1------------------------------------------------------------------------------
2--                                                                          --
3--                         GNAT COMPILER COMPONENTS                         --
4--                                                                          --
5--                              E X P _ C H 6                               --
6--                                                                          --
7--                                 B o d y                                  --
8--                                                                          --
9--          Copyright (C) 1992-2019, Free Software Foundation, Inc.         --
10--                                                                          --
11-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12-- terms of the  GNU General Public License as published  by the Free Soft- --
13-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
17-- for  more details.  You should have  received  a copy of the GNU General --
18-- Public License  distributed with GNAT; see file COPYING3.  If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license.          --
20--                                                                          --
21-- GNAT was originally developed  by the GNAT team at  New York University. --
22-- Extensive contributions were provided by Ada Core Technologies Inc.      --
23--                                                                          --
24------------------------------------------------------------------------------
25
26with Atree;     use Atree;
27with Aspects;   use Aspects;
28with Checks;    use Checks;
29with Contracts; use Contracts;
30with Debug;     use Debug;
31with Einfo;     use Einfo;
32with Errout;    use Errout;
33with Elists;    use Elists;
34with Expander;  use Expander;
35with Exp_Aggr;  use Exp_Aggr;
36with Exp_Atag;  use Exp_Atag;
37with Exp_Ch2;   use Exp_Ch2;
38with Exp_Ch3;   use Exp_Ch3;
39with Exp_Ch7;   use Exp_Ch7;
40with Exp_Ch9;   use Exp_Ch9;
41with Exp_Dbug;  use Exp_Dbug;
42with Exp_Disp;  use Exp_Disp;
43with Exp_Dist;  use Exp_Dist;
44with Exp_Intr;  use Exp_Intr;
45with Exp_Pakd;  use Exp_Pakd;
46with Exp_Tss;   use Exp_Tss;
47with Exp_Util;  use Exp_Util;
48with Freeze;    use Freeze;
49with Inline;    use Inline;
50with Itypes;    use Itypes;
51with Lib;       use Lib;
52with Namet;     use Namet;
53with Nlists;    use Nlists;
54with Nmake;     use Nmake;
55with Opt;       use Opt;
56with Restrict;  use Restrict;
57with Rident;    use Rident;
58with Rtsfind;   use Rtsfind;
59with Sem;       use Sem;
60with Sem_Aux;   use Sem_Aux;
61with Sem_Ch6;   use Sem_Ch6;
62with Sem_Ch8;   use Sem_Ch8;
63with Sem_Ch12;  use Sem_Ch12;
64with Sem_Ch13;  use Sem_Ch13;
65with Sem_Dim;   use Sem_Dim;
66with Sem_Disp;  use Sem_Disp;
67with Sem_Dist;  use Sem_Dist;
68with Sem_Eval;  use Sem_Eval;
69with Sem_Mech;  use Sem_Mech;
70with Sem_Res;   use Sem_Res;
71with Sem_SCIL;  use Sem_SCIL;
72with Sem_Util;  use Sem_Util;
73with Sinfo;     use Sinfo;
74with Snames;    use Snames;
75with Stand;     use Stand;
76with Tbuild;    use Tbuild;
77with Uintp;     use Uintp;
78with Validsw;   use Validsw;
79
80package body Exp_Ch6 is
81
82   -----------------------
83   -- Local Subprograms --
84   -----------------------
85
86   procedure Add_Access_Actual_To_Build_In_Place_Call
87     (Function_Call : Node_Id;
88      Function_Id   : Entity_Id;
89      Return_Object : Node_Id;
90      Is_Access     : Boolean := False);
91   --  Ada 2005 (AI-318-02): Apply the Unrestricted_Access attribute to the
92   --  object name given by Return_Object and add the attribute to the end of
93   --  the actual parameter list associated with the build-in-place function
94   --  call denoted by Function_Call. However, if Is_Access is True, then
95   --  Return_Object is already an access expression, in which case it's passed
96   --  along directly to the build-in-place function. Finally, if Return_Object
97   --  is empty, then pass a null literal as the actual.
98
99   procedure Add_Unconstrained_Actuals_To_Build_In_Place_Call
100     (Function_Call  : Node_Id;
101      Function_Id    : Entity_Id;
102      Alloc_Form     : BIP_Allocation_Form := Unspecified;
103      Alloc_Form_Exp : Node_Id             := Empty;
104      Pool_Actual    : Node_Id             := Make_Null (No_Location));
105   --  Ada 2005 (AI-318-02): Add the actuals needed for a build-in-place
106   --  function call that returns a caller-unknown-size result (BIP_Alloc_Form
107   --  and BIP_Storage_Pool). If Alloc_Form_Exp is present, then use it,
108   --  otherwise pass a literal corresponding to the Alloc_Form parameter
109   --  (which must not be Unspecified in that case). Pool_Actual is the
110   --  parameter to pass to BIP_Storage_Pool.
111
112   procedure Add_Finalization_Master_Actual_To_Build_In_Place_Call
113     (Func_Call  : Node_Id;
114      Func_Id    : Entity_Id;
115      Ptr_Typ    : Entity_Id := Empty;
116      Master_Exp : Node_Id   := Empty);
117   --  Ada 2005 (AI-318-02): If the result type of a build-in-place call needs
118   --  finalization actions, add an actual parameter which is a pointer to the
119   --  finalization master of the caller. If Master_Exp is not Empty, then that
120   --  will be passed as the actual. Otherwise, if Ptr_Typ is left Empty, this
121   --  will result in an automatic "null" value for the actual.
122
123   procedure Add_Task_Actuals_To_Build_In_Place_Call
124     (Function_Call : Node_Id;
125      Function_Id   : Entity_Id;
126      Master_Actual : Node_Id;
127      Chain         : Node_Id := Empty);
128   --  Ada 2005 (AI-318-02): For a build-in-place call, if the result type
129   --  contains tasks, add two actual parameters: the master, and a pointer to
130   --  the caller's activation chain. Master_Actual is the actual parameter
131   --  expression to pass for the master. In most cases, this is the current
132   --  master (_master). The two exceptions are: If the function call is the
133   --  initialization expression for an allocator, we pass the master of the
134   --  access type. If the function call is the initialization expression for a
135   --  return object, we pass along the master passed in by the caller. In most
136   --  contexts, the activation chain to pass is the local one, which is
137   --  indicated by No (Chain). However, in an allocator, the caller passes in
138   --  the activation Chain. Note: Master_Actual can be Empty, but only if
139   --  there are no tasks.
140
141   function Caller_Known_Size
142     (Func_Call   : Node_Id;
143      Result_Subt : Entity_Id) return Boolean;
144   --  True if result subtype is definite, or has a size that does not require
145   --  secondary stack usage (i.e. no variant part or components whose type
146   --  depends on discriminants). In particular, untagged types with only
147   --  access discriminants do not require secondary stack use. Note we must
148   --  always use the secondary stack for dispatching-on-result calls.
149
150   procedure Check_Overriding_Operation (Subp : Entity_Id);
151   --  Subp is a dispatching operation. Check whether it may override an
152   --  inherited private operation, in which case its DT entry is that of
153   --  the hidden operation, not the one it may have received earlier.
154   --  This must be done before emitting the code to set the corresponding
155   --  DT to the address of the subprogram. The actual placement of Subp in
156   --  the proper place in the list of primitive operations is done in
157   --  Declare_Inherited_Private_Subprograms, which also has to deal with
158   --  implicit operations. This duplication is unavoidable for now???
159
160   procedure Detect_Infinite_Recursion (N : Node_Id; Spec : Entity_Id);
161   --  This procedure is called only if the subprogram body N, whose spec
162   --  has the given entity Spec, contains a parameterless recursive call.
163   --  It attempts to generate runtime code to detect if this a case of
164   --  infinite recursion.
165   --
166   --  The body is scanned to determine dependencies. If the only external
167   --  dependencies are on a small set of scalar variables, then the values
168   --  of these variables are captured on entry to the subprogram, and if
169   --  the values are not changed for the call, we know immediately that
170   --  we have an infinite recursion.
171
172   procedure Expand_Actuals
173     (N         : Node_Id;
174      Subp      : Entity_Id;
175      Post_Call : out List_Id);
176   --  Return a list of actions to take place after the call in Post_Call. The
177   --  call will later be rewritten as an Expression_With_Actions, with the
178   --  Post_Call actions inserted, and the call inside.
179   --
180   --  For each actual of an in-out or out parameter which is a numeric (view)
181   --  conversion of the form T (A), where A denotes a variable, we insert the
182   --  declaration:
183   --
184   --    Temp : T[ := T (A)];
185   --
186   --  prior to the call. Then we replace the actual with a reference to Temp,
187   --  and append the assignment:
188   --
189   --    A := TypeA (Temp);
190   --
191   --  after the call. Here TypeA is the actual type of variable A. For out
192   --  parameters, the initial declaration has no expression. If A is not an
193   --  entity name, we generate instead:
194   --
195   --    Var  : TypeA renames A;
196   --    Temp : T := Var;       --  omitting expression for out parameter.
197   --    ...
198   --    Var := TypeA (Temp);
199   --
200   --  For other in-out parameters, we emit the required constraint checks
201   --  before and/or after the call.
202   --
203   --  For all parameter modes, actuals that denote components and slices of
204   --  packed arrays are expanded into suitable temporaries.
205   --
206   --  For non-scalar objects that are possibly unaligned, add call by copy
207   --  code (copy in for IN and IN OUT, copy out for OUT and IN OUT).
208   --
209   --  For OUT and IN OUT parameters, add predicate checks after the call
210   --  based on the predicates of the actual type.
211
212   procedure Expand_Call_Helper (N : Node_Id; Post_Call : out List_Id);
213   --  Does the main work of Expand_Call. Post_Call is as for Expand_Actuals.
214
215   procedure Expand_Ctrl_Function_Call (N : Node_Id);
216   --  N is a function call which returns a controlled object. Transform the
217   --  call into a temporary which retrieves the returned object from the
218   --  secondary stack using 'reference.
219
220   procedure Expand_Non_Function_Return (N : Node_Id);
221   --  Expand a simple return statement found in a procedure body, entry body,
222   --  accept statement, or an extended return statement. Note that all non-
223   --  function returns are simple return statements.
224
225   function Expand_Protected_Object_Reference
226     (N    : Node_Id;
227      Scop : Entity_Id) return Node_Id;
228
229   procedure Expand_Protected_Subprogram_Call
230     (N    : Node_Id;
231      Subp : Entity_Id;
232      Scop : Entity_Id);
233   --  A call to a protected subprogram within the protected object may appear
234   --  as a regular call. The list of actuals must be expanded to contain a
235   --  reference to the object itself, and the call becomes a call to the
236   --  corresponding protected subprogram.
237
238   procedure Expand_Simple_Function_Return (N : Node_Id);
239   --  Expand simple return from function. In the case where we are returning
240   --  from a function body this is called by Expand_N_Simple_Return_Statement.
241
242   function Has_Unconstrained_Access_Discriminants
243     (Subtyp : Entity_Id) return Boolean;
244   --  Returns True if the given subtype is unconstrained and has one or more
245   --  access discriminants.
246
247   procedure Insert_Post_Call_Actions (N : Node_Id; Post_Call : List_Id);
248   --  Insert the Post_Call list previously produced by routine Expand_Actuals
249   --  or Expand_Call_Helper into the tree.
250
251   procedure Replace_Renaming_Declaration_Id
252      (New_Decl  : Node_Id;
253       Orig_Decl : Node_Id);
254   --  Replace the internal identifier of the new renaming declaration New_Decl
255   --  with the identifier of its original declaration Orig_Decl exchanging the
256   --  entities containing their defining identifiers to ensure the correct
257   --  replacement of the object declaration by the object renaming declaration
258   --  to avoid homograph conflicts (since the object declaration's defining
259   --  identifier was already entered in the current scope). The Next_Entity
260   --  links of the two entities are also swapped since the entities are part
261   --  of the return scope's entity list and the list structure would otherwise
262   --  be corrupted. The homonym chain is preserved as well.
263
264   procedure Rewrite_Function_Call_For_C (N : Node_Id);
265   --  When generating C code, replace a call to a function that returns an
266   --  array into the generated procedure with an additional out parameter.
267
268   procedure Set_Enclosing_Sec_Stack_Return (N : Node_Id);
269   --  N is a return statement for a function that returns its result on the
270   --  secondary stack. This sets the Sec_Stack_Needed_For_Return flag on the
271   --  function and all blocks and loops that the return statement is jumping
272   --  out of. This ensures that the secondary stack is not released; otherwise
273   --  the function result would be reclaimed before returning to the caller.
274
275   ----------------------------------------------
276   -- Add_Access_Actual_To_Build_In_Place_Call --
277   ----------------------------------------------
278
279   procedure Add_Access_Actual_To_Build_In_Place_Call
280     (Function_Call : Node_Id;
281      Function_Id   : Entity_Id;
282      Return_Object : Node_Id;
283      Is_Access     : Boolean := False)
284   is
285      Loc            : constant Source_Ptr := Sloc (Function_Call);
286      Obj_Address    : Node_Id;
287      Obj_Acc_Formal : Entity_Id;
288
289   begin
290      --  Locate the implicit access parameter in the called function
291
292      Obj_Acc_Formal := Build_In_Place_Formal (Function_Id, BIP_Object_Access);
293
294      --  If no return object is provided, then pass null
295
296      if not Present (Return_Object) then
297         Obj_Address := Make_Null (Loc);
298         Set_Parent (Obj_Address, Function_Call);
299
300      --  If Return_Object is already an expression of an access type, then use
301      --  it directly, since it must be an access value denoting the return
302      --  object, and couldn't possibly be the return object itself.
303
304      elsif Is_Access then
305         Obj_Address := Return_Object;
306         Set_Parent (Obj_Address, Function_Call);
307
308      --  Apply Unrestricted_Access to caller's return object
309
310      else
311         Obj_Address :=
312            Make_Attribute_Reference (Loc,
313              Prefix         => Return_Object,
314              Attribute_Name => Name_Unrestricted_Access);
315
316         Set_Parent (Return_Object, Obj_Address);
317         Set_Parent (Obj_Address, Function_Call);
318      end if;
319
320      Analyze_And_Resolve (Obj_Address, Etype (Obj_Acc_Formal));
321
322      --  Build the parameter association for the new actual and add it to the
323      --  end of the function's actuals.
324
325      Add_Extra_Actual_To_Call (Function_Call, Obj_Acc_Formal, Obj_Address);
326   end Add_Access_Actual_To_Build_In_Place_Call;
327
328   ------------------------------------------------------
329   -- Add_Unconstrained_Actuals_To_Build_In_Place_Call --
330   ------------------------------------------------------
331
332   procedure Add_Unconstrained_Actuals_To_Build_In_Place_Call
333     (Function_Call  : Node_Id;
334      Function_Id    : Entity_Id;
335      Alloc_Form     : BIP_Allocation_Form := Unspecified;
336      Alloc_Form_Exp : Node_Id             := Empty;
337      Pool_Actual    : Node_Id             := Make_Null (No_Location))
338   is
339      Loc : constant Source_Ptr := Sloc (Function_Call);
340
341      Alloc_Form_Actual : Node_Id;
342      Alloc_Form_Formal : Node_Id;
343      Pool_Formal       : Node_Id;
344
345   begin
346      --  Nothing to do when the size of the object is known, and the caller is
347      --  in charge of allocating it, and the callee doesn't unconditionally
348      --  require an allocation form (such as due to having a tagged result).
349
350      if not Needs_BIP_Alloc_Form (Function_Id) then
351         return;
352      end if;
353
354      --  Locate the implicit allocation form parameter in the called function.
355      --  Maybe it would be better for each implicit formal of a build-in-place
356      --  function to have a flag or a Uint attribute to identify it. ???
357
358      Alloc_Form_Formal := Build_In_Place_Formal (Function_Id, BIP_Alloc_Form);
359
360      if Present (Alloc_Form_Exp) then
361         pragma Assert (Alloc_Form = Unspecified);
362
363         Alloc_Form_Actual := Alloc_Form_Exp;
364
365      else
366         pragma Assert (Alloc_Form /= Unspecified);
367
368         Alloc_Form_Actual :=
369           Make_Integer_Literal (Loc,
370             Intval => UI_From_Int (BIP_Allocation_Form'Pos (Alloc_Form)));
371      end if;
372
373      Analyze_And_Resolve (Alloc_Form_Actual, Etype (Alloc_Form_Formal));
374
375      --  Build the parameter association for the new actual and add it to the
376      --  end of the function's actuals.
377
378      Add_Extra_Actual_To_Call
379        (Function_Call, Alloc_Form_Formal, Alloc_Form_Actual);
380
381      --  Pass the Storage_Pool parameter. This parameter is omitted on ZFP as
382      --  those targets do not support pools.
383
384      if RTE_Available (RE_Root_Storage_Pool_Ptr) then
385         Pool_Formal := Build_In_Place_Formal (Function_Id, BIP_Storage_Pool);
386         Analyze_And_Resolve (Pool_Actual, Etype (Pool_Formal));
387         Add_Extra_Actual_To_Call
388           (Function_Call, Pool_Formal, Pool_Actual);
389      end if;
390   end Add_Unconstrained_Actuals_To_Build_In_Place_Call;
391
392   -----------------------------------------------------------
393   -- Add_Finalization_Master_Actual_To_Build_In_Place_Call --
394   -----------------------------------------------------------
395
396   procedure Add_Finalization_Master_Actual_To_Build_In_Place_Call
397     (Func_Call  : Node_Id;
398      Func_Id    : Entity_Id;
399      Ptr_Typ    : Entity_Id := Empty;
400      Master_Exp : Node_Id   := Empty)
401   is
402   begin
403      if not Needs_BIP_Finalization_Master (Func_Id) then
404         return;
405      end if;
406
407      declare
408         Formal : constant Entity_Id :=
409                    Build_In_Place_Formal (Func_Id, BIP_Finalization_Master);
410         Loc    : constant Source_Ptr := Sloc (Func_Call);
411
412         Actual    : Node_Id;
413         Desig_Typ : Entity_Id;
414
415      begin
416         --  If there is a finalization master actual, such as the implicit
417         --  finalization master of an enclosing build-in-place function,
418         --  then this must be added as an extra actual of the call.
419
420         if Present (Master_Exp) then
421            Actual := Master_Exp;
422
423         --  Case where the context does not require an actual master
424
425         elsif No (Ptr_Typ) then
426            Actual := Make_Null (Loc);
427
428         else
429            Desig_Typ := Directly_Designated_Type (Ptr_Typ);
430
431            --  Check for a library-level access type whose designated type has
432            --  suppressed finalization or the access type is subject to pragma
433            --  No_Heap_Finalization. Such an access type lacks a master. Pass
434            --  a null actual to callee in order to signal a missing master.
435
436            if Is_Library_Level_Entity (Ptr_Typ)
437              and then (Finalize_Storage_Only (Desig_Typ)
438                         or else No_Heap_Finalization (Ptr_Typ))
439            then
440               Actual := Make_Null (Loc);
441
442            --  Types in need of finalization actions
443
444            elsif Needs_Finalization (Desig_Typ) then
445
446               --  The general mechanism of creating finalization masters for
447               --  anonymous access types is disabled by default, otherwise
448               --  finalization masters will pop all over the place. Such types
449               --  use context-specific masters.
450
451               if Ekind (Ptr_Typ) = E_Anonymous_Access_Type
452                 and then No (Finalization_Master (Ptr_Typ))
453               then
454                  Build_Anonymous_Master (Ptr_Typ);
455               end if;
456
457               --  Access-to-controlled types should always have a master
458
459               pragma Assert (Present (Finalization_Master (Ptr_Typ)));
460
461               Actual :=
462                 Make_Attribute_Reference (Loc,
463                   Prefix =>
464                     New_Occurrence_Of (Finalization_Master (Ptr_Typ), Loc),
465                   Attribute_Name => Name_Unrestricted_Access);
466
467            --  Tagged types
468
469            else
470               Actual := Make_Null (Loc);
471            end if;
472         end if;
473
474         Analyze_And_Resolve (Actual, Etype (Formal));
475
476         --  Build the parameter association for the new actual and add it to
477         --  the end of the function's actuals.
478
479         Add_Extra_Actual_To_Call (Func_Call, Formal, Actual);
480      end;
481   end Add_Finalization_Master_Actual_To_Build_In_Place_Call;
482
483   ------------------------------
484   -- Add_Extra_Actual_To_Call --
485   ------------------------------
486
487   procedure Add_Extra_Actual_To_Call
488     (Subprogram_Call : Node_Id;
489      Extra_Formal    : Entity_Id;
490      Extra_Actual    : Node_Id)
491   is
492      Loc         : constant Source_Ptr := Sloc (Subprogram_Call);
493      Param_Assoc : Node_Id;
494
495   begin
496      Param_Assoc :=
497        Make_Parameter_Association (Loc,
498          Selector_Name             => New_Occurrence_Of (Extra_Formal, Loc),
499          Explicit_Actual_Parameter => Extra_Actual);
500
501      Set_Parent (Param_Assoc, Subprogram_Call);
502      Set_Parent (Extra_Actual, Param_Assoc);
503
504      if Present (Parameter_Associations (Subprogram_Call)) then
505         if Nkind (Last (Parameter_Associations (Subprogram_Call))) =
506              N_Parameter_Association
507         then
508
509            --  Find last named actual, and append
510
511            declare
512               L : Node_Id;
513            begin
514               L := First_Actual (Subprogram_Call);
515               while Present (L) loop
516                  if No (Next_Actual (L)) then
517                     Set_Next_Named_Actual (Parent (L), Extra_Actual);
518                     exit;
519                  end if;
520                  Next_Actual (L);
521               end loop;
522            end;
523
524         else
525            Set_First_Named_Actual (Subprogram_Call, Extra_Actual);
526         end if;
527
528         Append (Param_Assoc, To => Parameter_Associations (Subprogram_Call));
529
530      else
531         Set_Parameter_Associations (Subprogram_Call, New_List (Param_Assoc));
532         Set_First_Named_Actual (Subprogram_Call, Extra_Actual);
533      end if;
534   end Add_Extra_Actual_To_Call;
535
536   ---------------------------------------------
537   -- Add_Task_Actuals_To_Build_In_Place_Call --
538   ---------------------------------------------
539
540   procedure Add_Task_Actuals_To_Build_In_Place_Call
541     (Function_Call : Node_Id;
542      Function_Id   : Entity_Id;
543      Master_Actual : Node_Id;
544      Chain         : Node_Id := Empty)
545   is
546      Loc           : constant Source_Ptr := Sloc (Function_Call);
547      Result_Subt   : constant Entity_Id :=
548                        Available_View (Etype (Function_Id));
549      Actual        : Node_Id;
550      Chain_Actual  : Node_Id;
551      Chain_Formal  : Node_Id;
552      Master_Formal : Node_Id;
553
554   begin
555      --  No such extra parameters are needed if there are no tasks
556
557      if not Has_Task (Result_Subt) then
558         return;
559      end if;
560
561      Actual := Master_Actual;
562
563      --  Use a dummy _master actual in case of No_Task_Hierarchy
564
565      if Restriction_Active (No_Task_Hierarchy) then
566         Actual := New_Occurrence_Of (RTE (RE_Library_Task_Level), Loc);
567
568      --  In the case where we use the master associated with an access type,
569      --  the actual is an entity and requires an explicit reference.
570
571      elsif Nkind (Actual) = N_Defining_Identifier then
572         Actual := New_Occurrence_Of (Actual, Loc);
573      end if;
574
575      --  Locate the implicit master parameter in the called function
576
577      Master_Formal := Build_In_Place_Formal (Function_Id, BIP_Task_Master);
578      Analyze_And_Resolve (Actual, Etype (Master_Formal));
579
580      --  Build the parameter association for the new actual and add it to the
581      --  end of the function's actuals.
582
583      Add_Extra_Actual_To_Call (Function_Call, Master_Formal, Actual);
584
585      --  Locate the implicit activation chain parameter in the called function
586
587      Chain_Formal :=
588        Build_In_Place_Formal (Function_Id, BIP_Activation_Chain);
589
590      --  Create the actual which is a pointer to the current activation chain
591
592      if No (Chain) then
593         Chain_Actual :=
594           Make_Attribute_Reference (Loc,
595             Prefix         => Make_Identifier (Loc, Name_uChain),
596             Attribute_Name => Name_Unrestricted_Access);
597
598      --  Allocator case; make a reference to the Chain passed in by the caller
599
600      else
601         Chain_Actual :=
602           Make_Attribute_Reference (Loc,
603             Prefix         => New_Occurrence_Of (Chain, Loc),
604             Attribute_Name => Name_Unrestricted_Access);
605      end if;
606
607      Analyze_And_Resolve (Chain_Actual, Etype (Chain_Formal));
608
609      --  Build the parameter association for the new actual and add it to the
610      --  end of the function's actuals.
611
612      Add_Extra_Actual_To_Call (Function_Call, Chain_Formal, Chain_Actual);
613   end Add_Task_Actuals_To_Build_In_Place_Call;
614
615   -----------------------
616   -- BIP_Formal_Suffix --
617   -----------------------
618
619   function BIP_Formal_Suffix (Kind : BIP_Formal_Kind) return String is
620   begin
621      case Kind is
622         when BIP_Alloc_Form =>
623            return "BIPalloc";
624
625         when BIP_Storage_Pool =>
626            return "BIPstoragepool";
627
628         when BIP_Finalization_Master =>
629            return "BIPfinalizationmaster";
630
631         when BIP_Task_Master =>
632            return "BIPtaskmaster";
633
634         when BIP_Activation_Chain =>
635            return "BIPactivationchain";
636
637         when BIP_Object_Access =>
638            return "BIPaccess";
639      end case;
640   end BIP_Formal_Suffix;
641
642   ---------------------------
643   -- Build_In_Place_Formal --
644   ---------------------------
645
646   function Build_In_Place_Formal
647     (Func : Entity_Id;
648      Kind : BIP_Formal_Kind) return Entity_Id
649   is
650      Formal_Suffix : constant String := BIP_Formal_Suffix (Kind);
651      Extra_Formal : Entity_Id := Extra_Formals (Func);
652
653   begin
654      --  Maybe it would be better for each implicit formal of a build-in-place
655      --  function to have a flag or a Uint attribute to identify it. ???
656
657      --  The return type in the function declaration may have been a limited
658      --  view, and the extra formals for the function were not generated at
659      --  that point. At the point of call the full view must be available and
660      --  the extra formals can be created.
661
662      if No (Extra_Formal) then
663         Create_Extra_Formals (Func);
664         Extra_Formal := Extra_Formals (Func);
665      end if;
666
667      --  We search for a formal with a matching suffix. We can't search
668      --  for the full name, because of the code at the end of Sem_Ch6.-
669      --  Create_Extra_Formals, which copies the Extra_Formals over to
670      --  the Alias of an instance, which will cause the formals to have
671      --  "incorrect" names.
672
673      loop
674         pragma Assert (Present (Extra_Formal));
675         declare
676            Name : constant String := Get_Name_String (Chars (Extra_Formal));
677         begin
678            exit when Name'Length >= Formal_Suffix'Length
679              and then Formal_Suffix =
680                Name (Name'Last - Formal_Suffix'Length + 1 .. Name'Last);
681         end;
682
683         Next_Formal_With_Extras (Extra_Formal);
684      end loop;
685
686      return Extra_Formal;
687   end Build_In_Place_Formal;
688
689   -------------------------------
690   -- Build_Procedure_Body_Form --
691   -------------------------------
692
693   function Build_Procedure_Body_Form
694     (Func_Id   : Entity_Id;
695      Func_Body : Node_Id) return Node_Id
696   is
697      Loc : constant Source_Ptr := Sloc (Func_Body);
698
699      Proc_Decl : constant Node_Id   :=
700                    Next (Unit_Declaration_Node (Func_Id));
701      --  It is assumed that the next node following the declaration of the
702      --  corresponding subprogram spec is the declaration of the procedure
703      --  form.
704
705      Proc_Id : constant Entity_Id := Defining_Entity (Proc_Decl);
706
707      procedure Replace_Returns (Param_Id : Entity_Id; Stmts : List_Id);
708      --  Replace each return statement found in the list Stmts with an
709      --  assignment of the return expression to parameter Param_Id.
710
711      ---------------------
712      -- Replace_Returns --
713      ---------------------
714
715      procedure Replace_Returns (Param_Id : Entity_Id; Stmts : List_Id) is
716         Stmt : Node_Id;
717
718      begin
719         Stmt := First (Stmts);
720         while Present (Stmt) loop
721            if Nkind (Stmt) = N_Block_Statement then
722               Replace_Returns (Param_Id,
723                 Statements (Handled_Statement_Sequence (Stmt)));
724
725            elsif Nkind (Stmt) = N_Case_Statement then
726               declare
727                  Alt : Node_Id;
728               begin
729                  Alt := First (Alternatives (Stmt));
730                  while Present (Alt) loop
731                     Replace_Returns (Param_Id, Statements (Alt));
732                     Next (Alt);
733                  end loop;
734               end;
735
736            elsif Nkind (Stmt) = N_Extended_Return_Statement then
737               declare
738                  Ret_Obj : constant Entity_Id :=
739                              Defining_Entity
740                                (First (Return_Object_Declarations (Stmt)));
741                  Assign  : constant Node_Id :=
742                              Make_Assignment_Statement (Sloc (Stmt),
743                                Name       =>
744                                  New_Occurrence_Of (Param_Id, Loc),
745                                Expression =>
746                                  New_Occurrence_Of (Ret_Obj, Sloc (Stmt)));
747                  Stmts   : List_Id;
748
749               begin
750                  --  The extended return may just contain the declaration
751
752                  if Present (Handled_Statement_Sequence (Stmt)) then
753                     Stmts := Statements (Handled_Statement_Sequence (Stmt));
754                  else
755                     Stmts := New_List;
756                  end if;
757
758                  Set_Assignment_OK (Name (Assign));
759
760                  Rewrite (Stmt,
761                    Make_Block_Statement (Sloc (Stmt),
762                      Declarations               =>
763                        Return_Object_Declarations (Stmt),
764                      Handled_Statement_Sequence =>
765                        Make_Handled_Sequence_Of_Statements (Loc,
766                          Statements => Stmts)));
767
768                  Replace_Returns (Param_Id, Stmts);
769
770                  Append_To (Stmts, Assign);
771                  Append_To (Stmts, Make_Simple_Return_Statement (Loc));
772               end;
773
774            elsif Nkind (Stmt) = N_If_Statement then
775               Replace_Returns (Param_Id, Then_Statements (Stmt));
776               Replace_Returns (Param_Id, Else_Statements (Stmt));
777
778               declare
779                  Part : Node_Id;
780               begin
781                  Part := First (Elsif_Parts (Stmt));
782                  while Present (Part) loop
783                     Replace_Returns (Param_Id, Then_Statements (Part));
784                     Next (Part);
785                  end loop;
786               end;
787
788            elsif Nkind (Stmt) = N_Loop_Statement then
789               Replace_Returns (Param_Id, Statements (Stmt));
790
791            elsif Nkind (Stmt) = N_Simple_Return_Statement then
792
793               --  Generate:
794               --    Param := Expr;
795               --    return;
796
797               Rewrite (Stmt,
798                 Make_Assignment_Statement (Sloc (Stmt),
799                   Name       => New_Occurrence_Of (Param_Id, Loc),
800                   Expression => Relocate_Node (Expression (Stmt))));
801
802               Insert_After (Stmt, Make_Simple_Return_Statement (Loc));
803
804               --  Skip the added return
805
806               Next (Stmt);
807            end if;
808
809            Next (Stmt);
810         end loop;
811      end Replace_Returns;
812
813      --  Local variables
814
815      Stmts    : List_Id;
816      New_Body : Node_Id;
817
818   --  Start of processing for Build_Procedure_Body_Form
819
820   begin
821      --  This routine replaces the original function body:
822
823      --    function F (...) return Array_Typ is
824      --    begin
825      --       ...
826      --       return Something;
827      --    end F;
828
829      --    with the following:
830
831      --    procedure P (..., Result : out Array_Typ) is
832      --    begin
833      --       ...
834      --       Result := Something;
835      --    end P;
836
837      Stmts :=
838        Statements (Handled_Statement_Sequence (Func_Body));
839      Replace_Returns (Last_Entity (Proc_Id), Stmts);
840
841      New_Body :=
842        Make_Subprogram_Body (Loc,
843          Specification              =>
844            Copy_Subprogram_Spec (Specification (Proc_Decl)),
845          Declarations               => Declarations (Func_Body),
846          Handled_Statement_Sequence =>
847            Make_Handled_Sequence_Of_Statements (Loc,
848              Statements => Stmts));
849
850      --  If the function is a generic instance, so is the new procedure.
851      --  Set flag accordingly so that the proper renaming declarations are
852      --  generated.
853
854      Set_Is_Generic_Instance (Proc_Id, Is_Generic_Instance (Func_Id));
855      return New_Body;
856   end Build_Procedure_Body_Form;
857
858   -----------------------
859   -- Caller_Known_Size --
860   -----------------------
861
862   function Caller_Known_Size
863     (Func_Call   : Node_Id;
864      Result_Subt : Entity_Id) return Boolean
865   is
866   begin
867      return
868          (Is_Definite_Subtype (Underlying_Type (Result_Subt))
869            and then No (Controlling_Argument (Func_Call)))
870        or else not Requires_Transient_Scope (Underlying_Type (Result_Subt));
871   end Caller_Known_Size;
872
873   --------------------------------
874   -- Check_Overriding_Operation --
875   --------------------------------
876
877   procedure Check_Overriding_Operation (Subp : Entity_Id) is
878      Typ     : constant Entity_Id := Find_Dispatching_Type (Subp);
879      Op_List : constant Elist_Id  := Primitive_Operations (Typ);
880      Op_Elmt : Elmt_Id;
881      Prim_Op : Entity_Id;
882      Par_Op  : Entity_Id;
883
884   begin
885      if Is_Derived_Type (Typ)
886        and then not Is_Private_Type (Typ)
887        and then In_Open_Scopes (Scope (Etype (Typ)))
888        and then Is_Base_Type (Typ)
889      then
890         --  Subp overrides an inherited private operation if there is an
891         --  inherited operation with a different name than Subp (see
892         --  Derive_Subprogram) whose Alias is a hidden subprogram with the
893         --  same name as Subp.
894
895         Op_Elmt := First_Elmt (Op_List);
896         while Present (Op_Elmt) loop
897            Prim_Op := Node (Op_Elmt);
898            Par_Op  := Alias (Prim_Op);
899
900            if Present (Par_Op)
901              and then not Comes_From_Source (Prim_Op)
902              and then Chars (Prim_Op) /= Chars (Par_Op)
903              and then Chars (Par_Op) = Chars (Subp)
904              and then Is_Hidden (Par_Op)
905              and then Type_Conformant (Prim_Op, Subp)
906            then
907               Set_DT_Position_Value (Subp, DT_Position (Prim_Op));
908            end if;
909
910            Next_Elmt (Op_Elmt);
911         end loop;
912      end if;
913   end Check_Overriding_Operation;
914
915   -------------------------------
916   -- Detect_Infinite_Recursion --
917   -------------------------------
918
919   procedure Detect_Infinite_Recursion (N : Node_Id; Spec : Entity_Id) is
920      Loc : constant Source_Ptr := Sloc (N);
921
922      Var_List : constant Elist_Id := New_Elmt_List;
923      --  List of globals referenced by body of procedure
924
925      Call_List : constant Elist_Id := New_Elmt_List;
926      --  List of recursive calls in body of procedure
927
928      Shad_List : constant Elist_Id := New_Elmt_List;
929      --  List of entity id's for entities created to capture the value of
930      --  referenced globals on entry to the procedure.
931
932      Scop : constant Uint := Scope_Depth (Spec);
933      --  This is used to record the scope depth of the current procedure, so
934      --  that we can identify global references.
935
936      Max_Vars : constant := 4;
937      --  Do not test more than four global variables
938
939      Count_Vars : Natural := 0;
940      --  Count variables found so far
941
942      Var  : Entity_Id;
943      Elm  : Elmt_Id;
944      Ent  : Entity_Id;
945      Call : Elmt_Id;
946      Decl : Node_Id;
947      Test : Node_Id;
948      Elm1 : Elmt_Id;
949      Elm2 : Elmt_Id;
950      Last : Node_Id;
951
952      function Process (Nod : Node_Id) return Traverse_Result;
953      --  Function to traverse the subprogram body (using Traverse_Func)
954
955      -------------
956      -- Process --
957      -------------
958
959      function Process (Nod : Node_Id) return Traverse_Result is
960      begin
961         --  Procedure call
962
963         if Nkind (Nod) = N_Procedure_Call_Statement then
964
965            --  Case of one of the detected recursive calls
966
967            if Is_Entity_Name (Name (Nod))
968              and then Has_Recursive_Call (Entity (Name (Nod)))
969              and then Entity (Name (Nod)) = Spec
970            then
971               Append_Elmt (Nod, Call_List);
972               return Skip;
973
974            --  Any other procedure call may have side effects
975
976            else
977               return Abandon;
978            end if;
979
980         --  A call to a pure function can always be ignored
981
982         elsif Nkind (Nod) = N_Function_Call
983           and then Is_Entity_Name (Name (Nod))
984           and then Is_Pure (Entity (Name (Nod)))
985         then
986            return Skip;
987
988         --  Case of an identifier reference
989
990         elsif Nkind (Nod) = N_Identifier then
991            Ent := Entity (Nod);
992
993            --  If no entity, then ignore the reference
994
995            --  Not clear why this can happen. To investigate, remove this
996            --  test and look at the crash that occurs here in 3401-004 ???
997
998            if No (Ent) then
999               return Skip;
1000
1001            --  Ignore entities with no Scope, again not clear how this
1002            --  can happen, to investigate, look at 4108-008 ???
1003
1004            elsif No (Scope (Ent)) then
1005               return Skip;
1006
1007            --  Ignore the reference if not to a more global object
1008
1009            elsif Scope_Depth (Scope (Ent)) >= Scop then
1010               return Skip;
1011
1012            --  References to types, exceptions and constants are always OK
1013
1014            elsif Is_Type (Ent)
1015              or else Ekind (Ent) = E_Exception
1016              or else Ekind (Ent) = E_Constant
1017            then
1018               return Skip;
1019
1020            --  If other than a non-volatile scalar variable, we have some
1021            --  kind of global reference (e.g. to a function) that we cannot
1022            --  deal with so we forget the attempt.
1023
1024            elsif Ekind (Ent) /= E_Variable
1025              or else not Is_Scalar_Type (Etype (Ent))
1026              or else Treat_As_Volatile (Ent)
1027            then
1028               return Abandon;
1029
1030            --  Otherwise we have a reference to a global scalar
1031
1032            else
1033               --  Loop through global entities already detected
1034
1035               Elm := First_Elmt (Var_List);
1036               loop
1037                  --  If not detected before, record this new global reference
1038
1039                  if No (Elm) then
1040                     Count_Vars := Count_Vars + 1;
1041
1042                     if Count_Vars <= Max_Vars then
1043                        Append_Elmt (Entity (Nod), Var_List);
1044                     else
1045                        return Abandon;
1046                     end if;
1047
1048                     exit;
1049
1050                  --  If recorded before, ignore
1051
1052                  elsif Node (Elm) = Entity (Nod) then
1053                     return Skip;
1054
1055                  --  Otherwise keep looking
1056
1057                  else
1058                     Next_Elmt (Elm);
1059                  end if;
1060               end loop;
1061
1062               return Skip;
1063            end if;
1064
1065         --  For all other node kinds, recursively visit syntactic children
1066
1067         else
1068            return OK;
1069         end if;
1070      end Process;
1071
1072      function Traverse_Body is new Traverse_Func (Process);
1073
1074   --  Start of processing for Detect_Infinite_Recursion
1075
1076   begin
1077      --  Do not attempt detection in No_Implicit_Conditional mode, since we
1078      --  won't be able to generate the code to handle the recursion in any
1079      --  case.
1080
1081      if Restriction_Active (No_Implicit_Conditionals) then
1082         return;
1083      end if;
1084
1085      --  Otherwise do traversal and quit if we get abandon signal
1086
1087      if Traverse_Body (N) = Abandon then
1088         return;
1089
1090      --  We must have a call, since Has_Recursive_Call was set. If not just
1091      --  ignore (this is only an error check, so if we have a funny situation,
1092      --  due to bugs or errors, we do not want to bomb).
1093
1094      elsif Is_Empty_Elmt_List (Call_List) then
1095         return;
1096      end if;
1097
1098      --  Here is the case where we detect recursion at compile time
1099
1100      --  Push our current scope for analyzing the declarations and code that
1101      --  we will insert for the checking.
1102
1103      Push_Scope (Spec);
1104
1105      --  This loop builds temporary variables for each of the referenced
1106      --  globals, so that at the end of the loop the list Shad_List contains
1107      --  these temporaries in one-to-one correspondence with the elements in
1108      --  Var_List.
1109
1110      Last := Empty;
1111      Elm := First_Elmt (Var_List);
1112      while Present (Elm) loop
1113         Var := Node (Elm);
1114         Ent := Make_Temporary (Loc, 'S');
1115         Append_Elmt (Ent, Shad_List);
1116
1117         --  Insert a declaration for this temporary at the start of the
1118         --  declarations for the procedure. The temporaries are declared as
1119         --  constant objects initialized to the current values of the
1120         --  corresponding temporaries.
1121
1122         Decl :=
1123           Make_Object_Declaration (Loc,
1124             Defining_Identifier => Ent,
1125             Object_Definition   => New_Occurrence_Of (Etype (Var), Loc),
1126             Constant_Present    => True,
1127             Expression          => New_Occurrence_Of (Var, Loc));
1128
1129         if No (Last) then
1130            Prepend (Decl, Declarations (N));
1131         else
1132            Insert_After (Last, Decl);
1133         end if;
1134
1135         Last := Decl;
1136         Analyze (Decl);
1137         Next_Elmt (Elm);
1138      end loop;
1139
1140      --  Loop through calls
1141
1142      Call := First_Elmt (Call_List);
1143      while Present (Call) loop
1144
1145         --  Build a predicate expression of the form
1146
1147         --    True
1148         --      and then global1 = temp1
1149         --      and then global2 = temp2
1150         --      ...
1151
1152         --  This predicate determines if any of the global values
1153         --  referenced by the procedure have changed since the
1154         --  current call, if not an infinite recursion is assured.
1155
1156         Test := New_Occurrence_Of (Standard_True, Loc);
1157
1158         Elm1 := First_Elmt (Var_List);
1159         Elm2 := First_Elmt (Shad_List);
1160         while Present (Elm1) loop
1161            Test :=
1162              Make_And_Then (Loc,
1163                Left_Opnd  => Test,
1164                Right_Opnd =>
1165                  Make_Op_Eq (Loc,
1166                    Left_Opnd  => New_Occurrence_Of (Node (Elm1), Loc),
1167                    Right_Opnd => New_Occurrence_Of (Node (Elm2), Loc)));
1168
1169            Next_Elmt (Elm1);
1170            Next_Elmt (Elm2);
1171         end loop;
1172
1173         --  Now we replace the call with the sequence
1174
1175         --    if no-changes (see above) then
1176         --       raise Storage_Error;
1177         --    else
1178         --       original-call
1179         --    end if;
1180
1181         Rewrite (Node (Call),
1182           Make_If_Statement (Loc,
1183             Condition       => Test,
1184             Then_Statements => New_List (
1185               Make_Raise_Storage_Error (Loc,
1186                 Reason => SE_Infinite_Recursion)),
1187
1188             Else_Statements => New_List (
1189               Relocate_Node (Node (Call)))));
1190
1191         Analyze (Node (Call));
1192
1193         Next_Elmt (Call);
1194      end loop;
1195
1196      --  Remove temporary scope stack entry used for analysis
1197
1198      Pop_Scope;
1199   end Detect_Infinite_Recursion;
1200
1201   --------------------
1202   -- Expand_Actuals --
1203   --------------------
1204
1205   procedure Expand_Actuals
1206     (N         : Node_Id;
1207      Subp      : Entity_Id;
1208      Post_Call : out List_Id)
1209   is
1210      Loc       : constant Source_Ptr := Sloc (N);
1211      Actual    : Node_Id;
1212      Formal    : Entity_Id;
1213      N_Node    : Node_Id;
1214      E_Actual  : Entity_Id;
1215      E_Formal  : Entity_Id;
1216
1217      procedure Add_Call_By_Copy_Code;
1218      --  For cases where the parameter must be passed by copy, this routine
1219      --  generates a temporary variable into which the actual is copied and
1220      --  then passes this as the parameter. For an OUT or IN OUT parameter,
1221      --  an assignment is also generated to copy the result back. The call
1222      --  also takes care of any constraint checks required for the type
1223      --  conversion case (on both the way in and the way out).
1224
1225      procedure Add_Simple_Call_By_Copy_Code;
1226      --  This is similar to the above, but is used in cases where we know
1227      --  that all that is needed is to simply create a temporary and copy
1228      --  the value in and out of the temporary.
1229
1230      procedure Add_Validation_Call_By_Copy_Code (Act : Node_Id);
1231      --  Perform copy-back for actual parameter Act which denotes a validation
1232      --  variable.
1233
1234      procedure Check_Fortran_Logical;
1235      --  A value of type Logical that is passed through a formal parameter
1236      --  must be normalized because .TRUE. usually does not have the same
1237      --  representation as True. We assume that .FALSE. = False = 0.
1238      --  What about functions that return a logical type ???
1239
1240      function Is_Legal_Copy return Boolean;
1241      --  Check that an actual can be copied before generating the temporary
1242      --  to be used in the call. If the actual is of a by_reference type then
1243      --  the program is illegal (this can only happen in the presence of
1244      --  rep. clauses that force an incorrect alignment). If the formal is
1245      --  a by_reference parameter imposed by a DEC pragma, emit a warning to
1246      --  the effect that this might lead to unaligned arguments.
1247
1248      function Make_Var (Actual : Node_Id) return Entity_Id;
1249      --  Returns an entity that refers to the given actual parameter, Actual
1250      --  (not including any type conversion). If Actual is an entity name,
1251      --  then this entity is returned unchanged, otherwise a renaming is
1252      --  created to provide an entity for the actual.
1253
1254      procedure Reset_Packed_Prefix;
1255      --  The expansion of a packed array component reference is delayed in
1256      --  the context of a call. Now we need to complete the expansion, so we
1257      --  unmark the analyzed bits in all prefixes.
1258
1259      ---------------------------
1260      -- Add_Call_By_Copy_Code --
1261      ---------------------------
1262
1263      procedure Add_Call_By_Copy_Code is
1264         Crep  : Boolean;
1265         Expr  : Node_Id;
1266         F_Typ : Entity_Id := Etype (Formal);
1267         Indic : Node_Id;
1268         Init  : Node_Id;
1269         Temp  : Entity_Id;
1270         V_Typ : Entity_Id;
1271         Var   : Entity_Id;
1272
1273      begin
1274         if not Is_Legal_Copy then
1275            return;
1276         end if;
1277
1278         Temp := Make_Temporary (Loc, 'T', Actual);
1279
1280         --  Handle formals whose type comes from the limited view
1281
1282         if From_Limited_With (F_Typ)
1283           and then Has_Non_Limited_View (F_Typ)
1284         then
1285            F_Typ := Non_Limited_View (F_Typ);
1286         end if;
1287
1288         --  Use formal type for temp, unless formal type is an unconstrained
1289         --  array, in which case we don't have to worry about bounds checks,
1290         --  and we use the actual type, since that has appropriate bounds.
1291
1292         if Is_Array_Type (F_Typ) and then not Is_Constrained (F_Typ) then
1293            Indic := New_Occurrence_Of (Etype (Actual), Loc);
1294         else
1295            Indic := New_Occurrence_Of (F_Typ, Loc);
1296         end if;
1297
1298         if Nkind (Actual) = N_Type_Conversion then
1299            V_Typ := Etype (Expression (Actual));
1300
1301            --  If the formal is an (in-)out parameter, capture the name
1302            --  of the variable in order to build the post-call assignment.
1303
1304            Var := Make_Var (Expression (Actual));
1305
1306            Crep := not Same_Representation
1307                          (F_Typ, Etype (Expression (Actual)));
1308
1309         else
1310            V_Typ := Etype (Actual);
1311            Var   := Make_Var (Actual);
1312            Crep  := False;
1313         end if;
1314
1315         --  Setup initialization for case of in out parameter, or an out
1316         --  parameter where the formal is an unconstrained array (in the
1317         --  latter case, we have to pass in an object with bounds).
1318
1319         --  If this is an out parameter, the initial copy is wasteful, so as
1320         --  an optimization for the one-dimensional case we extract the
1321         --  bounds of the actual and build an uninitialized temporary of the
1322         --  right size.
1323
1324         --  If the formal is an out parameter with discriminants, the
1325         --  discriminants must be captured even if the rest of the object
1326         --  is in principle uninitialized, because the discriminants may
1327         --  be read by the called subprogram.
1328
1329         if Ekind (Formal) = E_In_Out_Parameter
1330           or else (Is_Array_Type (F_Typ) and then not Is_Constrained (F_Typ))
1331           or else Has_Discriminants (F_Typ)
1332         then
1333            if Nkind (Actual) = N_Type_Conversion then
1334               if Conversion_OK (Actual) then
1335                  Init := OK_Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1336               else
1337                  Init := Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1338               end if;
1339
1340            elsif Ekind (Formal) = E_Out_Parameter
1341              and then Is_Array_Type (F_Typ)
1342              and then Number_Dimensions (F_Typ) = 1
1343              and then not Has_Non_Null_Base_Init_Proc (F_Typ)
1344            then
1345               --  Actual is a one-dimensional array or slice, and the type
1346               --  requires no initialization. Create a temporary of the
1347               --  right size, but do not copy actual into it (optimization).
1348
1349               Init := Empty;
1350               Indic :=
1351                 Make_Subtype_Indication (Loc,
1352                   Subtype_Mark => New_Occurrence_Of (F_Typ, Loc),
1353                   Constraint   =>
1354                     Make_Index_Or_Discriminant_Constraint (Loc,
1355                       Constraints => New_List (
1356                         Make_Range (Loc,
1357                           Low_Bound  =>
1358                             Make_Attribute_Reference (Loc,
1359                               Prefix         => New_Occurrence_Of (Var, Loc),
1360                               Attribute_Name => Name_First),
1361                           High_Bound =>
1362                             Make_Attribute_Reference (Loc,
1363                               Prefix         => New_Occurrence_Of (Var, Loc),
1364                               Attribute_Name => Name_Last)))));
1365
1366            else
1367               Init := New_Occurrence_Of (Var, Loc);
1368            end if;
1369
1370         --  An initialization is created for packed conversions as
1371         --  actuals for out parameters to enable Make_Object_Declaration
1372         --  to determine the proper subtype for N_Node. Note that this
1373         --  is wasteful because the extra copying on the call side is
1374         --  not required for such out parameters. ???
1375
1376         elsif Ekind (Formal) = E_Out_Parameter
1377           and then Nkind (Actual) = N_Type_Conversion
1378           and then (Is_Bit_Packed_Array (F_Typ)
1379                       or else
1380                     Is_Bit_Packed_Array (Etype (Expression (Actual))))
1381         then
1382            if Conversion_OK (Actual) then
1383               Init := OK_Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1384            else
1385               Init := Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1386            end if;
1387
1388         elsif Ekind (Formal) = E_In_Parameter then
1389
1390            --  Handle the case in which the actual is a type conversion
1391
1392            if Nkind (Actual) = N_Type_Conversion then
1393               if Conversion_OK (Actual) then
1394                  Init := OK_Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1395               else
1396                  Init := Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1397               end if;
1398            else
1399               Init := New_Occurrence_Of (Var, Loc);
1400            end if;
1401
1402         else
1403            Init := Empty;
1404         end if;
1405
1406         N_Node :=
1407           Make_Object_Declaration (Loc,
1408             Defining_Identifier => Temp,
1409             Object_Definition   => Indic,
1410             Expression          => Init);
1411         Set_Assignment_OK (N_Node);
1412         Insert_Action (N, N_Node);
1413
1414         --  Now, normally the deal here is that we use the defining
1415         --  identifier created by that object declaration. There is
1416         --  one exception to this. In the change of representation case
1417         --  the above declaration will end up looking like:
1418
1419         --    temp : type := identifier;
1420
1421         --  And in this case we might as well use the identifier directly
1422         --  and eliminate the temporary. Note that the analysis of the
1423         --  declaration was not a waste of time in that case, since it is
1424         --  what generated the necessary change of representation code. If
1425         --  the change of representation introduced additional code, as in
1426         --  a fixed-integer conversion, the expression is not an identifier
1427         --  and must be kept.
1428
1429         if Crep
1430           and then Present (Expression (N_Node))
1431           and then Is_Entity_Name (Expression (N_Node))
1432         then
1433            Temp := Entity (Expression (N_Node));
1434            Rewrite (N_Node, Make_Null_Statement (Loc));
1435         end if;
1436
1437         --  For IN parameter, all we do is to replace the actual
1438
1439         if Ekind (Formal) = E_In_Parameter then
1440            Rewrite (Actual, New_Occurrence_Of (Temp, Loc));
1441            Analyze (Actual);
1442
1443         --  Processing for OUT or IN OUT parameter
1444
1445         else
1446            --  Kill current value indications for the temporary variable we
1447            --  created, since we just passed it as an OUT parameter.
1448
1449            Kill_Current_Values (Temp);
1450            Set_Is_Known_Valid (Temp, False);
1451            Set_Is_True_Constant (Temp, False);
1452
1453            --  If type conversion, use reverse conversion on exit
1454
1455            if Nkind (Actual) = N_Type_Conversion then
1456               if Conversion_OK (Actual) then
1457                  Expr := OK_Convert_To (V_Typ, New_Occurrence_Of (Temp, Loc));
1458               else
1459                  Expr := Convert_To (V_Typ, New_Occurrence_Of (Temp, Loc));
1460               end if;
1461            else
1462               Expr := New_Occurrence_Of (Temp, Loc);
1463            end if;
1464
1465            Rewrite (Actual, New_Occurrence_Of (Temp, Loc));
1466            Analyze (Actual);
1467
1468            --  If the actual is a conversion of a packed reference, it may
1469            --  already have been expanded by Remove_Side_Effects, and the
1470            --  resulting variable is a temporary which does not designate
1471            --  the proper out-parameter, which may not be addressable. In
1472            --  that case, generate an assignment to the original expression
1473            --  (before expansion of the packed reference) so that the proper
1474            --  expansion of assignment to a packed component can take place.
1475
1476            declare
1477               Obj : Node_Id;
1478               Lhs : Node_Id;
1479
1480            begin
1481               if Is_Renaming_Of_Object (Var)
1482                 and then Nkind (Renamed_Object (Var)) = N_Selected_Component
1483                 and then Nkind (Original_Node (Prefix (Renamed_Object (Var))))
1484                   = N_Indexed_Component
1485                 and then
1486                   Has_Non_Standard_Rep (Etype (Prefix (Renamed_Object (Var))))
1487               then
1488                  Obj := Renamed_Object (Var);
1489                  Lhs :=
1490                    Make_Selected_Component (Loc,
1491                      Prefix        =>
1492                        New_Copy_Tree (Original_Node (Prefix (Obj))),
1493                      Selector_Name => New_Copy (Selector_Name (Obj)));
1494                  Reset_Analyzed_Flags (Lhs);
1495
1496               else
1497                  Lhs := New_Occurrence_Of (Var, Loc);
1498               end if;
1499
1500               Set_Assignment_OK (Lhs);
1501
1502               if Is_Access_Type (E_Formal)
1503                 and then Is_Entity_Name (Lhs)
1504                 and then
1505                   Present (Effective_Extra_Accessibility (Entity (Lhs)))
1506               then
1507                  --  Copyback target is an Ada 2012 stand-alone object of an
1508                  --  anonymous access type.
1509
1510                  pragma Assert (Ada_Version >= Ada_2012);
1511
1512                  if Type_Access_Level (E_Formal) >
1513                     Object_Access_Level (Lhs)
1514                  then
1515                     Append_To (Post_Call,
1516                       Make_Raise_Program_Error (Loc,
1517                         Reason => PE_Accessibility_Check_Failed));
1518                  end if;
1519
1520                  Append_To (Post_Call,
1521                    Make_Assignment_Statement (Loc,
1522                      Name       => Lhs,
1523                      Expression => Expr));
1524
1525                  --  We would like to somehow suppress generation of the
1526                  --  extra_accessibility assignment generated by the expansion
1527                  --  of the above assignment statement. It's not a correctness
1528                  --  issue because the following assignment renders it dead,
1529                  --  but generating back-to-back assignments to the same
1530                  --  target is undesirable. ???
1531
1532                  Append_To (Post_Call,
1533                    Make_Assignment_Statement (Loc,
1534                      Name       => New_Occurrence_Of (
1535                        Effective_Extra_Accessibility (Entity (Lhs)), Loc),
1536                      Expression => Make_Integer_Literal (Loc,
1537                        Type_Access_Level (E_Formal))));
1538
1539               else
1540                  Append_To (Post_Call,
1541                    Make_Assignment_Statement (Loc,
1542                      Name       => Lhs,
1543                      Expression => Expr));
1544               end if;
1545            end;
1546         end if;
1547      end Add_Call_By_Copy_Code;
1548
1549      ----------------------------------
1550      -- Add_Simple_Call_By_Copy_Code --
1551      ----------------------------------
1552
1553      procedure Add_Simple_Call_By_Copy_Code is
1554         Decl   : Node_Id;
1555         F_Typ  : Entity_Id := Etype (Formal);
1556         Incod  : Node_Id;
1557         Indic  : Node_Id;
1558         Lhs    : Node_Id;
1559         Outcod : Node_Id;
1560         Rhs    : Node_Id;
1561         Temp   : Entity_Id;
1562
1563      begin
1564         if not Is_Legal_Copy then
1565            return;
1566         end if;
1567
1568         --  Handle formals whose type comes from the limited view
1569
1570         if From_Limited_With (F_Typ)
1571           and then Has_Non_Limited_View (F_Typ)
1572         then
1573            F_Typ := Non_Limited_View (F_Typ);
1574         end if;
1575
1576         --  Use formal type for temp, unless formal type is an unconstrained
1577         --  array, in which case we don't have to worry about bounds checks,
1578         --  and we use the actual type, since that has appropriate bounds.
1579
1580         if Is_Array_Type (F_Typ) and then not Is_Constrained (F_Typ) then
1581            Indic := New_Occurrence_Of (Etype (Actual), Loc);
1582         else
1583            Indic := New_Occurrence_Of (F_Typ, Loc);
1584         end if;
1585
1586         --  Prepare to generate code
1587
1588         Reset_Packed_Prefix;
1589
1590         Temp := Make_Temporary (Loc, 'T', Actual);
1591         Incod  := Relocate_Node (Actual);
1592         Outcod := New_Copy_Tree (Incod);
1593
1594         --  Generate declaration of temporary variable, initializing it
1595         --  with the input parameter unless we have an OUT formal or
1596         --  this is an initialization call.
1597
1598         --  If the formal is an out parameter with discriminants, the
1599         --  discriminants must be captured even if the rest of the object
1600         --  is in principle uninitialized, because the discriminants may
1601         --  be read by the called subprogram.
1602
1603         if Ekind (Formal) = E_Out_Parameter then
1604            Incod := Empty;
1605
1606            if Has_Discriminants (F_Typ) then
1607               Indic := New_Occurrence_Of (Etype (Actual), Loc);
1608            end if;
1609
1610         elsif Inside_Init_Proc then
1611
1612            --  Could use a comment here to match comment below ???
1613
1614            if Nkind (Actual) /= N_Selected_Component
1615              or else
1616                not Has_Discriminant_Dependent_Constraint
1617                  (Entity (Selector_Name (Actual)))
1618            then
1619               Incod := Empty;
1620
1621            --  Otherwise, keep the component in order to generate the proper
1622            --  actual subtype, that depends on enclosing discriminants.
1623
1624            else
1625               null;
1626            end if;
1627         end if;
1628
1629         Decl :=
1630           Make_Object_Declaration (Loc,
1631             Defining_Identifier => Temp,
1632             Object_Definition   => Indic,
1633             Expression          => Incod);
1634
1635         if Inside_Init_Proc
1636           and then No (Incod)
1637         then
1638            --  If the call is to initialize a component of a composite type,
1639            --  and the component does not depend on discriminants, use the
1640            --  actual type of the component. This is required in case the
1641            --  component is constrained, because in general the formal of the
1642            --  initialization procedure will be unconstrained. Note that if
1643            --  the component being initialized is constrained by an enclosing
1644            --  discriminant, the presence of the initialization in the
1645            --  declaration will generate an expression for the actual subtype.
1646
1647            Set_No_Initialization (Decl);
1648            Set_Object_Definition (Decl,
1649              New_Occurrence_Of (Etype (Actual), Loc));
1650         end if;
1651
1652         Insert_Action (N, Decl);
1653
1654         --  The actual is simply a reference to the temporary
1655
1656         Rewrite (Actual, New_Occurrence_Of (Temp, Loc));
1657
1658         --  Generate copy out if OUT or IN OUT parameter
1659
1660         if Ekind (Formal) /= E_In_Parameter then
1661            Lhs := Outcod;
1662            Rhs := New_Occurrence_Of (Temp, Loc);
1663            Set_Is_True_Constant (Temp, False);
1664
1665            --  Deal with conversion
1666
1667            if Nkind (Lhs) = N_Type_Conversion then
1668               Lhs := Expression (Lhs);
1669               Rhs := Convert_To (Etype (Actual), Rhs);
1670            end if;
1671
1672            Append_To (Post_Call,
1673              Make_Assignment_Statement (Loc,
1674                Name       => Lhs,
1675                Expression => Rhs));
1676            Set_Assignment_OK (Name (Last (Post_Call)));
1677         end if;
1678      end Add_Simple_Call_By_Copy_Code;
1679
1680      --------------------------------------
1681      -- Add_Validation_Call_By_Copy_Code --
1682      --------------------------------------
1683
1684      procedure Add_Validation_Call_By_Copy_Code (Act : Node_Id) is
1685         Expr    : Node_Id;
1686         Obj     : Node_Id;
1687         Obj_Typ : Entity_Id;
1688         Var     : constant Node_Id := Unqual_Conv (Act);
1689         Var_Id  : Entity_Id;
1690
1691      begin
1692         --  Copy the value of the validation variable back into the object
1693         --  being validated.
1694
1695         if Is_Entity_Name (Var) then
1696            Var_Id  := Entity (Var);
1697            Obj     := Validated_Object (Var_Id);
1698            Obj_Typ := Etype (Obj);
1699
1700            Expr := New_Occurrence_Of (Var_Id, Loc);
1701
1702            --  A type conversion is needed when the validation variable and
1703            --  the validated object carry different types. This case occurs
1704            --  when the actual is qualified in some fashion.
1705
1706            --    Common:
1707            --      subtype Int is Integer range ...;
1708            --      procedure Call (Val : in out Integer);
1709
1710            --    Original:
1711            --      Object : Int;
1712            --      Call (Integer (Object));
1713
1714            --    Expanded:
1715            --      Object : Int;
1716            --      Var : Integer := Object;  --  conversion to base type
1717            --      if not Var'Valid then     --  validity check
1718            --      Call (Var);               --  modify Var
1719            --      Object := Int (Var);      --  conversion to subtype
1720
1721            if Etype (Var_Id) /= Obj_Typ then
1722               Expr :=
1723                 Make_Type_Conversion (Loc,
1724                   Subtype_Mark => New_Occurrence_Of (Obj_Typ, Loc),
1725                   Expression   => Expr);
1726            end if;
1727
1728            --  Generate:
1729            --    Object := Var;
1730            --      <or>
1731            --    Object := Object_Type (Var);
1732
1733            Append_To (Post_Call,
1734              Make_Assignment_Statement (Loc,
1735                Name       => Obj,
1736                Expression => Expr));
1737
1738         --  If the flow reaches this point, then this routine was invoked with
1739         --  an actual which does not denote a validation variable.
1740
1741         else
1742            pragma Assert (False);
1743            null;
1744         end if;
1745      end Add_Validation_Call_By_Copy_Code;
1746
1747      ---------------------------
1748      -- Check_Fortran_Logical --
1749      ---------------------------
1750
1751      procedure Check_Fortran_Logical is
1752         Logical : constant Entity_Id := Etype (Formal);
1753         Var     : Entity_Id;
1754
1755      --  Note: this is very incomplete, e.g. it does not handle arrays
1756      --  of logical values. This is really not the right approach at all???)
1757
1758      begin
1759         if Convention (Subp) = Convention_Fortran
1760           and then Root_Type (Etype (Formal)) = Standard_Boolean
1761           and then Ekind (Formal) /= E_In_Parameter
1762         then
1763            Var := Make_Var (Actual);
1764            Append_To (Post_Call,
1765              Make_Assignment_Statement (Loc,
1766                Name => New_Occurrence_Of (Var, Loc),
1767                Expression =>
1768                  Unchecked_Convert_To (
1769                    Logical,
1770                    Make_Op_Ne (Loc,
1771                      Left_Opnd  => New_Occurrence_Of (Var, Loc),
1772                      Right_Opnd =>
1773                        Unchecked_Convert_To (
1774                          Logical,
1775                          New_Occurrence_Of (Standard_False, Loc))))));
1776         end if;
1777      end Check_Fortran_Logical;
1778
1779      -------------------
1780      -- Is_Legal_Copy --
1781      -------------------
1782
1783      function Is_Legal_Copy return Boolean is
1784      begin
1785         --  An attempt to copy a value of such a type can only occur if
1786         --  representation clauses give the actual a misaligned address.
1787
1788         if Is_By_Reference_Type (Etype (Formal)) then
1789
1790            --  The actual may in fact be properly aligned but there is not
1791            --  enough front-end information to determine this. In that case
1792            --  gigi will emit an error if a copy is not legal, or generate
1793            --  the proper code.
1794
1795            return False;
1796
1797         --  For users of Starlet, we assume that the specification of by-
1798         --  reference mechanism is mandatory. This may lead to unaligned
1799         --  objects but at least for DEC legacy code it is known to work.
1800         --  The warning will alert users of this code that a problem may
1801         --  be lurking.
1802
1803         elsif Mechanism (Formal) = By_Reference
1804           and then Is_Valued_Procedure (Scope (Formal))
1805         then
1806            Error_Msg_N
1807              ("by_reference actual may be misaligned??", Actual);
1808            return False;
1809
1810         else
1811            return True;
1812         end if;
1813      end Is_Legal_Copy;
1814
1815      --------------
1816      -- Make_Var --
1817      --------------
1818
1819      function Make_Var (Actual : Node_Id) return Entity_Id is
1820         Var : Entity_Id;
1821
1822      begin
1823         if Is_Entity_Name (Actual) then
1824            return Entity (Actual);
1825
1826         else
1827            Var := Make_Temporary (Loc, 'T', Actual);
1828
1829            N_Node :=
1830              Make_Object_Renaming_Declaration (Loc,
1831                Defining_Identifier => Var,
1832                Subtype_Mark        =>
1833                  New_Occurrence_Of (Etype (Actual), Loc),
1834                Name                => Relocate_Node (Actual));
1835
1836            Insert_Action (N, N_Node);
1837            return Var;
1838         end if;
1839      end Make_Var;
1840
1841      -------------------------
1842      -- Reset_Packed_Prefix --
1843      -------------------------
1844
1845      procedure Reset_Packed_Prefix is
1846         Pfx : Node_Id := Actual;
1847      begin
1848         loop
1849            Set_Analyzed (Pfx, False);
1850            exit when
1851              not Nkind_In (Pfx, N_Selected_Component, N_Indexed_Component);
1852            Pfx := Prefix (Pfx);
1853         end loop;
1854      end Reset_Packed_Prefix;
1855
1856   --  Start of processing for Expand_Actuals
1857
1858   begin
1859      Post_Call := New_List;
1860
1861      Formal := First_Formal (Subp);
1862      Actual := First_Actual (N);
1863      while Present (Formal) loop
1864         E_Formal := Etype (Formal);
1865         E_Actual := Etype (Actual);
1866
1867         --  Handle formals whose type comes from the limited view
1868
1869         if From_Limited_With (E_Formal)
1870           and then Has_Non_Limited_View (E_Formal)
1871         then
1872            E_Formal := Non_Limited_View (E_Formal);
1873         end if;
1874
1875         if Is_Scalar_Type (E_Formal)
1876           or else Nkind (Actual) = N_Slice
1877         then
1878            Check_Fortran_Logical;
1879
1880         --  RM 6.4.1 (11)
1881
1882         elsif Ekind (Formal) /= E_Out_Parameter then
1883
1884            --  The unusual case of the current instance of a protected type
1885            --  requires special handling. This can only occur in the context
1886            --  of a call within the body of a protected operation.
1887
1888            if Is_Entity_Name (Actual)
1889              and then Ekind (Entity (Actual)) = E_Protected_Type
1890              and then In_Open_Scopes (Entity (Actual))
1891            then
1892               if Scope (Subp) /= Entity (Actual) then
1893                  Error_Msg_N
1894                    ("operation outside protected type may not "
1895                     & "call back its protected operations??", Actual);
1896               end if;
1897
1898               Rewrite (Actual,
1899                 Expand_Protected_Object_Reference (N, Entity (Actual)));
1900            end if;
1901
1902            --  Ada 2005 (AI-318-02): If the actual parameter is a call to a
1903            --  build-in-place function, then a temporary return object needs
1904            --  to be created and access to it must be passed to the function.
1905            --  Currently we limit such functions to those with inherently
1906            --  limited result subtypes, but eventually we plan to expand the
1907            --  functions that are treated as build-in-place to include other
1908            --  composite result types.
1909
1910            if Is_Build_In_Place_Function_Call (Actual) then
1911               Make_Build_In_Place_Call_In_Anonymous_Context (Actual);
1912
1913            --  Ada 2005 (AI-318-02): Specialization of the previous case for
1914            --  actuals containing build-in-place function calls whose returned
1915            --  object covers interface types.
1916
1917            elsif Present (Unqual_BIP_Iface_Function_Call (Actual)) then
1918               Make_Build_In_Place_Iface_Call_In_Anonymous_Context (Actual);
1919            end if;
1920
1921            Apply_Constraint_Check (Actual, E_Formal);
1922
1923         --  Out parameter case. No constraint checks on access type
1924         --  RM 6.4.1 (13)
1925
1926         elsif Is_Access_Type (E_Formal) then
1927            null;
1928
1929         --  RM 6.4.1 (14)
1930
1931         elsif Has_Discriminants (Base_Type (E_Formal))
1932           or else Has_Non_Null_Base_Init_Proc (E_Formal)
1933         then
1934            Apply_Constraint_Check (Actual, E_Formal);
1935
1936         --  RM 6.4.1 (15)
1937
1938         else
1939            Apply_Constraint_Check (Actual, Base_Type (E_Formal));
1940         end if;
1941
1942         --  Processing for IN-OUT and OUT parameters
1943
1944         if Ekind (Formal) /= E_In_Parameter then
1945
1946            --  For type conversions of arrays, apply length/range checks
1947
1948            if Is_Array_Type (E_Formal)
1949              and then Nkind (Actual) = N_Type_Conversion
1950            then
1951               if Is_Constrained (E_Formal) then
1952                  Apply_Length_Check (Expression (Actual), E_Formal);
1953               else
1954                  Apply_Range_Check (Expression (Actual), E_Formal);
1955               end if;
1956            end if;
1957
1958            --  The actual denotes a variable which captures the value of an
1959            --  object for validation purposes. Add a copy-back to reflect any
1960            --  potential changes in value back into the original object.
1961
1962            --    Var : ... := Object;
1963            --    if not Var'Valid then  --  validity check
1964            --    Call (Var);            --  modify var
1965            --    Object := Var;         --  update Object
1966
1967            --  This case is given higher priority because the subsequent check
1968            --  for type conversion may add an extra copy of the variable and
1969            --  prevent proper value propagation back in the original object.
1970
1971            if Is_Validation_Variable_Reference (Actual) then
1972               Add_Validation_Call_By_Copy_Code (Actual);
1973
1974            --  If argument is a type conversion for a type that is passed by
1975            --  copy, then we must pass the parameter by copy.
1976
1977            elsif Nkind (Actual) = N_Type_Conversion
1978              and then
1979                (Is_Numeric_Type (E_Formal)
1980                  or else Is_Access_Type (E_Formal)
1981                  or else Is_Enumeration_Type (E_Formal)
1982                  or else Is_Bit_Packed_Array (Etype (Formal))
1983                  or else Is_Bit_Packed_Array (Etype (Expression (Actual)))
1984
1985                  --  Also pass by copy if change of representation
1986
1987                  or else not Same_Representation
1988                                (Etype (Formal),
1989                                 Etype (Expression (Actual))))
1990            then
1991               Add_Call_By_Copy_Code;
1992
1993            --  References to components of bit-packed arrays are expanded
1994            --  at this point, rather than at the point of analysis of the
1995            --  actuals, to handle the expansion of the assignment to
1996            --  [in] out parameters.
1997
1998            elsif Is_Ref_To_Bit_Packed_Array (Actual) then
1999               Add_Simple_Call_By_Copy_Code;
2000
2001            --  If a non-scalar actual is possibly bit-aligned, we need a copy
2002            --  because the back-end cannot cope with such objects. In other
2003            --  cases where alignment forces a copy, the back-end generates
2004            --  it properly. It should not be generated unconditionally in the
2005            --  front-end because it does not know precisely the alignment
2006            --  requirements of the target, and makes too conservative an
2007            --  estimate, leading to superfluous copies or spurious errors
2008            --  on by-reference parameters.
2009
2010            elsif Nkind (Actual) = N_Selected_Component
2011              and then
2012                Component_May_Be_Bit_Aligned (Entity (Selector_Name (Actual)))
2013              and then not Represented_As_Scalar (Etype (Formal))
2014            then
2015               Add_Simple_Call_By_Copy_Code;
2016
2017            --  References to slices of bit-packed arrays are expanded
2018
2019            elsif Is_Ref_To_Bit_Packed_Slice (Actual) then
2020               Add_Call_By_Copy_Code;
2021
2022            --  References to possibly unaligned slices of arrays are expanded
2023
2024            elsif Is_Possibly_Unaligned_Slice (Actual) then
2025               Add_Call_By_Copy_Code;
2026
2027            --  Deal with access types where the actual subtype and the
2028            --  formal subtype are not the same, requiring a check.
2029
2030            --  It is necessary to exclude tagged types because of "downward
2031            --  conversion" errors.
2032
2033            elsif Is_Access_Type (E_Formal)
2034              and then not Same_Type (E_Formal, E_Actual)
2035              and then not Is_Tagged_Type (Designated_Type (E_Formal))
2036            then
2037               Add_Call_By_Copy_Code;
2038
2039            --  If the actual is not a scalar and is marked for volatile
2040            --  treatment, whereas the formal is not volatile, then pass
2041            --  by copy unless it is a by-reference type.
2042
2043            --  Note: we use Is_Volatile here rather than Treat_As_Volatile,
2044            --  because this is the enforcement of a language rule that applies
2045            --  only to "real" volatile variables, not e.g. to the address
2046            --  clause overlay case.
2047
2048            elsif Is_Entity_Name (Actual)
2049              and then Is_Volatile (Entity (Actual))
2050              and then not Is_By_Reference_Type (E_Actual)
2051              and then not Is_Scalar_Type (Etype (Entity (Actual)))
2052              and then not Is_Volatile (E_Formal)
2053            then
2054               Add_Call_By_Copy_Code;
2055
2056            elsif Nkind (Actual) = N_Indexed_Component
2057              and then Is_Entity_Name (Prefix (Actual))
2058              and then Has_Volatile_Components (Entity (Prefix (Actual)))
2059            then
2060               Add_Call_By_Copy_Code;
2061
2062            --  Add call-by-copy code for the case of scalar out parameters
2063            --  when it is not known at compile time that the subtype of the
2064            --  formal is a subrange of the subtype of the actual (or vice
2065            --  versa for in out parameters), in order to get range checks
2066            --  on such actuals. (Maybe this case should be handled earlier
2067            --  in the if statement???)
2068
2069            elsif Is_Scalar_Type (E_Formal)
2070              and then
2071                (not In_Subrange_Of (E_Formal, E_Actual)
2072                  or else
2073                    (Ekind (Formal) = E_In_Out_Parameter
2074                      and then not In_Subrange_Of (E_Actual, E_Formal)))
2075            then
2076               --  Perhaps the setting back to False should be done within
2077               --  Add_Call_By_Copy_Code, since it could get set on other
2078               --  cases occurring above???
2079
2080               if Do_Range_Check (Actual) then
2081                  Set_Do_Range_Check (Actual, False);
2082               end if;
2083
2084               Add_Call_By_Copy_Code;
2085            end if;
2086
2087            --  RM 3.2.4 (23/3): A predicate is checked on in-out and out
2088            --  by-reference parameters on exit from the call. If the actual
2089            --  is a derived type and the operation is inherited, the body
2090            --  of the operation will not contain a call to the predicate
2091            --  function, so it must be done explicitly after the call. Ditto
2092            --  if the actual is an entity of a predicated subtype.
2093
2094            --  The rule refers to by-reference types, but a check is needed
2095            --  for by-copy types as well. That check is subsumed by the rule
2096            --  for subtype conversion on assignment, but we can generate the
2097            --  required check now.
2098
2099            --  Note also that Subp may be either a subprogram entity for
2100            --  direct calls, or a type entity for indirect calls, which must
2101            --  be handled separately because the name does not denote an
2102            --  overloadable entity.
2103
2104            By_Ref_Predicate_Check : declare
2105               Aund : constant Entity_Id := Underlying_Type (E_Actual);
2106               Atyp : Entity_Id;
2107
2108               function Is_Public_Subp return Boolean;
2109               --  Check whether the subprogram being called is a visible
2110               --  operation of the type of the actual. Used to determine
2111               --  whether an invariant check must be generated on the
2112               --  caller side.
2113
2114               ---------------------
2115               --  Is_Public_Subp --
2116               ---------------------
2117
2118               function Is_Public_Subp return Boolean is
2119                  Pack      : constant Entity_Id := Scope (Subp);
2120                  Subp_Decl : Node_Id;
2121
2122               begin
2123                  if not Is_Subprogram (Subp) then
2124                     return False;
2125
2126                  --  The operation may be inherited, or a primitive of the
2127                  --  root type.
2128
2129                  elsif
2130                    Nkind_In (Parent (Subp), N_Private_Extension_Declaration,
2131                                             N_Full_Type_Declaration)
2132                  then
2133                     Subp_Decl := Parent (Subp);
2134
2135                  else
2136                     Subp_Decl := Unit_Declaration_Node (Subp);
2137                  end if;
2138
2139                  return Ekind (Pack) = E_Package
2140                    and then
2141                      List_Containing (Subp_Decl) =
2142                        Visible_Declarations
2143                          (Specification (Unit_Declaration_Node (Pack)));
2144               end Is_Public_Subp;
2145
2146            --  Start of processing for By_Ref_Predicate_Check
2147
2148            begin
2149               if No (Aund) then
2150                  Atyp := E_Actual;
2151               else
2152                  Atyp := Aund;
2153               end if;
2154
2155               if Has_Predicates (Atyp)
2156                 and then Present (Predicate_Function (Atyp))
2157
2158                 --  Skip predicate checks for special cases
2159
2160                 and then Predicate_Tests_On_Arguments (Subp)
2161               then
2162                  Append_To (Post_Call,
2163                    Make_Predicate_Check (Atyp, Actual));
2164               end if;
2165
2166               --  We generated caller-side invariant checks in two cases:
2167
2168               --  a) when calling an inherited operation, where there is an
2169               --  implicit view conversion of the actual to the parent type.
2170
2171               --  b) When the conversion is explicit
2172
2173               --  We treat these cases separately because the required
2174               --  conversion for a) is added later when expanding the call.
2175
2176               if Has_Invariants (Etype (Actual))
2177                  and then
2178                    Nkind (Parent (Subp)) = N_Private_Extension_Declaration
2179               then
2180                  if Comes_From_Source (N) and then Is_Public_Subp then
2181                     Append_To (Post_Call, Make_Invariant_Call (Actual));
2182                  end if;
2183
2184               elsif Nkind (Actual) = N_Type_Conversion
2185                 and then Has_Invariants (Etype (Expression (Actual)))
2186               then
2187                  if Comes_From_Source (N) and then Is_Public_Subp then
2188                     Append_To (Post_Call,
2189                       Make_Invariant_Call (Expression (Actual)));
2190                  end if;
2191               end if;
2192            end By_Ref_Predicate_Check;
2193
2194         --  Processing for IN parameters
2195
2196         else
2197            --  For IN parameters in the bit-packed array case, we expand an
2198            --  indexed component (the circuit in Exp_Ch4 deliberately left
2199            --  indexed components appearing as actuals untouched, so that
2200            --  the special processing above for the OUT and IN OUT cases
2201            --  could be performed. We could make the test in Exp_Ch4 more
2202            --  complex and have it detect the parameter mode, but it is
2203            --  easier simply to handle all cases here.)
2204
2205            if Nkind (Actual) = N_Indexed_Component
2206              and then Is_Bit_Packed_Array (Etype (Prefix (Actual)))
2207            then
2208               Reset_Packed_Prefix;
2209               Expand_Packed_Element_Reference (Actual);
2210
2211            --  If we have a reference to a bit-packed array, we copy it, since
2212            --  the actual must be byte aligned.
2213
2214            --  Is this really necessary in all cases???
2215
2216            elsif Is_Ref_To_Bit_Packed_Array (Actual) then
2217               Add_Simple_Call_By_Copy_Code;
2218
2219            --  If a non-scalar actual is possibly unaligned, we need a copy
2220
2221            elsif Is_Possibly_Unaligned_Object (Actual)
2222              and then not Represented_As_Scalar (Etype (Formal))
2223            then
2224               Add_Simple_Call_By_Copy_Code;
2225
2226            --  Similarly, we have to expand slices of packed arrays here
2227            --  because the result must be byte aligned.
2228
2229            elsif Is_Ref_To_Bit_Packed_Slice (Actual) then
2230               Add_Call_By_Copy_Code;
2231
2232            --  Only processing remaining is to pass by copy if this is a
2233            --  reference to a possibly unaligned slice, since the caller
2234            --  expects an appropriately aligned argument.
2235
2236            elsif Is_Possibly_Unaligned_Slice (Actual) then
2237               Add_Call_By_Copy_Code;
2238
2239            --  An unusual case: a current instance of an enclosing task can be
2240            --  an actual, and must be replaced by a reference to self.
2241
2242            elsif Is_Entity_Name (Actual)
2243              and then Is_Task_Type (Entity (Actual))
2244            then
2245               if In_Open_Scopes (Entity (Actual)) then
2246                  Rewrite (Actual,
2247                    (Make_Function_Call (Loc,
2248                       Name => New_Occurrence_Of (RTE (RE_Self), Loc))));
2249                  Analyze (Actual);
2250
2251               --  A task type cannot otherwise appear as an actual
2252
2253               else
2254                  raise Program_Error;
2255               end if;
2256            end if;
2257         end if;
2258
2259         Next_Formal (Formal);
2260         Next_Actual (Actual);
2261      end loop;
2262   end Expand_Actuals;
2263
2264   -----------------
2265   -- Expand_Call --
2266   -----------------
2267
2268   procedure Expand_Call (N : Node_Id) is
2269      Post_Call : List_Id;
2270
2271   begin
2272      pragma Assert (Nkind_In (N, N_Entry_Call_Statement,
2273                                  N_Function_Call,
2274                                  N_Procedure_Call_Statement));
2275
2276      Expand_Call_Helper (N, Post_Call);
2277      Insert_Post_Call_Actions (N, Post_Call);
2278   end Expand_Call;
2279
2280   ------------------------
2281   -- Expand_Call_Helper --
2282   ------------------------
2283
2284   --  This procedure handles expansion of function calls and procedure call
2285   --  statements (i.e. it serves as the body for Expand_N_Function_Call and
2286   --  Expand_N_Procedure_Call_Statement). Processing for calls includes:
2287
2288   --    Replace call to Raise_Exception by Raise_Exception_Always if possible
2289   --    Provide values of actuals for all formals in Extra_Formals list
2290   --    Replace "call" to enumeration literal function by literal itself
2291   --    Rewrite call to predefined operator as operator
2292   --    Replace actuals to in-out parameters that are numeric conversions,
2293   --     with explicit assignment to temporaries before and after the call.
2294
2295   --   Note that the list of actuals has been filled with default expressions
2296   --   during semantic analysis of the call. Only the extra actuals required
2297   --   for the 'Constrained attribute and for accessibility checks are added
2298   --   at this point.
2299
2300   procedure Expand_Call_Helper (N : Node_Id; Post_Call : out List_Id) is
2301      Loc           : constant Source_Ptr := Sloc (N);
2302      Call_Node     : Node_Id := N;
2303      Extra_Actuals : List_Id := No_List;
2304      Prev          : Node_Id := Empty;
2305
2306      procedure Add_Actual_Parameter (Insert_Param : Node_Id);
2307      --  Adds one entry to the end of the actual parameter list. Used for
2308      --  default parameters and for extra actuals (for Extra_Formals). The
2309      --  argument is an N_Parameter_Association node.
2310
2311      procedure Add_Extra_Actual (Expr : Node_Id; EF : Entity_Id);
2312      --  Adds an extra actual to the list of extra actuals. Expr is the
2313      --  expression for the value of the actual, EF is the entity for the
2314      --  extra formal.
2315
2316      procedure Add_View_Conversion_Invariants
2317        (Formal : Entity_Id;
2318         Actual : Node_Id);
2319      --  Adds invariant checks for every intermediate type between the range
2320      --  of a view converted argument to its ancestor (from parent to child).
2321
2322      function Inherited_From_Formal (S : Entity_Id) return Entity_Id;
2323      --  Within an instance, a type derived from an untagged formal derived
2324      --  type inherits from the original parent, not from the actual. The
2325      --  current derivation mechanism has the derived type inherit from the
2326      --  actual, which is only correct outside of the instance. If the
2327      --  subprogram is inherited, we test for this particular case through a
2328      --  convoluted tree traversal before setting the proper subprogram to be
2329      --  called.
2330
2331      function In_Unfrozen_Instance (E : Entity_Id) return Boolean;
2332      --  Return true if E comes from an instance that is not yet frozen
2333
2334      function Is_Direct_Deep_Call (Subp : Entity_Id) return Boolean;
2335      --  Determine if Subp denotes a non-dispatching call to a Deep routine
2336
2337      function New_Value (From : Node_Id) return Node_Id;
2338      --  From is the original Expression. New_Value is equivalent to a call
2339      --  to Duplicate_Subexpr with an explicit dereference when From is an
2340      --  access parameter.
2341
2342      --------------------------
2343      -- Add_Actual_Parameter --
2344      --------------------------
2345
2346      procedure Add_Actual_Parameter (Insert_Param : Node_Id) is
2347         Actual_Expr : constant Node_Id :=
2348                         Explicit_Actual_Parameter (Insert_Param);
2349
2350      begin
2351         --  Case of insertion is first named actual
2352
2353         if No (Prev) or else
2354            Nkind (Parent (Prev)) /= N_Parameter_Association
2355         then
2356            Set_Next_Named_Actual
2357              (Insert_Param, First_Named_Actual (Call_Node));
2358            Set_First_Named_Actual (Call_Node, Actual_Expr);
2359
2360            if No (Prev) then
2361               if No (Parameter_Associations (Call_Node)) then
2362                  Set_Parameter_Associations (Call_Node, New_List);
2363               end if;
2364
2365               Append (Insert_Param, Parameter_Associations (Call_Node));
2366
2367            else
2368               Insert_After (Prev, Insert_Param);
2369            end if;
2370
2371         --  Case of insertion is not first named actual
2372
2373         else
2374            Set_Next_Named_Actual
2375              (Insert_Param, Next_Named_Actual (Parent (Prev)));
2376            Set_Next_Named_Actual (Parent (Prev), Actual_Expr);
2377            Append (Insert_Param, Parameter_Associations (Call_Node));
2378         end if;
2379
2380         Prev := Actual_Expr;
2381      end Add_Actual_Parameter;
2382
2383      ----------------------
2384      -- Add_Extra_Actual --
2385      ----------------------
2386
2387      procedure Add_Extra_Actual (Expr : Node_Id; EF : Entity_Id) is
2388         Loc : constant Source_Ptr := Sloc (Expr);
2389
2390      begin
2391         if Extra_Actuals = No_List then
2392            Extra_Actuals := New_List;
2393            Set_Parent (Extra_Actuals, Call_Node);
2394         end if;
2395
2396         Append_To (Extra_Actuals,
2397           Make_Parameter_Association (Loc,
2398             Selector_Name             => New_Occurrence_Of (EF, Loc),
2399             Explicit_Actual_Parameter => Expr));
2400
2401         Analyze_And_Resolve (Expr, Etype (EF));
2402
2403         if Nkind (Call_Node) = N_Function_Call then
2404            Set_Is_Accessibility_Actual (Parent (Expr));
2405         end if;
2406      end Add_Extra_Actual;
2407
2408      ------------------------------------
2409      -- Add_View_Conversion_Invariants --
2410      ------------------------------------
2411
2412      procedure Add_View_Conversion_Invariants
2413        (Formal : Entity_Id;
2414         Actual : Node_Id)
2415      is
2416         Arg        : Entity_Id;
2417         Curr_Typ   : Entity_Id;
2418         Inv_Checks : List_Id;
2419         Par_Typ    : Entity_Id;
2420
2421      begin
2422         Inv_Checks := No_List;
2423
2424         --  Extract the argument from a potentially nested set of view
2425         --  conversions.
2426
2427         Arg := Actual;
2428         while Nkind (Arg) = N_Type_Conversion loop
2429            Arg := Expression (Arg);
2430         end loop;
2431
2432         --  Move up the derivation chain starting with the type of the formal
2433         --  parameter down to the type of the actual object.
2434
2435         Curr_Typ := Empty;
2436         Par_Typ  := Etype (Arg);
2437         while Par_Typ /= Etype (Formal) and Par_Typ /= Curr_Typ loop
2438            Curr_Typ := Par_Typ;
2439
2440            if Has_Invariants (Curr_Typ)
2441              and then Present (Invariant_Procedure (Curr_Typ))
2442            then
2443               --  Verify the invariate of the current type. Generate:
2444
2445               --    <Curr_Typ>Invariant (Curr_Typ (Arg));
2446
2447               Prepend_New_To (Inv_Checks,
2448                 Make_Procedure_Call_Statement (Loc,
2449                   Name                   =>
2450                     New_Occurrence_Of
2451                       (Invariant_Procedure (Curr_Typ), Loc),
2452                   Parameter_Associations => New_List (
2453                     Make_Type_Conversion (Loc,
2454                       Subtype_Mark => New_Occurrence_Of (Curr_Typ, Loc),
2455                       Expression   => New_Copy_Tree (Arg)))));
2456            end if;
2457
2458            Par_Typ := Base_Type (Etype (Curr_Typ));
2459         end loop;
2460
2461         if not Is_Empty_List (Inv_Checks) then
2462            Insert_Actions_After (N, Inv_Checks);
2463         end if;
2464      end Add_View_Conversion_Invariants;
2465
2466      ---------------------------
2467      -- Inherited_From_Formal --
2468      ---------------------------
2469
2470      function Inherited_From_Formal (S : Entity_Id) return Entity_Id is
2471         Par      : Entity_Id;
2472         Gen_Par  : Entity_Id;
2473         Gen_Prim : Elist_Id;
2474         Elmt     : Elmt_Id;
2475         Indic    : Node_Id;
2476
2477      begin
2478         --  If the operation is inherited, it is attached to the corresponding
2479         --  type derivation. If the parent in the derivation is a generic
2480         --  actual, it is a subtype of the actual, and we have to recover the
2481         --  original derived type declaration to find the proper parent.
2482
2483         if Nkind (Parent (S)) /= N_Full_Type_Declaration
2484           or else not Is_Derived_Type (Defining_Identifier (Parent (S)))
2485           or else Nkind (Type_Definition (Original_Node (Parent (S)))) /=
2486                                                   N_Derived_Type_Definition
2487           or else not In_Instance
2488         then
2489            return Empty;
2490
2491         else
2492            Indic :=
2493              Subtype_Indication
2494                (Type_Definition (Original_Node (Parent (S))));
2495
2496            if Nkind (Indic) = N_Subtype_Indication then
2497               Par := Entity (Subtype_Mark (Indic));
2498            else
2499               Par := Entity (Indic);
2500            end if;
2501         end if;
2502
2503         if not Is_Generic_Actual_Type (Par)
2504           or else Is_Tagged_Type (Par)
2505           or else Nkind (Parent (Par)) /= N_Subtype_Declaration
2506           or else not In_Open_Scopes (Scope (Par))
2507         then
2508            return Empty;
2509         else
2510            Gen_Par := Generic_Parent_Type (Parent (Par));
2511         end if;
2512
2513         --  If the actual has no generic parent type, the formal is not
2514         --  a formal derived type, so nothing to inherit.
2515
2516         if No (Gen_Par) then
2517            return Empty;
2518         end if;
2519
2520         --  If the generic parent type is still the generic type, this is a
2521         --  private formal, not a derived formal, and there are no operations
2522         --  inherited from the formal.
2523
2524         if Nkind (Parent (Gen_Par)) = N_Formal_Type_Declaration then
2525            return Empty;
2526         end if;
2527
2528         Gen_Prim := Collect_Primitive_Operations (Gen_Par);
2529
2530         Elmt := First_Elmt (Gen_Prim);
2531         while Present (Elmt) loop
2532            if Chars (Node (Elmt)) = Chars (S) then
2533               declare
2534                  F1 : Entity_Id;
2535                  F2 : Entity_Id;
2536
2537               begin
2538                  F1 := First_Formal (S);
2539                  F2 := First_Formal (Node (Elmt));
2540                  while Present (F1)
2541                    and then Present (F2)
2542                  loop
2543                     if Etype (F1) = Etype (F2)
2544                       or else Etype (F2) = Gen_Par
2545                     then
2546                        Next_Formal (F1);
2547                        Next_Formal (F2);
2548                     else
2549                        Next_Elmt (Elmt);
2550                        exit;   --  not the right subprogram
2551                     end if;
2552
2553                     return Node (Elmt);
2554                  end loop;
2555               end;
2556
2557            else
2558               Next_Elmt (Elmt);
2559            end if;
2560         end loop;
2561
2562         raise Program_Error;
2563      end Inherited_From_Formal;
2564
2565      --------------------------
2566      -- In_Unfrozen_Instance --
2567      --------------------------
2568
2569      function In_Unfrozen_Instance (E : Entity_Id) return Boolean is
2570         S : Entity_Id;
2571
2572      begin
2573         S := E;
2574         while Present (S) and then S /= Standard_Standard loop
2575            if Is_Generic_Instance (S)
2576              and then Present (Freeze_Node (S))
2577              and then not Analyzed (Freeze_Node (S))
2578            then
2579               return True;
2580            end if;
2581
2582            S := Scope (S);
2583         end loop;
2584
2585         return False;
2586      end In_Unfrozen_Instance;
2587
2588      -------------------------
2589      -- Is_Direct_Deep_Call --
2590      -------------------------
2591
2592      function Is_Direct_Deep_Call (Subp : Entity_Id) return Boolean is
2593      begin
2594         if Is_TSS (Subp, TSS_Deep_Adjust)
2595           or else Is_TSS (Subp, TSS_Deep_Finalize)
2596           or else Is_TSS (Subp, TSS_Deep_Initialize)
2597         then
2598            declare
2599               Actual : Node_Id;
2600               Formal : Node_Id;
2601
2602            begin
2603               Actual := First (Parameter_Associations (N));
2604               Formal := First_Formal (Subp);
2605               while Present (Actual)
2606                 and then Present (Formal)
2607               loop
2608                  if Nkind (Actual) = N_Identifier
2609                    and then Is_Controlling_Actual (Actual)
2610                    and then Etype (Actual) = Etype (Formal)
2611                  then
2612                     return True;
2613                  end if;
2614
2615                  Next (Actual);
2616                  Next_Formal (Formal);
2617               end loop;
2618            end;
2619         end if;
2620
2621         return False;
2622      end Is_Direct_Deep_Call;
2623
2624      ---------------
2625      -- New_Value --
2626      ---------------
2627
2628      function New_Value (From : Node_Id) return Node_Id is
2629         Res : constant Node_Id := Duplicate_Subexpr (From);
2630      begin
2631         if Is_Access_Type (Etype (From)) then
2632            return Make_Explicit_Dereference (Sloc (From), Prefix => Res);
2633         else
2634            return Res;
2635         end if;
2636      end New_Value;
2637
2638      --  Local variables
2639
2640      Remote        : constant Boolean := Is_Remote_Call (Call_Node);
2641      Actual        : Node_Id;
2642      Formal        : Entity_Id;
2643      Orig_Subp     : Entity_Id := Empty;
2644      Param_Count   : Natural := 0;
2645      Parent_Formal : Entity_Id;
2646      Parent_Subp   : Entity_Id;
2647      Pref_Entity   : Entity_Id;
2648      Scop          : Entity_Id;
2649      Subp          : Entity_Id;
2650
2651      Prev_Orig : Node_Id;
2652      --  Original node for an actual, which may have been rewritten. If the
2653      --  actual is a function call that has been transformed from a selected
2654      --  component, the original node is unanalyzed. Otherwise, it carries
2655      --  semantic information used to generate additional actuals.
2656
2657      CW_Interface_Formals_Present : Boolean := False;
2658
2659   --  Start of processing for Expand_Call_Helper
2660
2661   begin
2662      Post_Call := New_List;
2663
2664      --  Expand the function or procedure call if the first actual has a
2665      --  declared dimension aspect, and the subprogram is declared in one
2666      --  of the dimension I/O packages.
2667
2668      if Ada_Version >= Ada_2012
2669        and then
2670           Nkind_In (Call_Node, N_Procedure_Call_Statement, N_Function_Call)
2671        and then Present (Parameter_Associations (Call_Node))
2672      then
2673         Expand_Put_Call_With_Symbol (Call_Node);
2674      end if;
2675
2676      --  Ignore if previous error
2677
2678      if Nkind (Call_Node) in N_Has_Etype
2679        and then Etype (Call_Node) = Any_Type
2680      then
2681         return;
2682      end if;
2683
2684      --  Call using access to subprogram with explicit dereference
2685
2686      if Nkind (Name (Call_Node)) = N_Explicit_Dereference then
2687         Subp        := Etype (Name (Call_Node));
2688         Parent_Subp := Empty;
2689
2690      --  Case of call to simple entry, where the Name is a selected component
2691      --  whose prefix is the task, and whose selector name is the entry name
2692
2693      elsif Nkind (Name (Call_Node)) = N_Selected_Component then
2694         Subp        := Entity (Selector_Name (Name (Call_Node)));
2695         Parent_Subp := Empty;
2696
2697      --  Case of call to member of entry family, where Name is an indexed
2698      --  component, with the prefix being a selected component giving the
2699      --  task and entry family name, and the index being the entry index.
2700
2701      elsif Nkind (Name (Call_Node)) = N_Indexed_Component then
2702         Subp        := Entity (Selector_Name (Prefix (Name (Call_Node))));
2703         Parent_Subp := Empty;
2704
2705      --  Normal case
2706
2707      else
2708         Subp        := Entity (Name (Call_Node));
2709         Parent_Subp := Alias (Subp);
2710
2711         --  Replace call to Raise_Exception by call to Raise_Exception_Always
2712         --  if we can tell that the first parameter cannot possibly be null.
2713         --  This improves efficiency by avoiding a run-time test.
2714
2715         --  We do not do this if Raise_Exception_Always does not exist, which
2716         --  can happen in configurable run time profiles which provide only a
2717         --  Raise_Exception.
2718
2719         if Is_RTE (Subp, RE_Raise_Exception)
2720           and then RTE_Available (RE_Raise_Exception_Always)
2721         then
2722            declare
2723               FA : constant Node_Id :=
2724                      Original_Node (First_Actual (Call_Node));
2725
2726            begin
2727               --  The case we catch is where the first argument is obtained
2728               --  using the Identity attribute (which must always be
2729               --  non-null).
2730
2731               if Nkind (FA) = N_Attribute_Reference
2732                 and then Attribute_Name (FA) = Name_Identity
2733               then
2734                  Subp := RTE (RE_Raise_Exception_Always);
2735                  Set_Name (Call_Node, New_Occurrence_Of (Subp, Loc));
2736               end if;
2737            end;
2738         end if;
2739
2740         if Ekind (Subp) = E_Entry then
2741            Parent_Subp := Empty;
2742         end if;
2743      end if;
2744
2745      --  Ada 2005 (AI-345): We have a procedure call as a triggering
2746      --  alternative in an asynchronous select or as an entry call in
2747      --  a conditional or timed select. Check whether the procedure call
2748      --  is a renaming of an entry and rewrite it as an entry call.
2749
2750      if Ada_Version >= Ada_2005
2751        and then Nkind (Call_Node) = N_Procedure_Call_Statement
2752        and then
2753           ((Nkind (Parent (Call_Node)) = N_Triggering_Alternative
2754              and then Triggering_Statement (Parent (Call_Node)) = Call_Node)
2755          or else
2756            (Nkind (Parent (Call_Node)) = N_Entry_Call_Alternative
2757              and then Entry_Call_Statement (Parent (Call_Node)) = Call_Node))
2758      then
2759         declare
2760            Ren_Decl : Node_Id;
2761            Ren_Root : Entity_Id := Subp;
2762
2763         begin
2764            --  This may be a chain of renamings, find the root
2765
2766            if Present (Alias (Ren_Root)) then
2767               Ren_Root := Alias (Ren_Root);
2768            end if;
2769
2770            if Present (Original_Node (Parent (Parent (Ren_Root)))) then
2771               Ren_Decl := Original_Node (Parent (Parent (Ren_Root)));
2772
2773               if Nkind (Ren_Decl) = N_Subprogram_Renaming_Declaration then
2774                  Rewrite (Call_Node,
2775                    Make_Entry_Call_Statement (Loc,
2776                      Name =>
2777                        New_Copy_Tree (Name (Ren_Decl)),
2778                      Parameter_Associations =>
2779                        New_Copy_List_Tree
2780                          (Parameter_Associations (Call_Node))));
2781
2782                  return;
2783               end if;
2784            end if;
2785         end;
2786      end if;
2787
2788      if Modify_Tree_For_C
2789        and then Nkind (Call_Node) = N_Function_Call
2790        and then Is_Entity_Name (Name (Call_Node))
2791      then
2792         declare
2793            Func_Id : constant Entity_Id :=
2794                        Ultimate_Alias (Entity (Name (Call_Node)));
2795         begin
2796            --  When generating C code, transform a function call that returns
2797            --  a constrained array type into procedure form.
2798
2799            if Rewritten_For_C (Func_Id) then
2800
2801               --  For internally generated calls ensure that they reference
2802               --  the entity of the spec of the called function (needed since
2803               --  the expander may generate calls using the entity of their
2804               --  body). See for example Expand_Boolean_Operator().
2805
2806               if not (Comes_From_Source (Call_Node))
2807                 and then Nkind (Unit_Declaration_Node (Func_Id)) =
2808                            N_Subprogram_Body
2809               then
2810                  Set_Entity (Name (Call_Node),
2811                    Corresponding_Function
2812                      (Corresponding_Procedure (Func_Id)));
2813               end if;
2814
2815               Rewrite_Function_Call_For_C (Call_Node);
2816               return;
2817
2818            --  Also introduce a temporary for functions that return a record
2819            --  called within another procedure or function call, since records
2820            --  are passed by pointer in the generated C code, and we cannot
2821            --  take a pointer from a subprogram call.
2822
2823            elsif Nkind (Parent (Call_Node)) in N_Subprogram_Call
2824              and then Is_Record_Type (Etype (Func_Id))
2825            then
2826               declare
2827                  Temp_Id : constant Entity_Id := Make_Temporary (Loc, 'T');
2828                  Decl    : Node_Id;
2829
2830               begin
2831                  --  Generate:
2832                  --    Temp : ... := Func_Call (...);
2833
2834                  Decl :=
2835                    Make_Object_Declaration (Loc,
2836                      Defining_Identifier => Temp_Id,
2837                      Object_Definition   =>
2838                        New_Occurrence_Of (Etype (Func_Id), Loc),
2839                      Expression          =>
2840                        Make_Function_Call (Loc,
2841                          Name                   =>
2842                            New_Occurrence_Of (Func_Id, Loc),
2843                          Parameter_Associations =>
2844                            Parameter_Associations (Call_Node)));
2845
2846                  Insert_Action (Parent (Call_Node), Decl);
2847                  Rewrite (Call_Node, New_Occurrence_Of (Temp_Id, Loc));
2848                  return;
2849               end;
2850            end if;
2851         end;
2852      end if;
2853
2854      --  First step, compute extra actuals, corresponding to any Extra_Formals
2855      --  present. Note that we do not access Extra_Formals directly, instead
2856      --  we simply note the presence of the extra formals as we process the
2857      --  regular formals collecting corresponding actuals in Extra_Actuals.
2858
2859      --  We also generate any required range checks for actuals for in formals
2860      --  as we go through the loop, since this is a convenient place to do it.
2861      --  (Though it seems that this would be better done in Expand_Actuals???)
2862
2863      --  Special case: Thunks must not compute the extra actuals; they must
2864      --  just propagate to the target primitive their extra actuals.
2865
2866      if Is_Thunk (Current_Scope)
2867        and then Thunk_Entity (Current_Scope) = Subp
2868        and then Present (Extra_Formals (Subp))
2869      then
2870         pragma Assert (Present (Extra_Formals (Current_Scope)));
2871
2872         declare
2873            Target_Formal : Entity_Id;
2874            Thunk_Formal  : Entity_Id;
2875
2876         begin
2877            Target_Formal := Extra_Formals (Subp);
2878            Thunk_Formal  := Extra_Formals (Current_Scope);
2879            while Present (Target_Formal) loop
2880               Add_Extra_Actual
2881                 (Expr => New_Occurrence_Of (Thunk_Formal, Loc),
2882                  EF   => Thunk_Formal);
2883
2884               Target_Formal := Extra_Formal (Target_Formal);
2885               Thunk_Formal  := Extra_Formal (Thunk_Formal);
2886            end loop;
2887
2888            while Is_Non_Empty_List (Extra_Actuals) loop
2889               Add_Actual_Parameter (Remove_Head (Extra_Actuals));
2890            end loop;
2891
2892            Expand_Actuals (Call_Node, Subp, Post_Call);
2893            pragma Assert (Is_Empty_List (Post_Call));
2894            return;
2895         end;
2896      end if;
2897
2898      Formal := First_Formal (Subp);
2899      Actual := First_Actual (Call_Node);
2900      Param_Count := 1;
2901      while Present (Formal) loop
2902
2903         --  Generate range check if required
2904
2905         if Do_Range_Check (Actual)
2906           and then Ekind (Formal) = E_In_Parameter
2907         then
2908            Generate_Range_Check
2909              (Actual, Etype (Formal), CE_Range_Check_Failed);
2910         end if;
2911
2912         --  Prepare to examine current entry
2913
2914         Prev := Actual;
2915         Prev_Orig := Original_Node (Prev);
2916
2917         --  Ada 2005 (AI-251): Check if any formal is a class-wide interface
2918         --  to expand it in a further round.
2919
2920         CW_Interface_Formals_Present :=
2921           CW_Interface_Formals_Present
2922             or else
2923               (Is_Class_Wide_Type (Etype (Formal))
2924                 and then Is_Interface (Etype (Etype (Formal))))
2925             or else
2926               (Ekind (Etype (Formal)) = E_Anonymous_Access_Type
2927                 and then Is_Class_Wide_Type (Directly_Designated_Type
2928                                               (Etype (Etype (Formal))))
2929                 and then Is_Interface (Directly_Designated_Type
2930                                         (Etype (Etype (Formal)))));
2931
2932         --  Create possible extra actual for constrained case. Usually, the
2933         --  extra actual is of the form actual'constrained, but since this
2934         --  attribute is only available for unconstrained records, TRUE is
2935         --  expanded if the type of the formal happens to be constrained (for
2936         --  instance when this procedure is inherited from an unconstrained
2937         --  record to a constrained one) or if the actual has no discriminant
2938         --  (its type is constrained). An exception to this is the case of a
2939         --  private type without discriminants. In this case we pass FALSE
2940         --  because the object has underlying discriminants with defaults.
2941
2942         if Present (Extra_Constrained (Formal)) then
2943            if Ekind (Etype (Prev)) in Private_Kind
2944              and then not Has_Discriminants (Base_Type (Etype (Prev)))
2945            then
2946               Add_Extra_Actual
2947                 (Expr => New_Occurrence_Of (Standard_False, Loc),
2948                  EF   => Extra_Constrained (Formal));
2949
2950            elsif Is_Constrained (Etype (Formal))
2951              or else not Has_Discriminants (Etype (Prev))
2952            then
2953               Add_Extra_Actual
2954                 (Expr => New_Occurrence_Of (Standard_True, Loc),
2955                  EF   => Extra_Constrained (Formal));
2956
2957            --  Do not produce extra actuals for Unchecked_Union parameters.
2958            --  Jump directly to the end of the loop.
2959
2960            elsif Is_Unchecked_Union (Base_Type (Etype (Actual))) then
2961               goto Skip_Extra_Actual_Generation;
2962
2963            else
2964               --  If the actual is a type conversion, then the constrained
2965               --  test applies to the actual, not the target type.
2966
2967               declare
2968                  Act_Prev : Node_Id;
2969
2970               begin
2971                  --  Test for unchecked conversions as well, which can occur
2972                  --  as out parameter actuals on calls to stream procedures.
2973
2974                  Act_Prev := Prev;
2975                  while Nkind_In (Act_Prev, N_Type_Conversion,
2976                                            N_Unchecked_Type_Conversion)
2977                  loop
2978                     Act_Prev := Expression (Act_Prev);
2979                  end loop;
2980
2981                  --  If the expression is a conversion of a dereference, this
2982                  --  is internally generated code that manipulates addresses,
2983                  --  e.g. when building interface tables. No check should
2984                  --  occur in this case, and the discriminated object is not
2985                  --  directly a hand.
2986
2987                  if not Comes_From_Source (Actual)
2988                    and then Nkind (Actual) = N_Unchecked_Type_Conversion
2989                    and then Nkind (Act_Prev) = N_Explicit_Dereference
2990                  then
2991                     Add_Extra_Actual
2992                       (Expr => New_Occurrence_Of (Standard_False, Loc),
2993                        EF   => Extra_Constrained (Formal));
2994
2995                  else
2996                     Add_Extra_Actual
2997                       (Expr =>
2998                          Make_Attribute_Reference (Sloc (Prev),
2999                            Prefix         =>
3000                              Duplicate_Subexpr_No_Checks
3001                                (Act_Prev, Name_Req => True),
3002                            Attribute_Name => Name_Constrained),
3003                        EF   => Extra_Constrained (Formal));
3004                  end if;
3005               end;
3006            end if;
3007         end if;
3008
3009         --  Create possible extra actual for accessibility level
3010
3011         if Present (Extra_Accessibility (Formal)) then
3012
3013            --  Ada 2005 (AI-252): If the actual was rewritten as an Access
3014            --  attribute, then the original actual may be an aliased object
3015            --  occurring as the prefix in a call using "Object.Operation"
3016            --  notation. In that case we must pass the level of the object,
3017            --  so Prev_Orig is reset to Prev and the attribute will be
3018            --  processed by the code for Access attributes further below.
3019
3020            if Prev_Orig /= Prev
3021              and then Nkind (Prev) = N_Attribute_Reference
3022              and then Get_Attribute_Id (Attribute_Name (Prev)) =
3023                         Attribute_Access
3024              and then Is_Aliased_View (Prev_Orig)
3025            then
3026               Prev_Orig := Prev;
3027
3028            --  A class-wide precondition generates a test in which formals of
3029            --  the subprogram are replaced by actuals that came from source.
3030            --  In that case as well, the accessiblity comes from the actual.
3031            --  This is the one case in which there are references to formals
3032            --  outside of their subprogram.
3033
3034            elsif Prev_Orig /= Prev
3035              and then Is_Entity_Name (Prev_Orig)
3036              and then Present (Entity (Prev_Orig))
3037              and then Is_Formal (Entity (Prev_Orig))
3038              and then not In_Open_Scopes (Scope (Entity (Prev_Orig)))
3039            then
3040               Prev_Orig := Prev;
3041
3042            --  If the actual is a formal of an enclosing subprogram it is
3043            --  the right entity, even if it is a rewriting. This happens
3044            --  when the call is within an inherited condition or predicate.
3045
3046            elsif Is_Entity_Name (Actual)
3047              and then Is_Formal (Entity (Actual))
3048              and then In_Open_Scopes (Scope (Entity (Actual)))
3049            then
3050               Prev_Orig := Prev;
3051
3052            elsif Nkind (Prev_Orig) = N_Type_Conversion then
3053               Prev_Orig := Expression (Prev_Orig);
3054            end if;
3055
3056            --  Ada 2005 (AI-251): Thunks must propagate the extra actuals of
3057            --  accessibility levels.
3058
3059            if Is_Thunk (Current_Scope) then
3060               declare
3061                  Parm_Ent : Entity_Id;
3062
3063               begin
3064                  if Is_Controlling_Actual (Actual) then
3065
3066                     --  Find the corresponding actual of the thunk
3067
3068                     Parm_Ent := First_Entity (Current_Scope);
3069                     for J in 2 .. Param_Count loop
3070                        Next_Entity (Parm_Ent);
3071                     end loop;
3072
3073                  --  Handle unchecked conversion of access types generated
3074                  --  in thunks (cf. Expand_Interface_Thunk).
3075
3076                  elsif Is_Access_Type (Etype (Actual))
3077                    and then Nkind (Actual) = N_Unchecked_Type_Conversion
3078                  then
3079                     Parm_Ent := Entity (Expression (Actual));
3080
3081                  else pragma Assert (Is_Entity_Name (Actual));
3082                     Parm_Ent := Entity (Actual);
3083                  end if;
3084
3085                  Add_Extra_Actual
3086                    (Expr =>
3087                       New_Occurrence_Of (Extra_Accessibility (Parm_Ent), Loc),
3088                     EF   => Extra_Accessibility (Formal));
3089               end;
3090
3091            elsif Is_Entity_Name (Prev_Orig) then
3092
3093               --  When passing an access parameter, or a renaming of an access
3094               --  parameter, as the actual to another access parameter we need
3095               --  to pass along the actual's own access level parameter. This
3096               --  is done if we are within the scope of the formal access
3097               --  parameter (if this is an inlined body the extra formal is
3098               --  irrelevant).
3099
3100               if (Is_Formal (Entity (Prev_Orig))
3101                    or else
3102                      (Present (Renamed_Object (Entity (Prev_Orig)))
3103                        and then
3104                          Is_Entity_Name (Renamed_Object (Entity (Prev_Orig)))
3105                        and then
3106                          Is_Formal
3107                            (Entity (Renamed_Object (Entity (Prev_Orig))))))
3108                 and then Ekind (Etype (Prev_Orig)) = E_Anonymous_Access_Type
3109                 and then In_Open_Scopes (Scope (Entity (Prev_Orig)))
3110               then
3111                  declare
3112                     Parm_Ent : constant Entity_Id := Param_Entity (Prev_Orig);
3113
3114                  begin
3115                     pragma Assert (Present (Parm_Ent));
3116
3117                     if Present (Extra_Accessibility (Parm_Ent)) then
3118                        Add_Extra_Actual
3119                          (Expr =>
3120                             New_Occurrence_Of
3121                               (Extra_Accessibility (Parm_Ent), Loc),
3122                           EF   => Extra_Accessibility (Formal));
3123
3124                     --  If the actual access parameter does not have an
3125                     --  associated extra formal providing its scope level,
3126                     --  then treat the actual as having library-level
3127                     --  accessibility.
3128
3129                     else
3130                        Add_Extra_Actual
3131                          (Expr =>
3132                             Make_Integer_Literal (Loc,
3133                               Intval => Scope_Depth (Standard_Standard)),
3134                           EF   => Extra_Accessibility (Formal));
3135                     end if;
3136                  end;
3137
3138               --  The actual is a normal access value, so just pass the level
3139               --  of the actual's access type.
3140
3141               else
3142                  Add_Extra_Actual
3143                    (Expr => Dynamic_Accessibility_Level (Prev_Orig),
3144                     EF   => Extra_Accessibility (Formal));
3145               end if;
3146
3147            --  If the actual is an access discriminant, then pass the level
3148            --  of the enclosing object (RM05-3.10.2(12.4/2)).
3149
3150            elsif Nkind (Prev_Orig) = N_Selected_Component
3151              and then Ekind (Entity (Selector_Name (Prev_Orig))) =
3152                                                       E_Discriminant
3153              and then Ekind (Etype (Entity (Selector_Name (Prev_Orig)))) =
3154                                                       E_Anonymous_Access_Type
3155            then
3156               Add_Extra_Actual
3157                 (Expr =>
3158                    Make_Integer_Literal (Loc,
3159                      Intval => Object_Access_Level (Prefix (Prev_Orig))),
3160                  EF   => Extra_Accessibility (Formal));
3161
3162            --  All other cases
3163
3164            else
3165               case Nkind (Prev_Orig) is
3166                  when N_Attribute_Reference =>
3167                     case Get_Attribute_Id (Attribute_Name (Prev_Orig)) is
3168
3169                        --  For X'Access, pass on the level of the prefix X
3170
3171                        when Attribute_Access =>
3172
3173                           --  Accessibility level of S'Access is that of A
3174
3175                           Prev_Orig := Prefix (Prev_Orig);
3176
3177                           --  If the expression is a view conversion, the
3178                           --  accessibility level is that of the expression.
3179
3180                           if Nkind (Original_Node (Prev_Orig)) =
3181                                N_Type_Conversion
3182                             and then
3183                               Nkind (Expression (Original_Node (Prev_Orig))) =
3184                                 N_Explicit_Dereference
3185                           then
3186                              Prev_Orig :=
3187                                Expression (Original_Node (Prev_Orig));
3188                           end if;
3189
3190                           --  If this is an Access attribute applied to the
3191                           --  the current instance object passed to a type
3192                           --  initialization procedure, then use the level
3193                           --  of the type itself. This is not really correct,
3194                           --  as there should be an extra level parameter
3195                           --  passed in with _init formals (only in the case
3196                           --  where the type is immutably limited), but we
3197                           --  don't have an easy way currently to create such
3198                           --  an extra formal (init procs aren't ever frozen).
3199                           --  For now we just use the level of the type,
3200                           --  which may be too shallow, but that works better
3201                           --  than passing Object_Access_Level of the type,
3202                           --  which can be one level too deep in some cases.
3203                           --  ???
3204
3205                           --  A further case that requires special handling
3206                           --  is the common idiom E.all'access.  If E is a
3207                           --  formal of the enclosing subprogram, the
3208                           --  accessibility of the expression is that of E.
3209
3210                           if Is_Entity_Name (Prev_Orig) then
3211                              Pref_Entity := Entity (Prev_Orig);
3212
3213                           elsif Nkind (Prev_Orig) = N_Explicit_Dereference
3214                             and then Is_Entity_Name (Prefix (Prev_Orig))
3215                           then
3216                              Pref_Entity := Entity (Prefix ((Prev_Orig)));
3217
3218                           else
3219                              Pref_Entity := Empty;
3220                           end if;
3221
3222                           if Is_Entity_Name (Prev_Orig)
3223                             and then Is_Type (Entity (Prev_Orig))
3224                           then
3225                              Add_Extra_Actual
3226                                (Expr =>
3227                                   Make_Integer_Literal (Loc,
3228                                     Intval =>
3229                                       Type_Access_Level (Pref_Entity)),
3230                                 EF   => Extra_Accessibility (Formal));
3231
3232                           elsif Nkind (Prev_Orig) = N_Explicit_Dereference
3233                             and then Present (Pref_Entity)
3234                             and then Is_Formal (Pref_Entity)
3235                             and then Present
3236                                        (Extra_Accessibility (Pref_Entity))
3237                           then
3238                              Add_Extra_Actual
3239                                (Expr =>
3240                                   New_Occurrence_Of
3241                                     (Extra_Accessibility (Pref_Entity), Loc),
3242                                 EF   => Extra_Accessibility (Formal));
3243
3244                           else
3245                              Add_Extra_Actual
3246                                (Expr =>
3247                                   Make_Integer_Literal (Loc,
3248                                     Intval =>
3249                                       Object_Access_Level (Prev_Orig)),
3250                                 EF   => Extra_Accessibility (Formal));
3251                           end if;
3252
3253                        --  Treat the unchecked attributes as library-level
3254
3255                        when Attribute_Unchecked_Access
3256                           | Attribute_Unrestricted_Access
3257                        =>
3258                           Add_Extra_Actual
3259                             (Expr =>
3260                                Make_Integer_Literal (Loc,
3261                                  Intval => Scope_Depth (Standard_Standard)),
3262                              EF   => Extra_Accessibility (Formal));
3263
3264                        --  No other cases of attributes returning access
3265                        --  values that can be passed to access parameters.
3266
3267                        when others =>
3268                           raise Program_Error;
3269
3270                     end case;
3271
3272                  --  For allocators we pass the level of the execution of the
3273                  --  called subprogram, which is one greater than the current
3274                  --  scope level.
3275
3276                  when N_Allocator =>
3277                     Add_Extra_Actual
3278                       (Expr =>
3279                          Make_Integer_Literal (Loc,
3280                            Intval => Scope_Depth (Current_Scope) + 1),
3281                        EF   => Extra_Accessibility (Formal));
3282
3283                  --  For most other cases we simply pass the level of the
3284                  --  actual's access type. The type is retrieved from
3285                  --  Prev rather than Prev_Orig, because in some cases
3286                  --  Prev_Orig denotes an original expression that has
3287                  --  not been analyzed.
3288
3289                  when others =>
3290                     Add_Extra_Actual
3291                       (Expr => Dynamic_Accessibility_Level (Prev),
3292                        EF   => Extra_Accessibility (Formal));
3293               end case;
3294            end if;
3295         end if;
3296
3297         --  Perform the check of 4.6(49) that prevents a null value from being
3298         --  passed as an actual to an access parameter. Note that the check
3299         --  is elided in the common cases of passing an access attribute or
3300         --  access parameter as an actual. Also, we currently don't enforce
3301         --  this check for expander-generated actuals and when -gnatdj is set.
3302
3303         if Ada_Version >= Ada_2005 then
3304
3305            --  Ada 2005 (AI-231): Check null-excluding access types. Note that
3306            --  the intent of 6.4.1(13) is that null-exclusion checks should
3307            --  not be done for 'out' parameters, even though it refers only
3308            --  to constraint checks, and a null_exclusion is not a constraint.
3309            --  Note that AI05-0196-1 corrects this mistake in the RM.
3310
3311            if Is_Access_Type (Etype (Formal))
3312              and then Can_Never_Be_Null (Etype (Formal))
3313              and then Ekind (Formal) /= E_Out_Parameter
3314              and then Nkind (Prev) /= N_Raise_Constraint_Error
3315              and then (Known_Null (Prev)
3316                         or else not Can_Never_Be_Null (Etype (Prev)))
3317            then
3318               Install_Null_Excluding_Check (Prev);
3319            end if;
3320
3321         --  Ada_Version < Ada_2005
3322
3323         else
3324            if Ekind (Etype (Formal)) /= E_Anonymous_Access_Type
3325              or else Access_Checks_Suppressed (Subp)
3326            then
3327               null;
3328
3329            elsif Debug_Flag_J then
3330               null;
3331
3332            elsif not Comes_From_Source (Prev) then
3333               null;
3334
3335            elsif Is_Entity_Name (Prev)
3336              and then Ekind (Etype (Prev)) = E_Anonymous_Access_Type
3337            then
3338               null;
3339
3340            elsif Nkind_In (Prev, N_Allocator, N_Attribute_Reference) then
3341               null;
3342
3343            else
3344               Install_Null_Excluding_Check (Prev);
3345            end if;
3346         end if;
3347
3348         --  Perform appropriate validity checks on parameters that
3349         --  are entities.
3350
3351         if Validity_Checks_On then
3352            if  (Ekind (Formal) = E_In_Parameter
3353                  and then Validity_Check_In_Params)
3354              or else
3355                (Ekind (Formal) = E_In_Out_Parameter
3356                  and then Validity_Check_In_Out_Params)
3357            then
3358               --  If the actual is an indexed component of a packed type (or
3359               --  is an indexed or selected component whose prefix recursively
3360               --  meets this condition), it has not been expanded yet. It will
3361               --  be copied in the validity code that follows, and has to be
3362               --  expanded appropriately, so reanalyze it.
3363
3364               --  What we do is just to unset analyzed bits on prefixes till
3365               --  we reach something that does not have a prefix.
3366
3367               declare
3368                  Nod : Node_Id;
3369
3370               begin
3371                  Nod := Actual;
3372                  while Nkind_In (Nod, N_Indexed_Component,
3373                                       N_Selected_Component)
3374                  loop
3375                     Set_Analyzed (Nod, False);
3376                     Nod := Prefix (Nod);
3377                  end loop;
3378               end;
3379
3380               Ensure_Valid (Actual);
3381            end if;
3382         end if;
3383
3384         --  For IN OUT and OUT parameters, ensure that subscripts are valid
3385         --  since this is a left side reference. We only do this for calls
3386         --  from the source program since we assume that compiler generated
3387         --  calls explicitly generate any required checks. We also need it
3388         --  only if we are doing standard validity checks, since clearly it is
3389         --  not needed if validity checks are off, and in subscript validity
3390         --  checking mode, all indexed components are checked with a call
3391         --  directly from Expand_N_Indexed_Component.
3392
3393         if Comes_From_Source (Call_Node)
3394           and then Ekind (Formal) /= E_In_Parameter
3395           and then Validity_Checks_On
3396           and then Validity_Check_Default
3397           and then not Validity_Check_Subscripts
3398         then
3399            Check_Valid_Lvalue_Subscripts (Actual);
3400         end if;
3401
3402         --  Mark any scalar OUT parameter that is a simple variable as no
3403         --  longer known to be valid (unless the type is always valid). This
3404         --  reflects the fact that if an OUT parameter is never set in a
3405         --  procedure, then it can become invalid on the procedure return.
3406
3407         if Ekind (Formal) = E_Out_Parameter
3408           and then Is_Entity_Name (Actual)
3409           and then Ekind (Entity (Actual)) = E_Variable
3410           and then not Is_Known_Valid (Etype (Actual))
3411         then
3412            Set_Is_Known_Valid (Entity (Actual), False);
3413         end if;
3414
3415         --  For an OUT or IN OUT parameter, if the actual is an entity, then
3416         --  clear current values, since they can be clobbered. We are probably
3417         --  doing this in more places than we need to, but better safe than
3418         --  sorry when it comes to retaining bad current values.
3419
3420         if Ekind (Formal) /= E_In_Parameter
3421           and then Is_Entity_Name (Actual)
3422           and then Present (Entity (Actual))
3423         then
3424            declare
3425               Ent : constant Entity_Id := Entity (Actual);
3426               Sav : Node_Id;
3427
3428            begin
3429               --  For an OUT or IN OUT parameter that is an assignable entity,
3430               --  we do not want to clobber the Last_Assignment field, since
3431               --  if it is set, it was precisely because it is indeed an OUT
3432               --  or IN OUT parameter. We do reset the Is_Known_Valid flag
3433               --  since the subprogram could have returned in invalid value.
3434
3435               if Ekind_In (Formal, E_Out_Parameter, E_In_Out_Parameter)
3436                 and then Is_Assignable (Ent)
3437               then
3438                  Sav := Last_Assignment (Ent);
3439                  Kill_Current_Values (Ent);
3440                  Set_Last_Assignment (Ent, Sav);
3441                  Set_Is_Known_Valid (Ent, False);
3442                  Set_Is_True_Constant (Ent, False);
3443
3444               --  For all other cases, just kill the current values
3445
3446               else
3447                  Kill_Current_Values (Ent);
3448               end if;
3449            end;
3450         end if;
3451
3452         --  If the formal is class wide and the actual is an aggregate, force
3453         --  evaluation so that the back end who does not know about class-wide
3454         --  type, does not generate a temporary of the wrong size.
3455
3456         if not Is_Class_Wide_Type (Etype (Formal)) then
3457            null;
3458
3459         elsif Nkind (Actual) = N_Aggregate
3460           or else (Nkind (Actual) = N_Qualified_Expression
3461                     and then Nkind (Expression (Actual)) = N_Aggregate)
3462         then
3463            Force_Evaluation (Actual);
3464         end if;
3465
3466         --  In a remote call, if the formal is of a class-wide type, check
3467         --  that the actual meets the requirements described in E.4(18).
3468
3469         if Remote and then Is_Class_Wide_Type (Etype (Formal)) then
3470            Insert_Action (Actual,
3471              Make_Transportable_Check (Loc,
3472                Duplicate_Subexpr_Move_Checks (Actual)));
3473         end if;
3474
3475         --  Perform invariant checks for all intermediate types in a view
3476         --  conversion after successful return from a call that passes the
3477         --  view conversion as an IN OUT or OUT parameter (RM 7.3.2 (12/3,
3478         --  13/3, 14/3)). Consider only source conversion in order to avoid
3479         --  generating spurious checks on complex expansion such as object
3480         --  initialization through an extension aggregate.
3481
3482         if Comes_From_Source (N)
3483           and then Ekind (Formal) /= E_In_Parameter
3484           and then Nkind (Actual) = N_Type_Conversion
3485         then
3486            Add_View_Conversion_Invariants (Formal, Actual);
3487         end if;
3488
3489         --  Generating C the initialization of an allocator is performed by
3490         --  means of individual statements, and hence it must be done before
3491         --  the call.
3492
3493         if Modify_Tree_For_C
3494           and then Nkind (Actual) = N_Allocator
3495           and then Nkind (Expression (Actual)) = N_Qualified_Expression
3496         then
3497            Remove_Side_Effects (Actual);
3498         end if;
3499
3500         --  This label is required when skipping extra actual generation for
3501         --  Unchecked_Union parameters.
3502
3503         <<Skip_Extra_Actual_Generation>>
3504
3505         Param_Count := Param_Count + 1;
3506         Next_Actual (Actual);
3507         Next_Formal (Formal);
3508      end loop;
3509
3510      --  If we are calling an Ada 2012 function which needs to have the
3511      --  "accessibility level determined by the point of call" (AI05-0234)
3512      --  passed in to it, then pass it in.
3513
3514      if Ekind_In (Subp, E_Function, E_Operator, E_Subprogram_Type)
3515        and then
3516          Present (Extra_Accessibility_Of_Result (Ultimate_Alias (Subp)))
3517      then
3518         declare
3519            Ancestor : Node_Id := Parent (Call_Node);
3520            Level    : Node_Id := Empty;
3521            Defer    : Boolean := False;
3522
3523         begin
3524            --  Unimplemented: if Subp returns an anonymous access type, then
3525
3526            --    a) if the call is the operand of an explict conversion, then
3527            --       the target type of the conversion (a named access type)
3528            --       determines the accessibility level pass in;
3529
3530            --    b) if the call defines an access discriminant of an object
3531            --       (e.g., the discriminant of an object being created by an
3532            --       allocator, or the discriminant of a function result),
3533            --       then the accessibility level to pass in is that of the
3534            --       discriminated object being initialized).
3535
3536            --  ???
3537
3538            while Nkind (Ancestor) = N_Qualified_Expression
3539            loop
3540               Ancestor := Parent (Ancestor);
3541            end loop;
3542
3543            case Nkind (Ancestor) is
3544               when N_Allocator =>
3545
3546                  --  At this point, we'd like to assign
3547
3548                  --    Level := Dynamic_Accessibility_Level (Ancestor);
3549
3550                  --  but Etype of Ancestor may not have been set yet,
3551                  --  so that doesn't work.
3552
3553                  --  Handle this later in Expand_Allocator_Expression.
3554
3555                  Defer := True;
3556
3557               when N_Object_Declaration
3558                  | N_Object_Renaming_Declaration
3559               =>
3560                  declare
3561                     Def_Id : constant Entity_Id :=
3562                                Defining_Identifier (Ancestor);
3563
3564                  begin
3565                     if Is_Return_Object (Def_Id) then
3566                        if Present (Extra_Accessibility_Of_Result
3567                                     (Return_Applies_To (Scope (Def_Id))))
3568                        then
3569                           --  Pass along value that was passed in if the
3570                           --  routine we are returning from also has an
3571                           --  Accessibility_Of_Result formal.
3572
3573                           Level :=
3574                             New_Occurrence_Of
3575                              (Extra_Accessibility_Of_Result
3576                                (Return_Applies_To (Scope (Def_Id))), Loc);
3577                        end if;
3578                     else
3579                        Level :=
3580                          Make_Integer_Literal (Loc,
3581                            Intval => Object_Access_Level (Def_Id));
3582                     end if;
3583                  end;
3584
3585               when N_Simple_Return_Statement =>
3586                  if Present (Extra_Accessibility_Of_Result
3587                               (Return_Applies_To
3588                                 (Return_Statement_Entity (Ancestor))))
3589                  then
3590                     --  Pass along value that was passed in if the returned
3591                     --  routine also has an Accessibility_Of_Result formal.
3592
3593                     Level :=
3594                       New_Occurrence_Of
3595                         (Extra_Accessibility_Of_Result
3596                           (Return_Applies_To
3597                             (Return_Statement_Entity (Ancestor))), Loc);
3598                  end if;
3599
3600               when others =>
3601                  null;
3602            end case;
3603
3604            if not Defer then
3605               if not Present (Level) then
3606
3607                  --  The "innermost master that evaluates the function call".
3608
3609                  --  ??? - Should we use Integer'Last here instead in order
3610                  --  to deal with (some of) the problems associated with
3611                  --  calls to subps whose enclosing scope is unknown (e.g.,
3612                  --  Anon_Access_To_Subp_Param.all)?
3613
3614                  Level :=
3615                    Make_Integer_Literal (Loc,
3616                      Intval => Scope_Depth (Current_Scope) + 1);
3617               end if;
3618
3619               Add_Extra_Actual
3620                 (Expr => Level,
3621                  EF   =>
3622                    Extra_Accessibility_Of_Result (Ultimate_Alias (Subp)));
3623            end if;
3624         end;
3625      end if;
3626
3627      --  If we are expanding the RHS of an assignment we need to check if tag
3628      --  propagation is needed. You might expect this processing to be in
3629      --  Analyze_Assignment but has to be done earlier (bottom-up) because the
3630      --  assignment might be transformed to a declaration for an unconstrained
3631      --  value if the expression is classwide.
3632
3633      if Nkind (Call_Node) = N_Function_Call
3634        and then Is_Tag_Indeterminate (Call_Node)
3635        and then Is_Entity_Name (Name (Call_Node))
3636      then
3637         declare
3638            Ass : Node_Id := Empty;
3639
3640         begin
3641            if Nkind (Parent (Call_Node)) = N_Assignment_Statement then
3642               Ass := Parent (Call_Node);
3643
3644            elsif Nkind (Parent (Call_Node)) = N_Qualified_Expression
3645              and then Nkind (Parent (Parent (Call_Node))) =
3646                                                  N_Assignment_Statement
3647            then
3648               Ass := Parent (Parent (Call_Node));
3649
3650            elsif Nkind (Parent (Call_Node)) = N_Explicit_Dereference
3651              and then Nkind (Parent (Parent (Call_Node))) =
3652                                                  N_Assignment_Statement
3653            then
3654               Ass := Parent (Parent (Call_Node));
3655            end if;
3656
3657            if Present (Ass)
3658              and then Is_Class_Wide_Type (Etype (Name (Ass)))
3659            then
3660               if Is_Access_Type (Etype (Call_Node)) then
3661                  if Designated_Type (Etype (Call_Node)) /=
3662                    Root_Type (Etype (Name (Ass)))
3663                  then
3664                     Error_Msg_NE
3665                       ("tag-indeterminate expression must have designated "
3666                        & "type& (RM 5.2 (6))",
3667                         Call_Node, Root_Type (Etype (Name (Ass))));
3668                  else
3669                     Propagate_Tag (Name (Ass), Call_Node);
3670                  end if;
3671
3672               elsif Etype (Call_Node) /= Root_Type (Etype (Name (Ass))) then
3673                  Error_Msg_NE
3674                    ("tag-indeterminate expression must have type & "
3675                     & "(RM 5.2 (6))",
3676                     Call_Node, Root_Type (Etype (Name (Ass))));
3677
3678               else
3679                  Propagate_Tag (Name (Ass), Call_Node);
3680               end if;
3681
3682               --  The call will be rewritten as a dispatching call, and
3683               --  expanded as such.
3684
3685               return;
3686            end if;
3687         end;
3688      end if;
3689
3690      --  Ada 2005 (AI-251): If some formal is a class-wide interface, expand
3691      --  it to point to the correct secondary virtual table
3692
3693      if Nkind (Call_Node) in N_Subprogram_Call
3694        and then CW_Interface_Formals_Present
3695      then
3696         Expand_Interface_Actuals (Call_Node);
3697      end if;
3698
3699      --  Deals with Dispatch_Call if we still have a call, before expanding
3700      --  extra actuals since this will be done on the re-analysis of the
3701      --  dispatching call. Note that we do not try to shorten the actual list
3702      --  for a dispatching call, it would not make sense to do so. Expansion
3703      --  of dispatching calls is suppressed for VM targets, because the VM
3704      --  back-ends directly handle the generation of dispatching calls and
3705      --  would have to undo any expansion to an indirect call.
3706
3707      if Nkind (Call_Node) in N_Subprogram_Call
3708        and then Present (Controlling_Argument (Call_Node))
3709      then
3710         declare
3711            Call_Typ   : constant Entity_Id := Etype (Call_Node);
3712            Typ        : constant Entity_Id := Find_Dispatching_Type (Subp);
3713            Eq_Prim_Op : Entity_Id := Empty;
3714            New_Call   : Node_Id;
3715            Param      : Node_Id;
3716            Prev_Call  : Node_Id;
3717
3718         begin
3719            if not Is_Limited_Type (Typ) then
3720               Eq_Prim_Op := Find_Prim_Op (Typ, Name_Op_Eq);
3721            end if;
3722
3723            if Tagged_Type_Expansion then
3724               Expand_Dispatching_Call (Call_Node);
3725
3726               --  The following return is worrisome. Is it really OK to skip
3727               --  all remaining processing in this procedure ???
3728
3729               return;
3730
3731            --  VM targets
3732
3733            else
3734               Apply_Tag_Checks (Call_Node);
3735
3736               --  If this is a dispatching "=", we must first compare the
3737               --  tags so we generate: x.tag = y.tag and then x = y
3738
3739               if Subp = Eq_Prim_Op then
3740
3741                  --  Mark the node as analyzed to avoid reanalyzing this
3742                  --  dispatching call (which would cause a never-ending loop)
3743
3744                  Prev_Call := Relocate_Node (Call_Node);
3745                  Set_Analyzed (Prev_Call);
3746
3747                  Param := First_Actual (Call_Node);
3748                  New_Call :=
3749                    Make_And_Then (Loc,
3750                      Left_Opnd =>
3751                           Make_Op_Eq (Loc,
3752                             Left_Opnd =>
3753                               Make_Selected_Component (Loc,
3754                                 Prefix        => New_Value (Param),
3755                                 Selector_Name =>
3756                                   New_Occurrence_Of
3757                                     (First_Tag_Component (Typ), Loc)),
3758
3759                             Right_Opnd =>
3760                               Make_Selected_Component (Loc,
3761                                 Prefix        =>
3762                                   Unchecked_Convert_To (Typ,
3763                                     New_Value (Next_Actual (Param))),
3764                                 Selector_Name =>
3765                                   New_Occurrence_Of
3766                                     (First_Tag_Component (Typ), Loc))),
3767                      Right_Opnd => Prev_Call);
3768
3769                  Rewrite (Call_Node, New_Call);
3770
3771                  Analyze_And_Resolve
3772                    (Call_Node, Call_Typ, Suppress => All_Checks);
3773               end if;
3774
3775               --  Expansion of a dispatching call results in an indirect call,
3776               --  which in turn causes current values to be killed (see
3777               --  Resolve_Call), so on VM targets we do the call here to
3778               --  ensure consistent warnings between VM and non-VM targets.
3779
3780               Kill_Current_Values;
3781            end if;
3782
3783            --  If this is a dispatching "=" then we must update the reference
3784            --  to the call node because we generated:
3785            --     x.tag = y.tag and then x = y
3786
3787            if Subp = Eq_Prim_Op then
3788               Call_Node := Right_Opnd (Call_Node);
3789            end if;
3790         end;
3791      end if;
3792
3793      --  Similarly, expand calls to RCI subprograms on which pragma
3794      --  All_Calls_Remote applies. The rewriting will be reanalyzed
3795      --  later. Do this only when the call comes from source since we
3796      --  do not want such a rewriting to occur in expanded code.
3797
3798      if Is_All_Remote_Call (Call_Node) then
3799         Expand_All_Calls_Remote_Subprogram_Call (Call_Node);
3800
3801      --  Similarly, do not add extra actuals for an entry call whose entity
3802      --  is a protected procedure, or for an internal protected subprogram
3803      --  call, because it will be rewritten as a protected subprogram call
3804      --  and reanalyzed (see Expand_Protected_Subprogram_Call).
3805
3806      elsif Is_Protected_Type (Scope (Subp))
3807         and then (Ekind (Subp) = E_Procedure
3808                    or else Ekind (Subp) = E_Function)
3809      then
3810         null;
3811
3812      --  During that loop we gathered the extra actuals (the ones that
3813      --  correspond to Extra_Formals), so now they can be appended.
3814
3815      else
3816         while Is_Non_Empty_List (Extra_Actuals) loop
3817            Add_Actual_Parameter (Remove_Head (Extra_Actuals));
3818         end loop;
3819      end if;
3820
3821      --  At this point we have all the actuals, so this is the point at which
3822      --  the various expansion activities for actuals is carried out.
3823
3824      Expand_Actuals (Call_Node, Subp, Post_Call);
3825
3826      --  Verify that the actuals do not share storage. This check must be done
3827      --  on the caller side rather that inside the subprogram to avoid issues
3828      --  of parameter passing.
3829
3830      if Check_Aliasing_Of_Parameters then
3831         Apply_Parameter_Aliasing_Checks (Call_Node, Subp);
3832      end if;
3833
3834      --  If the subprogram is a renaming, or if it is inherited, replace it in
3835      --  the call with the name of the actual subprogram being called. If this
3836      --  is a dispatching call, the run-time decides what to call. The Alias
3837      --  attribute does not apply to entries.
3838
3839      if Nkind (Call_Node) /= N_Entry_Call_Statement
3840        and then No (Controlling_Argument (Call_Node))
3841        and then Present (Parent_Subp)
3842        and then not Is_Direct_Deep_Call (Subp)
3843      then
3844         if Present (Inherited_From_Formal (Subp)) then
3845            Parent_Subp := Inherited_From_Formal (Subp);
3846         else
3847            Parent_Subp := Ultimate_Alias (Parent_Subp);
3848         end if;
3849
3850         --  The below setting of Entity is suspect, see F109-018 discussion???
3851
3852         Set_Entity (Name (Call_Node), Parent_Subp);
3853
3854         if Is_Abstract_Subprogram (Parent_Subp)
3855           and then not In_Instance
3856         then
3857            Error_Msg_NE
3858              ("cannot call abstract subprogram &!",
3859               Name (Call_Node), Parent_Subp);
3860         end if;
3861
3862         --  Inspect all formals of derived subprogram Subp. Compare parameter
3863         --  types with the parent subprogram and check whether an actual may
3864         --  need a type conversion to the corresponding formal of the parent
3865         --  subprogram.
3866
3867         --  Not clear whether intrinsic subprograms need such conversions. ???
3868
3869         if not Is_Intrinsic_Subprogram (Parent_Subp)
3870           or else Is_Generic_Instance (Parent_Subp)
3871         then
3872            declare
3873               procedure Convert (Act : Node_Id; Typ : Entity_Id);
3874               --  Rewrite node Act as a type conversion of Act to Typ. Analyze
3875               --  and resolve the newly generated construct.
3876
3877               -------------
3878               -- Convert --
3879               -------------
3880
3881               procedure Convert (Act : Node_Id; Typ : Entity_Id) is
3882               begin
3883                  Rewrite (Act, OK_Convert_To (Typ, Relocate_Node (Act)));
3884                  Analyze (Act);
3885                  Resolve (Act, Typ);
3886               end Convert;
3887
3888               --  Local variables
3889
3890               Actual_Typ : Entity_Id;
3891               Formal_Typ : Entity_Id;
3892               Parent_Typ : Entity_Id;
3893
3894            begin
3895               Actual := First_Actual (Call_Node);
3896               Formal := First_Formal (Subp);
3897               Parent_Formal := First_Formal (Parent_Subp);
3898               while Present (Formal) loop
3899                  Actual_Typ := Etype (Actual);
3900                  Formal_Typ := Etype (Formal);
3901                  Parent_Typ := Etype (Parent_Formal);
3902
3903                  --  For an IN parameter of a scalar type, the parent formal
3904                  --  type and derived formal type differ or the parent formal
3905                  --  type and actual type do not match statically.
3906
3907                  if Is_Scalar_Type (Formal_Typ)
3908                    and then Ekind (Formal) = E_In_Parameter
3909                    and then Formal_Typ /= Parent_Typ
3910                    and then
3911                      not Subtypes_Statically_Match (Parent_Typ, Actual_Typ)
3912                    and then not Raises_Constraint_Error (Actual)
3913                  then
3914                     Convert (Actual, Parent_Typ);
3915                     Enable_Range_Check (Actual);
3916
3917                     --  If the actual has been marked as requiring a range
3918                     --  check, then generate it here.
3919
3920                     if Do_Range_Check (Actual) then
3921                        Generate_Range_Check
3922                          (Actual, Etype (Formal), CE_Range_Check_Failed);
3923                     end if;
3924
3925                  --  For access types, the parent formal type and actual type
3926                  --  differ.
3927
3928                  elsif Is_Access_Type (Formal_Typ)
3929                    and then Base_Type (Parent_Typ) /= Base_Type (Actual_Typ)
3930                  then
3931                     if Ekind (Formal) /= E_In_Parameter then
3932                        Convert (Actual, Parent_Typ);
3933
3934                     elsif Ekind (Parent_Typ) = E_Anonymous_Access_Type
3935                       and then Designated_Type (Parent_Typ) /=
3936                                Designated_Type (Actual_Typ)
3937                       and then not Is_Controlling_Formal (Formal)
3938                     then
3939                        --  This unchecked conversion is not necessary unless
3940                        --  inlining is enabled, because in that case the type
3941                        --  mismatch may become visible in the body about to be
3942                        --  inlined.
3943
3944                        Rewrite (Actual,
3945                          Unchecked_Convert_To (Parent_Typ,
3946                            Relocate_Node (Actual)));
3947                        Analyze (Actual);
3948                        Resolve (Actual, Parent_Typ);
3949                     end if;
3950
3951                  --  If there is a change of representation, then generate a
3952                  --  warning, and do the change of representation.
3953
3954                  elsif not Same_Representation (Formal_Typ, Parent_Typ) then
3955                     Error_Msg_N
3956                       ("??change of representation required", Actual);
3957                     Convert (Actual, Parent_Typ);
3958
3959                  --  For array and record types, the parent formal type and
3960                  --  derived formal type have different sizes or pragma Pack
3961                  --  status.
3962
3963                  elsif ((Is_Array_Type (Formal_Typ)
3964                           and then Is_Array_Type (Parent_Typ))
3965                       or else
3966                         (Is_Record_Type (Formal_Typ)
3967                           and then Is_Record_Type (Parent_Typ)))
3968                    and then
3969                      (Esize (Formal_Typ) /= Esize (Parent_Typ)
3970                        or else Has_Pragma_Pack (Formal_Typ) /=
3971                                Has_Pragma_Pack (Parent_Typ))
3972                  then
3973                     Convert (Actual, Parent_Typ);
3974                  end if;
3975
3976                  Next_Actual (Actual);
3977                  Next_Formal (Formal);
3978                  Next_Formal (Parent_Formal);
3979               end loop;
3980            end;
3981         end if;
3982
3983         Orig_Subp := Subp;
3984         Subp := Parent_Subp;
3985      end if;
3986
3987      --  Deal with case where call is an explicit dereference
3988
3989      if Nkind (Name (Call_Node)) = N_Explicit_Dereference then
3990
3991      --  Handle case of access to protected subprogram type
3992
3993         if Is_Access_Protected_Subprogram_Type
3994              (Base_Type (Etype (Prefix (Name (Call_Node)))))
3995         then
3996            --  If this is a call through an access to protected operation, the
3997            --  prefix has the form (object'address, operation'access). Rewrite
3998            --  as a for other protected calls: the object is the 1st parameter
3999            --  of the list of actuals.
4000
4001            declare
4002               Call : Node_Id;
4003               Parm : List_Id;
4004               Nam  : Node_Id;
4005               Obj  : Node_Id;
4006               Ptr  : constant Node_Id := Prefix (Name (Call_Node));
4007
4008               T : constant Entity_Id :=
4009                     Equivalent_Type (Base_Type (Etype (Ptr)));
4010
4011               D_T : constant Entity_Id :=
4012                       Designated_Type (Base_Type (Etype (Ptr)));
4013
4014            begin
4015               Obj :=
4016                 Make_Selected_Component (Loc,
4017                   Prefix        => Unchecked_Convert_To (T, Ptr),
4018                   Selector_Name =>
4019                     New_Occurrence_Of (First_Entity (T), Loc));
4020
4021               Nam :=
4022                 Make_Selected_Component (Loc,
4023                   Prefix        => Unchecked_Convert_To (T, Ptr),
4024                   Selector_Name =>
4025                     New_Occurrence_Of (Next_Entity (First_Entity (T)), Loc));
4026
4027               Nam :=
4028                 Make_Explicit_Dereference (Loc,
4029                   Prefix => Nam);
4030
4031               if Present (Parameter_Associations (Call_Node)) then
4032                  Parm := Parameter_Associations (Call_Node);
4033               else
4034                  Parm := New_List;
4035               end if;
4036
4037               Prepend (Obj, Parm);
4038
4039               if Etype (D_T) = Standard_Void_Type then
4040                  Call :=
4041                    Make_Procedure_Call_Statement (Loc,
4042                      Name                   => Nam,
4043                      Parameter_Associations => Parm);
4044               else
4045                  Call :=
4046                    Make_Function_Call (Loc,
4047                      Name                   => Nam,
4048                      Parameter_Associations => Parm);
4049               end if;
4050
4051               Set_First_Named_Actual (Call, First_Named_Actual (Call_Node));
4052               Set_Etype (Call, Etype (D_T));
4053
4054               --  We do not re-analyze the call to avoid infinite recursion.
4055               --  We analyze separately the prefix and the object, and set
4056               --  the checks on the prefix that would otherwise be emitted
4057               --  when resolving a call.
4058
4059               Rewrite (Call_Node, Call);
4060               Analyze (Nam);
4061               Apply_Access_Check (Nam);
4062               Analyze (Obj);
4063               return;
4064            end;
4065         end if;
4066      end if;
4067
4068      --  If this is a call to an intrinsic subprogram, then perform the
4069      --  appropriate expansion to the corresponding tree node and we
4070      --  are all done (since after that the call is gone).
4071
4072      --  In the case where the intrinsic is to be processed by the back end,
4073      --  the call to Expand_Intrinsic_Call will do nothing, which is fine,
4074      --  since the idea in this case is to pass the call unchanged. If the
4075      --  intrinsic is an inherited unchecked conversion, and the derived type
4076      --  is the target type of the conversion, we must retain it as the return
4077      --  type of the expression. Otherwise the expansion below, which uses the
4078      --  parent operation, will yield the wrong type.
4079
4080      if Is_Intrinsic_Subprogram (Subp) then
4081         Expand_Intrinsic_Call (Call_Node, Subp);
4082
4083         if Nkind (Call_Node) = N_Unchecked_Type_Conversion
4084           and then Parent_Subp /= Orig_Subp
4085           and then Etype (Parent_Subp) /= Etype (Orig_Subp)
4086         then
4087            Set_Etype (Call_Node, Etype (Orig_Subp));
4088         end if;
4089
4090         return;
4091      end if;
4092
4093      if Ekind_In (Subp, E_Function, E_Procedure) then
4094
4095         --  We perform a simple optimization on calls for To_Address by
4096         --  replacing them with an unchecked conversion. Not only is this
4097         --  efficient, but it also avoids order of elaboration problems when
4098         --  address clauses are inlined (address expression elaborated at the
4099         --  wrong point).
4100
4101         --  We perform this optimization regardless of whether we are in the
4102         --  main unit or in a unit in the context of the main unit, to ensure
4103         --  that the generated tree is the same in both cases, for CodePeer
4104         --  use.
4105
4106         if Is_RTE (Subp, RE_To_Address) then
4107            Rewrite (Call_Node,
4108              Unchecked_Convert_To
4109                (RTE (RE_Address), Relocate_Node (First_Actual (Call_Node))));
4110            return;
4111
4112         --  A call to a null procedure is replaced by a null statement, but we
4113         --  are not allowed to ignore possible side effects of the call, so we
4114         --  make sure that actuals are evaluated.
4115         --  We also suppress this optimization for GNATCoverage.
4116
4117         elsif Is_Null_Procedure (Subp)
4118           and then not Opt.Suppress_Control_Flow_Optimizations
4119         then
4120            Actual := First_Actual (Call_Node);
4121            while Present (Actual) loop
4122               Remove_Side_Effects (Actual);
4123               Next_Actual (Actual);
4124            end loop;
4125
4126            Rewrite (Call_Node, Make_Null_Statement (Loc));
4127            return;
4128         end if;
4129
4130         --  Handle inlining. No action needed if the subprogram is not inlined
4131
4132         if not Is_Inlined (Subp) then
4133            null;
4134
4135         --  Frontend inlining of expression functions (performed also when
4136         --  backend inlining is enabled).
4137
4138         elsif Is_Inlinable_Expression_Function (Subp) then
4139            Rewrite (N, New_Copy (Expression_Of_Expression_Function (Subp)));
4140            Analyze (N);
4141            return;
4142
4143         --  Handle frontend inlining
4144
4145         elsif not Back_End_Inlining then
4146            Inlined_Subprogram : declare
4147               Bod         : Node_Id;
4148               Must_Inline : Boolean := False;
4149               Spec        : constant Node_Id := Unit_Declaration_Node (Subp);
4150
4151            begin
4152               --  Verify that the body to inline has already been seen, and
4153               --  that if the body is in the current unit the inlining does
4154               --  not occur earlier. This avoids order-of-elaboration problems
4155               --  in the back end.
4156
4157               --  This should be documented in sinfo/einfo ???
4158
4159               if No (Spec)
4160                 or else Nkind (Spec) /= N_Subprogram_Declaration
4161                 or else No (Body_To_Inline (Spec))
4162               then
4163                  Must_Inline := False;
4164
4165               --  If this an inherited function that returns a private type,
4166               --  do not inline if the full view is an unconstrained array,
4167               --  because such calls cannot be inlined.
4168
4169               elsif Present (Orig_Subp)
4170                 and then Is_Array_Type (Etype (Orig_Subp))
4171                 and then not Is_Constrained (Etype (Orig_Subp))
4172               then
4173                  Must_Inline := False;
4174
4175               elsif In_Unfrozen_Instance (Scope (Subp)) then
4176                  Must_Inline := False;
4177
4178               else
4179                  Bod := Body_To_Inline (Spec);
4180
4181                  if (In_Extended_Main_Code_Unit (Call_Node)
4182                        or else In_Extended_Main_Code_Unit (Parent (Call_Node))
4183                        or else Has_Pragma_Inline_Always (Subp))
4184                    and then (not In_Same_Extended_Unit (Sloc (Bod), Loc)
4185                               or else
4186                                 Earlier_In_Extended_Unit (Sloc (Bod), Loc))
4187                  then
4188                     Must_Inline := True;
4189
4190                  --  If we are compiling a package body that is not the main
4191                  --  unit, it must be for inlining/instantiation purposes,
4192                  --  in which case we inline the call to insure that the same
4193                  --  temporaries are generated when compiling the body by
4194                  --  itself. Otherwise link errors can occur.
4195
4196                  --  If the function being called is itself in the main unit,
4197                  --  we cannot inline, because there is a risk of double
4198                  --  elaboration and/or circularity: the inlining can make
4199                  --  visible a private entity in the body of the main unit,
4200                  --  that gigi will see before its sees its proper definition.
4201
4202                  elsif not (In_Extended_Main_Code_Unit (Call_Node))
4203                    and then In_Package_Body
4204                  then
4205                     Must_Inline := not In_Extended_Main_Source_Unit (Subp);
4206
4207                  --  Inline calls to _postconditions when generating C code
4208
4209                  elsif Modify_Tree_For_C
4210                    and then In_Same_Extended_Unit (Sloc (Bod), Loc)
4211                    and then Chars (Name (N)) = Name_uPostconditions
4212                  then
4213                     Must_Inline := True;
4214                  end if;
4215               end if;
4216
4217               if Must_Inline then
4218                  Expand_Inlined_Call (Call_Node, Subp, Orig_Subp);
4219
4220               else
4221                  --  Let the back end handle it
4222
4223                  Add_Inlined_Body (Subp, Call_Node);
4224
4225                  if Front_End_Inlining
4226                    and then Nkind (Spec) = N_Subprogram_Declaration
4227                    and then (In_Extended_Main_Code_Unit (Call_Node))
4228                    and then No (Body_To_Inline (Spec))
4229                    and then not Has_Completion (Subp)
4230                    and then In_Same_Extended_Unit (Sloc (Spec), Loc)
4231                  then
4232                     Cannot_Inline
4233                       ("cannot inline& (body not seen yet)?",
4234                        Call_Node, Subp);
4235                  end if;
4236               end if;
4237            end Inlined_Subprogram;
4238
4239         --  Back end inlining: let the back end handle it
4240
4241         elsif No (Unit_Declaration_Node (Subp))
4242           or else Nkind (Unit_Declaration_Node (Subp)) /=
4243                                                 N_Subprogram_Declaration
4244           or else No (Body_To_Inline (Unit_Declaration_Node (Subp)))
4245           or else Nkind (Body_To_Inline (Unit_Declaration_Node (Subp))) in
4246                                                                      N_Entity
4247         then
4248            Add_Inlined_Body (Subp, Call_Node);
4249
4250            --  If the inlined call appears within an instantiation and some
4251            --  level of optimization is required, ensure that the enclosing
4252            --  instance body is available so that the back-end can actually
4253            --  perform the inlining.
4254
4255            if In_Instance
4256              and then Comes_From_Source (Subp)
4257              and then Optimization_Level > 0
4258            then
4259               declare
4260                  Decl      : Node_Id;
4261                  Inst      : Entity_Id;
4262                  Inst_Node : Node_Id;
4263
4264               begin
4265                  Inst := Scope (Subp);
4266
4267                  --  Find enclosing instance
4268
4269                  while Present (Inst) and then Inst /= Standard_Standard loop
4270                     exit when Is_Generic_Instance (Inst);
4271                     Inst := Scope (Inst);
4272                  end loop;
4273
4274                  if Present (Inst)
4275                    and then Is_Generic_Instance (Inst)
4276                    and then not Is_Inlined (Inst)
4277                  then
4278                     Set_Is_Inlined (Inst);
4279                     Decl := Unit_Declaration_Node (Inst);
4280
4281                     --  Do not add a pending instantiation if the body exits
4282                     --  already, or if the instance is a compilation unit, or
4283                     --  the instance node is missing.
4284
4285                     if Present (Corresponding_Body (Decl))
4286                       or else Nkind (Parent (Decl)) = N_Compilation_Unit
4287                       or else No (Next (Decl))
4288                     then
4289                        null;
4290
4291                     else
4292                        --  The instantiation node usually follows the package
4293                        --  declaration for the instance. If the generic unit
4294                        --  has aspect specifications, they are transformed
4295                        --  into pragmas in the instance, and the instance node
4296                        --  appears after them.
4297
4298                        Inst_Node := Next (Decl);
4299
4300                        while Nkind (Inst_Node) /= N_Package_Instantiation loop
4301                           Inst_Node := Next (Inst_Node);
4302                        end loop;
4303
4304                        Add_Pending_Instantiation (Inst_Node, Decl);
4305                     end if;
4306                  end if;
4307               end;
4308            end if;
4309
4310         --  Front end expansion of simple functions returning unconstrained
4311         --  types (see Check_And_Split_Unconstrained_Function). Note that the
4312         --  case of a simple renaming (Body_To_Inline in N_Entity above, see
4313         --  also Build_Renamed_Body) cannot be expanded here because this may
4314         --  give rise to order-of-elaboration issues for the types of the
4315         --  parameters of the subprogram, if any.
4316
4317         else
4318            Expand_Inlined_Call (Call_Node, Subp, Orig_Subp);
4319         end if;
4320      end if;
4321
4322      --  Check for protected subprogram. This is either an intra-object call,
4323      --  or a protected function call. Protected procedure calls are rewritten
4324      --  as entry calls and handled accordingly.
4325
4326      --  In Ada 2005, this may be an indirect call to an access parameter that
4327      --  is an access_to_subprogram. In that case the anonymous type has a
4328      --  scope that is a protected operation, but the call is a regular one.
4329      --  In either case do not expand call if subprogram is eliminated.
4330
4331      Scop := Scope (Subp);
4332
4333      if Nkind (Call_Node) /= N_Entry_Call_Statement
4334        and then Is_Protected_Type (Scop)
4335        and then Ekind (Subp) /= E_Subprogram_Type
4336        and then not Is_Eliminated (Subp)
4337      then
4338         --  If the call is an internal one, it is rewritten as a call to the
4339         --  corresponding unprotected subprogram.
4340
4341         Expand_Protected_Subprogram_Call (Call_Node, Subp, Scop);
4342      end if;
4343
4344      --  Functions returning controlled objects need special attention. If
4345      --  the return type is limited, then the context is initialization and
4346      --  different processing applies. If the call is to a protected function,
4347      --  the expansion above will call Expand_Call recursively. Otherwise the
4348      --  function call is transformed into a temporary which obtains the
4349      --  result from the secondary stack.
4350
4351      if Needs_Finalization (Etype (Subp)) then
4352         if not Is_Build_In_Place_Function_Call (Call_Node)
4353           and then
4354             (No (First_Formal (Subp))
4355               or else
4356                 not Is_Concurrent_Record_Type (Etype (First_Formal (Subp))))
4357         then
4358            Expand_Ctrl_Function_Call (Call_Node);
4359
4360         --  Build-in-place function calls which appear in anonymous contexts
4361         --  need a transient scope to ensure the proper finalization of the
4362         --  intermediate result after its use.
4363
4364         elsif Is_Build_In_Place_Function_Call (Call_Node)
4365           and then Nkind_In (Parent (Unqual_Conv (Call_Node)),
4366                              N_Attribute_Reference,
4367                              N_Function_Call,
4368                              N_Indexed_Component,
4369                              N_Object_Renaming_Declaration,
4370                              N_Procedure_Call_Statement,
4371                              N_Selected_Component,
4372                              N_Slice)
4373           and then
4374             (Ekind (Current_Scope) /= E_Loop
4375               or else Nkind (Parent (N)) /= N_Function_Call
4376               or else not Is_Build_In_Place_Function_Call (Parent (N)))
4377         then
4378            Establish_Transient_Scope (Call_Node, Manage_Sec_Stack => True);
4379         end if;
4380      end if;
4381   end Expand_Call_Helper;
4382
4383   -------------------------------
4384   -- Expand_Ctrl_Function_Call --
4385   -------------------------------
4386
4387   procedure Expand_Ctrl_Function_Call (N : Node_Id) is
4388      function Is_Element_Reference (N : Node_Id) return Boolean;
4389      --  Determine whether node N denotes a reference to an Ada 2012 container
4390      --  element.
4391
4392      --------------------------
4393      -- Is_Element_Reference --
4394      --------------------------
4395
4396      function Is_Element_Reference (N : Node_Id) return Boolean is
4397         Ref : constant Node_Id := Original_Node (N);
4398
4399      begin
4400         --  Analysis marks an element reference by setting the generalized
4401         --  indexing attribute of an indexed component before the component
4402         --  is rewritten into a function call.
4403
4404         return
4405           Nkind (Ref) = N_Indexed_Component
4406             and then Present (Generalized_Indexing (Ref));
4407      end Is_Element_Reference;
4408
4409   --  Start of processing for Expand_Ctrl_Function_Call
4410
4411   begin
4412      --  Optimization, if the returned value (which is on the sec-stack) is
4413      --  returned again, no need to copy/readjust/finalize, we can just pass
4414      --  the value thru (see Expand_N_Simple_Return_Statement), and thus no
4415      --  attachment is needed
4416
4417      if Nkind (Parent (N)) = N_Simple_Return_Statement then
4418         return;
4419      end if;
4420
4421      --  Resolution is now finished, make sure we don't start analysis again
4422      --  because of the duplication.
4423
4424      Set_Analyzed (N);
4425
4426      --  A function which returns a controlled object uses the secondary
4427      --  stack. Rewrite the call into a temporary which obtains the result of
4428      --  the function using 'reference.
4429
4430      Remove_Side_Effects (N);
4431
4432      --  The side effect removal of the function call produced a temporary.
4433      --  When the context is a case expression, if expression, or expression
4434      --  with actions, the lifetime of the temporary must be extended to match
4435      --  that of the context. Otherwise the function result will be finalized
4436      --  too early and affect the result of the expression. To prevent this
4437      --  unwanted effect, the temporary should not be considered for clean up
4438      --  actions by the general finalization machinery.
4439
4440      --  Exception to this rule are references to Ada 2012 container elements.
4441      --  Such references must be finalized at the end of each iteration of the
4442      --  related quantified expression, otherwise the container will remain
4443      --  busy.
4444
4445      if Nkind (N) = N_Explicit_Dereference
4446        and then Within_Case_Or_If_Expression (N)
4447        and then not Is_Element_Reference (N)
4448      then
4449         Set_Is_Ignored_Transient (Entity (Prefix (N)));
4450      end if;
4451   end Expand_Ctrl_Function_Call;
4452
4453   ----------------------------------------
4454   -- Expand_N_Extended_Return_Statement --
4455   ----------------------------------------
4456
4457   --  If there is a Handled_Statement_Sequence, we rewrite this:
4458
4459   --     return Result : T := <expression> do
4460   --        <handled_seq_of_stms>
4461   --     end return;
4462
4463   --  to be:
4464
4465   --     declare
4466   --        Result : T := <expression>;
4467   --     begin
4468   --        <handled_seq_of_stms>
4469   --        return Result;
4470   --     end;
4471
4472   --  Otherwise (no Handled_Statement_Sequence), we rewrite this:
4473
4474   --     return Result : T := <expression>;
4475
4476   --  to be:
4477
4478   --     return <expression>;
4479
4480   --  unless it's build-in-place or there's no <expression>, in which case
4481   --  we generate:
4482
4483   --     declare
4484   --        Result : T := <expression>;
4485   --     begin
4486   --        return Result;
4487   --     end;
4488
4489   --  Note that this case could have been written by the user as an extended
4490   --  return statement, or could have been transformed to this from a simple
4491   --  return statement.
4492
4493   --  That is, we need to have a reified return object if there are statements
4494   --  (which might refer to it) or if we're doing build-in-place (so we can
4495   --  set its address to the final resting place or if there is no expression
4496   --  (in which case default initial values might need to be set)).
4497
4498   procedure Expand_N_Extended_Return_Statement (N : Node_Id) is
4499      Loc : constant Source_Ptr := Sloc (N);
4500
4501      function Build_Heap_Or_Pool_Allocator
4502        (Temp_Id    : Entity_Id;
4503         Temp_Typ   : Entity_Id;
4504         Func_Id    : Entity_Id;
4505         Ret_Typ    : Entity_Id;
4506         Alloc_Expr : Node_Id) return Node_Id;
4507      --  Create the statements necessary to allocate a return object on the
4508      --  heap or user-defined storage pool. The object may need finalization
4509      --  actions depending on the return type.
4510      --
4511      --    * Controlled case
4512      --
4513      --       if BIPfinalizationmaster = null then
4514      --          Temp_Id := <Alloc_Expr>;
4515      --       else
4516      --          declare
4517      --             type Ptr_Typ is access Ret_Typ;
4518      --             for Ptr_Typ'Storage_Pool use
4519      --                   Base_Pool (BIPfinalizationmaster.all).all;
4520      --             Local : Ptr_Typ;
4521      --
4522      --          begin
4523      --             procedure Allocate (...) is
4524      --             begin
4525      --                System.Storage_Pools.Subpools.Allocate_Any (...);
4526      --             end Allocate;
4527      --
4528      --             Local := <Alloc_Expr>;
4529      --             Temp_Id := Temp_Typ (Local);
4530      --          end;
4531      --       end if;
4532      --
4533      --    * Non-controlled case
4534      --
4535      --       Temp_Id := <Alloc_Expr>;
4536      --
4537      --  Temp_Id is the temporary which is used to reference the internally
4538      --  created object in all allocation forms. Temp_Typ is the type of the
4539      --  temporary. Func_Id is the enclosing function. Ret_Typ is the return
4540      --  type of Func_Id. Alloc_Expr is the actual allocator.
4541
4542      function Move_Activation_Chain (Func_Id : Entity_Id) return Node_Id;
4543      --  Construct a call to System.Tasking.Stages.Move_Activation_Chain
4544      --  with parameters:
4545      --    From         current activation chain
4546      --    To           activation chain passed in by the caller
4547      --    New_Master   master passed in by the caller
4548      --
4549      --  Func_Id is the entity of the function where the extended return
4550      --  statement appears.
4551
4552      ----------------------------------
4553      -- Build_Heap_Or_Pool_Allocator --
4554      ----------------------------------
4555
4556      function Build_Heap_Or_Pool_Allocator
4557        (Temp_Id    : Entity_Id;
4558         Temp_Typ   : Entity_Id;
4559         Func_Id    : Entity_Id;
4560         Ret_Typ    : Entity_Id;
4561         Alloc_Expr : Node_Id) return Node_Id
4562      is
4563      begin
4564         pragma Assert (Is_Build_In_Place_Function (Func_Id));
4565
4566         --  Processing for objects that require finalization actions
4567
4568         if Needs_Finalization (Ret_Typ) then
4569            declare
4570               Decls      : constant List_Id := New_List;
4571               Fin_Mas_Id : constant Entity_Id :=
4572                              Build_In_Place_Formal
4573                                (Func_Id, BIP_Finalization_Master);
4574               Orig_Expr  : constant Node_Id :=
4575                              New_Copy_Tree
4576                                (Source           => Alloc_Expr,
4577                                 Scopes_In_EWA_OK => True);
4578               Stmts      : constant List_Id := New_List;
4579               Desig_Typ  : Entity_Id;
4580               Local_Id   : Entity_Id;
4581               Pool_Id    : Entity_Id;
4582               Ptr_Typ    : Entity_Id;
4583
4584            begin
4585               --  Generate:
4586               --    Pool_Id renames Base_Pool (BIPfinalizationmaster.all).all;
4587
4588               Pool_Id := Make_Temporary (Loc, 'P');
4589
4590               Append_To (Decls,
4591                 Make_Object_Renaming_Declaration (Loc,
4592                   Defining_Identifier => Pool_Id,
4593                   Subtype_Mark        =>
4594                     New_Occurrence_Of (RTE (RE_Root_Storage_Pool), Loc),
4595                   Name                =>
4596                     Make_Explicit_Dereference (Loc,
4597                       Prefix =>
4598                         Make_Function_Call (Loc,
4599                           Name                   =>
4600                             New_Occurrence_Of (RTE (RE_Base_Pool), Loc),
4601                           Parameter_Associations => New_List (
4602                             Make_Explicit_Dereference (Loc,
4603                               Prefix =>
4604                                 New_Occurrence_Of (Fin_Mas_Id, Loc)))))));
4605
4606               --  Create an access type which uses the storage pool of the
4607               --  caller's master. This additional type is necessary because
4608               --  the finalization master cannot be associated with the type
4609               --  of the temporary. Otherwise the secondary stack allocation
4610               --  will fail.
4611
4612               Desig_Typ := Ret_Typ;
4613
4614               --  Ensure that the build-in-place machinery uses a fat pointer
4615               --  when allocating an unconstrained array on the heap. In this
4616               --  case the result object type is a constrained array type even
4617               --  though the function type is unconstrained.
4618
4619               if Ekind (Desig_Typ) = E_Array_Subtype then
4620                  Desig_Typ := Base_Type (Desig_Typ);
4621               end if;
4622
4623               --  Generate:
4624               --    type Ptr_Typ is access Desig_Typ;
4625
4626               Ptr_Typ := Make_Temporary (Loc, 'P');
4627
4628               Append_To (Decls,
4629                 Make_Full_Type_Declaration (Loc,
4630                   Defining_Identifier => Ptr_Typ,
4631                   Type_Definition     =>
4632                     Make_Access_To_Object_Definition (Loc,
4633                       Subtype_Indication =>
4634                         New_Occurrence_Of (Desig_Typ, Loc))));
4635
4636               --  Perform minor decoration in order to set the master and the
4637               --  storage pool attributes.
4638
4639               Set_Ekind                   (Ptr_Typ, E_Access_Type);
4640               Set_Finalization_Master     (Ptr_Typ, Fin_Mas_Id);
4641               Set_Associated_Storage_Pool (Ptr_Typ, Pool_Id);
4642
4643               --  Create the temporary, generate:
4644               --    Local_Id : Ptr_Typ;
4645
4646               Local_Id := Make_Temporary (Loc, 'T');
4647
4648               Append_To (Decls,
4649                 Make_Object_Declaration (Loc,
4650                   Defining_Identifier => Local_Id,
4651                   Object_Definition   =>
4652                     New_Occurrence_Of (Ptr_Typ, Loc)));
4653
4654               --  Allocate the object, generate:
4655               --    Local_Id := <Alloc_Expr>;
4656
4657               Append_To (Stmts,
4658                 Make_Assignment_Statement (Loc,
4659                   Name       => New_Occurrence_Of (Local_Id, Loc),
4660                   Expression => Alloc_Expr));
4661
4662               --  Generate:
4663               --    Temp_Id := Temp_Typ (Local_Id);
4664
4665               Append_To (Stmts,
4666                 Make_Assignment_Statement (Loc,
4667                   Name       => New_Occurrence_Of (Temp_Id, Loc),
4668                   Expression =>
4669                     Unchecked_Convert_To (Temp_Typ,
4670                       New_Occurrence_Of (Local_Id, Loc))));
4671
4672               --  Wrap the allocation in a block. This is further conditioned
4673               --  by checking the caller finalization master at runtime. A
4674               --  null value indicates a non-existent master, most likely due
4675               --  to a Finalize_Storage_Only allocation.
4676
4677               --  Generate:
4678               --    if BIPfinalizationmaster = null then
4679               --       Temp_Id := <Orig_Expr>;
4680               --    else
4681               --       declare
4682               --          <Decls>
4683               --       begin
4684               --          <Stmts>
4685               --       end;
4686               --    end if;
4687
4688               return
4689                 Make_If_Statement (Loc,
4690                   Condition       =>
4691                     Make_Op_Eq (Loc,
4692                       Left_Opnd  => New_Occurrence_Of (Fin_Mas_Id, Loc),
4693                       Right_Opnd => Make_Null (Loc)),
4694
4695                   Then_Statements => New_List (
4696                     Make_Assignment_Statement (Loc,
4697                       Name       => New_Occurrence_Of (Temp_Id, Loc),
4698                       Expression => Orig_Expr)),
4699
4700                   Else_Statements => New_List (
4701                     Make_Block_Statement (Loc,
4702                       Declarations               => Decls,
4703                       Handled_Statement_Sequence =>
4704                         Make_Handled_Sequence_Of_Statements (Loc,
4705                           Statements => Stmts))));
4706            end;
4707
4708         --  For all other cases, generate:
4709         --    Temp_Id := <Alloc_Expr>;
4710
4711         else
4712            return
4713              Make_Assignment_Statement (Loc,
4714                Name       => New_Occurrence_Of (Temp_Id, Loc),
4715                Expression => Alloc_Expr);
4716         end if;
4717      end Build_Heap_Or_Pool_Allocator;
4718
4719      ---------------------------
4720      -- Move_Activation_Chain --
4721      ---------------------------
4722
4723      function Move_Activation_Chain (Func_Id : Entity_Id) return Node_Id is
4724      begin
4725         return
4726           Make_Procedure_Call_Statement (Loc,
4727             Name                   =>
4728               New_Occurrence_Of (RTE (RE_Move_Activation_Chain), Loc),
4729
4730             Parameter_Associations => New_List (
4731
4732               --  Source chain
4733
4734               Make_Attribute_Reference (Loc,
4735                 Prefix         => Make_Identifier (Loc, Name_uChain),
4736                 Attribute_Name => Name_Unrestricted_Access),
4737
4738               --  Destination chain
4739
4740               New_Occurrence_Of
4741                 (Build_In_Place_Formal (Func_Id, BIP_Activation_Chain), Loc),
4742
4743               --  New master
4744
4745               New_Occurrence_Of
4746                 (Build_In_Place_Formal (Func_Id, BIP_Task_Master), Loc)));
4747      end Move_Activation_Chain;
4748
4749      --  Local variables
4750
4751      Func_Id      : constant Entity_Id :=
4752                       Return_Applies_To (Return_Statement_Entity (N));
4753      Is_BIP_Func  : constant Boolean   :=
4754                       Is_Build_In_Place_Function (Func_Id);
4755      Ret_Obj_Id   : constant Entity_Id :=
4756                       First_Entity (Return_Statement_Entity (N));
4757      Ret_Obj_Decl : constant Node_Id   := Parent (Ret_Obj_Id);
4758      Ret_Typ      : constant Entity_Id := Etype (Func_Id);
4759
4760      Exp         : Node_Id;
4761      HSS         : Node_Id;
4762      Result      : Node_Id;
4763      Stmts       : List_Id;
4764
4765      Return_Stmt : Node_Id := Empty;
4766      --  Force initialization to facilitate static analysis
4767
4768   --  Start of processing for Expand_N_Extended_Return_Statement
4769
4770   begin
4771      --  Given that functionality of interface thunks is simple (just displace
4772      --  the pointer to the object) they are always handled by means of
4773      --  simple return statements.
4774
4775      pragma Assert (not Is_Thunk (Current_Subprogram));
4776
4777      if Nkind (Ret_Obj_Decl) = N_Object_Declaration then
4778         Exp := Expression (Ret_Obj_Decl);
4779
4780         --  Assert that if F says "return R : T := G(...) do..."
4781         --  then F and G are both b-i-p, or neither b-i-p.
4782
4783         if Nkind (Exp) = N_Function_Call then
4784            pragma Assert (Ekind (Current_Subprogram) = E_Function);
4785            pragma Assert
4786              (Is_Build_In_Place_Function (Current_Subprogram) =
4787               Is_Build_In_Place_Function_Call (Exp));
4788            null;
4789         end if;
4790      else
4791         Exp := Empty;
4792      end if;
4793
4794      HSS := Handled_Statement_Sequence (N);
4795
4796      --  If the returned object needs finalization actions, the function must
4797      --  perform the appropriate cleanup should it fail to return. The state
4798      --  of the function itself is tracked through a flag which is coupled
4799      --  with the scope finalizer. There is one flag per each return object
4800      --  in case of multiple returns.
4801
4802      if Is_BIP_Func and then Needs_Finalization (Etype (Ret_Obj_Id)) then
4803         declare
4804            Flag_Decl : Node_Id;
4805            Flag_Id   : Entity_Id;
4806            Func_Bod  : Node_Id;
4807
4808         begin
4809            --  Recover the function body
4810
4811            Func_Bod := Unit_Declaration_Node (Func_Id);
4812
4813            if Nkind (Func_Bod) = N_Subprogram_Declaration then
4814               Func_Bod := Parent (Parent (Corresponding_Body (Func_Bod)));
4815            end if;
4816
4817            if Nkind (Func_Bod) = N_Function_Specification then
4818               Func_Bod := Parent (Func_Bod); -- one more level for child units
4819            end if;
4820
4821            pragma Assert (Nkind (Func_Bod) = N_Subprogram_Body);
4822
4823            --  Create a flag to track the function state
4824
4825            Flag_Id := Make_Temporary (Loc, 'F');
4826            Set_Status_Flag_Or_Transient_Decl (Ret_Obj_Id, Flag_Id);
4827
4828            --  Insert the flag at the beginning of the function declarations,
4829            --  generate:
4830            --    Fnn : Boolean := False;
4831
4832            Flag_Decl :=
4833              Make_Object_Declaration (Loc,
4834                Defining_Identifier => Flag_Id,
4835                  Object_Definition =>
4836                    New_Occurrence_Of (Standard_Boolean, Loc),
4837                  Expression        =>
4838                    New_Occurrence_Of (Standard_False, Loc));
4839
4840            Prepend_To (Declarations (Func_Bod), Flag_Decl);
4841            Analyze (Flag_Decl);
4842         end;
4843      end if;
4844
4845      --  Build a simple_return_statement that returns the return object when
4846      --  there is a statement sequence, or no expression, or the result will
4847      --  be built in place. Note however that we currently do this for all
4848      --  composite cases, even though not all are built in place.
4849
4850      if Present (HSS)
4851        or else Is_Composite_Type (Ret_Typ)
4852        or else No (Exp)
4853      then
4854         if No (HSS) then
4855            Stmts := New_List;
4856
4857         --  If the extended return has a handled statement sequence, then wrap
4858         --  it in a block and use the block as the first statement.
4859
4860         else
4861            Stmts := New_List (
4862              Make_Block_Statement (Loc,
4863                Declarations               => New_List,
4864                Handled_Statement_Sequence => HSS));
4865         end if;
4866
4867         --  If the result type contains tasks, we call Move_Activation_Chain.
4868         --  Later, the cleanup code will call Complete_Master, which will
4869         --  terminate any unactivated tasks belonging to the return statement
4870         --  master. But Move_Activation_Chain updates their master to be that
4871         --  of the caller, so they will not be terminated unless the return
4872         --  statement completes unsuccessfully due to exception, abort, goto,
4873         --  or exit. As a formality, we test whether the function requires the
4874         --  result to be built in place, though that's necessarily true for
4875         --  the case of result types with task parts.
4876
4877         if Is_BIP_Func and then Has_Task (Ret_Typ) then
4878
4879            --  The return expression is an aggregate for a complex type which
4880            --  contains tasks. This particular case is left unexpanded since
4881            --  the regular expansion would insert all temporaries and
4882            --  initialization code in the wrong block.
4883
4884            if Nkind (Exp) = N_Aggregate then
4885               Expand_N_Aggregate (Exp);
4886            end if;
4887
4888            --  Do not move the activation chain if the return object does not
4889            --  contain tasks.
4890
4891            if Has_Task (Etype (Ret_Obj_Id)) then
4892               Append_To (Stmts, Move_Activation_Chain (Func_Id));
4893            end if;
4894         end if;
4895
4896         --  Update the state of the function right before the object is
4897         --  returned.
4898
4899         if Is_BIP_Func and then Needs_Finalization (Etype (Ret_Obj_Id)) then
4900            declare
4901               Flag_Id : constant Entity_Id :=
4902                           Status_Flag_Or_Transient_Decl (Ret_Obj_Id);
4903
4904            begin
4905               --  Generate:
4906               --    Fnn := True;
4907
4908               Append_To (Stmts,
4909                 Make_Assignment_Statement (Loc,
4910                   Name       => New_Occurrence_Of (Flag_Id, Loc),
4911                   Expression => New_Occurrence_Of (Standard_True, Loc)));
4912            end;
4913         end if;
4914
4915         --  Build a simple_return_statement that returns the return object
4916
4917         Return_Stmt :=
4918           Make_Simple_Return_Statement (Loc,
4919             Expression => New_Occurrence_Of (Ret_Obj_Id, Loc));
4920         Append_To (Stmts, Return_Stmt);
4921
4922         HSS := Make_Handled_Sequence_Of_Statements (Loc, Stmts);
4923      end if;
4924
4925      --  Case where we build a return statement block
4926
4927      if Present (HSS) then
4928         Result :=
4929           Make_Block_Statement (Loc,
4930             Declarations               => Return_Object_Declarations (N),
4931             Handled_Statement_Sequence => HSS);
4932
4933         --  We set the entity of the new block statement to be that of the
4934         --  return statement. This is necessary so that various fields, such
4935         --  as Finalization_Chain_Entity carry over from the return statement
4936         --  to the block. Note that this block is unusual, in that its entity
4937         --  is an E_Return_Statement rather than an E_Block.
4938
4939         Set_Identifier
4940           (Result, New_Occurrence_Of (Return_Statement_Entity (N), Loc));
4941
4942         --  If the object decl was already rewritten as a renaming, then we
4943         --  don't want to do the object allocation and transformation of
4944         --  the return object declaration to a renaming. This case occurs
4945         --  when the return object is initialized by a call to another
4946         --  build-in-place function, and that function is responsible for
4947         --  the allocation of the return object.
4948
4949         if Is_BIP_Func
4950           and then Nkind (Ret_Obj_Decl) = N_Object_Renaming_Declaration
4951         then
4952            pragma Assert
4953              (Nkind (Original_Node (Ret_Obj_Decl)) = N_Object_Declaration
4954                and then
4955
4956                  --  It is a regular BIP object declaration
4957
4958                  (Is_Build_In_Place_Function_Call
4959                     (Expression (Original_Node (Ret_Obj_Decl)))
4960
4961                  --  It is a BIP object declaration that displaces the pointer
4962                  --  to the object to reference a convered interface type.
4963
4964                  or else
4965                    Present (Unqual_BIP_Iface_Function_Call
4966                              (Expression (Original_Node (Ret_Obj_Decl))))));
4967
4968            --  Return the build-in-place result by reference
4969
4970            Set_By_Ref (Return_Stmt);
4971
4972         elsif Is_BIP_Func then
4973
4974            --  Locate the implicit access parameter associated with the
4975            --  caller-supplied return object and convert the return
4976            --  statement's return object declaration to a renaming of a
4977            --  dereference of the access parameter. If the return object's
4978            --  declaration includes an expression that has not already been
4979            --  expanded as separate assignments, then add an assignment
4980            --  statement to ensure the return object gets initialized.
4981
4982            --    declare
4983            --       Result : T [:= <expression>];
4984            --    begin
4985            --       ...
4986
4987            --  is converted to
4988
4989            --    declare
4990            --       Result : T renames FuncRA.all;
4991            --       [Result := <expression;]
4992            --    begin
4993            --       ...
4994
4995            declare
4996               Ret_Obj_Expr : constant Node_Id   := Expression (Ret_Obj_Decl);
4997               Ret_Obj_Typ  : constant Entity_Id := Etype (Ret_Obj_Id);
4998
4999               Init_Assignment  : Node_Id := Empty;
5000               Obj_Acc_Formal   : Entity_Id;
5001               Obj_Acc_Deref    : Node_Id;
5002               Obj_Alloc_Formal : Entity_Id;
5003
5004            begin
5005               --  Build-in-place results must be returned by reference
5006
5007               Set_By_Ref (Return_Stmt);
5008
5009               --  Retrieve the implicit access parameter passed by the caller
5010
5011               Obj_Acc_Formal :=
5012                 Build_In_Place_Formal (Func_Id, BIP_Object_Access);
5013
5014               --  If the return object's declaration includes an expression
5015               --  and the declaration isn't marked as No_Initialization, then
5016               --  we need to generate an assignment to the object and insert
5017               --  it after the declaration before rewriting it as a renaming
5018               --  (otherwise we'll lose the initialization). The case where
5019               --  the result type is an interface (or class-wide interface)
5020               --  is also excluded because the context of the function call
5021               --  must be unconstrained, so the initialization will always
5022               --  be done as part of an allocator evaluation (storage pool
5023               --  or secondary stack), never to a constrained target object
5024               --  passed in by the caller. Besides the assignment being
5025               --  unneeded in this case, it avoids problems with trying to
5026               --  generate a dispatching assignment when the return expression
5027               --  is a nonlimited descendant of a limited interface (the
5028               --  interface has no assignment operation).
5029
5030               if Present (Ret_Obj_Expr)
5031                 and then not No_Initialization (Ret_Obj_Decl)
5032                 and then not Is_Interface (Ret_Obj_Typ)
5033               then
5034                  Init_Assignment :=
5035                    Make_Assignment_Statement (Loc,
5036                      Name       => New_Occurrence_Of (Ret_Obj_Id, Loc),
5037                      Expression =>
5038                        New_Copy_Tree
5039                          (Source           => Ret_Obj_Expr,
5040                           Scopes_In_EWA_OK => True));
5041
5042                  Set_Etype (Name (Init_Assignment), Etype (Ret_Obj_Id));
5043                  Set_Assignment_OK (Name (Init_Assignment));
5044                  Set_No_Ctrl_Actions (Init_Assignment);
5045
5046                  Set_Parent (Name (Init_Assignment), Init_Assignment);
5047                  Set_Parent (Expression (Init_Assignment), Init_Assignment);
5048
5049                  Set_Expression (Ret_Obj_Decl, Empty);
5050
5051                  if Is_Class_Wide_Type (Etype (Ret_Obj_Id))
5052                    and then not Is_Class_Wide_Type
5053                                   (Etype (Expression (Init_Assignment)))
5054                  then
5055                     Rewrite (Expression (Init_Assignment),
5056                       Make_Type_Conversion (Loc,
5057                         Subtype_Mark =>
5058                           New_Occurrence_Of (Etype (Ret_Obj_Id), Loc),
5059                         Expression   =>
5060                           Relocate_Node (Expression (Init_Assignment))));
5061                  end if;
5062
5063                  --  In the case of functions where the calling context can
5064                  --  determine the form of allocation needed, initialization
5065                  --  is done with each part of the if statement that handles
5066                  --  the different forms of allocation (this is true for
5067                  --  unconstrained, tagged, and controlled result subtypes).
5068
5069                  if not Needs_BIP_Alloc_Form (Func_Id) then
5070                     Insert_After (Ret_Obj_Decl, Init_Assignment);
5071                  end if;
5072               end if;
5073
5074               --  When the function's subtype is unconstrained, a run-time
5075               --  test is needed to determine the form of allocation to use
5076               --  for the return object. The function has an implicit formal
5077               --  parameter indicating this. If the BIP_Alloc_Form formal has
5078               --  the value one, then the caller has passed access to an
5079               --  existing object for use as the return object. If the value
5080               --  is two, then the return object must be allocated on the
5081               --  secondary stack. Otherwise, the object must be allocated in
5082               --  a storage pool. We generate an if statement to test the
5083               --  implicit allocation formal and initialize a local access
5084               --  value appropriately, creating allocators in the secondary
5085               --  stack and global heap cases. The special formal also exists
5086               --  and must be tested when the function has a tagged result,
5087               --  even when the result subtype is constrained, because in
5088               --  general such functions can be called in dispatching contexts
5089               --  and must be handled similarly to functions with a class-wide
5090               --  result.
5091
5092               if Needs_BIP_Alloc_Form (Func_Id) then
5093                  Obj_Alloc_Formal :=
5094                    Build_In_Place_Formal (Func_Id, BIP_Alloc_Form);
5095
5096                  declare
5097                     Pool_Id        : constant Entity_Id :=
5098                                        Make_Temporary (Loc, 'P');
5099                     Alloc_Obj_Id   : Entity_Id;
5100                     Alloc_Obj_Decl : Node_Id;
5101                     Alloc_If_Stmt  : Node_Id;
5102                     Guard_Except   : Node_Id;
5103                     Heap_Allocator : Node_Id;
5104                     Pool_Decl      : Node_Id;
5105                     Pool_Allocator : Node_Id;
5106                     Ptr_Type_Decl  : Node_Id;
5107                     Ref_Type       : Entity_Id;
5108                     SS_Allocator   : Node_Id;
5109
5110                  begin
5111                     --  Reuse the itype created for the function's implicit
5112                     --  access formal. This avoids the need to create a new
5113                     --  access type here, plus it allows assigning the access
5114                     --  formal directly without applying a conversion.
5115
5116                     --    Ref_Type := Etype (Object_Access);
5117
5118                     --  Create an access type designating the function's
5119                     --  result subtype.
5120
5121                     Ref_Type := Make_Temporary (Loc, 'A');
5122
5123                     Ptr_Type_Decl :=
5124                       Make_Full_Type_Declaration (Loc,
5125                         Defining_Identifier => Ref_Type,
5126                         Type_Definition     =>
5127                           Make_Access_To_Object_Definition (Loc,
5128                             All_Present        => True,
5129                             Subtype_Indication =>
5130                               New_Occurrence_Of (Ret_Obj_Typ, Loc)));
5131
5132                     Insert_Before (Ret_Obj_Decl, Ptr_Type_Decl);
5133
5134                     --  Create an access object that will be initialized to an
5135                     --  access value denoting the return object, either coming
5136                     --  from an implicit access value passed in by the caller
5137                     --  or from the result of an allocator.
5138
5139                     Alloc_Obj_Id := Make_Temporary (Loc, 'R');
5140                     Set_Etype (Alloc_Obj_Id, Ref_Type);
5141
5142                     Alloc_Obj_Decl :=
5143                       Make_Object_Declaration (Loc,
5144                         Defining_Identifier => Alloc_Obj_Id,
5145                         Object_Definition   =>
5146                           New_Occurrence_Of (Ref_Type, Loc));
5147
5148                     Insert_Before (Ret_Obj_Decl, Alloc_Obj_Decl);
5149
5150                     --  Create allocators for both the secondary stack and
5151                     --  global heap. If there's an initialization expression,
5152                     --  then create these as initialized allocators.
5153
5154                     if Present (Ret_Obj_Expr)
5155                       and then not No_Initialization (Ret_Obj_Decl)
5156                     then
5157                        --  Always use the type of the expression for the
5158                        --  qualified expression, rather than the result type.
5159                        --  In general we cannot always use the result type
5160                        --  for the allocator, because the expression might be
5161                        --  of a specific type, such as in the case of an
5162                        --  aggregate or even a nonlimited object when the
5163                        --  result type is a limited class-wide interface type.
5164
5165                        Heap_Allocator :=
5166                          Make_Allocator (Loc,
5167                            Expression =>
5168                              Make_Qualified_Expression (Loc,
5169                                Subtype_Mark =>
5170                                  New_Occurrence_Of
5171                                    (Etype (Ret_Obj_Expr), Loc),
5172                                Expression   =>
5173                                  New_Copy_Tree
5174                                    (Source           => Ret_Obj_Expr,
5175                                     Scopes_In_EWA_OK => True)));
5176
5177                     else
5178                        --  If the function returns a class-wide type we cannot
5179                        --  use the return type for the allocator. Instead we
5180                        --  use the type of the expression, which must be an
5181                        --  aggregate of a definite type.
5182
5183                        if Is_Class_Wide_Type (Ret_Obj_Typ) then
5184                           Heap_Allocator :=
5185                             Make_Allocator (Loc,
5186                               Expression =>
5187                                 New_Occurrence_Of
5188                                   (Etype (Ret_Obj_Expr), Loc));
5189                        else
5190                           Heap_Allocator :=
5191                             Make_Allocator (Loc,
5192                               Expression =>
5193                                 New_Occurrence_Of (Ret_Obj_Typ, Loc));
5194                        end if;
5195
5196                        --  If the object requires default initialization then
5197                        --  that will happen later following the elaboration of
5198                        --  the object renaming. If we don't turn it off here
5199                        --  then the object will be default initialized twice.
5200
5201                        Set_No_Initialization (Heap_Allocator);
5202                     end if;
5203
5204                     --  Set the flag indicating that the allocator came from
5205                     --  a build-in-place return statement, so we can avoid
5206                     --  adjusting the allocated object. Note that this flag
5207                     --  will be inherited by the copies made below.
5208
5209                     Set_Alloc_For_BIP_Return (Heap_Allocator);
5210
5211                     --  The Pool_Allocator is just like the Heap_Allocator,
5212                     --  except we set Storage_Pool and Procedure_To_Call so
5213                     --  it will use the user-defined storage pool.
5214
5215                     Pool_Allocator :=
5216                       New_Copy_Tree
5217                         (Source           => Heap_Allocator,
5218                          Scopes_In_EWA_OK => True);
5219
5220                     pragma Assert (Alloc_For_BIP_Return (Pool_Allocator));
5221
5222                     --  Do not generate the renaming of the build-in-place
5223                     --  pool parameter on ZFP because the parameter is not
5224                     --  created in the first place.
5225
5226                     if RTE_Available (RE_Root_Storage_Pool_Ptr) then
5227                        Pool_Decl :=
5228                          Make_Object_Renaming_Declaration (Loc,
5229                            Defining_Identifier => Pool_Id,
5230                            Subtype_Mark        =>
5231                              New_Occurrence_Of
5232                                (RTE (RE_Root_Storage_Pool), Loc),
5233                            Name                =>
5234                              Make_Explicit_Dereference (Loc,
5235                                New_Occurrence_Of
5236                                  (Build_In_Place_Formal
5237                                     (Func_Id, BIP_Storage_Pool), Loc)));
5238                        Set_Storage_Pool (Pool_Allocator, Pool_Id);
5239                        Set_Procedure_To_Call
5240                          (Pool_Allocator, RTE (RE_Allocate_Any));
5241                     else
5242                        Pool_Decl := Make_Null_Statement (Loc);
5243                     end if;
5244
5245                     --  If the No_Allocators restriction is active, then only
5246                     --  an allocator for secondary stack allocation is needed.
5247                     --  It's OK for such allocators to have Comes_From_Source
5248                     --  set to False, because gigi knows not to flag them as
5249                     --  being a violation of No_Implicit_Heap_Allocations.
5250
5251                     if Restriction_Active (No_Allocators) then
5252                        SS_Allocator   := Heap_Allocator;
5253                        Heap_Allocator := Make_Null (Loc);
5254                        Pool_Allocator := Make_Null (Loc);
5255
5256                     --  Otherwise the heap and pool allocators may be needed,
5257                     --  so we make another allocator for secondary stack
5258                     --  allocation.
5259
5260                     else
5261                        SS_Allocator :=
5262                          New_Copy_Tree
5263                            (Source           => Heap_Allocator,
5264                             Scopes_In_EWA_OK => True);
5265
5266                        pragma Assert (Alloc_For_BIP_Return (SS_Allocator));
5267
5268                        --  The heap and pool allocators are marked as
5269                        --  Comes_From_Source since they correspond to an
5270                        --  explicit user-written allocator (that is, it will
5271                        --  only be executed on behalf of callers that call the
5272                        --  function as initialization for such an allocator).
5273                        --  Prevents errors when No_Implicit_Heap_Allocations
5274                        --  is in force.
5275
5276                        Set_Comes_From_Source (Heap_Allocator, True);
5277                        Set_Comes_From_Source (Pool_Allocator, True);
5278                     end if;
5279
5280                     --  The allocator is returned on the secondary stack
5281
5282                     Check_Restriction (No_Secondary_Stack, N);
5283                     Set_Storage_Pool (SS_Allocator, RTE (RE_SS_Pool));
5284                     Set_Procedure_To_Call
5285                       (SS_Allocator, RTE (RE_SS_Allocate));
5286
5287                     --  The allocator is returned on the secondary stack,
5288                     --  so indicate that the function return, as well as
5289                     --  all blocks that encloses the allocator, must not
5290                     --  release it. The flags must be set now because
5291                     --  the decision to use the secondary stack is done
5292                     --  very late in the course of expanding the return
5293                     --  statement, past the point where these flags are
5294                     --  normally set.
5295
5296                     Set_Uses_Sec_Stack (Func_Id);
5297                     Set_Uses_Sec_Stack (Return_Statement_Entity (N));
5298                     Set_Sec_Stack_Needed_For_Return
5299                       (Return_Statement_Entity (N));
5300                     Set_Enclosing_Sec_Stack_Return (N);
5301
5302                     --  Guard against poor expansion on the caller side by
5303                     --  using a raise statement to catch out-of-range values
5304                     --  of formal parameter BIP_Alloc_Form.
5305
5306                     if Exceptions_OK then
5307                        Guard_Except :=
5308                          Make_Raise_Program_Error (Loc,
5309                            Reason => PE_Build_In_Place_Mismatch);
5310                     else
5311                        Guard_Except := Make_Null_Statement (Loc);
5312                     end if;
5313
5314                     --  Create an if statement to test the BIP_Alloc_Form
5315                     --  formal and initialize the access object to either the
5316                     --  BIP_Object_Access formal (BIP_Alloc_Form =
5317                     --  Caller_Allocation), the result of allocating the
5318                     --  object in the secondary stack (BIP_Alloc_Form =
5319                     --  Secondary_Stack), or else an allocator to create the
5320                     --  return object in the heap or user-defined pool
5321                     --  (BIP_Alloc_Form = Global_Heap or User_Storage_Pool).
5322
5323                     --  ??? An unchecked type conversion must be made in the
5324                     --  case of assigning the access object formal to the
5325                     --  local access object, because a normal conversion would
5326                     --  be illegal in some cases (such as converting access-
5327                     --  to-unconstrained to access-to-constrained), but the
5328                     --  the unchecked conversion will presumably fail to work
5329                     --  right in just such cases. It's not clear at all how to
5330                     --  handle this. ???
5331
5332                     Alloc_If_Stmt :=
5333                       Make_If_Statement (Loc,
5334                         Condition =>
5335                           Make_Op_Eq (Loc,
5336                             Left_Opnd  =>
5337                               New_Occurrence_Of (Obj_Alloc_Formal, Loc),
5338                             Right_Opnd =>
5339                               Make_Integer_Literal (Loc,
5340                                 UI_From_Int (BIP_Allocation_Form'Pos
5341                                                (Caller_Allocation)))),
5342
5343                         Then_Statements => New_List (
5344                           Make_Assignment_Statement (Loc,
5345                             Name       =>
5346                               New_Occurrence_Of (Alloc_Obj_Id, Loc),
5347                             Expression =>
5348                               Make_Unchecked_Type_Conversion (Loc,
5349                                 Subtype_Mark =>
5350                                   New_Occurrence_Of (Ref_Type, Loc),
5351                                 Expression   =>
5352                                   New_Occurrence_Of (Obj_Acc_Formal, Loc)))),
5353
5354                         Elsif_Parts => New_List (
5355                           Make_Elsif_Part (Loc,
5356                             Condition =>
5357                               Make_Op_Eq (Loc,
5358                                 Left_Opnd  =>
5359                                   New_Occurrence_Of (Obj_Alloc_Formal, Loc),
5360                                 Right_Opnd =>
5361                                   Make_Integer_Literal (Loc,
5362                                     UI_From_Int (BIP_Allocation_Form'Pos
5363                                                    (Secondary_Stack)))),
5364
5365                             Then_Statements => New_List (
5366                               Make_Assignment_Statement (Loc,
5367                                 Name       =>
5368                                   New_Occurrence_Of (Alloc_Obj_Id, Loc),
5369                                 Expression => SS_Allocator))),
5370
5371                           Make_Elsif_Part (Loc,
5372                             Condition =>
5373                               Make_Op_Eq (Loc,
5374                                 Left_Opnd  =>
5375                                   New_Occurrence_Of (Obj_Alloc_Formal, Loc),
5376                                 Right_Opnd =>
5377                                   Make_Integer_Literal (Loc,
5378                                     UI_From_Int (BIP_Allocation_Form'Pos
5379                                                    (Global_Heap)))),
5380
5381                             Then_Statements => New_List (
5382                               Build_Heap_Or_Pool_Allocator
5383                                 (Temp_Id    => Alloc_Obj_Id,
5384                                  Temp_Typ   => Ref_Type,
5385                                  Func_Id    => Func_Id,
5386                                  Ret_Typ    => Ret_Obj_Typ,
5387                                  Alloc_Expr => Heap_Allocator))),
5388
5389                           --  ???If all is well, we can put the following
5390                           --  'elsif' in the 'else', but this is a useful
5391                           --  self-check in case caller and callee don't agree
5392                           --  on whether BIPAlloc and so on should be passed.
5393
5394                           Make_Elsif_Part (Loc,
5395                             Condition =>
5396                               Make_Op_Eq (Loc,
5397                                 Left_Opnd  =>
5398                                   New_Occurrence_Of (Obj_Alloc_Formal, Loc),
5399                                 Right_Opnd =>
5400                                   Make_Integer_Literal (Loc,
5401                                     UI_From_Int (BIP_Allocation_Form'Pos
5402                                                    (User_Storage_Pool)))),
5403
5404                             Then_Statements => New_List (
5405                               Pool_Decl,
5406                               Build_Heap_Or_Pool_Allocator
5407                                 (Temp_Id    => Alloc_Obj_Id,
5408                                  Temp_Typ   => Ref_Type,
5409                                  Func_Id    => Func_Id,
5410                                  Ret_Typ    => Ret_Obj_Typ,
5411                                  Alloc_Expr => Pool_Allocator)))),
5412
5413                         --  Raise Program_Error if it's none of the above;
5414                         --  this is a compiler bug.
5415
5416                         Else_Statements => New_List (Guard_Except));
5417
5418                     --  If a separate initialization assignment was created
5419                     --  earlier, append that following the assignment of the
5420                     --  implicit access formal to the access object, to ensure
5421                     --  that the return object is initialized in that case. In
5422                     --  this situation, the target of the assignment must be
5423                     --  rewritten to denote a dereference of the access to the
5424                     --  return object passed in by the caller.
5425
5426                     if Present (Init_Assignment) then
5427                        Rewrite (Name (Init_Assignment),
5428                          Make_Explicit_Dereference (Loc,
5429                            Prefix => New_Occurrence_Of (Alloc_Obj_Id, Loc)));
5430                        pragma Assert
5431                          (Assignment_OK
5432                             (Original_Node (Name (Init_Assignment))));
5433                        Set_Assignment_OK (Name (Init_Assignment));
5434
5435                        Set_Etype (Name (Init_Assignment), Etype (Ret_Obj_Id));
5436
5437                        Append_To
5438                          (Then_Statements (Alloc_If_Stmt), Init_Assignment);
5439                     end if;
5440
5441                     Insert_Before (Ret_Obj_Decl, Alloc_If_Stmt);
5442
5443                     --  Remember the local access object for use in the
5444                     --  dereference of the renaming created below.
5445
5446                     Obj_Acc_Formal := Alloc_Obj_Id;
5447                  end;
5448               end if;
5449
5450               --  Replace the return object declaration with a renaming of a
5451               --  dereference of the access value designating the return
5452               --  object.
5453
5454               Obj_Acc_Deref :=
5455                 Make_Explicit_Dereference (Loc,
5456                   Prefix => New_Occurrence_Of (Obj_Acc_Formal, Loc));
5457
5458               Rewrite (Ret_Obj_Decl,
5459                 Make_Object_Renaming_Declaration (Loc,
5460                   Defining_Identifier => Ret_Obj_Id,
5461                   Access_Definition   => Empty,
5462                   Subtype_Mark        => New_Occurrence_Of (Ret_Obj_Typ, Loc),
5463                   Name                => Obj_Acc_Deref));
5464
5465               Set_Renamed_Object (Ret_Obj_Id, Obj_Acc_Deref);
5466            end;
5467         end if;
5468
5469      --  Case where we do not build a block
5470
5471      else
5472         --  We're about to drop Return_Object_Declarations on the floor, so
5473         --  we need to insert it, in case it got expanded into useful code.
5474         --  Remove side effects from expression, which may be duplicated in
5475         --  subsequent checks (see Expand_Simple_Function_Return).
5476
5477         Insert_List_Before (N, Return_Object_Declarations (N));
5478         Remove_Side_Effects (Exp);
5479
5480         --  Build simple_return_statement that returns the expression directly
5481
5482         Return_Stmt := Make_Simple_Return_Statement (Loc, Expression => Exp);
5483         Result := Return_Stmt;
5484      end if;
5485
5486      --  Set the flag to prevent infinite recursion
5487
5488      Set_Comes_From_Extended_Return_Statement (Return_Stmt);
5489
5490      Rewrite (N, Result);
5491      Analyze (N, Suppress => All_Checks);
5492   end Expand_N_Extended_Return_Statement;
5493
5494   ----------------------------
5495   -- Expand_N_Function_Call --
5496   ----------------------------
5497
5498   procedure Expand_N_Function_Call (N : Node_Id) is
5499   begin
5500      Expand_Call (N);
5501   end Expand_N_Function_Call;
5502
5503   ---------------------------------------
5504   -- Expand_N_Procedure_Call_Statement --
5505   ---------------------------------------
5506
5507   procedure Expand_N_Procedure_Call_Statement (N : Node_Id) is
5508   begin
5509      Expand_Call (N);
5510   end Expand_N_Procedure_Call_Statement;
5511
5512   --------------------------------------
5513   -- Expand_N_Simple_Return_Statement --
5514   --------------------------------------
5515
5516   procedure Expand_N_Simple_Return_Statement (N : Node_Id) is
5517   begin
5518      --  Defend against previous errors (i.e. the return statement calls a
5519      --  function that is not available in configurable runtime).
5520
5521      if Present (Expression (N))
5522        and then Nkind (Expression (N)) = N_Empty
5523      then
5524         Check_Error_Detected;
5525         return;
5526      end if;
5527
5528      --  Distinguish the function and non-function cases:
5529
5530      case Ekind (Return_Applies_To (Return_Statement_Entity (N))) is
5531         when E_Function
5532            | E_Generic_Function
5533         =>
5534            Expand_Simple_Function_Return (N);
5535
5536         when E_Entry
5537            | E_Entry_Family
5538            | E_Generic_Procedure
5539            | E_Procedure
5540            | E_Return_Statement
5541         =>
5542            Expand_Non_Function_Return (N);
5543
5544         when others =>
5545            raise Program_Error;
5546      end case;
5547
5548   exception
5549      when RE_Not_Available =>
5550         return;
5551   end Expand_N_Simple_Return_Statement;
5552
5553   ------------------------------
5554   -- Expand_N_Subprogram_Body --
5555   ------------------------------
5556
5557   --  Add poll call if ATC polling is enabled, unless the body will be inlined
5558   --  by the back-end.
5559
5560   --  Add dummy push/pop label nodes at start and end to clear any local
5561   --  exception indications if local-exception-to-goto optimization is active.
5562
5563   --  Add return statement if last statement in body is not a return statement
5564   --  (this makes things easier on Gigi which does not want to have to handle
5565   --  a missing return).
5566
5567   --  Add call to Activate_Tasks if body is a task activator
5568
5569   --  Deal with possible detection of infinite recursion
5570
5571   --  Eliminate body completely if convention stubbed
5572
5573   --  Encode entity names within body, since we will not need to reference
5574   --  these entities any longer in the front end.
5575
5576   --  Initialize scalar out parameters if Initialize/Normalize_Scalars
5577
5578   --  Reset Pure indication if any parameter has root type System.Address
5579   --  or has any parameters of limited types, where limited means that the
5580   --  run-time view is limited (i.e. the full type is limited).
5581
5582   --  Wrap thread body
5583
5584   procedure Expand_N_Subprogram_Body (N : Node_Id) is
5585      Body_Id  : constant Entity_Id  := Defining_Entity (N);
5586      HSS      : constant Node_Id    := Handled_Statement_Sequence (N);
5587      Loc      : constant Source_Ptr := Sloc (N);
5588
5589      procedure Add_Return (Spec_Id : Entity_Id; Stmts : List_Id);
5590      --  Append a return statement to the statement sequence Stmts if the last
5591      --  statement is not already a return or a goto statement. Note that the
5592      --  latter test is not critical, it does not matter if we add a few extra
5593      --  returns, since they get eliminated anyway later on. Spec_Id denotes
5594      --  the corresponding spec of the subprogram body.
5595
5596      ----------------
5597      -- Add_Return --
5598      ----------------
5599
5600      procedure Add_Return (Spec_Id : Entity_Id; Stmts : List_Id) is
5601         Last_Stmt : Node_Id;
5602         Loc       : Source_Ptr;
5603         Stmt      : Node_Id;
5604
5605      begin
5606         --  Get last statement, ignoring any Pop_xxx_Label nodes, which are
5607         --  not relevant in this context since they are not executable.
5608
5609         Last_Stmt := Last (Stmts);
5610         while Nkind (Last_Stmt) in N_Pop_xxx_Label loop
5611            Prev (Last_Stmt);
5612         end loop;
5613
5614         --  Now insert return unless last statement is a transfer
5615
5616         if not Is_Transfer (Last_Stmt) then
5617
5618            --  The source location for the return is the end label of the
5619            --  procedure if present. Otherwise use the sloc of the last
5620            --  statement in the list. If the list comes from a generated
5621            --  exception handler and we are not debugging generated code,
5622            --  all the statements within the handler are made invisible
5623            --  to the debugger.
5624
5625            if Nkind (Parent (Stmts)) = N_Exception_Handler
5626              and then not Comes_From_Source (Parent (Stmts))
5627            then
5628               Loc := Sloc (Last_Stmt);
5629            elsif Present (End_Label (HSS)) then
5630               Loc := Sloc (End_Label (HSS));
5631            else
5632               Loc := Sloc (Last_Stmt);
5633            end if;
5634
5635            --  Append return statement, and set analyzed manually. We can't
5636            --  call Analyze on this return since the scope is wrong.
5637
5638            --  Note: it almost works to push the scope and then do the Analyze
5639            --  call, but something goes wrong in some weird cases and it is
5640            --  not worth worrying about ???
5641
5642            Stmt := Make_Simple_Return_Statement (Loc);
5643
5644            --  The return statement is handled properly, and the call to the
5645            --  postcondition, inserted below, does not require information
5646            --  from the body either. However, that call is analyzed in the
5647            --  enclosing scope, and an elaboration check might improperly be
5648            --  added to it. A guard in Sem_Elab is needed to prevent that
5649            --  spurious check, see Check_Elab_Call.
5650
5651            Append_To (Stmts, Stmt);
5652            Set_Analyzed (Stmt);
5653
5654            --  Call the _Postconditions procedure if the related subprogram
5655            --  has contract assertions that need to be verified on exit.
5656
5657            if Ekind (Spec_Id) = E_Procedure
5658              and then Present (Postconditions_Proc (Spec_Id))
5659            then
5660               Insert_Action (Stmt,
5661                 Make_Procedure_Call_Statement (Loc,
5662                   Name =>
5663                     New_Occurrence_Of (Postconditions_Proc (Spec_Id), Loc)));
5664            end if;
5665         end if;
5666      end Add_Return;
5667
5668      --  Local variables
5669
5670      Except_H : Node_Id;
5671      L        : List_Id;
5672      Spec_Id  : Entity_Id;
5673
5674   --  Start of processing for Expand_N_Subprogram_Body
5675
5676   begin
5677      if Present (Corresponding_Spec (N)) then
5678         Spec_Id := Corresponding_Spec (N);
5679      else
5680         Spec_Id := Body_Id;
5681      end if;
5682
5683      --  If this is a Pure function which has any parameters whose root type
5684      --  is System.Address, reset the Pure indication.
5685      --  This check is also performed when the subprogram is frozen, but we
5686      --  repeat it on the body so that the indication is consistent, and so
5687      --  it applies as well to bodies without separate specifications.
5688
5689      if Is_Pure (Spec_Id)
5690        and then Is_Subprogram (Spec_Id)
5691        and then not Has_Pragma_Pure_Function (Spec_Id)
5692      then
5693         Check_Function_With_Address_Parameter (Spec_Id);
5694
5695         if Spec_Id /= Body_Id then
5696            Set_Is_Pure (Body_Id, Is_Pure (Spec_Id));
5697         end if;
5698      end if;
5699
5700      --  Set L to either the list of declarations if present, or to the list
5701      --  of statements if no declarations are present. This is used to insert
5702      --  new stuff at the start.
5703
5704      if Is_Non_Empty_List (Declarations (N)) then
5705         L := Declarations (N);
5706      else
5707         L := Statements (HSS);
5708      end if;
5709
5710      --  If local-exception-to-goto optimization active, insert dummy push
5711      --  statements at start, and dummy pop statements at end, but inhibit
5712      --  this if we have No_Exception_Handlers, since they are useless and
5713      --  interfere with analysis, e.g. by CodePeer. We also don't need these
5714      --  if we're unnesting subprograms because the only purpose of these
5715      --  nodes is to ensure we don't set a label in one subprogram and branch
5716      --  to it in another.
5717
5718      if (Debug_Flag_Dot_G
5719           or else Restriction_Active (No_Exception_Propagation))
5720        and then not Restriction_Active (No_Exception_Handlers)
5721        and then not CodePeer_Mode
5722        and then not Unnest_Subprogram_Mode
5723        and then Is_Non_Empty_List (L)
5724      then
5725         declare
5726            FS  : constant Node_Id    := First (L);
5727            FL  : constant Source_Ptr := Sloc (FS);
5728            LS  : Node_Id;
5729            LL  : Source_Ptr;
5730
5731         begin
5732            --  LS points to either last statement, if statements are present
5733            --  or to the last declaration if there are no statements present.
5734            --  It is the node after which the pop's are generated.
5735
5736            if Is_Non_Empty_List (Statements (HSS)) then
5737               LS := Last (Statements (HSS));
5738            else
5739               LS := Last (L);
5740            end if;
5741
5742            LL := Sloc (LS);
5743
5744            Insert_List_Before_And_Analyze (FS, New_List (
5745              Make_Push_Constraint_Error_Label (FL),
5746              Make_Push_Program_Error_Label    (FL),
5747              Make_Push_Storage_Error_Label    (FL)));
5748
5749            Insert_List_After_And_Analyze (LS, New_List (
5750              Make_Pop_Constraint_Error_Label  (LL),
5751              Make_Pop_Program_Error_Label     (LL),
5752              Make_Pop_Storage_Error_Label     (LL)));
5753         end;
5754      end if;
5755
5756      --  Need poll on entry to subprogram if polling enabled. We only do this
5757      --  for non-empty subprograms, since it does not seem necessary to poll
5758      --  for a dummy null subprogram.
5759
5760      if Is_Non_Empty_List (L) then
5761
5762         --  Do not add a polling call if the subprogram is to be inlined by
5763         --  the back-end, to avoid repeated calls with multiple inlinings.
5764
5765         if Is_Inlined (Spec_Id)
5766           and then Front_End_Inlining
5767           and then Optimization_Level > 1
5768         then
5769            null;
5770         else
5771            Generate_Poll_Call (First (L));
5772         end if;
5773      end if;
5774
5775      --  Initialize any scalar OUT args if Initialize/Normalize_Scalars
5776
5777      if Init_Or_Norm_Scalars and then Is_Subprogram (Spec_Id) then
5778         declare
5779            F : Entity_Id;
5780            A : Node_Id;
5781
5782         begin
5783            --  Loop through formals
5784
5785            F := First_Formal (Spec_Id);
5786            while Present (F) loop
5787               if Is_Scalar_Type (Etype (F))
5788                 and then Ekind (F) = E_Out_Parameter
5789               then
5790                  Check_Restriction (No_Default_Initialization, F);
5791
5792                  --  Insert the initialization. We turn off validity checks
5793                  --  for this assignment, since we do not want any check on
5794                  --  the initial value itself (which may well be invalid).
5795                  --  Predicate checks are disabled as well (RM 6.4.1 (13/3))
5796
5797                  A :=
5798                    Make_Assignment_Statement (Loc,
5799                      Name       => New_Occurrence_Of (F, Loc),
5800                      Expression => Get_Simple_Init_Val (Etype (F), N));
5801                  Set_Suppress_Assignment_Checks (A);
5802
5803                  Insert_Before_And_Analyze (First (L),
5804                    A, Suppress => Validity_Check);
5805               end if;
5806
5807               Next_Formal (F);
5808            end loop;
5809         end;
5810      end if;
5811
5812      --  Clear out statement list for stubbed procedure
5813
5814      if Present (Corresponding_Spec (N)) then
5815         Set_Elaboration_Flag (N, Spec_Id);
5816
5817         if Convention (Spec_Id) = Convention_Stubbed
5818           or else Is_Eliminated (Spec_Id)
5819         then
5820            Set_Declarations (N, Empty_List);
5821            Set_Handled_Statement_Sequence (N,
5822              Make_Handled_Sequence_Of_Statements (Loc,
5823                Statements => New_List (Make_Null_Statement (Loc))));
5824
5825            return;
5826         end if;
5827      end if;
5828
5829      --  Create a set of discriminals for the next protected subprogram body
5830
5831      if Is_List_Member (N)
5832        and then Present (Parent (List_Containing (N)))
5833        and then Nkind (Parent (List_Containing (N))) = N_Protected_Body
5834        and then Present (Next_Protected_Operation (N))
5835      then
5836         Set_Discriminals (Parent (Base_Type (Scope (Spec_Id))));
5837      end if;
5838
5839      --  Returns_By_Ref flag is normally set when the subprogram is frozen but
5840      --  subprograms with no specs are not frozen.
5841
5842      declare
5843         Typ  : constant Entity_Id := Etype (Spec_Id);
5844         Utyp : constant Entity_Id := Underlying_Type (Typ);
5845
5846      begin
5847         if Is_Limited_View (Typ) then
5848            Set_Returns_By_Ref (Spec_Id);
5849
5850         elsif Present (Utyp) and then CW_Or_Has_Controlled_Part (Utyp) then
5851            Set_Returns_By_Ref (Spec_Id);
5852         end if;
5853      end;
5854
5855      --  For a procedure, we add a return for all possible syntactic ends of
5856      --  the subprogram.
5857
5858      if Ekind_In (Spec_Id, E_Procedure, E_Generic_Procedure) then
5859         Add_Return (Spec_Id, Statements (HSS));
5860
5861         if Present (Exception_Handlers (HSS)) then
5862            Except_H := First_Non_Pragma (Exception_Handlers (HSS));
5863            while Present (Except_H) loop
5864               Add_Return (Spec_Id, Statements (Except_H));
5865               Next_Non_Pragma (Except_H);
5866            end loop;
5867         end if;
5868
5869      --  For a function, we must deal with the case where there is at least
5870      --  one missing return. What we do is to wrap the entire body of the
5871      --  function in a block:
5872
5873      --    begin
5874      --      ...
5875      --    end;
5876
5877      --  becomes
5878
5879      --    begin
5880      --       begin
5881      --          ...
5882      --       end;
5883
5884      --       raise Program_Error;
5885      --    end;
5886
5887      --  This approach is necessary because the raise must be signalled to the
5888      --  caller, not handled by any local handler (RM 6.4(11)).
5889
5890      --  Note: we do not need to analyze the constructed sequence here, since
5891      --  it has no handler, and an attempt to analyze the handled statement
5892      --  sequence twice is risky in various ways (e.g. the issue of expanding
5893      --  cleanup actions twice).
5894
5895      elsif Has_Missing_Return (Spec_Id) then
5896         declare
5897            Hloc : constant Source_Ptr := Sloc (HSS);
5898            Blok : constant Node_Id    :=
5899                     Make_Block_Statement (Hloc,
5900                       Handled_Statement_Sequence => HSS);
5901            Rais : constant Node_Id    :=
5902                     Make_Raise_Program_Error (Hloc,
5903                       Reason => PE_Missing_Return);
5904
5905         begin
5906            Set_Handled_Statement_Sequence (N,
5907              Make_Handled_Sequence_Of_Statements (Hloc,
5908                Statements => New_List (Blok, Rais)));
5909
5910            Push_Scope (Spec_Id);
5911            Analyze (Blok);
5912            Analyze (Rais);
5913            Pop_Scope;
5914         end;
5915      end if;
5916
5917      --  If subprogram contains a parameterless recursive call, then we may
5918      --  have an infinite recursion, so see if we can generate code to check
5919      --  for this possibility if storage checks are not suppressed.
5920
5921      if Ekind (Spec_Id) = E_Procedure
5922        and then Has_Recursive_Call (Spec_Id)
5923        and then not Storage_Checks_Suppressed (Spec_Id)
5924      then
5925         Detect_Infinite_Recursion (N, Spec_Id);
5926      end if;
5927
5928      --  Set to encode entity names in package body before gigi is called
5929
5930      Qualify_Entity_Names (N);
5931
5932      --  If the body belongs to a nonabstract library-level source primitive
5933      --  of a tagged type, install an elaboration check which ensures that a
5934      --  dispatching call targeting the primitive will not execute the body
5935      --  without it being previously elaborated.
5936
5937      Install_Primitive_Elaboration_Check (N);
5938   end Expand_N_Subprogram_Body;
5939
5940   -----------------------------------
5941   -- Expand_N_Subprogram_Body_Stub --
5942   -----------------------------------
5943
5944   procedure Expand_N_Subprogram_Body_Stub (N : Node_Id) is
5945      Bod : Node_Id;
5946
5947   begin
5948      if Present (Corresponding_Body (N)) then
5949         Bod := Unit_Declaration_Node (Corresponding_Body (N));
5950
5951         --  The body may have been expanded already when it is analyzed
5952         --  through the subunit node. Do no expand again: it interferes
5953         --  with the construction of unnesting tables when generating C.
5954
5955         if not Analyzed (Bod) then
5956            Expand_N_Subprogram_Body (Bod);
5957         end if;
5958
5959         --  Add full qualification to entities that may be created late
5960         --  during unnesting.
5961
5962         Qualify_Entity_Names (N);
5963      end if;
5964   end Expand_N_Subprogram_Body_Stub;
5965
5966   -------------------------------------
5967   -- Expand_N_Subprogram_Declaration --
5968   -------------------------------------
5969
5970   --  If the declaration appears within a protected body, it is a private
5971   --  operation of the protected type. We must create the corresponding
5972   --  protected subprogram an associated formals. For a normal protected
5973   --  operation, this is done when expanding the protected type declaration.
5974
5975   --  If the declaration is for a null procedure, emit null body
5976
5977   procedure Expand_N_Subprogram_Declaration (N : Node_Id) is
5978      Loc  : constant Source_Ptr := Sloc (N);
5979      Subp : constant Entity_Id  := Defining_Entity (N);
5980
5981      --  Local variables
5982
5983      Scop      : constant Entity_Id  := Scope (Subp);
5984      Prot_Bod  : Node_Id;
5985      Prot_Decl : Node_Id;
5986      Prot_Id   : Entity_Id;
5987
5988   --  Start of processing for Expand_N_Subprogram_Declaration
5989
5990   begin
5991      --  In SPARK, subprogram declarations are only allowed in package
5992      --  specifications.
5993
5994      if Nkind (Parent (N)) /= N_Package_Specification then
5995         if Nkind (Parent (N)) = N_Compilation_Unit then
5996            Check_SPARK_05_Restriction
5997              ("subprogram declaration is not a library item", N);
5998
5999         elsif Present (Next (N))
6000           and then Nkind (Next (N)) = N_Pragma
6001           and then Get_Pragma_Id (Next (N)) = Pragma_Import
6002         then
6003            --  In SPARK, subprogram declarations are also permitted in
6004            --  declarative parts when immediately followed by a corresponding
6005            --  pragma Import. We only check here that there is some pragma
6006            --  Import.
6007
6008            null;
6009         else
6010            Check_SPARK_05_Restriction
6011              ("subprogram declaration is not allowed here", N);
6012         end if;
6013      end if;
6014
6015      --  Deal with case of protected subprogram. Do not generate protected
6016      --  operation if operation is flagged as eliminated.
6017
6018      if Is_List_Member (N)
6019        and then Present (Parent (List_Containing (N)))
6020        and then Nkind (Parent (List_Containing (N))) = N_Protected_Body
6021        and then Is_Protected_Type (Scop)
6022      then
6023         if No (Protected_Body_Subprogram (Subp))
6024           and then not Is_Eliminated (Subp)
6025         then
6026            Prot_Decl :=
6027              Make_Subprogram_Declaration (Loc,
6028                Specification =>
6029                  Build_Protected_Sub_Specification
6030                    (N, Scop, Unprotected_Mode));
6031
6032            --  The protected subprogram is declared outside of the protected
6033            --  body. Given that the body has frozen all entities so far, we
6034            --  analyze the subprogram and perform freezing actions explicitly.
6035            --  including the generation of an explicit freeze node, to ensure
6036            --  that gigi has the proper order of elaboration.
6037            --  If the body is a subunit, the insertion point is before the
6038            --  stub in the parent.
6039
6040            Prot_Bod := Parent (List_Containing (N));
6041
6042            if Nkind (Parent (Prot_Bod)) = N_Subunit then
6043               Prot_Bod := Corresponding_Stub (Parent (Prot_Bod));
6044            end if;
6045
6046            Insert_Before (Prot_Bod, Prot_Decl);
6047            Prot_Id := Defining_Unit_Name (Specification (Prot_Decl));
6048            Set_Has_Delayed_Freeze (Prot_Id);
6049
6050            Push_Scope (Scope (Scop));
6051            Analyze (Prot_Decl);
6052            Freeze_Before (N, Prot_Id);
6053            Set_Protected_Body_Subprogram (Subp, Prot_Id);
6054
6055            --  Create protected operation as well. Even though the operation
6056            --  is only accessible within the body, it is possible to make it
6057            --  available outside of the protected object by using 'Access to
6058            --  provide a callback, so build protected version in all cases.
6059
6060            Prot_Decl :=
6061              Make_Subprogram_Declaration (Loc,
6062                Specification =>
6063                  Build_Protected_Sub_Specification (N, Scop, Protected_Mode));
6064            Insert_Before (Prot_Bod, Prot_Decl);
6065            Analyze (Prot_Decl);
6066
6067            Pop_Scope;
6068         end if;
6069
6070      --  Ada 2005 (AI-348): Generate body for a null procedure. In most
6071      --  cases this is superfluous because calls to it will be automatically
6072      --  inlined, but we definitely need the body if preconditions for the
6073      --  procedure are present, or if performing coverage analysis.
6074
6075      elsif Nkind (Specification (N)) = N_Procedure_Specification
6076        and then Null_Present (Specification (N))
6077      then
6078         declare
6079            Bod : constant Node_Id := Body_To_Inline (N);
6080
6081         begin
6082            Set_Has_Completion (Subp, False);
6083            Append_Freeze_Action (Subp, Bod);
6084
6085            --  The body now contains raise statements, so calls to it will
6086            --  not be inlined.
6087
6088            Set_Is_Inlined (Subp, False);
6089         end;
6090      end if;
6091
6092      --  When generating C code, transform a function that returns a
6093      --  constrained array type into a procedure with an out parameter
6094      --  that carries the return value.
6095
6096      --  We skip this transformation for unchecked conversions, since they
6097      --  are not needed by the C generator (and this also produces cleaner
6098      --  output).
6099
6100      if Modify_Tree_For_C
6101        and then Nkind (Specification (N)) = N_Function_Specification
6102        and then Is_Array_Type (Etype (Subp))
6103        and then Is_Constrained (Etype (Subp))
6104        and then not Is_Unchecked_Conversion_Instance (Subp)
6105      then
6106         Build_Procedure_Form (N);
6107      end if;
6108   end Expand_N_Subprogram_Declaration;
6109
6110   --------------------------------
6111   -- Expand_Non_Function_Return --
6112   --------------------------------
6113
6114   procedure Expand_Non_Function_Return (N : Node_Id) is
6115      pragma Assert (No (Expression (N)));
6116
6117      Loc       : constant Source_Ptr := Sloc (N);
6118      Scope_Id  : Entity_Id := Return_Applies_To (Return_Statement_Entity (N));
6119      Kind      : constant Entity_Kind := Ekind (Scope_Id);
6120      Call      : Node_Id;
6121      Acc_Stat  : Node_Id;
6122      Goto_Stat : Node_Id;
6123      Lab_Node  : Node_Id;
6124
6125   begin
6126      --  Call the _Postconditions procedure if the related subprogram has
6127      --  contract assertions that need to be verified on exit.
6128
6129      if Ekind_In (Scope_Id, E_Entry, E_Entry_Family, E_Procedure)
6130        and then Present (Postconditions_Proc (Scope_Id))
6131      then
6132         Insert_Action (N,
6133           Make_Procedure_Call_Statement (Loc,
6134             Name => New_Occurrence_Of (Postconditions_Proc (Scope_Id), Loc)));
6135      end if;
6136
6137      --  If it is a return from a procedure do no extra steps
6138
6139      if Kind = E_Procedure or else Kind = E_Generic_Procedure then
6140         return;
6141
6142      --  If it is a nested return within an extended one, replace it with a
6143      --  return of the previously declared return object.
6144
6145      elsif Kind = E_Return_Statement then
6146         Rewrite (N,
6147           Make_Simple_Return_Statement (Loc,
6148             Expression =>
6149               New_Occurrence_Of (First_Entity (Scope_Id), Loc)));
6150         Set_Comes_From_Extended_Return_Statement (N);
6151         Set_Return_Statement_Entity (N, Scope_Id);
6152         Expand_Simple_Function_Return (N);
6153         return;
6154      end if;
6155
6156      pragma Assert (Is_Entry (Scope_Id));
6157
6158      --  Look at the enclosing block to see whether the return is from an
6159      --  accept statement or an entry body.
6160
6161      for J in reverse 0 .. Scope_Stack.Last loop
6162         Scope_Id := Scope_Stack.Table (J).Entity;
6163         exit when Is_Concurrent_Type (Scope_Id);
6164      end loop;
6165
6166      --  If it is a return from accept statement it is expanded as call to
6167      --  RTS Complete_Rendezvous and a goto to the end of the accept body.
6168
6169      --  (cf : Expand_N_Accept_Statement, Expand_N_Selective_Accept,
6170      --  Expand_N_Accept_Alternative in exp_ch9.adb)
6171
6172      if Is_Task_Type (Scope_Id) then
6173
6174         Call :=
6175           Make_Procedure_Call_Statement (Loc,
6176             Name => New_Occurrence_Of (RTE (RE_Complete_Rendezvous), Loc));
6177         Insert_Before (N, Call);
6178         --  why not insert actions here???
6179         Analyze (Call);
6180
6181         Acc_Stat := Parent (N);
6182         while Nkind (Acc_Stat) /= N_Accept_Statement loop
6183            Acc_Stat := Parent (Acc_Stat);
6184         end loop;
6185
6186         Lab_Node := Last (Statements
6187           (Handled_Statement_Sequence (Acc_Stat)));
6188
6189         Goto_Stat := Make_Goto_Statement (Loc,
6190           Name => New_Occurrence_Of
6191             (Entity (Identifier (Lab_Node)), Loc));
6192
6193         Set_Analyzed (Goto_Stat);
6194
6195         Rewrite (N, Goto_Stat);
6196         Analyze (N);
6197
6198      --  If it is a return from an entry body, put a Complete_Entry_Body call
6199      --  in front of the return.
6200
6201      elsif Is_Protected_Type (Scope_Id) then
6202         Call :=
6203           Make_Procedure_Call_Statement (Loc,
6204             Name =>
6205               New_Occurrence_Of (RTE (RE_Complete_Entry_Body), Loc),
6206             Parameter_Associations => New_List (
6207               Make_Attribute_Reference (Loc,
6208                 Prefix         =>
6209                   New_Occurrence_Of
6210                     (Find_Protection_Object (Current_Scope), Loc),
6211                 Attribute_Name => Name_Unchecked_Access)));
6212
6213         Insert_Before (N, Call);
6214         Analyze (Call);
6215      end if;
6216   end Expand_Non_Function_Return;
6217
6218   ---------------------------------------
6219   -- Expand_Protected_Object_Reference --
6220   ---------------------------------------
6221
6222   function Expand_Protected_Object_Reference
6223     (N    : Node_Id;
6224      Scop : Entity_Id) return Node_Id
6225   is
6226      Loc   : constant Source_Ptr := Sloc (N);
6227      Corr  : Entity_Id;
6228      Rec   : Node_Id;
6229      Param : Entity_Id;
6230      Proc  : Entity_Id;
6231
6232   begin
6233      Rec := Make_Identifier (Loc, Name_uObject);
6234      Set_Etype (Rec, Corresponding_Record_Type (Scop));
6235
6236      --  Find enclosing protected operation, and retrieve its first parameter,
6237      --  which denotes the enclosing protected object. If the enclosing
6238      --  operation is an entry, we are immediately within the protected body,
6239      --  and we can retrieve the object from the service entries procedure. A
6240      --  barrier function has the same signature as an entry. A barrier
6241      --  function is compiled within the protected object, but unlike
6242      --  protected operations its never needs locks, so that its protected
6243      --  body subprogram points to itself.
6244
6245      Proc := Current_Scope;
6246      while Present (Proc)
6247        and then Scope (Proc) /= Scop
6248      loop
6249         Proc := Scope (Proc);
6250      end loop;
6251
6252      Corr := Protected_Body_Subprogram (Proc);
6253
6254      if No (Corr) then
6255
6256         --  Previous error left expansion incomplete.
6257         --  Nothing to do on this call.
6258
6259         return Empty;
6260      end if;
6261
6262      Param :=
6263        Defining_Identifier
6264          (First (Parameter_Specifications (Parent (Corr))));
6265
6266      if Is_Subprogram (Proc) and then Proc /= Corr then
6267
6268         --  Protected function or procedure
6269
6270         Set_Entity (Rec, Param);
6271
6272         --  Rec is a reference to an entity which will not be in scope when
6273         --  the call is reanalyzed, and needs no further analysis.
6274
6275         Set_Analyzed (Rec);
6276
6277      else
6278         --  Entry or barrier function for entry body. The first parameter of
6279         --  the entry body procedure is pointer to the object. We create a
6280         --  local variable of the proper type, duplicating what is done to
6281         --  define _object later on.
6282
6283         declare
6284            Decls   : List_Id;
6285            Obj_Ptr : constant Entity_Id := Make_Temporary (Loc, 'T');
6286
6287         begin
6288            Decls := New_List (
6289              Make_Full_Type_Declaration (Loc,
6290                Defining_Identifier => Obj_Ptr,
6291                  Type_Definition   =>
6292                     Make_Access_To_Object_Definition (Loc,
6293                       Subtype_Indication =>
6294                         New_Occurrence_Of
6295                           (Corresponding_Record_Type (Scop), Loc))));
6296
6297            Insert_Actions (N, Decls);
6298            Freeze_Before (N, Obj_Ptr);
6299
6300            Rec :=
6301              Make_Explicit_Dereference (Loc,
6302                Prefix =>
6303                  Unchecked_Convert_To (Obj_Ptr,
6304                    New_Occurrence_Of (Param, Loc)));
6305
6306            --  Analyze new actual. Other actuals in calls are already analyzed
6307            --  and the list of actuals is not reanalyzed after rewriting.
6308
6309            Set_Parent (Rec, N);
6310            Analyze (Rec);
6311         end;
6312      end if;
6313
6314      return Rec;
6315   end Expand_Protected_Object_Reference;
6316
6317   --------------------------------------
6318   -- Expand_Protected_Subprogram_Call --
6319   --------------------------------------
6320
6321   procedure Expand_Protected_Subprogram_Call
6322     (N    : Node_Id;
6323      Subp : Entity_Id;
6324      Scop : Entity_Id)
6325   is
6326      Rec : Node_Id;
6327
6328      procedure Expand_Internal_Init_Call;
6329      --  A call to an operation of the type may occur in the initialization
6330      --  of a private component. In that case the prefix of the call is an
6331      --  entity name and the call is treated as internal even though it
6332      --  appears in code outside of the protected type.
6333
6334      procedure Freeze_Called_Function;
6335      --  If it is a function call it can appear in elaboration code and
6336      --  the called entity must be frozen before the call. This must be
6337      --  done before the call is expanded, as the expansion may rewrite it
6338      --  to something other than a call (e.g. a temporary initialized in a
6339      --  transient block).
6340
6341      -------------------------------
6342      -- Expand_Internal_Init_Call --
6343      -------------------------------
6344
6345      procedure Expand_Internal_Init_Call is
6346      begin
6347         --  If the context is a protected object (rather than a protected
6348         --  type) the call itself is bound to raise program_error because
6349         --  the protected body will not have been elaborated yet. This is
6350         --  diagnosed subsequently in Sem_Elab.
6351
6352         Freeze_Called_Function;
6353
6354         --  The target of the internal call is the first formal of the
6355         --  enclosing initialization procedure.
6356
6357         Rec := New_Occurrence_Of (First_Formal (Current_Scope), Sloc (N));
6358         Build_Protected_Subprogram_Call (N,
6359           Name     => Name (N),
6360           Rec      => Rec,
6361           External => False);
6362         Analyze (N);
6363         Resolve (N, Etype (Subp));
6364      end Expand_Internal_Init_Call;
6365
6366      ----------------------------
6367      -- Freeze_Called_Function --
6368      ----------------------------
6369
6370      procedure Freeze_Called_Function is
6371      begin
6372         if Ekind (Subp) = E_Function then
6373            Freeze_Expression (Name (N));
6374         end if;
6375      end Freeze_Called_Function;
6376
6377   --  Start of processing for Expand_Protected_Subprogram_Call
6378
6379   begin
6380      --  If the protected object is not an enclosing scope, this is an inter-
6381      --  object function call. Inter-object procedure calls are expanded by
6382      --  Exp_Ch9.Build_Simple_Entry_Call. The call is intra-object only if the
6383      --  subprogram being called is in the protected body being compiled, and
6384      --  if the protected object in the call is statically the enclosing type.
6385      --  The object may be a component of some other data structure, in which
6386      --  case this must be handled as an inter-object call.
6387
6388      if not In_Open_Scopes (Scop)
6389        or else Is_Entry_Wrapper (Current_Scope)
6390        or else not Is_Entity_Name (Name (N))
6391      then
6392         if Nkind (Name (N)) = N_Selected_Component then
6393            Rec := Prefix (Name (N));
6394
6395         elsif Nkind (Name (N)) = N_Indexed_Component then
6396            Rec := Prefix (Prefix (Name (N)));
6397
6398         --  If this is a call within an entry wrapper, it appears within a
6399         --  precondition that calls another primitive of the synchronized
6400         --  type. The target object of the call is the first actual on the
6401         --  wrapper. Note that this is an external call, because the wrapper
6402         --  is called outside of the synchronized object. This means that
6403         --  an entry call to an entry with preconditions involves two
6404         --  synchronized operations.
6405
6406         elsif Ekind (Current_Scope) = E_Procedure
6407           and then Is_Entry_Wrapper (Current_Scope)
6408         then
6409            Rec := New_Occurrence_Of (First_Entity (Current_Scope), Sloc (N));
6410
6411         --  A default parameter of a protected operation may be a call to
6412         --  a protected function of the type. This appears as an internal
6413         --  call in the profile of the operation, but if the context is an
6414         --  external call we must convert the call into an external one,
6415         --  using the protected object that is the target, so that:
6416
6417         --     Prot.P (F)
6418         --  is transformed into
6419         --     Prot.P (Prot.F)
6420
6421         elsif Nkind (Parent (N)) = N_Procedure_Call_Statement
6422           and then Nkind (Name (Parent (N))) = N_Selected_Component
6423           and then Is_Protected_Type (Etype (Prefix (Name (Parent (N)))))
6424           and then Is_Entity_Name (Name (N))
6425           and then Scope (Entity (Name (N))) =
6426                      Etype (Prefix (Name (Parent (N))))
6427         then
6428            Rewrite (Name (N),
6429              Make_Selected_Component (Sloc (N),
6430                Prefix        => New_Copy_Tree (Prefix (Name (Parent (N)))),
6431                Selector_Name => Relocate_Node (Name (N))));
6432
6433            Analyze_And_Resolve (N);
6434            return;
6435
6436         else
6437            --  If the context is the initialization procedure for a protected
6438            --  type, the call is legal because the called entity must be a
6439            --  function of that enclosing type, and this is treated as an
6440            --  internal call.
6441
6442            pragma Assert
6443              (Is_Entity_Name (Name (N)) and then Inside_Init_Proc);
6444
6445            Expand_Internal_Init_Call;
6446            return;
6447         end if;
6448
6449         Freeze_Called_Function;
6450         Build_Protected_Subprogram_Call (N,
6451           Name     => New_Occurrence_Of (Subp, Sloc (N)),
6452           Rec      => Convert_Concurrent (Rec, Etype (Rec)),
6453           External => True);
6454
6455      else
6456         Rec := Expand_Protected_Object_Reference (N, Scop);
6457
6458         if No (Rec) then
6459            return;
6460         end if;
6461
6462         Freeze_Called_Function;
6463         Build_Protected_Subprogram_Call (N,
6464           Name     => Name (N),
6465           Rec      => Rec,
6466           External => False);
6467      end if;
6468
6469      --  Analyze and resolve the new call. The actuals have already been
6470      --  resolved, but expansion of a function call will add extra actuals
6471      --  if needed. Analysis of a procedure call already includes resolution.
6472
6473      Analyze (N);
6474
6475      if Ekind (Subp) = E_Function then
6476         Resolve (N, Etype (Subp));
6477      end if;
6478   end Expand_Protected_Subprogram_Call;
6479
6480   -----------------------------------
6481   -- Expand_Simple_Function_Return --
6482   -----------------------------------
6483
6484   --  The "simple" comes from the syntax rule simple_return_statement. The
6485   --  semantics are not at all simple.
6486
6487   procedure Expand_Simple_Function_Return (N : Node_Id) is
6488      Loc : constant Source_Ptr := Sloc (N);
6489
6490      Scope_Id : constant Entity_Id :=
6491                   Return_Applies_To (Return_Statement_Entity (N));
6492      --  The function we are returning from
6493
6494      R_Type : constant Entity_Id := Etype (Scope_Id);
6495      --  The result type of the function
6496
6497      Utyp : constant Entity_Id := Underlying_Type (R_Type);
6498
6499      Exp : Node_Id := Expression (N);
6500      pragma Assert (Present (Exp));
6501
6502      Exptyp : constant Entity_Id := Etype (Exp);
6503      --  The type of the expression (not necessarily the same as R_Type)
6504
6505      Subtype_Ind : Node_Id;
6506      --  If the result type of the function is class-wide and the expression
6507      --  has a specific type, then we use the expression's type as the type of
6508      --  the return object. In cases where the expression is an aggregate that
6509      --  is built in place, this avoids the need for an expensive conversion
6510      --  of the return object to the specific type on assignments to the
6511      --  individual components.
6512
6513   begin
6514      if Is_Class_Wide_Type (R_Type)
6515        and then not Is_Class_Wide_Type (Exptyp)
6516        and then Nkind (Exp) /= N_Type_Conversion
6517      then
6518         Subtype_Ind := New_Occurrence_Of (Exptyp, Loc);
6519      else
6520         Subtype_Ind := New_Occurrence_Of (R_Type, Loc);
6521
6522         --  If the result type is class-wide and the expression is a view
6523         --  conversion, the conversion plays no role in the expansion because
6524         --  it does not modify the tag of the object. Remove the conversion
6525         --  altogether to prevent tag overwriting.
6526
6527         if Is_Class_Wide_Type (R_Type)
6528           and then not Is_Class_Wide_Type (Exptyp)
6529           and then Nkind (Exp) = N_Type_Conversion
6530         then
6531            Exp := Expression (Exp);
6532         end if;
6533      end if;
6534
6535      --  Assert that if F says "return G(...);"
6536      --  then F and G are both b-i-p, or neither b-i-p.
6537
6538      if Nkind (Exp) = N_Function_Call then
6539         pragma Assert (Ekind (Scope_Id) = E_Function);
6540         pragma Assert
6541           (Is_Build_In_Place_Function (Scope_Id) =
6542            Is_Build_In_Place_Function_Call (Exp));
6543         null;
6544      end if;
6545
6546      --  For the case of a simple return that does not come from an
6547      --  extended return, in the case of build-in-place, we rewrite
6548      --  "return <expression>;" to be:
6549
6550      --    return _anon_ : <return_subtype> := <expression>
6551
6552      --  The expansion produced by Expand_N_Extended_Return_Statement will
6553      --  contain simple return statements (for example, a block containing
6554      --  simple return of the return object), which brings us back here with
6555      --  Comes_From_Extended_Return_Statement set. The reason for the barrier
6556      --  checking for a simple return that does not come from an extended
6557      --  return is to avoid this infinite recursion.
6558
6559      --  The reason for this design is that for Ada 2005 limited returns, we
6560      --  need to reify the return object, so we can build it "in place", and
6561      --  we need a block statement to hang finalization and tasking stuff.
6562
6563      --  ??? In order to avoid disruption, we avoid translating to extended
6564      --  return except in the cases where we really need to (Ada 2005 for
6565      --  inherently limited). We might prefer to do this translation in all
6566      --  cases (except perhaps for the case of Ada 95 inherently limited),
6567      --  in order to fully exercise the Expand_N_Extended_Return_Statement
6568      --  code. This would also allow us to do the build-in-place optimization
6569      --  for efficiency even in cases where it is semantically not required.
6570
6571      --  As before, we check the type of the return expression rather than the
6572      --  return type of the function, because the latter may be a limited
6573      --  class-wide interface type, which is not a limited type, even though
6574      --  the type of the expression may be.
6575
6576      pragma Assert
6577        (Comes_From_Extended_Return_Statement (N)
6578          or else not Is_Build_In_Place_Function_Call (Exp)
6579          or else Is_Build_In_Place_Function (Scope_Id));
6580
6581      if not Comes_From_Extended_Return_Statement (N)
6582        and then Is_Build_In_Place_Function (Scope_Id)
6583        and then not Debug_Flag_Dot_L
6584
6585         --  The functionality of interface thunks is simple and it is always
6586         --  handled by means of simple return statements. This leaves their
6587         --  expansion simple and clean.
6588
6589        and then not Is_Thunk (Current_Scope)
6590      then
6591         declare
6592            Return_Object_Entity : constant Entity_Id :=
6593                                     Make_Temporary (Loc, 'R', Exp);
6594
6595            Obj_Decl : constant Node_Id :=
6596                         Make_Object_Declaration (Loc,
6597                           Defining_Identifier => Return_Object_Entity,
6598                           Object_Definition   => Subtype_Ind,
6599                           Expression          => Exp);
6600
6601            Ext : constant Node_Id :=
6602                    Make_Extended_Return_Statement (Loc,
6603                      Return_Object_Declarations => New_List (Obj_Decl));
6604            --  Do not perform this high-level optimization if the result type
6605            --  is an interface because the "this" pointer must be displaced.
6606
6607         begin
6608            Rewrite (N, Ext);
6609            Analyze (N);
6610            return;
6611         end;
6612      end if;
6613
6614      --  Here we have a simple return statement that is part of the expansion
6615      --  of an extended return statement (either written by the user, or
6616      --  generated by the above code).
6617
6618      --  Always normalize C/Fortran boolean result. This is not always needed,
6619      --  but it seems a good idea to minimize the passing around of non-
6620      --  normalized values, and in any case this handles the processing of
6621      --  barrier functions for protected types, which turn the condition into
6622      --  a return statement.
6623
6624      if Is_Boolean_Type (Exptyp)
6625        and then Nonzero_Is_True (Exptyp)
6626      then
6627         Adjust_Condition (Exp);
6628         Adjust_Result_Type (Exp, Exptyp);
6629      end if;
6630
6631      --  Do validity check if enabled for returns
6632
6633      if Validity_Checks_On
6634        and then Validity_Check_Returns
6635      then
6636         Ensure_Valid (Exp);
6637      end if;
6638
6639      --  Check the result expression of a scalar function against the subtype
6640      --  of the function by inserting a conversion. This conversion must
6641      --  eventually be performed for other classes of types, but for now it's
6642      --  only done for scalars.
6643      --  ???
6644
6645      if Is_Scalar_Type (Exptyp) then
6646         Rewrite (Exp, Convert_To (R_Type, Exp));
6647
6648         --  The expression is resolved to ensure that the conversion gets
6649         --  expanded to generate a possible constraint check.
6650
6651         Analyze_And_Resolve (Exp, R_Type);
6652      end if;
6653
6654      --  Deal with returning variable length objects and controlled types
6655
6656      --  Nothing to do if we are returning by reference, or this is not a
6657      --  type that requires special processing (indicated by the fact that
6658      --  it requires a cleanup scope for the secondary stack case).
6659
6660      if Is_Build_In_Place_Function (Scope_Id)
6661        or else Is_Limited_Interface (Exptyp)
6662      then
6663         null;
6664
6665      --  No copy needed for thunks returning interface type objects since
6666      --  the object is returned by reference and the maximum functionality
6667      --  required is just to displace the pointer.
6668
6669      elsif Is_Thunk (Current_Scope) and then Is_Interface (Exptyp) then
6670         null;
6671
6672      --  If the call is within a thunk and the type is a limited view, the
6673      --  backend will eventually see the non-limited view of the type.
6674
6675      elsif Is_Thunk (Current_Scope) and then Is_Incomplete_Type (Exptyp) then
6676         return;
6677
6678      elsif not Requires_Transient_Scope (R_Type) then
6679
6680         --  Mutable records with variable-length components are not returned
6681         --  on the sec-stack, so we need to make sure that the back end will
6682         --  only copy back the size of the actual value, and not the maximum
6683         --  size. We create an actual subtype for this purpose. However we
6684         --  need not do it if the expression is a function call since this
6685         --  will be done in the called function and doing it here too would
6686         --  cause a temporary with maximum size to be created.
6687
6688         declare
6689            Ubt  : constant Entity_Id := Underlying_Type (Base_Type (Exptyp));
6690            Decl : Node_Id;
6691            Ent  : Entity_Id;
6692         begin
6693            if Nkind (Exp) /= N_Function_Call
6694              and then Has_Discriminants (Ubt)
6695              and then not Is_Constrained (Ubt)
6696              and then not Has_Unchecked_Union (Ubt)
6697            then
6698               Decl := Build_Actual_Subtype (Ubt, Exp);
6699               Ent := Defining_Identifier (Decl);
6700               Insert_Action (Exp, Decl);
6701               Rewrite (Exp, Unchecked_Convert_To (Ent, Exp));
6702               Analyze_And_Resolve (Exp);
6703            end if;
6704         end;
6705
6706      --  Here if secondary stack is used
6707
6708      else
6709         --  Prevent the reclamation of the secondary stack by all enclosing
6710         --  blocks and loops as well as the related function; otherwise the
6711         --  result would be reclaimed too early.
6712
6713         Set_Enclosing_Sec_Stack_Return (N);
6714
6715         --  Optimize the case where the result is a function call. In this
6716         --  case either the result is already on the secondary stack, or is
6717         --  already being returned with the stack pointer depressed and no
6718         --  further processing is required except to set the By_Ref flag
6719         --  to ensure that gigi does not attempt an extra unnecessary copy.
6720         --  (actually not just unnecessary but harmfully wrong in the case
6721         --  of a controlled type, where gigi does not know how to do a copy).
6722         --  To make up for a gcc 2.8.1 deficiency (???), we perform the copy
6723         --  for array types if the constrained status of the target type is
6724         --  different from that of the expression.
6725
6726         if Requires_Transient_Scope (Exptyp)
6727           and then
6728              (not Is_Array_Type (Exptyp)
6729                or else Is_Constrained (Exptyp) = Is_Constrained (R_Type)
6730                or else CW_Or_Has_Controlled_Part (Utyp))
6731           and then Nkind (Exp) = N_Function_Call
6732         then
6733            Set_By_Ref (N);
6734
6735            --  Remove side effects from the expression now so that other parts
6736            --  of the expander do not have to reanalyze this node without this
6737            --  optimization
6738
6739            Rewrite (Exp, Duplicate_Subexpr_No_Checks (Exp));
6740
6741            --  Ada 2005 (AI-251): If the type of the returned object is
6742            --  an interface then add an implicit type conversion to force
6743            --  displacement of the "this" pointer.
6744
6745            if Is_Interface (R_Type) then
6746               Rewrite (Exp, Convert_To (R_Type, Relocate_Node (Exp)));
6747            end if;
6748
6749            Analyze_And_Resolve (Exp, R_Type);
6750
6751         --  For controlled types, do the allocation on the secondary stack
6752         --  manually in order to call adjust at the right time:
6753
6754         --    type Anon1 is access R_Type;
6755         --    for Anon1'Storage_pool use ss_pool;
6756         --    Anon2 : anon1 := new R_Type'(expr);
6757         --    return Anon2.all;
6758
6759         --  We do the same for classwide types that are not potentially
6760         --  controlled (by the virtue of restriction No_Finalization) because
6761         --  gigi is not able to properly allocate class-wide types.
6762
6763         elsif CW_Or_Has_Controlled_Part (Utyp) then
6764            declare
6765               Loc        : constant Source_Ptr := Sloc (N);
6766               Acc_Typ    : constant Entity_Id := Make_Temporary (Loc, 'A');
6767               Alloc_Node : Node_Id;
6768               Temp       : Entity_Id;
6769
6770            begin
6771               Set_Ekind (Acc_Typ, E_Access_Type);
6772
6773               Set_Associated_Storage_Pool (Acc_Typ, RTE (RE_SS_Pool));
6774
6775               --  This is an allocator for the secondary stack, and it's fine
6776               --  to have Comes_From_Source set False on it, as gigi knows not
6777               --  to flag it as a violation of No_Implicit_Heap_Allocations.
6778
6779               Alloc_Node :=
6780                 Make_Allocator (Loc,
6781                   Expression =>
6782                     Make_Qualified_Expression (Loc,
6783                       Subtype_Mark => New_Occurrence_Of (Etype (Exp), Loc),
6784                       Expression   => Relocate_Node (Exp)));
6785
6786               --  We do not want discriminant checks on the declaration,
6787               --  given that it gets its value from the allocator.
6788
6789               Set_No_Initialization (Alloc_Node);
6790
6791               Temp := Make_Temporary (Loc, 'R', Alloc_Node);
6792
6793               Insert_List_Before_And_Analyze (N, New_List (
6794                 Make_Full_Type_Declaration (Loc,
6795                   Defining_Identifier => Acc_Typ,
6796                   Type_Definition     =>
6797                     Make_Access_To_Object_Definition (Loc,
6798                       Subtype_Indication => Subtype_Ind)),
6799
6800                 Make_Object_Declaration (Loc,
6801                   Defining_Identifier => Temp,
6802                   Object_Definition   => New_Occurrence_Of (Acc_Typ, Loc),
6803                   Expression          => Alloc_Node)));
6804
6805               Rewrite (Exp,
6806                 Make_Explicit_Dereference (Loc,
6807                 Prefix => New_Occurrence_Of (Temp, Loc)));
6808
6809               --  Ada 2005 (AI-251): If the type of the returned object is
6810               --  an interface then add an implicit type conversion to force
6811               --  displacement of the "this" pointer.
6812
6813               if Is_Interface (R_Type) then
6814                  Rewrite (Exp, Convert_To (R_Type, Relocate_Node (Exp)));
6815               end if;
6816
6817               Analyze_And_Resolve (Exp, R_Type);
6818            end;
6819
6820         --  Otherwise use the gigi mechanism to allocate result on the
6821         --  secondary stack.
6822
6823         else
6824            Check_Restriction (No_Secondary_Stack, N);
6825            Set_Storage_Pool (N, RTE (RE_SS_Pool));
6826            Set_Procedure_To_Call (N, RTE (RE_SS_Allocate));
6827         end if;
6828      end if;
6829
6830      --  Implement the rules of 6.5(8-10), which require a tag check in
6831      --  the case of a limited tagged return type, and tag reassignment for
6832      --  nonlimited tagged results. These actions are needed when the return
6833      --  type is a specific tagged type and the result expression is a
6834      --  conversion or a formal parameter, because in that case the tag of
6835      --  the expression might differ from the tag of the specific result type.
6836
6837      --  We must also verify an underlying type exists for the return type in
6838      --  case it is incomplete - in which case is not necessary to generate a
6839      --  check anyway since an incomplete limited tagged return type would
6840      --  qualify as a premature usage.
6841
6842      if Present (Utyp)
6843        and then Is_Tagged_Type (Utyp)
6844        and then not Is_Class_Wide_Type (Utyp)
6845        and then (Nkind_In (Exp, N_Type_Conversion,
6846                                 N_Unchecked_Type_Conversion)
6847                    or else (Is_Entity_Name (Exp)
6848                               and then Is_Formal (Entity (Exp))))
6849      then
6850         --  When the return type is limited, perform a check that the tag of
6851         --  the result is the same as the tag of the return type.
6852
6853         if Is_Limited_Type (R_Type) then
6854            Insert_Action (Exp,
6855              Make_Raise_Constraint_Error (Loc,
6856                Condition =>
6857                  Make_Op_Ne (Loc,
6858                    Left_Opnd  =>
6859                      Make_Selected_Component (Loc,
6860                        Prefix        => Duplicate_Subexpr (Exp),
6861                        Selector_Name => Make_Identifier (Loc, Name_uTag)),
6862                    Right_Opnd =>
6863                      Make_Attribute_Reference (Loc,
6864                        Prefix         =>
6865                          New_Occurrence_Of (Base_Type (Utyp), Loc),
6866                        Attribute_Name => Name_Tag)),
6867                Reason    => CE_Tag_Check_Failed));
6868
6869         --  If the result type is a specific nonlimited tagged type, then we
6870         --  have to ensure that the tag of the result is that of the result
6871         --  type. This is handled by making a copy of the expression in
6872         --  the case where it might have a different tag, namely when the
6873         --  expression is a conversion or a formal parameter. We create a new
6874         --  object of the result type and initialize it from the expression,
6875         --  which will implicitly force the tag to be set appropriately.
6876
6877         else
6878            declare
6879               ExpR       : constant Node_Id   := Relocate_Node (Exp);
6880               Result_Id  : constant Entity_Id :=
6881                              Make_Temporary (Loc, 'R', ExpR);
6882               Result_Exp : constant Node_Id   :=
6883                              New_Occurrence_Of (Result_Id, Loc);
6884               Result_Obj : constant Node_Id   :=
6885                              Make_Object_Declaration (Loc,
6886                                Defining_Identifier => Result_Id,
6887                                Object_Definition   =>
6888                                  New_Occurrence_Of (R_Type, Loc),
6889                                Constant_Present    => True,
6890                                Expression          => ExpR);
6891
6892            begin
6893               Set_Assignment_OK (Result_Obj);
6894               Insert_Action (Exp, Result_Obj);
6895
6896               Rewrite (Exp, Result_Exp);
6897               Analyze_And_Resolve (Exp, R_Type);
6898            end;
6899         end if;
6900
6901      --  Ada 2005 (AI-344): If the result type is class-wide, then insert
6902      --  a check that the level of the return expression's underlying type
6903      --  is not deeper than the level of the master enclosing the function.
6904      --  Always generate the check when the type of the return expression
6905      --  is class-wide, when it's a type conversion, or when it's a formal
6906      --  parameter. Otherwise, suppress the check in the case where the
6907      --  return expression has a specific type whose level is known not to
6908      --  be statically deeper than the function's result type.
6909
6910      --  No runtime check needed in interface thunks since it is performed
6911      --  by the target primitive associated with the thunk.
6912
6913      --  Note: accessibility check is skipped in the VM case, since there
6914      --  does not seem to be any practical way to implement this check.
6915
6916      elsif Ada_Version >= Ada_2005
6917        and then Tagged_Type_Expansion
6918        and then Is_Class_Wide_Type (R_Type)
6919        and then not Is_Thunk (Current_Scope)
6920        and then not Scope_Suppress.Suppress (Accessibility_Check)
6921        and then
6922          (Is_Class_Wide_Type (Etype (Exp))
6923            or else Nkind_In (Exp, N_Type_Conversion,
6924                                   N_Unchecked_Type_Conversion)
6925            or else (Is_Entity_Name (Exp)
6926                      and then Is_Formal (Entity (Exp)))
6927            or else Scope_Depth (Enclosing_Dynamic_Scope (Etype (Exp))) >
6928                      Scope_Depth (Enclosing_Dynamic_Scope (Scope_Id)))
6929      then
6930         declare
6931            Tag_Node : Node_Id;
6932
6933         begin
6934            --  Ada 2005 (AI-251): In class-wide interface objects we displace
6935            --  "this" to reference the base of the object. This is required to
6936            --  get access to the TSD of the object.
6937
6938            if Is_Class_Wide_Type (Etype (Exp))
6939              and then Is_Interface (Etype (Exp))
6940            then
6941               --  If the expression is an explicit dereference then we can
6942               --  directly displace the pointer to reference the base of
6943               --  the object.
6944
6945               if Nkind (Exp) = N_Explicit_Dereference then
6946                  Tag_Node :=
6947                    Make_Explicit_Dereference (Loc,
6948                      Prefix =>
6949                        Unchecked_Convert_To (RTE (RE_Tag_Ptr),
6950                          Make_Function_Call (Loc,
6951                            Name                   =>
6952                              New_Occurrence_Of (RTE (RE_Base_Address), Loc),
6953                            Parameter_Associations => New_List (
6954                              Unchecked_Convert_To (RTE (RE_Address),
6955                                Duplicate_Subexpr (Prefix (Exp)))))));
6956
6957               --  Similar case to the previous one but the expression is a
6958               --  renaming of an explicit dereference.
6959
6960               elsif Nkind (Exp) = N_Identifier
6961                 and then Present (Renamed_Object (Entity (Exp)))
6962                 and then Nkind (Renamed_Object (Entity (Exp)))
6963                            = N_Explicit_Dereference
6964               then
6965                  Tag_Node :=
6966                    Make_Explicit_Dereference (Loc,
6967                      Prefix =>
6968                        Unchecked_Convert_To (RTE (RE_Tag_Ptr),
6969                          Make_Function_Call (Loc,
6970                            Name                   =>
6971                              New_Occurrence_Of (RTE (RE_Base_Address), Loc),
6972                            Parameter_Associations => New_List (
6973                              Unchecked_Convert_To (RTE (RE_Address),
6974                                Duplicate_Subexpr
6975                                  (Prefix
6976                                    (Renamed_Object (Entity (Exp)))))))));
6977
6978               --  Common case: obtain the address of the actual object and
6979               --  displace the pointer to reference the base of the object.
6980
6981               else
6982                  Tag_Node :=
6983                    Make_Explicit_Dereference (Loc,
6984                      Prefix =>
6985                        Unchecked_Convert_To (RTE (RE_Tag_Ptr),
6986                          Make_Function_Call (Loc,
6987                            Name               =>
6988                              New_Occurrence_Of (RTE (RE_Base_Address), Loc),
6989                            Parameter_Associations => New_List (
6990                              Make_Attribute_Reference (Loc,
6991                                Prefix         => Duplicate_Subexpr (Exp),
6992                                Attribute_Name => Name_Address)))));
6993               end if;
6994            else
6995               Tag_Node :=
6996                 Make_Attribute_Reference (Loc,
6997                   Prefix         => Duplicate_Subexpr (Exp),
6998                   Attribute_Name => Name_Tag);
6999            end if;
7000
7001            --  CodePeer does not do anything useful with
7002            --  Ada.Tags.Type_Specific_Data components.
7003
7004            if not CodePeer_Mode then
7005               Insert_Action (Exp,
7006                 Make_Raise_Program_Error (Loc,
7007                   Condition =>
7008                     Make_Op_Gt (Loc,
7009                       Left_Opnd  => Build_Get_Access_Level (Loc, Tag_Node),
7010                       Right_Opnd =>
7011                         Make_Integer_Literal (Loc,
7012                           Scope_Depth (Enclosing_Dynamic_Scope (Scope_Id)))),
7013                   Reason    => PE_Accessibility_Check_Failed));
7014            end if;
7015         end;
7016
7017      --  AI05-0073: If function has a controlling access result, check that
7018      --  the tag of the return value, if it is not null, matches designated
7019      --  type of return type.
7020
7021      --  The return expression is referenced twice in the code below, so it
7022      --  must be made free of side effects. Given that different compilers
7023      --  may evaluate these parameters in different order, both occurrences
7024      --  perform a copy.
7025
7026      elsif Ekind (R_Type) = E_Anonymous_Access_Type
7027        and then Has_Controlling_Result (Scope_Id)
7028      then
7029         Insert_Action (N,
7030           Make_Raise_Constraint_Error (Loc,
7031             Condition =>
7032               Make_And_Then (Loc,
7033                 Left_Opnd  =>
7034                   Make_Op_Ne (Loc,
7035                     Left_Opnd  => Duplicate_Subexpr (Exp),
7036                     Right_Opnd => Make_Null (Loc)),
7037
7038                 Right_Opnd => Make_Op_Ne (Loc,
7039                   Left_Opnd  =>
7040                     Make_Selected_Component (Loc,
7041                       Prefix        => Duplicate_Subexpr (Exp),
7042                       Selector_Name => Make_Identifier (Loc, Name_uTag)),
7043
7044                   Right_Opnd =>
7045                     Make_Attribute_Reference (Loc,
7046                       Prefix         =>
7047                         New_Occurrence_Of (Designated_Type (R_Type), Loc),
7048                       Attribute_Name => Name_Tag))),
7049
7050             Reason    => CE_Tag_Check_Failed),
7051             Suppress  => All_Checks);
7052      end if;
7053
7054      --  AI05-0234: RM 6.5(21/3). Check access discriminants to
7055      --  ensure that the function result does not outlive an
7056      --  object designated by one of it discriminants.
7057
7058      if Present (Extra_Accessibility_Of_Result (Scope_Id))
7059        and then Has_Unconstrained_Access_Discriminants (R_Type)
7060      then
7061         declare
7062            Discrim_Source : Node_Id;
7063
7064            procedure Check_Against_Result_Level (Level : Node_Id);
7065            --  Check the given accessibility level against the level
7066            --  determined by the point of call. (AI05-0234).
7067
7068            --------------------------------
7069            -- Check_Against_Result_Level --
7070            --------------------------------
7071
7072            procedure Check_Against_Result_Level (Level : Node_Id) is
7073            begin
7074               Insert_Action (N,
7075                 Make_Raise_Program_Error (Loc,
7076                   Condition =>
7077                     Make_Op_Gt (Loc,
7078                       Left_Opnd  => Level,
7079                       Right_Opnd =>
7080                         New_Occurrence_Of
7081                           (Extra_Accessibility_Of_Result (Scope_Id), Loc)),
7082                       Reason => PE_Accessibility_Check_Failed));
7083            end Check_Against_Result_Level;
7084
7085         begin
7086            Discrim_Source := Exp;
7087            while Nkind (Discrim_Source) = N_Qualified_Expression loop
7088               Discrim_Source := Expression (Discrim_Source);
7089            end loop;
7090
7091            if Nkind (Discrim_Source) = N_Identifier
7092              and then Is_Return_Object (Entity (Discrim_Source))
7093            then
7094               Discrim_Source := Entity (Discrim_Source);
7095
7096               if Is_Constrained (Etype (Discrim_Source)) then
7097                  Discrim_Source := Etype (Discrim_Source);
7098               else
7099                  Discrim_Source := Expression (Parent (Discrim_Source));
7100               end if;
7101
7102            elsif Nkind (Discrim_Source) = N_Identifier
7103              and then Nkind_In (Original_Node (Discrim_Source),
7104                                 N_Aggregate, N_Extension_Aggregate)
7105            then
7106               Discrim_Source := Original_Node (Discrim_Source);
7107
7108            elsif Nkind (Discrim_Source) = N_Explicit_Dereference and then
7109              Nkind (Original_Node (Discrim_Source)) = N_Function_Call
7110            then
7111               Discrim_Source := Original_Node (Discrim_Source);
7112            end if;
7113
7114            Discrim_Source := Unqual_Conv (Discrim_Source);
7115
7116            case Nkind (Discrim_Source) is
7117               when N_Defining_Identifier =>
7118                  pragma Assert (Is_Composite_Type (Discrim_Source)
7119                                  and then Has_Discriminants (Discrim_Source)
7120                                  and then Is_Constrained (Discrim_Source));
7121
7122                  declare
7123                     Discrim   : Entity_Id :=
7124                                   First_Discriminant (Base_Type (R_Type));
7125                     Disc_Elmt : Elmt_Id   :=
7126                                   First_Elmt (Discriminant_Constraint
7127                                                 (Discrim_Source));
7128                  begin
7129                     loop
7130                        if Ekind (Etype (Discrim)) =
7131                             E_Anonymous_Access_Type
7132                        then
7133                           Check_Against_Result_Level
7134                             (Dynamic_Accessibility_Level (Node (Disc_Elmt)));
7135                        end if;
7136
7137                        Next_Elmt (Disc_Elmt);
7138                        Next_Discriminant (Discrim);
7139                        exit when not Present (Discrim);
7140                     end loop;
7141                  end;
7142
7143               when N_Aggregate
7144                  | N_Extension_Aggregate
7145               =>
7146                  --  Unimplemented: extension aggregate case where discrims
7147                  --  come from ancestor part, not extension part.
7148
7149                  declare
7150                     Discrim  : Entity_Id :=
7151                                  First_Discriminant (Base_Type (R_Type));
7152
7153                     Disc_Exp : Node_Id   := Empty;
7154
7155                     Positionals_Exhausted
7156                              : Boolean   := not Present (Expressions
7157                                                            (Discrim_Source));
7158
7159                     function Associated_Expr
7160                       (Comp_Id : Entity_Id;
7161                        Associations : List_Id) return Node_Id;
7162
7163                     --  Given a component and a component associations list,
7164                     --  locate the expression for that component; returns
7165                     --  Empty if no such expression is found.
7166
7167                     ---------------------
7168                     -- Associated_Expr --
7169                     ---------------------
7170
7171                     function Associated_Expr
7172                       (Comp_Id : Entity_Id;
7173                        Associations : List_Id) return Node_Id
7174                     is
7175                        Assoc  : Node_Id;
7176                        Choice : Node_Id;
7177
7178                     begin
7179                        --  Simple linear search seems ok here
7180
7181                        Assoc := First (Associations);
7182                        while Present (Assoc) loop
7183                           Choice := First (Choices (Assoc));
7184                           while Present (Choice) loop
7185                              if (Nkind (Choice) = N_Identifier
7186                                   and then Chars (Choice) = Chars (Comp_Id))
7187                                or else (Nkind (Choice) = N_Others_Choice)
7188                              then
7189                                 return Expression (Assoc);
7190                              end if;
7191
7192                              Next (Choice);
7193                           end loop;
7194
7195                           Next (Assoc);
7196                        end loop;
7197
7198                        return Empty;
7199                     end Associated_Expr;
7200
7201                  begin
7202                     if not Positionals_Exhausted then
7203                        Disc_Exp := First (Expressions (Discrim_Source));
7204                     end if;
7205
7206                     loop
7207                        if Positionals_Exhausted then
7208                           Disc_Exp :=
7209                             Associated_Expr
7210                               (Discrim,
7211                                Component_Associations (Discrim_Source));
7212                        end if;
7213
7214                        if Ekind (Etype (Discrim)) =
7215                             E_Anonymous_Access_Type
7216                        then
7217                           Check_Against_Result_Level
7218                             (Dynamic_Accessibility_Level (Disc_Exp));
7219                        end if;
7220
7221                        Next_Discriminant (Discrim);
7222                        exit when not Present (Discrim);
7223
7224                        if not Positionals_Exhausted then
7225                           Next (Disc_Exp);
7226                           Positionals_Exhausted := not Present (Disc_Exp);
7227                        end if;
7228                     end loop;
7229                  end;
7230
7231               when N_Function_Call =>
7232
7233                  --  No check needed (check performed by callee)
7234
7235                  null;
7236
7237               when others =>
7238                  declare
7239                     Level : constant Node_Id :=
7240                               Make_Integer_Literal (Loc,
7241                                 Object_Access_Level (Discrim_Source));
7242
7243                  begin
7244                     --  Unimplemented: check for name prefix that includes
7245                     --  a dereference of an access value with a dynamic
7246                     --  accessibility level (e.g., an access param or a
7247                     --  saooaaat) and use dynamic level in that case. For
7248                     --  example:
7249                     --    return Access_Param.all(Some_Index).Some_Component;
7250                     --  ???
7251
7252                     Set_Etype (Level, Standard_Natural);
7253                     Check_Against_Result_Level (Level);
7254                  end;
7255            end case;
7256         end;
7257      end if;
7258
7259      --  If we are returning an object that may not be bit-aligned, then copy
7260      --  the value into a temporary first. This copy may need to expand to a
7261      --  loop of component operations.
7262
7263      if Is_Possibly_Unaligned_Slice (Exp)
7264        or else Is_Possibly_Unaligned_Object (Exp)
7265      then
7266         declare
7267            ExpR : constant Node_Id   := Relocate_Node (Exp);
7268            Tnn  : constant Entity_Id := Make_Temporary (Loc, 'T', ExpR);
7269         begin
7270            Insert_Action (Exp,
7271              Make_Object_Declaration (Loc,
7272                Defining_Identifier => Tnn,
7273                Constant_Present    => True,
7274                Object_Definition   => New_Occurrence_Of (R_Type, Loc),
7275                Expression          => ExpR),
7276              Suppress => All_Checks);
7277            Rewrite (Exp, New_Occurrence_Of (Tnn, Loc));
7278         end;
7279      end if;
7280
7281      --  Call the _Postconditions procedure if the related function has
7282      --  contract assertions that need to be verified on exit.
7283
7284      if Ekind (Scope_Id) = E_Function
7285        and then Present (Postconditions_Proc (Scope_Id))
7286      then
7287         --  In the case of discriminated objects, we have created a
7288         --  constrained subtype above, and used the underlying type. This
7289         --  transformation is post-analysis and harmless, except that now the
7290         --  call to the post-condition will be analyzed and the type kinds
7291         --  have to match.
7292
7293         if Nkind (Exp) = N_Unchecked_Type_Conversion
7294           and then Is_Private_Type (R_Type) /= Is_Private_Type (Etype (Exp))
7295         then
7296            Rewrite (Exp, Expression (Relocate_Node (Exp)));
7297         end if;
7298
7299         --  We are going to reference the returned value twice in this case,
7300         --  once in the call to _Postconditions, and once in the actual return
7301         --  statement, but we can't have side effects happening twice.
7302
7303         Force_Evaluation (Exp, Mode => Strict);
7304
7305         --  Generate call to _Postconditions
7306
7307         Insert_Action (Exp,
7308           Make_Procedure_Call_Statement (Loc,
7309             Name                   =>
7310               New_Occurrence_Of (Postconditions_Proc (Scope_Id), Loc),
7311             Parameter_Associations => New_List (New_Copy_Tree (Exp))));
7312      end if;
7313
7314      --  Ada 2005 (AI-251): If this return statement corresponds with an
7315      --  simple return statement associated with an extended return statement
7316      --  and the type of the returned object is an interface then generate an
7317      --  implicit conversion to force displacement of the "this" pointer.
7318
7319      if Ada_Version >= Ada_2005
7320        and then Comes_From_Extended_Return_Statement (N)
7321        and then Nkind (Expression (N)) = N_Identifier
7322        and then Is_Interface (Utyp)
7323        and then Utyp /= Underlying_Type (Exptyp)
7324      then
7325         Rewrite (Exp, Convert_To (Utyp, Relocate_Node (Exp)));
7326         Analyze_And_Resolve (Exp);
7327      end if;
7328   end Expand_Simple_Function_Return;
7329
7330   -----------------------
7331   -- Freeze_Subprogram --
7332   -----------------------
7333
7334   procedure Freeze_Subprogram (N : Node_Id) is
7335      Loc : constant Source_Ptr := Sloc (N);
7336
7337      procedure Register_Predefined_DT_Entry (Prim : Entity_Id);
7338      --  (Ada 2005): Register a predefined primitive in all the secondary
7339      --  dispatch tables of its primitive type.
7340
7341      ----------------------------------
7342      -- Register_Predefined_DT_Entry --
7343      ----------------------------------
7344
7345      procedure Register_Predefined_DT_Entry (Prim : Entity_Id) is
7346         Iface_DT_Ptr : Elmt_Id;
7347         Tagged_Typ   : Entity_Id;
7348         Thunk_Id     : Entity_Id;
7349         Thunk_Code   : Node_Id;
7350
7351      begin
7352         Tagged_Typ := Find_Dispatching_Type (Prim);
7353
7354         if No (Access_Disp_Table (Tagged_Typ))
7355           or else not Has_Interfaces (Tagged_Typ)
7356           or else not RTE_Available (RE_Interface_Tag)
7357           or else Restriction_Active (No_Dispatching_Calls)
7358         then
7359            return;
7360         end if;
7361
7362         --  Skip the first two access-to-dispatch-table pointers since they
7363         --  leads to the primary dispatch table (predefined DT and user
7364         --  defined DT). We are only concerned with the secondary dispatch
7365         --  table pointers. Note that the access-to- dispatch-table pointer
7366         --  corresponds to the first implemented interface retrieved below.
7367
7368         Iface_DT_Ptr :=
7369           Next_Elmt (Next_Elmt (First_Elmt (Access_Disp_Table (Tagged_Typ))));
7370
7371         while Present (Iface_DT_Ptr)
7372           and then Ekind (Node (Iface_DT_Ptr)) = E_Constant
7373         loop
7374            pragma Assert (Has_Thunks (Node (Iface_DT_Ptr)));
7375            Expand_Interface_Thunk (Prim, Thunk_Id, Thunk_Code);
7376
7377            if Present (Thunk_Code) then
7378               Insert_Actions_After (N, New_List (
7379                 Thunk_Code,
7380
7381                 Build_Set_Predefined_Prim_Op_Address (Loc,
7382                   Tag_Node     =>
7383                     New_Occurrence_Of (Node (Next_Elmt (Iface_DT_Ptr)), Loc),
7384                   Position     => DT_Position (Prim),
7385                   Address_Node =>
7386                     Unchecked_Convert_To (RTE (RE_Prim_Ptr),
7387                       Make_Attribute_Reference (Loc,
7388                         Prefix         => New_Occurrence_Of (Thunk_Id, Loc),
7389                         Attribute_Name => Name_Unrestricted_Access))),
7390
7391                 Build_Set_Predefined_Prim_Op_Address (Loc,
7392                   Tag_Node     =>
7393                     New_Occurrence_Of
7394                      (Node (Next_Elmt (Next_Elmt (Next_Elmt (Iface_DT_Ptr)))),
7395                       Loc),
7396                   Position     => DT_Position (Prim),
7397                   Address_Node =>
7398                     Unchecked_Convert_To (RTE (RE_Prim_Ptr),
7399                       Make_Attribute_Reference (Loc,
7400                         Prefix         => New_Occurrence_Of (Prim, Loc),
7401                         Attribute_Name => Name_Unrestricted_Access)))));
7402            end if;
7403
7404            --  Skip the tag of the predefined primitives dispatch table
7405
7406            Next_Elmt (Iface_DT_Ptr);
7407            pragma Assert (Has_Thunks (Node (Iface_DT_Ptr)));
7408
7409            --  Skip tag of the no-thunks dispatch table
7410
7411            Next_Elmt (Iface_DT_Ptr);
7412            pragma Assert (not Has_Thunks (Node (Iface_DT_Ptr)));
7413
7414            --  Skip tag of predefined primitives no-thunks dispatch table
7415
7416            Next_Elmt (Iface_DT_Ptr);
7417            pragma Assert (not Has_Thunks (Node (Iface_DT_Ptr)));
7418
7419            Next_Elmt (Iface_DT_Ptr);
7420         end loop;
7421      end Register_Predefined_DT_Entry;
7422
7423      --  Local variables
7424
7425      Subp : constant Entity_Id  := Entity (N);
7426
7427   --  Start of processing for Freeze_Subprogram
7428
7429   begin
7430      --  We suppress the initialization of the dispatch table entry when
7431      --  not Tagged_Type_Expansion because the dispatching mechanism is
7432      --  handled internally by the target.
7433
7434      if Is_Dispatching_Operation (Subp)
7435        and then not Is_Abstract_Subprogram (Subp)
7436        and then Present (DTC_Entity (Subp))
7437        and then Present (Scope (DTC_Entity (Subp)))
7438        and then Tagged_Type_Expansion
7439        and then not Restriction_Active (No_Dispatching_Calls)
7440        and then RTE_Available (RE_Tag)
7441      then
7442         declare
7443            Typ : constant Entity_Id := Scope (DTC_Entity (Subp));
7444
7445         begin
7446            --  Handle private overridden primitives
7447
7448            if not Is_CPP_Class (Typ) then
7449               Check_Overriding_Operation (Subp);
7450            end if;
7451
7452            --  We assume that imported CPP primitives correspond with objects
7453            --  whose constructor is in the CPP side; therefore we don't need
7454            --  to generate code to register them in the dispatch table.
7455
7456            if Is_CPP_Class (Typ) then
7457               null;
7458
7459            --  Handle CPP primitives found in derivations of CPP_Class types.
7460            --  These primitives must have been inherited from some parent, and
7461            --  there is no need to register them in the dispatch table because
7462            --  Build_Inherit_Prims takes care of initializing these slots.
7463
7464            elsif Is_Imported (Subp)
7465               and then (Convention (Subp) = Convention_CPP
7466                           or else Convention (Subp) = Convention_C)
7467            then
7468               null;
7469
7470            --  Generate code to register the primitive in non statically
7471            --  allocated dispatch tables
7472
7473            elsif not Building_Static_DT (Scope (DTC_Entity (Subp))) then
7474
7475               --  When a primitive is frozen, enter its name in its dispatch
7476               --  table slot.
7477
7478               if not Is_Interface (Typ)
7479                 or else Present (Interface_Alias (Subp))
7480               then
7481                  if Is_Predefined_Dispatching_Operation (Subp) then
7482                     Register_Predefined_DT_Entry (Subp);
7483                  end if;
7484
7485                  Insert_Actions_After (N,
7486                    Register_Primitive (Loc, Prim => Subp));
7487               end if;
7488            end if;
7489         end;
7490      end if;
7491
7492      --  Mark functions that return by reference. Note that it cannot be part
7493      --  of the normal semantic analysis of the spec since the underlying
7494      --  returned type may not be known yet (for private types).
7495
7496      declare
7497         Typ  : constant Entity_Id := Etype (Subp);
7498         Utyp : constant Entity_Id := Underlying_Type (Typ);
7499
7500      begin
7501         if Is_Limited_View (Typ) then
7502            Set_Returns_By_Ref (Subp);
7503
7504         elsif Present (Utyp) and then CW_Or_Has_Controlled_Part (Utyp) then
7505            Set_Returns_By_Ref (Subp);
7506         end if;
7507      end;
7508
7509      --  Wnen freezing a null procedure, analyze its delayed aspects now
7510      --  because we may not have reached the end of the declarative list when
7511      --  delayed aspects are normally analyzed. This ensures that dispatching
7512      --  calls are properly rewritten when the generated _Postcondition
7513      --  procedure is analyzed in the null procedure body.
7514
7515      if Nkind (Parent (Subp)) = N_Procedure_Specification
7516        and then Null_Present (Parent (Subp))
7517      then
7518         Analyze_Entry_Or_Subprogram_Contract (Subp);
7519      end if;
7520   end Freeze_Subprogram;
7521
7522   --------------------------------------------
7523   -- Has_Unconstrained_Access_Discriminants --
7524   --------------------------------------------
7525
7526   function Has_Unconstrained_Access_Discriminants
7527     (Subtyp : Entity_Id) return Boolean
7528   is
7529      Discr : Entity_Id;
7530
7531   begin
7532      if Has_Discriminants (Subtyp)
7533        and then not Is_Constrained (Subtyp)
7534      then
7535         Discr := First_Discriminant (Subtyp);
7536         while Present (Discr) loop
7537            if Ekind (Etype (Discr)) = E_Anonymous_Access_Type then
7538               return True;
7539            end if;
7540
7541            Next_Discriminant (Discr);
7542         end loop;
7543      end if;
7544
7545      return False;
7546   end Has_Unconstrained_Access_Discriminants;
7547
7548   ------------------------------
7549   -- Insert_Post_Call_Actions --
7550   ------------------------------
7551
7552   procedure Insert_Post_Call_Actions (N : Node_Id; Post_Call : List_Id) is
7553      Context : constant Node_Id := Parent (N);
7554
7555   begin
7556      if Is_Empty_List (Post_Call) then
7557         return;
7558      end if;
7559
7560      --  Cases where the call is not a member of a statement list. This
7561      --  includes the case where the call is an actual in another function
7562      --  call or indexing, i.e. an expression context as well.
7563
7564      if not Is_List_Member (N)
7565        or else Nkind_In (Context, N_Function_Call, N_Indexed_Component)
7566      then
7567         --  In Ada 2012 the call may be a function call in an expression
7568         --  (since OUT and IN OUT parameters are now allowed for such calls).
7569         --  The write-back of (in)-out parameters is handled by the back-end,
7570         --  but the constraint checks generated when subtypes of formal and
7571         --  actual don't match must be inserted in the form of assignments.
7572
7573         if Nkind (Original_Node (N)) = N_Function_Call then
7574            pragma Assert (Ada_Version >= Ada_2012);
7575            --  Functions with '[in] out' parameters are only allowed in Ada
7576            --  2012.
7577
7578            --  We used to handle this by climbing up parents to a
7579            --  non-statement/declaration and then simply making a call to
7580            --  Insert_Actions_After (P, Post_Call), but that doesn't work
7581            --  for Ada 2012. If we are in the middle of an expression, e.g.
7582            --  the condition of an IF, this call would insert after the IF
7583            --  statement, which is much too late to be doing the write back.
7584            --  For example:
7585
7586            --     if Clobber (X) then
7587            --        Put_Line (X'Img);
7588            --     else
7589            --        goto Junk
7590            --     end if;
7591
7592            --  Now assume Clobber changes X, if we put the write back after
7593            --  the IF, the Put_Line gets the wrong value and the goto causes
7594            --  the write back to be skipped completely.
7595
7596            --  To deal with this, we replace the call by
7597
7598            --    do
7599            --       Tnnn : constant function-result-type := function-call;
7600            --       Post_Call actions
7601            --    in
7602            --       Tnnn;
7603            --    end;
7604
7605            declare
7606               Loc   : constant Source_Ptr := Sloc (N);
7607               Tnnn  : constant Entity_Id := Make_Temporary (Loc, 'T');
7608               FRTyp : constant Entity_Id := Etype (N);
7609               Name  : constant Node_Id   := Relocate_Node (N);
7610
7611            begin
7612               Prepend_To (Post_Call,
7613                 Make_Object_Declaration (Loc,
7614                   Defining_Identifier => Tnnn,
7615                   Object_Definition   => New_Occurrence_Of (FRTyp, Loc),
7616                   Constant_Present    => True,
7617                   Expression          => Name));
7618
7619               Rewrite (N,
7620                 Make_Expression_With_Actions (Loc,
7621                   Actions    => Post_Call,
7622                   Expression => New_Occurrence_Of (Tnnn, Loc)));
7623
7624               --  We don't want to just blindly call Analyze_And_Resolve
7625               --  because that would cause unwanted recursion on the call.
7626               --  So for a moment set the call as analyzed to prevent that
7627               --  recursion, and get the rest analyzed properly, then reset
7628               --  the analyzed flag, so our caller can continue.
7629
7630               Set_Analyzed (Name, True);
7631               Analyze_And_Resolve (N, FRTyp);
7632               Set_Analyzed (Name, False);
7633            end;
7634
7635         --  If not the special Ada 2012 case of a function call, then we must
7636         --  have the triggering statement of a triggering alternative or an
7637         --  entry call alternative, and we can add the post call stuff to the
7638         --  corresponding statement list.
7639
7640         else
7641            pragma Assert (Nkind_In (Context, N_Entry_Call_Alternative,
7642                                              N_Triggering_Alternative));
7643
7644            if Is_Non_Empty_List (Statements (Context)) then
7645               Insert_List_Before_And_Analyze
7646                 (First (Statements (Context)), Post_Call);
7647            else
7648               Set_Statements (Context, Post_Call);
7649            end if;
7650         end if;
7651
7652      --  A procedure call is always part of a declarative or statement list,
7653      --  however a function call may appear nested within a construct. Most
7654      --  cases of function call nesting are handled in the special case above.
7655      --  The only exception is when the function call acts as an actual in a
7656      --  procedure call. In this case the function call is in a list, but the
7657      --  post-call actions must be inserted after the procedure call.
7658
7659      elsif Nkind (Context) = N_Procedure_Call_Statement then
7660         Insert_Actions_After (Context, Post_Call);
7661
7662      --  Otherwise, normal case where N is in a statement sequence, just put
7663      --  the post-call stuff after the call statement.
7664
7665      else
7666         Insert_Actions_After (N, Post_Call);
7667      end if;
7668   end Insert_Post_Call_Actions;
7669
7670   -----------------------------------
7671   -- Is_Build_In_Place_Result_Type --
7672   -----------------------------------
7673
7674   function Is_Build_In_Place_Result_Type (Typ : Entity_Id) return Boolean is
7675   begin
7676      if not Expander_Active then
7677         return False;
7678      end if;
7679
7680      --  In Ada 2005 all functions with an inherently limited return type
7681      --  must be handled using a build-in-place profile, including the case
7682      --  of a function with a limited interface result, where the function
7683      --  may return objects of nonlimited descendants.
7684
7685      if Is_Limited_View (Typ) then
7686         return Ada_Version >= Ada_2005 and then not Debug_Flag_Dot_L;
7687
7688      else
7689         if Debug_Flag_Dot_9 then
7690            return False;
7691         end if;
7692
7693         if Has_Interfaces (Typ) then
7694            return False;
7695         end if;
7696
7697         declare
7698            T : Entity_Id := Typ;
7699         begin
7700            --  For T'Class, return True if it's True for T. This is necessary
7701            --  because a class-wide function might say "return F (...)", where
7702            --  F returns the corresponding specific type. We need a loop in
7703            --  case T is a subtype of a class-wide type.
7704
7705            while Is_Class_Wide_Type (T) loop
7706               T := Etype (T);
7707            end loop;
7708
7709            --  If this is a generic formal type in an instance, return True if
7710            --  it's True for the generic actual type.
7711
7712            if Nkind (Parent (T)) = N_Subtype_Declaration
7713              and then Present (Generic_Parent_Type (Parent (T)))
7714            then
7715               T := Entity (Subtype_Indication (Parent (T)));
7716
7717               if Present (Full_View (T)) then
7718                  T := Full_View (T);
7719               end if;
7720            end if;
7721
7722            if Present (Underlying_Type (T)) then
7723               T := Underlying_Type (T);
7724            end if;
7725
7726            declare
7727               Result : Boolean;
7728               --  So we can stop here in the debugger
7729            begin
7730               --  ???For now, enable build-in-place for a very narrow set of
7731               --  controlled types. Change "if True" to "if False" to
7732               --  experiment with more controlled types. Eventually, we might
7733               --  like to enable build-in-place for all tagged types, all
7734               --  types that need finalization, and all caller-unknown-size
7735               --  types.
7736
7737               if True then
7738                  Result := Is_Controlled (T)
7739                    and then Present (Enclosing_Subprogram (T))
7740                    and then not Is_Compilation_Unit (Enclosing_Subprogram (T))
7741                    and then Ekind (Enclosing_Subprogram (T)) = E_Procedure;
7742               else
7743                  Result := Is_Controlled (T);
7744               end if;
7745
7746               return Result;
7747            end;
7748         end;
7749      end if;
7750   end Is_Build_In_Place_Result_Type;
7751
7752   --------------------------------
7753   -- Is_Build_In_Place_Function --
7754   --------------------------------
7755
7756   function Is_Build_In_Place_Function (E : Entity_Id) return Boolean is
7757   begin
7758      --  This function is called from Expand_Subtype_From_Expr during
7759      --  semantic analysis, even when expansion is off. In those cases
7760      --  the build_in_place expansion will not take place.
7761
7762      if not Expander_Active then
7763         return False;
7764      end if;
7765
7766      --  For now we test whether E denotes a function or access-to-function
7767      --  type whose result subtype is inherently limited. Later this test
7768      --  may be revised to allow composite nonlimited types. Functions with
7769      --  a foreign convention or whose result type has a foreign convention
7770      --  never qualify.
7771
7772      if Ekind_In (E, E_Function, E_Generic_Function)
7773        or else (Ekind (E) = E_Subprogram_Type
7774                  and then Etype (E) /= Standard_Void_Type)
7775      then
7776         --  Note: If the function has a foreign convention, it cannot build
7777         --  its result in place, so you're on your own. On the other hand,
7778         --  if only the return type has a foreign convention, its layout is
7779         --  intended to be compatible with the other language, but the build-
7780         --  in place machinery can ensure that the object is not copied.
7781
7782         return Is_Build_In_Place_Result_Type (Etype (E))
7783           and then not Has_Foreign_Convention (E)
7784           and then not Debug_Flag_Dot_L;
7785      else
7786         return False;
7787      end if;
7788   end Is_Build_In_Place_Function;
7789
7790   -------------------------------------
7791   -- Is_Build_In_Place_Function_Call --
7792   -------------------------------------
7793
7794   function Is_Build_In_Place_Function_Call (N : Node_Id) return Boolean is
7795      Exp_Node    : constant Node_Id := Unqual_Conv (N);
7796      Function_Id : Entity_Id;
7797
7798   begin
7799      --  Return False if the expander is currently inactive, since awareness
7800      --  of build-in-place treatment is only relevant during expansion. Note
7801      --  that Is_Build_In_Place_Function, which is called as part of this
7802      --  function, is also conditioned this way, but we need to check here as
7803      --  well to avoid blowing up on processing protected calls when expansion
7804      --  is disabled (such as with -gnatc) since those would trip over the
7805      --  raise of Program_Error below.
7806
7807      --  In SPARK mode, build-in-place calls are not expanded, so that we
7808      --  may end up with a call that is neither resolved to an entity, nor
7809      --  an indirect call.
7810
7811      if not Expander_Active or else Nkind (Exp_Node) /= N_Function_Call then
7812         return False;
7813      end if;
7814
7815      if Is_Entity_Name (Name (Exp_Node)) then
7816         Function_Id := Entity (Name (Exp_Node));
7817
7818      --  In the case of an explicitly dereferenced call, use the subprogram
7819      --  type generated for the dereference.
7820
7821      elsif Nkind (Name (Exp_Node)) = N_Explicit_Dereference then
7822         Function_Id := Etype (Name (Exp_Node));
7823
7824      --  This may be a call to a protected function.
7825
7826      elsif Nkind (Name (Exp_Node)) = N_Selected_Component then
7827         Function_Id := Etype (Entity (Selector_Name (Name (Exp_Node))));
7828
7829      else
7830         raise Program_Error;
7831      end if;
7832
7833      declare
7834         Result : constant Boolean := Is_Build_In_Place_Function (Function_Id);
7835         --  So we can stop here in the debugger
7836      begin
7837         return Result;
7838      end;
7839   end Is_Build_In_Place_Function_Call;
7840
7841   -----------------------
7842   -- Is_Null_Procedure --
7843   -----------------------
7844
7845   function Is_Null_Procedure (Subp : Entity_Id) return Boolean is
7846      Decl : constant Node_Id := Unit_Declaration_Node (Subp);
7847
7848   begin
7849      if Ekind (Subp) /= E_Procedure then
7850         return False;
7851
7852      --  Check if this is a declared null procedure
7853
7854      elsif Nkind (Decl) = N_Subprogram_Declaration then
7855         if not Null_Present (Specification (Decl)) then
7856            return False;
7857
7858         elsif No (Body_To_Inline (Decl)) then
7859            return False;
7860
7861         --  Check if the body contains only a null statement, followed by
7862         --  the return statement added during expansion.
7863
7864         else
7865            declare
7866               Orig_Bod : constant Node_Id := Body_To_Inline (Decl);
7867
7868               Stat  : Node_Id;
7869               Stat2 : Node_Id;
7870
7871            begin
7872               if Nkind (Orig_Bod) /= N_Subprogram_Body then
7873                  return False;
7874               else
7875                  --  We must skip SCIL nodes because they are currently
7876                  --  implemented as special N_Null_Statement nodes.
7877
7878                  Stat :=
7879                     First_Non_SCIL_Node
7880                       (Statements (Handled_Statement_Sequence (Orig_Bod)));
7881                  Stat2 := Next_Non_SCIL_Node (Stat);
7882
7883                  return
7884                     Is_Empty_List (Declarations (Orig_Bod))
7885                       and then Nkind (Stat) = N_Null_Statement
7886                       and then
7887                        (No (Stat2)
7888                          or else
7889                            (Nkind (Stat2) = N_Simple_Return_Statement
7890                              and then No (Next (Stat2))));
7891               end if;
7892            end;
7893         end if;
7894
7895      else
7896         return False;
7897      end if;
7898   end Is_Null_Procedure;
7899
7900   -------------------------------------------
7901   -- Make_Build_In_Place_Call_In_Allocator --
7902   -------------------------------------------
7903
7904   procedure Make_Build_In_Place_Call_In_Allocator
7905     (Allocator     : Node_Id;
7906      Function_Call : Node_Id)
7907   is
7908      Acc_Type          : constant Entity_Id := Etype (Allocator);
7909      Loc               : constant Source_Ptr := Sloc (Function_Call);
7910      Func_Call         : Node_Id := Function_Call;
7911      Ref_Func_Call     : Node_Id;
7912      Function_Id       : Entity_Id;
7913      Result_Subt       : Entity_Id;
7914      New_Allocator     : Node_Id;
7915      Return_Obj_Access : Entity_Id; -- temp for function result
7916      Temp_Init         : Node_Id; -- initial value of Return_Obj_Access
7917      Alloc_Form        : BIP_Allocation_Form;
7918      Pool              : Node_Id; -- nonnull if Alloc_Form = User_Storage_Pool
7919      Return_Obj_Actual : Node_Id; -- the temp.all, in caller-allocates case
7920      Chain             : Entity_Id; -- activation chain, in case of tasks
7921
7922   begin
7923      --  Step past qualification or unchecked conversion (the latter can occur
7924      --  in cases of calls to 'Input).
7925
7926      if Nkind_In (Func_Call, N_Qualified_Expression,
7927                              N_Type_Conversion,
7928                              N_Unchecked_Type_Conversion)
7929      then
7930         Func_Call := Expression (Func_Call);
7931      end if;
7932
7933      --  Mark the call as processed as a build-in-place call
7934
7935      pragma Assert (not Is_Expanded_Build_In_Place_Call (Func_Call));
7936      Set_Is_Expanded_Build_In_Place_Call (Func_Call);
7937
7938      if Is_Entity_Name (Name (Func_Call)) then
7939         Function_Id := Entity (Name (Func_Call));
7940
7941      elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
7942         Function_Id := Etype (Name (Func_Call));
7943
7944      else
7945         raise Program_Error;
7946      end if;
7947
7948      Result_Subt := Available_View (Etype (Function_Id));
7949
7950      --  Create a temp for the function result. In the caller-allocates case,
7951      --  this will be initialized to the result of a new uninitialized
7952      --  allocator. Note: we do not use Allocator as the Related_Node of
7953      --  Return_Obj_Access in call to Make_Temporary below as this would
7954      --  create a sort of infinite "recursion".
7955
7956      Return_Obj_Access := Make_Temporary (Loc, 'R');
7957      Set_Etype (Return_Obj_Access, Acc_Type);
7958      Set_Can_Never_Be_Null (Acc_Type, False);
7959      --  It gets initialized to null, so we can't have that
7960
7961      --  When the result subtype is constrained, the return object is created
7962      --  on the caller side, and access to it is passed to the function. This
7963      --  optimization is disabled when the result subtype needs finalization
7964      --  actions because the caller side allocation may result in undesirable
7965      --  finalization. Consider the following example:
7966      --
7967      --    function Make_Lim_Ctrl return Lim_Ctrl is
7968      --    begin
7969      --       return Result : Lim_Ctrl := raise Program_Error do
7970      --          null;
7971      --       end return;
7972      --    end Make_Lim_Ctrl;
7973      --
7974      --    Obj : Lim_Ctrl_Ptr := new Lim_Ctrl'(Make_Lim_Ctrl);
7975      --
7976      --  Even though the size of limited controlled type Lim_Ctrl is known,
7977      --  allocating Obj at the caller side will chain Obj on Lim_Ctrl_Ptr's
7978      --  finalization master. The subsequent call to Make_Lim_Ctrl will fail
7979      --  during the initialization actions for Result, which implies that
7980      --  Result (and Obj by extension) should not be finalized. However Obj
7981      --  will be finalized when access type Lim_Ctrl_Ptr goes out of scope
7982      --  since it is already attached on the related finalization master.
7983
7984      --  Here and in related routines, we must examine the full view of the
7985      --  type, because the view at the point of call may differ from that
7986      --  that in the function body, and the expansion mechanism depends on
7987      --  the characteristics of the full view.
7988
7989      if Is_Constrained (Underlying_Type (Result_Subt))
7990        and then not Needs_Finalization (Underlying_Type (Result_Subt))
7991      then
7992         --  Replace the initialized allocator of form "new T'(Func (...))"
7993         --  with an uninitialized allocator of form "new T", where T is the
7994         --  result subtype of the called function. The call to the function
7995         --  is handled separately further below.
7996
7997         New_Allocator :=
7998           Make_Allocator (Loc,
7999             Expression => New_Occurrence_Of (Result_Subt, Loc));
8000         Set_No_Initialization (New_Allocator);
8001
8002         --  Copy attributes to new allocator. Note that the new allocator
8003         --  logically comes from source if the original one did, so copy the
8004         --  relevant flag. This ensures proper treatment of the restriction
8005         --  No_Implicit_Heap_Allocations in this case.
8006
8007         Set_Storage_Pool      (New_Allocator, Storage_Pool      (Allocator));
8008         Set_Procedure_To_Call (New_Allocator, Procedure_To_Call (Allocator));
8009         Set_Comes_From_Source (New_Allocator, Comes_From_Source (Allocator));
8010
8011         Rewrite (Allocator, New_Allocator);
8012
8013         --  Initial value of the temp is the result of the uninitialized
8014         --  allocator. Unchecked_Convert is needed for T'Input where T is
8015         --  derived from a controlled type.
8016
8017         Temp_Init := Relocate_Node (Allocator);
8018
8019         if Nkind_In (Function_Call, N_Type_Conversion,
8020                                     N_Unchecked_Type_Conversion)
8021         then
8022            Temp_Init := Unchecked_Convert_To (Acc_Type, Temp_Init);
8023         end if;
8024
8025         --  Indicate that caller allocates, and pass in the return object
8026
8027         Alloc_Form := Caller_Allocation;
8028         Pool := Make_Null (No_Location);
8029         Return_Obj_Actual :=
8030           Make_Unchecked_Type_Conversion (Loc,
8031             Subtype_Mark => New_Occurrence_Of (Result_Subt, Loc),
8032             Expression   =>
8033               Make_Explicit_Dereference (Loc,
8034                 Prefix => New_Occurrence_Of (Return_Obj_Access, Loc)));
8035
8036      --  When the result subtype is unconstrained, the function itself must
8037      --  perform the allocation of the return object, so we pass parameters
8038      --  indicating that.
8039
8040      else
8041         Temp_Init := Empty;
8042
8043         --  Case of a user-defined storage pool. Pass an allocation parameter
8044         --  indicating that the function should allocate its result in the
8045         --  pool, and pass the pool. Use 'Unrestricted_Access because the
8046         --  pool may not be aliased.
8047
8048         if Present (Associated_Storage_Pool (Acc_Type)) then
8049            Alloc_Form := User_Storage_Pool;
8050            Pool :=
8051              Make_Attribute_Reference (Loc,
8052                Prefix         =>
8053                  New_Occurrence_Of
8054                    (Associated_Storage_Pool (Acc_Type), Loc),
8055                Attribute_Name => Name_Unrestricted_Access);
8056
8057         --  No user-defined pool; pass an allocation parameter indicating that
8058         --  the function should allocate its result on the heap.
8059
8060         else
8061            Alloc_Form := Global_Heap;
8062            Pool := Make_Null (No_Location);
8063         end if;
8064
8065         --  The caller does not provide the return object in this case, so we
8066         --  have to pass null for the object access actual.
8067
8068         Return_Obj_Actual := Empty;
8069      end if;
8070
8071      --  Declare the temp object
8072
8073      Insert_Action (Allocator,
8074        Make_Object_Declaration (Loc,
8075          Defining_Identifier => Return_Obj_Access,
8076          Object_Definition   => New_Occurrence_Of (Acc_Type, Loc),
8077          Expression          => Temp_Init));
8078
8079      Ref_Func_Call := Make_Reference (Loc, Func_Call);
8080
8081      --  Ada 2005 (AI-251): If the type of the allocator is an interface
8082      --  then generate an implicit conversion to force displacement of the
8083      --  "this" pointer.
8084
8085      if Is_Interface (Designated_Type (Acc_Type)) then
8086         Rewrite
8087           (Ref_Func_Call,
8088            OK_Convert_To (Acc_Type, Ref_Func_Call));
8089
8090      --  If the types are incompatible, we need an unchecked conversion. Note
8091      --  that the full types will be compatible, but the types not visibly
8092      --  compatible.
8093
8094      elsif Nkind_In (Function_Call, N_Type_Conversion,
8095                                     N_Unchecked_Type_Conversion)
8096      then
8097         Ref_Func_Call := Unchecked_Convert_To (Acc_Type, Ref_Func_Call);
8098      end if;
8099
8100      declare
8101         Assign : constant Node_Id :=
8102                    Make_Assignment_Statement (Loc,
8103                      Name       => New_Occurrence_Of (Return_Obj_Access, Loc),
8104                      Expression => Ref_Func_Call);
8105         --  Assign the result of the function call into the temp. In the
8106         --  caller-allocates case, this is overwriting the temp with its
8107         --  initial value, which has no effect. In the callee-allocates case,
8108         --  this is setting the temp to point to the object allocated by the
8109         --  callee. Unchecked_Convert is needed for T'Input where T is derived
8110         --  from a controlled type.
8111
8112         Actions : List_Id;
8113         --  Actions to be inserted. If there are no tasks, this is just the
8114         --  assignment statement. If the allocated object has tasks, we need
8115         --  to wrap the assignment in a block that activates them. The
8116         --  activation chain of that block must be passed to the function,
8117         --  rather than some outer chain.
8118
8119      begin
8120         if Has_Task (Result_Subt) then
8121            Actions := New_List;
8122            Build_Task_Allocate_Block_With_Init_Stmts
8123              (Actions, Allocator, Init_Stmts => New_List (Assign));
8124            Chain := Activation_Chain_Entity (Last (Actions));
8125         else
8126            Actions := New_List (Assign);
8127            Chain   := Empty;
8128         end if;
8129
8130         Insert_Actions (Allocator, Actions);
8131      end;
8132
8133      --  When the function has a controlling result, an allocation-form
8134      --  parameter must be passed indicating that the caller is allocating
8135      --  the result object. This is needed because such a function can be
8136      --  called as a dispatching operation and must be treated similarly
8137      --  to functions with unconstrained result subtypes.
8138
8139      Add_Unconstrained_Actuals_To_Build_In_Place_Call
8140        (Func_Call, Function_Id, Alloc_Form, Pool_Actual => Pool);
8141
8142      Add_Finalization_Master_Actual_To_Build_In_Place_Call
8143        (Func_Call, Function_Id, Acc_Type);
8144
8145      Add_Task_Actuals_To_Build_In_Place_Call
8146        (Func_Call, Function_Id, Master_Actual => Master_Id (Acc_Type),
8147         Chain => Chain);
8148
8149      --  Add an implicit actual to the function call that provides access
8150      --  to the allocated object. An unchecked conversion to the (specific)
8151      --  result subtype of the function is inserted to handle cases where
8152      --  the access type of the allocator has a class-wide designated type.
8153
8154      Add_Access_Actual_To_Build_In_Place_Call
8155        (Func_Call, Function_Id, Return_Obj_Actual);
8156
8157      --  Finally, replace the allocator node with a reference to the temp
8158
8159      Rewrite (Allocator, New_Occurrence_Of (Return_Obj_Access, Loc));
8160
8161      Analyze_And_Resolve (Allocator, Acc_Type);
8162   end Make_Build_In_Place_Call_In_Allocator;
8163
8164   ---------------------------------------------------
8165   -- Make_Build_In_Place_Call_In_Anonymous_Context --
8166   ---------------------------------------------------
8167
8168   procedure Make_Build_In_Place_Call_In_Anonymous_Context
8169     (Function_Call : Node_Id)
8170   is
8171      Loc             : constant Source_Ptr := Sloc (Function_Call);
8172      Func_Call       : constant Node_Id := Unqual_Conv (Function_Call);
8173      Function_Id     : Entity_Id;
8174      Result_Subt     : Entity_Id;
8175      Return_Obj_Id   : Entity_Id;
8176      Return_Obj_Decl : Entity_Id;
8177
8178   begin
8179      --  If the call has already been processed to add build-in-place actuals
8180      --  then return. One place this can occur is for calls to build-in-place
8181      --  functions that occur within a call to a protected operation, where
8182      --  due to rewriting and expansion of the protected call there can be
8183      --  more than one call to Expand_Actuals for the same set of actuals.
8184
8185      if Is_Expanded_Build_In_Place_Call (Func_Call) then
8186         return;
8187      end if;
8188
8189      --  Mark the call as processed as a build-in-place call
8190
8191      Set_Is_Expanded_Build_In_Place_Call (Func_Call);
8192
8193      if Is_Entity_Name (Name (Func_Call)) then
8194         Function_Id := Entity (Name (Func_Call));
8195
8196      elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
8197         Function_Id := Etype (Name (Func_Call));
8198
8199      else
8200         raise Program_Error;
8201      end if;
8202
8203      Result_Subt := Etype (Function_Id);
8204
8205      --  If the build-in-place function returns a controlled object, then the
8206      --  object needs to be finalized immediately after the context. Since
8207      --  this case produces a transient scope, the servicing finalizer needs
8208      --  to name the returned object. Create a temporary which is initialized
8209      --  with the function call:
8210      --
8211      --    Temp_Id : Func_Type := BIP_Func_Call;
8212      --
8213      --  The initialization expression of the temporary will be rewritten by
8214      --  the expander using the appropriate mechanism in Make_Build_In_Place_
8215      --  Call_In_Object_Declaration.
8216
8217      if Needs_Finalization (Result_Subt) then
8218         declare
8219            Temp_Id   : constant Entity_Id := Make_Temporary (Loc, 'R');
8220            Temp_Decl : Node_Id;
8221
8222         begin
8223            --  Reset the guard on the function call since the following does
8224            --  not perform actual call expansion.
8225
8226            Set_Is_Expanded_Build_In_Place_Call (Func_Call, False);
8227
8228            Temp_Decl :=
8229              Make_Object_Declaration (Loc,
8230                Defining_Identifier => Temp_Id,
8231                Object_Definition =>
8232                  New_Occurrence_Of (Result_Subt, Loc),
8233                Expression =>
8234                  New_Copy_Tree (Function_Call));
8235
8236            Insert_Action (Function_Call, Temp_Decl);
8237
8238            Rewrite (Function_Call, New_Occurrence_Of (Temp_Id, Loc));
8239            Analyze (Function_Call);
8240         end;
8241
8242      --  When the result subtype is definite, an object of the subtype is
8243      --  declared and an access value designating it is passed as an actual.
8244
8245      elsif Caller_Known_Size (Func_Call, Result_Subt) then
8246
8247         --  Create a temporary object to hold the function result
8248
8249         Return_Obj_Id := Make_Temporary (Loc, 'R');
8250         Set_Etype (Return_Obj_Id, Result_Subt);
8251
8252         Return_Obj_Decl :=
8253           Make_Object_Declaration (Loc,
8254             Defining_Identifier => Return_Obj_Id,
8255             Aliased_Present     => True,
8256             Object_Definition   => New_Occurrence_Of (Result_Subt, Loc));
8257
8258         Set_No_Initialization (Return_Obj_Decl);
8259
8260         Insert_Action (Func_Call, Return_Obj_Decl);
8261
8262         --  When the function has a controlling result, an allocation-form
8263         --  parameter must be passed indicating that the caller is allocating
8264         --  the result object. This is needed because such a function can be
8265         --  called as a dispatching operation and must be treated similarly
8266         --  to functions with unconstrained result subtypes.
8267
8268         Add_Unconstrained_Actuals_To_Build_In_Place_Call
8269           (Func_Call, Function_Id, Alloc_Form => Caller_Allocation);
8270
8271         Add_Finalization_Master_Actual_To_Build_In_Place_Call
8272           (Func_Call, Function_Id);
8273
8274         Add_Task_Actuals_To_Build_In_Place_Call
8275           (Func_Call, Function_Id, Make_Identifier (Loc, Name_uMaster));
8276
8277         --  Add an implicit actual to the function call that provides access
8278         --  to the caller's return object.
8279
8280         Add_Access_Actual_To_Build_In_Place_Call
8281           (Func_Call, Function_Id, New_Occurrence_Of (Return_Obj_Id, Loc));
8282
8283      --  When the result subtype is unconstrained, the function must allocate
8284      --  the return object in the secondary stack, so appropriate implicit
8285      --  parameters are added to the call to indicate that. A transient
8286      --  scope is established to ensure eventual cleanup of the result.
8287
8288      else
8289         --  Pass an allocation parameter indicating that the function should
8290         --  allocate its result on the secondary stack.
8291
8292         Add_Unconstrained_Actuals_To_Build_In_Place_Call
8293           (Func_Call, Function_Id, Alloc_Form => Secondary_Stack);
8294
8295         Add_Finalization_Master_Actual_To_Build_In_Place_Call
8296           (Func_Call, Function_Id);
8297
8298         Add_Task_Actuals_To_Build_In_Place_Call
8299           (Func_Call, Function_Id, Make_Identifier (Loc, Name_uMaster));
8300
8301         --  Pass a null value to the function since no return object is
8302         --  available on the caller side.
8303
8304         Add_Access_Actual_To_Build_In_Place_Call
8305           (Func_Call, Function_Id, Empty);
8306      end if;
8307   end Make_Build_In_Place_Call_In_Anonymous_Context;
8308
8309   --------------------------------------------
8310   -- Make_Build_In_Place_Call_In_Assignment --
8311   --------------------------------------------
8312
8313   procedure Make_Build_In_Place_Call_In_Assignment
8314     (Assign        : Node_Id;
8315      Function_Call : Node_Id)
8316   is
8317      Func_Call    : constant Node_Id    := Unqual_Conv (Function_Call);
8318      Lhs          : constant Node_Id    := Name (Assign);
8319      Loc          : constant Source_Ptr := Sloc (Function_Call);
8320      Func_Id      : Entity_Id;
8321      Obj_Decl     : Node_Id;
8322      Obj_Id       : Entity_Id;
8323      Ptr_Typ      : Entity_Id;
8324      Ptr_Typ_Decl : Node_Id;
8325      New_Expr     : Node_Id;
8326      Result_Subt  : Entity_Id;
8327
8328   begin
8329      --  Mark the call as processed as a build-in-place call
8330
8331      pragma Assert (not Is_Expanded_Build_In_Place_Call (Func_Call));
8332      Set_Is_Expanded_Build_In_Place_Call (Func_Call);
8333
8334      if Is_Entity_Name (Name (Func_Call)) then
8335         Func_Id := Entity (Name (Func_Call));
8336
8337      elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
8338         Func_Id := Etype (Name (Func_Call));
8339
8340      else
8341         raise Program_Error;
8342      end if;
8343
8344      Result_Subt := Etype (Func_Id);
8345
8346      --  When the result subtype is unconstrained, an additional actual must
8347      --  be passed to indicate that the caller is providing the return object.
8348      --  This parameter must also be passed when the called function has a
8349      --  controlling result, because dispatching calls to the function needs
8350      --  to be treated effectively the same as calls to class-wide functions.
8351
8352      Add_Unconstrained_Actuals_To_Build_In_Place_Call
8353        (Func_Call, Func_Id, Alloc_Form => Caller_Allocation);
8354
8355      Add_Finalization_Master_Actual_To_Build_In_Place_Call
8356        (Func_Call, Func_Id);
8357
8358      Add_Task_Actuals_To_Build_In_Place_Call
8359        (Func_Call, Func_Id, Make_Identifier (Loc, Name_uMaster));
8360
8361      --  Add an implicit actual to the function call that provides access to
8362      --  the caller's return object.
8363
8364      Add_Access_Actual_To_Build_In_Place_Call
8365        (Func_Call,
8366         Func_Id,
8367         Make_Unchecked_Type_Conversion (Loc,
8368           Subtype_Mark => New_Occurrence_Of (Result_Subt, Loc),
8369           Expression   => Relocate_Node (Lhs)));
8370
8371      --  Create an access type designating the function's result subtype
8372
8373      Ptr_Typ := Make_Temporary (Loc, 'A');
8374
8375      Ptr_Typ_Decl :=
8376        Make_Full_Type_Declaration (Loc,
8377          Defining_Identifier => Ptr_Typ,
8378          Type_Definition     =>
8379            Make_Access_To_Object_Definition (Loc,
8380              All_Present        => True,
8381              Subtype_Indication =>
8382                New_Occurrence_Of (Result_Subt, Loc)));
8383      Insert_After_And_Analyze (Assign, Ptr_Typ_Decl);
8384
8385      --  Finally, create an access object initialized to a reference to the
8386      --  function call. We know this access value is non-null, so mark the
8387      --  entity accordingly to suppress junk access checks.
8388
8389      New_Expr := Make_Reference (Loc, Relocate_Node (Func_Call));
8390
8391      --  Add a conversion if it's the wrong type
8392
8393      if Etype (New_Expr) /= Ptr_Typ then
8394         New_Expr :=
8395           Make_Unchecked_Type_Conversion (Loc,
8396             New_Occurrence_Of (Ptr_Typ, Loc), New_Expr);
8397      end if;
8398
8399      Obj_Id := Make_Temporary (Loc, 'R', New_Expr);
8400      Set_Etype (Obj_Id, Ptr_Typ);
8401      Set_Is_Known_Non_Null (Obj_Id);
8402
8403      Obj_Decl :=
8404        Make_Object_Declaration (Loc,
8405          Defining_Identifier => Obj_Id,
8406          Object_Definition   => New_Occurrence_Of (Ptr_Typ, Loc),
8407          Expression          => New_Expr);
8408      Insert_After_And_Analyze (Ptr_Typ_Decl, Obj_Decl);
8409
8410      Rewrite (Assign, Make_Null_Statement (Loc));
8411   end Make_Build_In_Place_Call_In_Assignment;
8412
8413   ----------------------------------------------------
8414   -- Make_Build_In_Place_Call_In_Object_Declaration --
8415   ----------------------------------------------------
8416
8417   procedure Make_Build_In_Place_Call_In_Object_Declaration
8418     (Obj_Decl      : Node_Id;
8419      Function_Call : Node_Id)
8420   is
8421      function Get_Function_Id (Func_Call : Node_Id) return Entity_Id;
8422      --  Get the value of Function_Id, below
8423
8424      ---------------------
8425      -- Get_Function_Id --
8426      ---------------------
8427
8428      function Get_Function_Id (Func_Call : Node_Id) return Entity_Id is
8429      begin
8430         if Is_Entity_Name (Name (Func_Call)) then
8431            return Entity (Name (Func_Call));
8432
8433         elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
8434            return Etype (Name (Func_Call));
8435
8436         else
8437            raise Program_Error;
8438         end if;
8439      end Get_Function_Id;
8440
8441      --  Local variables
8442
8443      Func_Call   : constant Node_Id    := Unqual_Conv (Function_Call);
8444      Function_Id : constant Entity_Id  := Get_Function_Id (Func_Call);
8445      Loc         : constant Source_Ptr := Sloc (Function_Call);
8446      Obj_Loc     : constant Source_Ptr := Sloc (Obj_Decl);
8447      Obj_Def_Id  : constant Entity_Id  := Defining_Identifier (Obj_Decl);
8448      Obj_Typ     : constant Entity_Id  := Etype (Obj_Def_Id);
8449      Encl_Func   : constant Entity_Id  := Enclosing_Subprogram (Obj_Def_Id);
8450      Result_Subt : constant Entity_Id  := Etype (Function_Id);
8451
8452      Call_Deref      : Node_Id;
8453      Caller_Object   : Node_Id;
8454      Def_Id          : Entity_Id;
8455      Designated_Type : Entity_Id;
8456      Fmaster_Actual  : Node_Id := Empty;
8457      Pool_Actual     : Node_Id;
8458      Ptr_Typ         : Entity_Id;
8459      Ptr_Typ_Decl    : Node_Id;
8460      Pass_Caller_Acc : Boolean := False;
8461      Res_Decl        : Node_Id;
8462
8463      Definite : constant Boolean :=
8464                   Caller_Known_Size (Func_Call, Result_Subt)
8465                     and then not Is_Class_Wide_Type (Obj_Typ);
8466      --  In the case of "X : T'Class := F(...);", where F returns a
8467      --  Caller_Known_Size (specific) tagged type, we treat it as
8468      --  indefinite, because the code for the Definite case below sets the
8469      --  initialization expression of the object to Empty, which would be
8470      --  illegal Ada, and would cause gigi to misallocate X.
8471
8472   --  Start of processing for Make_Build_In_Place_Call_In_Object_Declaration
8473
8474   begin
8475      --  If the call has already been processed to add build-in-place actuals
8476      --  then return.
8477
8478      if Is_Expanded_Build_In_Place_Call (Func_Call) then
8479         return;
8480      end if;
8481
8482      --  Mark the call as processed as a build-in-place call
8483
8484      Set_Is_Expanded_Build_In_Place_Call (Func_Call);
8485
8486      --  Create an access type designating the function's result subtype.
8487      --  We use the type of the original call because it may be a call to an
8488      --  inherited operation, which the expansion has replaced with the parent
8489      --  operation that yields the parent type. Note that this access type
8490      --  must be declared before we establish a transient scope, so that it
8491      --  receives the proper accessibility level.
8492
8493      if Is_Class_Wide_Type (Obj_Typ)
8494        and then not Is_Interface (Obj_Typ)
8495        and then not Is_Class_Wide_Type (Etype (Function_Call))
8496      then
8497         Designated_Type := Obj_Typ;
8498      else
8499         Designated_Type := Etype (Function_Call);
8500      end if;
8501
8502      Ptr_Typ := Make_Temporary (Loc, 'A');
8503      Ptr_Typ_Decl :=
8504        Make_Full_Type_Declaration (Loc,
8505          Defining_Identifier => Ptr_Typ,
8506          Type_Definition     =>
8507            Make_Access_To_Object_Definition (Loc,
8508              All_Present        => True,
8509              Subtype_Indication =>
8510                New_Occurrence_Of (Designated_Type, Loc)));
8511
8512      --  The access type and its accompanying object must be inserted after
8513      --  the object declaration in the constrained case, so that the function
8514      --  call can be passed access to the object. In the indefinite case, or
8515      --  if the object declaration is for a return object, the access type and
8516      --  object must be inserted before the object, since the object
8517      --  declaration is rewritten to be a renaming of a dereference of the
8518      --  access object. Note: we need to freeze Ptr_Typ explicitly, because
8519      --  the result object is in a different (transient) scope, so won't cause
8520      --  freezing.
8521
8522      if Definite and then not Is_Return_Object (Obj_Def_Id) then
8523
8524         --  The presence of an address clause complicates the build-in-place
8525         --  expansion because the indicated address must be processed before
8526         --  the indirect call is generated (including the definition of a
8527         --  local pointer to the object).  The address clause may come from
8528         --  an aspect specification or from an explicit attribute
8529         --  specification appearing after the object declaration. These two
8530         --  cases require different processing.
8531
8532         if Has_Aspect (Obj_Def_Id, Aspect_Address) then
8533
8534            --  Skip non-delayed pragmas that correspond to other aspects, if
8535            --  any, to find proper insertion point for freeze node of object.
8536
8537            declare
8538               D : Node_Id := Obj_Decl;
8539               N : Node_Id := Next (D);
8540
8541            begin
8542               while Present (N)
8543                 and then Nkind_In (N, N_Attribute_Reference, N_Pragma)
8544               loop
8545                  Analyze (N);
8546                  D := N;
8547                  Next (N);
8548               end loop;
8549
8550               Insert_After (D, Ptr_Typ_Decl);
8551
8552               --  Freeze object before pointer declaration, to ensure that
8553               --  generated attribute for address is inserted at the proper
8554               --  place.
8555
8556               Freeze_Before (Ptr_Typ_Decl, Obj_Def_Id);
8557            end;
8558
8559            Analyze (Ptr_Typ_Decl);
8560
8561         elsif Present (Following_Address_Clause (Obj_Decl)) then
8562
8563            --  Locate explicit address clause, which may also follow pragmas
8564            --  generated by other aspect specifications.
8565
8566            declare
8567               Addr : constant Node_Id := Following_Address_Clause (Obj_Decl);
8568               D    : Node_Id := Next (Obj_Decl);
8569
8570            begin
8571               while Present (D) loop
8572                  Analyze (D);
8573                  exit when D = Addr;
8574                  Next (D);
8575               end loop;
8576
8577               Insert_After_And_Analyze (Addr, Ptr_Typ_Decl);
8578            end;
8579
8580         else
8581            Insert_After_And_Analyze (Obj_Decl, Ptr_Typ_Decl);
8582         end if;
8583      else
8584         Insert_Action (Obj_Decl, Ptr_Typ_Decl);
8585      end if;
8586
8587      --  Force immediate freezing of Ptr_Typ because Res_Decl will be
8588      --  elaborated in an inner (transient) scope and thus won't cause
8589      --  freezing by itself. It's not an itype, but it needs to be frozen
8590      --  inside the current subprogram (see Freeze_Outside in freeze.adb).
8591
8592      Freeze_Itype (Ptr_Typ, Ptr_Typ_Decl);
8593
8594      --  If the object is a return object of an enclosing build-in-place
8595      --  function, then the implicit build-in-place parameters of the
8596      --  enclosing function are simply passed along to the called function.
8597      --  (Unfortunately, this won't cover the case of extension aggregates
8598      --  where the ancestor part is a build-in-place indefinite function
8599      --  call that should be passed along the caller's parameters.
8600      --  Currently those get mishandled by reassigning the result of the
8601      --  call to the aggregate return object, when the call result should
8602      --  really be directly built in place in the aggregate and not in a
8603      --  temporary. ???)
8604
8605      if Is_Return_Object (Obj_Def_Id) then
8606         Pass_Caller_Acc := True;
8607
8608         --  When the enclosing function has a BIP_Alloc_Form formal then we
8609         --  pass it along to the callee (such as when the enclosing function
8610         --  has an unconstrained or tagged result type).
8611
8612         if Needs_BIP_Alloc_Form (Encl_Func) then
8613            if RTE_Available (RE_Root_Storage_Pool_Ptr) then
8614               Pool_Actual :=
8615                 New_Occurrence_Of
8616                   (Build_In_Place_Formal
8617                     (Encl_Func, BIP_Storage_Pool), Loc);
8618
8619            --  The build-in-place pool formal is not built on e.g. ZFP
8620
8621            else
8622               Pool_Actual := Empty;
8623            end if;
8624
8625            Add_Unconstrained_Actuals_To_Build_In_Place_Call
8626              (Function_Call  => Func_Call,
8627               Function_Id    => Function_Id,
8628               Alloc_Form_Exp =>
8629                 New_Occurrence_Of
8630                   (Build_In_Place_Formal (Encl_Func, BIP_Alloc_Form), Loc),
8631               Pool_Actual    => Pool_Actual);
8632
8633         --  Otherwise, if enclosing function has a definite result subtype,
8634         --  then caller allocation will be used.
8635
8636         else
8637            Add_Unconstrained_Actuals_To_Build_In_Place_Call
8638              (Func_Call, Function_Id, Alloc_Form => Caller_Allocation);
8639         end if;
8640
8641         if Needs_BIP_Finalization_Master (Encl_Func) then
8642            Fmaster_Actual :=
8643              New_Occurrence_Of
8644                (Build_In_Place_Formal
8645                   (Encl_Func, BIP_Finalization_Master), Loc);
8646         end if;
8647
8648         --  Retrieve the BIPacc formal from the enclosing function and convert
8649         --  it to the access type of the callee's BIP_Object_Access formal.
8650
8651         Caller_Object :=
8652           Make_Unchecked_Type_Conversion (Loc,
8653             Subtype_Mark =>
8654               New_Occurrence_Of
8655                 (Etype (Build_In_Place_Formal
8656                    (Function_Id, BIP_Object_Access)),
8657                  Loc),
8658             Expression   =>
8659               New_Occurrence_Of
8660                 (Build_In_Place_Formal (Encl_Func, BIP_Object_Access),
8661                  Loc));
8662
8663      --  In the definite case, add an implicit actual to the function call
8664      --  that provides access to the declared object. An unchecked conversion
8665      --  to the (specific) result type of the function is inserted to handle
8666      --  the case where the object is declared with a class-wide type.
8667
8668      elsif Definite then
8669         Caller_Object :=
8670            Make_Unchecked_Type_Conversion (Loc,
8671              Subtype_Mark => New_Occurrence_Of (Result_Subt, Loc),
8672              Expression   => New_Occurrence_Of (Obj_Def_Id, Loc));
8673
8674         --  When the function has a controlling result, an allocation-form
8675         --  parameter must be passed indicating that the caller is allocating
8676         --  the result object. This is needed because such a function can be
8677         --  called as a dispatching operation and must be treated similarly to
8678         --  functions with indefinite result subtypes.
8679
8680         Add_Unconstrained_Actuals_To_Build_In_Place_Call
8681           (Func_Call, Function_Id, Alloc_Form => Caller_Allocation);
8682
8683      --  The allocation for indefinite library-level objects occurs on the
8684      --  heap as opposed to the secondary stack. This accommodates DLLs where
8685      --  the secondary stack is destroyed after each library unload. This is a
8686      --  hybrid mechanism where a stack-allocated object lives on the heap.
8687
8688      elsif Is_Library_Level_Entity (Obj_Def_Id)
8689        and then not Restriction_Active (No_Implicit_Heap_Allocations)
8690      then
8691         Add_Unconstrained_Actuals_To_Build_In_Place_Call
8692           (Func_Call, Function_Id, Alloc_Form => Global_Heap);
8693         Caller_Object := Empty;
8694
8695         --  Create a finalization master for the access result type to ensure
8696         --  that the heap allocation can properly chain the object and later
8697         --  finalize it when the library unit goes out of scope.
8698
8699         if Needs_Finalization (Etype (Func_Call)) then
8700            Build_Finalization_Master
8701              (Typ            => Ptr_Typ,
8702               For_Lib_Level  => True,
8703               Insertion_Node => Ptr_Typ_Decl);
8704
8705            Fmaster_Actual :=
8706              Make_Attribute_Reference (Loc,
8707                Prefix         =>
8708                  New_Occurrence_Of (Finalization_Master (Ptr_Typ), Loc),
8709                Attribute_Name => Name_Unrestricted_Access);
8710         end if;
8711
8712      --  In other indefinite cases, pass an indication to do the allocation
8713      --  on the secondary stack and set Caller_Object to Empty so that a null
8714      --  value will be passed for the caller's object address. A transient
8715      --  scope is established to ensure eventual cleanup of the result.
8716
8717      else
8718         Add_Unconstrained_Actuals_To_Build_In_Place_Call
8719           (Func_Call, Function_Id, Alloc_Form => Secondary_Stack);
8720         Caller_Object := Empty;
8721
8722         Establish_Transient_Scope (Obj_Decl, Manage_Sec_Stack => True);
8723      end if;
8724
8725      --  Pass along any finalization master actual, which is needed in the
8726      --  case where the called function initializes a return object of an
8727      --  enclosing build-in-place function.
8728
8729      Add_Finalization_Master_Actual_To_Build_In_Place_Call
8730        (Func_Call  => Func_Call,
8731         Func_Id    => Function_Id,
8732         Master_Exp => Fmaster_Actual);
8733
8734      if Nkind (Parent (Obj_Decl)) = N_Extended_Return_Statement
8735        and then Has_Task (Result_Subt)
8736      then
8737         --  Here we're passing along the master that was passed in to this
8738         --  function.
8739
8740         Add_Task_Actuals_To_Build_In_Place_Call
8741           (Func_Call, Function_Id,
8742            Master_Actual =>
8743              New_Occurrence_Of
8744                (Build_In_Place_Formal (Encl_Func, BIP_Task_Master), Loc));
8745
8746      else
8747         Add_Task_Actuals_To_Build_In_Place_Call
8748           (Func_Call, Function_Id, Make_Identifier (Loc, Name_uMaster));
8749      end if;
8750
8751      Add_Access_Actual_To_Build_In_Place_Call
8752        (Func_Call,
8753         Function_Id,
8754         Caller_Object,
8755         Is_Access => Pass_Caller_Acc);
8756
8757      --  Finally, create an access object initialized to a reference to the
8758      --  function call. We know this access value cannot be null, so mark the
8759      --  entity accordingly to suppress the access check.
8760
8761      Def_Id := Make_Temporary (Loc, 'R', Func_Call);
8762      Set_Etype (Def_Id, Ptr_Typ);
8763      Set_Is_Known_Non_Null (Def_Id);
8764
8765      if Nkind_In (Function_Call, N_Type_Conversion,
8766                                  N_Unchecked_Type_Conversion)
8767      then
8768         Res_Decl :=
8769           Make_Object_Declaration (Loc,
8770             Defining_Identifier => Def_Id,
8771             Constant_Present    => True,
8772             Object_Definition   => New_Occurrence_Of (Ptr_Typ, Loc),
8773             Expression          =>
8774               Make_Unchecked_Type_Conversion (Loc,
8775                 New_Occurrence_Of (Ptr_Typ, Loc),
8776                 Make_Reference (Loc, Relocate_Node (Func_Call))));
8777      else
8778         Res_Decl :=
8779           Make_Object_Declaration (Loc,
8780             Defining_Identifier => Def_Id,
8781             Constant_Present    => True,
8782             Object_Definition   => New_Occurrence_Of (Ptr_Typ, Loc),
8783             Expression          =>
8784               Make_Reference (Loc, Relocate_Node (Func_Call)));
8785      end if;
8786
8787      Insert_After_And_Analyze (Ptr_Typ_Decl, Res_Decl);
8788
8789      --  If the result subtype of the called function is definite and is not
8790      --  itself the return expression of an enclosing BIP function, then mark
8791      --  the object as having no initialization.
8792
8793      if Definite and then not Is_Return_Object (Obj_Def_Id) then
8794
8795         --  The related object declaration is encased in a transient block
8796         --  because the build-in-place function call contains at least one
8797         --  nested function call that produces a controlled transient
8798         --  temporary:
8799
8800         --    Obj : ... := BIP_Func_Call (Ctrl_Func_Call);
8801
8802         --  Since the build-in-place expansion decouples the call from the
8803         --  object declaration, the finalization machinery lacks the context
8804         --  which prompted the generation of the transient block. To resolve
8805         --  this scenario, store the build-in-place call.
8806
8807         if Scope_Is_Transient and then Node_To_Be_Wrapped = Obj_Decl then
8808            Set_BIP_Initialization_Call (Obj_Def_Id, Res_Decl);
8809         end if;
8810
8811         Set_Expression (Obj_Decl, Empty);
8812         Set_No_Initialization (Obj_Decl);
8813
8814      --  In case of an indefinite result subtype, or if the call is the
8815      --  return expression of an enclosing BIP function, rewrite the object
8816      --  declaration as an object renaming where the renamed object is a
8817      --  dereference of <function_Call>'reference:
8818      --
8819      --      Obj : Subt renames <function_call>'Ref.all;
8820
8821      else
8822         Call_Deref :=
8823           Make_Explicit_Dereference (Obj_Loc,
8824             Prefix => New_Occurrence_Of (Def_Id, Obj_Loc));
8825
8826         Rewrite (Obj_Decl,
8827           Make_Object_Renaming_Declaration (Obj_Loc,
8828             Defining_Identifier => Make_Temporary (Obj_Loc, 'D'),
8829             Subtype_Mark        =>
8830               New_Occurrence_Of (Designated_Type, Obj_Loc),
8831             Name                => Call_Deref));
8832
8833         --  At this point, Defining_Identifier (Obj_Decl) is no longer equal
8834         --  to Obj_Def_Id.
8835
8836         Set_Renamed_Object (Defining_Identifier (Obj_Decl), Call_Deref);
8837
8838         --  If the original entity comes from source, then mark the new
8839         --  entity as needing debug information, even though it's defined
8840         --  by a generated renaming that does not come from source, so that
8841         --  the Materialize_Entity flag will be set on the entity when
8842         --  Debug_Renaming_Declaration is called during analysis.
8843
8844         if Comes_From_Source (Obj_Def_Id) then
8845            Set_Debug_Info_Needed (Defining_Identifier (Obj_Decl));
8846         end if;
8847
8848         Analyze (Obj_Decl);
8849         Replace_Renaming_Declaration_Id
8850           (Obj_Decl, Original_Node (Obj_Decl));
8851      end if;
8852   end Make_Build_In_Place_Call_In_Object_Declaration;
8853
8854   -------------------------------------------------
8855   -- Make_Build_In_Place_Iface_Call_In_Allocator --
8856   -------------------------------------------------
8857
8858   procedure Make_Build_In_Place_Iface_Call_In_Allocator
8859     (Allocator     : Node_Id;
8860      Function_Call : Node_Id)
8861   is
8862      BIP_Func_Call : constant Node_Id :=
8863                        Unqual_BIP_Iface_Function_Call (Function_Call);
8864      Loc           : constant Source_Ptr := Sloc (Function_Call);
8865
8866      Anon_Type : Entity_Id;
8867      Tmp_Decl  : Node_Id;
8868      Tmp_Id    : Entity_Id;
8869
8870   begin
8871      --  No action of the call has already been processed
8872
8873      if Is_Expanded_Build_In_Place_Call (BIP_Func_Call) then
8874         return;
8875      end if;
8876
8877      Tmp_Id := Make_Temporary (Loc, 'D');
8878
8879      --  Insert a temporary before N initialized with the BIP function call
8880      --  without its enclosing type conversions and analyze it without its
8881      --  expansion. This temporary facilitates us reusing the BIP machinery,
8882      --  which takes care of adding the extra build-in-place actuals and
8883      --  transforms this object declaration into an object renaming
8884      --  declaration.
8885
8886      Anon_Type := Create_Itype (E_Anonymous_Access_Type, Function_Call);
8887      Set_Directly_Designated_Type (Anon_Type, Etype (BIP_Func_Call));
8888      Set_Etype (Anon_Type, Anon_Type);
8889
8890      Tmp_Decl :=
8891        Make_Object_Declaration (Loc,
8892          Defining_Identifier => Tmp_Id,
8893          Object_Definition   => New_Occurrence_Of (Anon_Type, Loc),
8894          Expression          =>
8895            Make_Allocator (Loc,
8896              Expression =>
8897                Make_Qualified_Expression (Loc,
8898                  Subtype_Mark =>
8899                    New_Occurrence_Of (Etype (BIP_Func_Call), Loc),
8900                  Expression   => New_Copy_Tree (BIP_Func_Call))));
8901
8902      Expander_Mode_Save_And_Set (False);
8903      Insert_Action (Allocator, Tmp_Decl);
8904      Expander_Mode_Restore;
8905
8906      Make_Build_In_Place_Call_In_Allocator
8907        (Allocator     => Expression (Tmp_Decl),
8908         Function_Call => Expression (Expression (Tmp_Decl)));
8909
8910      Rewrite (Allocator, New_Occurrence_Of (Tmp_Id, Loc));
8911   end Make_Build_In_Place_Iface_Call_In_Allocator;
8912
8913   ---------------------------------------------------------
8914   -- Make_Build_In_Place_Iface_Call_In_Anonymous_Context --
8915   ---------------------------------------------------------
8916
8917   procedure Make_Build_In_Place_Iface_Call_In_Anonymous_Context
8918     (Function_Call : Node_Id)
8919   is
8920      BIP_Func_Call : constant Node_Id :=
8921                        Unqual_BIP_Iface_Function_Call (Function_Call);
8922      Loc           : constant Source_Ptr := Sloc (Function_Call);
8923
8924      Tmp_Decl : Node_Id;
8925      Tmp_Id   : Entity_Id;
8926
8927   begin
8928      --  No action of the call has already been processed
8929
8930      if Is_Expanded_Build_In_Place_Call (BIP_Func_Call) then
8931         return;
8932      end if;
8933
8934      pragma Assert (Needs_Finalization (Etype (BIP_Func_Call)));
8935
8936      --  Insert a temporary before the call initialized with function call to
8937      --  reuse the BIP machinery which takes care of adding the extra build-in
8938      --  place actuals and transforms this object declaration into an object
8939      --  renaming declaration.
8940
8941      Tmp_Id := Make_Temporary (Loc, 'D');
8942
8943      Tmp_Decl :=
8944        Make_Object_Declaration (Loc,
8945          Defining_Identifier => Tmp_Id,
8946          Object_Definition   =>
8947            New_Occurrence_Of (Etype (Function_Call), Loc),
8948          Expression          => Relocate_Node (Function_Call));
8949
8950      Expander_Mode_Save_And_Set (False);
8951      Insert_Action (Function_Call, Tmp_Decl);
8952      Expander_Mode_Restore;
8953
8954      Make_Build_In_Place_Iface_Call_In_Object_Declaration
8955        (Obj_Decl      => Tmp_Decl,
8956         Function_Call => Expression (Tmp_Decl));
8957   end Make_Build_In_Place_Iface_Call_In_Anonymous_Context;
8958
8959   ----------------------------------------------------------
8960   -- Make_Build_In_Place_Iface_Call_In_Object_Declaration --
8961   ----------------------------------------------------------
8962
8963   procedure Make_Build_In_Place_Iface_Call_In_Object_Declaration
8964     (Obj_Decl      : Node_Id;
8965      Function_Call : Node_Id)
8966   is
8967      BIP_Func_Call : constant Node_Id :=
8968                        Unqual_BIP_Iface_Function_Call (Function_Call);
8969      Loc           : constant Source_Ptr := Sloc (Function_Call);
8970      Obj_Id        : constant Entity_Id := Defining_Entity (Obj_Decl);
8971
8972      Tmp_Decl : Node_Id;
8973      Tmp_Id   : Entity_Id;
8974
8975   begin
8976      --  No action of the call has already been processed
8977
8978      if Is_Expanded_Build_In_Place_Call (BIP_Func_Call) then
8979         return;
8980      end if;
8981
8982      Tmp_Id := Make_Temporary (Loc, 'D');
8983
8984      --  Insert a temporary before N initialized with the BIP function call
8985      --  without its enclosing type conversions and analyze it without its
8986      --  expansion. This temporary facilitates us reusing the BIP machinery,
8987      --  which takes care of adding the extra build-in-place actuals and
8988      --  transforms this object declaration into an object renaming
8989      --  declaration.
8990
8991      Tmp_Decl :=
8992        Make_Object_Declaration (Loc,
8993          Defining_Identifier => Tmp_Id,
8994          Object_Definition   =>
8995            New_Occurrence_Of (Etype (BIP_Func_Call), Loc),
8996          Expression          => New_Copy_Tree (BIP_Func_Call));
8997
8998      Expander_Mode_Save_And_Set (False);
8999      Insert_Action (Obj_Decl, Tmp_Decl);
9000      Expander_Mode_Restore;
9001
9002      Make_Build_In_Place_Call_In_Object_Declaration
9003        (Obj_Decl      => Tmp_Decl,
9004         Function_Call => Expression (Tmp_Decl));
9005
9006      pragma Assert (Nkind (Tmp_Decl) = N_Object_Renaming_Declaration);
9007
9008      --  Replace the original build-in-place function call by a reference to
9009      --  the resulting temporary object renaming declaration. In this way,
9010      --  all the interface conversions performed in the original Function_Call
9011      --  on the build-in-place object are preserved.
9012
9013      Rewrite (BIP_Func_Call, New_Occurrence_Of (Tmp_Id, Loc));
9014
9015      --  Replace the original object declaration by an internal object
9016      --  renaming declaration. This leaves the generated code more clean (the
9017      --  build-in-place function call in an object renaming declaration and
9018      --  displacements of the pointer to the build-in-place object in another
9019      --  renaming declaration) and allows us to invoke the routine that takes
9020      --  care of replacing the identifier of the renaming declaration (routine
9021      --  originally developed for the regular build-in-place management).
9022
9023      Rewrite (Obj_Decl,
9024        Make_Object_Renaming_Declaration (Loc,
9025          Defining_Identifier => Make_Temporary (Loc, 'D'),
9026          Subtype_Mark        => New_Occurrence_Of (Etype (Obj_Id), Loc),
9027          Name                => Function_Call));
9028      Analyze (Obj_Decl);
9029
9030      Replace_Renaming_Declaration_Id (Obj_Decl, Original_Node (Obj_Decl));
9031   end Make_Build_In_Place_Iface_Call_In_Object_Declaration;
9032
9033   --------------------------------------------
9034   -- Make_CPP_Constructor_Call_In_Allocator --
9035   --------------------------------------------
9036
9037   procedure Make_CPP_Constructor_Call_In_Allocator
9038     (Allocator     : Node_Id;
9039      Function_Call : Node_Id)
9040   is
9041      Loc         : constant Source_Ptr := Sloc (Function_Call);
9042      Acc_Type    : constant Entity_Id := Etype (Allocator);
9043      Function_Id : constant Entity_Id := Entity (Name (Function_Call));
9044      Result_Subt : constant Entity_Id := Available_View (Etype (Function_Id));
9045
9046      New_Allocator     : Node_Id;
9047      Return_Obj_Access : Entity_Id;
9048      Tmp_Obj           : Node_Id;
9049
9050   begin
9051      pragma Assert (Nkind (Allocator) = N_Allocator
9052                      and then Nkind (Function_Call) = N_Function_Call);
9053      pragma Assert (Convention (Function_Id) = Convention_CPP
9054                      and then Is_Constructor (Function_Id));
9055      pragma Assert (Is_Constrained (Underlying_Type (Result_Subt)));
9056
9057      --  Replace the initialized allocator of form "new T'(Func (...))" with
9058      --  an uninitialized allocator of form "new T", where T is the result
9059      --  subtype of the called function. The call to the function is handled
9060      --  separately further below.
9061
9062      New_Allocator :=
9063        Make_Allocator (Loc,
9064          Expression => New_Occurrence_Of (Result_Subt, Loc));
9065      Set_No_Initialization (New_Allocator);
9066
9067      --  Copy attributes to new allocator. Note that the new allocator
9068      --  logically comes from source if the original one did, so copy the
9069      --  relevant flag. This ensures proper treatment of the restriction
9070      --  No_Implicit_Heap_Allocations in this case.
9071
9072      Set_Storage_Pool      (New_Allocator, Storage_Pool      (Allocator));
9073      Set_Procedure_To_Call (New_Allocator, Procedure_To_Call (Allocator));
9074      Set_Comes_From_Source (New_Allocator, Comes_From_Source (Allocator));
9075
9076      Rewrite (Allocator, New_Allocator);
9077
9078      --  Create a new access object and initialize it to the result of the
9079      --  new uninitialized allocator. Note: we do not use Allocator as the
9080      --  Related_Node of Return_Obj_Access in call to Make_Temporary below
9081      --  as this would create a sort of infinite "recursion".
9082
9083      Return_Obj_Access := Make_Temporary (Loc, 'R');
9084      Set_Etype (Return_Obj_Access, Acc_Type);
9085
9086      --  Generate:
9087      --    Rnnn : constant ptr_T := new (T);
9088      --    Init (Rnn.all,...);
9089
9090      Tmp_Obj :=
9091        Make_Object_Declaration (Loc,
9092          Defining_Identifier => Return_Obj_Access,
9093          Constant_Present    => True,
9094          Object_Definition   => New_Occurrence_Of (Acc_Type, Loc),
9095          Expression          => Relocate_Node (Allocator));
9096      Insert_Action (Allocator, Tmp_Obj);
9097
9098      Insert_List_After_And_Analyze (Tmp_Obj,
9099        Build_Initialization_Call (Loc,
9100          Id_Ref =>
9101            Make_Explicit_Dereference (Loc,
9102              Prefix => New_Occurrence_Of (Return_Obj_Access, Loc)),
9103          Typ => Etype (Function_Id),
9104          Constructor_Ref => Function_Call));
9105
9106      --  Finally, replace the allocator node with a reference to the result of
9107      --  the function call itself (which will effectively be an access to the
9108      --  object created by the allocator).
9109
9110      Rewrite (Allocator, New_Occurrence_Of (Return_Obj_Access, Loc));
9111
9112      --  Ada 2005 (AI-251): If the type of the allocator is an interface then
9113      --  generate an implicit conversion to force displacement of the "this"
9114      --  pointer.
9115
9116      if Is_Interface (Designated_Type (Acc_Type)) then
9117         Rewrite (Allocator, Convert_To (Acc_Type, Relocate_Node (Allocator)));
9118      end if;
9119
9120      Analyze_And_Resolve (Allocator, Acc_Type);
9121   end Make_CPP_Constructor_Call_In_Allocator;
9122
9123   -----------------------------------
9124   -- Needs_BIP_Finalization_Master --
9125   -----------------------------------
9126
9127   function Needs_BIP_Finalization_Master
9128     (Func_Id : Entity_Id) return Boolean
9129   is
9130      pragma Assert (Is_Build_In_Place_Function (Func_Id));
9131      Func_Typ : constant Entity_Id := Underlying_Type (Etype (Func_Id));
9132   begin
9133      --  A formal giving the finalization master is needed for build-in-place
9134      --  functions whose result type needs finalization or is a tagged type.
9135      --  Tagged primitive build-in-place functions need such a formal because
9136      --  they can be called by a dispatching call, and extensions may require
9137      --  finalization even if the root type doesn't. This means they're also
9138      --  needed for tagged nonprimitive build-in-place functions with tagged
9139      --  results, since such functions can be called via access-to-function
9140      --  types, and those can be used to call primitives, so masters have to
9141      --  be passed to all such build-in-place functions, primitive or not.
9142
9143      return
9144        not Restriction_Active (No_Finalization)
9145          and then (Needs_Finalization (Func_Typ)
9146                     or else Is_Tagged_Type (Func_Typ));
9147   end Needs_BIP_Finalization_Master;
9148
9149   --------------------------
9150   -- Needs_BIP_Alloc_Form --
9151   --------------------------
9152
9153   function Needs_BIP_Alloc_Form (Func_Id : Entity_Id) return Boolean is
9154      pragma Assert (Is_Build_In_Place_Function (Func_Id));
9155      Func_Typ : constant Entity_Id := Underlying_Type (Etype (Func_Id));
9156
9157   begin
9158      --  A build-in-place function needs to know which allocation form to
9159      --  use when:
9160      --
9161      --  1) The result subtype is unconstrained. In this case, depending on
9162      --     the context of the call, the object may need to be created in the
9163      --     secondary stack, the heap, or a user-defined storage pool.
9164      --
9165      --  2) The result subtype is tagged. In this case the function call may
9166      --     dispatch on result and thus needs to be treated in the same way as
9167      --     calls to functions with class-wide results, because a callee that
9168      --     can be dispatched to may have any of various result subtypes, so
9169      --     if any of the possible callees would require an allocation form to
9170      --     be passed then they all do.
9171      --
9172      --  3) The result subtype needs finalization actions. In this case, based
9173      --     on the context of the call, the object may need to be created at
9174      --     the caller site, in the heap, or in a user-defined storage pool.
9175
9176      return
9177        not Is_Constrained (Func_Typ)
9178          or else Is_Tagged_Type (Func_Typ)
9179          or else Needs_Finalization (Func_Typ);
9180   end Needs_BIP_Alloc_Form;
9181
9182   --------------------------------------
9183   -- Needs_Result_Accessibility_Level --
9184   --------------------------------------
9185
9186   function Needs_Result_Accessibility_Level
9187     (Func_Id : Entity_Id) return Boolean
9188   is
9189      Func_Typ : constant Entity_Id := Underlying_Type (Etype (Func_Id));
9190
9191      function Has_Unconstrained_Access_Discriminant_Component
9192        (Comp_Typ : Entity_Id) return Boolean;
9193      --  Returns True if any component of the type has an unconstrained access
9194      --  discriminant.
9195
9196      -----------------------------------------------------
9197      -- Has_Unconstrained_Access_Discriminant_Component --
9198      -----------------------------------------------------
9199
9200      function Has_Unconstrained_Access_Discriminant_Component
9201        (Comp_Typ :  Entity_Id) return Boolean
9202      is
9203      begin
9204         if not Is_Limited_Type (Comp_Typ) then
9205            return False;
9206
9207            --  Only limited types can have access discriminants with
9208            --  defaults.
9209
9210         elsif Has_Unconstrained_Access_Discriminants (Comp_Typ) then
9211            return True;
9212
9213         elsif Is_Array_Type (Comp_Typ) then
9214            return Has_Unconstrained_Access_Discriminant_Component
9215                     (Underlying_Type (Component_Type (Comp_Typ)));
9216
9217         elsif Is_Record_Type (Comp_Typ) then
9218            declare
9219               Comp : Entity_Id;
9220
9221            begin
9222               Comp := First_Component (Comp_Typ);
9223               while Present (Comp) loop
9224                  if Has_Unconstrained_Access_Discriminant_Component
9225                       (Underlying_Type (Etype (Comp)))
9226                  then
9227                     return True;
9228                  end if;
9229
9230                  Next_Component (Comp);
9231               end loop;
9232            end;
9233         end if;
9234
9235         return False;
9236      end Has_Unconstrained_Access_Discriminant_Component;
9237
9238      Feature_Disabled : constant Boolean := True;
9239      --  Temporary
9240
9241   --  Start of processing for Needs_Result_Accessibility_Level
9242
9243   begin
9244      --  False if completion unavailable (how does this happen???)
9245
9246      if not Present (Func_Typ) then
9247         return False;
9248
9249      elsif Feature_Disabled then
9250         return False;
9251
9252      --  False if not a function, also handle enum-lit renames case
9253
9254      elsif Func_Typ = Standard_Void_Type
9255        or else Is_Scalar_Type (Func_Typ)
9256      then
9257         return False;
9258
9259      --  Handle a corner case, a cross-dialect subp renaming. For example,
9260      --  an Ada 2012 renaming of an Ada 2005 subprogram. This can occur when
9261      --  an Ada 2005 (or earlier) unit references predefined run-time units.
9262
9263      elsif Present (Alias (Func_Id)) then
9264
9265         --  Unimplemented: a cross-dialect subp renaming which does not set
9266         --  the Alias attribute (e.g., a rename of a dereference of an access
9267         --  to subprogram value). ???
9268
9269         return Present (Extra_Accessibility_Of_Result (Alias (Func_Id)));
9270
9271      --  Remaining cases require Ada 2012 mode
9272
9273      elsif Ada_Version < Ada_2012 then
9274         return False;
9275
9276      elsif Ekind (Func_Typ) = E_Anonymous_Access_Type
9277        or else Is_Tagged_Type (Func_Typ)
9278      then
9279         --  In the case of, say, a null tagged record result type, the need
9280         --  for this extra parameter might not be obvious. This function
9281         --  returns True for all tagged types for compatibility reasons.
9282         --  A function with, say, a tagged null controlling result type might
9283         --  be overridden by a primitive of an extension having an access
9284         --  discriminant and the overrider and overridden must have compatible
9285         --  calling conventions (including implicitly declared parameters).
9286         --  Similarly, values of one access-to-subprogram type might designate
9287         --  both a primitive subprogram of a given type and a function
9288         --  which is, for example, not a primitive subprogram of any type.
9289         --  Again, this requires calling convention compatibility.
9290         --  It might be possible to solve these issues by introducing
9291         --  wrappers, but that is not the approach that was chosen.
9292
9293         return True;
9294
9295      elsif Has_Unconstrained_Access_Discriminants (Func_Typ) then
9296         return True;
9297
9298      elsif Has_Unconstrained_Access_Discriminant_Component (Func_Typ) then
9299         return True;
9300
9301      --  False for all other cases
9302
9303      else
9304         return False;
9305      end if;
9306   end Needs_Result_Accessibility_Level;
9307
9308   -------------------------------------
9309   -- Replace_Renaming_Declaration_Id --
9310   -------------------------------------
9311
9312   procedure Replace_Renaming_Declaration_Id
9313      (New_Decl  : Node_Id;
9314       Orig_Decl : Node_Id)
9315   is
9316      New_Id  : constant Entity_Id := Defining_Entity (New_Decl);
9317      Orig_Id : constant Entity_Id := Defining_Entity (Orig_Decl);
9318
9319   begin
9320      Set_Chars (New_Id, Chars (Orig_Id));
9321
9322      --  Swap next entity links in preparation for exchanging entities
9323
9324      declare
9325         Next_Id : constant Entity_Id := Next_Entity (New_Id);
9326      begin
9327         Link_Entities (New_Id, Next_Entity (Orig_Id));
9328         Link_Entities (Orig_Id, Next_Id);
9329      end;
9330
9331      Set_Homonym (New_Id, Homonym (Orig_Id));
9332      Exchange_Entities (New_Id, Orig_Id);
9333
9334      --  Preserve source indication of original declaration, so that xref
9335      --  information is properly generated for the right entity.
9336
9337      Preserve_Comes_From_Source (New_Decl, Orig_Decl);
9338      Preserve_Comes_From_Source (Orig_Id, Orig_Decl);
9339
9340      Set_Comes_From_Source (New_Id, False);
9341   end Replace_Renaming_Declaration_Id;
9342
9343   ---------------------------------
9344   -- Rewrite_Function_Call_For_C --
9345   ---------------------------------
9346
9347   procedure Rewrite_Function_Call_For_C (N : Node_Id) is
9348      Orig_Func   : constant Entity_Id  := Entity (Name (N));
9349      Func_Id     : constant Entity_Id  := Ultimate_Alias (Orig_Func);
9350      Par         : constant Node_Id    := Parent (N);
9351      Proc_Id     : constant Entity_Id  := Corresponding_Procedure (Func_Id);
9352      Loc         : constant Source_Ptr := Sloc (Par);
9353      Actuals     : List_Id;
9354      Last_Actual : Node_Id;
9355      Last_Formal : Entity_Id;
9356
9357   --  Start of processing for Rewrite_Function_Call_For_C
9358
9359   begin
9360      --  The actuals may be given by named associations, so the added actual
9361      --  that is the target of the return value of the call must be a named
9362      --  association as well, so we retrieve the name of the generated
9363      --  out_formal.
9364
9365      Last_Formal := First_Formal (Proc_Id);
9366      while Present (Next_Formal (Last_Formal)) loop
9367         Last_Formal := Next_Formal (Last_Formal);
9368      end loop;
9369
9370      Actuals := Parameter_Associations (N);
9371
9372      --  The original function may lack parameters
9373
9374      if No (Actuals) then
9375         Actuals := New_List;
9376      end if;
9377
9378      --  If the function call is the expression of an assignment statement,
9379      --  transform the assignment into a procedure call. Generate:
9380
9381      --    LHS := Func_Call (...);
9382
9383      --    Proc_Call (..., LHS);
9384
9385      --  If function is inherited, a conversion may be necessary.
9386
9387      if Nkind (Par) = N_Assignment_Statement then
9388         Last_Actual :=  Name (Par);
9389
9390         if not Comes_From_Source (Orig_Func)
9391           and then Etype (Orig_Func) /= Etype (Func_Id)
9392         then
9393            Last_Actual :=
9394              Make_Type_Conversion (Loc,
9395                New_Occurrence_Of (Etype (Func_Id), Loc),
9396                Last_Actual);
9397         end if;
9398
9399         Append_To (Actuals,
9400           Make_Parameter_Association (Loc,
9401             Selector_Name             =>
9402               Make_Identifier (Loc, Chars (Last_Formal)),
9403             Explicit_Actual_Parameter => Last_Actual));
9404
9405         Rewrite (Par,
9406           Make_Procedure_Call_Statement (Loc,
9407             Name                   => New_Occurrence_Of (Proc_Id, Loc),
9408             Parameter_Associations => Actuals));
9409         Analyze (Par);
9410
9411      --  Otherwise the context is an expression. Generate a temporary and a
9412      --  procedure call to obtain the function result. Generate:
9413
9414      --    ... Func_Call (...) ...
9415
9416      --    Temp : ...;
9417      --    Proc_Call (..., Temp);
9418      --    ... Temp ...
9419
9420      else
9421         declare
9422            Temp_Id : constant Entity_Id := Make_Temporary (Loc, 'T');
9423            Call    : Node_Id;
9424            Decl    : Node_Id;
9425
9426         begin
9427            --  Generate:
9428            --    Temp : ...;
9429
9430            Decl :=
9431              Make_Object_Declaration (Loc,
9432                Defining_Identifier => Temp_Id,
9433                Object_Definition   =>
9434                  New_Occurrence_Of (Etype (Func_Id), Loc));
9435
9436            --  Generate:
9437            --    Proc_Call (..., Temp);
9438
9439            Append_To (Actuals,
9440              Make_Parameter_Association (Loc,
9441                Selector_Name             =>
9442                  Make_Identifier (Loc, Chars (Last_Formal)),
9443                Explicit_Actual_Parameter =>
9444                  New_Occurrence_Of (Temp_Id, Loc)));
9445
9446            Call :=
9447              Make_Procedure_Call_Statement (Loc,
9448                Name                   => New_Occurrence_Of (Proc_Id, Loc),
9449                Parameter_Associations => Actuals);
9450
9451            Insert_Actions (Par, New_List (Decl, Call));
9452            Rewrite (N, New_Occurrence_Of (Temp_Id, Loc));
9453         end;
9454      end if;
9455   end Rewrite_Function_Call_For_C;
9456
9457   ------------------------------------
9458   -- Set_Enclosing_Sec_Stack_Return --
9459   ------------------------------------
9460
9461   procedure Set_Enclosing_Sec_Stack_Return (N : Node_Id) is
9462      P : Node_Id := N;
9463
9464   begin
9465      --  Due to a possible mix of internally generated blocks, source blocks
9466      --  and loops, the scope stack may not be contiguous as all labels are
9467      --  inserted at the top level within the related function. Instead,
9468      --  perform a parent-based traversal and mark all appropriate constructs.
9469
9470      while Present (P) loop
9471
9472         --  Mark the label of a source or internally generated block or
9473         --  loop.
9474
9475         if Nkind_In (P, N_Block_Statement, N_Loop_Statement) then
9476            Set_Sec_Stack_Needed_For_Return (Entity (Identifier (P)));
9477
9478         --  Mark the enclosing function
9479
9480         elsif Nkind (P) = N_Subprogram_Body then
9481            if Present (Corresponding_Spec (P)) then
9482               Set_Sec_Stack_Needed_For_Return (Corresponding_Spec (P));
9483            else
9484               Set_Sec_Stack_Needed_For_Return (Defining_Entity (P));
9485            end if;
9486
9487            --  Do not go beyond the enclosing function
9488
9489            exit;
9490         end if;
9491
9492         P := Parent (P);
9493      end loop;
9494   end Set_Enclosing_Sec_Stack_Return;
9495
9496   ------------------------------------
9497   -- Unqual_BIP_Iface_Function_Call --
9498   ------------------------------------
9499
9500   function Unqual_BIP_Iface_Function_Call (Expr : Node_Id) return Node_Id is
9501      Has_Pointer_Displacement : Boolean := False;
9502      On_Object_Declaration    : Boolean := False;
9503      --  Remember if processing the renaming expressions on recursion we have
9504      --  traversed an object declaration, since we can traverse many object
9505      --  declaration renamings but just one regular object declaration.
9506
9507      function Unqual_BIP_Function_Call (Expr : Node_Id) return Node_Id;
9508      --  Search for a build-in-place function call skipping any qualification
9509      --  including qualified expressions, type conversions, references, calls
9510      --  to displace the pointer to the object, and renamings. Return Empty if
9511      --  no build-in-place function call is found.
9512
9513      ------------------------------
9514      -- Unqual_BIP_Function_Call --
9515      ------------------------------
9516
9517      function Unqual_BIP_Function_Call (Expr : Node_Id) return Node_Id is
9518      begin
9519         --  Recurse to handle case of multiple levels of qualification and/or
9520         --  conversion.
9521
9522         if Nkind_In (Expr, N_Qualified_Expression,
9523                            N_Type_Conversion,
9524                            N_Unchecked_Type_Conversion)
9525         then
9526            return Unqual_BIP_Function_Call (Expression (Expr));
9527
9528         --  Recurse to handle case of multiple levels of references and
9529         --  explicit dereferences.
9530
9531         elsif Nkind_In (Expr, N_Attribute_Reference,
9532                               N_Explicit_Dereference,
9533                               N_Reference)
9534         then
9535            return Unqual_BIP_Function_Call (Prefix (Expr));
9536
9537         --  Recurse on object renamings
9538
9539         elsif Nkind (Expr) = N_Identifier
9540           and then Present (Entity (Expr))
9541           and then Ekind_In (Entity (Expr), E_Constant, E_Variable)
9542           and then Nkind (Parent (Entity (Expr))) =
9543                      N_Object_Renaming_Declaration
9544           and then Present (Renamed_Object (Entity (Expr)))
9545         then
9546            return Unqual_BIP_Function_Call (Renamed_Object (Entity (Expr)));
9547
9548         --  Recurse on the initializing expression of the first reference of
9549         --  an object declaration.
9550
9551         elsif not On_Object_Declaration
9552           and then Nkind (Expr) = N_Identifier
9553           and then Present (Entity (Expr))
9554           and then Ekind_In (Entity (Expr), E_Constant, E_Variable)
9555           and then Nkind (Parent (Entity (Expr))) = N_Object_Declaration
9556           and then Present (Expression (Parent (Entity (Expr))))
9557         then
9558            On_Object_Declaration := True;
9559            return
9560              Unqual_BIP_Function_Call (Expression (Parent (Entity (Expr))));
9561
9562         --  Recurse to handle calls to displace the pointer to the object to
9563         --  reference a secondary dispatch table.
9564
9565         elsif Nkind (Expr) = N_Function_Call
9566           and then Nkind (Name (Expr)) in N_Has_Entity
9567           and then Present (Entity (Name (Expr)))
9568           and then RTU_Loaded (Ada_Tags)
9569           and then RTE_Available (RE_Displace)
9570           and then Is_RTE (Entity (Name (Expr)), RE_Displace)
9571         then
9572            Has_Pointer_Displacement := True;
9573            return
9574              Unqual_BIP_Function_Call (First (Parameter_Associations (Expr)));
9575
9576         --  Normal case: check if the inner expression is a BIP function call
9577         --  and the pointer to the object is displaced.
9578
9579         elsif Has_Pointer_Displacement
9580           and then Is_Build_In_Place_Function_Call (Expr)
9581         then
9582            return Expr;
9583
9584         else
9585            return Empty;
9586         end if;
9587      end Unqual_BIP_Function_Call;
9588
9589   --  Start of processing for Unqual_BIP_Iface_Function_Call
9590
9591   begin
9592      if Nkind (Expr) = N_Identifier and then No (Entity (Expr)) then
9593
9594         --  Can happen for X'Elab_Spec in the binder-generated file
9595
9596         return Empty;
9597      end if;
9598
9599      return Unqual_BIP_Function_Call (Expr);
9600   end Unqual_BIP_Iface_Function_Call;
9601
9602end Exp_Ch6;
9603