1------------------------------------------------------------------------------
2--                                                                          --
3--                         GNAT COMPILER COMPONENTS                         --
4--                                                                          --
5--                             E X P _ P A K D                              --
6--                                                                          --
7--                                 B o d y                                  --
8--                                                                          --
9--          Copyright (C) 1992-2019, Free Software Foundation, Inc.         --
10--                                                                          --
11-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12-- terms of the  GNU General Public License as published  by the Free Soft- --
13-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
17-- for  more details.  You should have  received  a copy of the GNU General --
18-- Public License  distributed with GNAT; see file COPYING3.  If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license.          --
20--                                                                          --
21-- GNAT was originally developed  by the GNAT team at  New York University. --
22-- Extensive contributions were provided by Ada Core Technologies Inc.      --
23--                                                                          --
24------------------------------------------------------------------------------
25
26with Atree;    use Atree;
27with Checks;   use Checks;
28with Einfo;    use Einfo;
29with Errout;   use Errout;
30with Exp_Dbug; use Exp_Dbug;
31with Exp_Util; use Exp_Util;
32with Layout;   use Layout;
33with Lib.Xref; use Lib.Xref;
34with Namet;    use Namet;
35with Nlists;   use Nlists;
36with Nmake;    use Nmake;
37with Opt;      use Opt;
38with Sem;      use Sem;
39with Sem_Aux;  use Sem_Aux;
40with Sem_Ch3;  use Sem_Ch3;
41with Sem_Ch8;  use Sem_Ch8;
42with Sem_Ch13; use Sem_Ch13;
43with Sem_Eval; use Sem_Eval;
44with Sem_Res;  use Sem_Res;
45with Sem_Util; use Sem_Util;
46with Sinfo;    use Sinfo;
47with Snames;   use Snames;
48with Stand;    use Stand;
49with Targparm; use Targparm;
50with Tbuild;   use Tbuild;
51with Ttypes;   use Ttypes;
52with Uintp;    use Uintp;
53
54package body Exp_Pakd is
55
56   ---------------------------
57   -- Endian Considerations --
58   ---------------------------
59
60   --  As described in the specification, bit numbering in a packed array
61   --  is consistent with bit numbering in a record representation clause,
62   --  and hence dependent on the endianness of the machine:
63
64   --    For little-endian machines, element zero is at the right hand end
65   --    (low order end) of a bit field.
66
67   --    For big-endian machines, element zero is at the left hand end
68   --    (high order end) of a bit field.
69
70   --  The shifts that are used to right justify a field therefore differ in
71   --  the two cases. For the little-endian case, we can simply use the bit
72   --  number (i.e. the element number * element size) as the count for a right
73   --  shift. For the big-endian case, we have to subtract the shift count from
74   --  an appropriate constant to use in the right shift. We use rotates
75   --  instead of shifts (which is necessary in the store case to preserve
76   --  other fields), and we expect that the backend will be able to change the
77   --  right rotate into a left rotate, avoiding the subtract, if the machine
78   --  architecture provides such an instruction.
79
80   -----------------------
81   -- Local Subprograms --
82   -----------------------
83
84   procedure Compute_Linear_Subscript
85     (Atyp   : Entity_Id;
86      N      : Node_Id;
87      Subscr : out Node_Id);
88   --  Given a constrained array type Atyp, and an indexed component node N
89   --  referencing an array object of this type, build an expression of type
90   --  Standard.Integer representing the zero-based linear subscript value.
91   --  This expression includes any required range checks.
92
93   function Compute_Number_Components
94      (N   : Node_Id;
95       Typ : Entity_Id) return Node_Id;
96   --  Build an expression that multiplies the length of the dimensions of the
97   --  array, used to control array equality checks.
98
99   procedure Convert_To_PAT_Type (Aexp : Node_Id);
100   --  Given an expression of a packed array type, builds a corresponding
101   --  expression whose type is the implementation type used to represent
102   --  the packed array. Aexp is analyzed and resolved on entry and on exit.
103
104   procedure Get_Base_And_Bit_Offset
105     (N      : Node_Id;
106      Base   : out Node_Id;
107      Offset : out Node_Id);
108   --  Given a node N for a name which involves a packed array reference,
109   --  return the base object of the reference and build an expression of
110   --  type Standard.Integer representing the zero-based offset in bits
111   --  from Base'Address to the first bit of the reference.
112
113   function Known_Aligned_Enough (Obj : Node_Id; Csiz : Nat) return Boolean;
114   --  There are two versions of the Set routines, the ones used when the
115   --  object is known to be sufficiently well aligned given the number of
116   --  bits, and the ones used when the object is not known to be aligned.
117   --  This routine is used to determine which set to use. Obj is a reference
118   --  to the object, and Csiz is the component size of the packed array.
119   --  True is returned if the alignment of object is known to be sufficient,
120   --  defined as 1 for odd bit sizes, 4 for bit sizes divisible by 4, and
121   --  2 otherwise.
122
123   function Make_Shift_Left (N : Node_Id; S : Node_Id) return Node_Id;
124   --  Build a left shift node, checking for the case of a shift count of zero
125
126   function Make_Shift_Right (N : Node_Id; S : Node_Id) return Node_Id;
127   --  Build a right shift node, checking for the case of a shift count of zero
128
129   function RJ_Unchecked_Convert_To
130     (Typ  : Entity_Id;
131      Expr : Node_Id) return Node_Id;
132   --  The packed array code does unchecked conversions which in some cases
133   --  may involve non-discrete types with differing sizes. The semantics of
134   --  such conversions is potentially endianness dependent, and the effect
135   --  we want here for such a conversion is to do the conversion in size as
136   --  though numeric items are involved, and we extend or truncate on the
137   --  left side. This happens naturally in the little-endian case, but in
138   --  the big endian case we can get left justification, when what we want
139   --  is right justification. This routine does the unchecked conversion in
140   --  a stepwise manner to ensure that it gives the expected result. Hence
141   --  the name (RJ = Right justified). The parameters Typ and Expr are as
142   --  for the case of a normal Unchecked_Convert_To call.
143
144   procedure Setup_Enumeration_Packed_Array_Reference (N : Node_Id);
145   --  This routine is called in the Get and Set case for arrays that are
146   --  packed but not bit-packed, meaning that they have at least one
147   --  subscript that is of an enumeration type with a non-standard
148   --  representation. This routine modifies the given node to properly
149   --  reference the corresponding packed array type.
150
151   procedure Setup_Inline_Packed_Array_Reference
152     (N      : Node_Id;
153      Atyp   : Entity_Id;
154      Obj    : in out Node_Id;
155      Cmask  : out Uint;
156      Shift  : out Node_Id);
157   --  This procedure performs common processing on the N_Indexed_Component
158   --  parameter given as N, whose prefix is a reference to a packed array.
159   --  This is used for the get and set when the component size is 1, 2, 4,
160   --  or for other component sizes when the packed array type is a modular
161   --  type (i.e. the cases that are handled with inline code).
162   --
163   --  On entry:
164   --
165   --    N is the N_Indexed_Component node for the packed array reference
166   --
167   --    Atyp is the constrained array type (the actual subtype has been
168   --    computed if necessary to obtain the constraints, but this is still
169   --    the original array type, not the Packed_Array_Impl_Type value).
170   --
171   --    Obj is the object which is to be indexed. It is always of type Atyp.
172   --
173   --  On return:
174   --
175   --    Obj is the object containing the desired bit field. It is of type
176   --    Unsigned, Long_Unsigned, or Long_Long_Unsigned, and is either the
177   --    entire value, for the small static case, or the proper selected byte
178   --    from the array in the large or dynamic case. This node is analyzed
179   --    and resolved on return.
180   --
181   --    Shift is a node representing the shift count to be used in the
182   --    rotate right instruction that positions the field for access.
183   --    This node is analyzed and resolved on return.
184   --
185   --    Cmask is a mask corresponding to the width of the component field.
186   --    Its value is 2 ** Csize - 1 (e.g. 2#1111# for component size of 4).
187   --
188   --  Note: in some cases the call to this routine may generate actions
189   --  (for handling multi-use references and the generation of the packed
190   --  array type on the fly). Such actions are inserted into the tree
191   --  directly using Insert_Action.
192
193   function Revert_Storage_Order (N : Node_Id) return Node_Id;
194   --  Perform appropriate justification and byte ordering adjustments for N,
195   --  an element of a packed array type, when both the component type and
196   --  the enclosing packed array type have reverse scalar storage order.
197   --  On little-endian targets, the value is left justified before byte
198   --  swapping. The Etype of the returned expression is an integer type of
199   --  an appropriate power-of-2 size.
200
201   --------------------------
202   -- Revert_Storage_Order --
203   --------------------------
204
205   function Revert_Storage_Order (N : Node_Id) return Node_Id is
206      Loc     : constant Source_Ptr := Sloc (N);
207      T       : constant Entity_Id := Etype (N);
208      T_Size  : constant Uint := RM_Size (T);
209
210      Swap_RE : RE_Id;
211      Swap_F  : Entity_Id;
212      Swap_T  : Entity_Id;
213      --  Swapping function
214
215      Arg      : Node_Id;
216      Adjusted : Node_Id;
217      Shift    : Uint;
218
219   begin
220      if T_Size <= 8 then
221
222         --  Array component size is less than a byte: no swapping needed
223
224         Swap_F := Empty;
225         Swap_T := RTE (RE_Unsigned_8);
226
227      else
228         --  Select byte swapping function depending on array component size
229
230         if T_Size <= 16 then
231            Swap_RE := RE_Bswap_16;
232
233         elsif T_Size <= 32 then
234            Swap_RE := RE_Bswap_32;
235
236         else pragma Assert (T_Size <= 64);
237            Swap_RE := RE_Bswap_64;
238         end if;
239
240         Swap_F := RTE (Swap_RE);
241         Swap_T := Etype (Swap_F);
242
243      end if;
244
245      Shift := Esize (Swap_T) - T_Size;
246
247      Arg := RJ_Unchecked_Convert_To (Swap_T, N);
248
249      if not Bytes_Big_Endian and then Shift > Uint_0 then
250         Arg :=
251           Make_Op_Shift_Left (Loc,
252             Left_Opnd  => Arg,
253             Right_Opnd => Make_Integer_Literal (Loc, Shift));
254      end if;
255
256      if Present (Swap_F) then
257         Adjusted :=
258           Make_Function_Call (Loc,
259             Name                   => New_Occurrence_Of (Swap_F, Loc),
260             Parameter_Associations => New_List (Arg));
261      else
262         Adjusted := Arg;
263      end if;
264
265      Set_Etype (Adjusted, Swap_T);
266      return Adjusted;
267   end Revert_Storage_Order;
268
269   ------------------------------
270   -- Compute_Linear_Subscript --
271   ------------------------------
272
273   procedure Compute_Linear_Subscript
274     (Atyp   : Entity_Id;
275      N      : Node_Id;
276      Subscr : out Node_Id)
277   is
278      Loc    : constant Source_Ptr := Sloc (N);
279      Oldsub : Node_Id;
280      Newsub : Node_Id;
281      Indx   : Node_Id;
282      Styp   : Entity_Id;
283
284   begin
285      Subscr := Empty;
286
287      --  Loop through dimensions
288
289      Indx   := First_Index (Atyp);
290      Oldsub := First (Expressions (N));
291
292      while Present (Indx) loop
293         Styp := Etype (Indx);
294         Newsub := Relocate_Node (Oldsub);
295
296         --  Get expression for the subscript value. First, if Do_Range_Check
297         --  is set on a subscript, then we must do a range check against the
298         --  original bounds (not the bounds of the packed array type). We do
299         --  this by introducing a subtype conversion.
300
301         if Do_Range_Check (Newsub)
302           and then Etype (Newsub) /= Styp
303         then
304            Newsub := Convert_To (Styp, Newsub);
305         end if;
306
307         --  Now evolve the expression for the subscript. First convert
308         --  the subscript to be zero based and of an integer type.
309
310         --  Case of integer type, where we just subtract to get lower bound
311
312         if Is_Integer_Type (Styp) then
313
314            --  If length of integer type is smaller than standard integer,
315            --  then we convert to integer first, then do the subtract
316
317            --  Integer (subscript) - Integer (Styp'First)
318
319            if Esize (Styp) < Esize (Standard_Integer) then
320               Newsub :=
321                 Make_Op_Subtract (Loc,
322                   Left_Opnd => Convert_To (Standard_Integer, Newsub),
323                 Right_Opnd =>
324                   Convert_To (Standard_Integer,
325                     Make_Attribute_Reference (Loc,
326                       Prefix         => New_Occurrence_Of (Styp, Loc),
327                       Attribute_Name => Name_First)));
328
329            --  For larger integer types, subtract first, then convert to
330            --  integer, this deals with strange long long integer bounds.
331
332            --    Integer (subscript - Styp'First)
333
334            else
335               Newsub :=
336                 Convert_To (Standard_Integer,
337                   Make_Op_Subtract (Loc,
338                     Left_Opnd => Newsub,
339                   Right_Opnd =>
340                     Make_Attribute_Reference (Loc,
341                       Prefix         => New_Occurrence_Of (Styp, Loc),
342                       Attribute_Name => Name_First)));
343            end if;
344
345         --  For the enumeration case, we have to use 'Pos to get the value
346         --  to work with before subtracting the lower bound.
347
348         --    Integer (Styp'Pos (subscr)) - Integer (Styp'Pos (Styp'First));
349
350         --  This is not quite right for bizarre cases where the size of the
351         --  enumeration type is > Integer'Size bits due to rep clause ???
352
353         else
354            pragma Assert (Is_Enumeration_Type (Styp));
355
356            Newsub :=
357              Make_Op_Subtract (Loc,
358                Left_Opnd => Convert_To (Standard_Integer,
359                  Make_Attribute_Reference (Loc,
360                    Prefix         => New_Occurrence_Of (Styp, Loc),
361                    Attribute_Name => Name_Pos,
362                    Expressions    => New_List (Newsub))),
363
364                Right_Opnd =>
365                  Convert_To (Standard_Integer,
366                    Make_Attribute_Reference (Loc,
367                      Prefix         => New_Occurrence_Of (Styp, Loc),
368                      Attribute_Name => Name_Pos,
369                      Expressions    => New_List (
370                        Make_Attribute_Reference (Loc,
371                          Prefix         => New_Occurrence_Of (Styp, Loc),
372                          Attribute_Name => Name_First)))));
373         end if;
374
375         Set_Paren_Count (Newsub, 1);
376
377         --  For the first subscript, we just copy that subscript value
378
379         if No (Subscr) then
380            Subscr := Newsub;
381
382         --  Otherwise, we must multiply what we already have by the current
383         --  stride and then add in the new value to the evolving subscript.
384
385         else
386            Subscr :=
387              Make_Op_Add (Loc,
388                Left_Opnd =>
389                  Make_Op_Multiply (Loc,
390                    Left_Opnd  => Subscr,
391                    Right_Opnd =>
392                      Make_Attribute_Reference (Loc,
393                        Attribute_Name => Name_Range_Length,
394                        Prefix         => New_Occurrence_Of (Styp, Loc))),
395                Right_Opnd => Newsub);
396         end if;
397
398         --  Move to next subscript
399
400         Next_Index (Indx);
401         Next (Oldsub);
402      end loop;
403   end Compute_Linear_Subscript;
404
405   -------------------------------
406   -- Compute_Number_Components --
407   -------------------------------
408
409   function Compute_Number_Components
410      (N   : Node_Id;
411       Typ : Entity_Id) return Node_Id
412   is
413      Loc      : constant Source_Ptr := Sloc (N);
414      Len_Expr : Node_Id;
415
416   begin
417      Len_Expr :=
418        Make_Attribute_Reference (Loc,
419          Attribute_Name => Name_Length,
420          Prefix         => New_Occurrence_Of (Typ, Loc),
421          Expressions    => New_List (Make_Integer_Literal (Loc, 1)));
422
423      for J in 2 .. Number_Dimensions (Typ) loop
424         Len_Expr :=
425           Make_Op_Multiply (Loc,
426             Left_Opnd  => Len_Expr,
427             Right_Opnd =>
428               Make_Attribute_Reference (Loc,
429                Attribute_Name => Name_Length,
430                Prefix         => New_Occurrence_Of (Typ, Loc),
431                Expressions    => New_List (Make_Integer_Literal (Loc, J))));
432      end loop;
433
434      return Len_Expr;
435   end Compute_Number_Components;
436
437   -------------------------
438   -- Convert_To_PAT_Type --
439   -------------------------
440
441   --  The PAT is always obtained from the actual subtype
442
443   procedure Convert_To_PAT_Type (Aexp : Node_Id) is
444      Act_ST : Entity_Id;
445
446   begin
447      Convert_To_Actual_Subtype (Aexp);
448      Act_ST := Underlying_Type (Etype (Aexp));
449      Create_Packed_Array_Impl_Type (Act_ST);
450
451      --  Just replace the etype with the packed array type. This works because
452      --  the expression will not be further analyzed, and Gigi considers the
453      --  two types equivalent in any case.
454
455      --  This is not strictly the case ??? If the reference is an actual in
456      --  call, the expansion of the prefix is delayed, and must be reanalyzed,
457      --  see Reset_Packed_Prefix. On the other hand, if the prefix is a simple
458      --  array reference, reanalysis can produce spurious type errors when the
459      --  PAT type is replaced again with the original type of the array. Same
460      --  for the case of a dereference. Ditto for function calls: expansion
461      --  may introduce additional actuals which will trigger errors if call is
462      --  reanalyzed. The following is correct and minimal, but the handling of
463      --  more complex packed expressions in actuals is confused. Probably the
464      --  problem only remains for actuals in calls.
465
466      Set_Etype (Aexp, Packed_Array_Impl_Type (Act_ST));
467
468      if Is_Entity_Name (Aexp)
469        or else
470           (Nkind (Aexp) = N_Indexed_Component
471             and then Is_Entity_Name (Prefix (Aexp)))
472        or else Nkind_In (Aexp, N_Explicit_Dereference, N_Function_Call)
473      then
474         Set_Analyzed (Aexp);
475      end if;
476   end Convert_To_PAT_Type;
477
478   -----------------------------------
479   -- Create_Packed_Array_Impl_Type --
480   -----------------------------------
481
482   procedure Create_Packed_Array_Impl_Type (Typ : Entity_Id) is
483      Loc      : constant Source_Ptr := Sloc (Typ);
484      Ctyp     : constant Entity_Id  := Component_Type (Typ);
485      Csize    : constant Uint       := Component_Size (Typ);
486
487      Ancest   : Entity_Id;
488      PB_Type  : Entity_Id;
489      PASize   : Uint;
490      Decl     : Node_Id;
491      PAT      : Entity_Id;
492      Len_Expr : Node_Id;
493      Len_Bits : Uint;
494      Bits_U1  : Node_Id;
495      PAT_High : Node_Id;
496      Btyp     : Entity_Id;
497      Lit      : Node_Id;
498
499      procedure Install_PAT;
500      --  This procedure is called with Decl set to the declaration for the
501      --  packed array type. It creates the type and installs it as required.
502
503      procedure Set_PB_Type;
504      --  Sets PB_Type to Packed_Bytes{1,2,4} as required by the alignment
505      --  requirements (see documentation in the spec of this package).
506
507      -----------------
508      -- Install_PAT --
509      -----------------
510
511      procedure Install_PAT is
512         Pushed_Scope : Boolean := False;
513
514      begin
515         --  We do not want to put the declaration we have created in the tree
516         --  since it is often hard, and sometimes impossible to find a proper
517         --  place for it (the impossible case arises for a packed array type
518         --  with bounds depending on the discriminant, a declaration cannot
519         --  be put inside the record, and the reference to the discriminant
520         --  cannot be outside the record).
521
522         --  The solution is to analyze the declaration while temporarily
523         --  attached to the tree at an appropriate point, and then we install
524         --  the resulting type as an Itype in the packed array type field of
525         --  the original type, so that no explicit declaration is required.
526
527         --  Note: the packed type is created in the scope of its parent type.
528         --  There are at least some cases where the current scope is deeper,
529         --  and so when this is the case, we temporarily reset the scope
530         --  for the definition. This is clearly safe, since the first use
531         --  of the packed array type will be the implicit reference from
532         --  the corresponding unpacked type when it is elaborated.
533
534         if Is_Itype (Typ) then
535            Set_Parent (Decl, Associated_Node_For_Itype (Typ));
536         else
537            Set_Parent (Decl, Declaration_Node (Typ));
538         end if;
539
540         if Scope (Typ) /= Current_Scope then
541            Push_Scope (Scope (Typ));
542            Pushed_Scope := True;
543         end if;
544
545         Set_Is_Itype (PAT, True);
546         Set_Is_Packed_Array_Impl_Type (PAT, True);
547         Set_Packed_Array_Impl_Type (Typ, PAT);
548         Analyze (Decl, Suppress => All_Checks);
549
550         if Pushed_Scope then
551            Pop_Scope;
552         end if;
553
554         --  Set Esize and RM_Size to the actual size of the packed object
555         --  Do not reset RM_Size if already set, as happens in the case of
556         --  a modular type.
557
558         if Unknown_Esize (PAT) then
559            Set_Esize (PAT, PASize);
560         end if;
561
562         if Unknown_RM_Size (PAT) then
563            Set_RM_Size (PAT, PASize);
564         end if;
565
566         Adjust_Esize_Alignment (PAT);
567
568         --  Set remaining fields of packed array type
569
570         Init_Alignment                (PAT);
571         Set_Parent                    (PAT, Empty);
572         Set_Associated_Node_For_Itype (PAT, Typ);
573         Set_Original_Array_Type       (PAT, Typ);
574
575         --  Propagate representation aspects
576
577         Set_Is_Atomic               (PAT, Is_Atomic                (Typ));
578         Set_Is_Independent          (PAT, Is_Independent           (Typ));
579         Set_Is_Volatile             (PAT, Is_Volatile              (Typ));
580         Set_Is_Volatile_Full_Access (PAT, Is_Volatile_Full_Access  (Typ));
581         Set_Treat_As_Volatile       (PAT, Treat_As_Volatile        (Typ));
582
583         --  For a non-bit-packed array, propagate reverse storage order
584         --  flag from original base type to packed array base type.
585
586         if not Is_Bit_Packed_Array (Typ) then
587            Set_Reverse_Storage_Order
588              (Etype (PAT), Reverse_Storage_Order (Base_Type (Typ)));
589         end if;
590
591         --  We definitely do not want to delay freezing for packed array
592         --  types. This is of particular importance for the itypes that are
593         --  generated for record components depending on discriminants where
594         --  there is no place to put the freeze node.
595
596         Set_Has_Delayed_Freeze (PAT, False);
597         Set_Has_Delayed_Freeze (Etype (PAT), False);
598
599         --  If we did allocate a freeze node, then clear out the reference
600         --  since it is obsolete (should we delete the freeze node???)
601
602         Set_Freeze_Node (PAT, Empty);
603         Set_Freeze_Node (Etype (PAT), Empty);
604      end Install_PAT;
605
606      -----------------
607      -- Set_PB_Type --
608      -----------------
609
610      procedure Set_PB_Type is
611      begin
612         --  If the user has specified an explicit alignment for the
613         --  type or component, take it into account.
614
615         if Csize <= 2 or else Csize = 4 or else Csize mod 2 /= 0
616           or else Alignment (Typ) = 1
617           or else Component_Alignment (Typ) = Calign_Storage_Unit
618         then
619            PB_Type := RTE (RE_Packed_Bytes1);
620
621         elsif Csize mod 4 /= 0
622           or else Alignment (Typ) = 2
623         then
624            PB_Type := RTE (RE_Packed_Bytes2);
625
626         else
627            PB_Type := RTE (RE_Packed_Bytes4);
628         end if;
629      end Set_PB_Type;
630
631   --  Start of processing for Create_Packed_Array_Impl_Type
632
633   begin
634      --  If we already have a packed array type, nothing to do
635
636      if Present (Packed_Array_Impl_Type (Typ)) then
637         return;
638      end if;
639
640      --  If our immediate ancestor subtype is constrained, and it already
641      --  has a packed array type, then just share the same type, since the
642      --  bounds must be the same. If the ancestor is not an array type but
643      --  a private type, as can happen with multiple instantiations, create
644      --  a new packed type, to avoid privacy issues.
645
646      if Ekind (Typ) = E_Array_Subtype then
647         Ancest := Ancestor_Subtype (Typ);
648
649         if Present (Ancest)
650           and then Is_Array_Type (Ancest)
651           and then Is_Constrained (Ancest)
652           and then Present (Packed_Array_Impl_Type (Ancest))
653         then
654            Set_Packed_Array_Impl_Type (Typ, Packed_Array_Impl_Type (Ancest));
655            return;
656         end if;
657      end if;
658
659      --  We preset the result type size from the size of the original array
660      --  type, since this size clearly belongs to the packed array type. The
661      --  size of the conceptual unpacked type is always set to unknown.
662
663      PASize := RM_Size (Typ);
664
665      --  Case of an array where at least one index is of an enumeration
666      --  type with a non-standard representation, but the component size
667      --  is not appropriate for bit packing. This is the case where we
668      --  have Is_Packed set (we would never be in this unit otherwise),
669      --  but Is_Bit_Packed_Array is false.
670
671      --  Note that if the component size is appropriate for bit packing,
672      --  then the circuit for the computation of the subscript properly
673      --  deals with the non-standard enumeration type case by taking the
674      --  Pos anyway.
675
676      if not Is_Bit_Packed_Array (Typ) then
677
678         --  Here we build a declaration:
679
680         --    type tttP is array (index1, index2, ...) of component_type
681
682         --  where index1, index2, are the index types. These are the same
683         --  as the index types of the original array, except for the non-
684         --  standard representation enumeration type case, where we have
685         --  two subcases.
686
687         --  For the unconstrained array case, we use
688
689         --    Natural range <>
690
691         --  For the constrained case, we use
692
693         --    Natural range Enum_Type'Pos (Enum_Type'First) ..
694         --                  Enum_Type'Pos (Enum_Type'Last);
695
696         --  Note that tttP is created even if no index subtype is a non
697         --  standard enumeration, because we still need to remove padding
698         --  normally inserted for component alignment.
699
700         PAT :=
701           Make_Defining_Identifier (Loc,
702             Chars => New_External_Name (Chars (Typ), 'P'));
703
704         declare
705            Indexes   : constant List_Id := New_List;
706            Indx      : Node_Id;
707            Indx_Typ  : Entity_Id;
708            Enum_Case : Boolean;
709            Typedef   : Node_Id;
710
711         begin
712            Indx := First_Index (Typ);
713
714            while Present (Indx) loop
715               Indx_Typ := Etype (Indx);
716
717               Enum_Case := Is_Enumeration_Type (Indx_Typ)
718                              and then Has_Non_Standard_Rep (Indx_Typ);
719
720               --  Unconstrained case
721
722               if not Is_Constrained (Typ) then
723                  if Enum_Case then
724                     Indx_Typ := Standard_Natural;
725                  end if;
726
727                  Append_To (Indexes, New_Occurrence_Of (Indx_Typ, Loc));
728
729               --  Constrained case
730
731               else
732                  if not Enum_Case then
733                     Append_To (Indexes, New_Occurrence_Of (Indx_Typ, Loc));
734
735                  else
736                     Append_To (Indexes,
737                       Make_Subtype_Indication (Loc,
738                         Subtype_Mark =>
739                           New_Occurrence_Of (Standard_Natural, Loc),
740                         Constraint =>
741                           Make_Range_Constraint (Loc,
742                             Range_Expression =>
743                               Make_Range (Loc,
744                                 Low_Bound =>
745                                   Make_Attribute_Reference (Loc,
746                                     Prefix         =>
747                                       New_Occurrence_Of (Indx_Typ, Loc),
748                                     Attribute_Name => Name_Pos,
749                                     Expressions    => New_List (
750                                       Make_Attribute_Reference (Loc,
751                                         Prefix         =>
752                                           New_Occurrence_Of (Indx_Typ, Loc),
753                                         Attribute_Name => Name_First))),
754
755                                 High_Bound =>
756                                   Make_Attribute_Reference (Loc,
757                                     Prefix         =>
758                                       New_Occurrence_Of (Indx_Typ, Loc),
759                                     Attribute_Name => Name_Pos,
760                                     Expressions    => New_List (
761                                       Make_Attribute_Reference (Loc,
762                                         Prefix         =>
763                                           New_Occurrence_Of (Indx_Typ, Loc),
764                                         Attribute_Name => Name_Last)))))));
765
766                  end if;
767               end if;
768
769               Next_Index (Indx);
770            end loop;
771
772            if not Is_Constrained (Typ) then
773               Typedef :=
774                 Make_Unconstrained_Array_Definition (Loc,
775                   Subtype_Marks => Indexes,
776                   Component_Definition =>
777                     Make_Component_Definition (Loc,
778                       Aliased_Present    => False,
779                       Subtype_Indication =>
780                          New_Occurrence_Of (Ctyp, Loc)));
781
782            else
783               Typedef :=
784                  Make_Constrained_Array_Definition (Loc,
785                    Discrete_Subtype_Definitions => Indexes,
786                    Component_Definition =>
787                      Make_Component_Definition (Loc,
788                        Aliased_Present    => False,
789                        Subtype_Indication =>
790                          New_Occurrence_Of (Ctyp, Loc)));
791            end if;
792
793            Decl :=
794              Make_Full_Type_Declaration (Loc,
795                Defining_Identifier => PAT,
796                Type_Definition     => Typedef);
797         end;
798
799         Install_PAT;
800         return;
801
802      --  Case of bit-packing required for unconstrained array. We create
803      --  a subtype that is equivalent to use Packed_Bytes{1,2,4} as needed.
804
805      elsif not Is_Constrained (Typ) then
806
807         --  When generating standard DWARF (i.e when GNAT_Encodings is
808         --  DWARF_GNAT_Encodings_Minimal), the ___XP suffix will be stripped
809         --  by the back-end but generate it anyway to ease compiler debugging.
810         --  This will help to distinguish implementation types from original
811         --  packed arrays.
812
813         PAT :=
814           Make_Defining_Identifier (Loc,
815             Chars => Make_Packed_Array_Impl_Type_Name (Typ, Csize));
816
817         Set_PB_Type;
818
819         Decl :=
820           Make_Subtype_Declaration (Loc,
821             Defining_Identifier => PAT,
822               Subtype_Indication => New_Occurrence_Of (PB_Type, Loc));
823
824         Install_PAT;
825         return;
826
827      --  Remaining code is for the case of bit-packing for constrained array
828
829      --  The name of the packed array subtype is
830
831      --    ttt___XPsss
832
833      --  where sss is the component size in bits and ttt is the name of
834      --  the parent packed type.
835
836      else
837         PAT :=
838           Make_Defining_Identifier (Loc,
839             Chars => Make_Packed_Array_Impl_Type_Name (Typ, Csize));
840
841         --  Build an expression for the length of the array in bits.
842         --  This is the product of the length of each of the dimensions
843
844         Len_Expr := Compute_Number_Components (Typ, Typ);
845
846         --  Temporarily attach the length expression to the tree and analyze
847         --  and resolve it, so that we can test its value. We assume that the
848         --  total length fits in type Integer. This expression may involve
849         --  discriminants, so we treat it as a default/per-object expression.
850
851         Set_Parent (Len_Expr, Typ);
852         Preanalyze_Spec_Expression (Len_Expr, Standard_Long_Long_Integer);
853
854         --  Use a modular type if possible. We can do this if we have
855         --  static bounds, and the length is small enough, and the length
856         --  is not zero. We exclude the zero length case because the size
857         --  of things is always at least one, and the zero length object
858         --  would have an anomalous size.
859
860         if Compile_Time_Known_Value (Len_Expr) then
861            Len_Bits := Expr_Value (Len_Expr) * Csize;
862
863            --  Check for size known to be too large
864
865            if Len_Bits >
866              Uint_2 ** (Standard_Integer_Size - 1) * System_Storage_Unit
867            then
868               if System_Storage_Unit = 8 then
869                  Error_Msg_N
870                    ("packed array size cannot exceed " &
871                     "Integer''Last bytes", Typ);
872               else
873                  Error_Msg_N
874                    ("packed array size cannot exceed " &
875                     "Integer''Last storage units", Typ);
876               end if;
877
878               --  Reset length to arbitrary not too high value to continue
879
880               Len_Expr := Make_Integer_Literal (Loc, 65535);
881               Analyze_And_Resolve (Len_Expr, Standard_Long_Long_Integer);
882            end if;
883
884            --  We normally consider small enough to mean no larger than the
885            --  value of System_Max_Binary_Modulus_Power, checking that in the
886            --  case of values longer than word size, we have long shifts.
887
888            if Len_Bits > 0
889              and then
890                (Len_Bits <= System_Word_Size
891                   or else (Len_Bits <= System_Max_Binary_Modulus_Power
892                              and then Support_Long_Shifts_On_Target))
893            then
894               --  We can use the modular type, it has the form:
895
896               --    subtype tttPn is btyp
897               --      range 0 .. 2 ** ((Typ'Length (1)
898               --                * ... * Typ'Length (n)) * Csize) - 1;
899
900               --  The bounds are statically known, and btyp is one of the
901               --  unsigned types, depending on the length.
902
903               if Len_Bits <= Standard_Short_Short_Integer_Size then
904                  Btyp := RTE (RE_Short_Short_Unsigned);
905
906               elsif Len_Bits <= Standard_Short_Integer_Size then
907                  Btyp := RTE (RE_Short_Unsigned);
908
909               elsif Len_Bits <= Standard_Integer_Size then
910                  Btyp := RTE (RE_Unsigned);
911
912               elsif Len_Bits <= Standard_Long_Integer_Size then
913                  Btyp := RTE (RE_Long_Unsigned);
914
915               else
916                  Btyp := RTE (RE_Long_Long_Unsigned);
917               end if;
918
919               Lit := Make_Integer_Literal (Loc, 2 ** Len_Bits - 1);
920               Set_Print_In_Hex (Lit);
921
922               Decl :=
923                 Make_Subtype_Declaration (Loc,
924                   Defining_Identifier => PAT,
925                     Subtype_Indication =>
926                       Make_Subtype_Indication (Loc,
927                         Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
928
929                         Constraint =>
930                           Make_Range_Constraint (Loc,
931                             Range_Expression =>
932                               Make_Range (Loc,
933                                 Low_Bound =>
934                                   Make_Integer_Literal (Loc, 0),
935                                 High_Bound => Lit))));
936
937               if PASize = Uint_0 then
938                  PASize := Len_Bits;
939               end if;
940
941               Install_PAT;
942
943               --  Propagate a given alignment to the modular type. This can
944               --  cause it to be under-aligned, but that's OK.
945
946               if Present (Alignment_Clause (Typ)) then
947                  Set_Alignment (PAT, Alignment (Typ));
948               end if;
949
950               return;
951            end if;
952         end if;
953
954         --  Could not use a modular type, for all other cases, we build
955         --  a packed array subtype:
956
957         --    subtype tttPn is
958         --      System.Packed_Bytes{1,2,4} (0 .. (Bits + 7) / 8 - 1);
959
960         --  Bits is the length of the array in bits
961
962         Set_PB_Type;
963
964         Bits_U1 :=
965           Make_Op_Add (Loc,
966             Left_Opnd =>
967               Make_Op_Multiply (Loc,
968                 Left_Opnd  =>
969                   Make_Integer_Literal (Loc, Csize),
970                 Right_Opnd => Len_Expr),
971
972             Right_Opnd =>
973               Make_Integer_Literal (Loc, 7));
974
975         Set_Paren_Count (Bits_U1, 1);
976
977         PAT_High :=
978           Make_Op_Subtract (Loc,
979             Left_Opnd =>
980               Make_Op_Divide (Loc,
981                 Left_Opnd => Bits_U1,
982                 Right_Opnd => Make_Integer_Literal (Loc, 8)),
983             Right_Opnd => Make_Integer_Literal (Loc, 1));
984
985         Decl :=
986           Make_Subtype_Declaration (Loc,
987             Defining_Identifier => PAT,
988               Subtype_Indication =>
989                 Make_Subtype_Indication (Loc,
990                   Subtype_Mark => New_Occurrence_Of (PB_Type, Loc),
991                   Constraint =>
992                     Make_Index_Or_Discriminant_Constraint (Loc,
993                       Constraints => New_List (
994                         Make_Range (Loc,
995                           Low_Bound =>
996                             Make_Integer_Literal (Loc, 0),
997                           High_Bound =>
998                             Convert_To (Standard_Integer, PAT_High))))));
999
1000         Install_PAT;
1001
1002         --  Currently the code in this unit requires that packed arrays
1003         --  represented by non-modular arrays of bytes be on a byte
1004         --  boundary for bit sizes handled by System.Pack_nn units.
1005         --  That's because these units assume the array being accessed
1006         --  starts on a byte boundary.
1007
1008         if Get_Id (UI_To_Int (Csize)) /= RE_Null then
1009            Set_Must_Be_On_Byte_Boundary (Typ);
1010         end if;
1011      end if;
1012   end Create_Packed_Array_Impl_Type;
1013
1014   -----------------------------------
1015   -- Expand_Bit_Packed_Element_Set --
1016   -----------------------------------
1017
1018   procedure Expand_Bit_Packed_Element_Set (N : Node_Id) is
1019      Loc : constant Source_Ptr := Sloc (N);
1020      Lhs : constant Node_Id    := Name (N);
1021
1022      Ass_OK : constant Boolean := Assignment_OK (Lhs);
1023      --  Used to preserve assignment OK status when assignment is rewritten
1024
1025      Rhs : Node_Id := Expression (N);
1026      --  Initially Rhs is the right hand side value, it will be replaced
1027      --  later by an appropriate unchecked conversion for the assignment.
1028
1029      Obj   : Node_Id;
1030      Atyp  : Entity_Id;
1031      PAT   : Entity_Id;
1032      Ctyp  : Entity_Id;
1033      Csiz  : Int;
1034      Cmask : Uint;
1035
1036      Shift : Node_Id;
1037      --  The expression for the shift value that is required
1038
1039      Shift_Used : Boolean := False;
1040      --  Set True if Shift has been used in the generated code at least once,
1041      --  so that it must be duplicated if used again.
1042
1043      New_Lhs : Node_Id;
1044      New_Rhs : Node_Id;
1045
1046      Rhs_Val_Known : Boolean;
1047      Rhs_Val       : Uint;
1048      --  If the value of the right hand side as an integer constant is
1049      --  known at compile time, Rhs_Val_Known is set True, and Rhs_Val
1050      --  contains the value. Otherwise Rhs_Val_Known is set False, and
1051      --  the Rhs_Val is undefined.
1052
1053      function Get_Shift return Node_Id;
1054      --  Function used to get the value of Shift, making sure that it
1055      --  gets duplicated if the function is called more than once.
1056
1057      ---------------
1058      -- Get_Shift --
1059      ---------------
1060
1061      function Get_Shift return Node_Id is
1062      begin
1063         --  If we used the shift value already, then duplicate it. We
1064         --  set a temporary parent in case actions have to be inserted.
1065
1066         if Shift_Used then
1067            Set_Parent (Shift, N);
1068            return Duplicate_Subexpr_No_Checks (Shift);
1069
1070         --  If first time, use Shift unchanged, and set flag for first use
1071
1072         else
1073            Shift_Used := True;
1074            return Shift;
1075         end if;
1076      end Get_Shift;
1077
1078   --  Start of processing for Expand_Bit_Packed_Element_Set
1079
1080   begin
1081      pragma Assert (Is_Bit_Packed_Array (Etype (Prefix (Lhs))));
1082
1083      Obj := Relocate_Node (Prefix (Lhs));
1084      Convert_To_Actual_Subtype (Obj);
1085      Atyp := Etype (Obj);
1086      PAT  := Packed_Array_Impl_Type (Atyp);
1087      Ctyp := Component_Type (Atyp);
1088      Csiz := UI_To_Int (Component_Size (Atyp));
1089
1090      --  We remove side effects, in case the rhs modifies the lhs, because we
1091      --  are about to transform the rhs into an expression that first READS
1092      --  the lhs, so we can do the necessary shifting and masking. Example:
1093      --  "X(2) := F(...);" where F modifies X(3). Otherwise, the side effect
1094      --  will be lost.
1095
1096      Remove_Side_Effects (Rhs);
1097
1098      --  We convert the right hand side to the proper subtype to ensure
1099      --  that an appropriate range check is made (since the normal range
1100      --  check from assignment will be lost in the transformations). This
1101      --  conversion is analyzed immediately so that subsequent processing
1102      --  can work with an analyzed Rhs (and e.g. look at its Etype)
1103
1104      --  If the right-hand side is a string literal, create a temporary for
1105      --  it, constant-folding is not ready to wrap the bit representation
1106      --  of a string literal.
1107
1108      if Nkind (Rhs) = N_String_Literal then
1109         declare
1110            Decl : Node_Id;
1111         begin
1112            Decl :=
1113              Make_Object_Declaration (Loc,
1114                Defining_Identifier => Make_Temporary (Loc, 'T', Rhs),
1115                Object_Definition   => New_Occurrence_Of (Ctyp, Loc),
1116                Expression          => New_Copy_Tree (Rhs));
1117
1118            Insert_Actions (N, New_List (Decl));
1119            Rhs := New_Occurrence_Of (Defining_Identifier (Decl), Loc);
1120         end;
1121      end if;
1122
1123      Rhs := Convert_To (Ctyp, Rhs);
1124      Set_Parent (Rhs, N);
1125
1126      --  If we are building the initialization procedure for a packed array,
1127      --  and Initialize_Scalars is enabled, each component assignment is an
1128      --  out-of-range value by design.  Compile this value without checks,
1129      --  because a call to the array init_proc must not raise an exception.
1130
1131      --  Condition is not consistent with description above, Within_Init_Proc
1132      --  is True also when we are building the IP for a record or protected
1133      --  type that has a packed array component???
1134
1135      if Within_Init_Proc
1136        and then Initialize_Scalars
1137      then
1138         Analyze_And_Resolve (Rhs, Ctyp, Suppress => All_Checks);
1139      else
1140         Analyze_And_Resolve (Rhs, Ctyp);
1141      end if;
1142
1143      --  Case of component size 1,2,4 or any component size for the modular
1144      --  case. These are the cases for which we can inline the code.
1145
1146      if Csiz = 1 or else Csiz = 2 or else Csiz = 4
1147        or else (Present (PAT) and then Is_Modular_Integer_Type (PAT))
1148      then
1149         Setup_Inline_Packed_Array_Reference (Lhs, Atyp, Obj, Cmask, Shift);
1150
1151         --  The statement to be generated is:
1152
1153         --    Obj := atyp!((Obj and Mask1) or (shift_left (rhs, Shift)))
1154
1155         --  or in the case of a freestanding Reverse_Storage_Order object,
1156
1157         --    Obj := Swap (atyp!((Swap (Obj) and Mask1)
1158         --                         or (shift_left (rhs, Shift))))
1159
1160         --      where Mask1 is obtained by shifting Cmask left Shift bits
1161         --      and then complementing the result.
1162
1163         --      the "and Mask1" is omitted if rhs is constant and all 1 bits
1164
1165         --      the "or ..." is omitted if rhs is constant and all 0 bits
1166
1167         --      rhs is converted to the appropriate type
1168
1169         --      The result is converted back to the array type, since
1170         --      otherwise we lose knowledge of the packed nature.
1171
1172         --  Determine if right side is all 0 bits or all 1 bits
1173
1174         if Compile_Time_Known_Value (Rhs) then
1175            Rhs_Val       := Expr_Rep_Value (Rhs);
1176            Rhs_Val_Known := True;
1177
1178         --  The following test catches the case of an unchecked conversion of
1179         --  an integer literal. This results from optimizing aggregates of
1180         --  packed types.
1181
1182         elsif Nkind (Rhs) = N_Unchecked_Type_Conversion
1183           and then Compile_Time_Known_Value (Expression (Rhs))
1184         then
1185            Rhs_Val       := Expr_Rep_Value (Expression (Rhs));
1186            Rhs_Val_Known := True;
1187
1188         else
1189            Rhs_Val       := No_Uint;
1190            Rhs_Val_Known := False;
1191         end if;
1192
1193         --  Some special checks for the case where the right hand value is
1194         --  known at compile time. Basically we have to take care of the
1195         --  implicit conversion to the subtype of the component object.
1196
1197         if Rhs_Val_Known then
1198
1199            --  If we have a biased component type then we must manually do the
1200            --  biasing, since we are taking responsibility in this case for
1201            --  constructing the exact bit pattern to be used.
1202
1203            if Has_Biased_Representation (Ctyp) then
1204               Rhs_Val := Rhs_Val - Expr_Rep_Value (Type_Low_Bound (Ctyp));
1205            end if;
1206
1207            --  For a negative value, we manually convert the two's complement
1208            --  value to a corresponding unsigned value, so that the proper
1209            --  field width is maintained. If we did not do this, we would
1210            --  get too many leading sign bits later on.
1211
1212            if Rhs_Val < 0 then
1213               Rhs_Val := 2 ** UI_From_Int (Csiz) + Rhs_Val;
1214            end if;
1215         end if;
1216
1217         --  Now create copies removing side effects. Note that in some complex
1218         --  cases, this may cause the fact that we have already set a packed
1219         --  array type on Obj to get lost. So we save the type of Obj, and
1220         --  make sure it is reset properly.
1221
1222         New_Lhs := Duplicate_Subexpr (Obj, Name_Req => True);
1223         New_Rhs := Duplicate_Subexpr_No_Checks (Obj);
1224
1225         --  First we deal with the "and"
1226
1227         if not Rhs_Val_Known or else Rhs_Val /= Cmask then
1228            declare
1229               Mask1 : Node_Id;
1230               Lit   : Node_Id;
1231
1232            begin
1233               if Compile_Time_Known_Value (Shift) then
1234                  Mask1 :=
1235                    Make_Integer_Literal (Loc,
1236                      Modulus (Etype (Obj)) - 1 -
1237                                 (Cmask * (2 ** Expr_Value (Get_Shift))));
1238                  Set_Print_In_Hex (Mask1);
1239
1240               else
1241                  Lit := Make_Integer_Literal (Loc, Cmask);
1242                  Set_Print_In_Hex (Lit);
1243                  Mask1 :=
1244                    Make_Op_Not (Loc,
1245                      Right_Opnd => Make_Shift_Left (Lit, Get_Shift));
1246               end if;
1247
1248               New_Rhs :=
1249                 Make_Op_And (Loc,
1250                   Left_Opnd  => New_Rhs,
1251                   Right_Opnd => Mask1);
1252            end;
1253         end if;
1254
1255         --  Then deal with the "or"
1256
1257         if not Rhs_Val_Known or else Rhs_Val /= 0 then
1258            declare
1259               Or_Rhs : Node_Id;
1260
1261               procedure Fixup_Rhs;
1262               --  Adjust Rhs by bias if biased representation for components
1263               --  or remove extraneous high order sign bits if signed.
1264
1265               procedure Fixup_Rhs is
1266                  Etyp : constant Entity_Id := Etype (Rhs);
1267
1268               begin
1269                  --  For biased case, do the required biasing by simply
1270                  --  converting to the biased subtype (the conversion
1271                  --  will generate the required bias).
1272
1273                  if Has_Biased_Representation (Ctyp) then
1274                     Rhs := Convert_To (Ctyp, Rhs);
1275
1276                  --  For a signed integer type that is not biased, generate
1277                  --  a conversion to unsigned to strip high order sign bits.
1278
1279                  elsif Is_Signed_Integer_Type (Ctyp) then
1280                     Rhs := Unchecked_Convert_To (RTE (Bits_Id (Csiz)), Rhs);
1281                  end if;
1282
1283                  --  Set Etype, since it can be referenced before the node is
1284                  --  completely analyzed.
1285
1286                  Set_Etype (Rhs, Etyp);
1287
1288                  --  We now need to do an unchecked conversion of the
1289                  --  result to the target type, but it is important that
1290                  --  this conversion be a right justified conversion and
1291                  --  not a left justified conversion.
1292
1293                  Rhs := RJ_Unchecked_Convert_To (Etype (Obj), Rhs);
1294               end Fixup_Rhs;
1295
1296            begin
1297               if Rhs_Val_Known
1298                 and then Compile_Time_Known_Value (Get_Shift)
1299               then
1300                  Or_Rhs :=
1301                    Make_Integer_Literal (Loc,
1302                      Rhs_Val * (2 ** Expr_Value (Get_Shift)));
1303                  Set_Print_In_Hex (Or_Rhs);
1304
1305               else
1306                  --  We have to convert the right hand side to Etype (Obj).
1307                  --  A special case arises if what we have now is a Val
1308                  --  attribute reference whose expression type is Etype (Obj).
1309                  --  This happens for assignments of fields from the same
1310                  --  array. In this case we get the required right hand side
1311                  --  by simply removing the inner attribute reference.
1312
1313                  if Nkind (Rhs) = N_Attribute_Reference
1314                    and then Attribute_Name (Rhs) = Name_Val
1315                    and then Etype (First (Expressions (Rhs))) = Etype (Obj)
1316                  then
1317                     Rhs := Relocate_Node (First (Expressions (Rhs)));
1318                     Fixup_Rhs;
1319
1320                  --  If the value of the right hand side is a known integer
1321                  --  value, then just replace it by an untyped constant,
1322                  --  which will be properly retyped when we analyze and
1323                  --  resolve the expression.
1324
1325                  elsif Rhs_Val_Known then
1326
1327                     --  Note that Rhs_Val has already been normalized to
1328                     --  be an unsigned value with the proper number of bits.
1329
1330                     Rhs := Make_Integer_Literal (Loc, Rhs_Val);
1331
1332                  --  Otherwise we need an unchecked conversion
1333
1334                  else
1335                     Fixup_Rhs;
1336                  end if;
1337
1338                  Or_Rhs := Make_Shift_Left (Rhs, Get_Shift);
1339               end if;
1340
1341               if Nkind (New_Rhs) = N_Op_And then
1342                  Set_Paren_Count (New_Rhs, 1);
1343                  Set_Etype (New_Rhs, Etype (Left_Opnd (New_Rhs)));
1344               end if;
1345
1346               New_Rhs :=
1347                 Make_Op_Or (Loc,
1348                   Left_Opnd  => New_Rhs,
1349                   Right_Opnd => Or_Rhs);
1350            end;
1351         end if;
1352
1353         --  Now do the rewrite
1354
1355         Rewrite (N,
1356           Make_Assignment_Statement (Loc,
1357             Name       => New_Lhs,
1358             Expression =>
1359               Unchecked_Convert_To (Etype (New_Lhs), New_Rhs)));
1360         Set_Assignment_OK (Name (N), Ass_OK);
1361
1362      --  All other component sizes for non-modular case
1363
1364      else
1365         --  We generate
1366
1367         --    Set_nn (Arr'address, Subscr, Bits_nn!(Rhs))
1368
1369         --  where Subscr is the computed linear subscript
1370
1371         declare
1372            Bits_nn : constant Entity_Id := RTE (Bits_Id (Csiz));
1373            Set_nn  : Entity_Id;
1374            Subscr  : Node_Id;
1375            Atyp    : Entity_Id;
1376            Rev_SSO : Node_Id;
1377
1378         begin
1379            if No (Bits_nn) then
1380
1381               --  Error, most likely High_Integrity_Mode restriction
1382
1383               return;
1384            end if;
1385
1386            --  Acquire proper Set entity. We use the aligned or unaligned
1387            --  case as appropriate.
1388
1389            if Known_Aligned_Enough (Obj, Csiz) then
1390               Set_nn := RTE (Set_Id (Csiz));
1391            else
1392               Set_nn := RTE (SetU_Id (Csiz));
1393            end if;
1394
1395            --  Now generate the set reference
1396
1397            Obj := Relocate_Node (Prefix (Lhs));
1398            Convert_To_Actual_Subtype (Obj);
1399            Atyp := Etype (Obj);
1400            Compute_Linear_Subscript (Atyp, Lhs, Subscr);
1401
1402            --  Set indication of whether the packed array has reverse SSO
1403
1404            Rev_SSO :=
1405              New_Occurrence_Of
1406                (Boolean_Literals (Reverse_Storage_Order (Atyp)), Loc);
1407
1408            --  Below we must make the assumption that Obj is
1409            --  at least byte aligned, since otherwise its address
1410            --  cannot be taken. The assumption holds since the
1411            --  only arrays that can be misaligned are small packed
1412            --  arrays which are implemented as a modular type, and
1413            --  that is not the case here.
1414
1415            Rewrite (N,
1416              Make_Procedure_Call_Statement (Loc,
1417                  Name => New_Occurrence_Of (Set_nn, Loc),
1418                  Parameter_Associations => New_List (
1419                    Make_Attribute_Reference (Loc,
1420                      Prefix         => Obj,
1421                      Attribute_Name => Name_Address),
1422                    Subscr,
1423                    Unchecked_Convert_To (Bits_nn, Convert_To (Ctyp, Rhs)),
1424                    Rev_SSO)));
1425
1426         end;
1427      end if;
1428
1429      Analyze (N, Suppress => All_Checks);
1430   end Expand_Bit_Packed_Element_Set;
1431
1432   -------------------------------------
1433   -- Expand_Packed_Address_Reference --
1434   -------------------------------------
1435
1436   procedure Expand_Packed_Address_Reference (N : Node_Id) is
1437      Loc    : constant Source_Ptr := Sloc (N);
1438      Base   : Node_Id;
1439      Offset : Node_Id;
1440
1441   begin
1442      --  We build an expression that has the form
1443
1444      --    outer_object'Address
1445      --      + (linear-subscript * component_size  for each array reference
1446      --      +  field'Bit_Position                 for each record field
1447      --      +  ...
1448      --      +  ...) / Storage_Unit;
1449
1450      Get_Base_And_Bit_Offset (Prefix (N), Base, Offset);
1451
1452      Rewrite (N,
1453        Unchecked_Convert_To (RTE (RE_Address),
1454          Make_Op_Add (Loc,
1455            Left_Opnd =>
1456              Unchecked_Convert_To (RTE (RE_Integer_Address),
1457                Make_Attribute_Reference (Loc,
1458                  Prefix         => Base,
1459                  Attribute_Name => Name_Address)),
1460
1461            Right_Opnd =>
1462              Unchecked_Convert_To (RTE (RE_Integer_Address),
1463                Make_Op_Divide (Loc,
1464                  Left_Opnd => Offset,
1465                  Right_Opnd =>
1466                    Make_Integer_Literal (Loc, System_Storage_Unit))))));
1467
1468      Analyze_And_Resolve (N, RTE (RE_Address));
1469   end Expand_Packed_Address_Reference;
1470
1471   ---------------------------------
1472   -- Expand_Packed_Bit_Reference --
1473   ---------------------------------
1474
1475   procedure Expand_Packed_Bit_Reference (N : Node_Id) is
1476      Loc    : constant Source_Ptr := Sloc (N);
1477      Base   : Node_Id;
1478      Offset : Node_Id;
1479
1480   begin
1481      --  We build an expression that has the form
1482
1483      --    (linear-subscript * component_size      for each array reference
1484      --      +  field'Bit_Position                 for each record field
1485      --      +  ...
1486      --      +  ...) mod Storage_Unit;
1487
1488      Get_Base_And_Bit_Offset (Prefix (N), Base, Offset);
1489
1490      Rewrite (N,
1491        Unchecked_Convert_To (Universal_Integer,
1492          Make_Op_Mod (Loc,
1493            Left_Opnd => Offset,
1494            Right_Opnd => Make_Integer_Literal (Loc, System_Storage_Unit))));
1495
1496      Analyze_And_Resolve (N, Universal_Integer);
1497   end Expand_Packed_Bit_Reference;
1498
1499   ------------------------------------
1500   -- Expand_Packed_Boolean_Operator --
1501   ------------------------------------
1502
1503   --  This routine expands "a op b" for the packed cases
1504
1505   procedure Expand_Packed_Boolean_Operator (N : Node_Id) is
1506      Loc : constant Source_Ptr := Sloc (N);
1507      Typ : constant Entity_Id  := Etype (N);
1508      L   : constant Node_Id    := Relocate_Node (Left_Opnd  (N));
1509      R   :          Node_Id    := Relocate_Node (Right_Opnd (N));
1510
1511      Ltyp : Entity_Id;
1512      Rtyp : Entity_Id;
1513      PAT  : Entity_Id;
1514
1515   begin
1516      Convert_To_Actual_Subtype (L);
1517      Convert_To_Actual_Subtype (R);
1518
1519      Ensure_Defined (Etype (L), N);
1520      Ensure_Defined (Etype (R), N);
1521
1522      Apply_Length_Check (R, Etype (L));
1523
1524      Ltyp := Etype (L);
1525      Rtyp := Etype (R);
1526
1527      --  Deal with silly case of XOR where the subcomponent has a range
1528      --  True .. True where an exception must be raised.
1529
1530      if Nkind (N) = N_Op_Xor then
1531         R := Duplicate_Subexpr (R);
1532         Silly_Boolean_Array_Xor_Test (N, R, Rtyp);
1533      end if;
1534
1535      --  Now that that silliness is taken care of, get packed array type
1536
1537      Convert_To_PAT_Type (L);
1538      Convert_To_PAT_Type (R);
1539
1540      PAT := Etype (L);
1541
1542      --  For the modular case, we expand a op b into
1543
1544      --    rtyp!(pat!(a) op pat!(b))
1545
1546      --  where rtyp is the Etype of the left operand. Note that we do not
1547      --  convert to the base type, since this would be unconstrained, and
1548      --  hence not have a corresponding packed array type set.
1549
1550      --  Note that both operands must be modular for this code to be used
1551
1552      if Is_Modular_Integer_Type (PAT)
1553           and then
1554         Is_Modular_Integer_Type (Etype (R))
1555      then
1556         declare
1557            P : Node_Id;
1558
1559         begin
1560            if Nkind (N) = N_Op_And then
1561               P := Make_Op_And (Loc, L, R);
1562
1563            elsif Nkind (N) = N_Op_Or then
1564               P := Make_Op_Or  (Loc, L, R);
1565
1566            else -- Nkind (N) = N_Op_Xor
1567               P := Make_Op_Xor (Loc, L, R);
1568            end if;
1569
1570            Rewrite (N, Unchecked_Convert_To (Ltyp, P));
1571         end;
1572
1573      --  For the array case, we insert the actions
1574
1575      --    Result : Ltype;
1576
1577      --    System.Bit_Ops.Bit_And/Or/Xor
1578      --     (Left'Address,
1579      --      Ltype'Length * Ltype'Component_Size;
1580      --      Right'Address,
1581      --      Rtype'Length * Rtype'Component_Size
1582      --      Result'Address);
1583
1584      --  where Left and Right are the Packed_Bytes{1,2,4} operands and
1585      --  the second argument and fourth arguments are the lengths of the
1586      --  operands in bits. Then we replace the expression by a reference
1587      --  to Result.
1588
1589      --  Note that if we are mixing a modular and array operand, everything
1590      --  works fine, since we ensure that the modular representation has the
1591      --  same physical layout as the array representation (that's what the
1592      --  left justified modular stuff in the big-endian case is about).
1593
1594      else
1595         declare
1596            Result_Ent : constant Entity_Id := Make_Temporary (Loc, 'T');
1597            E_Id       : RE_Id;
1598
1599         begin
1600            if Nkind (N) = N_Op_And then
1601               E_Id := RE_Bit_And;
1602
1603            elsif Nkind (N) = N_Op_Or then
1604               E_Id := RE_Bit_Or;
1605
1606            else -- Nkind (N) = N_Op_Xor
1607               E_Id := RE_Bit_Xor;
1608            end if;
1609
1610            Insert_Actions (N, New_List (
1611
1612              Make_Object_Declaration (Loc,
1613                Defining_Identifier => Result_Ent,
1614                Object_Definition => New_Occurrence_Of (Ltyp, Loc)),
1615
1616              Make_Procedure_Call_Statement (Loc,
1617                Name => New_Occurrence_Of (RTE (E_Id), Loc),
1618                  Parameter_Associations => New_List (
1619
1620                    Make_Byte_Aligned_Attribute_Reference (Loc,
1621                      Prefix         => L,
1622                      Attribute_Name => Name_Address),
1623
1624                    Make_Op_Multiply (Loc,
1625                      Left_Opnd =>
1626                        Make_Attribute_Reference (Loc,
1627                          Prefix         =>
1628                            New_Occurrence_Of
1629                              (Etype (First_Index (Ltyp)), Loc),
1630                          Attribute_Name => Name_Range_Length),
1631
1632                      Right_Opnd =>
1633                        Make_Integer_Literal (Loc, Component_Size (Ltyp))),
1634
1635                    Make_Byte_Aligned_Attribute_Reference (Loc,
1636                      Prefix         => R,
1637                      Attribute_Name => Name_Address),
1638
1639                    Make_Op_Multiply (Loc,
1640                      Left_Opnd =>
1641                        Make_Attribute_Reference (Loc,
1642                          Prefix         =>
1643                            New_Occurrence_Of
1644                              (Etype (First_Index (Rtyp)), Loc),
1645                          Attribute_Name => Name_Range_Length),
1646
1647                      Right_Opnd =>
1648                        Make_Integer_Literal (Loc, Component_Size (Rtyp))),
1649
1650                    Make_Byte_Aligned_Attribute_Reference (Loc,
1651                      Prefix => New_Occurrence_Of (Result_Ent, Loc),
1652                      Attribute_Name => Name_Address)))));
1653
1654            Rewrite (N,
1655              New_Occurrence_Of (Result_Ent, Loc));
1656         end;
1657      end if;
1658
1659      Analyze_And_Resolve (N, Typ, Suppress => All_Checks);
1660   end Expand_Packed_Boolean_Operator;
1661
1662   -------------------------------------
1663   -- Expand_Packed_Element_Reference --
1664   -------------------------------------
1665
1666   procedure Expand_Packed_Element_Reference (N : Node_Id) is
1667      Loc   : constant Source_Ptr := Sloc (N);
1668      Obj   : Node_Id;
1669      Atyp  : Entity_Id;
1670      PAT   : Entity_Id;
1671      Ctyp  : Entity_Id;
1672      Csiz  : Int;
1673      Shift : Node_Id;
1674      Cmask : Uint;
1675      Lit   : Node_Id;
1676      Arg   : Node_Id;
1677
1678   begin
1679      --  If the node is an actual in a call, the prefix has not been fully
1680      --  expanded, to account for the additional expansion for in-out actuals
1681      --  (see expand_actuals for details). If the prefix itself is a packed
1682      --  reference as well, we have to recurse to complete the transformation
1683      --  of the prefix.
1684
1685      if Nkind (Prefix (N)) = N_Indexed_Component
1686        and then not Analyzed (Prefix (N))
1687        and then Is_Bit_Packed_Array (Etype (Prefix (Prefix (N))))
1688      then
1689         Expand_Packed_Element_Reference (Prefix (N));
1690      end if;
1691
1692      --  The prefix may be rewritten below as a conversion. If it is a source
1693      --  entity generate reference to it now, to prevent spurious warnings
1694      --  about unused entities.
1695
1696      if Is_Entity_Name (Prefix (N))
1697        and then Comes_From_Source (Prefix (N))
1698      then
1699         Generate_Reference (Entity (Prefix (N)), Prefix (N), 'r');
1700      end if;
1701
1702      --  If not bit packed, we have the enumeration case, which is easily
1703      --  dealt with (just adjust the subscripts of the indexed component)
1704
1705      --  Note: this leaves the result as an indexed component, which is
1706      --  still a variable, so can be used in the assignment case, as is
1707      --  required in the enumeration case.
1708
1709      if not Is_Bit_Packed_Array (Etype (Prefix (N))) then
1710         Setup_Enumeration_Packed_Array_Reference (N);
1711         return;
1712      end if;
1713
1714      --  Remaining processing is for the bit-packed case
1715
1716      Obj := Relocate_Node (Prefix (N));
1717      Convert_To_Actual_Subtype (Obj);
1718      Atyp := Etype (Obj);
1719      PAT  := Packed_Array_Impl_Type (Atyp);
1720      Ctyp := Component_Type (Atyp);
1721      Csiz := UI_To_Int (Component_Size (Atyp));
1722
1723      --  Case of component size 1,2,4 or any component size for the modular
1724      --  case. These are the cases for which we can inline the code.
1725
1726      if Csiz = 1 or else Csiz = 2 or else Csiz = 4
1727        or else (Present (PAT) and then Is_Modular_Integer_Type (PAT))
1728      then
1729         Setup_Inline_Packed_Array_Reference (N, Atyp, Obj, Cmask, Shift);
1730         Lit := Make_Integer_Literal (Loc, Cmask);
1731         Set_Print_In_Hex (Lit);
1732
1733         --  We generate a shift right to position the field, followed by a
1734         --  masking operation to extract the bit field, and we finally do an
1735         --  unchecked conversion to convert the result to the required target.
1736
1737         --  Note that the unchecked conversion automatically deals with the
1738         --  bias if we are dealing with a biased representation. What will
1739         --  happen is that we temporarily generate the biased representation,
1740         --  but almost immediately that will be converted to the original
1741         --  unbiased component type, and the bias will disappear.
1742
1743         Arg :=
1744           Make_Op_And (Loc,
1745             Left_Opnd  => Make_Shift_Right (Obj, Shift),
1746             Right_Opnd => Lit);
1747         Set_Etype (Arg, Ctyp);
1748
1749         --  Component extraction is performed on a native endianness scalar
1750         --  value: if Atyp has reverse storage order, then it has been byte
1751         --  swapped, and if the component being extracted is itself of a
1752         --  composite type with reverse storage order, then we need to swap
1753         --  it back to its expected endianness after extraction.
1754
1755         if Reverse_Storage_Order (Atyp)
1756           and then (Is_Record_Type (Ctyp) or else Is_Array_Type (Ctyp))
1757           and then Reverse_Storage_Order (Ctyp)
1758         then
1759            Arg := Revert_Storage_Order (Arg);
1760         end if;
1761
1762         --  We needed to analyze this before we do the unchecked convert
1763         --  below, but we need it temporarily attached to the tree for
1764         --  this analysis (hence the temporary Set_Parent call).
1765
1766         Set_Parent (Arg, Parent (N));
1767         Analyze_And_Resolve (Arg);
1768
1769         Rewrite (N, RJ_Unchecked_Convert_To (Ctyp, Arg));
1770
1771      --  All other component sizes for non-modular case
1772
1773      else
1774         --  We generate
1775
1776         --    Component_Type!(Get_nn (Arr'address, Subscr))
1777
1778         --  where Subscr is the computed linear subscript
1779
1780         declare
1781            Get_nn  : Entity_Id;
1782            Subscr  : Node_Id;
1783            Rev_SSO : constant Node_Id :=
1784              New_Occurrence_Of
1785                (Boolean_Literals (Reverse_Storage_Order (Atyp)), Loc);
1786
1787         begin
1788            --  Acquire proper Get entity. We use the aligned or unaligned
1789            --  case as appropriate.
1790
1791            if Known_Aligned_Enough (Obj, Csiz) then
1792               Get_nn := RTE (Get_Id (Csiz));
1793            else
1794               Get_nn := RTE (GetU_Id (Csiz));
1795            end if;
1796
1797            --  Now generate the get reference
1798
1799            Compute_Linear_Subscript (Atyp, N, Subscr);
1800
1801            --  Below we make the assumption that Obj is at least byte
1802            --  aligned, since otherwise its address cannot be taken.
1803            --  The assumption holds since the only arrays that can be
1804            --  misaligned are small packed arrays which are implemented
1805            --  as a modular type, and that is not the case here.
1806
1807            Rewrite (N,
1808              Unchecked_Convert_To (Ctyp,
1809                Make_Function_Call (Loc,
1810                  Name => New_Occurrence_Of (Get_nn, Loc),
1811                  Parameter_Associations => New_List (
1812                    Make_Attribute_Reference (Loc,
1813                      Prefix         => Obj,
1814                      Attribute_Name => Name_Address),
1815                    Subscr,
1816                    Rev_SSO))));
1817         end;
1818      end if;
1819
1820      Analyze_And_Resolve (N, Ctyp, Suppress => All_Checks);
1821   end Expand_Packed_Element_Reference;
1822
1823   ----------------------
1824   -- Expand_Packed_Eq --
1825   ----------------------
1826
1827   --  Handles expansion of "=" on packed array types
1828
1829   procedure Expand_Packed_Eq (N : Node_Id) is
1830      Loc : constant Source_Ptr := Sloc (N);
1831      L   : constant Node_Id    := Relocate_Node (Left_Opnd  (N));
1832      R   : constant Node_Id    := Relocate_Node (Right_Opnd (N));
1833
1834      LLexpr : Node_Id;
1835      RLexpr : Node_Id;
1836
1837      Ltyp : Entity_Id;
1838      Rtyp : Entity_Id;
1839      PAT  : Entity_Id;
1840
1841   begin
1842      Convert_To_Actual_Subtype (L);
1843      Convert_To_Actual_Subtype (R);
1844      Ltyp := Underlying_Type (Etype (L));
1845      Rtyp := Underlying_Type (Etype (R));
1846
1847      Convert_To_PAT_Type (L);
1848      Convert_To_PAT_Type (R);
1849      PAT := Etype (L);
1850
1851      LLexpr :=
1852        Make_Op_Multiply (Loc,
1853          Left_Opnd  => Compute_Number_Components (N, Ltyp),
1854          Right_Opnd => Make_Integer_Literal (Loc, Component_Size (Ltyp)));
1855
1856      RLexpr :=
1857        Make_Op_Multiply (Loc,
1858          Left_Opnd  => Compute_Number_Components (N, Rtyp),
1859          Right_Opnd => Make_Integer_Literal (Loc, Component_Size (Rtyp)));
1860
1861      --  For the modular case, we transform the comparison to:
1862
1863      --    Ltyp'Length = Rtyp'Length and then PAT!(L) = PAT!(R)
1864
1865      --  where PAT is the packed array type. This works fine, since in the
1866      --  modular case we guarantee that the unused bits are always zeroes.
1867      --  We do have to compare the lengths because we could be comparing
1868      --  two different subtypes of the same base type.
1869
1870      if Is_Modular_Integer_Type (PAT) then
1871         Rewrite (N,
1872           Make_And_Then (Loc,
1873             Left_Opnd =>
1874               Make_Op_Eq (Loc,
1875                 Left_Opnd  => LLexpr,
1876                 Right_Opnd => RLexpr),
1877
1878             Right_Opnd =>
1879               Make_Op_Eq (Loc,
1880                 Left_Opnd => L,
1881                 Right_Opnd => R)));
1882
1883      --  For the non-modular case, we call a runtime routine
1884
1885      --    System.Bit_Ops.Bit_Eq
1886      --      (L'Address, L_Length, R'Address, R_Length)
1887
1888      --  where PAT is the packed array type, and the lengths are the lengths
1889      --  in bits of the original packed arrays. This routine takes care of
1890      --  not comparing the unused bits in the last byte.
1891
1892      else
1893         Rewrite (N,
1894           Make_Function_Call (Loc,
1895             Name => New_Occurrence_Of (RTE (RE_Bit_Eq), Loc),
1896             Parameter_Associations => New_List (
1897               Make_Byte_Aligned_Attribute_Reference (Loc,
1898                 Prefix         => L,
1899                 Attribute_Name => Name_Address),
1900
1901               LLexpr,
1902
1903               Make_Byte_Aligned_Attribute_Reference (Loc,
1904                 Prefix         => R,
1905                 Attribute_Name => Name_Address),
1906
1907               RLexpr)));
1908      end if;
1909
1910      Analyze_And_Resolve (N, Standard_Boolean, Suppress => All_Checks);
1911   end Expand_Packed_Eq;
1912
1913   -----------------------
1914   -- Expand_Packed_Not --
1915   -----------------------
1916
1917   --  Handles expansion of "not" on packed array types
1918
1919   procedure Expand_Packed_Not (N : Node_Id) is
1920      Loc  : constant Source_Ptr := Sloc (N);
1921      Typ  : constant Entity_Id  := Etype (N);
1922      Opnd : constant Node_Id    := Relocate_Node (Right_Opnd (N));
1923
1924      Rtyp : Entity_Id;
1925      PAT  : Entity_Id;
1926      Lit  : Node_Id;
1927
1928   begin
1929      Convert_To_Actual_Subtype (Opnd);
1930      Rtyp := Etype (Opnd);
1931
1932      --  Deal with silly False..False and True..True subtype case
1933
1934      Silly_Boolean_Array_Not_Test (N, Rtyp);
1935
1936      --  Now that the silliness is taken care of, get packed array type
1937
1938      Convert_To_PAT_Type (Opnd);
1939      PAT := Etype (Opnd);
1940
1941      --  For the case where the packed array type is a modular type, "not A"
1942      --  expands simply into:
1943
1944      --     Rtyp!(PAT!(A) xor Mask)
1945
1946      --  where PAT is the packed array type, Mask is a mask of all 1 bits of
1947      --  length equal to the size of this packed type, and Rtyp is the actual
1948      --  actual subtype of the operand.
1949
1950      Lit := Make_Integer_Literal (Loc, 2 ** RM_Size (PAT) - 1);
1951      Set_Print_In_Hex (Lit);
1952
1953      if not Is_Array_Type (PAT) then
1954         Rewrite (N,
1955           Unchecked_Convert_To (Rtyp,
1956             Make_Op_Xor (Loc,
1957               Left_Opnd  => Opnd,
1958               Right_Opnd => Lit)));
1959
1960      --  For the array case, we insert the actions
1961
1962      --    Result : Typ;
1963
1964      --    System.Bit_Ops.Bit_Not
1965      --     (Opnd'Address,
1966      --      Typ'Length * Typ'Component_Size,
1967      --      Result'Address);
1968
1969      --  where Opnd is the Packed_Bytes{1,2,4} operand and the second argument
1970      --  is the length of the operand in bits. We then replace the expression
1971      --  with a reference to Result.
1972
1973      else
1974         declare
1975            Result_Ent : constant Entity_Id := Make_Temporary (Loc, 'T');
1976
1977         begin
1978            Insert_Actions (N, New_List (
1979              Make_Object_Declaration (Loc,
1980                Defining_Identifier => Result_Ent,
1981                Object_Definition   => New_Occurrence_Of (Rtyp, Loc)),
1982
1983              Make_Procedure_Call_Statement (Loc,
1984                Name => New_Occurrence_Of (RTE (RE_Bit_Not), Loc),
1985                  Parameter_Associations => New_List (
1986                    Make_Byte_Aligned_Attribute_Reference (Loc,
1987                      Prefix         => Opnd,
1988                      Attribute_Name => Name_Address),
1989
1990                    Make_Op_Multiply (Loc,
1991                      Left_Opnd =>
1992                        Make_Attribute_Reference (Loc,
1993                          Prefix         =>
1994                            New_Occurrence_Of
1995                              (Etype (First_Index (Rtyp)), Loc),
1996                          Attribute_Name => Name_Range_Length),
1997
1998                      Right_Opnd =>
1999                        Make_Integer_Literal (Loc, Component_Size (Rtyp))),
2000
2001                    Make_Byte_Aligned_Attribute_Reference (Loc,
2002                      Prefix         => New_Occurrence_Of (Result_Ent, Loc),
2003                      Attribute_Name => Name_Address)))));
2004
2005            Rewrite (N, New_Occurrence_Of (Result_Ent, Loc));
2006         end;
2007      end if;
2008
2009      Analyze_And_Resolve (N, Typ, Suppress => All_Checks);
2010   end Expand_Packed_Not;
2011
2012   -----------------------------
2013   -- Get_Base_And_Bit_Offset --
2014   -----------------------------
2015
2016   procedure Get_Base_And_Bit_Offset
2017     (N      : Node_Id;
2018      Base   : out Node_Id;
2019      Offset : out Node_Id)
2020   is
2021      Loc    : Source_Ptr;
2022      Term   : Node_Id;
2023      Atyp   : Entity_Id;
2024      Subscr : Node_Id;
2025
2026   begin
2027      Base   := N;
2028      Offset := Empty;
2029
2030      --  We build up an expression serially that has the form
2031
2032      --    linear-subscript * component_size       for each array reference
2033      --      +  field'Bit_Position                 for each record field
2034      --      +  ...
2035
2036      loop
2037         Loc := Sloc (Base);
2038
2039         if Nkind (Base) = N_Indexed_Component then
2040            Convert_To_Actual_Subtype (Prefix (Base));
2041            Atyp := Etype (Prefix (Base));
2042            Compute_Linear_Subscript (Atyp, Base, Subscr);
2043
2044            Term :=
2045              Make_Op_Multiply (Loc,
2046                Left_Opnd => Subscr,
2047                Right_Opnd =>
2048                 Make_Attribute_Reference (Loc,
2049                   Prefix         => New_Occurrence_Of (Atyp, Loc),
2050                   Attribute_Name => Name_Component_Size));
2051
2052         elsif Nkind (Base) = N_Selected_Component then
2053            Term :=
2054              Make_Attribute_Reference (Loc,
2055                Prefix         => Selector_Name (Base),
2056                Attribute_Name => Name_Bit_Position);
2057
2058         else
2059            return;
2060         end if;
2061
2062         if No (Offset) then
2063            Offset := Term;
2064
2065         else
2066            Offset :=
2067              Make_Op_Add (Loc,
2068                Left_Opnd  => Offset,
2069                Right_Opnd => Term);
2070         end if;
2071
2072         Base := Prefix (Base);
2073      end loop;
2074   end Get_Base_And_Bit_Offset;
2075
2076   -------------------------------------
2077   -- Involves_Packed_Array_Reference --
2078   -------------------------------------
2079
2080   function Involves_Packed_Array_Reference (N : Node_Id) return Boolean is
2081   begin
2082      if Nkind (N) = N_Indexed_Component
2083        and then Is_Bit_Packed_Array (Etype (Prefix (N)))
2084      then
2085         return True;
2086
2087      elsif Nkind (N) = N_Selected_Component then
2088         return Involves_Packed_Array_Reference (Prefix (N));
2089
2090      else
2091         return False;
2092      end if;
2093   end Involves_Packed_Array_Reference;
2094
2095   --------------------------
2096   -- Known_Aligned_Enough --
2097   --------------------------
2098
2099   function Known_Aligned_Enough (Obj : Node_Id; Csiz : Nat) return Boolean is
2100      Typ : constant Entity_Id := Etype (Obj);
2101
2102      function In_Partially_Packed_Record (Comp : Entity_Id) return Boolean;
2103      --  If the component is in a record that contains previous packed
2104      --  components, consider it unaligned because the back-end might
2105      --  choose to pack the rest of the record. Lead to less efficient code,
2106      --  but safer vis-a-vis of back-end choices.
2107
2108      --------------------------------
2109      -- In_Partially_Packed_Record --
2110      --------------------------------
2111
2112      function In_Partially_Packed_Record (Comp : Entity_Id) return Boolean is
2113         Rec_Type  : constant Entity_Id := Scope (Comp);
2114         Prev_Comp : Entity_Id;
2115
2116      begin
2117         Prev_Comp := First_Entity (Rec_Type);
2118         while Present (Prev_Comp) loop
2119            if Is_Packed (Etype (Prev_Comp)) then
2120               return True;
2121
2122            elsif Prev_Comp = Comp then
2123               return False;
2124            end if;
2125
2126            Next_Entity (Prev_Comp);
2127         end loop;
2128
2129         return False;
2130      end  In_Partially_Packed_Record;
2131
2132   --  Start of processing for Known_Aligned_Enough
2133
2134   begin
2135      --  Odd bit sizes don't need alignment anyway
2136
2137      if Csiz mod 2 = 1 then
2138         return True;
2139
2140      --  If we have a specified alignment, see if it is sufficient, if not
2141      --  then we can't possibly be aligned enough in any case.
2142
2143      elsif Known_Alignment (Etype (Obj)) then
2144         --  Alignment required is 4 if size is a multiple of 4, and
2145         --  2 otherwise (e.g. 12 bits requires 4, 10 bits requires 2)
2146
2147         if Alignment (Etype (Obj)) < 4 - (Csiz mod 4) then
2148            return False;
2149         end if;
2150      end if;
2151
2152      --  OK, alignment should be sufficient, if object is aligned
2153
2154      --  If object is strictly aligned, then it is definitely aligned
2155
2156      if Strict_Alignment (Typ) then
2157         return True;
2158
2159      --  Case of subscripted array reference
2160
2161      elsif Nkind (Obj) = N_Indexed_Component then
2162
2163         --  If we have a pointer to an array, then this is definitely
2164         --  aligned, because pointers always point to aligned versions.
2165
2166         if Is_Access_Type (Etype (Prefix (Obj))) then
2167            return True;
2168
2169         --  Otherwise, go look at the prefix
2170
2171         else
2172            return Known_Aligned_Enough (Prefix (Obj), Csiz);
2173         end if;
2174
2175      --  Case of record field
2176
2177      elsif Nkind (Obj) = N_Selected_Component then
2178
2179         --  What is significant here is whether the record type is packed
2180
2181         if Is_Record_Type (Etype (Prefix (Obj)))
2182           and then Is_Packed (Etype (Prefix (Obj)))
2183         then
2184            return False;
2185
2186         --  Or the component has a component clause which might cause
2187         --  the component to become unaligned (we can't tell if the
2188         --  backend is doing alignment computations).
2189
2190         elsif Present (Component_Clause (Entity (Selector_Name (Obj)))) then
2191            return False;
2192
2193         elsif In_Partially_Packed_Record (Entity (Selector_Name (Obj))) then
2194            return False;
2195
2196         --  In all other cases, go look at prefix
2197
2198         else
2199            return Known_Aligned_Enough (Prefix (Obj), Csiz);
2200         end if;
2201
2202      elsif Nkind (Obj) = N_Type_Conversion then
2203         return Known_Aligned_Enough (Expression (Obj), Csiz);
2204
2205      --  For a formal parameter, it is safer to assume that it is not
2206      --  aligned, because the formal may be unconstrained while the actual
2207      --  is constrained. In this situation, a small constrained packed
2208      --  array, represented in modular form, may be unaligned.
2209
2210      elsif Is_Entity_Name (Obj) then
2211         return not Is_Formal (Entity (Obj));
2212      else
2213
2214      --  If none of the above, must be aligned
2215         return True;
2216      end if;
2217   end Known_Aligned_Enough;
2218
2219   ---------------------
2220   -- Make_Shift_Left --
2221   ---------------------
2222
2223   function Make_Shift_Left (N : Node_Id; S : Node_Id) return Node_Id is
2224      Nod : Node_Id;
2225
2226   begin
2227      if Compile_Time_Known_Value (S) and then Expr_Value (S) = 0 then
2228         return N;
2229      else
2230         Nod :=
2231           Make_Op_Shift_Left (Sloc (N),
2232             Left_Opnd  => N,
2233             Right_Opnd => S);
2234         Set_Shift_Count_OK (Nod, True);
2235         return Nod;
2236      end if;
2237   end Make_Shift_Left;
2238
2239   ----------------------
2240   -- Make_Shift_Right --
2241   ----------------------
2242
2243   function Make_Shift_Right (N : Node_Id; S : Node_Id) return Node_Id is
2244      Nod : Node_Id;
2245
2246   begin
2247      if Compile_Time_Known_Value (S) and then Expr_Value (S) = 0 then
2248         return N;
2249      else
2250         Nod :=
2251           Make_Op_Shift_Right (Sloc (N),
2252             Left_Opnd  => N,
2253             Right_Opnd => S);
2254         Set_Shift_Count_OK (Nod, True);
2255         return Nod;
2256      end if;
2257   end Make_Shift_Right;
2258
2259   -----------------------------
2260   -- RJ_Unchecked_Convert_To --
2261   -----------------------------
2262
2263   function RJ_Unchecked_Convert_To
2264     (Typ  : Entity_Id;
2265      Expr : Node_Id) return Node_Id
2266   is
2267      Source_Typ : constant Entity_Id := Etype (Expr);
2268      Target_Typ : constant Entity_Id := Typ;
2269
2270      Src : Node_Id := Expr;
2271
2272      Source_Siz : Nat;
2273      Target_Siz : Nat;
2274
2275   begin
2276      Source_Siz := UI_To_Int (RM_Size (Source_Typ));
2277      Target_Siz := UI_To_Int (RM_Size (Target_Typ));
2278
2279      --  For a little-endian target type stored byte-swapped on a
2280      --  big-endian machine, do not mask to Target_Siz bits.
2281
2282      if Bytes_Big_Endian
2283           and then (Is_Record_Type (Target_Typ)
2284                       or else
2285                     Is_Array_Type (Target_Typ))
2286           and then Reverse_Storage_Order (Target_Typ)
2287      then
2288         Source_Siz := Target_Siz;
2289      end if;
2290
2291      --  First step, if the source type is not a discrete type, then we first
2292      --  convert to a modular type of the source length, since otherwise, on
2293      --  a big-endian machine, we get left-justification. We do it for little-
2294      --  endian machines as well, because there might be junk bits that are
2295      --  not cleared if the type is not numeric. This can be done only if the
2296      --  source siz is different from 0 (i.e. known), otherwise we must trust
2297      --  the type declarations (case of non-discrete components).
2298
2299      if Source_Siz /= 0
2300        and then Source_Siz /= Target_Siz
2301        and then not Is_Discrete_Type (Source_Typ)
2302      then
2303         Src := Unchecked_Convert_To (RTE (Bits_Id (Source_Siz)), Src);
2304      end if;
2305
2306      --  In the big endian case, if the lengths of the two types differ, then
2307      --  we must worry about possible left justification in the conversion,
2308      --  and avoiding that is what this is all about.
2309
2310      if Bytes_Big_Endian and then Source_Siz /= Target_Siz then
2311
2312         --  Next step. If the target is not a discrete type, then we first
2313         --  convert to a modular type of the target length, since otherwise,
2314         --  on a big-endian machine, we get left-justification.
2315
2316         if not Is_Discrete_Type (Target_Typ) then
2317            Src := Unchecked_Convert_To (RTE (Bits_Id (Target_Siz)), Src);
2318         end if;
2319      end if;
2320
2321      --  And now we can do the final conversion to the target type
2322
2323      return Unchecked_Convert_To (Target_Typ, Src);
2324   end RJ_Unchecked_Convert_To;
2325
2326   ----------------------------------------------
2327   -- Setup_Enumeration_Packed_Array_Reference --
2328   ----------------------------------------------
2329
2330   --  All we have to do here is to find the subscripts that correspond to the
2331   --  index positions that have non-standard enumeration types and insert a
2332   --  Pos attribute to get the proper subscript value.
2333
2334   --  Finally the prefix must be uncheck-converted to the corresponding packed
2335   --  array type.
2336
2337   --  Note that the component type is unchanged, so we do not need to fiddle
2338   --  with the types (Gigi always automatically takes the packed array type if
2339   --  it is set, as it will be in this case).
2340
2341   procedure Setup_Enumeration_Packed_Array_Reference (N : Node_Id) is
2342      Pfx   : constant Node_Id   := Prefix (N);
2343      Typ   : constant Entity_Id := Etype (N);
2344      Exprs : constant List_Id   := Expressions (N);
2345      Expr  : Node_Id;
2346
2347   begin
2348      --  If the array is unconstrained, then we replace the array reference
2349      --  with its actual subtype. This actual subtype will have a packed array
2350      --  type with appropriate bounds.
2351
2352      if not Is_Constrained (Packed_Array_Impl_Type (Etype (Pfx))) then
2353         Convert_To_Actual_Subtype (Pfx);
2354      end if;
2355
2356      Expr := First (Exprs);
2357      while Present (Expr) loop
2358         declare
2359            Loc      : constant Source_Ptr := Sloc (Expr);
2360            Expr_Typ : constant Entity_Id := Etype (Expr);
2361
2362         begin
2363            if Is_Enumeration_Type (Expr_Typ)
2364              and then Has_Non_Standard_Rep (Expr_Typ)
2365            then
2366               Rewrite (Expr,
2367                 Make_Attribute_Reference (Loc,
2368                   Prefix         => New_Occurrence_Of (Expr_Typ, Loc),
2369                   Attribute_Name => Name_Pos,
2370                   Expressions    => New_List (Relocate_Node (Expr))));
2371               Analyze_And_Resolve (Expr, Standard_Natural);
2372            end if;
2373         end;
2374
2375         Next (Expr);
2376      end loop;
2377
2378      Rewrite (N,
2379        Make_Indexed_Component (Sloc (N),
2380          Prefix      =>
2381            Unchecked_Convert_To (Packed_Array_Impl_Type (Etype (Pfx)), Pfx),
2382          Expressions => Exprs));
2383
2384      Analyze_And_Resolve (N, Typ);
2385   end Setup_Enumeration_Packed_Array_Reference;
2386
2387   -----------------------------------------
2388   -- Setup_Inline_Packed_Array_Reference --
2389   -----------------------------------------
2390
2391   procedure Setup_Inline_Packed_Array_Reference
2392     (N      : Node_Id;
2393      Atyp   : Entity_Id;
2394      Obj    : in out Node_Id;
2395      Cmask  : out Uint;
2396      Shift  : out Node_Id)
2397   is
2398      Loc  : constant Source_Ptr := Sloc (N);
2399      PAT  : Entity_Id;
2400      Otyp : Entity_Id;
2401      Csiz : Uint;
2402      Osiz : Uint;
2403
2404   begin
2405      Csiz := Component_Size (Atyp);
2406
2407      Convert_To_PAT_Type (Obj);
2408      PAT := Etype (Obj);
2409
2410      Cmask := 2 ** Csiz - 1;
2411
2412      if Is_Array_Type (PAT) then
2413         Otyp := Component_Type (PAT);
2414         Osiz := Component_Size (PAT);
2415
2416      else
2417         Otyp := PAT;
2418
2419         --  In the case where the PAT is a modular type, we want the actual
2420         --  size in bits of the modular value we use. This is neither the
2421         --  Object_Size nor the Value_Size, either of which may have been
2422         --  reset to strange values, but rather the minimum size. Note that
2423         --  since this is a modular type with full range, the issue of
2424         --  biased representation does not arise.
2425
2426         Osiz := UI_From_Int (Minimum_Size (Otyp));
2427      end if;
2428
2429      Compute_Linear_Subscript (Atyp, N, Shift);
2430
2431      --  If the component size is not 1, then the subscript must be multiplied
2432      --  by the component size to get the shift count.
2433
2434      if Csiz /= 1 then
2435         Shift :=
2436           Make_Op_Multiply (Loc,
2437             Left_Opnd  => Make_Integer_Literal (Loc, Csiz),
2438             Right_Opnd => Shift);
2439      end if;
2440
2441      --  If we have the array case, then this shift count must be broken down
2442      --  into a byte subscript, and a shift within the byte.
2443
2444      if Is_Array_Type (PAT) then
2445
2446         declare
2447            New_Shift : Node_Id;
2448
2449         begin
2450            --  We must analyze shift, since we will duplicate it
2451
2452            Set_Parent (Shift, N);
2453            Analyze_And_Resolve
2454              (Shift, Standard_Integer, Suppress => All_Checks);
2455
2456            --  The shift count within the word is
2457            --    shift mod Osiz
2458
2459            New_Shift :=
2460              Make_Op_Mod (Loc,
2461                Left_Opnd  => Duplicate_Subexpr (Shift),
2462                Right_Opnd => Make_Integer_Literal (Loc, Osiz));
2463
2464            --  The subscript to be used on the PAT array is
2465            --    shift / Osiz
2466
2467            Obj :=
2468              Make_Indexed_Component (Loc,
2469                Prefix => Obj,
2470                Expressions => New_List (
2471                  Make_Op_Divide (Loc,
2472                    Left_Opnd  => Duplicate_Subexpr (Shift),
2473                    Right_Opnd => Make_Integer_Literal (Loc, Osiz))));
2474
2475            Shift := New_Shift;
2476         end;
2477
2478      --  For the modular integer case, the object to be manipulated is the
2479      --  entire array, so Obj is unchanged. Note that we will reset its type
2480      --  to PAT before returning to the caller.
2481
2482      else
2483         null;
2484      end if;
2485
2486      --  The one remaining step is to modify the shift count for the
2487      --  big-endian case. Consider the following example in a byte:
2488
2489      --     xxxxxxxx  bits of byte
2490      --     vvvvvvvv  bits of value
2491      --     33221100  little-endian numbering
2492      --     00112233  big-endian numbering
2493
2494      --  Here we have the case of 2-bit fields
2495
2496      --  For the little-endian case, we already have the proper shift count
2497      --  set, e.g. for element 2, the shift count is 2*2 = 4.
2498
2499      --  For the big endian case, we have to adjust the shift count, computing
2500      --  it as (N - F) - Shift, where N is the number of bits in an element of
2501      --  the array used to implement the packed array, F is the number of bits
2502      --  in a source array element, and Shift is the count so far computed.
2503
2504      --  We also have to adjust if the storage order is reversed
2505
2506      if Bytes_Big_Endian xor Reverse_Storage_Order (Base_Type (Atyp)) then
2507         Shift :=
2508           Make_Op_Subtract (Loc,
2509             Left_Opnd  => Make_Integer_Literal (Loc, Osiz - Csiz),
2510             Right_Opnd => Shift);
2511      end if;
2512
2513      Set_Parent (Shift, N);
2514      Set_Parent (Obj, N);
2515      Analyze_And_Resolve (Obj,   Otyp,             Suppress => All_Checks);
2516      Analyze_And_Resolve (Shift, Standard_Integer, Suppress => All_Checks);
2517
2518      --  Make sure final type of object is the appropriate packed type
2519
2520      Set_Etype (Obj, Otyp);
2521
2522   end Setup_Inline_Packed_Array_Reference;
2523
2524end Exp_Pakd;
2525