4425               Rewrite (N,
4426                 Make_Attribute_Reference (Loc,
4427                   Attribute_Name => Name_Range_Length,
4428                   Prefix => New_Occurrence_Of (Ityp, Loc)));
4429               Analyze_And_Resolve (N, Typ);
4430            end if;
4431
4432         --  Access type case
4433
4434         elsif Is_Access_Type (Ptyp) then
4435            Apply_Access_Check (N);
4436
4437            --  If the designated type is a packed array type, then we convert
4438            --  the reference to:
4439
4440            --    typ'Max (0, 1 +
4441            --                xtyp'Pos (Pref'Last (Expr)) -
4442            --                xtyp'Pos (Pref'First (Expr)));
4443
4444            --  This is a bit complex, but it is the easiest thing to do that
4445            --  works in all cases including enum types with holes xtyp here
4446            --  is the appropriate index type.
4447
4448            declare
4449               Dtyp : constant Entity_Id := Designated_Type (Ptyp);
4450               Xtyp : Entity_Id;
4451
4452            begin
4453               if Is_Array_Type (Dtyp) and then Is_Packed (Dtyp) then
4454                  Xtyp := Get_Index_Subtype (N);
4455
4456                  Rewrite (N,
4457                    Make_Attribute_Reference (Loc,
4458                      Prefix         => New_Occurrence_Of (Typ, Loc),
4459                      Attribute_Name => Name_Max,
4460                      Expressions    => New_List (
4461                        Make_Integer_Literal (Loc, 0),
4462
4463                        Make_Op_Add (Loc,
4464                          Make_Integer_Literal (Loc, 1),
4465                          Make_Op_Subtract (Loc,
4466                            Left_Opnd =>
4467                              Make_Attribute_Reference (Loc,
4468                                Prefix => New_Occurrence_Of (Xtyp, Loc),
4469                                Attribute_Name => Name_Pos,
4470                                Expressions    => New_List (
4471                                  Make_Attribute_Reference (Loc,
4472                                    Prefix => Duplicate_Subexpr (Pref),
4473                                    Attribute_Name => Name_Last,
4474                                    Expressions =>
4475                                      New_Copy_List (Exprs)))),
4476
4477                            Right_Opnd =>
4478                              Make_Attribute_Reference (Loc,
4479                                Prefix => New_Occurrence_Of (Xtyp, Loc),
4480                                Attribute_Name => Name_Pos,
4481                                Expressions    => New_List (
4482                                  Make_Attribute_Reference (Loc,
4483                                    Prefix =>
4484                                      Duplicate_Subexpr_No_Checks (Pref),
4485                                    Attribute_Name => Name_First,
4486                                    Expressions =>
4487                                      New_Copy_List (Exprs)))))))));
4488
4489                  Analyze_And_Resolve (N, Typ);
4490               end if;
4491            end;
4492
4493         --  Otherwise leave it to the back end
4494
4495         else
4496            Apply_Universal_Integer_Attribute_Checks (N);
4497         end if;
4498      end Length;
4499
4500      --  Attribute Loop_Entry is replaced with a reference to a constant value
4501      --  which captures the prefix at the entry point of the related loop. The
4502      --  loop itself may be transformed into a conditional block.
4503
4504      when Attribute_Loop_Entry =>
4505         Expand_Loop_Entry_Attribute (N);
4506
4507      -------------
4508      -- Machine --
4509      -------------
4510
4511      --  Transforms 'Machine into a call to the floating-point attribute
4512      --  function Machine in Fat_xxx (where xxx is the root type).
4513      --  Expansion is avoided for cases the back end can handle directly.
4514
4515      when Attribute_Machine =>
4516         if not Is_Inline_Floating_Point_Attribute (N) then
4517            Expand_Fpt_Attribute_R (N);
4518         end if;
4519
4520      ----------------------
4521      -- Machine_Rounding --
4522      ----------------------
4523
4524      --  Transforms 'Machine_Rounding into a call to the floating-point
4525      --  attribute function Machine_Rounding in Fat_xxx (where xxx is the root
4526      --  type). Expansion is avoided for cases the back end can handle
4527      --  directly.
4528
4529      when Attribute_Machine_Rounding =>
4530         if not Is_Inline_Floating_Point_Attribute (N) then
4531            Expand_Fpt_Attribute_R (N);
4532         end if;
4533
4534      ------------------
4535      -- Machine_Size --
4536      ------------------
4537
4538      --  Machine_Size is equivalent to Object_Size, so transform it into
4539      --  Object_Size and that way the back end never sees Machine_Size.
4540
4541      when Attribute_Machine_Size =>
4542         Rewrite (N,
4543           Make_Attribute_Reference (Loc,
4544             Prefix => Prefix (N),
4545             Attribute_Name => Name_Object_Size));
4546
4547         Analyze_And_Resolve (N, Typ);
4548
4549      --------------
4550      -- Mantissa --
4551      --------------
4552
4553      --  The only case that can get this far is the dynamic case of the old
4554      --  Ada 83 Mantissa attribute for the fixed-point case. For this case,
4555      --  we expand:
4556
4557      --    typ'Mantissa
4558
4559      --  into
4560
4561      --    ityp (System.Mantissa.Mantissa_Value
4562      --           (Integer'Integer_Value (typ'First),
4563      --            Integer'Integer_Value (typ'Last)));
4564
4565      when Attribute_Mantissa =>
4566         Rewrite (N,
4567           Convert_To (Typ,
4568             Make_Function_Call (Loc,
4569               Name                   =>
4570                 New_Occurrence_Of (RTE (RE_Mantissa_Value), Loc),
4571
4572               Parameter_Associations => New_List (
4573                 Make_Attribute_Reference (Loc,
4574                   Prefix         => New_Occurrence_Of (Standard_Integer, Loc),
4575                   Attribute_Name => Name_Integer_Value,
4576                   Expressions    => New_List (
4577                     Make_Attribute_Reference (Loc,
4578                       Prefix         => New_Occurrence_Of (Ptyp, Loc),
4579                       Attribute_Name => Name_First))),
4580
4581                 Make_Attribute_Reference (Loc,
4582                   Prefix         => New_Occurrence_Of (Standard_Integer, Loc),
4583                   Attribute_Name => Name_Integer_Value,
4584                   Expressions    => New_List (
4585                     Make_Attribute_Reference (Loc,
4586                       Prefix         => New_Occurrence_Of (Ptyp, Loc),
4587                       Attribute_Name => Name_Last)))))));
4588
4589         Analyze_And_Resolve (N, Typ);
4590
4591      ---------
4592      -- Max --
4593      ---------
4594
4595      when Attribute_Max =>
4596         Expand_Min_Max_Attribute (N);
4597
4598      ----------------------------------
4599      -- Max_Size_In_Storage_Elements --
4600      ----------------------------------
4601
4602      when Attribute_Max_Size_In_Storage_Elements => declare
4603         Typ  : constant Entity_Id := Etype (N);
4604         Attr : Node_Id;
4605
4606         Conversion_Added : Boolean := False;
4607         --  A flag which tracks whether the original attribute has been
4608         --  wrapped inside a type conversion.
4609
4610      begin
4611         --  If the prefix is X'Class, we transform it into a direct reference
4612         --  to the class-wide type, because the back end must not see a 'Class
4613         --  reference. See also 'Size.
4614
4615         if Is_Entity_Name (Pref)
4616           and then Is_Class_Wide_Type (Entity (Pref))
4617         then
4618            Rewrite (Prefix (N), New_Occurrence_Of (Entity (Pref), Loc));
4619            return;
4620         end if;
4621
4622         Apply_Universal_Integer_Attribute_Checks (N);
4623
4624         --  The universal integer check may sometimes add a type conversion,
4625         --  retrieve the original attribute reference from the expression.
4626
4627         Attr := N;
4628
4629         if Nkind (Attr) = N_Type_Conversion then
4630            Attr := Expression (Attr);
4631            Conversion_Added := True;
4632         end if;
4633
4634         pragma Assert (Nkind (Attr) = N_Attribute_Reference);
4635
4636         --  Heap-allocated controlled objects contain two extra pointers which
4637         --  are not part of the actual type. Transform the attribute reference
4638         --  into a runtime expression to add the size of the hidden header.
4639
4640         if Needs_Finalization (Ptyp)
4641           and then not Header_Size_Added (Attr)
4642         then
4643            Set_Header_Size_Added (Attr);
4644
4645            --  Generate:
4646            --    P'Max_Size_In_Storage_Elements +
4647            --      Universal_Integer
4648            --        (Header_Size_With_Padding (Ptyp'Alignment))
4649
4650            Rewrite (Attr,
4651              Make_Op_Add (Loc,
4652                Left_Opnd  => Relocate_Node (Attr),
4653                Right_Opnd =>
4654                  Convert_To (Universal_Integer,
4655                    Make_Function_Call (Loc,
4656                      Name                   =>
4657                        New_Occurrence_Of
4658                          (RTE (RE_Header_Size_With_Padding), Loc),
4659
4660                      Parameter_Associations => New_List (
4661                        Make_Attribute_Reference (Loc,
4662                          Prefix         =>
4663                            New_Occurrence_Of (Ptyp, Loc),
4664                          Attribute_Name => Name_Alignment))))));
4665
4666            --  Add a conversion to the target type
4667
4668            if not Conversion_Added then
4669               Rewrite (Attr,
4670                 Make_Type_Conversion (Loc,
4671                   Subtype_Mark => New_Occurrence_Of (Typ, Loc),
4672                   Expression   => Relocate_Node (Attr)));
4673            end if;
4674
4675            Analyze (Attr);
4676            return;
4677         end if;
4678      end;
4679
4680      --------------------
4681      -- Mechanism_Code --
4682      --------------------
4683
4684      when Attribute_Mechanism_Code =>
4685
4686         --  We must replace the prefix in the renamed case
4687
4688         if Is_Entity_Name (Pref)
4689           and then Present (Alias (Entity (Pref)))
4690         then
4691            Set_Renamed_Subprogram (Pref, Alias (Entity (Pref)));
4692         end if;
4693
4694      ---------
4695      -- Min --
4696      ---------
4697
4698      when Attribute_Min =>
4699         Expand_Min_Max_Attribute (N);
4700
4701      ---------
4702      -- Mod --
4703      ---------
4704
4705      when Attribute_Mod => Mod_Case : declare
4706         Arg  : constant Node_Id := Relocate_Node (First (Exprs));
4707         Hi   : constant Node_Id := Type_High_Bound (Etype (Arg));
4708         Modv : constant Uint    := Modulus (Btyp);
4709
4710      begin
4711
4712         --  This is not so simple. The issue is what type to use for the
4713         --  computation of the modular value.
4714
4715         --  The easy case is when the modulus value is within the bounds
4716         --  of the signed integer type of the argument. In this case we can
4717         --  just do the computation in that signed integer type, and then
4718         --  do an ordinary conversion to the target type.
4719
4720         if Modv <= Expr_Value (Hi) then
4721            Rewrite (N,
4722              Convert_To (Btyp,
4723                Make_Op_Mod (Loc,
4724                  Left_Opnd  => Arg,
4725                  Right_Opnd => Make_Integer_Literal (Loc, Modv))));
4726
4727         --  Here we know that the modulus is larger than type'Last of the
4728         --  integer type. There are two cases to consider:
4729
4730         --    a) The integer value is non-negative. In this case, it is
4731         --    returned as the result (since it is less than the modulus).
4732
4733         --    b) The integer value is negative. In this case, we know that the
4734         --    result is modulus + value, where the value might be as small as
4735         --    -modulus. The trouble is what type do we use to do the subtract.
4736         --    No type will do, since modulus can be as big as 2**64, and no
4737         --    integer type accommodates this value. Let's do bit of algebra
4738
4739         --         modulus + value
4740         --      =  modulus - (-value)
4741         --      =  (modulus - 1) - (-value - 1)
4742
4743         --    Now modulus - 1 is certainly in range of the modular type.
4744         --    -value is in the range 1 .. modulus, so -value -1 is in the
4745         --    range 0 .. modulus-1 which is in range of the modular type.
4746         --    Furthermore, (-value - 1) can be expressed as -(value + 1)
4747         --    which we can compute using the integer base type.
4748
4749         --  Once this is done we analyze the if expression without range
4750         --  checks, because we know everything is in range, and we want
4751         --  to prevent spurious warnings on either branch.
4752
4753         else
4754            Rewrite (N,
4755              Make_If_Expression (Loc,
4756                Expressions => New_List (
4757                  Make_Op_Ge (Loc,
4758                    Left_Opnd  => Duplicate_Subexpr (Arg),
4759                    Right_Opnd => Make_Integer_Literal (Loc, 0)),
4760
4761                  Convert_To (Btyp,
4762                    Duplicate_Subexpr_No_Checks (Arg)),
4763
4764                  Make_Op_Subtract (Loc,
4765                    Left_Opnd =>
4766                      Make_Integer_Literal (Loc,
4767                        Intval => Modv - 1),
4768                    Right_Opnd =>
4769                      Convert_To (Btyp,
4770                        Make_Op_Minus (Loc,
4771                          Right_Opnd =>
4772                            Make_Op_Add (Loc,
4773                              Left_Opnd  => Duplicate_Subexpr_No_Checks (Arg),
4774                              Right_Opnd =>
4775                                Make_Integer_Literal (Loc,
4776                                  Intval => 1))))))));
4777
4778         end if;
4779
4780         Analyze_And_Resolve (N, Btyp, Suppress => All_Checks);
4781      end Mod_Case;
4782
4783      -----------
4784      -- Model --
4785      -----------
4786
4787      --  Transforms 'Model into a call to the floating-point attribute
4788      --  function Model in Fat_xxx (where xxx is the root type).
4789      --  Expansion is avoided for cases the back end can handle directly.
4790
4791      when Attribute_Model =>
4792         if not Is_Inline_Floating_Point_Attribute (N) then
4793            Expand_Fpt_Attribute_R (N);
4794         end if;
4795
4796      -----------------
4797      -- Object_Size --
4798      -----------------
4799
4800      --  The processing for Object_Size shares the processing for Size
4801
4802      ---------
4803      -- Old --
4804      ---------
4805
4806      when Attribute_Old => Old : declare
4807         Typ     : constant Entity_Id := Etype (N);
4808         CW_Temp : Entity_Id;
4809         CW_Typ  : Entity_Id;
4810         Ins_Nod : Node_Id;
4811         Subp    : Node_Id;
4812         Temp    : Entity_Id;
4813
4814      begin
4815         --  Generating C code we don't need to expand this attribute when
4816         --  we are analyzing the internally built nested postconditions
4817         --  procedure since it will be expanded inline (and later it will
4818         --  be removed by Expand_N_Subprogram_Body). It this expansion is
4819         --  performed in such case then the compiler generates unreferenced
4820         --  extra temporaries.
4821
4822         if Modify_Tree_For_C
4823           and then Chars (Current_Scope) = Name_uPostconditions
4824         then
4825            return;
4826         end if;
4827
4828         --  Climb the parent chain looking for subprogram _Postconditions
4829
4830         Subp := N;
4831         while Present (Subp) loop
4832            exit when Nkind (Subp) = N_Subprogram_Body
4833              and then Chars (Defining_Entity (Subp)) = Name_uPostconditions;
4834
4835            --  If assertions are disabled, no need to create the declaration
4836            --  that preserves the value. The postcondition pragma in which
4837            --  'Old appears will be checked or disabled according to the
4838            --  current policy in effect.
4839
4840            if Nkind (Subp) = N_Pragma and then not Is_Checked (Subp) then
4841               return;
4842            end if;
4843
4844            Subp := Parent (Subp);
4845         end loop;
4846
4847         --  'Old can only appear in a postcondition, the generated body of
4848         --  _Postconditions must be in the tree (or inlined if we are
4849         --  generating C code).
4850
4851         pragma Assert
4852           (Present (Subp)
4853             or else (Modify_Tree_For_C and then In_Inlined_Body));
4854
4855         Temp := Make_Temporary (Loc, 'T', Pref);
4856
4857         --  Set the entity kind now in order to mark the temporary as a
4858         --  handler of attribute 'Old's prefix.
4859
4860         Set_Ekind (Temp, E_Constant);
4861         Set_Stores_Attribute_Old_Prefix (Temp);
4862
4863         --  Push the scope of the related subprogram where _Postcondition
4864         --  resides as this ensures that the object will be analyzed in the
4865         --  proper context.
4866
4867         if Present (Subp) then
4868            Push_Scope (Scope (Defining_Entity (Subp)));
4869
4870         --  No need to push the scope when generating C code since the
4871         --  _Postcondition procedure has been inlined.
4872
4873         else pragma Assert (Modify_Tree_For_C);
4874            pragma Assert (In_Inlined_Body);
4875            null;
4876         end if;
4877
4878         --  Locate the insertion place of the internal temporary that saves
4879         --  the 'Old value.
4880
4881         if Present (Subp) then
4882            Ins_Nod := Subp;
4883
4884         --  Generating C, the postcondition procedure has been inlined and the
4885         --  temporary is added before the first declaration of the enclosing
4886         --  subprogram.
4887
4888         else pragma Assert (Modify_Tree_For_C);
4889            Ins_Nod := N;
4890            while Nkind (Ins_Nod) /= N_Subprogram_Body loop
4891               Ins_Nod := Parent (Ins_Nod);
4892            end loop;
4893
4894            Ins_Nod := First (Declarations (Ins_Nod));
4895         end if;
4896
4897         --  Preserve the tag of the prefix by offering a specific view of the
4898         --  class-wide version of the prefix.
4899
4900         if Is_Tagged_Type (Typ) then
4901
4902            --  Generate:
4903            --    CW_Temp : constant Typ'Class := Typ'Class (Pref);
4904
4905            CW_Temp := Make_Temporary (Loc, 'T');
4906            CW_Typ  := Class_Wide_Type (Typ);
4907
4908            Insert_Before_And_Analyze (Ins_Nod,
4909              Make_Object_Declaration (Loc,
4910                Defining_Identifier => CW_Temp,
4911                Constant_Present    => True,
4912                Object_Definition   => New_Occurrence_Of (CW_Typ, Loc),
4913                Expression          =>
4914                  Convert_To (CW_Typ, Relocate_Node (Pref))));
4915
4916            --  Generate:
4917            --    Temp : Typ renames Typ (CW_Temp);
4918
4919            Insert_Before_And_Analyze (Ins_Nod,
4920              Make_Object_Renaming_Declaration (Loc,
4921                Defining_Identifier => Temp,
4922                Subtype_Mark        => New_Occurrence_Of (Typ, Loc),
4923                Name                =>
4924                  Convert_To (Typ, New_Occurrence_Of (CW_Temp, Loc))));
4925
4926         --  Non-tagged case
4927
4928         else
4929            --  Generate:
4930            --    Temp : constant Typ := Pref;
4931
4932            Insert_Before_And_Analyze (Ins_Nod,
4933              Make_Object_Declaration (Loc,
4934                Defining_Identifier => Temp,
4935                Constant_Present    => True,
4936                Object_Definition   => New_Occurrence_Of (Typ, Loc),
4937                Expression          => Relocate_Node (Pref)));
4938         end if;
4939
4940         if Present (Subp) then
4941            Pop_Scope;
4942         end if;
4943
4944         --  Ensure that the prefix of attribute 'Old is valid. The check must
4945         --  be inserted after the expansion of the attribute has taken place
4946         --  to reflect the new placement of the prefix.
4947
4948         if Validity_Checks_On and then Validity_Check_Operands then
4949            Ensure_Valid (Pref);
4950         end if;
4951
4952         Rewrite (N, New_Occurrence_Of (Temp, Loc));
4953      end Old;
4954
4955      ----------------------
4956      -- Overlaps_Storage --
4957      ----------------------
4958
4959      when Attribute_Overlaps_Storage => Overlaps_Storage : declare
4960         Loc : constant Source_Ptr := Sloc (N);
4961
4962         X   : constant Node_Id := Prefix (N);
4963         Y   : constant Node_Id := First (Expressions (N));
4964         --  The arguments
4965
4966         X_Addr, Y_Addr : Node_Id;
4967         --  the expressions for their integer addresses
4968
4969         X_Size, Y_Size : Node_Id;
4970         --  the expressions for their sizes
4971
4972         Cond : Node_Id;
4973
4974      begin
4975         --  Attribute expands into:
4976
4977         --    if X'Address < Y'address then
4978         --      (X'address + X'Size - 1) >= Y'address
4979         --    else
4980         --      (Y'address + Y'size - 1) >= X'Address
4981         --    end if;
4982
4983         --  with the proper address operations. We convert addresses to
4984         --  integer addresses to use predefined arithmetic. The size is
4985         --  expressed in storage units. We add copies of X_Addr and Y_Addr
4986         --  to prevent the appearance of the same node in two places in
4987         --  the tree.
4988
4989         X_Addr :=
4990           Unchecked_Convert_To (RTE (RE_Integer_Address),
4991             Make_Attribute_Reference (Loc,
4992               Attribute_Name => Name_Address,
4993               Prefix         => New_Copy_Tree (X)));
4994
4995         Y_Addr :=
4996           Unchecked_Convert_To (RTE (RE_Integer_Address),
4997             Make_Attribute_Reference (Loc,
4998               Attribute_Name => Name_Address,
4999               Prefix         => New_Copy_Tree (Y)));
5000
5001         X_Size :=
5002           Make_Op_Divide (Loc,
5003             Left_Opnd  =>
5004               Make_Attribute_Reference (Loc,
5005                 Attribute_Name => Name_Size,
5006                 Prefix         => New_Copy_Tree (X)),
5007             Right_Opnd =>
5008               Make_Integer_Literal (Loc, System_Storage_Unit));
5009
5010         Y_Size :=
5011           Make_Op_Divide (Loc,
5012             Left_Opnd  =>
5013               Make_Attribute_Reference (Loc,
5014                 Attribute_Name => Name_Size,
5015                 Prefix         => New_Copy_Tree (Y)),
5016             Right_Opnd =>
5017               Make_Integer_Literal (Loc, System_Storage_Unit));
5018
5019         Cond :=
5020            Make_Op_Le (Loc,
5021              Left_Opnd  => X_Addr,
5022              Right_Opnd => Y_Addr);
5023
5024         Rewrite (N,
5025           Make_If_Expression (Loc, New_List (
5026             Cond,
5027
5028             Make_Op_Ge (Loc,
5029               Left_Opnd   =>
5030                 Make_Op_Add (Loc,
5031                   Left_Opnd  => New_Copy_Tree (X_Addr),
5032                   Right_Opnd =>
5033                     Make_Op_Subtract (Loc,
5034                       Left_Opnd  => X_Size,
5035                       Right_Opnd => Make_Integer_Literal (Loc, 1))),
5036               Right_Opnd => Y_Addr),
5037
5038             Make_Op_Ge (Loc,
5039               Left_Opnd  =>
5040                 Make_Op_Add (Loc,
5041                   Left_Opnd  => New_Copy_Tree (Y_Addr),
5042                   Right_Opnd =>
5043                     Make_Op_Subtract (Loc,
5044                       Left_Opnd  => Y_Size,
5045                       Right_Opnd => Make_Integer_Literal (Loc, 1))),
5046               Right_Opnd => X_Addr))));
5047
5048         Analyze_And_Resolve (N, Standard_Boolean);
5049      end Overlaps_Storage;
5050
5051      ------------
5052      -- Output --
5053      ------------
5054
5055      when Attribute_Output => Output : declare
5056         P_Type : constant Entity_Id := Entity (Pref);
5057         U_Type : constant Entity_Id := Underlying_Type (P_Type);
5058         Pname  : Entity_Id;
5059         Decl   : Node_Id;
5060         Prag   : Node_Id;
5061         Arg3   : Node_Id;
5062         Wfunc  : Node_Id;
5063
5064      begin
5065         --  If no underlying type, we have an error that will be diagnosed
5066         --  elsewhere, so here we just completely ignore the expansion.
5067
5068         if No (U_Type) then
5069            return;
5070         end if;
5071
5072         --  Stream operations can appear in user code even if the restriction
5073         --  No_Streams is active (for example, when instantiating a predefined
5074         --  container). In that case rewrite the attribute as a Raise to
5075         --  prevent any run-time use.
5076
5077         if Restriction_Active (No_Streams) then
5078            Rewrite (N,
5079              Make_Raise_Program_Error (Sloc (N),
5080                Reason => PE_Stream_Operation_Not_Allowed));
5081            Set_Etype (N, Standard_Void_Type);
5082            return;
5083         end if;
5084
5085         --  If TSS for Output is present, just call it
5086
5087         Pname := Find_Stream_Subprogram (P_Type, TSS_Stream_Output);
5088
5089         if Present (Pname) then
5090            null;
5091
5092         else
5093            --  If there is a Stream_Convert pragma, use it, we rewrite
5094
5095            --     sourcetyp'Output (stream, Item)
5096
5097            --  as
5098
5099            --     strmtyp'Output (Stream, strmwrite (acttyp (Item)));
5100
5101            --  where strmwrite is the given Write function that converts an
5102            --  argument of type sourcetyp or a type acctyp, from which it is
5103            --  derived to type strmtyp. The conversion to acttyp is required
5104            --  for the derived case.
5105
5106            Prag := Get_Stream_Convert_Pragma (P_Type);
5107
5108            if Present (Prag) then
5109               Arg3 :=
5110                 Next (Next (First (Pragma_Argument_Associations (Prag))));
5111               Wfunc := Entity (Expression (Arg3));
5112
5113               Rewrite (N,
5114                 Make_Attribute_Reference (Loc,
5115                   Prefix => New_Occurrence_Of (Etype (Wfunc), Loc),
5116                   Attribute_Name => Name_Output,
5117                   Expressions => New_List (
5118                   Relocate_Node (First (Exprs)),
5119                     Make_Function_Call (Loc,
5120                       Name => New_Occurrence_Of (Wfunc, Loc),
5121                       Parameter_Associations => New_List (
5122                         OK_Convert_To (Etype (First_Formal (Wfunc)),
5123                           Relocate_Node (Next (First (Exprs)))))))));
5124
5125               Analyze (N);
5126               return;
5127
5128            --  For elementary types, we call the W_xxx routine directly. Note
5129            --  that the effect of Write and Output is identical for the case
5130            --  of an elementary type (there are no discriminants or bounds).
5131
5132            elsif Is_Elementary_Type (U_Type) then
5133
5134               --  A special case arises if we have a defined _Write routine,
5135               --  since in this case we are required to call this routine.
5136
5137               declare
5138                  Typ : Entity_Id := P_Type;
5139               begin
5140                  if Present (Full_View (Typ)) then
5141                     Typ := Full_View (Typ);
5142                  end if;
5143
5144                  if Present (TSS (Base_Type (Typ), TSS_Stream_Write)) then
5145                     Build_Record_Or_Elementary_Output_Procedure
5146                       (Loc, Typ, Decl, Pname);
5147                     Insert_Action (N, Decl);
5148
5149                  --  For normal cases, we call the W_xxx routine directly
5150
5151                  else
5152                     Rewrite (N, Build_Elementary_Write_Call (N));
5153                     Analyze (N);
5154                     return;
5155                  end if;
5156               end;
5157
5158            --  Array type case
5159
5160            elsif Is_Array_Type (U_Type) then
5161               Build_Array_Output_Procedure (Loc, U_Type, Decl, Pname);
5162               Compile_Stream_Body_In_Scope (N, Decl, U_Type, Check => False);
5163
5164            --  Class-wide case, first output external tag, then dispatch
5165            --  to the appropriate primitive Output function (RM 13.13.2(31)).
5166
5167            elsif Is_Class_Wide_Type (P_Type) then
5168
5169               --  No need to do anything else compiling under restriction
5170               --  No_Dispatching_Calls. During the semantic analysis we
5171               --  already notified such violation.
5172
5173               if Restriction_Active (No_Dispatching_Calls) then
5174                  return;
5175               end if;
5176
5177               Tag_Write : declare
5178                  Strm : constant Node_Id := First (Exprs);
5179                  Item : constant Node_Id := Next (Strm);
5180
5181               begin
5182                  --  Ada 2005 (AI-344): Check that the accessibility level
5183                  --  of the type of the output object is not deeper than
5184                  --  that of the attribute's prefix type.
5185
5186                  --  if Get_Access_Level (Item'Tag)
5187                  --       /= Get_Access_Level (P_Type'Tag)
5188                  --  then
5189                  --     raise Tag_Error;
5190                  --  end if;
5191
5192                  --  String'Output (Strm, External_Tag (Item'Tag));
5193
5194                  --  We cannot figure out a practical way to implement this
5195                  --  accessibility check on virtual machines, so we omit it.
5196
5197                  if Ada_Version >= Ada_2005
5198                    and then Tagged_Type_Expansion
5199                  then
5200                     Insert_Action (N,
5201                       Make_Implicit_If_Statement (N,
5202                         Condition =>
5203                           Make_Op_Ne (Loc,
5204                             Left_Opnd  =>
5205                               Build_Get_Access_Level (Loc,
5206                                 Make_Attribute_Reference (Loc,
5207                                   Prefix         =>
5208                                     Relocate_Node (
5209                                       Duplicate_Subexpr (Item,
5210                                         Name_Req => True)),
5211                                   Attribute_Name => Name_Tag)),
5212
5213                             Right_Opnd =>
5214                               Make_Integer_Literal (Loc,
5215                                 Type_Access_Level (P_Type))),
5216
5217                         Then_Statements =>
5218                           New_List (Make_Raise_Statement (Loc,
5219                                       New_Occurrence_Of (
5220                                         RTE (RE_Tag_Error), Loc)))));
5221                  end if;
5222
5223                  Insert_Action (N,
5224                    Make_Attribute_Reference (Loc,
5225                      Prefix => New_Occurrence_Of (Standard_String, Loc),
5226                      Attribute_Name => Name_Output,
5227                      Expressions => New_List (
5228                        Relocate_Node (Duplicate_Subexpr (Strm)),
5229                        Make_Function_Call (Loc,
5230                          Name =>
5231                            New_Occurrence_Of (RTE (RE_External_Tag), Loc),
5232                          Parameter_Associations => New_List (
5233                           Make_Attribute_Reference (Loc,
5234                             Prefix =>
5235                               Relocate_Node
5236                                 (Duplicate_Subexpr (Item, Name_Req => True)),
5237                             Attribute_Name => Name_Tag))))));
5238               end Tag_Write;
5239
5240               Pname := Find_Prim_Op (U_Type, TSS_Stream_Output);
5241
5242            --  Tagged type case, use the primitive Output function
5243
5244            elsif Is_Tagged_Type (U_Type) then
5245               Pname := Find_Prim_Op (U_Type, TSS_Stream_Output);
5246
5247            --  All other record type cases, including protected records.
5248            --  The latter only arise for expander generated code for
5249            --  handling shared passive partition access.
5250
5251            else
5252               pragma Assert
5253                 (Is_Record_Type (U_Type) or else Is_Protected_Type (U_Type));
5254
5255               --  Ada 2005 (AI-216): Program_Error is raised when executing
5256               --  the default implementation of the Output attribute of an
5257               --  unchecked union type if the type lacks default discriminant
5258               --  values.
5259
5260               if Is_Unchecked_Union (Base_Type (U_Type))
5261                 and then No (Discriminant_Constraint (U_Type))
5262               then
5263                  Insert_Action (N,
5264                    Make_Raise_Program_Error (Loc,
5265                      Reason => PE_Unchecked_Union_Restriction));
5266
5267                  return;
5268               end if;
5269
5270               Build_Record_Or_Elementary_Output_Procedure
5271                 (Loc, Base_Type (U_Type), Decl, Pname);
5272               Insert_Action (N, Decl);
5273            end if;
5274         end if;
5275
5276         --  If we fall through, Pname is the name of the procedure to call
5277
5278         Rewrite_Stream_Proc_Call (Pname);
5279      end Output;
5280
5281      ---------
5282      -- Pos --
5283      ---------
5284
5285      --  For enumeration types with a standard representation, Pos is
5286      --  handled by the back end.
5287
5288      --  For enumeration types, with a non-standard representation we generate
5289      --  a call to the _Rep_To_Pos function created when the type was frozen.
5290      --  The call has the form
5291
5292      --    _rep_to_pos (expr, flag)
5293
5294      --  The parameter flag is True if range checks are enabled, causing
5295      --  Program_Error to be raised if the expression has an invalid
5296      --  representation, and False if range checks are suppressed.
5297
5298      --  For integer types, Pos is equivalent to a simple integer
5299      --  conversion and we rewrite it as such
5300
5301      when Attribute_Pos => Pos : declare
5302         Etyp : Entity_Id := Base_Type (Entity (Pref));
5303
5304      begin
5305         --  Deal with zero/non-zero boolean values
5306
5307         if Is_Boolean_Type (Etyp) then
5308            Adjust_Condition (First (Exprs));
5309            Etyp := Standard_Boolean;
5310            Set_Prefix (N, New_Occurrence_Of (Standard_Boolean, Loc));
5311         end if;
5312
5313         --  Case of enumeration type
5314
5315         if Is_Enumeration_Type (Etyp) then
5316
5317            --  Non-standard enumeration type (generate call)
5318
5319            if Present (Enum_Pos_To_Rep (Etyp)) then
5320               Append_To (Exprs, Rep_To_Pos_Flag (Etyp, Loc));
5321               Rewrite (N,
5322                 Convert_To (Typ,
5323                   Make_Function_Call (Loc,
5324                     Name =>
5325                       New_Occurrence_Of (TSS (Etyp, TSS_Rep_To_Pos), Loc),
5326                     Parameter_Associations => Exprs)));
5327
5328               Analyze_And_Resolve (N, Typ);
5329
5330            --  Standard enumeration type (do universal integer check)
5331
5332            else
5333               Apply_Universal_Integer_Attribute_Checks (N);
5334            end if;
5335
5336         --  Deal with integer types (replace by conversion)
5337
5338         elsif Is_Integer_Type (Etyp) then
5339            Rewrite (N, Convert_To (Typ, First (Exprs)));
5340            Analyze_And_Resolve (N, Typ);
5341         end if;
5342
5343      end Pos;
5344
5345      --------------
5346      -- Position --
5347      --------------
5348
5349      --  We compute this if a component clause was present, otherwise we leave
5350      --  the computation up to the back end, since we don't know what layout
5351      --  will be chosen.
5352
5353      when Attribute_Position => Position_Attr : declare
5354         CE : constant Entity_Id := Entity (Selector_Name (Pref));
5355
5356      begin
5357         if Present (Component_Clause (CE)) then
5358
5359            --  In Ada 2005 (or later) if we have the non-default bit order,
5360            --  then we return the original value as given in the component
5361            --  clause (RM 2005 13.5.2(2/2)).
5362
5363            if Ada_Version >= Ada_2005
5364              and then Reverse_Bit_Order (Scope (CE))
5365            then
5366               Rewrite (N,
5367                  Make_Integer_Literal (Loc,
5368                    Intval => Expr_Value (Position (Component_Clause (CE)))));
5369
5370            --  Otherwise (Ada 83 or 95, or default bit order specified in
5371            --  later Ada version), return the normalized value.
5372
5373            else
5374               Rewrite (N,
5375                 Make_Integer_Literal (Loc,
5376                   Intval => Component_Bit_Offset (CE) / System_Storage_Unit));
5377            end if;
5378
5379            Analyze_And_Resolve (N, Typ);
5380
5381         --  If back end is doing things, just apply universal integer checks
5382
5383         else
5384            Apply_Universal_Integer_Attribute_Checks (N);
5385         end if;
5386      end Position_Attr;
5387
5388      ----------
5389      -- Pred --
5390      ----------
5391
5392      --  1. Deal with enumeration types with holes.
5393      --  2. For floating-point, generate call to attribute function.
5394      --  3. For other cases, deal with constraint checking.
5395
5396      when Attribute_Pred => Pred : declare
5397         Etyp : constant Entity_Id := Base_Type (Ptyp);
5398
5399      begin
5400
5401         --  For enumeration types with non-standard representations, we
5402         --  expand typ'Pred (x) into
5403
5404         --    Pos_To_Rep (Rep_To_Pos (x) - 1)
5405
5406         --    If the representation is contiguous, we compute instead
5407         --    Lit1 + Rep_to_Pos (x -1), to catch invalid representations.
5408         --    The conversion function Enum_Pos_To_Rep is defined on the
5409         --    base type, not the subtype, so we have to use the base type
5410         --    explicitly for this and other enumeration attributes.
5411
5412         if Is_Enumeration_Type (Ptyp)
5413           and then Present (Enum_Pos_To_Rep (Etyp))
5414         then
5415            if Has_Contiguous_Rep (Etyp) then
5416               Rewrite (N,
5417                  Unchecked_Convert_To (Ptyp,
5418                     Make_Op_Add (Loc,
5419                        Left_Opnd  =>
5420                         Make_Integer_Literal (Loc,
5421                           Enumeration_Rep (First_Literal (Ptyp))),
5422                        Right_Opnd =>
5423                          Make_Function_Call (Loc,
5424                            Name =>
5425                              New_Occurrence_Of
5426                               (TSS (Etyp, TSS_Rep_To_Pos), Loc),
5427
5428                            Parameter_Associations =>
5429                              New_List (
5430                                Unchecked_Convert_To (Ptyp,
5431                                  Make_Op_Subtract (Loc,
5432                                    Left_Opnd =>
5433                                     Unchecked_Convert_To (Standard_Integer,
5434                                       Relocate_Node (First (Exprs))),
5435                                    Right_Opnd =>
5436                                      Make_Integer_Literal (Loc, 1))),
5437                                Rep_To_Pos_Flag (Ptyp, Loc))))));
5438
5439            else
5440               --  Add Boolean parameter True, to request program errror if
5441               --  we have a bad representation on our hands. If checks are
5442               --  suppressed, then add False instead
5443
5444               Append_To (Exprs, Rep_To_Pos_Flag (Ptyp, Loc));
5445               Rewrite (N,
5446                 Make_Indexed_Component (Loc,
5447                   Prefix =>
5448                     New_Occurrence_Of
5449                       (Enum_Pos_To_Rep (Etyp), Loc),
5450                   Expressions => New_List (
5451                     Make_Op_Subtract (Loc,
5452                    Left_Opnd =>
5453                      Make_Function_Call (Loc,
5454                        Name =>
5455                          New_Occurrence_Of
5456                            (TSS (Etyp, TSS_Rep_To_Pos), Loc),
5457                          Parameter_Associations => Exprs),
5458                    Right_Opnd => Make_Integer_Literal (Loc, 1)))));
5459            end if;
5460
5461            Analyze_And_Resolve (N, Typ);
5462
5463         --  For floating-point, we transform 'Pred into a call to the Pred
5464         --  floating-point attribute function in Fat_xxx (xxx is root type).
5465         --  Note that this function takes care of the overflow case.
5466
5467         elsif Is_Floating_Point_Type (Ptyp) then
5468            Expand_Fpt_Attribute_R (N);
5469            Analyze_And_Resolve (N, Typ);
5470
5471         --  For modular types, nothing to do (no overflow, since wraps)
5472
5473         elsif Is_Modular_Integer_Type (Ptyp) then
5474            null;
5475
5476         --  For other types, if argument is marked as needing a range check or
5477         --  overflow checking is enabled, we must generate a check.
5478
5479         elsif not Overflow_Checks_Suppressed (Ptyp)
5480           or else Do_Range_Check (First (Exprs))
5481         then
5482            Set_Do_Range_Check (First (Exprs), False);
5483            Expand_Pred_Succ_Attribute (N);
5484         end if;
5485      end Pred;
5486
5487      --------------
5488      -- Priority --
5489      --------------
5490
5491      --  Ada 2005 (AI-327): Dynamic ceiling priorities
5492
5493      --  We rewrite X'Priority as the following run-time call:
5494
5495      --     Get_Ceiling (X._Object)
5496
5497      --  Note that although X'Priority is notionally an object, it is quite
5498      --  deliberately not defined as an aliased object in the RM. This means
5499      --  that it works fine to rewrite it as a call, without having to worry
5500      --  about complications that would other arise from X'Priority'Access,
5501      --  which is illegal, because of the lack of aliasing.
5502
5503      when Attribute_Priority => Priority : declare
5504         Call           : Node_Id;
5505         Conctyp        : Entity_Id;
5506         New_Itype      : Entity_Id;
5507         Object_Parm    : Node_Id;
5508         Subprg         : Entity_Id;
5509         RT_Subprg_Name : Node_Id;
5510
5511      begin
5512         --  Look for the enclosing concurrent type
5513
5514         Conctyp := Current_Scope;
5515         while not Is_Concurrent_Type (Conctyp) loop
5516            Conctyp := Scope (Conctyp);
5517         end loop;
5518
5519         pragma Assert (Is_Protected_Type (Conctyp));
5520
5521         --  Generate the actual of the call
5522
5523         Subprg := Current_Scope;
5524         while not Present (Protected_Body_Subprogram (Subprg)) loop
5525            Subprg := Scope (Subprg);
5526         end loop;
5527
5528         --  Use of 'Priority inside protected entries and barriers (in both
5529         --  cases the type of the first formal of their expanded subprogram
5530         --  is Address)
5531
5532         if Etype (First_Entity (Protected_Body_Subprogram (Subprg))) =
5533              RTE (RE_Address)
5534         then
5535            --  In the expansion of protected entries the type of the first
5536            --  formal of the Protected_Body_Subprogram is an Address. In order
5537            --  to reference the _object component we generate:
5538
5539            --    type T is access p__ptTV;
5540            --    freeze T []
5541
5542            New_Itype := Create_Itype (E_Access_Type, N);
5543            Set_Etype (New_Itype, New_Itype);
5544            Set_Directly_Designated_Type (New_Itype,
5545              Corresponding_Record_Type (Conctyp));
5546            Freeze_Itype (New_Itype, N);
5547
5548            --  Generate:
5549            --    T!(O)._object'unchecked_access
5550
5551            Object_Parm :=
5552              Make_Attribute_Reference (Loc,
5553                Prefix          =>
5554                  Make_Selected_Component (Loc,
5555                    Prefix        =>
5556                      Unchecked_Convert_To (New_Itype,
5557                        New_Occurrence_Of
5558                          (First_Entity (Protected_Body_Subprogram (Subprg)),
5559                           Loc)),
5560                    Selector_Name => Make_Identifier (Loc, Name_uObject)),
5561                 Attribute_Name => Name_Unchecked_Access);
5562
5563         --  Use of 'Priority inside a protected subprogram
5564
5565         else
5566            Object_Parm :=
5567              Make_Attribute_Reference (Loc,
5568                 Prefix         =>
5569                   Make_Selected_Component (Loc,
5570                     Prefix        =>
5571                       New_Occurrence_Of
5572                         (First_Entity (Protected_Body_Subprogram (Subprg)),
5573                         Loc),
5574                     Selector_Name => Make_Identifier (Loc, Name_uObject)),
5575                 Attribute_Name => Name_Unchecked_Access);
5576         end if;
5577
5578         --  Select the appropriate run-time subprogram
5579
5580         if Number_Entries (Conctyp) = 0 then
5581            RT_Subprg_Name := New_Occurrence_Of (RTE (RE_Get_Ceiling), Loc);
5582         else
5583            RT_Subprg_Name := New_Occurrence_Of (RTE (RO_PE_Get_Ceiling), Loc);
5584         end if;
5585
5586         Call :=
5587           Make_Function_Call (Loc,
5588             Name                   => RT_Subprg_Name,
5589             Parameter_Associations => New_List (Object_Parm));
5590
5591         Rewrite (N, Call);
5592
5593         --  Avoid the generation of extra checks on the pointer to the
5594         --  protected object.
5595
5596         Analyze_And_Resolve (N, Typ, Suppress => Access_Check);
5597      end Priority;
5598
5599      ------------------
5600      -- Range_Length --
5601      ------------------
5602
5603      when Attribute_Range_Length =>
5604
5605         --  The only special processing required is for the case where
5606         --  Range_Length is applied to an enumeration type with holes.
5607         --  In this case we transform
5608
5609         --     X'Range_Length
5610
5611         --  to
5612
5613         --     X'Pos (X'Last) - X'Pos (X'First) + 1
5614
5615         --  So that the result reflects the proper Pos values instead
5616         --  of the underlying representations.
5617
5618         if Is_Enumeration_Type (Ptyp)
5619           and then Has_Non_Standard_Rep (Ptyp)
5620         then
5621            Rewrite (N,
5622              Make_Op_Add (Loc,
5623                Left_Opnd  =>
5624                  Make_Op_Subtract (Loc,
5625                    Left_Opnd  =>
5626                      Make_Attribute_Reference (Loc,
5627                        Attribute_Name => Name_Pos,
5628                        Prefix         => New_Occurrence_Of (Ptyp, Loc),
5629                        Expressions    => New_List (
5630                          Make_Attribute_Reference (Loc,
5631                            Attribute_Name => Name_Last,
5632                            Prefix         =>
5633                              New_Occurrence_Of (Ptyp, Loc)))),
5634
5635                    Right_Opnd =>
5636                      Make_Attribute_Reference (Loc,
5637                        Attribute_Name => Name_Pos,
5638                        Prefix         => New_Occurrence_Of (Ptyp, Loc),
5639                        Expressions    => New_List (
5640                          Make_Attribute_Reference (Loc,
5641                            Attribute_Name => Name_First,
5642                            Prefix         =>
5643                              New_Occurrence_Of (Ptyp, Loc))))),
5644
5645                Right_Opnd => Make_Integer_Literal (Loc, 1)));
5646
5647            Analyze_And_Resolve (N, Typ);
5648
5649         --  For all other cases, the attribute is handled by the back end, but
5650         --  we need to deal with the case of the range check on a universal
5651         --  integer.
5652
5653         else
5654            Apply_Universal_Integer_Attribute_Checks (N);
5655         end if;
5656
5657      ----------
5658      -- Read --
5659      ----------
5660
5661      when Attribute_Read => Read : declare
5662         P_Type : constant Entity_Id := Entity (Pref);
5663         B_Type : constant Entity_Id := Base_Type (P_Type);
5664         U_Type : constant Entity_Id := Underlying_Type (P_Type);
5665         Pname  : Entity_Id;
5666         Decl   : Node_Id;
5667         Prag   : Node_Id;
5668         Arg2   : Node_Id;
5669         Rfunc  : Node_Id;
5670         Lhs    : Node_Id;
5671         Rhs    : Node_Id;
5672
5673      begin
5674         --  If no underlying type, we have an error that will be diagnosed
5675         --  elsewhere, so here we just completely ignore the expansion.
5676
5677         if No (U_Type) then
5678            return;
5679         end if;
5680
5681         --  Stream operations can appear in user code even if the restriction
5682         --  No_Streams is active (for example, when instantiating a predefined
5683         --  container). In that case rewrite the attribute as a Raise to
5684         --  prevent any run-time use.
5685
5686         if Restriction_Active (No_Streams) then
5687            Rewrite (N,
5688              Make_Raise_Program_Error (Sloc (N),
5689                Reason => PE_Stream_Operation_Not_Allowed));
5690            Set_Etype (N, B_Type);
5691            return;
5692         end if;
5693
5694         --  The simple case, if there is a TSS for Read, just call it
5695
5696         Pname := Find_Stream_Subprogram (P_Type, TSS_Stream_Read);
5697
5698         if Present (Pname) then
5699            null;
5700
5701         else
5702            --  If there is a Stream_Convert pragma, use it, we rewrite
5703
5704            --     sourcetyp'Read (stream, Item)
5705
5706            --  as
5707
5708            --     Item := sourcetyp (strmread (strmtyp'Input (Stream)));
5709
5710            --  where strmread is the given Read function that converts an
5711            --  argument of type strmtyp to type sourcetyp or a type from which
5712            --  it is derived. The conversion to sourcetyp is required in the
5713            --  latter case.
5714
5715            --  A special case arises if Item is a type conversion in which
5716            --  case, we have to expand to:
5717
5718            --     Itemx := typex (strmread (strmtyp'Input (Stream)));
5719
5720            --  where Itemx is the expression of the type conversion (i.e.
5721            --  the actual object), and typex is the type of Itemx.
5722
5723            Prag := Get_Stream_Convert_Pragma (P_Type);
5724
5725            if Present (Prag) then
5726               Arg2  := Next (First (Pragma_Argument_Associations (Prag)));
5727               Rfunc := Entity (Expression (Arg2));
5728               Lhs := Relocate_Node (Next (First (Exprs)));
5729               Rhs :=
5730                 OK_Convert_To (B_Type,
5731                   Make_Function_Call (Loc,
5732                     Name => New_Occurrence_Of (Rfunc, Loc),
5733                     Parameter_Associations => New_List (
5734                       Make_Attribute_Reference (Loc,
5735                         Prefix =>
5736                           New_Occurrence_Of
5737                             (Etype (First_Formal (Rfunc)), Loc),
5738                         Attribute_Name => Name_Input,
5739                         Expressions => New_List (
5740                           Relocate_Node (First (Exprs)))))));
5741
5742               if Nkind (Lhs) = N_Type_Conversion then
5743                  Lhs := Expression (Lhs);
5744                  Rhs := Convert_To (Etype (Lhs), Rhs);
5745               end if;
5746
5747               Rewrite (N,
5748                 Make_Assignment_Statement (Loc,
5749                   Name       => Lhs,
5750                   Expression => Rhs));
5751               Set_Assignment_OK (Lhs);
5752               Analyze (N);
5753               return;
5754
5755            --  For elementary types, we call the I_xxx routine using the first
5756            --  parameter and then assign the result into the second parameter.
5757            --  We set Assignment_OK to deal with the conversion case.
5758
5759            elsif Is_Elementary_Type (U_Type) then
5760               declare
5761                  Lhs : Node_Id;
5762                  Rhs : Node_Id;
5763
5764               begin
5765                  Lhs := Relocate_Node (Next (First (Exprs)));
5766                  Rhs := Build_Elementary_Input_Call (N);
5767
5768                  if Nkind (Lhs) = N_Type_Conversion then
5769                     Lhs := Expression (Lhs);
5770                     Rhs := Convert_To (Etype (Lhs), Rhs);
5771                  end if;
5772
5773                  Set_Assignment_OK (Lhs);
5774
5775                  Rewrite (N,
5776                    Make_Assignment_Statement (Loc,
5777                      Name       => Lhs,
5778                      Expression => Rhs));
5779
5780                  Analyze (N);
5781                  return;
5782               end;
5783
5784            --  Array type case
5785
5786            elsif Is_Array_Type (U_Type) then
5787               Build_Array_Read_Procedure (N, U_Type, Decl, Pname);
5788               Compile_Stream_Body_In_Scope (N, Decl, U_Type, Check => False);
5789
5790            --  Tagged type case, use the primitive Read function. Note that
5791            --  this will dispatch in the class-wide case which is what we want
5792
5793            elsif Is_Tagged_Type (U_Type) then
5794               Pname := Find_Prim_Op (U_Type, TSS_Stream_Read);
5795
5796            --  All other record type cases, including protected records. The
5797            --  latter only arise for expander generated code for handling
5798            --  shared passive partition access.
5799
5800            else
5801               pragma Assert
5802                 (Is_Record_Type (U_Type) or else Is_Protected_Type (U_Type));
5803
5804               --  Ada 2005 (AI-216): Program_Error is raised when executing
5805               --  the default implementation of the Read attribute of an
5806               --  Unchecked_Union type. We replace the attribute with a
5807               --  raise statement (rather than inserting it before) to handle
5808               --  properly the case of an unchecked union that is a record
5809               --  component.
5810
5811               if Is_Unchecked_Union (Base_Type (U_Type)) then
5812                  Rewrite (N,
5813                    Make_Raise_Program_Error (Loc,
5814                      Reason => PE_Unchecked_Union_Restriction));
5815                  Set_Etype (N, B_Type);
5816                  return;
5817               end if;
5818
5819               if Has_Discriminants (U_Type)
5820                 and then Present
5821                   (Discriminant_Default_Value (First_Discriminant (U_Type)))
5822               then
5823                  Build_Mutable_Record_Read_Procedure
5824                    (Loc, Full_Base (U_Type), Decl, Pname);
5825               else
5826                  Build_Record_Read_Procedure
5827                    (Loc, Full_Base (U_Type), Decl, Pname);
5828               end if;
5829
5830               --  Suppress checks, uninitialized or otherwise invalid
5831               --  data does not cause constraint errors to be raised for
5832               --  a complete record read.
5833
5834               Insert_Action (N, Decl, All_Checks);
5835            end if;
5836         end if;
5837
5838         Rewrite_Stream_Proc_Call (Pname);
5839      end Read;
5840
5841      ---------
5842      -- Ref --
5843      ---------
5844
5845      --  Ref is identical to To_Address, see To_Address for processing
5846
5847      ---------------
5848      -- Remainder --
5849      ---------------
5850
5851      --  Transforms 'Remainder into a call to the floating-point attribute
5852      --  function Remainder in Fat_xxx (where xxx is the root type)
5853
5854      when Attribute_Remainder =>
5855         Expand_Fpt_Attribute_RR (N);
5856
5857      ------------
5858      -- Result --
5859      ------------
5860
5861      --  Transform 'Result into reference to _Result formal. At the point
5862      --  where a legal 'Result attribute is expanded, we know that we are in
5863      --  the context of a _Postcondition function with a _Result parameter.
5864
5865      when Attribute_Result =>
5866         Rewrite (N, Make_Identifier (Loc, Chars => Name_uResult));
5867         Analyze_And_Resolve (N, Typ);
5868
5869      -----------
5870      -- Round --
5871      -----------
5872
5873      --  The handling of the Round attribute is quite delicate. The processing
5874      --  in Sem_Attr introduced a conversion to universal real, reflecting the
5875      --  semantics of Round, but we do not want anything to do with universal
5876      --  real at runtime, since this corresponds to using floating-point
5877      --  arithmetic.
5878
5879      --  What we have now is that the Etype of the Round attribute correctly
5880      --  indicates the final result type. The operand of the Round is the
5881      --  conversion to universal real, described above, and the operand of
5882      --  this conversion is the actual operand of Round, which may be the
5883      --  special case of a fixed point multiplication or division (Etype =
5884      --  universal fixed)
5885
5886      --  The exapander will expand first the operand of the conversion, then
5887      --  the conversion, and finally the round attribute itself, since we
5888      --  always work inside out. But we cannot simply process naively in this
5889      --  order. In the semantic world where universal fixed and real really
5890      --  exist and have infinite precision, there is no problem, but in the
5891      --  implementation world, where universal real is a floating-point type,
5892      --  we would get the wrong result.
5893
5894      --  So the approach is as follows. First, when expanding a multiply or
5895      --  divide whose type is universal fixed, we do nothing at all, instead
5896      --  deferring the operation till later.
5897
5898      --  The actual processing is done in Expand_N_Type_Conversion which
5899      --  handles the special case of Round by looking at its parent to see if
5900      --  it is a Round attribute, and if it is, handling the conversion (or
5901      --  its fixed multiply/divide child) in an appropriate manner.
5902
5903      --  This means that by the time we get to expanding the Round attribute
5904      --  itself, the Round is nothing more than a type conversion (and will
5905      --  often be a null type conversion), so we just replace it with the
5906      --  appropriate conversion operation.
5907
5908      when Attribute_Round =>
5909         Rewrite (N,
5910           Convert_To (Etype (N), Relocate_Node (First (Exprs))));
5911         Analyze_And_Resolve (N);
5912
5913      --------------
5914      -- Rounding --
5915      --------------
5916
5917      --  Transforms 'Rounding into a call to the floating-point attribute
5918      --  function Rounding in Fat_xxx (where xxx is the root type)
5919      --  Expansion is avoided for cases the back end can handle directly.
5920
5921      when Attribute_Rounding =>
5922         if not Is_Inline_Floating_Point_Attribute (N) then
5923            Expand_Fpt_Attribute_R (N);
5924         end if;
5925
5926      -------------
5927      -- Scaling --
5928      -------------
5929
5930      --  Transforms 'Scaling into a call to the floating-point attribute
5931      --  function Scaling in Fat_xxx (where xxx is the root type)
5932
5933      when Attribute_Scaling =>
5934         Expand_Fpt_Attribute_RI (N);
5935
5936      -------------------------
5937      -- Simple_Storage_Pool --
5938      -------------------------
5939
5940      when Attribute_Simple_Storage_Pool =>
5941         Rewrite (N,
5942           Make_Type_Conversion (Loc,
5943             Subtype_Mark => New_Occurrence_Of (Etype (N), Loc),
5944             Expression   => New_Occurrence_Of (Entity (N), Loc)));
5945         Analyze_And_Resolve (N, Typ);
5946
5947      ----------
5948      -- Size --
5949      ----------
5950
5951      when Attribute_Object_Size
5952         | Attribute_Size
5953         | Attribute_Value_Size
5954         | Attribute_VADS_Size
5955      =>
5956         Size : declare
5957            Siz      : Uint;
5958            New_Node : Node_Id;
5959
5960         begin
5961            --  Processing for VADS_Size case. Note that this processing
5962            --  removes all traces of VADS_Size from the tree, and completes
5963            --  all required processing for VADS_Size by translating the
5964            --  attribute reference to an appropriate Size or Object_Size
5965            --  reference.
5966
5967            if Id = Attribute_VADS_Size
5968              or else (Use_VADS_Size and then Id = Attribute_Size)
5969            then
5970               --  If the size is specified, then we simply use the specified
5971               --  size. This applies to both types and objects. The size of an
5972               --  object can be specified in the following ways:
5973
5974               --    An explicit size object is given for an object
5975               --    A component size is specified for an indexed component
5976               --    A component clause is specified for a selected component
5977               --    The object is a component of a packed composite object
5978
5979               --  If the size is specified, then VADS_Size of an object
5980
5981               if (Is_Entity_Name (Pref)
5982                    and then Present (Size_Clause (Entity (Pref))))
5983                 or else
5984                   (Nkind (Pref) = N_Component_Clause
5985                     and then (Present (Component_Clause
5986                                        (Entity (Selector_Name (Pref))))
5987                                or else Is_Packed (Etype (Prefix (Pref)))))
5988                 or else
5989                   (Nkind (Pref) = N_Indexed_Component
5990                     and then (Component_Size (Etype (Prefix (Pref))) /= 0
5991                                or else Is_Packed (Etype (Prefix (Pref)))))
5992               then
5993                  Set_Attribute_Name (N, Name_Size);
5994
5995               --  Otherwise if we have an object rather than a type, then
5996               --  the VADS_Size attribute applies to the type of the object,
5997               --  rather than the object itself. This is one of the respects
5998               --  in which VADS_Size differs from Size.
5999
6000               else
6001                  if (not Is_Entity_Name (Pref)
6002                       or else not Is_Type (Entity (Pref)))
6003                    and then (Is_Scalar_Type (Ptyp)
6004                               or else Is_Constrained (Ptyp))
6005                  then
6006                     Rewrite (Pref, New_Occurrence_Of (Ptyp, Loc));
6007                  end if;
6008
6009                  --  For a scalar type for which no size was explicitly given,
6010                  --  VADS_Size means Object_Size. This is the other respect in
6011                  --  which VADS_Size differs from Size.
6012
6013                  if Is_Scalar_Type (Ptyp)
6014                    and then No (Size_Clause (Ptyp))
6015                  then
6016                     Set_Attribute_Name (N, Name_Object_Size);
6017
6018                  --  In all other cases, Size and VADS_Size are the sane
6019
6020                  else
6021                     Set_Attribute_Name (N, Name_Size);
6022                  end if;
6023               end if;
6024            end if;
6025
6026            --  If the prefix is X'Class, transform it into a direct reference
6027            --  to the class-wide type, because the back end must not see a
6028            --  'Class reference.
6029
6030            if Is_Entity_Name (Pref)
6031              and then Is_Class_Wide_Type (Entity (Pref))
6032            then
6033               Rewrite (Prefix (N), New_Occurrence_Of (Entity (Pref), Loc));
6034               return;
6035
6036            --  For X'Size applied to an object of a class-wide type, transform
6037            --  X'Size into a call to the primitive operation _Size applied to
6038            --  X.
6039
6040            elsif Is_Class_Wide_Type (Ptyp) then
6041
6042               --  No need to do anything else compiling under restriction
6043               --  No_Dispatching_Calls. During the semantic analysis we
6044               --  already noted this restriction violation.
6045
6046               if Restriction_Active (No_Dispatching_Calls) then
6047                  return;
6048               end if;
6049
6050               New_Node :=
6051                 Make_Function_Call (Loc,
6052                   Name                  =>
6053                     New_Occurrence_Of (Find_Prim_Op (Ptyp, Name_uSize), Loc),
6054                  Parameter_Associations => New_List (Pref));
6055
6056               if Typ /= Standard_Long_Long_Integer then
6057
6058                  --  The context is a specific integer type with which the
6059                  --  original attribute was compatible. The function has a
6060                  --  specific type as well, so to preserve the compatibility
6061                  --  we must convert explicitly.
6062
6063                  New_Node := Convert_To (Typ, New_Node);
6064               end if;
6065
6066               Rewrite (N, New_Node);
6067               Analyze_And_Resolve (N, Typ);
6068               return;
6069
6070            --  Case of known RM_Size of a type
6071
6072            elsif (Id = Attribute_Size or else Id = Attribute_Value_Size)
6073              and then Is_Entity_Name (Pref)
6074              and then Is_Type (Entity (Pref))
6075              and then Known_Static_RM_Size (Entity (Pref))
6076            then
6077               Siz := RM_Size (Entity (Pref));
6078
6079            --  Case of known Esize of a type
6080
6081            elsif Id = Attribute_Object_Size
6082              and then Is_Entity_Name (Pref)
6083              and then Is_Type (Entity (Pref))
6084              and then Known_Static_Esize (Entity (Pref))
6085            then
6086               Siz := Esize (Entity (Pref));
6087
6088            --  Case of known size of object
6089
6090            elsif Id = Attribute_Size
6091              and then Is_Entity_Name (Pref)
6092              and then Is_Object (Entity (Pref))
6093              and then Known_Esize (Entity (Pref))
6094              and then Known_Static_Esize (Entity (Pref))
6095            then
6096               Siz := Esize (Entity (Pref));
6097
6098            --  For an array component, we can do Size in the front end if the
6099            --  component_size of the array is set.
6100
6101            elsif Nkind (Pref) = N_Indexed_Component then
6102               Siz := Component_Size (Etype (Prefix (Pref)));
6103
6104            --  For a record component, we can do Size in the front end if
6105            --  there is a component clause, or if the record is packed and the
6106            --  component's size is known at compile time.
6107
6108            elsif Nkind (Pref) = N_Selected_Component then
6109               declare
6110                  Rec  : constant Entity_Id := Etype (Prefix (Pref));
6111                  Comp : constant Entity_Id := Entity (Selector_Name (Pref));
6112
6113               begin
6114                  if Present (Component_Clause (Comp)) then
6115                     Siz := Esize (Comp);
6116
6117                  elsif Is_Packed (Rec) then
6118                     Siz := RM_Size (Ptyp);
6119
6120                  else
6121                     Apply_Universal_Integer_Attribute_Checks (N);
6122                     return;
6123                  end if;
6124               end;
6125
6126            --  All other cases are handled by the back end
6127
6128            else
6129               Apply_Universal_Integer_Attribute_Checks (N);
6130
6131               --  If Size is applied to a formal parameter that is of a packed
6132               --  array subtype, then apply Size to the actual subtype.
6133
6134               if Is_Entity_Name (Pref)
6135                 and then Is_Formal (Entity (Pref))
6136                 and then Is_Array_Type (Ptyp)
6137                 and then Is_Packed (Ptyp)
6138               then
6139                  Rewrite (N,
6140                    Make_Attribute_Reference (Loc,
6141                      Prefix         =>
6142                        New_Occurrence_Of (Get_Actual_Subtype (Pref), Loc),
6143                      Attribute_Name => Name_Size));
6144                  Analyze_And_Resolve (N, Typ);
6145               end if;
6146
6147               --  If Size applies to a dereference of an access to
6148               --  unconstrained packed array, the back end needs to see its
6149               --  unconstrained nominal type, but also a hint to the actual
6150               --  constrained type.
6151
6152               if Nkind (Pref) = N_Explicit_Dereference
6153                 and then Is_Array_Type (Ptyp)
6154                 and then not Is_Constrained (Ptyp)
6155                 and then Is_Packed (Ptyp)
6156               then
6157                  Set_Actual_Designated_Subtype (Pref,
6158                    Get_Actual_Subtype (Pref));
6159               end if;
6160
6161               return;
6162            end if;
6163
6164            --  Common processing for record and array component case
6165
6166            if Siz /= No_Uint and then Siz /= 0 then
6167               declare
6168                  CS : constant Boolean := Comes_From_Source (N);
6169
6170               begin
6171                  Rewrite (N, Make_Integer_Literal (Loc, Siz));
6172
6173                  --  This integer literal is not a static expression. We do
6174                  --  not call Analyze_And_Resolve here, because this would
6175                  --  activate the circuit for deciding that a static value
6176                  --  was out of range, and we don't want that.
6177
6178                  --  So just manually set the type, mark the expression as
6179                  --  non-static, and then ensure that the result is checked
6180                  --  properly if the attribute comes from source (if it was
6181                  --  internally generated, we never need a constraint check).
6182
6183                  Set_Etype (N, Typ);
6184                  Set_Is_Static_Expression (N, False);
6185
6186                  if CS then
6187                     Apply_Constraint_Check (N, Typ);
6188                  end if;
6189               end;
6190            end if;
6191         end Size;
6192
6193      ------------------
6194      -- Storage_Pool --
6195      ------------------
6196
6197      when Attribute_Storage_Pool =>
6198         Rewrite (N,
6199           Make_Type_Conversion (Loc,
6200             Subtype_Mark => New_Occurrence_Of (Etype (N), Loc),
6201             Expression   => New_Occurrence_Of (Entity (N), Loc)));
6202         Analyze_And_Resolve (N, Typ);
6203
6204      ------------------
6205      -- Storage_Size --
6206      ------------------
6207
6208      when Attribute_Storage_Size => Storage_Size : declare
6209         Alloc_Op  : Entity_Id := Empty;
6210
6211      begin
6212
6213         --  Access type case, always go to the root type
6214
6215         --  The case of access types results in a value of zero for the case
6216         --  where no storage size attribute clause has been given. If a
6217         --  storage size has been given, then the attribute is converted
6218         --  to a reference to the variable used to hold this value.
6219
6220         if Is_Access_Type (Ptyp) then
6221            if Present (Storage_Size_Variable (Root_Type (Ptyp))) then
6222               Rewrite (N,
6223                 Make_Attribute_Reference (Loc,
6224                   Prefix => New_Occurrence_Of (Typ, Loc),
6225                   Attribute_Name => Name_Max,
6226                   Expressions => New_List (
6227                     Make_Integer_Literal (Loc, 0),
6228                     Convert_To (Typ,
6229                       New_Occurrence_Of
6230                         (Storage_Size_Variable (Root_Type (Ptyp)), Loc)))));
6231
6232            elsif Present (Associated_Storage_Pool (Root_Type (Ptyp))) then
6233
6234               --  If the access type is associated with a simple storage pool
6235               --  object, then attempt to locate the optional Storage_Size
6236               --  function of the simple storage pool type. If not found,
6237               --  then the result will default to zero.
6238
6239               if Present (Get_Rep_Pragma (Root_Type (Ptyp),
6240                                           Name_Simple_Storage_Pool_Type))
6241               then
6242                  declare
6243                     Pool_Type : constant Entity_Id :=
6244                                   Base_Type (Etype (Entity (N)));
6245
6246                  begin
6247                     Alloc_Op := Get_Name_Entity_Id (Name_Storage_Size);
6248                     while Present (Alloc_Op) loop
6249                        if Scope (Alloc_Op) = Scope (Pool_Type)
6250                          and then Present (First_Formal (Alloc_Op))
6251                          and then Etype (First_Formal (Alloc_Op)) = Pool_Type
6252                        then
6253                           exit;
6254                        end if;
6255
6256                        Alloc_Op := Homonym (Alloc_Op);
6257                     end loop;
6258                  end;
6259
6260               --  In the normal Storage_Pool case, retrieve the primitive
6261               --  function associated with the pool type.
6262
6263               else
6264                  Alloc_Op :=
6265                    Find_Prim_Op
6266                      (Etype (Associated_Storage_Pool (Root_Type (Ptyp))),
6267                       Attribute_Name (N));
6268               end if;
6269
6270               --  If Storage_Size wasn't found (can only occur in the simple
6271               --  storage pool case), then simply use zero for the result.
6272
6273               if not Present (Alloc_Op) then
6274                  Rewrite (N, Make_Integer_Literal (Loc, 0));
6275
6276               --  Otherwise, rewrite the allocator as a call to pool type's
6277               --  Storage_Size function.
6278
6279               else
6280                  Rewrite (N,
6281                    OK_Convert_To (Typ,
6282                      Make_Function_Call (Loc,
6283                        Name =>
6284                          New_Occurrence_Of (Alloc_Op, Loc),
6285
6286                        Parameter_Associations => New_List (
6287                          New_Occurrence_Of
6288                            (Associated_Storage_Pool
6289                               (Root_Type (Ptyp)), Loc)))));
6290               end if;
6291
6292            else
6293               Rewrite (N, Make_Integer_Literal (Loc, 0));
6294            end if;
6295
6296            Analyze_And_Resolve (N, Typ);
6297
6298         --  For tasks, we retrieve the size directly from the TCB. The
6299         --  size may depend on a discriminant of the type, and therefore
6300         --  can be a per-object expression, so type-level information is
6301         --  not sufficient in general. There are four cases to consider:
6302
6303         --  a) If the attribute appears within a task body, the designated
6304         --    TCB is obtained by a call to Self.
6305
6306         --  b) If the prefix of the attribute is the name of a task object,
6307         --  the designated TCB is the one stored in the corresponding record.
6308
6309         --  c) If the prefix is a task type, the size is obtained from the
6310         --  size variable created for each task type
6311
6312         --  d) If no Storage_Size was specified for the type, there is no
6313         --  size variable, and the value is a system-specific default.
6314
6315         else
6316            if In_Open_Scopes (Ptyp) then
6317
6318               --  Storage_Size (Self)
6319
6320               Rewrite (N,
6321                 Convert_To (Typ,
6322                   Make_Function_Call (Loc,
6323                     Name =>
6324                       New_Occurrence_Of (RTE (RE_Storage_Size), Loc),
6325                     Parameter_Associations =>
6326                       New_List (
6327                         Make_Function_Call (Loc,
6328                           Name =>
6329                             New_Occurrence_Of (RTE (RE_Self), Loc))))));
6330
6331            elsif not Is_Entity_Name (Pref)
6332              or else not Is_Type (Entity (Pref))
6333            then
6334               --  Storage_Size (Rec (Obj).Size)
6335
6336               Rewrite (N,
6337                 Convert_To (Typ,
6338                   Make_Function_Call (Loc,
6339                     Name =>
6340                       New_Occurrence_Of (RTE (RE_Storage_Size), Loc),
6341                       Parameter_Associations =>
6342                          New_List (
6343                            Make_Selected_Component (Loc,
6344                              Prefix =>
6345                                Unchecked_Convert_To (
6346                                  Corresponding_Record_Type (Ptyp),
6347                                    New_Copy_Tree (Pref)),
6348                              Selector_Name =>
6349                                 Make_Identifier (Loc, Name_uTask_Id))))));
6350
6351            elsif Present (Storage_Size_Variable (Ptyp)) then
6352
6353               --  Static Storage_Size pragma given for type: retrieve value
6354               --  from its allocated storage variable.
6355
6356               Rewrite (N,
6357                 Convert_To (Typ,
6358                   Make_Function_Call (Loc,
6359                     Name => New_Occurrence_Of (
6360                       RTE (RE_Adjust_Storage_Size), Loc),
6361                     Parameter_Associations =>
6362                       New_List (
6363                         New_Occurrence_Of (
6364                           Storage_Size_Variable (Ptyp), Loc)))));
6365            else
6366               --  Get system default
6367
6368               Rewrite (N,
6369                 Convert_To (Typ,
6370                   Make_Function_Call (Loc,
6371                     Name =>
6372                       New_Occurrence_Of (
6373                        RTE (RE_Default_Stack_Size), Loc))));
6374            end if;
6375
6376            Analyze_And_Resolve (N, Typ);
6377         end if;
6378      end Storage_Size;
6379
6380      -----------------
6381      -- Stream_Size --
6382      -----------------
6383
6384      when Attribute_Stream_Size =>
6385         Rewrite (N,
6386           Make_Integer_Literal (Loc, Intval => Get_Stream_Size (Ptyp)));
6387         Analyze_And_Resolve (N, Typ);
6388
6389      ----------
6390      -- Succ --
6391      ----------
6392
6393      --  1. Deal with enumeration types with holes.
6394      --  2. For floating-point, generate call to attribute function.
6395      --  3. For other cases, deal with constraint checking.
6396
6397      when Attribute_Succ => Succ : declare
6398         Etyp : constant Entity_Id := Base_Type (Ptyp);
6399
6400      begin
6401         --  For enumeration types with non-standard representations, we
6402         --  expand typ'Succ (x) into
6403
6404         --    Pos_To_Rep (Rep_To_Pos (x) + 1)
6405
6406         --    If the representation is contiguous, we compute instead
6407         --    Lit1 + Rep_to_Pos (x+1), to catch invalid representations.
6408
6409         if Is_Enumeration_Type (Ptyp)
6410           and then Present (Enum_Pos_To_Rep (Etyp))
6411         then
6412            if Has_Contiguous_Rep (Etyp) then
6413               Rewrite (N,
6414                  Unchecked_Convert_To (Ptyp,
6415                     Make_Op_Add (Loc,
6416                        Left_Opnd  =>
6417                         Make_Integer_Literal (Loc,
6418                           Enumeration_Rep (First_Literal (Ptyp))),
6419                        Right_Opnd =>
6420                          Make_Function_Call (Loc,
6421                            Name =>
6422                              New_Occurrence_Of
6423                               (TSS (Etyp, TSS_Rep_To_Pos), Loc),
6424
6425                            Parameter_Associations =>
6426                              New_List (
6427                                Unchecked_Convert_To (Ptyp,
6428                                  Make_Op_Add (Loc,
6429                                  Left_Opnd =>
6430                                    Unchecked_Convert_To (Standard_Integer,
6431                                      Relocate_Node (First (Exprs))),
6432                                  Right_Opnd =>
6433                                    Make_Integer_Literal (Loc, 1))),
6434                                Rep_To_Pos_Flag (Ptyp, Loc))))));
6435            else
6436               --  Add Boolean parameter True, to request program errror if
6437               --  we have a bad representation on our hands. Add False if
6438               --  checks are suppressed.
6439
6440               Append_To (Exprs, Rep_To_Pos_Flag (Ptyp, Loc));
6441               Rewrite (N,
6442                 Make_Indexed_Component (Loc,
6443                   Prefix =>
6444                     New_Occurrence_Of
6445                       (Enum_Pos_To_Rep (Etyp), Loc),
6446                   Expressions => New_List (
6447                     Make_Op_Add (Loc,
6448                       Left_Opnd =>
6449                         Make_Function_Call (Loc,
6450                           Name =>
6451                             New_Occurrence_Of
6452                               (TSS (Etyp, TSS_Rep_To_Pos), Loc),
6453                           Parameter_Associations => Exprs),
6454                       Right_Opnd => Make_Integer_Literal (Loc, 1)))));
6455            end if;
6456
6457            Analyze_And_Resolve (N, Typ);
6458
6459         --  For floating-point, we transform 'Succ into a call to the Succ
6460         --  floating-point attribute function in Fat_xxx (xxx is root type)
6461
6462         elsif Is_Floating_Point_Type (Ptyp) then
6463            Expand_Fpt_Attribute_R (N);
6464            Analyze_And_Resolve (N, Typ);
6465
6466         --  For modular types, nothing to do (no overflow, since wraps)
6467
6468         elsif Is_Modular_Integer_Type (Ptyp) then
6469            null;
6470
6471         --  For other types, if argument is marked as needing a range check or
6472         --  overflow checking is enabled, we must generate a check.
6473
6474         elsif not Overflow_Checks_Suppressed (Ptyp)
6475           or else Do_Range_Check (First (Exprs))
6476         then
6477            Set_Do_Range_Check (First (Exprs), False);
6478            Expand_Pred_Succ_Attribute (N);
6479         end if;
6480      end Succ;
6481
6482      ---------
6483      -- Tag --
6484      ---------
6485
6486      --  Transforms X'Tag into a direct reference to the tag of X
6487
6488      when Attribute_Tag => Tag : declare
6489         Ttyp           : Entity_Id;
6490         Prefix_Is_Type : Boolean;
6491
6492      begin
6493         if Is_Entity_Name (Pref) and then Is_Type (Entity (Pref)) then
6494            Ttyp := Entity (Pref);
6495            Prefix_Is_Type := True;
6496         else
6497            Ttyp := Ptyp;
6498            Prefix_Is_Type := False;
6499         end if;
6500
6501         if Is_Class_Wide_Type (Ttyp) then
6502            Ttyp := Root_Type (Ttyp);
6503         end if;
6504
6505         Ttyp := Underlying_Type (Ttyp);
6506
6507         --  Ada 2005: The type may be a synchronized tagged type, in which
6508         --  case the tag information is stored in the corresponding record.
6509
6510         if Is_Concurrent_Type (Ttyp) then
6511            Ttyp := Corresponding_Record_Type (Ttyp);
6512         end if;
6513
6514         if Prefix_Is_Type then
6515
6516            --  For VMs we leave the type attribute unexpanded because
6517            --  there's not a dispatching table to reference.
6518
6519            if Tagged_Type_Expansion then
6520               Rewrite (N,
6521                 Unchecked_Convert_To (RTE (RE_Tag),
6522                   New_Occurrence_Of
6523                     (Node (First_Elmt (Access_Disp_Table (Ttyp))), Loc)));
6524               Analyze_And_Resolve (N, RTE (RE_Tag));
6525            end if;
6526
6527         --  Ada 2005 (AI-251): The use of 'Tag in the sources always
6528         --  references the primary tag of the actual object. If 'Tag is
6529         --  applied to class-wide interface objects we generate code that
6530         --  displaces "this" to reference the base of the object.
6531
6532         elsif Comes_From_Source (N)
6533            and then Is_Class_Wide_Type (Etype (Prefix (N)))
6534            and then Is_Interface (Underlying_Type (Etype (Prefix (N))))
6535         then
6536            --  Generate:
6537            --    (To_Tag_Ptr (Prefix'Address)).all
6538
6539            --  Note that Prefix'Address is recursively expanded into a call
6540            --  to Base_Address (Obj.Tag)
6541
6542            --  Not needed for VM targets, since all handled by the VM
6543
6544            if Tagged_Type_Expansion then
6545               Rewrite (N,
6546                 Make_Explicit_Dereference (Loc,
6547                   Unchecked_Convert_To (RTE (RE_Tag_Ptr),
6548                     Make_Attribute_Reference (Loc,
6549                       Prefix => Relocate_Node (Pref),
6550                       Attribute_Name => Name_Address))));
6551               Analyze_And_Resolve (N, RTE (RE_Tag));
6552            end if;
6553
6554         else
6555            Rewrite (N,
6556              Make_Selected_Component (Loc,
6557                Prefix => Relocate_Node (Pref),
6558                Selector_Name =>
6559                  New_Occurrence_Of (First_Tag_Component (Ttyp), Loc)));
6560            Analyze_And_Resolve (N, RTE (RE_Tag));
6561         end if;
6562      end Tag;
6563
6564      ----------------
6565      -- Terminated --
6566      ----------------
6567
6568      --  Transforms 'Terminated attribute into a call to Terminated function
6569
6570      when Attribute_Terminated => Terminated : begin
6571
6572         --  The prefix of Terminated is of a task interface class-wide type.
6573         --  Generate:
6574         --    terminated (Task_Id (_disp_get_task_id (Pref)));
6575
6576         if Ada_Version >= Ada_2005
6577           and then Ekind (Ptyp) = E_Class_Wide_Type
6578           and then Is_Interface (Ptyp)
6579           and then Is_Task_Interface (Ptyp)
6580         then
6581            Rewrite (N,
6582              Make_Function_Call (Loc,
6583                Name                   =>
6584                  New_Occurrence_Of (RTE (RE_Terminated), Loc),
6585                Parameter_Associations => New_List (
6586                  Make_Unchecked_Type_Conversion (Loc,
6587                    Subtype_Mark =>
6588                      New_Occurrence_Of (RTE (RO_ST_Task_Id), Loc),
6589                    Expression   => Build_Disp_Get_Task_Id_Call (Pref)))));
6590
6591         elsif Restricted_Profile then
6592            Rewrite (N,
6593              Build_Call_With_Task (Pref, RTE (RE_Restricted_Terminated)));
6594
6595         else
6596            Rewrite (N,
6597              Build_Call_With_Task (Pref, RTE (RE_Terminated)));
6598         end if;
6599
6600         Analyze_And_Resolve (N, Standard_Boolean);
6601      end Terminated;
6602
6603      ----------------
6604      -- To_Address --
6605      ----------------
6606
6607      --  Transforms System'To_Address (X) and System.Address'Ref (X) into
6608      --  unchecked conversion from (integral) type of X to type address. If
6609      --  the To_Address is a static expression, the transformed expression
6610      --  also needs to be static, because we do some legality checks (e.g.
6611      --  for Thread_Local_Storage) after this transformation.
6612
6613      when Attribute_Ref
6614         | Attribute_To_Address
6615      =>
6616         To_Address : declare
6617            Is_Static : constant Boolean := Is_Static_Expression (N);
6618
6619         begin
6620            Rewrite (N,
6621              Unchecked_Convert_To (RTE (RE_Address),
6622                Relocate_Node (First (Exprs))));
6623            Set_Is_Static_Expression (N, Is_Static);
6624
6625            Analyze_And_Resolve (N, RTE (RE_Address));
6626         end To_Address;
6627
6628      ------------
6629      -- To_Any --
6630      ------------
6631
6632      when Attribute_To_Any => To_Any : declare
6633         P_Type : constant Entity_Id := Etype (Pref);
6634         Decls  : constant List_Id   := New_List;
6635      begin
6636         Rewrite (N,
6637           Build_To_Any_Call
6638             (Loc,
6639              Convert_To (P_Type,
6640              Relocate_Node (First (Exprs))), Decls));
6641         Insert_Actions (N, Decls);
6642         Analyze_And_Resolve (N, RTE (RE_Any));
6643      end To_Any;
6644
6645      ----------------
6646      -- Truncation --
6647      ----------------
6648
6649      --  Transforms 'Truncation into a call to the floating-point attribute
6650      --  function Truncation in Fat_xxx (where xxx is the root type).
6651      --  Expansion is avoided for cases the back end can handle directly.
6652
6653      when Attribute_Truncation =>
6654         if not Is_Inline_Floating_Point_Attribute (N) then
6655            Expand_Fpt_Attribute_R (N);
6656         end if;
6657
6658      --------------
6659      -- TypeCode --
6660      --------------
6661
6662      when Attribute_TypeCode => TypeCode : declare
6663         P_Type : constant Entity_Id := Etype (Pref);
6664         Decls  : constant List_Id   := New_List;
6665      begin
6666         Rewrite (N, Build_TypeCode_Call (Loc, P_Type, Decls));
6667         Insert_Actions (N, Decls);
6668         Analyze_And_Resolve (N, RTE (RE_TypeCode));
6669      end TypeCode;
6670
6671      -----------------------
6672      -- Unbiased_Rounding --
6673      -----------------------
6674
6675      --  Transforms 'Unbiased_Rounding into a call to the floating-point
6676      --  attribute function Unbiased_Rounding in Fat_xxx (where xxx is the
6677      --  root type). Expansion is avoided for cases the back end can handle
6678      --  directly.
6679
6680      when Attribute_Unbiased_Rounding =>
6681         if not Is_Inline_Floating_Point_Attribute (N) then
6682            Expand_Fpt_Attribute_R (N);
6683         end if;
6684
6685      ------------
6686      -- Update --
6687      ------------
6688
6689      when Attribute_Update =>
6690         Expand_Update_Attribute (N);
6691
6692      ---------------
6693      -- VADS_Size --
6694      ---------------
6695
6696      --  The processing for VADS_Size is shared with Size
6697
6698      ---------
6699      -- Val --
6700      ---------
6701
6702      --  For enumeration types with a standard representation, and for all
6703      --  other types, Val is handled by the back end. For enumeration types
6704      --  with a non-standard representation we use the _Pos_To_Rep array that
6705      --  was created when the type was frozen.
6706
6707      when Attribute_Val => Val : declare
6708         Etyp : constant Entity_Id := Base_Type (Entity (Pref));
6709
6710      begin
6711         if Is_Enumeration_Type (Etyp)
6712           and then Present (Enum_Pos_To_Rep (Etyp))
6713         then
6714            if Has_Contiguous_Rep (Etyp) then
6715               declare
6716                  Rep_Node : constant Node_Id :=
6717                    Unchecked_Convert_To (Etyp,
6718                       Make_Op_Add (Loc,
6719                         Left_Opnd =>
6720                            Make_Integer_Literal (Loc,
6721                              Enumeration_Rep (First_Literal (Etyp))),
6722                         Right_Opnd =>
6723                          (Convert_To (Standard_Integer,
6724                             Relocate_Node (First (Exprs))))));
6725
6726               begin
6727                  Rewrite (N,
6728                     Unchecked_Convert_To (Etyp,
6729                         Make_Op_Add (Loc,
6730                           Left_Opnd =>
6731                             Make_Integer_Literal (Loc,
6732                               Enumeration_Rep (First_Literal (Etyp))),
6733                           Right_Opnd =>
6734                             Make_Function_Call (Loc,
6735                               Name =>
6736                                 New_Occurrence_Of
6737                                   (TSS (Etyp, TSS_Rep_To_Pos), Loc),
6738                               Parameter_Associations => New_List (
6739                                 Rep_Node,
6740                                 Rep_To_Pos_Flag (Etyp, Loc))))));
6741               end;
6742
6743            else
6744               Rewrite (N,
6745                 Make_Indexed_Component (Loc,
6746                   Prefix => New_Occurrence_Of (Enum_Pos_To_Rep (Etyp), Loc),
6747                   Expressions => New_List (
6748                     Convert_To (Standard_Integer,
6749                       Relocate_Node (First (Exprs))))));
6750            end if;
6751
6752            Analyze_And_Resolve (N, Typ);
6753
6754         --  If the argument is marked as requiring a range check then generate
6755         --  it here.
6756
6757         elsif Do_Range_Check (First (Exprs)) then
6758            Generate_Range_Check (First (Exprs), Etyp, CE_Range_Check_Failed);
6759         end if;
6760      end Val;
6761
6762      -----------
6763      -- Valid --
6764      -----------
6765
6766      --  The code for valid is dependent on the particular types involved.
6767      --  See separate sections below for the generated code in each case.
6768
6769      when Attribute_Valid => Valid : declare
6770         Btyp : Entity_Id := Base_Type (Ptyp);
6771
6772         Save_Validity_Checks_On : constant Boolean := Validity_Checks_On;
6773         --  Save the validity checking mode. We always turn off validity
6774         --  checking during process of 'Valid since this is one place
6775         --  where we do not want the implicit validity checks to interfere
6776         --  with the explicit validity check that the programmer is doing.
6777
6778         function Make_Range_Test return Node_Id;
6779         --  Build the code for a range test of the form
6780         --    Btyp!(Pref) in Btyp!(Ptyp'First) .. Btyp!(Ptyp'Last)
6781
6782         ---------------------
6783         -- Make_Range_Test --
6784         ---------------------
6785
6786         function Make_Range_Test return Node_Id is
6787            Temp : Node_Id;
6788
6789         begin
6790            --  The prefix of attribute 'Valid should always denote an object
6791            --  reference. The reference is either coming directly from source
6792            --  or is produced by validity check expansion. The object may be
6793            --  wrapped in a conversion in which case the call to Unqual_Conv
6794            --  will yield it.
6795
6796            --  If the prefix denotes a variable which captures the value of
6797            --  an object for validation purposes, use the variable in the
6798            --  range test. This ensures that no extra copies or extra reads
6799            --  are produced as part of the test. Generate:
6800
6801            --    Temp : ... := Object;
6802            --    if not Temp in ... then
6803
6804            if Is_Validation_Variable_Reference (Pref) then
6805               Temp := New_Occurrence_Of (Entity (Unqual_Conv (Pref)), Loc);
6806
6807            --  Otherwise the prefix is either a source object or a constant
6808            --  produced by validity check expansion. Generate:
6809
6810            --    Temp : constant ... := Pref;
6811            --    if not Temp in ... then
6812
6813            else
6814               Temp := Duplicate_Subexpr (Pref);
6815            end if;
6816
6817            return
6818              Make_In (Loc,
6819                Left_Opnd  => Unchecked_Convert_To (Btyp, Temp),
6820                Right_Opnd =>
6821                  Make_Range (Loc,
6822                    Low_Bound  =>
6823                      Unchecked_Convert_To (Btyp,
6824                        Make_Attribute_Reference (Loc,
6825                          Prefix         => New_Occurrence_Of (Ptyp, Loc),
6826                          Attribute_Name => Name_First)),
6827                    High_Bound =>
6828                      Unchecked_Convert_To (Btyp,
6829                        Make_Attribute_Reference (Loc,
6830                          Prefix         => New_Occurrence_Of (Ptyp, Loc),
6831                          Attribute_Name => Name_Last))));
6832         end Make_Range_Test;
6833
6834         --  Local variables
6835
6836         Tst : Node_Id;
6837
6838      --  Start of processing for Attribute_Valid
6839
6840      begin
6841         --  Do not expand sourced code 'Valid reference in CodePeer mode,
6842         --  will be handled by the back-end directly.
6843
6844         if CodePeer_Mode and then Comes_From_Source (N) then
6845            return;
6846         end if;
6847
6848         --  Turn off validity checks. We do not want any implicit validity
6849         --  checks to intefere with the explicit check from the attribute
6850
6851         Validity_Checks_On := False;
6852
6853         --  Retrieve the base type. Handle the case where the base type is a
6854         --  private enumeration type.
6855
6856         if Is_Private_Type (Btyp) and then Present (Full_View (Btyp)) then
6857            Btyp := Full_View (Btyp);
6858         end if;
6859
6860         --  Floating-point case. This case is handled by the Valid attribute
6861         --  code in the floating-point attribute run-time library.
6862
6863         if Is_Floating_Point_Type (Ptyp) then
6864            Float_Valid : declare
6865               Pkg : RE_Id;
6866               Ftp : Entity_Id;
6867
6868               function Get_Fat_Entity (Nam : Name_Id) return Entity_Id;
6869               --  Return entity for Pkg.Nam
6870
6871               --------------------
6872               -- Get_Fat_Entity --
6873               --------------------
6874
6875               function Get_Fat_Entity (Nam : Name_Id) return Entity_Id is
6876                  Exp_Name : constant Node_Id :=
6877                    Make_Selected_Component (Loc,
6878                      Prefix        => New_Occurrence_Of (RTE (Pkg), Loc),
6879                      Selector_Name => Make_Identifier (Loc, Nam));
6880               begin
6881                  Find_Selected_Component (Exp_Name);
6882                  return Entity (Exp_Name);
6883               end Get_Fat_Entity;
6884
6885            --  Start of processing for Float_Valid
6886
6887            begin
6888               --  The C and AAMP back-ends handle Valid for fpt types
6889
6890               if Modify_Tree_For_C or else Float_Rep (Btyp) = AAMP then
6891                  Analyze_And_Resolve (Pref, Ptyp);
6892                  Set_Etype (N, Standard_Boolean);
6893                  Set_Analyzed (N);
6894
6895               else
6896                  Find_Fat_Info (Ptyp, Ftp, Pkg);
6897
6898                  --  If the prefix is a reverse SSO component, or is possibly
6899                  --  unaligned, first create a temporary copy that is in
6900                  --  native SSO, and properly aligned. Make it Volatile to
6901                  --  prevent folding in the back-end. Note that we use an
6902                  --  intermediate constrained string type to initialize the
6903                  --  temporary, as the value at hand might be invalid, and in
6904                  --  that case it cannot be copied using a floating point
6905                  --  register.
6906
6907                  if In_Reverse_Storage_Order_Object (Pref)
6908                    or else Is_Possibly_Unaligned_Object (Pref)
6909                  then
6910                     declare
6911                        Temp : constant Entity_Id :=
6912                                 Make_Temporary (Loc, 'F');
6913
6914                        Fat_S : constant Entity_Id :=
6915                                  Get_Fat_Entity (Name_S);
6916                        --  Constrained string subtype of appropriate size
6917
6918                        Fat_P : constant Entity_Id :=
6919                                  Get_Fat_Entity (Name_P);
6920                        --  Access to Fat_S
6921
6922                        Decl : constant Node_Id :=
6923                                 Make_Object_Declaration (Loc,
6924                                   Defining_Identifier => Temp,
6925                                   Aliased_Present     => True,
6926                                   Object_Definition   =>
6927                                     New_Occurrence_Of (Ptyp, Loc));
6928
6929                     begin
6930                        Set_Aspect_Specifications (Decl, New_List (
6931                          Make_Aspect_Specification (Loc,
6932                            Identifier =>
6933                              Make_Identifier (Loc, Name_Volatile))));
6934
6935                        Insert_Actions (N,
6936                          New_List (
6937                            Decl,
6938
6939                            Make_Assignment_Statement (Loc,
6940                              Name =>
6941                                Make_Explicit_Dereference (Loc,
6942                                  Prefix =>
6943                                    Unchecked_Convert_To (Fat_P,
6944                                      Make_Attribute_Reference (Loc,
6945                                        Prefix =>
6946                                          New_Occurrence_Of (Temp, Loc),
6947                                        Attribute_Name =>
6948                                          Name_Unrestricted_Access))),
6949                              Expression =>
6950                                Unchecked_Convert_To (Fat_S,
6951                                  Relocate_Node (Pref)))),
6952
6953                          Suppress => All_Checks);
6954
6955                        Rewrite (Pref, New_Occurrence_Of (Temp, Loc));
6956                     end;
6957                  end if;
6958
6959                  --  We now have an object of the proper endianness and
6960                  --  alignment, and can construct a Valid attribute.
6961
6962                  --  We make sure the prefix of this valid attribute is
6963                  --  marked as not coming from source, to avoid losing
6964                  --  warnings from 'Valid looking like a possible update.
6965
6966                  Set_Comes_From_Source (Pref, False);
6967
6968                  Expand_Fpt_Attribute
6969                    (N, Pkg, Name_Valid,
6970                     New_List (
6971                       Make_Attribute_Reference (Loc,
6972                         Prefix         => Unchecked_Convert_To (Ftp, Pref),
6973                         Attribute_Name => Name_Unrestricted_Access)));
6974               end if;
6975
6976               --  One more task, we still need a range check. Required
6977               --  only if we have a constraint, since the Valid routine
6978               --  catches infinities properly (infinities are never valid).
6979
6980               --  The way we do the range check is simply to create the
6981               --  expression: Valid (N) and then Base_Type(Pref) in Typ.
6982
6983               if not Subtypes_Statically_Match (Ptyp, Btyp) then
6984                  Rewrite (N,
6985                    Make_And_Then (Loc,
6986                      Left_Opnd  => Relocate_Node (N),
6987                      Right_Opnd =>
6988                        Make_In (Loc,
6989                          Left_Opnd  => Convert_To (Btyp, Pref),
6990                          Right_Opnd => New_Occurrence_Of (Ptyp, Loc))));
6991               end if;
6992            end Float_Valid;
6993
6994         --  Enumeration type with holes
6995
6996         --  For enumeration types with holes, the Pos value constructed by
6997         --  the Enum_Rep_To_Pos function built in Exp_Ch3 called with a
6998         --  second argument of False returns minus one for an invalid value,
6999         --  and the non-negative pos value for a valid value, so the
7000         --  expansion of X'Valid is simply:
7001
7002         --     type(X)'Pos (X) >= 0
7003
7004         --  We can't quite generate it that way because of the requirement
7005         --  for the non-standard second argument of False in the resulting
7006         --  rep_to_pos call, so we have to explicitly create:
7007
7008         --     _rep_to_pos (X, False) >= 0
7009
7010         --  If we have an enumeration subtype, we also check that the
7011         --  value is in range:
7012
7013         --    _rep_to_pos (X, False) >= 0
7014         --      and then
7015         --       (X >= type(X)'First and then type(X)'Last <= X)
7016
7017         elsif Is_Enumeration_Type (Ptyp)
7018           and then Present (Enum_Pos_To_Rep (Btyp))
7019         then
7020            Tst :=
7021              Make_Op_Ge (Loc,
7022                Left_Opnd =>
7023                  Make_Function_Call (Loc,
7024                    Name =>
7025                      New_Occurrence_Of (TSS (Btyp, TSS_Rep_To_Pos), Loc),
7026                    Parameter_Associations => New_List (
7027                      Pref,
7028                      New_Occurrence_Of (Standard_False, Loc))),
7029                Right_Opnd => Make_Integer_Literal (Loc, 0));
7030
7031            if Ptyp /= Btyp
7032              and then
7033                (Type_Low_Bound (Ptyp) /= Type_Low_Bound (Btyp)
7034                  or else
7035                 Type_High_Bound (Ptyp) /= Type_High_Bound (Btyp))
7036            then
7037               --  The call to Make_Range_Test will create declarations
7038               --  that need a proper insertion point, but Pref is now
7039               --  attached to a node with no ancestor. Attach to tree
7040               --  even if it is to be rewritten below.
7041
7042               Set_Parent (Tst, Parent (N));
7043
7044               Tst :=
7045                 Make_And_Then (Loc,
7046                   Left_Opnd  => Make_Range_Test,
7047                   Right_Opnd => Tst);
7048            end if;
7049
7050            Rewrite (N, Tst);
7051
7052         --  Fortran convention booleans
7053
7054         --  For the very special case of Fortran convention booleans, the
7055         --  value is always valid, since it is an integer with the semantics
7056         --  that non-zero is true, and any value is permissible.
7057
7058         elsif Is_Boolean_Type (Ptyp)
7059           and then Convention (Ptyp) = Convention_Fortran
7060         then
7061            Rewrite (N, New_Occurrence_Of (Standard_True, Loc));
7062
7063         --  For biased representations, we will be doing an unchecked
7064         --  conversion without unbiasing the result. That means that the range
7065         --  test has to take this into account, and the proper form of the
7066         --  test is:
7067
7068         --    Btyp!(Pref) < Btyp!(Ptyp'Range_Length)
7069
7070         elsif Has_Biased_Representation (Ptyp) then
7071            Btyp := RTE (RE_Unsigned_32);
7072            Rewrite (N,
7073              Make_Op_Lt (Loc,
7074                Left_Opnd =>
7075                  Unchecked_Convert_To (Btyp, Duplicate_Subexpr (Pref)),
7076                Right_Opnd =>
7077                  Unchecked_Convert_To (Btyp,
7078                    Make_Attribute_Reference (Loc,
7079                      Prefix => New_Occurrence_Of (Ptyp, Loc),
7080                      Attribute_Name => Name_Range_Length))));
7081
7082         --  For all other scalar types, what we want logically is a
7083         --  range test:
7084
7085         --     X in type(X)'First .. type(X)'Last
7086
7087         --  But that's precisely what won't work because of possible
7088         --  unwanted optimization (and indeed the basic motivation for
7089         --  the Valid attribute is exactly that this test does not work).
7090         --  What will work is:
7091
7092         --     Btyp!(X) >= Btyp!(type(X)'First)
7093         --       and then
7094         --     Btyp!(X) <= Btyp!(type(X)'Last)
7095
7096         --  where Btyp is an integer type large enough to cover the full
7097         --  range of possible stored values (i.e. it is chosen on the basis
7098         --  of the size of the type, not the range of the values). We write
7099         --  this as two tests, rather than a range check, so that static
7100         --  evaluation will easily remove either or both of the checks if
7101         --  they can be -statically determined to be true (this happens
7102         --  when the type of X is static and the range extends to the full
7103         --  range of stored values).
7104
7105         --  Unsigned types. Note: it is safe to consider only whether the
7106         --  subtype is unsigned, since we will in that case be doing all
7107         --  unsigned comparisons based on the subtype range. Since we use the
7108         --  actual subtype object size, this is appropriate.
7109
7110         --  For example, if we have
7111
7112         --    subtype x is integer range 1 .. 200;
7113         --    for x'Object_Size use 8;
7114
7115         --  Now the base type is signed, but objects of this type are bits
7116         --  unsigned, and doing an unsigned test of the range 1 to 200 is
7117         --  correct, even though a value greater than 127 looks signed to a
7118         --  signed comparison.
7119
7120         elsif Is_Unsigned_Type (Ptyp) then
7121            if Esize (Ptyp) <= 32 then
7122               Btyp := RTE (RE_Unsigned_32);
7123            else
7124               Btyp := RTE (RE_Unsigned_64);
7125            end if;
7126
7127            Rewrite (N, Make_Range_Test);
7128
7129         --  Signed types
7130
7131         else
7132            if Esize (Ptyp) <= Esize (Standard_Integer) then
7133               Btyp := Standard_Integer;
7134            else
7135               Btyp := Universal_Integer;
7136            end if;
7137
7138            Rewrite (N, Make_Range_Test);
7139         end if;
7140
7141         --  If a predicate is present, then we do the predicate test, even if
7142         --  within the predicate function (infinite recursion is warned about
7143         --  in Sem_Attr in that case).
7144
7145         declare
7146            Pred_Func : constant Entity_Id := Predicate_Function (Ptyp);
7147
7148         begin
7149            if Present (Pred_Func) then
7150               Rewrite (N,
7151                 Make_And_Then (Loc,
7152                   Left_Opnd  => Relocate_Node (N),
7153                   Right_Opnd => Make_Predicate_Call (Ptyp, Pref)));
7154            end if;
7155         end;
7156
7157         Analyze_And_Resolve (N, Standard_Boolean);
7158         Validity_Checks_On := Save_Validity_Checks_On;
7159      end Valid;
7160
7161      -------------------
7162      -- Valid_Scalars --
7163      -------------------
7164
7165      when Attribute_Valid_Scalars => Valid_Scalars : declare
7166         Val_Typ  : constant Entity_Id := Validated_View (Ptyp);
7167         Comp_Typ : Entity_Id;
7168         Expr     : Node_Id;
7169
7170      begin
7171         --  Assume that the prefix does not need validation
7172
7173         Expr := Empty;
7174
7175         --  Attribute 'Valid_Scalars is not supported on private tagged types
7176
7177         if Is_Private_Type (Ptyp) and then Is_Tagged_Type (Ptyp) then
7178            null;
7179
7180         --  Attribute 'Valid_Scalars evaluates to True when the type lacks
7181         --  scalars.
7182
7183         elsif not Scalar_Part_Present (Val_Typ) then
7184            null;
7185
7186         --  Attribute 'Valid_Scalars is the same as attribute 'Valid when the
7187         --  validated type is a scalar type. Generate:
7188
7189         --    Val_Typ (Pref)'Valid
7190
7191         elsif Is_Scalar_Type (Val_Typ) then
7192            Expr :=
7193              Make_Attribute_Reference (Loc,
7194                Prefix         =>
7195                  Unchecked_Convert_To (Val_Typ, New_Copy_Tree (Pref)),
7196                Attribute_Name => Name_Valid);
7197
7198         --  Validate the scalar components of an array by iterating over all
7199         --  dimensions of the array while checking individual components.
7200
7201         elsif Is_Array_Type (Val_Typ) then
7202            Comp_Typ := Validated_View (Component_Type (Val_Typ));
7203
7204            if Scalar_Part_Present (Comp_Typ) then
7205               Expr :=
7206                 Make_Function_Call (Loc,
7207                   Name                   =>
7208                     New_Occurrence_Of
7209                       (Build_Array_VS_Func
7210                         (Attr       => N,
7211                          Formal_Typ => Ptyp,
7212                          Array_Typ  => Val_Typ,
7213                          Comp_Typ   => Comp_Typ),
7214                       Loc),
7215                   Parameter_Associations => New_List (Pref));
7216            end if;
7217
7218         --  Validate the scalar components, discriminants of a record type by
7219         --  examining the structure of a record type.
7220
7221         elsif Is_Record_Type (Val_Typ) then
7222            Expr :=
7223              Make_Function_Call (Loc,
7224                Name                   =>
7225                  New_Occurrence_Of
7226                    (Build_Record_VS_Func
7227                      (Attr       => N,
7228                       Formal_Typ => Ptyp,
7229                       Rec_Typ    => Val_Typ),
7230                    Loc),
7231                Parameter_Associations => New_List (Pref));
7232         end if;
7233
7234         --  Default the attribute to True when the type of the prefix does not
7235         --  need validation.
7236
7237         if No (Expr) then
7238            Expr := New_Occurrence_Of (Standard_True, Loc);
7239         end if;
7240
7241         Rewrite (N, Expr);
7242         Analyze_And_Resolve (N, Standard_Boolean);
7243         Set_Is_Static_Expression (N, False);
7244      end Valid_Scalars;
7245
7246      -----------
7247      -- Value --
7248      -----------
7249
7250      --  Value attribute is handled in separate unit Exp_Imgv
7251
7252      when Attribute_Value =>
7253         Exp_Imgv.Expand_Value_Attribute (N);
7254
7255      -----------------
7256      -- Value_Size --
7257      -----------------
7258
7259      --  The processing for Value_Size shares the processing for Size
7260
7261      -------------
7262      -- Version --
7263      -------------
7264
7265      --  The processing for Version shares the processing for Body_Version
7266
7267      ----------------
7268      -- Wide_Image --
7269      ----------------
7270
7271      --  Wide_Image attribute is handled in separate unit Exp_Imgv
7272
7273      when Attribute_Wide_Image =>
7274         --  Leave attribute unexpanded in CodePeer mode: the gnat2scil
7275         --  back-end knows how to handle this attribute directly.
7276
7277         if CodePeer_Mode then
7278            return;
7279         end if;
7280
7281         Exp_Imgv.Expand_Wide_Image_Attribute (N);
7282
7283      ---------------------
7284      -- Wide_Wide_Image --
7285      ---------------------
7286
7287      --  Wide_Wide_Image attribute is handled in separate unit Exp_Imgv
7288
7289      when Attribute_Wide_Wide_Image =>
7290         --  Leave attribute unexpanded in CodePeer mode: the gnat2scil
7291         --  back-end knows how to handle this attribute directly.
7292
7293         if CodePeer_Mode then
7294            return;
7295         end if;
7296
7297         Exp_Imgv.Expand_Wide_Wide_Image_Attribute (N);
7298
7299      ----------------
7300      -- Wide_Value --
7301      ----------------
7302
7303      --  We expand typ'Wide_Value (X) into
7304
7305      --    typ'Value
7306      --      (Wide_String_To_String (X, Wide_Character_Encoding_Method))
7307
7308      --  Wide_String_To_String is a runtime function that converts its wide
7309      --  string argument to String, converting any non-translatable characters
7310      --  into appropriate escape sequences. This preserves the required
7311      --  semantics of Wide_Value in all cases, and results in a very simple
7312      --  implementation approach.
7313
7314      --  Note: for this approach to be fully standard compliant for the cases
7315      --  where typ is Wide_Character and Wide_Wide_Character, the encoding
7316      --  method must cover the entire character range (e.g. UTF-8). But that
7317      --  is a reasonable requirement when dealing with encoded character
7318      --  sequences. Presumably if one of the restrictive encoding mechanisms
7319      --  is in use such as Shift-JIS, then characters that cannot be
7320      --  represented using this encoding will not appear in any case.
7321
7322      when Attribute_Wide_Value =>
7323         Rewrite (N,
7324           Make_Attribute_Reference (Loc,
7325             Prefix         => Pref,
7326             Attribute_Name => Name_Value,
7327
7328             Expressions    => New_List (
7329               Make_Function_Call (Loc,
7330                 Name =>
7331                   New_Occurrence_Of (RTE (RE_Wide_String_To_String), Loc),
7332
7333                 Parameter_Associations => New_List (
7334                   Relocate_Node (First (Exprs)),
7335                   Make_Integer_Literal (Loc,
7336                     Intval => Int (Wide_Character_Encoding_Method)))))));
7337
7338         Analyze_And_Resolve (N, Typ);
7339
7340      ---------------------
7341      -- Wide_Wide_Value --
7342      ---------------------
7343
7344      --  We expand typ'Wide_Value_Value (X) into
7345
7346      --    typ'Value
7347      --      (Wide_Wide_String_To_String (X, Wide_Character_Encoding_Method))
7348
7349      --  Wide_Wide_String_To_String is a runtime function that converts its
7350      --  wide string argument to String, converting any non-translatable
7351      --  characters into appropriate escape sequences. This preserves the
7352      --  required semantics of Wide_Wide_Value in all cases, and results in a
7353      --  very simple implementation approach.
7354
7355      --  It's not quite right where typ = Wide_Wide_Character, because the
7356      --  encoding method may not cover the whole character type ???
7357
7358      when Attribute_Wide_Wide_Value =>
7359         Rewrite (N,
7360           Make_Attribute_Reference (Loc,
7361             Prefix         => Pref,
7362             Attribute_Name => Name_Value,
7363
7364             Expressions    => New_List (
7365               Make_Function_Call (Loc,
7366                 Name                   =>
7367                   New_Occurrence_Of
7368                     (RTE (RE_Wide_Wide_String_To_String), Loc),
7369
7370                 Parameter_Associations => New_List (
7371                   Relocate_Node (First (Exprs)),
7372                   Make_Integer_Literal (Loc,
7373                     Intval => Int (Wide_Character_Encoding_Method)))))));
7374
7375         Analyze_And_Resolve (N, Typ);
7376
7377      ---------------------
7378      -- Wide_Wide_Width --
7379      ---------------------
7380
7381      --  Wide_Wide_Width attribute is handled in separate unit Exp_Imgv
7382
7383      when Attribute_Wide_Wide_Width =>
7384         Exp_Imgv.Expand_Width_Attribute (N, Wide_Wide);
7385
7386      ----------------
7387      -- Wide_Width --
7388      ----------------
7389
7390      --  Wide_Width attribute is handled in separate unit Exp_Imgv
7391
7392      when Attribute_Wide_Width =>
7393         Exp_Imgv.Expand_Width_Attribute (N, Wide);
7394
7395      -----------
7396      -- Width --
7397      -----------
7398
7399      --  Width attribute is handled in separate unit Exp_Imgv
7400
7401      when Attribute_Width =>
7402         Exp_Imgv.Expand_Width_Attribute (N, Normal);
7403
7404      -----------
7405      -- Write --
7406      -----------
7407
7408      when Attribute_Write => Write : declare
7409         P_Type : constant Entity_Id := Entity (Pref);
7410         U_Type : constant Entity_Id := Underlying_Type (P_Type);
7411         Pname  : Entity_Id;
7412         Decl   : Node_Id;
7413         Prag   : Node_Id;
7414         Arg3   : Node_Id;
7415         Wfunc  : Node_Id;
7416
7417      begin
7418         --  If no underlying type, we have an error that will be diagnosed
7419         --  elsewhere, so here we just completely ignore the expansion.
7420
7421         if No (U_Type) then
7422            return;
7423         end if;
7424
7425         --  Stream operations can appear in user code even if the restriction
7426         --  No_Streams is active (for example, when instantiating a predefined
7427         --  container). In that case rewrite the attribute as a Raise to
7428         --  prevent any run-time use.
7429
7430         if Restriction_Active (No_Streams) then
7431            Rewrite (N,
7432              Make_Raise_Program_Error (Sloc (N),
7433                Reason => PE_Stream_Operation_Not_Allowed));
7434            Set_Etype (N, U_Type);
7435            return;
7436         end if;
7437
7438         --  The simple case, if there is a TSS for Write, just call it
7439
7440         Pname := Find_Stream_Subprogram (P_Type, TSS_Stream_Write);
7441
7442         if Present (Pname) then
7443            null;
7444
7445         else
7446            --  If there is a Stream_Convert pragma, use it, we rewrite
7447
7448            --     sourcetyp'Output (stream, Item)
7449
7450            --  as
7451
7452            --     strmtyp'Output (Stream, strmwrite (acttyp (Item)));
7453
7454            --  where strmwrite is the given Write function that converts an
7455            --  argument of type sourcetyp or a type acctyp, from which it is
7456            --  derived to type strmtyp. The conversion to acttyp is required
7457            --  for the derived case.
7458
7459            Prag := Get_Stream_Convert_Pragma (P_Type);
7460
7461            if Present (Prag) then
7462               Arg3 :=
7463                 Next (Next (First (Pragma_Argument_Associations (Prag))));
7464               Wfunc := Entity (Expression (Arg3));
7465
7466               Rewrite (N,
7467                 Make_Attribute_Reference (Loc,
7468                   Prefix => New_Occurrence_Of (Etype (Wfunc), Loc),
7469                   Attribute_Name => Name_Output,
7470                   Expressions => New_List (
7471                     Relocate_Node (First (Exprs)),
7472                     Make_Function_Call (Loc,
7473                       Name => New_Occurrence_Of (Wfunc, Loc),
7474                       Parameter_Associations => New_List (
7475                         OK_Convert_To (Etype (First_Formal (Wfunc)),
7476                           Relocate_Node (Next (First (Exprs)))))))));
7477
7478               Analyze (N);
7479               return;
7480
7481            --  For elementary types, we call the W_xxx routine directly
7482
7483            elsif Is_Elementary_Type (U_Type) then
7484               Rewrite (N, Build_Elementary_Write_Call (N));
7485               Analyze (N);
7486               return;
7487
7488            --  Array type case
7489
7490            elsif Is_Array_Type (U_Type) then
7491               Build_Array_Write_Procedure (N, U_Type, Decl, Pname);
7492               Compile_Stream_Body_In_Scope (N, Decl, U_Type, Check => False);
7493
7494            --  Tagged type case, use the primitive Write function. Note that
7495            --  this will dispatch in the class-wide case which is what we want
7496
7497            elsif Is_Tagged_Type (U_Type) then
7498               Pname := Find_Prim_Op (U_Type, TSS_Stream_Write);
7499
7500            --  All other record type cases, including protected records.
7501            --  The latter only arise for expander generated code for
7502            --  handling shared passive partition access.
7503
7504            else
7505               pragma Assert
7506                 (Is_Record_Type (U_Type) or else Is_Protected_Type (U_Type));
7507
7508               --  Ada 2005 (AI-216): Program_Error is raised when executing
7509               --  the default implementation of the Write attribute of an
7510               --  Unchecked_Union type. However, if the 'Write reference is
7511               --  within the generated Output stream procedure, Write outputs
7512               --  the components, and the default values of the discriminant
7513               --  are streamed by the Output procedure itself. If there are
7514               --  no default values this is also erroneous.
7515
7516               if Is_Unchecked_Union (Base_Type (U_Type)) then
7517                  if (not Is_TSS (Current_Scope, TSS_Stream_Output)
7518                       and not Is_TSS (Current_Scope, TSS_Stream_Write))
7519                    or else No (Discriminant_Default_Value
7520                                 (First_Discriminant (U_Type)))
7521                  then
7522                     Rewrite (N,
7523                       Make_Raise_Program_Error (Loc,
7524                         Reason => PE_Unchecked_Union_Restriction));
7525                     Set_Etype (N, U_Type);
7526                     return;
7527                  end if;
7528               end if;
7529
7530               if Has_Discriminants (U_Type)
7531                 and then Present
7532                   (Discriminant_Default_Value (First_Discriminant (U_Type)))
7533               then
7534                  Build_Mutable_Record_Write_Procedure
7535                    (Loc, Full_Base (U_Type), Decl, Pname);
7536               else
7537                  Build_Record_Write_Procedure
7538                    (Loc, Full_Base (U_Type), Decl, Pname);
7539               end if;
7540
7541               Insert_Action (N, Decl);
7542            end if;
7543         end if;
7544
7545         --  If we fall through, Pname is the procedure to be called
7546
7547         Rewrite_Stream_Proc_Call (Pname);
7548      end Write;
7549
7550      --  Component_Size is handled by the back end, unless the component size
7551      --  is known at compile time, which is always true in the packed array
7552      --  case. It is important that the packed array case is handled in the
7553      --  front end (see Eval_Attribute) since the back end would otherwise get
7554      --  confused by the equivalent packed array type.
7555
7556      when Attribute_Component_Size =>
7557         null;
7558
7559      --  The following attributes are handled by the back end (except that
7560      --  static cases have already been evaluated during semantic processing,
7561      --  but in any case the back end should not count on this).
7562
7563      --  The back end also handles the non-class-wide cases of Size
7564
7565      when Attribute_Bit_Order
7566         | Attribute_Code_Address
7567         | Attribute_Definite
7568         | Attribute_Deref
7569         | Attribute_Null_Parameter
7570         | Attribute_Passed_By_Reference
7571         | Attribute_Pool_Address
7572         | Attribute_Scalar_Storage_Order
7573      =>
7574         null;
7575
7576      --  The following attributes are also handled by the back end, but return
7577      --  a universal integer result, so may need a conversion for checking
7578      --  that the result is in range.
7579
7580      when Attribute_Aft
7581         | Attribute_Max_Alignment_For_Allocation
7582      =>
7583         Apply_Universal_Integer_Attribute_Checks (N);
7584
7585      --  The following attributes should not appear at this stage, since they
7586      --  have already been handled by the analyzer (and properly rewritten
7587      --  with corresponding values or entities to represent the right values)
7588
7589      when Attribute_Abort_Signal
7590         | Attribute_Address_Size
7591         | Attribute_Atomic_Always_Lock_Free
7592         | Attribute_Base
7593         | Attribute_Class
7594         | Attribute_Compiler_Version
7595         | Attribute_Default_Bit_Order
7596         | Attribute_Default_Scalar_Storage_Order
7597         | Attribute_Delta
7598         | Attribute_Denorm
7599         | Attribute_Digits
7600         | Attribute_Emax
7601         | Attribute_Enabled
7602         | Attribute_Epsilon
7603         | Attribute_Fast_Math
7604         | Attribute_First_Valid
7605         | Attribute_Has_Access_Values
7606         | Attribute_Has_Discriminants
7607         | Attribute_Has_Tagged_Values
7608         | Attribute_Large
7609         | Attribute_Last_Valid
7610         | Attribute_Library_Level
7611         | Attribute_Lock_Free
7612         | Attribute_Machine_Emax
7613         | Attribute_Machine_Emin
7614         | Attribute_Machine_Mantissa
7615         | Attribute_Machine_Overflows
7616         | Attribute_Machine_Radix
7617         | Attribute_Machine_Rounds
7618         | Attribute_Maximum_Alignment
7619         | Attribute_Model_Emin
7620         | Attribute_Model_Epsilon
7621         | Attribute_Model_Mantissa
7622         | Attribute_Model_Small
7623         | Attribute_Modulus
7624         | Attribute_Partition_ID
7625         | Attribute_Range
7626         | Attribute_Restriction_Set
7627         | Attribute_Safe_Emax
7628         | Attribute_Safe_First
7629         | Attribute_Safe_Large
7630         | Attribute_Safe_Last
7631         | Attribute_Safe_Small
7632         | Attribute_Scale
7633         | Attribute_Signed_Zeros
7634         | Attribute_Small
7635         | Attribute_Storage_Unit
7636         | Attribute_Stub_Type
7637         | Attribute_System_Allocator_Alignment
7638         | Attribute_Target_Name
7639         | Attribute_Type_Class
7640         | Attribute_Type_Key
7641         | Attribute_Unconstrained_Array
7642         | Attribute_Universal_Literal_String
7643         | Attribute_Wchar_T_Size
7644         | Attribute_Word_Size
7645      =>
7646         raise Program_Error;
7647
7648      --  The Asm_Input and Asm_Output attributes are not expanded at this
7649      --  stage, but will be eliminated in the expansion of the Asm call, see
7650      --  Exp_Intr for details. So the back end will never see these either.
7651
7652      when Attribute_Asm_Input
7653         | Attribute_Asm_Output
7654      =>
7655         null;
7656      end case;
7657
7658   --  Note: as mentioned earlier, individual sections of the above case
7659   --  statement assume there is no code after the case statement, and are
7660   --  legitimately allowed to execute return statements if they have nothing
7661   --  more to do, so DO NOT add code at this point.
7662
7663   exception
7664      when RE_Not_Available =>
7665         return;
7666   end Expand_N_Attribute_Reference;
7667
7668   --------------------------------
7669   -- Expand_Pred_Succ_Attribute --
7670   --------------------------------
7671
7672   --  For typ'Pred (exp), we generate the check
7673
7674   --    [constraint_error when exp = typ'Base'First]
7675
7676   --  Similarly, for typ'Succ (exp), we generate the check
7677
7678   --    [constraint_error when exp = typ'Base'Last]
7679
7680   --  These checks are not generated for modular types, since the proper
7681   --  semantics for Succ and Pred on modular types is to wrap, not raise CE.
7682   --  We also suppress these checks if we are the right side of an assignment
7683   --  statement or the expression of an object declaration, where the flag
7684   --  Suppress_Assignment_Checks is set for the assignment/declaration.
7685
7686   procedure Expand_Pred_Succ_Attribute (N : Node_Id) is
7687      Loc  : constant Source_Ptr := Sloc (N);
7688      P    : constant Node_Id    := Parent (N);
7689      Cnam : Name_Id;
7690
7691   begin
7692      if Attribute_Name (N) = Name_Pred then
7693         Cnam := Name_First;
7694      else
7695         Cnam := Name_Last;
7696      end if;
7697
7698      if not Nkind_In (P, N_Assignment_Statement, N_Object_Declaration)
7699        or else not Suppress_Assignment_Checks (P)
7700      then
7701         Insert_Action (N,
7702           Make_Raise_Constraint_Error (Loc,
7703             Condition =>
7704               Make_Op_Eq (Loc,
7705                 Left_Opnd =>
7706                   Duplicate_Subexpr_Move_Checks (First (Expressions (N))),
7707                 Right_Opnd =>
7708                   Make_Attribute_Reference (Loc,
7709                     Prefix =>
7710                       New_Occurrence_Of (Base_Type (Etype (Prefix (N))), Loc),
7711                     Attribute_Name => Cnam)),
7712             Reason => CE_Overflow_Check_Failed));
7713      end if;
7714   end Expand_Pred_Succ_Attribute;
7715
7716   -----------------------------
7717   -- Expand_Update_Attribute --
7718   -----------------------------
7719
7720   procedure Expand_Update_Attribute (N : Node_Id) is
7721      procedure Process_Component_Or_Element_Update
7722        (Temp : Entity_Id;
7723         Comp : Node_Id;
7724         Expr : Node_Id;
7725         Typ  : Entity_Id);
7726      --  Generate the statements necessary to update a single component or an
7727      --  element of the prefix. The code is inserted before the attribute N.
7728      --  Temp denotes the entity of the anonymous object created to reflect
7729      --  the changes in values. Comp is the component/index expression to be
7730      --  updated. Expr is an expression yielding the new value of Comp. Typ
7731      --  is the type of the prefix of attribute Update.
7732
7733      procedure Process_Range_Update
7734        (Temp : Entity_Id;
7735         Comp : Node_Id;
7736         Expr : Node_Id;
7737         Typ  : Entity_Id);
7738      --  Generate the statements necessary to update a slice of the prefix.
7739      --  The code is inserted before the attribute N. Temp denotes the entity
7740      --  of the anonymous object created to reflect the changes in values.
7741      --  Comp is range of the slice to be updated. Expr is an expression
7742      --  yielding the new value of Comp. Typ is the type of the prefix of
7743      --  attribute Update.
7744
7745      -----------------------------------------
7746      -- Process_Component_Or_Element_Update --
7747      -----------------------------------------
7748
7749      procedure Process_Component_Or_Element_Update
7750        (Temp : Entity_Id;
7751         Comp : Node_Id;
7752         Expr : Node_Id;
7753         Typ  : Entity_Id)
7754      is
7755         Loc   : constant Source_Ptr := Sloc (Comp);
7756         Exprs : List_Id;
7757         LHS   : Node_Id;
7758
7759      begin
7760         --  An array element may be modified by the following relations
7761         --  depending on the number of dimensions:
7762
7763         --     1 => Expr           --  one dimensional update
7764         --    (1, ..., N) => Expr  --  multi dimensional update
7765
7766         --  The above forms are converted in assignment statements where the
7767         --  left hand side is an indexed component:
7768
7769         --    Temp (1) := Expr;          --  one dimensional update
7770         --    Temp (1, ..., N) := Expr;  --  multi dimensional update
7771
7772         if Is_Array_Type (Typ) then
7773
7774            --  The index expressions of a multi dimensional array update
7775            --  appear as an aggregate.
7776
7777            if Nkind (Comp) = N_Aggregate then
7778               Exprs := New_Copy_List_Tree (Expressions (Comp));
7779            else
7780               Exprs := New_List (Relocate_Node (Comp));
7781            end if;
7782
7783            LHS :=
7784              Make_Indexed_Component (Loc,
7785                Prefix      => New_Occurrence_Of (Temp, Loc),
7786                Expressions => Exprs);
7787
7788         --  A record component update appears in the following form:
7789
7790         --    Comp => Expr
7791
7792         --  The above relation is transformed into an assignment statement
7793         --  where the left hand side is a selected component:
7794
7795         --    Temp.Comp := Expr;
7796
7797         else pragma Assert (Is_Record_Type (Typ));
7798            LHS :=
7799              Make_Selected_Component (Loc,
7800                Prefix        => New_Occurrence_Of (Temp, Loc),
7801                Selector_Name => Relocate_Node (Comp));
7802         end if;
7803
7804         Insert_Action (N,
7805           Make_Assignment_Statement (Loc,
7806             Name       => LHS,
7807             Expression => Relocate_Node (Expr)));
7808      end Process_Component_Or_Element_Update;
7809
7810      --------------------------
7811      -- Process_Range_Update --
7812      --------------------------
7813
7814      procedure Process_Range_Update
7815        (Temp : Entity_Id;
7816         Comp : Node_Id;
7817         Expr : Node_Id;
7818         Typ  : Entity_Id)
7819      is
7820         Index_Typ : constant Entity_Id  := Etype (First_Index (Typ));
7821         Loc       : constant Source_Ptr := Sloc (Comp);
7822         Index     : Entity_Id;
7823
7824      begin
7825         --  A range update appears as
7826
7827         --    (Low .. High => Expr)
7828
7829         --  The above construct is transformed into a loop that iterates over
7830         --  the given range and modifies the corresponding array values to the
7831         --  value of Expr:
7832
7833         --    for Index in Low .. High loop
7834         --       Temp (<Index_Typ> (Index)) := Expr;
7835         --    end loop;
7836
7837         Index := Make_Temporary (Loc, 'I');
7838
7839         Insert_Action (N,
7840           Make_Loop_Statement (Loc,
7841             Iteration_Scheme =>
7842               Make_Iteration_Scheme (Loc,
7843                 Loop_Parameter_Specification =>
7844                   Make_Loop_Parameter_Specification (Loc,
7845                     Defining_Identifier         => Index,
7846                     Discrete_Subtype_Definition => Relocate_Node (Comp))),
7847
7848             Statements       => New_List (
7849               Make_Assignment_Statement (Loc,
7850                 Name       =>
7851                   Make_Indexed_Component (Loc,
7852                     Prefix      => New_Occurrence_Of (Temp, Loc),
7853                     Expressions => New_List (
7854                       Convert_To (Index_Typ,
7855                         New_Occurrence_Of (Index, Loc)))),
7856                 Expression => Relocate_Node (Expr))),
7857
7858             End_Label        => Empty));
7859      end Process_Range_Update;
7860
7861      --  Local variables
7862
7863      Aggr    : constant Node_Id    := First (Expressions (N));
7864      Loc     : constant Source_Ptr := Sloc (N);
7865      Pref    : constant Node_Id    := Prefix (N);
7866      Typ     : constant Entity_Id  := Etype (Pref);
7867      Assoc   : Node_Id;
7868      Comp    : Node_Id;
7869      CW_Temp : Entity_Id;
7870      CW_Typ  : Entity_Id;
7871      Expr    : Node_Id;
7872      Temp    : Entity_Id;
7873
7874   --  Start of processing for Expand_Update_Attribute
7875
7876   begin
7877      --  Create the anonymous object to store the value of the prefix and
7878      --  capture subsequent changes in value.
7879
7880      Temp := Make_Temporary (Loc, 'T', Pref);
7881
7882      --  Preserve the tag of the prefix by offering a specific view of the
7883      --  class-wide version of the prefix.
7884
7885      if Is_Tagged_Type (Typ) then
7886
7887         --  Generate:
7888         --    CW_Temp : Typ'Class := Typ'Class (Pref);
7889
7890         CW_Temp := Make_Temporary (Loc, 'T');
7891         CW_Typ  := Class_Wide_Type (Typ);
7892
7893         Insert_Action (N,
7894           Make_Object_Declaration (Loc,
7895             Defining_Identifier => CW_Temp,
7896             Object_Definition   => New_Occurrence_Of (CW_Typ, Loc),
7897             Expression          =>
7898               Convert_To (CW_Typ, Relocate_Node (Pref))));
7899
7900         --  Generate:
7901         --    Temp : Typ renames Typ (CW_Temp);
7902
7903         Insert_Action (N,
7904           Make_Object_Renaming_Declaration (Loc,
7905             Defining_Identifier => Temp,
7906             Subtype_Mark        => New_Occurrence_Of (Typ, Loc),
7907             Name                =>
7908               Convert_To (Typ, New_Occurrence_Of (CW_Temp, Loc))));
7909
7910      --  Non-tagged case
7911
7912      else
7913         --  Generate:
7914         --    Temp : Typ := Pref;
7915
7916         Insert_Action (N,
7917           Make_Object_Declaration (Loc,
7918             Defining_Identifier => Temp,
7919             Object_Definition   => New_Occurrence_Of (Typ, Loc),
7920             Expression          => Relocate_Node (Pref)));
7921      end if;
7922
7923      --  Process the update aggregate
7924
7925      Assoc := First (Component_Associations (Aggr));
7926      while Present (Assoc) loop
7927         Comp := First (Choices (Assoc));
7928         Expr := Expression (Assoc);
7929         while Present (Comp) loop
7930            if Nkind (Comp) = N_Range then
7931               Process_Range_Update (Temp, Comp, Expr, Typ);
7932            else
7933               Process_Component_Or_Element_Update (Temp, Comp, Expr, Typ);
7934            end if;
7935
7936            Next (Comp);
7937         end loop;
7938
7939         Next (Assoc);
7940      end loop;
7941
7942      --  The attribute is replaced by a reference to the anonymous object
7943
7944      Rewrite (N, New_Occurrence_Of (Temp, Loc));
7945      Analyze (N);
7946   end Expand_Update_Attribute;
7947
7948   -------------------
7949   -- Find_Fat_Info --
7950   -------------------
7951
7952   procedure Find_Fat_Info
7953     (T        : Entity_Id;
7954      Fat_Type : out Entity_Id;
7955      Fat_Pkg  : out RE_Id)
7956   is
7957      Rtyp : constant Entity_Id := Root_Type (T);
7958
7959   begin
7960      --  All we do is use the root type (historically this dealt with
7961      --  VAX-float .. to be cleaned up further later ???)
7962
7963      Fat_Type := Rtyp;
7964
7965      if Fat_Type = Standard_Short_Float then
7966         Fat_Pkg := RE_Attr_Short_Float;
7967
7968      elsif Fat_Type = Standard_Float then
7969         Fat_Pkg := RE_Attr_Float;
7970
7971      elsif Fat_Type = Standard_Long_Float then
7972         Fat_Pkg := RE_Attr_Long_Float;
7973
7974      elsif Fat_Type = Standard_Long_Long_Float then
7975         Fat_Pkg := RE_Attr_Long_Long_Float;
7976
7977         --  Universal real (which is its own root type) is treated as being
7978         --  equivalent to Standard.Long_Long_Float, since it is defined to
7979         --  have the same precision as the longest Float type.
7980
7981      elsif Fat_Type = Universal_Real then
7982         Fat_Type := Standard_Long_Long_Float;
7983         Fat_Pkg := RE_Attr_Long_Long_Float;
7984
7985      else
7986         raise Program_Error;
7987      end if;
7988   end Find_Fat_Info;
7989
7990   ----------------------------
7991   -- Find_Stream_Subprogram --
7992   ----------------------------
7993
7994   function Find_Stream_Subprogram
7995     (Typ : Entity_Id;
7996      Nam : TSS_Name_Type) return Entity_Id
7997   is
7998      Base_Typ : constant Entity_Id := Base_Type (Typ);
7999      Ent      : constant Entity_Id := TSS (Typ, Nam);
8000
8001      function Is_Available (Entity : RE_Id) return Boolean;
8002      pragma Inline (Is_Available);
8003      --  Function to check whether the specified run-time call is available
8004      --  in the run time used. In the case of a configurable run time, it
8005      --  is normal that some subprograms are not there.
8006      --
8007      --  I don't understand this routine at all, why is this not just a
8008      --  call to RTE_Available? And if for some reason we need a different
8009      --  routine with different semantics, why is not in Rtsfind ???
8010
8011      ------------------
8012      -- Is_Available --
8013      ------------------
8014
8015      function Is_Available (Entity : RE_Id) return Boolean is
8016      begin
8017         --  Assume that the unit will always be available when using a
8018         --  "normal" (not configurable) run time.
8019
8020         return not Configurable_Run_Time_Mode or else RTE_Available (Entity);
8021      end Is_Available;
8022
8023   --  Start of processing for Find_Stream_Subprogram
8024
8025   begin
8026      if Present (Ent) then
8027         return Ent;
8028      end if;
8029
8030      --  Stream attributes for strings are expanded into library calls. The
8031      --  following checks are disabled when the run-time is not available or
8032      --  when compiling predefined types due to bootstrap issues. As a result,
8033      --  the compiler will generate in-place stream routines for string types
8034      --  that appear in GNAT's library, but will generate calls via rtsfind
8035      --  to library routines for user code.
8036
8037      --  Note: In the case of using a configurable run time, it is very likely
8038      --  that stream routines for string types are not present (they require
8039      --  file system support). In this case, the specific stream routines for
8040      --  strings are not used, relying on the regular stream mechanism
8041      --  instead. That is why we include the test Is_Available when dealing
8042      --  with these cases.
8043
8044      if not Is_Predefined_Unit (Current_Sem_Unit) then
8045         --  Storage_Array as defined in package System.Storage_Elements
8046
8047         if Is_RTE (Base_Typ, RE_Storage_Array) then
8048
8049            --  Case of No_Stream_Optimizations restriction active
8050
8051            if Restriction_Active (No_Stream_Optimizations) then
8052               if Nam = TSS_Stream_Input
8053                 and then Is_Available (RE_Storage_Array_Input)
8054               then
8055                  return RTE (RE_Storage_Array_Input);
8056
8057               elsif Nam = TSS_Stream_Output
8058                 and then Is_Available (RE_Storage_Array_Output)
8059               then
8060                  return RTE (RE_Storage_Array_Output);
8061
8062               elsif Nam = TSS_Stream_Read
8063                 and then Is_Available (RE_Storage_Array_Read)
8064               then
8065                  return RTE (RE_Storage_Array_Read);
8066
8067               elsif Nam = TSS_Stream_Write
8068                 and then Is_Available (RE_Storage_Array_Write)
8069               then
8070                  return RTE (RE_Storage_Array_Write);
8071
8072               elsif Nam /= TSS_Stream_Input  and then
8073                     Nam /= TSS_Stream_Output and then
8074                     Nam /= TSS_Stream_Read   and then
8075                     Nam /= TSS_Stream_Write
8076               then
8077                  raise Program_Error;
8078               end if;
8079
8080            --  Restriction No_Stream_Optimizations is not set, so we can go
8081            --  ahead and optimize using the block IO forms of the routines.
8082
8083            else
8084               if Nam = TSS_Stream_Input
8085                 and then Is_Available (RE_Storage_Array_Input_Blk_IO)
8086               then
8087                  return RTE (RE_Storage_Array_Input_Blk_IO);
8088
8089               elsif Nam = TSS_Stream_Output
8090                 and then Is_Available (RE_Storage_Array_Output_Blk_IO)
8091               then
8092                  return RTE (RE_Storage_Array_Output_Blk_IO);
8093
8094               elsif Nam = TSS_Stream_Read
8095                 and then Is_Available (RE_Storage_Array_Read_Blk_IO)
8096               then
8097                  return RTE (RE_Storage_Array_Read_Blk_IO);
8098
8099               elsif Nam = TSS_Stream_Write
8100                 and then Is_Available (RE_Storage_Array_Write_Blk_IO)
8101               then
8102                  return RTE (RE_Storage_Array_Write_Blk_IO);
8103
8104               elsif Nam /= TSS_Stream_Input  and then
8105                     Nam /= TSS_Stream_Output and then
8106                     Nam /= TSS_Stream_Read   and then
8107                     Nam /= TSS_Stream_Write
8108               then
8109                  raise Program_Error;
8110               end if;
8111            end if;
8112
8113         --  Stream_Element_Array as defined in package Ada.Streams
8114
8115         elsif Is_RTE (Base_Typ, RE_Stream_Element_Array) then
8116
8117            --  Case of No_Stream_Optimizations restriction active
8118
8119            if Restriction_Active (No_Stream_Optimizations) then
8120               if Nam = TSS_Stream_Input
8121                 and then Is_Available (RE_Stream_Element_Array_Input)
8122               then
8123                  return RTE (RE_Stream_Element_Array_Input);
8124
8125               elsif Nam = TSS_Stream_Output
8126                 and then Is_Available (RE_Stream_Element_Array_Output)
8127               then
8128                  return RTE (RE_Stream_Element_Array_Output);
8129
8130               elsif Nam = TSS_Stream_Read
8131                 and then Is_Available (RE_Stream_Element_Array_Read)
8132               then
8133                  return RTE (RE_Stream_Element_Array_Read);
8134
8135               elsif Nam = TSS_Stream_Write
8136                 and then Is_Available (RE_Stream_Element_Array_Write)
8137               then
8138                  return RTE (RE_Stream_Element_Array_Write);
8139
8140               elsif Nam /= TSS_Stream_Input  and then
8141                     Nam /= TSS_Stream_Output and then
8142                     Nam /= TSS_Stream_Read   and then
8143                     Nam /= TSS_Stream_Write
8144               then
8145                  raise Program_Error;
8146               end if;
8147
8148            --  Restriction No_Stream_Optimizations is not set, so we can go
8149            --  ahead and optimize using the block IO forms of the routines.
8150
8151            else
8152               if Nam = TSS_Stream_Input
8153                 and then Is_Available (RE_Stream_Element_Array_Input_Blk_IO)
8154               then
8155                  return RTE (RE_Stream_Element_Array_Input_Blk_IO);
8156
8157               elsif Nam = TSS_Stream_Output
8158                 and then Is_Available (RE_Stream_Element_Array_Output_Blk_IO)
8159               then
8160                  return RTE (RE_Stream_Element_Array_Output_Blk_IO);
8161
8162               elsif Nam = TSS_Stream_Read
8163                 and then Is_Available (RE_Stream_Element_Array_Read_Blk_IO)
8164               then
8165                  return RTE (RE_Stream_Element_Array_Read_Blk_IO);
8166
8167               elsif Nam = TSS_Stream_Write
8168                 and then Is_Available (RE_Stream_Element_Array_Write_Blk_IO)
8169               then
8170                  return RTE (RE_Stream_Element_Array_Write_Blk_IO);
8171
8172               elsif Nam /= TSS_Stream_Input  and then
8173                     Nam /= TSS_Stream_Output and then
8174                     Nam /= TSS_Stream_Read   and then
8175                     Nam /= TSS_Stream_Write
8176               then
8177                  raise Program_Error;
8178               end if;
8179            end if;
8180
8181         --  String as defined in package Ada
8182
8183         elsif Base_Typ = Standard_String then
8184
8185            --  Case of No_Stream_Optimizations restriction active
8186
8187            if Restriction_Active (No_Stream_Optimizations) then
8188               if Nam = TSS_Stream_Input
8189                 and then Is_Available (RE_String_Input)
8190               then
8191                  return RTE (RE_String_Input);
8192
8193               elsif Nam = TSS_Stream_Output
8194                 and then Is_Available (RE_String_Output)
8195               then
8196                  return RTE (RE_String_Output);
8197
8198               elsif Nam = TSS_Stream_Read
8199                 and then Is_Available (RE_String_Read)
8200               then
8201                  return RTE (RE_String_Read);
8202
8203               elsif Nam = TSS_Stream_Write
8204                 and then Is_Available (RE_String_Write)
8205               then
8206                  return RTE (RE_String_Write);
8207
8208               elsif Nam /= TSS_Stream_Input and then
8209                     Nam /= TSS_Stream_Output and then
8210                     Nam /= TSS_Stream_Read and then
8211                     Nam /= TSS_Stream_Write
8212               then
8213                  raise Program_Error;
8214               end if;
8215
8216            --  Restriction No_Stream_Optimizations is not set, so we can go
8217            --  ahead and optimize using the block IO forms of the routines.
8218
8219            else
8220               if Nam = TSS_Stream_Input
8221                 and then Is_Available (RE_String_Input_Blk_IO)
8222               then
8223                  return RTE (RE_String_Input_Blk_IO);
8224
8225               elsif Nam = TSS_Stream_Output
8226                 and then Is_Available (RE_String_Output_Blk_IO)
8227               then
8228                  return RTE (RE_String_Output_Blk_IO);
8229
8230               elsif Nam = TSS_Stream_Read
8231                 and then Is_Available (RE_String_Read_Blk_IO)
8232               then
8233                  return RTE (RE_String_Read_Blk_IO);
8234
8235               elsif Nam = TSS_Stream_Write
8236                 and then Is_Available (RE_String_Write_Blk_IO)
8237               then
8238                  return RTE (RE_String_Write_Blk_IO);
8239
8240               elsif Nam /= TSS_Stream_Input  and then
8241                     Nam /= TSS_Stream_Output and then
8242                     Nam /= TSS_Stream_Read   and then
8243                     Nam /= TSS_Stream_Write
8244               then
8245                  raise Program_Error;
8246               end if;
8247            end if;
8248
8249         --  Wide_String as defined in package Ada
8250
8251         elsif Base_Typ = Standard_Wide_String then
8252
8253            --  Case of No_Stream_Optimizations restriction active
8254
8255            if Restriction_Active (No_Stream_Optimizations) then
8256               if Nam = TSS_Stream_Input
8257                 and then Is_Available (RE_Wide_String_Input)
8258               then
8259                  return RTE (RE_Wide_String_Input);
8260
8261               elsif Nam = TSS_Stream_Output
8262                 and then Is_Available (RE_Wide_String_Output)
8263               then
8264                  return RTE (RE_Wide_String_Output);
8265
8266               elsif Nam = TSS_Stream_Read
8267                 and then Is_Available (RE_Wide_String_Read)
8268               then
8269                  return RTE (RE_Wide_String_Read);
8270
8271               elsif Nam = TSS_Stream_Write
8272                 and then Is_Available (RE_Wide_String_Write)
8273               then
8274                  return RTE (RE_Wide_String_Write);
8275
8276               elsif Nam /= TSS_Stream_Input  and then
8277                     Nam /= TSS_Stream_Output and then
8278                     Nam /= TSS_Stream_Read   and then
8279                     Nam /= TSS_Stream_Write
8280               then
8281                  raise Program_Error;
8282               end if;
8283
8284            --  Restriction No_Stream_Optimizations is not set, so we can go
8285            --  ahead and optimize using the block IO forms of the routines.
8286
8287            else
8288               if Nam = TSS_Stream_Input
8289                 and then Is_Available (RE_Wide_String_Input_Blk_IO)
8290               then
8291                  return RTE (RE_Wide_String_Input_Blk_IO);
8292
8293               elsif Nam = TSS_Stream_Output
8294                 and then Is_Available (RE_Wide_String_Output_Blk_IO)
8295               then
8296                  return RTE (RE_Wide_String_Output_Blk_IO);
8297
8298               elsif Nam = TSS_Stream_Read
8299                 and then Is_Available (RE_Wide_String_Read_Blk_IO)
8300               then
8301                  return RTE (RE_Wide_String_Read_Blk_IO);
8302
8303               elsif Nam = TSS_Stream_Write
8304                 and then Is_Available (RE_Wide_String_Write_Blk_IO)
8305               then
8306                  return RTE (RE_Wide_String_Write_Blk_IO);
8307
8308               elsif Nam /= TSS_Stream_Input  and then
8309                     Nam /= TSS_Stream_Output and then
8310                     Nam /= TSS_Stream_Read   and then
8311                     Nam /= TSS_Stream_Write
8312               then
8313                  raise Program_Error;
8314               end if;
8315            end if;
8316
8317         --  Wide_Wide_String as defined in package Ada
8318
8319         elsif Base_Typ = Standard_Wide_Wide_String then
8320
8321            --  Case of No_Stream_Optimizations restriction active
8322
8323            if Restriction_Active (No_Stream_Optimizations) then
8324               if Nam = TSS_Stream_Input
8325                 and then Is_Available (RE_Wide_Wide_String_Input)
8326               then
8327                  return RTE (RE_Wide_Wide_String_Input);
8328
8329               elsif Nam = TSS_Stream_Output
8330                 and then Is_Available (RE_Wide_Wide_String_Output)
8331               then
8332                  return RTE (RE_Wide_Wide_String_Output);
8333
8334               elsif Nam = TSS_Stream_Read
8335                 and then Is_Available (RE_Wide_Wide_String_Read)
8336               then
8337                  return RTE (RE_Wide_Wide_String_Read);
8338
8339               elsif Nam = TSS_Stream_Write
8340                 and then Is_Available (RE_Wide_Wide_String_Write)
8341               then
8342                  return RTE (RE_Wide_Wide_String_Write);
8343
8344               elsif Nam /= TSS_Stream_Input  and then
8345                     Nam /= TSS_Stream_Output and then
8346                     Nam /= TSS_Stream_Read   and then
8347                     Nam /= TSS_Stream_Write
8348               then
8349                  raise Program_Error;
8350               end if;
8351
8352            --  Restriction No_Stream_Optimizations is not set, so we can go
8353            --  ahead and optimize using the block IO forms of the routines.
8354
8355            else
8356               if Nam = TSS_Stream_Input
8357                 and then Is_Available (RE_Wide_Wide_String_Input_Blk_IO)
8358               then
8359                  return RTE (RE_Wide_Wide_String_Input_Blk_IO);
8360
8361               elsif Nam = TSS_Stream_Output
8362                 and then Is_Available (RE_Wide_Wide_String_Output_Blk_IO)
8363               then
8364                  return RTE (RE_Wide_Wide_String_Output_Blk_IO);
8365
8366               elsif Nam = TSS_Stream_Read
8367                 and then Is_Available (RE_Wide_Wide_String_Read_Blk_IO)
8368               then
8369                  return RTE (RE_Wide_Wide_String_Read_Blk_IO);
8370
8371               elsif Nam = TSS_Stream_Write
8372                 and then Is_Available (RE_Wide_Wide_String_Write_Blk_IO)
8373               then
8374                  return RTE (RE_Wide_Wide_String_Write_Blk_IO);
8375
8376               elsif Nam /= TSS_Stream_Input  and then
8377                     Nam /= TSS_Stream_Output and then
8378                     Nam /= TSS_Stream_Read   and then
8379                     Nam /= TSS_Stream_Write
8380               then
8381                  raise Program_Error;
8382               end if;
8383            end if;
8384         end if;
8385      end if;
8386
8387      if Is_Tagged_Type (Typ) and then Is_Derived_Type (Typ) then
8388         return Find_Prim_Op (Typ, Nam);
8389      else
8390         return Find_Inherited_TSS (Typ, Nam);
8391      end if;
8392   end Find_Stream_Subprogram;
8393
8394   ---------------
8395   -- Full_Base --
8396   ---------------
8397
8398   function Full_Base (T : Entity_Id) return Entity_Id is
8399      BT : Entity_Id;
8400
8401   begin
8402      BT := Base_Type (T);
8403
8404      if Is_Private_Type (BT)
8405        and then Present (Full_View (BT))
8406      then
8407         BT := Full_View (BT);
8408      end if;
8409
8410      return BT;
8411   end Full_Base;
8412
8413   -----------------------
8414   -- Get_Index_Subtype --
8415   -----------------------
8416
8417   function Get_Index_Subtype (N : Node_Id) return Node_Id is
8418      P_Type : Entity_Id := Etype (Prefix (N));
8419      Indx   : Node_Id;
8420      J      : Int;
8421
8422   begin
8423      if Is_Access_Type (P_Type) then
8424         P_Type := Designated_Type (P_Type);
8425      end if;
8426
8427      if No (Expressions (N)) then
8428         J := 1;
8429      else
8430         J := UI_To_Int (Expr_Value (First (Expressions (N))));
8431      end if;
8432
8433      Indx := First_Index (P_Type);
8434      while J > 1 loop
8435         Next_Index (Indx);
8436         J := J - 1;
8437      end loop;
8438
8439      return Etype (Indx);
8440   end Get_Index_Subtype;
8441
8442   -------------------------------
8443   -- Get_Stream_Convert_Pragma --
8444   -------------------------------
8445
8446   function Get_Stream_Convert_Pragma (T : Entity_Id) return Node_Id is
8447      Typ : Entity_Id;
8448      N   : Node_Id;
8449
8450   begin
8451      --  Note: we cannot use Get_Rep_Pragma here because of the peculiarity
8452      --  that a stream convert pragma for a tagged type is not inherited from
8453      --  its parent. Probably what is wrong here is that it is basically
8454      --  incorrect to consider a stream convert pragma to be a representation
8455      --  pragma at all ???
8456
8457      N := First_Rep_Item (Implementation_Base_Type (T));
8458      while Present (N) loop
8459         if Nkind (N) = N_Pragma
8460           and then Pragma_Name (N) = Name_Stream_Convert
8461         then
8462            --  For tagged types this pragma is not inherited, so we
8463            --  must verify that it is defined for the given type and
8464            --  not an ancestor.
8465
8466            Typ :=
8467              Entity (Expression (First (Pragma_Argument_Associations (N))));
8468
8469            if not Is_Tagged_Type (T)
8470              or else T = Typ
8471              or else (Is_Private_Type (Typ) and then T = Full_View (Typ))
8472            then
8473               return N;
8474            end if;
8475         end if;
8476
8477         Next_Rep_Item (N);
8478      end loop;
8479
8480      return Empty;
8481   end Get_Stream_Convert_Pragma;
8482
8483   ---------------------------------
8484   -- Is_Constrained_Packed_Array --
8485   ---------------------------------
8486
8487   function Is_Constrained_Packed_Array (Typ : Entity_Id) return Boolean is
8488      Arr : Entity_Id := Typ;
8489
8490   begin
8491      if Is_Access_Type (Arr) then
8492         Arr := Designated_Type (Arr);
8493      end if;
8494
8495      return Is_Array_Type (Arr)
8496        and then Is_Constrained (Arr)
8497        and then Present (Packed_Array_Impl_Type (Arr));
8498   end Is_Constrained_Packed_Array;
8499
8500   ----------------------------------------
8501   -- Is_Inline_Floating_Point_Attribute --
8502   ----------------------------------------
8503
8504   function Is_Inline_Floating_Point_Attribute (N : Node_Id) return Boolean is
8505      Id : constant Attribute_Id := Get_Attribute_Id (Attribute_Name (N));
8506
8507      function Is_GCC_Target return Boolean;
8508      --  Return True if we are using a GCC target/back-end
8509      --  ??? Note: the implementation is kludgy/fragile
8510
8511      -------------------
8512      -- Is_GCC_Target --
8513      -------------------
8514
8515      function Is_GCC_Target return Boolean is
8516      begin
8517         return not CodePeer_Mode
8518           and then not Modify_Tree_For_C;
8519      end Is_GCC_Target;
8520
8521   --  Start of processing for Is_Inline_Floating_Point_Attribute
8522
8523   begin
8524      --  Machine and Model can be expanded by the GCC back end only
8525
8526      if Id = Attribute_Machine or else Id = Attribute_Model then
8527         return Is_GCC_Target;
8528
8529      --  Remaining cases handled by all back ends are Rounding and Truncation
8530      --  when appearing as the operand of a conversion to some integer type.
8531
8532      elsif Nkind (Parent (N)) /= N_Type_Conversion
8533        or else not Is_Integer_Type (Etype (Parent (N)))
8534      then
8535         return False;
8536      end if;
8537
8538      --  Here we are in the integer conversion context
8539
8540      --  Very probably we should also recognize the cases of Machine_Rounding
8541      --  and unbiased rounding in this conversion context, but the back end is
8542      --  not yet prepared to handle these cases ???
8543
8544      return Id = Attribute_Rounding or else Id = Attribute_Truncation;
8545   end Is_Inline_Floating_Point_Attribute;
8546
8547end Exp_Attr;
8548