1------------------------------------------------------------------------------
2--                                                                          --
3--                         GNAT COMPILER COMPONENTS                         --
4--                                                                          --
5--                              S E M _ C H 6                               --
6--                                                                          --
7--                                 B o d y                                  --
8--                                                                          --
9--          Copyright (C) 1992-2019, Free Software Foundation, Inc.         --
10--                                                                          --
11-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12-- terms of the  GNU General Public License as published  by the Free Soft- --
13-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
17-- for  more details.  You should have  received  a copy of the GNU General --
18-- Public License  distributed with GNAT; see file COPYING3.  If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license.          --
20--                                                                          --
21-- GNAT was originally developed  by the GNAT team at  New York University. --
22-- Extensive contributions were provided by Ada Core Technologies Inc.      --
23--                                                                          --
24------------------------------------------------------------------------------
25
26with Aspects;   use Aspects;
27with Atree;     use Atree;
28with Checks;    use Checks;
29with Contracts; use Contracts;
30with Debug;     use Debug;
31with Einfo;     use Einfo;
32with Elists;    use Elists;
33with Errout;    use Errout;
34with Expander;  use Expander;
35with Exp_Ch6;   use Exp_Ch6;
36with Exp_Ch7;   use Exp_Ch7;
37with Exp_Ch9;   use Exp_Ch9;
38with Exp_Dbug;  use Exp_Dbug;
39with Exp_Tss;   use Exp_Tss;
40with Exp_Util;  use Exp_Util;
41with Freeze;    use Freeze;
42with Ghost;     use Ghost;
43with Inline;    use Inline;
44with Itypes;    use Itypes;
45with Lib.Xref;  use Lib.Xref;
46with Layout;    use Layout;
47with Namet;     use Namet;
48with Lib;       use Lib;
49with Nlists;    use Nlists;
50with Nmake;     use Nmake;
51with Opt;       use Opt;
52with Output;    use Output;
53with Restrict;  use Restrict;
54with Rident;    use Rident;
55with Rtsfind;   use Rtsfind;
56with Sem;       use Sem;
57with Sem_Aux;   use Sem_Aux;
58with Sem_Cat;   use Sem_Cat;
59with Sem_Ch3;   use Sem_Ch3;
60with Sem_Ch4;   use Sem_Ch4;
61with Sem_Ch5;   use Sem_Ch5;
62with Sem_Ch8;   use Sem_Ch8;
63with Sem_Ch9;   use Sem_Ch9;
64with Sem_Ch10;  use Sem_Ch10;
65with Sem_Ch12;  use Sem_Ch12;
66with Sem_Ch13;  use Sem_Ch13;
67with Sem_Dim;   use Sem_Dim;
68with Sem_Disp;  use Sem_Disp;
69with Sem_Dist;  use Sem_Dist;
70with Sem_Elim;  use Sem_Elim;
71with Sem_Eval;  use Sem_Eval;
72with Sem_Mech;  use Sem_Mech;
73with Sem_Prag;  use Sem_Prag;
74with Sem_Res;   use Sem_Res;
75with Sem_Util;  use Sem_Util;
76with Sem_Type;  use Sem_Type;
77with Sem_Warn;  use Sem_Warn;
78with Sinput;    use Sinput;
79with Stand;     use Stand;
80with Sinfo;     use Sinfo;
81with Sinfo.CN;  use Sinfo.CN;
82with Snames;    use Snames;
83with Stringt;   use Stringt;
84with Style;
85with Stylesw;   use Stylesw;
86with Tbuild;    use Tbuild;
87with Uintp;     use Uintp;
88with Urealp;    use Urealp;
89with Validsw;   use Validsw;
90
91package body Sem_Ch6 is
92
93   May_Hide_Profile : Boolean := False;
94   --  This flag is used to indicate that two formals in two subprograms being
95   --  checked for conformance differ only in that one is an access parameter
96   --  while the other is of a general access type with the same designated
97   --  type. In this case, if the rest of the signatures match, a call to
98   --  either subprogram may be ambiguous, which is worth a warning. The flag
99   --  is set in Compatible_Types, and the warning emitted in
100   --  New_Overloaded_Entity.
101
102   -----------------------
103   -- Local Subprograms --
104   -----------------------
105
106   procedure Analyze_Function_Return (N : Node_Id);
107   --  Subsidiary to Analyze_Return_Statement. Called when the return statement
108   --  applies to a [generic] function.
109
110   procedure Analyze_Generic_Subprogram_Body (N : Node_Id; Gen_Id : Entity_Id);
111   --  Analyze a generic subprogram body. N is the body to be analyzed, and
112   --  Gen_Id is the defining entity Id for the corresponding spec.
113
114   procedure Analyze_Null_Procedure
115     (N             : Node_Id;
116      Is_Completion : out Boolean);
117   --  A null procedure can be a declaration or (Ada 2012) a completion
118
119   procedure Analyze_Return_Statement (N : Node_Id);
120   --  Common processing for simple and extended return statements
121
122   procedure Analyze_Return_Type (N : Node_Id);
123   --  Subsidiary to Process_Formals: analyze subtype mark in function
124   --  specification in a context where the formals are visible and hide
125   --  outer homographs.
126
127   procedure Analyze_Subprogram_Body_Helper (N : Node_Id);
128   --  Does all the real work of Analyze_Subprogram_Body. This is split out so
129   --  that we can use RETURN but not skip the debug output at the end.
130
131   function Can_Override_Operator (Subp : Entity_Id) return Boolean;
132   --  Returns true if Subp can override a predefined operator.
133
134   procedure Check_Conformance
135     (New_Id                   : Entity_Id;
136      Old_Id                   : Entity_Id;
137      Ctype                    : Conformance_Type;
138      Errmsg                   : Boolean;
139      Conforms                 : out Boolean;
140      Err_Loc                  : Node_Id := Empty;
141      Get_Inst                 : Boolean := False;
142      Skip_Controlling_Formals : Boolean := False);
143   --  Given two entities, this procedure checks that the profiles associated
144   --  with these entities meet the conformance criterion given by the third
145   --  parameter. If they conform, Conforms is set True and control returns
146   --  to the caller. If they do not conform, Conforms is set to False, and
147   --  in addition, if Errmsg is True on the call, proper messages are output
148   --  to complain about the conformance failure. If Err_Loc is non_Empty
149   --  the error messages are placed on Err_Loc, if Err_Loc is empty, then
150   --  error messages are placed on the appropriate part of the construct
151   --  denoted by New_Id. If Get_Inst is true, then this is a mode conformance
152   --  against a formal access-to-subprogram type so Get_Instance_Of must
153   --  be called.
154
155   procedure Check_Limited_Return
156     (N      : Node_Id;
157      Expr   : Node_Id;
158      R_Type : Entity_Id);
159   --  Check the appropriate (Ada 95 or Ada 2005) rules for returning limited
160   --  types. Used only for simple return statements. Expr is the expression
161   --  returned.
162
163   procedure Check_Subprogram_Order (N : Node_Id);
164   --  N is the N_Subprogram_Body node for a subprogram. This routine applies
165   --  the alpha ordering rule for N if this ordering requirement applicable.
166
167   procedure Check_Returns
168     (HSS  : Node_Id;
169      Mode : Character;
170      Err  : out Boolean;
171      Proc : Entity_Id := Empty);
172   --  Called to check for missing return statements in a function body, or for
173   --  returns present in a procedure body which has No_Return set. HSS is the
174   --  handled statement sequence for the subprogram body. This procedure
175   --  checks all flow paths to make sure they either have return (Mode = 'F',
176   --  used for functions) or do not have a return (Mode = 'P', used for
177   --  No_Return procedures). The flag Err is set if there are any control
178   --  paths not explicitly terminated by a return in the function case, and is
179   --  True otherwise. Proc is the entity for the procedure case and is used
180   --  in posting the warning message.
181
182   procedure Check_Untagged_Equality (Eq_Op : Entity_Id);
183   --  In Ada 2012, a primitive equality operator on an untagged record type
184   --  must appear before the type is frozen, and have the same visibility as
185   --  that of the type. This procedure checks that this rule is met, and
186   --  otherwise emits an error on the subprogram declaration and a warning
187   --  on the earlier freeze point if it is easy to locate. In Ada 2012 mode,
188   --  this routine outputs errors (or warnings if -gnatd.E is set). In earlier
189   --  versions of Ada, warnings are output if Warn_On_Ada_2012_Incompatibility
190   --  is set, otherwise the call has no effect.
191
192   procedure Enter_Overloaded_Entity (S : Entity_Id);
193   --  This procedure makes S, a new overloaded entity, into the first visible
194   --  entity with that name.
195
196   function Is_Non_Overriding_Operation
197     (Prev_E : Entity_Id;
198      New_E  : Entity_Id) return Boolean;
199   --  Enforce the rule given in 12.3(18): a private operation in an instance
200   --  overrides an inherited operation only if the corresponding operation
201   --  was overriding in the generic. This needs to be checked for primitive
202   --  operations of types derived (in the generic unit) from formal private
203   --  or formal derived types.
204
205   procedure Make_Inequality_Operator (S : Entity_Id);
206   --  Create the declaration for an inequality operator that is implicitly
207   --  created by a user-defined equality operator that yields a boolean.
208
209   procedure Preanalyze_Formal_Expression (N : Node_Id; T : Entity_Id);
210   --  Preanalysis of default expressions of subprogram formals. N is the
211   --  expression to be analyzed and T is the expected type.
212
213   procedure Set_Formal_Validity (Formal_Id : Entity_Id);
214   --  Formal_Id is an formal parameter entity. This procedure deals with
215   --  setting the proper validity status for this entity, which depends on
216   --  the kind of parameter and the validity checking mode.
217
218   ---------------------------------------------
219   -- Analyze_Abstract_Subprogram_Declaration --
220   ---------------------------------------------
221
222   procedure Analyze_Abstract_Subprogram_Declaration (N : Node_Id) is
223      Scop    : constant Entity_Id := Current_Scope;
224      Subp_Id : constant Entity_Id :=
225                  Analyze_Subprogram_Specification (Specification (N));
226
227   begin
228      Check_SPARK_05_Restriction ("abstract subprogram is not allowed", N);
229
230      Generate_Definition (Subp_Id);
231
232      --  Set the SPARK mode from the current context (may be overwritten later
233      --  with explicit pragma).
234
235      Set_SPARK_Pragma           (Subp_Id, SPARK_Mode_Pragma);
236      Set_SPARK_Pragma_Inherited (Subp_Id);
237
238      --  Preserve relevant elaboration-related attributes of the context which
239      --  are no longer available or very expensive to recompute once analysis,
240      --  resolution, and expansion are over.
241
242      Mark_Elaboration_Attributes
243        (N_Id     => Subp_Id,
244         Checks   => True,
245         Warnings => True);
246
247      Set_Is_Abstract_Subprogram (Subp_Id);
248      New_Overloaded_Entity (Subp_Id);
249      Check_Delayed_Subprogram (Subp_Id);
250
251      Set_Categorization_From_Scope (Subp_Id, Scop);
252
253      if Ekind (Scope (Subp_Id)) = E_Protected_Type then
254         Error_Msg_N ("abstract subprogram not allowed in protected type", N);
255
256      --  Issue a warning if the abstract subprogram is neither a dispatching
257      --  operation nor an operation that overrides an inherited subprogram or
258      --  predefined operator, since this most likely indicates a mistake.
259
260      elsif Warn_On_Redundant_Constructs
261        and then not Is_Dispatching_Operation (Subp_Id)
262        and then not Present (Overridden_Operation (Subp_Id))
263        and then (not Is_Operator_Symbol_Name (Chars (Subp_Id))
264                   or else Scop /= Scope (Etype (First_Formal (Subp_Id))))
265      then
266         Error_Msg_N
267           ("abstract subprogram is not dispatching or overriding?r?", N);
268      end if;
269
270      Generate_Reference_To_Formals (Subp_Id);
271      Check_Eliminated (Subp_Id);
272
273      if Has_Aspects (N) then
274         Analyze_Aspect_Specifications (N, Subp_Id);
275      end if;
276   end Analyze_Abstract_Subprogram_Declaration;
277
278   ---------------------------------
279   -- Analyze_Expression_Function --
280   ---------------------------------
281
282   procedure Analyze_Expression_Function (N : Node_Id) is
283      Expr : constant Node_Id    := Expression (N);
284      Loc  : constant Source_Ptr := Sloc (N);
285      LocX : constant Source_Ptr := Sloc (Expr);
286      Spec : constant Node_Id    := Specification (N);
287
288      --  Local variables
289
290      Asp      : Node_Id;
291      New_Body : Node_Id;
292      New_Spec : Node_Id;
293      Orig_N   : Node_Id;
294      Ret      : Node_Id;
295
296      Def_Id : Entity_Id := Empty;
297      Prev   : Entity_Id;
298      --  If the expression is a completion, Prev is the entity whose
299      --  declaration is completed. Def_Id is needed to analyze the spec.
300
301   --  Start of processing for Analyze_Expression_Function
302
303   begin
304      --  This is one of the occasions on which we transform the tree during
305      --  semantic analysis. If this is a completion, transform the expression
306      --  function into an equivalent subprogram body, and analyze it.
307
308      --  Expression functions are inlined unconditionally. The back-end will
309      --  determine whether this is possible.
310
311      Inline_Processing_Required := True;
312
313      --  Create a specification for the generated body. This must be done
314      --  prior to the analysis of the initial declaration.
315
316      New_Spec := Copy_Subprogram_Spec (Spec);
317      Prev     := Current_Entity_In_Scope (Defining_Entity (Spec));
318
319      --  If there are previous overloadable entities with the same name,
320      --  check whether any of them is completed by the expression function.
321      --  In a generic context a formal subprogram has no completion.
322
323      if Present (Prev)
324        and then Is_Overloadable (Prev)
325        and then not Is_Formal_Subprogram (Prev)
326      then
327         Def_Id := Analyze_Subprogram_Specification (Spec);
328         Prev   := Find_Corresponding_Spec (N);
329
330         --  The previous entity may be an expression function as well, in
331         --  which case the redeclaration is illegal.
332
333         if Present (Prev)
334           and then Nkind (Original_Node (Unit_Declaration_Node (Prev))) =
335                                                        N_Expression_Function
336         then
337            Error_Msg_Sloc := Sloc (Prev);
338            Error_Msg_N ("& conflicts with declaration#", Def_Id);
339            return;
340         end if;
341      end if;
342
343      Ret := Make_Simple_Return_Statement (LocX, Expr);
344
345      New_Body :=
346        Make_Subprogram_Body (Loc,
347          Specification              => New_Spec,
348          Declarations               => Empty_List,
349          Handled_Statement_Sequence =>
350            Make_Handled_Sequence_Of_Statements (LocX,
351              Statements => New_List (Ret)));
352      Set_Was_Expression_Function (New_Body);
353
354      --  If the expression completes a generic subprogram, we must create a
355      --  separate node for the body, because at instantiation the original
356      --  node of the generic copy must be a generic subprogram body, and
357      --  cannot be a expression function. Otherwise we just rewrite the
358      --  expression with the non-generic body.
359
360      if Present (Prev) and then Ekind (Prev) = E_Generic_Function then
361         Insert_After (N, New_Body);
362
363         --  Propagate any aspects or pragmas that apply to the expression
364         --  function to the proper body when the expression function acts
365         --  as a completion.
366
367         if Has_Aspects (N) then
368            Move_Aspects (N, To => New_Body);
369         end if;
370
371         Relocate_Pragmas_To_Body (New_Body);
372
373         Rewrite (N, Make_Null_Statement (Loc));
374         Set_Has_Completion (Prev, False);
375         Analyze (N);
376         Analyze (New_Body);
377         Set_Is_Inlined (Prev);
378
379      --  If the expression function is a completion, the previous declaration
380      --  must come from source. We know already that it appears in the current
381      --  scope. The entity itself may be internally created if within a body
382      --  to be inlined.
383
384      elsif Present (Prev)
385        and then Is_Overloadable (Prev)
386        and then not Is_Formal_Subprogram (Prev)
387        and then Comes_From_Source (Parent (Prev))
388      then
389         Set_Has_Completion (Prev, False);
390         Set_Is_Inlined (Prev);
391
392         --  AI12-0103: Expression functions that are a completion freeze their
393         --  expression but don't freeze anything else (unlike regular bodies).
394
395         --  Note that we cannot defer this freezing to the analysis of the
396         --  expression itself, because a freeze node might appear in a nested
397         --  scope, leading to an elaboration order issue in gigi.
398         --  As elsewhere, we do not emit freeze nodes within a generic unit.
399
400         if not Inside_A_Generic then
401            Freeze_Expr_Types
402              (Def_Id => Def_Id,
403               Typ    => Etype (Def_Id),
404               Expr   => Expr,
405               N      => N);
406         end if;
407
408         --  For navigation purposes, indicate that the function is a body
409
410         Generate_Reference (Prev, Defining_Entity (N), 'b', Force => True);
411         Rewrite (N, New_Body);
412
413         --  Remove any existing aspects from the original node because the act
414         --  of rewriting causes the list to be shared between the two nodes.
415
416         Orig_N := Original_Node (N);
417         Remove_Aspects (Orig_N);
418
419         --  Propagate any pragmas that apply to expression function to the
420         --  proper body when the expression function acts as a completion.
421         --  Aspects are automatically transfered because of node rewriting.
422
423         Relocate_Pragmas_To_Body (N);
424         Analyze (N);
425
426         --  Once the aspects of the generated body have been analyzed, create
427         --  a copy for ASIS purposes and associate it with the original node.
428
429         if Has_Aspects (N) then
430            Set_Aspect_Specifications (Orig_N,
431              New_Copy_List_Tree (Aspect_Specifications (N)));
432         end if;
433
434         --  Prev is the previous entity with the same name, but it is can
435         --  be an unrelated spec that is not completed by the expression
436         --  function. In that case the relevant entity is the one in the body.
437         --  Not clear that the backend can inline it in this case ???
438
439         if Has_Completion (Prev) then
440
441            --  The formals of the expression function are body formals,
442            --  and do not appear in the ali file, which will only contain
443            --  references to the formals of the original subprogram spec.
444
445            declare
446               F1 : Entity_Id;
447               F2 : Entity_Id;
448
449            begin
450               F1 := First_Formal (Def_Id);
451               F2 := First_Formal (Prev);
452
453               while Present (F1) loop
454                  Set_Spec_Entity (F1, F2);
455                  Next_Formal (F1);
456                  Next_Formal (F2);
457               end loop;
458            end;
459
460         else
461            Set_Is_Inlined (Defining_Entity (New_Body));
462         end if;
463
464      --  If this is not a completion, create both a declaration and a body, so
465      --  that the expression can be inlined whenever possible.
466
467      else
468         --  An expression function that is not a completion is not a
469         --  subprogram declaration, and thus cannot appear in a protected
470         --  definition.
471
472         if Nkind (Parent (N)) = N_Protected_Definition then
473            Error_Msg_N
474              ("an expression function is not a legal protected operation", N);
475         end if;
476
477         Rewrite (N, Make_Subprogram_Declaration (Loc, Specification => Spec));
478
479         --  Remove any existing aspects from the original node because the act
480         --  of rewriting causes the list to be shared between the two nodes.
481
482         Orig_N := Original_Node (N);
483         Remove_Aspects (Orig_N);
484
485         Analyze (N);
486
487         --  Once the aspects of the generated spec have been analyzed, create
488         --  a copy for ASIS purposes and associate it with the original node.
489
490         if Has_Aspects (N) then
491            Set_Aspect_Specifications (Orig_N,
492              New_Copy_List_Tree (Aspect_Specifications (N)));
493         end if;
494
495         --  If aspect SPARK_Mode was specified on the body, it needs to be
496         --  repeated both on the generated spec and the body.
497
498         Asp := Find_Aspect (Defining_Unit_Name (Spec), Aspect_SPARK_Mode);
499
500         if Present (Asp) then
501            Asp := New_Copy_Tree (Asp);
502            Set_Analyzed (Asp, False);
503            Set_Aspect_Specifications (New_Body, New_List (Asp));
504         end if;
505
506         Def_Id := Defining_Entity (N);
507         Set_Is_Inlined (Def_Id);
508
509         --  Establish the linkages between the spec and the body. These are
510         --  used when the expression function acts as the prefix of attribute
511         --  'Access in order to freeze the original expression which has been
512         --  moved to the generated body.
513
514         Set_Corresponding_Body (N, Defining_Entity (New_Body));
515         Set_Corresponding_Spec (New_Body, Def_Id);
516
517         --  Within a generic preanalyze the original expression for name
518         --  capture. The body is also generated but plays no role in
519         --  this because it is not part of the original source.
520
521         if Inside_A_Generic then
522            Set_Has_Completion (Def_Id);
523            Push_Scope (Def_Id);
524            Install_Formals (Def_Id);
525            Preanalyze_Spec_Expression (Expr, Etype (Def_Id));
526            End_Scope;
527         end if;
528
529         --  To prevent premature freeze action, insert the new body at the end
530         --  of the current declarations, or at the end of the package spec.
531         --  However, resolve usage names now, to prevent spurious visibility
532         --  on later entities. Note that the function can now be called in
533         --  the current declarative part, which will appear to be prior to
534         --  the presence of the body in the code. There are nevertheless no
535         --  order of elaboration issues because all name resolution has taken
536         --  place at the point of declaration.
537
538         declare
539            Decls : List_Id            := List_Containing (N);
540            Expr  : constant Node_Id   := Expression (Ret);
541            Par   : constant Node_Id   := Parent (Decls);
542            Typ   : constant Entity_Id := Etype (Def_Id);
543
544         begin
545            --  If this is a wrapper created for in an instance for a formal
546            --  subprogram, insert body after declaration, to be analyzed when
547            --  the enclosing instance is analyzed.
548
549            if GNATprove_Mode
550              and then Is_Generic_Actual_Subprogram (Def_Id)
551            then
552               Insert_After (N, New_Body);
553
554            else
555               if Nkind (Par) = N_Package_Specification
556                 and then Decls = Visible_Declarations (Par)
557                 and then Present (Private_Declarations (Par))
558                 and then not Is_Empty_List (Private_Declarations (Par))
559               then
560                  Decls := Private_Declarations (Par);
561               end if;
562
563               Insert_After (Last (Decls), New_Body);
564
565               --  Preanalyze the expression if not already done above
566
567               if not Inside_A_Generic then
568                  Push_Scope (Def_Id);
569                  Install_Formals (Def_Id);
570                  Preanalyze_Formal_Expression (Expr, Typ);
571                  Check_Limited_Return (Original_Node (N), Expr, Typ);
572                  End_Scope;
573               end if;
574            end if;
575         end;
576      end if;
577
578      --  Check incorrect use of dynamically tagged expression. This doesn't
579      --  fall out automatically when analyzing the generated function body,
580      --  because Check_Dynamically_Tagged_Expression deliberately ignores
581      --  nodes that don't come from source.
582
583      if Present (Def_Id)
584        and then Nkind (Def_Id) in N_Has_Etype
585        and then Is_Tagged_Type (Etype (Def_Id))
586      then
587         Check_Dynamically_Tagged_Expression
588           (Expr        => Expr,
589            Typ         => Etype (Def_Id),
590            Related_Nod => Original_Node (N));
591      end if;
592
593      --  We must enforce checks for unreferenced formals in our newly
594      --  generated function, so we propagate the referenced flag from the
595      --  original spec to the new spec as well as setting Comes_From_Source.
596
597      if Present (Parameter_Specifications (New_Spec)) then
598         declare
599            Form_New_Def  : Entity_Id;
600            Form_New_Spec : Entity_Id;
601            Form_Old_Def  : Entity_Id;
602            Form_Old_Spec : Entity_Id;
603
604         begin
605            Form_New_Spec := First (Parameter_Specifications (New_Spec));
606            Form_Old_Spec := First (Parameter_Specifications (Spec));
607
608            while Present (Form_New_Spec) and then Present (Form_Old_Spec) loop
609               Form_New_Def := Defining_Identifier (Form_New_Spec);
610               Form_Old_Def := Defining_Identifier (Form_Old_Spec);
611
612               Set_Comes_From_Source (Form_New_Def, True);
613
614               --  Because of the usefulness of unreferenced controlling
615               --  formals we exempt them from unreferenced warnings by marking
616               --  them as always referenced.
617
618               Set_Referenced (Form_Old_Def,
619                 (Is_Formal (Form_Old_Def)
620                    and then Is_Controlling_Formal (Form_Old_Def))
621                  or else Referenced (Form_Old_Def));
622
623               Next (Form_New_Spec);
624               Next (Form_Old_Spec);
625            end loop;
626         end;
627      end if;
628   end Analyze_Expression_Function;
629
630   ----------------------------------------
631   -- Analyze_Extended_Return_Statement  --
632   ----------------------------------------
633
634   procedure Analyze_Extended_Return_Statement (N : Node_Id) is
635   begin
636      Check_Compiler_Unit ("extended return statement", N);
637      Analyze_Return_Statement (N);
638   end Analyze_Extended_Return_Statement;
639
640   ----------------------------
641   -- Analyze_Function_Call  --
642   ----------------------------
643
644   procedure Analyze_Function_Call (N : Node_Id) is
645      Actuals  : constant List_Id := Parameter_Associations (N);
646      Func_Nam : constant Node_Id := Name (N);
647      Actual   : Node_Id;
648
649   begin
650      Analyze (Func_Nam);
651
652      --  A call of the form A.B (X) may be an Ada 2005 call, which is
653      --  rewritten as B (A, X). If the rewriting is successful, the call
654      --  has been analyzed and we just return.
655
656      if Nkind (Func_Nam) = N_Selected_Component
657        and then Name (N) /= Func_Nam
658        and then Is_Rewrite_Substitution (N)
659        and then Present (Etype (N))
660      then
661         return;
662      end if;
663
664      --  If error analyzing name, then set Any_Type as result type and return
665
666      if Etype (Func_Nam) = Any_Type then
667         Set_Etype (N, Any_Type);
668         return;
669      end if;
670
671      --  Otherwise analyze the parameters
672
673      if Present (Actuals) then
674         Actual := First (Actuals);
675         while Present (Actual) loop
676            Analyze (Actual);
677            Check_Parameterless_Call (Actual);
678            Next (Actual);
679         end loop;
680      end if;
681
682      Analyze_Call (N);
683   end Analyze_Function_Call;
684
685   -----------------------------
686   -- Analyze_Function_Return --
687   -----------------------------
688
689   procedure Analyze_Function_Return (N : Node_Id) is
690      Loc        : constant Source_Ptr := Sloc (N);
691      Stm_Entity : constant Entity_Id  := Return_Statement_Entity (N);
692      Scope_Id   : constant Entity_Id  := Return_Applies_To (Stm_Entity);
693
694      R_Type : constant Entity_Id := Etype (Scope_Id);
695      --  Function result subtype
696
697      procedure Check_Aggregate_Accessibility (Aggr : Node_Id);
698      --  Apply legality rule of 6.5 (5.8) to the access discriminants of an
699      --  aggregate in a return statement.
700
701      procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id);
702      --  Check that the return_subtype_indication properly matches the result
703      --  subtype of the function, as required by RM-6.5(5.1/2-5.3/2).
704
705      -----------------------------------
706      -- Check_Aggregate_Accessibility --
707      -----------------------------------
708
709      procedure Check_Aggregate_Accessibility (Aggr : Node_Id) is
710         Typ   : constant Entity_Id := Etype (Aggr);
711         Assoc : Node_Id;
712         Discr : Entity_Id;
713         Expr  : Node_Id;
714         Obj   : Node_Id;
715
716      begin
717         if Is_Record_Type (Typ) and then Has_Discriminants (Typ) then
718            Discr := First_Discriminant (Typ);
719            Assoc := First (Component_Associations (Aggr));
720            while Present (Discr) loop
721               if Ekind (Etype (Discr)) = E_Anonymous_Access_Type then
722                  Expr := Expression (Assoc);
723
724                  if Nkind (Expr) = N_Attribute_Reference
725                    and then Attribute_Name (Expr) /= Name_Unrestricted_Access
726                  then
727                     Obj := Prefix (Expr);
728                     while Nkind_In (Obj, N_Indexed_Component,
729                                          N_Selected_Component)
730                     loop
731                        Obj := Prefix (Obj);
732                     end loop;
733
734                     --  Do not check aliased formals or function calls. A
735                     --  run-time check may still be needed ???
736
737                     if Is_Entity_Name (Obj)
738                       and then Comes_From_Source (Obj)
739                     then
740                        if Is_Formal (Entity (Obj))
741                           and then Is_Aliased (Entity (Obj))
742                        then
743                           null;
744
745                        elsif Object_Access_Level (Obj) >
746                                Scope_Depth (Scope (Scope_Id))
747                        then
748                           Error_Msg_N
749                             ("access discriminant in return aggregate would "
750                              & "be a dangling reference", Obj);
751                        end if;
752                     end if;
753                  end if;
754               end if;
755
756               Next_Discriminant (Discr);
757            end loop;
758         end if;
759      end Check_Aggregate_Accessibility;
760
761      -------------------------------------
762      -- Check_Return_Subtype_Indication --
763      -------------------------------------
764
765      procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id) is
766         Return_Obj : constant Node_Id   := Defining_Identifier (Obj_Decl);
767
768         R_Stm_Type : constant Entity_Id := Etype (Return_Obj);
769         --  Subtype given in the extended return statement (must match R_Type)
770
771         Subtype_Ind : constant Node_Id :=
772                         Object_Definition (Original_Node (Obj_Decl));
773
774         procedure Error_No_Match (N : Node_Id);
775         --  Output error messages for case where types do not statically
776         --  match. N is the location for the messages.
777
778         --------------------
779         -- Error_No_Match --
780         --------------------
781
782         procedure Error_No_Match (N : Node_Id) is
783         begin
784            Error_Msg_N
785              ("subtype must statically match function result subtype", N);
786
787            if not Predicates_Match (R_Stm_Type, R_Type) then
788               Error_Msg_Node_2 := R_Type;
789               Error_Msg_NE
790                 ("\predicate of& does not match predicate of&",
791                  N, R_Stm_Type);
792            end if;
793         end Error_No_Match;
794
795      --  Start of processing for Check_Return_Subtype_Indication
796
797      begin
798         --  First, avoid cascaded errors
799
800         if Error_Posted (Obj_Decl) or else Error_Posted (Subtype_Ind) then
801            return;
802         end if;
803
804         --  "return access T" case; check that the return statement also has
805         --  "access T", and that the subtypes statically match:
806         --   if this is an access to subprogram the signatures must match.
807
808         if Is_Anonymous_Access_Type (R_Type) then
809            if Is_Anonymous_Access_Type (R_Stm_Type) then
810               if Ekind (Designated_Type (R_Stm_Type)) /= E_Subprogram_Type
811               then
812                  if Base_Type (Designated_Type (R_Stm_Type)) /=
813                     Base_Type (Designated_Type (R_Type))
814                    or else not Subtypes_Statically_Match (R_Stm_Type, R_Type)
815                  then
816                     Error_No_Match (Subtype_Mark (Subtype_Ind));
817                  end if;
818
819               else
820                  --  For two anonymous access to subprogram types, the types
821                  --  themselves must be type conformant.
822
823                  if not Conforming_Types
824                           (R_Stm_Type, R_Type, Fully_Conformant)
825                  then
826                     Error_No_Match (Subtype_Ind);
827                  end if;
828               end if;
829
830            else
831               Error_Msg_N ("must use anonymous access type", Subtype_Ind);
832            end if;
833
834         --  If the return object is of an anonymous access type, then report
835         --  an error if the function's result type is not also anonymous.
836
837         elsif Is_Anonymous_Access_Type (R_Stm_Type) then
838            pragma Assert (not Is_Anonymous_Access_Type (R_Type));
839            Error_Msg_N
840              ("anonymous access not allowed for function with named access "
841               & "result", Subtype_Ind);
842
843         --  Subtype indication case: check that the return object's type is
844         --  covered by the result type, and that the subtypes statically match
845         --  when the result subtype is constrained. Also handle record types
846         --  with unknown discriminants for which we have built the underlying
847         --  record view. Coverage is needed to allow specific-type return
848         --  objects when the result type is class-wide (see AI05-32).
849
850         elsif Covers (Base_Type (R_Type), Base_Type (R_Stm_Type))
851           or else (Is_Underlying_Record_View (Base_Type (R_Stm_Type))
852                     and then
853                       Covers
854                         (Base_Type (R_Type),
855                          Underlying_Record_View (Base_Type (R_Stm_Type))))
856         then
857            --  A null exclusion may be present on the return type, on the
858            --  function specification, on the object declaration or on the
859            --  subtype itself.
860
861            if Is_Access_Type (R_Type)
862              and then
863                (Can_Never_Be_Null (R_Type)
864                  or else Null_Exclusion_Present (Parent (Scope_Id))) /=
865                            Can_Never_Be_Null (R_Stm_Type)
866            then
867               Error_No_Match (Subtype_Ind);
868            end if;
869
870            --  AI05-103: for elementary types, subtypes must statically match
871
872            if Is_Constrained (R_Type) or else Is_Access_Type (R_Type) then
873               if not Subtypes_Statically_Match (R_Stm_Type, R_Type) then
874                  Error_No_Match (Subtype_Ind);
875               end if;
876            end if;
877
878         --  All remaining cases are illegal
879
880         --  Note: previous versions of this subprogram allowed the return
881         --  value to be the ancestor of the return type if the return type
882         --  was a null extension. This was plainly incorrect.
883
884         else
885            Error_Msg_N
886              ("wrong type for return_subtype_indication", Subtype_Ind);
887         end if;
888      end Check_Return_Subtype_Indication;
889
890      ---------------------
891      -- Local Variables --
892      ---------------------
893
894      Expr     : Node_Id;
895      Obj_Decl : Node_Id := Empty;
896
897   --  Start of processing for Analyze_Function_Return
898
899   begin
900      Set_Return_Present (Scope_Id);
901
902      if Nkind (N) = N_Simple_Return_Statement then
903         Expr := Expression (N);
904
905         --  Guard against a malformed expression. The parser may have tried to
906         --  recover but the node is not analyzable.
907
908         if Nkind (Expr) = N_Error then
909            Set_Etype (Expr, Any_Type);
910            Expander_Mode_Save_And_Set (False);
911            return;
912
913         else
914            --  The resolution of a controlled [extension] aggregate associated
915            --  with a return statement creates a temporary which needs to be
916            --  finalized on function exit. Wrap the return statement inside a
917            --  block so that the finalization machinery can detect this case.
918            --  This early expansion is done only when the return statement is
919            --  not part of a handled sequence of statements.
920
921            if Nkind_In (Expr, N_Aggregate,
922                               N_Extension_Aggregate)
923              and then Needs_Finalization (R_Type)
924              and then Nkind (Parent (N)) /= N_Handled_Sequence_Of_Statements
925            then
926               Rewrite (N,
927                 Make_Block_Statement (Loc,
928                   Handled_Statement_Sequence =>
929                     Make_Handled_Sequence_Of_Statements (Loc,
930                       Statements => New_List (Relocate_Node (N)))));
931
932               Analyze (N);
933               return;
934            end if;
935
936            Analyze (Expr);
937
938            --  Ada 2005 (AI-251): If the type of the returned object is
939            --  an access to an interface type then we add an implicit type
940            --  conversion to force the displacement of the "this" pointer to
941            --  reference the secondary dispatch table. We cannot delay the
942            --  generation of this implicit conversion until the expansion
943            --  because in this case the type resolution changes the decoration
944            --  of the expression node to match R_Type; by contrast, if the
945            --  returned object is a class-wide interface type then it is too
946            --  early to generate here the implicit conversion since the return
947            --  statement may be rewritten by the expander into an extended
948            --  return statement whose expansion takes care of adding the
949            --  implicit type conversion to displace the pointer to the object.
950
951            if Expander_Active
952              and then Serious_Errors_Detected = 0
953              and then Is_Access_Type (R_Type)
954              and then not Nkind_In (Expr, N_Null, N_Raise_Expression)
955              and then Is_Interface (Designated_Type (R_Type))
956              and then Is_Progenitor (Designated_Type (R_Type),
957                                      Designated_Type (Etype (Expr)))
958            then
959               Rewrite (Expr, Convert_To (R_Type, Relocate_Node (Expr)));
960               Analyze (Expr);
961            end if;
962
963            Resolve (Expr, R_Type);
964            Check_Limited_Return (N, Expr, R_Type);
965
966            if Present (Expr) and then Nkind (Expr) = N_Aggregate then
967               Check_Aggregate_Accessibility (Expr);
968            end if;
969         end if;
970
971         --  RETURN only allowed in SPARK as the last statement in function
972
973         if Nkind (Parent (N)) /= N_Handled_Sequence_Of_Statements
974           and then
975             (Nkind (Parent (Parent (N))) /= N_Subprogram_Body
976               or else Present (Next (N)))
977         then
978            Check_SPARK_05_Restriction
979              ("RETURN should be the last statement in function", N);
980         end if;
981
982      else
983         Check_SPARK_05_Restriction ("extended RETURN is not allowed", N);
984         Obj_Decl := Last (Return_Object_Declarations (N));
985
986         --  Analyze parts specific to extended_return_statement:
987
988         declare
989            Has_Aliased : constant Boolean := Aliased_Present (Obj_Decl);
990            HSS         : constant Node_Id := Handled_Statement_Sequence (N);
991
992         begin
993            Expr := Expression (Obj_Decl);
994
995            --  Note: The check for OK_For_Limited_Init will happen in
996            --  Analyze_Object_Declaration; we treat it as a normal
997            --  object declaration.
998
999            Set_Is_Return_Object (Defining_Identifier (Obj_Decl));
1000            Analyze (Obj_Decl);
1001
1002            Check_Return_Subtype_Indication (Obj_Decl);
1003
1004            if Present (HSS) then
1005               Analyze (HSS);
1006
1007               if Present (Exception_Handlers (HSS)) then
1008
1009                  --  ???Has_Nested_Block_With_Handler needs to be set.
1010                  --  Probably by creating an actual N_Block_Statement.
1011                  --  Probably in Expand.
1012
1013                  null;
1014               end if;
1015            end if;
1016
1017            --  Mark the return object as referenced, since the return is an
1018            --  implicit reference of the object.
1019
1020            Set_Referenced (Defining_Identifier (Obj_Decl));
1021
1022            Check_References (Stm_Entity);
1023
1024            --  Check RM 6.5 (5.9/3)
1025
1026            if Has_Aliased then
1027               if Ada_Version < Ada_2012 then
1028
1029                  --  Shouldn't this test Warn_On_Ada_2012_Compatibility ???
1030                  --  Can it really happen (extended return???)
1031
1032                  Error_Msg_N
1033                    ("aliased only allowed for limited return objects "
1034                     & "in Ada 2012??", N);
1035
1036               elsif not Is_Limited_View (R_Type) then
1037                  Error_Msg_N
1038                    ("aliased only allowed for limited return objects", N);
1039               end if;
1040            end if;
1041         end;
1042      end if;
1043
1044      --  Case of Expr present
1045
1046      if Present (Expr) then
1047
1048         --  Defend against previous errors
1049
1050         if Nkind (Expr) = N_Empty
1051           or else No (Etype (Expr))
1052         then
1053            return;
1054         end if;
1055
1056         --  Apply constraint check. Note that this is done before the implicit
1057         --  conversion of the expression done for anonymous access types to
1058         --  ensure correct generation of the null-excluding check associated
1059         --  with null-excluding expressions found in return statements.
1060
1061         Apply_Constraint_Check (Expr, R_Type);
1062
1063         --  The return value is converted to the return type of the function,
1064         --  which implies a predicate check if the return type is predicated.
1065         --  We do not apply the check to a case expression because it will
1066         --  be expanded into a series of return statements, each of which
1067         --  will receive a predicate check.
1068
1069         if Nkind (Expr) /= N_Case_Expression then
1070            Apply_Predicate_Check (Expr, R_Type);
1071         end if;
1072
1073         --  Ada 2005 (AI-318-02): When the result type is an anonymous access
1074         --  type, apply an implicit conversion of the expression to that type
1075         --  to force appropriate static and run-time accessibility checks.
1076
1077         if Ada_Version >= Ada_2005
1078           and then Ekind (R_Type) = E_Anonymous_Access_Type
1079         then
1080            Rewrite (Expr, Convert_To (R_Type, Relocate_Node (Expr)));
1081            Analyze_And_Resolve (Expr, R_Type);
1082
1083         --  If this is a local anonymous access to subprogram, the
1084         --  accessibility check can be applied statically. The return is
1085         --  illegal if the access type of the return expression is declared
1086         --  inside of the subprogram (except if it is the subtype indication
1087         --  of an extended return statement).
1088
1089         elsif Ekind (R_Type) = E_Anonymous_Access_Subprogram_Type then
1090            if not Comes_From_Source (Current_Scope)
1091              or else Ekind (Current_Scope) = E_Return_Statement
1092            then
1093               null;
1094
1095            elsif
1096                Scope_Depth (Scope (Etype (Expr))) >= Scope_Depth (Scope_Id)
1097            then
1098               Error_Msg_N ("cannot return local access to subprogram", N);
1099            end if;
1100
1101         --  The expression cannot be of a formal incomplete type
1102
1103         elsif Ekind (Etype (Expr)) = E_Incomplete_Type
1104           and then Is_Generic_Type (Etype (Expr))
1105         then
1106            Error_Msg_N
1107              ("cannot return expression of a formal incomplete type", N);
1108         end if;
1109
1110         --  If the result type is class-wide, then check that the return
1111         --  expression's type is not declared at a deeper level than the
1112         --  function (RM05-6.5(5.6/2)).
1113
1114         if Ada_Version >= Ada_2005
1115           and then Is_Class_Wide_Type (R_Type)
1116         then
1117            if Type_Access_Level (Etype (Expr)) >
1118                 Subprogram_Access_Level (Scope_Id)
1119            then
1120               Error_Msg_N
1121                 ("level of return expression type is deeper than "
1122                  & "class-wide function!", Expr);
1123            end if;
1124         end if;
1125
1126         --  Check incorrect use of dynamically tagged expression
1127
1128         if Is_Tagged_Type (R_Type) then
1129            Check_Dynamically_Tagged_Expression
1130              (Expr => Expr,
1131               Typ  => R_Type,
1132               Related_Nod => N);
1133         end if;
1134
1135         --  ??? A real run-time accessibility check is needed in cases
1136         --  involving dereferences of access parameters. For now we just
1137         --  check the static cases.
1138
1139         if (Ada_Version < Ada_2005 or else Debug_Flag_Dot_L)
1140           and then Is_Limited_View (Etype (Scope_Id))
1141           and then Object_Access_Level (Expr) >
1142                      Subprogram_Access_Level (Scope_Id)
1143         then
1144            --  Suppress the message in a generic, where the rewriting
1145            --  is irrelevant.
1146
1147            if Inside_A_Generic then
1148               null;
1149
1150            else
1151               Rewrite (N,
1152                 Make_Raise_Program_Error (Loc,
1153                   Reason => PE_Accessibility_Check_Failed));
1154               Analyze (N);
1155
1156               Error_Msg_Warn := SPARK_Mode /= On;
1157               Error_Msg_N ("cannot return a local value by reference<<", N);
1158               Error_Msg_NE ("\& [<<", N, Standard_Program_Error);
1159            end if;
1160         end if;
1161
1162         if Known_Null (Expr)
1163           and then Nkind (Parent (Scope_Id)) = N_Function_Specification
1164           and then Null_Exclusion_Present (Parent (Scope_Id))
1165         then
1166            Apply_Compile_Time_Constraint_Error
1167              (N      => Expr,
1168               Msg    => "(Ada 2005) null not allowed for "
1169                         & "null-excluding return??",
1170               Reason => CE_Null_Not_Allowed);
1171         end if;
1172
1173      --  RM 6.5 (5.4/3): accessibility checks also apply if the return object
1174      --  has no initializing expression.
1175
1176      elsif Ada_Version > Ada_2005 and then Is_Class_Wide_Type (R_Type) then
1177         if Type_Access_Level (Etype (Defining_Identifier (Obj_Decl))) >
1178              Subprogram_Access_Level (Scope_Id)
1179         then
1180            Error_Msg_N
1181              ("level of return expression type is deeper than "
1182               & "class-wide function!", Obj_Decl);
1183         end if;
1184      end if;
1185   end Analyze_Function_Return;
1186
1187   -------------------------------------
1188   -- Analyze_Generic_Subprogram_Body --
1189   -------------------------------------
1190
1191   procedure Analyze_Generic_Subprogram_Body
1192     (N      : Node_Id;
1193      Gen_Id : Entity_Id)
1194   is
1195      Gen_Decl : constant Node_Id     := Unit_Declaration_Node (Gen_Id);
1196      Kind     : constant Entity_Kind := Ekind (Gen_Id);
1197      Body_Id  : Entity_Id;
1198      New_N    : Node_Id;
1199      Spec     : Node_Id;
1200
1201   begin
1202      --  Copy body and disable expansion while analyzing the generic For a
1203      --  stub, do not copy the stub (which would load the proper body), this
1204      --  will be done when the proper body is analyzed.
1205
1206      if Nkind (N) /= N_Subprogram_Body_Stub then
1207         New_N := Copy_Generic_Node (N, Empty, Instantiating => False);
1208         Rewrite (N, New_N);
1209
1210         --  Once the contents of the generic copy and the template are
1211         --  swapped, do the same for their respective aspect specifications.
1212
1213         Exchange_Aspects (N, New_N);
1214
1215         --  Collect all contract-related source pragmas found within the
1216         --  template and attach them to the contract of the subprogram body.
1217         --  This contract is used in the capture of global references within
1218         --  annotations.
1219
1220         Create_Generic_Contract (N);
1221
1222         Start_Generic;
1223      end if;
1224
1225      Spec := Specification (N);
1226
1227      --  Within the body of the generic, the subprogram is callable, and
1228      --  behaves like the corresponding non-generic unit.
1229
1230      Body_Id := Defining_Entity (Spec);
1231
1232      if Kind = E_Generic_Procedure
1233        and then Nkind (Spec) /= N_Procedure_Specification
1234      then
1235         Error_Msg_N ("invalid body for generic procedure ", Body_Id);
1236         return;
1237
1238      elsif Kind = E_Generic_Function
1239        and then Nkind (Spec) /= N_Function_Specification
1240      then
1241         Error_Msg_N ("invalid body for generic function ", Body_Id);
1242         return;
1243      end if;
1244
1245      Set_Corresponding_Body (Gen_Decl, Body_Id);
1246
1247      if Has_Completion (Gen_Id)
1248        and then Nkind (Parent (N)) /= N_Subunit
1249      then
1250         Error_Msg_N ("duplicate generic body", N);
1251         return;
1252      else
1253         Set_Has_Completion (Gen_Id);
1254      end if;
1255
1256      if Nkind (N) = N_Subprogram_Body_Stub then
1257         Set_Ekind (Defining_Entity (Specification (N)), Kind);
1258      else
1259         Set_Corresponding_Spec (N, Gen_Id);
1260      end if;
1261
1262      if Nkind (Parent (N)) = N_Compilation_Unit then
1263         Set_Cunit_Entity (Current_Sem_Unit, Defining_Entity (N));
1264      end if;
1265
1266      --  Make generic parameters immediately visible in the body. They are
1267      --  needed to process the formals declarations. Then make the formals
1268      --  visible in a separate step.
1269
1270      Push_Scope (Gen_Id);
1271
1272      declare
1273         E         : Entity_Id;
1274         First_Ent : Entity_Id;
1275
1276      begin
1277         First_Ent := First_Entity (Gen_Id);
1278
1279         E := First_Ent;
1280         while Present (E) and then not Is_Formal (E) loop
1281            Install_Entity (E);
1282            Next_Entity (E);
1283         end loop;
1284
1285         Set_Use (Generic_Formal_Declarations (Gen_Decl));
1286
1287         --  Now generic formals are visible, and the specification can be
1288         --  analyzed, for subsequent conformance check.
1289
1290         Body_Id := Analyze_Subprogram_Specification (Spec);
1291
1292         --  Make formal parameters visible
1293
1294         if Present (E) then
1295
1296            --  E is the first formal parameter, we loop through the formals
1297            --  installing them so that they will be visible.
1298
1299            Set_First_Entity (Gen_Id, E);
1300            while Present (E) loop
1301               Install_Entity (E);
1302               Next_Formal (E);
1303            end loop;
1304         end if;
1305
1306         --  Visible generic entity is callable within its own body
1307
1308         Set_Ekind          (Gen_Id,  Ekind (Body_Id));
1309         Set_Ekind          (Body_Id, E_Subprogram_Body);
1310         Set_Convention     (Body_Id, Convention (Gen_Id));
1311         Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Gen_Id));
1312         Set_Scope          (Body_Id, Scope (Gen_Id));
1313
1314         Check_Fully_Conformant (Body_Id, Gen_Id, Body_Id);
1315
1316         if Nkind (N) = N_Subprogram_Body_Stub then
1317
1318            --  No body to analyze, so restore state of generic unit
1319
1320            Set_Ekind (Gen_Id, Kind);
1321            Set_Ekind (Body_Id, Kind);
1322
1323            if Present (First_Ent) then
1324               Set_First_Entity (Gen_Id, First_Ent);
1325            end if;
1326
1327            End_Scope;
1328            return;
1329         end if;
1330
1331         --  If this is a compilation unit, it must be made visible explicitly,
1332         --  because the compilation of the declaration, unlike other library
1333         --  unit declarations, does not. If it is not a unit, the following
1334         --  is redundant but harmless.
1335
1336         Set_Is_Immediately_Visible (Gen_Id);
1337         Reference_Body_Formals (Gen_Id, Body_Id);
1338
1339         if Is_Child_Unit (Gen_Id) then
1340            Generate_Reference (Gen_Id, Scope (Gen_Id), 'k', False);
1341         end if;
1342
1343         Set_Actual_Subtypes (N, Current_Scope);
1344
1345         Set_SPARK_Pragma           (Body_Id, SPARK_Mode_Pragma);
1346         Set_SPARK_Pragma_Inherited (Body_Id);
1347
1348         --  Analyze any aspect specifications that appear on the generic
1349         --  subprogram body.
1350
1351         if Has_Aspects (N) then
1352            Analyze_Aspects_On_Subprogram_Body_Or_Stub (N);
1353         end if;
1354
1355         Analyze_Declarations (Declarations (N));
1356         Check_Completion;
1357
1358         --  Process the contract of the subprogram body after all declarations
1359         --  have been analyzed. This ensures that any contract-related pragmas
1360         --  are available through the N_Contract node of the body.
1361
1362         Analyze_Entry_Or_Subprogram_Body_Contract (Body_Id);
1363
1364         Analyze (Handled_Statement_Sequence (N));
1365         Save_Global_References (Original_Node (N));
1366
1367         --  Prior to exiting the scope, include generic formals again (if any
1368         --  are present) in the set of local entities.
1369
1370         if Present (First_Ent) then
1371            Set_First_Entity (Gen_Id, First_Ent);
1372         end if;
1373
1374         Check_References (Gen_Id);
1375      end;
1376
1377      Process_End_Label (Handled_Statement_Sequence (N), 't', Current_Scope);
1378      Update_Use_Clause_Chain;
1379      Validate_Categorization_Dependency (N, Gen_Id);
1380      End_Scope;
1381      Check_Subprogram_Order (N);
1382
1383      --  Outside of its body, unit is generic again
1384
1385      Set_Ekind (Gen_Id, Kind);
1386      Generate_Reference (Gen_Id, Body_Id, 'b', Set_Ref => False);
1387
1388      if Style_Check then
1389         Style.Check_Identifier (Body_Id, Gen_Id);
1390      end if;
1391
1392      End_Generic;
1393   end Analyze_Generic_Subprogram_Body;
1394
1395   ----------------------------
1396   -- Analyze_Null_Procedure --
1397   ----------------------------
1398
1399   --  WARNING: This routine manages Ghost regions. Return statements must be
1400   --  replaced by gotos that jump to the end of the routine and restore the
1401   --  Ghost mode.
1402
1403   procedure Analyze_Null_Procedure
1404     (N             : Node_Id;
1405      Is_Completion : out Boolean)
1406   is
1407      Loc  : constant Source_Ptr := Sloc (N);
1408      Spec : constant Node_Id    := Specification (N);
1409
1410      Saved_GM   : constant Ghost_Mode_Type := Ghost_Mode;
1411      Saved_IGR  : constant Node_Id         := Ignored_Ghost_Region;
1412      Saved_ISMP : constant Boolean         :=
1413                     Ignore_SPARK_Mode_Pragmas_In_Instance;
1414      --  Save the Ghost and SPARK mode-related data to restore on exit
1415
1416      Designator : Entity_Id;
1417      Form       : Node_Id;
1418      Null_Body  : Node_Id := Empty;
1419      Null_Stmt  : Node_Id := Null_Statement (Spec);
1420      Prev       : Entity_Id;
1421
1422   begin
1423      Prev := Current_Entity_In_Scope (Defining_Entity (Spec));
1424
1425      --  A null procedure is Ghost when it is stand-alone and is subject to
1426      --  pragma Ghost, or when the corresponding spec is Ghost. Set the mode
1427      --  now, to ensure that any nodes generated during analysis and expansion
1428      --  are properly marked as Ghost.
1429
1430      if Present (Prev) then
1431         Mark_And_Set_Ghost_Body (N, Prev);
1432      end if;
1433
1434      --  Capture the profile of the null procedure before analysis, for
1435      --  expansion at the freeze point and at each point of call. The body is
1436      --  used if the procedure has preconditions, or if it is a completion. In
1437      --  the first case the body is analyzed at the freeze point, in the other
1438      --  it replaces the null procedure declaration.
1439
1440      --  For a null procedure that comes from source, a NULL statement is
1441      --  provided by the parser, which carries the source location of the
1442      --  NULL keyword, and has Comes_From_Source set. For a null procedure
1443      --  from expansion, create one now.
1444
1445      if No (Null_Stmt) then
1446         Null_Stmt := Make_Null_Statement (Loc);
1447      end if;
1448
1449      Null_Body :=
1450        Make_Subprogram_Body (Loc,
1451          Specification              => New_Copy_Tree (Spec),
1452          Declarations               => New_List,
1453          Handled_Statement_Sequence =>
1454            Make_Handled_Sequence_Of_Statements (Loc,
1455              Statements => New_List (Null_Stmt)));
1456
1457      --  Create new entities for body and formals
1458
1459      Set_Defining_Unit_Name (Specification (Null_Body),
1460        Make_Defining_Identifier
1461          (Sloc (Defining_Entity (N)),
1462           Chars (Defining_Entity (N))));
1463
1464      Form := First (Parameter_Specifications (Specification (Null_Body)));
1465      while Present (Form) loop
1466         Set_Defining_Identifier (Form,
1467           Make_Defining_Identifier
1468             (Sloc (Defining_Identifier (Form)),
1469              Chars (Defining_Identifier (Form))));
1470         Next (Form);
1471      end loop;
1472
1473      --  Determine whether the null procedure may be a completion of a generic
1474      --  suprogram, in which case we use the new null body as the completion
1475      --  and set minimal semantic information on the original declaration,
1476      --  which is rewritten as a null statement.
1477
1478      if Present (Prev) and then Is_Generic_Subprogram (Prev) then
1479         Insert_Before (N, Null_Body);
1480         Set_Ekind (Defining_Entity (N), Ekind (Prev));
1481
1482         Rewrite (N, Make_Null_Statement (Loc));
1483         Analyze_Generic_Subprogram_Body (Null_Body, Prev);
1484         Is_Completion := True;
1485
1486         goto Leave;
1487
1488      else
1489         --  Resolve the types of the formals now, because the freeze point may
1490         --  appear in a different context, e.g. an instantiation.
1491
1492         Form := First (Parameter_Specifications (Specification (Null_Body)));
1493         while Present (Form) loop
1494            if Nkind (Parameter_Type (Form)) /= N_Access_Definition then
1495               Find_Type (Parameter_Type (Form));
1496
1497            elsif No (Access_To_Subprogram_Definition
1498                       (Parameter_Type (Form)))
1499            then
1500               Find_Type (Subtype_Mark (Parameter_Type (Form)));
1501
1502            --  The case of a null procedure with a formal that is an
1503            --  access-to-subprogram type, and that is used as an actual
1504            --  in an instantiation is left to the enthusiastic reader.
1505
1506            else
1507               null;
1508            end if;
1509
1510            Next (Form);
1511         end loop;
1512      end if;
1513
1514      --  If there are previous overloadable entities with the same name, check
1515      --  whether any of them is completed by the null procedure.
1516
1517      if Present (Prev) and then Is_Overloadable (Prev) then
1518         Designator := Analyze_Subprogram_Specification (Spec);
1519         Prev       := Find_Corresponding_Spec (N);
1520      end if;
1521
1522      if No (Prev) or else not Comes_From_Source (Prev) then
1523         Designator := Analyze_Subprogram_Specification (Spec);
1524         Set_Has_Completion (Designator);
1525
1526         --  Signal to caller that this is a procedure declaration
1527
1528         Is_Completion := False;
1529
1530         --  Null procedures are always inlined, but generic formal subprograms
1531         --  which appear as such in the internal instance of formal packages,
1532         --  need no completion and are not marked Inline.
1533
1534         if Expander_Active
1535           and then Nkind (N) /= N_Formal_Concrete_Subprogram_Declaration
1536         then
1537            Set_Corresponding_Body (N, Defining_Entity (Null_Body));
1538            Set_Body_To_Inline (N, Null_Body);
1539            Set_Is_Inlined (Designator);
1540         end if;
1541
1542      else
1543         --  The null procedure is a completion. We unconditionally rewrite
1544         --  this as a null body (even if expansion is not active), because
1545         --  there are various error checks that are applied on this body
1546         --  when it is analyzed (e.g. correct aspect placement).
1547
1548         if Has_Completion (Prev) then
1549            Error_Msg_Sloc := Sloc (Prev);
1550            Error_Msg_NE ("duplicate body for & declared#", N, Prev);
1551         end if;
1552
1553         Check_Previous_Null_Procedure (N, Prev);
1554
1555         Is_Completion := True;
1556         Rewrite (N, Null_Body);
1557         Analyze (N);
1558      end if;
1559
1560   <<Leave>>
1561      Ignore_SPARK_Mode_Pragmas_In_Instance := Saved_ISMP;
1562      Restore_Ghost_Region (Saved_GM, Saved_IGR);
1563   end Analyze_Null_Procedure;
1564
1565   -----------------------------
1566   -- Analyze_Operator_Symbol --
1567   -----------------------------
1568
1569   --  An operator symbol such as "+" or "and" may appear in context where the
1570   --  literal denotes an entity name, such as "+"(x, y) or in context when it
1571   --  is just a string, as in (conjunction = "or"). In these cases the parser
1572   --  generates this node, and the semantics does the disambiguation. Other
1573   --  such case are actuals in an instantiation, the generic unit in an
1574   --  instantiation, and pragma arguments.
1575
1576   procedure Analyze_Operator_Symbol (N : Node_Id) is
1577      Par : constant Node_Id := Parent (N);
1578
1579   begin
1580      if        (Nkind (Par) = N_Function_Call and then N = Name (Par))
1581        or else  Nkind (Par) = N_Function_Instantiation
1582        or else (Nkind (Par) = N_Indexed_Component and then N = Prefix (Par))
1583        or else (Nkind (Par) = N_Pragma_Argument_Association
1584                  and then not Is_Pragma_String_Literal (Par))
1585        or else  Nkind (Par) = N_Subprogram_Renaming_Declaration
1586        or else (Nkind (Par) = N_Attribute_Reference
1587                  and then Attribute_Name (Par) /= Name_Value)
1588      then
1589         Find_Direct_Name (N);
1590
1591      else
1592         Change_Operator_Symbol_To_String_Literal (N);
1593         Analyze (N);
1594      end if;
1595   end Analyze_Operator_Symbol;
1596
1597   -----------------------------------
1598   -- Analyze_Parameter_Association --
1599   -----------------------------------
1600
1601   procedure Analyze_Parameter_Association (N : Node_Id) is
1602   begin
1603      Analyze (Explicit_Actual_Parameter (N));
1604   end Analyze_Parameter_Association;
1605
1606   ----------------------------
1607   -- Analyze_Procedure_Call --
1608   ----------------------------
1609
1610   --  WARNING: This routine manages Ghost regions. Return statements must be
1611   --  replaced by gotos that jump to the end of the routine and restore the
1612   --  Ghost mode.
1613
1614   procedure Analyze_Procedure_Call (N : Node_Id) is
1615      procedure Analyze_Call_And_Resolve;
1616      --  Do Analyze and Resolve calls for procedure call. At the end, check
1617      --  for illegal order dependence.
1618      --  ??? where is the check for illegal order dependencies?
1619
1620      ------------------------------
1621      -- Analyze_Call_And_Resolve --
1622      ------------------------------
1623
1624      procedure Analyze_Call_And_Resolve is
1625      begin
1626         if Nkind (N) = N_Procedure_Call_Statement then
1627            Analyze_Call (N);
1628            Resolve (N, Standard_Void_Type);
1629         else
1630            Analyze (N);
1631         end if;
1632      end Analyze_Call_And_Resolve;
1633
1634      --  Local variables
1635
1636      Actuals : constant List_Id    := Parameter_Associations (N);
1637      Loc     : constant Source_Ptr := Sloc (N);
1638      P       : constant Node_Id    := Name (N);
1639
1640      Saved_GM  : constant Ghost_Mode_Type := Ghost_Mode;
1641      Saved_IGR : constant Node_Id         := Ignored_Ghost_Region;
1642      --  Save the Ghost-related attributes to restore on exit
1643
1644      Actual : Node_Id;
1645      New_N  : Node_Id;
1646
1647   --  Start of processing for Analyze_Procedure_Call
1648
1649   begin
1650      --  The syntactic construct: PREFIX ACTUAL_PARAMETER_PART can denote
1651      --  a procedure call or an entry call. The prefix may denote an access
1652      --  to subprogram type, in which case an implicit dereference applies.
1653      --  If the prefix is an indexed component (without implicit dereference)
1654      --  then the construct denotes a call to a member of an entire family.
1655      --  If the prefix is a simple name, it may still denote a call to a
1656      --  parameterless member of an entry family. Resolution of these various
1657      --  interpretations is delicate.
1658
1659      --  Do not analyze machine code statements to avoid rejecting them in
1660      --  CodePeer mode.
1661
1662      if CodePeer_Mode and then Nkind (P) = N_Qualified_Expression then
1663         Set_Etype (P, Standard_Void_Type);
1664      else
1665         Analyze (P);
1666      end if;
1667
1668      --  If this is a call of the form Obj.Op, the call may have been analyzed
1669      --  and possibly rewritten into a block, in which case we are done.
1670
1671      if Analyzed (N) then
1672         return;
1673
1674      --  If there is an error analyzing the name (which may have been
1675      --  rewritten if the original call was in prefix notation) then error
1676      --  has been emitted already, mark node and return.
1677
1678      elsif Error_Posted (N) or else Etype (Name (N)) = Any_Type then
1679         Set_Etype (N, Any_Type);
1680         return;
1681      end if;
1682
1683      --  A procedure call is Ghost when its name denotes a Ghost procedure.
1684      --  Set the mode now to ensure that any nodes generated during analysis
1685      --  and expansion are properly marked as Ghost.
1686
1687      Mark_And_Set_Ghost_Procedure_Call (N);
1688
1689      --  Otherwise analyze the parameters
1690
1691      if Present (Actuals) then
1692         Actual := First (Actuals);
1693
1694         while Present (Actual) loop
1695            Analyze (Actual);
1696            Check_Parameterless_Call (Actual);
1697            Next (Actual);
1698         end loop;
1699      end if;
1700
1701      --  Special processing for Elab_Spec, Elab_Body and Elab_Subp_Body calls
1702
1703      if Nkind (P) = N_Attribute_Reference
1704        and then Nam_In (Attribute_Name (P), Name_Elab_Spec,
1705                                             Name_Elab_Body,
1706                                             Name_Elab_Subp_Body)
1707      then
1708         if Present (Actuals) then
1709            Error_Msg_N
1710              ("no parameters allowed for this call", First (Actuals));
1711            goto Leave;
1712         end if;
1713
1714         Set_Etype (N, Standard_Void_Type);
1715         Set_Analyzed (N);
1716
1717      elsif Is_Entity_Name (P)
1718        and then Is_Record_Type (Etype (Entity (P)))
1719        and then Remote_AST_I_Dereference (P)
1720      then
1721         goto Leave;
1722
1723      elsif Is_Entity_Name (P)
1724        and then Ekind (Entity (P)) /= E_Entry_Family
1725      then
1726         if Is_Access_Type (Etype (P))
1727           and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
1728           and then No (Actuals)
1729           and then Comes_From_Source (N)
1730         then
1731            Error_Msg_N ("missing explicit dereference in call", N);
1732         end if;
1733
1734         Analyze_Call_And_Resolve;
1735
1736      --  If the prefix is the simple name of an entry family, this is a
1737      --  parameterless call from within the task body itself.
1738
1739      elsif Is_Entity_Name (P)
1740        and then Nkind (P) = N_Identifier
1741        and then Ekind (Entity (P)) = E_Entry_Family
1742        and then Present (Actuals)
1743        and then No (Next (First (Actuals)))
1744      then
1745         --  Can be call to parameterless entry family. What appears to be the
1746         --  sole argument is in fact the entry index. Rewrite prefix of node
1747         --  accordingly. Source representation is unchanged by this
1748         --  transformation.
1749
1750         New_N :=
1751           Make_Indexed_Component (Loc,
1752             Prefix      =>
1753               Make_Selected_Component (Loc,
1754                 Prefix        => New_Occurrence_Of (Scope (Entity (P)), Loc),
1755                 Selector_Name => New_Occurrence_Of (Entity (P), Loc)),
1756             Expressions => Actuals);
1757         Set_Name (N, New_N);
1758         Set_Etype (New_N, Standard_Void_Type);
1759         Set_Parameter_Associations (N, No_List);
1760         Analyze_Call_And_Resolve;
1761
1762      elsif Nkind (P) = N_Explicit_Dereference then
1763         if Ekind (Etype (P)) = E_Subprogram_Type then
1764            Analyze_Call_And_Resolve;
1765         else
1766            Error_Msg_N ("expect access to procedure in call", P);
1767         end if;
1768
1769      --  The name can be a selected component or an indexed component that
1770      --  yields an access to subprogram. Such a prefix is legal if the call
1771      --  has parameter associations.
1772
1773      elsif Is_Access_Type (Etype (P))
1774        and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
1775      then
1776         if Present (Actuals) then
1777            Analyze_Call_And_Resolve;
1778         else
1779            Error_Msg_N ("missing explicit dereference in call ", N);
1780         end if;
1781
1782      --  If not an access to subprogram, then the prefix must resolve to the
1783      --  name of an entry, entry family, or protected operation.
1784
1785      --  For the case of a simple entry call, P is a selected component where
1786      --  the prefix is the task and the selector name is the entry. A call to
1787      --  a protected procedure will have the same syntax. If the protected
1788      --  object contains overloaded operations, the entity may appear as a
1789      --  function, the context will select the operation whose type is Void.
1790
1791      elsif Nkind (P) = N_Selected_Component
1792        and then Ekind_In (Entity (Selector_Name (P)), E_Entry,
1793                                                       E_Function,
1794                                                       E_Procedure)
1795      then
1796         --  When front-end inlining is enabled, as with SPARK_Mode, a call
1797         --  in prefix notation may still be missing its controlling argument,
1798         --  so perform the transformation now.
1799
1800         if SPARK_Mode = On and then In_Inlined_Body then
1801            declare
1802               Subp : constant Entity_Id := Entity (Selector_Name (P));
1803               Typ  : constant Entity_Id := Etype (Prefix (P));
1804
1805            begin
1806               if Is_Tagged_Type (Typ)
1807                 and then Present (First_Formal (Subp))
1808                 and then (Etype (First_Formal (Subp)) = Typ
1809                             or else
1810                           Class_Wide_Type (Etype (First_Formal (Subp))) = Typ)
1811                 and then Try_Object_Operation (P)
1812               then
1813                  return;
1814
1815               else
1816                  Analyze_Call_And_Resolve;
1817               end if;
1818            end;
1819
1820         else
1821            Analyze_Call_And_Resolve;
1822         end if;
1823
1824      elsif Nkind (P) = N_Selected_Component
1825        and then Ekind (Entity (Selector_Name (P))) = E_Entry_Family
1826        and then Present (Actuals)
1827        and then No (Next (First (Actuals)))
1828      then
1829         --  Can be call to parameterless entry family. What appears to be the
1830         --  sole argument is in fact the entry index. Rewrite prefix of node
1831         --  accordingly. Source representation is unchanged by this
1832         --  transformation.
1833
1834         New_N :=
1835           Make_Indexed_Component (Loc,
1836             Prefix      => New_Copy (P),
1837             Expressions => Actuals);
1838         Set_Name (N, New_N);
1839         Set_Etype (New_N, Standard_Void_Type);
1840         Set_Parameter_Associations (N, No_List);
1841         Analyze_Call_And_Resolve;
1842
1843      --  For the case of a reference to an element of an entry family, P is
1844      --  an indexed component whose prefix is a selected component (task and
1845      --  entry family), and whose index is the entry family index.
1846
1847      elsif Nkind (P) = N_Indexed_Component
1848        and then Nkind (Prefix (P)) = N_Selected_Component
1849        and then Ekind (Entity (Selector_Name (Prefix (P)))) = E_Entry_Family
1850      then
1851         Analyze_Call_And_Resolve;
1852
1853      --  If the prefix is the name of an entry family, it is a call from
1854      --  within the task body itself.
1855
1856      elsif Nkind (P) = N_Indexed_Component
1857        and then Nkind (Prefix (P)) = N_Identifier
1858        and then Ekind (Entity (Prefix (P))) = E_Entry_Family
1859      then
1860         New_N :=
1861           Make_Selected_Component (Loc,
1862             Prefix        =>
1863               New_Occurrence_Of (Scope (Entity (Prefix (P))), Loc),
1864             Selector_Name => New_Occurrence_Of (Entity (Prefix (P)), Loc));
1865         Rewrite (Prefix (P), New_N);
1866         Analyze (P);
1867         Analyze_Call_And_Resolve;
1868
1869      --  In Ada 2012. a qualified expression is a name, but it cannot be a
1870      --  procedure name, so the construct can only be a qualified expression.
1871
1872      elsif Nkind (P) = N_Qualified_Expression
1873        and then Ada_Version >= Ada_2012
1874      then
1875         Rewrite (N, Make_Code_Statement (Loc, Expression => P));
1876         Analyze (N);
1877
1878      --  Anything else is an error
1879
1880      else
1881         Error_Msg_N ("invalid procedure or entry call", N);
1882      end if;
1883
1884   <<Leave>>
1885      Restore_Ghost_Region (Saved_GM, Saved_IGR);
1886   end Analyze_Procedure_Call;
1887
1888   ------------------------------
1889   -- Analyze_Return_Statement --
1890   ------------------------------
1891
1892   procedure Analyze_Return_Statement (N : Node_Id) is
1893      pragma Assert (Nkind_In (N, N_Extended_Return_Statement,
1894                                  N_Simple_Return_Statement));
1895
1896      Returns_Object : constant Boolean :=
1897                         Nkind (N) = N_Extended_Return_Statement
1898                           or else
1899                             (Nkind (N) = N_Simple_Return_Statement
1900                               and then Present (Expression (N)));
1901      --  True if we're returning something; that is, "return <expression>;"
1902      --  or "return Result : T [:= ...]". False for "return;". Used for error
1903      --  checking: If Returns_Object is True, N should apply to a function
1904      --  body; otherwise N should apply to a procedure body, entry body,
1905      --  accept statement, or extended return statement.
1906
1907      function Find_What_It_Applies_To return Entity_Id;
1908      --  Find the entity representing the innermost enclosing body, accept
1909      --  statement, or extended return statement. If the result is a callable
1910      --  construct or extended return statement, then this will be the value
1911      --  of the Return_Applies_To attribute. Otherwise, the program is
1912      --  illegal. See RM-6.5(4/2).
1913
1914      -----------------------------
1915      -- Find_What_It_Applies_To --
1916      -----------------------------
1917
1918      function Find_What_It_Applies_To return Entity_Id is
1919         Result : Entity_Id := Empty;
1920
1921      begin
1922         --  Loop outward through the Scope_Stack, skipping blocks, loops,
1923         --  and postconditions.
1924
1925         for J in reverse 0 .. Scope_Stack.Last loop
1926            Result := Scope_Stack.Table (J).Entity;
1927            exit when not Ekind_In (Result, E_Block, E_Loop)
1928              and then Chars (Result) /= Name_uPostconditions;
1929         end loop;
1930
1931         pragma Assert (Present (Result));
1932         return Result;
1933      end Find_What_It_Applies_To;
1934
1935      --  Local declarations
1936
1937      Scope_Id   : constant Entity_Id   := Find_What_It_Applies_To;
1938      Kind       : constant Entity_Kind := Ekind (Scope_Id);
1939      Loc        : constant Source_Ptr  := Sloc (N);
1940      Stm_Entity : constant Entity_Id   :=
1941                     New_Internal_Entity
1942                       (E_Return_Statement, Current_Scope, Loc, 'R');
1943
1944   --  Start of processing for Analyze_Return_Statement
1945
1946   begin
1947      Set_Return_Statement_Entity (N, Stm_Entity);
1948
1949      Set_Etype (Stm_Entity, Standard_Void_Type);
1950      Set_Return_Applies_To (Stm_Entity, Scope_Id);
1951
1952      --  Place Return entity on scope stack, to simplify enforcement of 6.5
1953      --  (4/2): an inner return statement will apply to this extended return.
1954
1955      if Nkind (N) = N_Extended_Return_Statement then
1956         Push_Scope (Stm_Entity);
1957      end if;
1958
1959      --  Check that pragma No_Return is obeyed. Don't complain about the
1960      --  implicitly-generated return that is placed at the end.
1961
1962      if No_Return (Scope_Id) and then Comes_From_Source (N) then
1963         Error_Msg_N ("RETURN statement not allowed (No_Return)", N);
1964      end if;
1965
1966      --  Warn on any unassigned OUT parameters if in procedure
1967
1968      if Ekind (Scope_Id) = E_Procedure then
1969         Warn_On_Unassigned_Out_Parameter (N, Scope_Id);
1970      end if;
1971
1972      --  Check that functions return objects, and other things do not
1973
1974      if Kind = E_Function or else Kind = E_Generic_Function then
1975         if not Returns_Object then
1976            Error_Msg_N ("missing expression in return from function", N);
1977         end if;
1978
1979      elsif Kind = E_Procedure or else Kind = E_Generic_Procedure then
1980         if Returns_Object then
1981            Error_Msg_N ("procedure cannot return value (use function)", N);
1982         end if;
1983
1984      elsif Kind = E_Entry or else Kind = E_Entry_Family then
1985         if Returns_Object then
1986            if Is_Protected_Type (Scope (Scope_Id)) then
1987               Error_Msg_N ("entry body cannot return value", N);
1988            else
1989               Error_Msg_N ("accept statement cannot return value", N);
1990            end if;
1991         end if;
1992
1993      elsif Kind = E_Return_Statement then
1994
1995         --  We are nested within another return statement, which must be an
1996         --  extended_return_statement.
1997
1998         if Returns_Object then
1999            if Nkind (N) = N_Extended_Return_Statement then
2000               Error_Msg_N
2001                 ("extended return statement cannot be nested (use `RETURN;`)",
2002                  N);
2003
2004            --  Case of a simple return statement with a value inside extended
2005            --  return statement.
2006
2007            else
2008               Error_Msg_N
2009                 ("return nested in extended return statement cannot return "
2010                  & "value (use `RETURN;`)", N);
2011            end if;
2012         end if;
2013
2014      else
2015         Error_Msg_N ("illegal context for return statement", N);
2016      end if;
2017
2018      if Ekind_In (Kind, E_Function, E_Generic_Function) then
2019         Analyze_Function_Return (N);
2020
2021      elsif Ekind_In (Kind, E_Procedure, E_Generic_Procedure) then
2022         Set_Return_Present (Scope_Id);
2023      end if;
2024
2025      if Nkind (N) = N_Extended_Return_Statement then
2026         End_Scope;
2027      end if;
2028
2029      Kill_Current_Values (Last_Assignment_Only => True);
2030      Check_Unreachable_Code (N);
2031
2032      Analyze_Dimension (N);
2033   end Analyze_Return_Statement;
2034
2035   -------------------------------------
2036   -- Analyze_Simple_Return_Statement --
2037   -------------------------------------
2038
2039   procedure Analyze_Simple_Return_Statement (N : Node_Id) is
2040   begin
2041      if Present (Expression (N)) then
2042         Mark_Coextensions (N, Expression (N));
2043      end if;
2044
2045      Analyze_Return_Statement (N);
2046   end Analyze_Simple_Return_Statement;
2047
2048   -------------------------
2049   -- Analyze_Return_Type --
2050   -------------------------
2051
2052   procedure Analyze_Return_Type (N : Node_Id) is
2053      Designator : constant Entity_Id := Defining_Entity (N);
2054      Typ        : Entity_Id := Empty;
2055
2056   begin
2057      --  Normal case where result definition does not indicate an error
2058
2059      if Result_Definition (N) /= Error then
2060         if Nkind (Result_Definition (N)) = N_Access_Definition then
2061            Check_SPARK_05_Restriction
2062              ("access result is not allowed", Result_Definition (N));
2063
2064            --  Ada 2005 (AI-254): Handle anonymous access to subprograms
2065
2066            declare
2067               AD : constant Node_Id :=
2068                      Access_To_Subprogram_Definition (Result_Definition (N));
2069            begin
2070               if Present (AD) and then Protected_Present (AD) then
2071                  Typ := Replace_Anonymous_Access_To_Protected_Subprogram (N);
2072               else
2073                  Typ := Access_Definition (N, Result_Definition (N));
2074               end if;
2075            end;
2076
2077            Set_Parent (Typ, Result_Definition (N));
2078            Set_Is_Local_Anonymous_Access (Typ);
2079            Set_Etype (Designator, Typ);
2080
2081            --  Ada 2005 (AI-231): Ensure proper usage of null exclusion
2082
2083            Null_Exclusion_Static_Checks (N);
2084
2085         --  Subtype_Mark case
2086
2087         else
2088            Find_Type (Result_Definition (N));
2089            Typ := Entity (Result_Definition (N));
2090            Set_Etype (Designator, Typ);
2091
2092            --  Unconstrained array as result is not allowed in SPARK
2093
2094            if Is_Array_Type (Typ) and then not Is_Constrained (Typ) then
2095               Check_SPARK_05_Restriction
2096                 ("returning an unconstrained array is not allowed",
2097                  Result_Definition (N));
2098            end if;
2099
2100            --  Ada 2005 (AI-231): Ensure proper usage of null exclusion
2101
2102            Null_Exclusion_Static_Checks (N);
2103
2104            --  If a null exclusion is imposed on the result type, then create
2105            --  a null-excluding itype (an access subtype) and use it as the
2106            --  function's Etype. Note that the null exclusion checks are done
2107            --  right before this, because they don't get applied to types that
2108            --  do not come from source.
2109
2110            if Is_Access_Type (Typ) and then Null_Exclusion_Present (N) then
2111               Set_Etype  (Designator,
2112                 Create_Null_Excluding_Itype
2113                  (T           => Typ,
2114                   Related_Nod => N,
2115                   Scope_Id    => Scope (Current_Scope)));
2116
2117               --  The new subtype must be elaborated before use because
2118               --  it is visible outside of the function. However its base
2119               --  type may not be frozen yet, so the reference that will
2120               --  force elaboration must be attached to the freezing of
2121               --  the base type.
2122
2123               --  If the return specification appears on a proper body,
2124               --  the subtype will have been created already on the spec.
2125
2126               if Is_Frozen (Typ) then
2127                  if Nkind (Parent (N)) = N_Subprogram_Body
2128                    and then Nkind (Parent (Parent (N))) = N_Subunit
2129                  then
2130                     null;
2131                  else
2132                     Build_Itype_Reference (Etype (Designator), Parent (N));
2133                  end if;
2134
2135               else
2136                  Ensure_Freeze_Node (Typ);
2137
2138                  declare
2139                     IR : constant Node_Id := Make_Itype_Reference (Sloc (N));
2140                  begin
2141                     Set_Itype (IR, Etype (Designator));
2142                     Append_Freeze_Actions (Typ, New_List (IR));
2143                  end;
2144               end if;
2145
2146            else
2147               Set_Etype (Designator, Typ);
2148            end if;
2149
2150            if Ekind (Typ) = E_Incomplete_Type
2151              or else (Is_Class_Wide_Type (Typ)
2152                        and then Ekind (Root_Type (Typ)) = E_Incomplete_Type)
2153            then
2154               --  AI05-0151: Tagged incomplete types are allowed in all formal
2155               --  parts. Untagged incomplete types are not allowed in bodies.
2156               --  As a consequence, limited views cannot appear in a basic
2157               --  declaration that is itself within a body, because there is
2158               --  no point at which the non-limited view will become visible.
2159
2160               if Ada_Version >= Ada_2012 then
2161                  if From_Limited_With (Typ) and then In_Package_Body then
2162                     Error_Msg_NE
2163                       ("invalid use of incomplete type&",
2164                        Result_Definition (N), Typ);
2165
2166                  --  The return type of a subprogram body cannot be of a
2167                  --  formal incomplete type.
2168
2169                  elsif Is_Generic_Type (Typ)
2170                    and then Nkind (Parent (N)) = N_Subprogram_Body
2171                  then
2172                     Error_Msg_N
2173                      ("return type cannot be a formal incomplete type",
2174                        Result_Definition (N));
2175
2176                  elsif Is_Class_Wide_Type (Typ)
2177                    and then Is_Generic_Type (Root_Type (Typ))
2178                    and then Nkind (Parent (N)) = N_Subprogram_Body
2179                  then
2180                     Error_Msg_N
2181                      ("return type cannot be a formal incomplete type",
2182                        Result_Definition (N));
2183
2184                  elsif Is_Tagged_Type (Typ) then
2185                     null;
2186
2187                  --  Use is legal in a thunk generated for an operation
2188                  --  inherited from a progenitor.
2189
2190                  elsif Is_Thunk (Designator)
2191                    and then Present (Non_Limited_View (Typ))
2192                  then
2193                     null;
2194
2195                  elsif Nkind (Parent (N)) = N_Subprogram_Body
2196                    or else Nkind_In (Parent (Parent (N)), N_Accept_Statement,
2197                                                           N_Entry_Body)
2198                  then
2199                     Error_Msg_NE
2200                       ("invalid use of untagged incomplete type&",
2201                          Designator, Typ);
2202                  end if;
2203
2204                  --  The type must be completed in the current package. This
2205                  --  is checked at the end of the package declaration when
2206                  --  Taft-amendment types are identified. If the return type
2207                  --  is class-wide, there is no required check, the type can
2208                  --  be a bona fide TAT.
2209
2210                  if Ekind (Scope (Current_Scope)) = E_Package
2211                    and then In_Private_Part (Scope (Current_Scope))
2212                    and then not Is_Class_Wide_Type (Typ)
2213                  then
2214                     Append_Elmt (Designator, Private_Dependents (Typ));
2215                  end if;
2216
2217               else
2218                  Error_Msg_NE
2219                    ("invalid use of incomplete type&", Designator, Typ);
2220               end if;
2221            end if;
2222         end if;
2223
2224      --  Case where result definition does indicate an error
2225
2226      else
2227         Set_Etype (Designator, Any_Type);
2228      end if;
2229   end Analyze_Return_Type;
2230
2231   -----------------------------
2232   -- Analyze_Subprogram_Body --
2233   -----------------------------
2234
2235   procedure Analyze_Subprogram_Body (N : Node_Id) is
2236      Loc       : constant Source_Ptr := Sloc (N);
2237      Body_Spec : constant Node_Id    := Specification (N);
2238      Body_Id   : constant Entity_Id  := Defining_Entity (Body_Spec);
2239
2240   begin
2241      if Debug_Flag_C then
2242         Write_Str ("==> subprogram body ");
2243         Write_Name (Chars (Body_Id));
2244         Write_Str (" from ");
2245         Write_Location (Loc);
2246         Write_Eol;
2247         Indent;
2248      end if;
2249
2250      Trace_Scope (N, Body_Id, " Analyze subprogram: ");
2251
2252      --  The real work is split out into the helper, so it can do "return;"
2253      --  without skipping the debug output:
2254
2255      Analyze_Subprogram_Body_Helper (N);
2256
2257      if Debug_Flag_C then
2258         Outdent;
2259         Write_Str ("<== subprogram body ");
2260         Write_Name (Chars (Body_Id));
2261         Write_Str (" from ");
2262         Write_Location (Loc);
2263         Write_Eol;
2264      end if;
2265   end Analyze_Subprogram_Body;
2266
2267   ------------------------------------
2268   -- Analyze_Subprogram_Body_Helper --
2269   ------------------------------------
2270
2271   --  This procedure is called for regular subprogram bodies, generic bodies,
2272   --  and for subprogram stubs of both kinds. In the case of stubs, only the
2273   --  specification matters, and is used to create a proper declaration for
2274   --  the subprogram, or to perform conformance checks.
2275
2276   --  WARNING: This routine manages Ghost regions. Return statements must be
2277   --  replaced by gotos that jump to the end of the routine and restore the
2278   --  Ghost mode.
2279
2280   procedure Analyze_Subprogram_Body_Helper (N : Node_Id) is
2281      Body_Spec : Node_Id             := Specification (N);
2282      Body_Id   : Entity_Id           := Defining_Entity (Body_Spec);
2283      Loc       : constant Source_Ptr := Sloc (N);
2284      Prev_Id   : constant Entity_Id  := Current_Entity_In_Scope (Body_Id);
2285
2286      Conformant : Boolean;
2287      Desig_View : Entity_Id := Empty;
2288      Exch_Views : Elist_Id  := No_Elist;
2289      HSS        : Node_Id;
2290      Mask_Types : Elist_Id  := No_Elist;
2291      Prot_Typ   : Entity_Id := Empty;
2292      Spec_Decl  : Node_Id   := Empty;
2293      Spec_Id    : Entity_Id;
2294
2295      Last_Real_Spec_Entity : Entity_Id := Empty;
2296      --  When we analyze a separate spec, the entity chain ends up containing
2297      --  the formals, as well as any itypes generated during analysis of the
2298      --  default expressions for parameters, or the arguments of associated
2299      --  precondition/postcondition pragmas (which are analyzed in the context
2300      --  of the spec since they have visibility on formals).
2301      --
2302      --  These entities belong with the spec and not the body. However we do
2303      --  the analysis of the body in the context of the spec (again to obtain
2304      --  visibility to the formals), and all the entities generated during
2305      --  this analysis end up also chained to the entity chain of the spec.
2306      --  But they really belong to the body, and there is circuitry to move
2307      --  them from the spec to the body.
2308      --
2309      --  However, when we do this move, we don't want to move the real spec
2310      --  entities (first para above) to the body. The Last_Real_Spec_Entity
2311      --  variable points to the last real spec entity, so we only move those
2312      --  chained beyond that point. It is initialized to Empty to deal with
2313      --  the case where there is no separate spec.
2314
2315      function Body_Has_Contract return Boolean;
2316      --  Check whether unanalyzed body has an aspect or pragma that may
2317      --  generate a SPARK contract.
2318
2319      function Body_Has_SPARK_Mode_On return Boolean;
2320      --  Check whether SPARK_Mode On applies to the subprogram body, either
2321      --  because it is specified directly on the body, or because it is
2322      --  inherited from the enclosing subprogram or package.
2323
2324      procedure Build_Subprogram_Declaration;
2325      --  Create a matching subprogram declaration for subprogram body N
2326
2327      procedure Check_Anonymous_Return;
2328      --  Ada 2005: if a function returns an access type that denotes a task,
2329      --  or a type that contains tasks, we must create a master entity for
2330      --  the anonymous type, which typically will be used in an allocator
2331      --  in the body of the function.
2332
2333      procedure Check_Inline_Pragma (Spec : in out Node_Id);
2334      --  Look ahead to recognize a pragma that may appear after the body.
2335      --  If there is a previous spec, check that it appears in the same
2336      --  declarative part. If the pragma is Inline_Always, perform inlining
2337      --  unconditionally, otherwise only if Front_End_Inlining is requested.
2338      --  If the body acts as a spec, and inlining is required, we create a
2339      --  subprogram declaration for it, in order to attach the body to inline.
2340      --  If pragma does not appear after the body, check whether there is
2341      --  an inline pragma before any local declarations.
2342
2343      procedure Check_Missing_Return;
2344      --  Checks for a function with a no return statements, and also performs
2345      --  the warning checks implemented by Check_Returns. In formal mode, also
2346      --  verify that a function ends with a RETURN and that a procedure does
2347      --  not contain any RETURN.
2348
2349      function Disambiguate_Spec return Entity_Id;
2350      --  When a primitive is declared between the private view and the full
2351      --  view of a concurrent type which implements an interface, a special
2352      --  mechanism is used to find the corresponding spec of the primitive
2353      --  body.
2354
2355      function Exchange_Limited_Views (Subp_Id : Entity_Id) return Elist_Id;
2356      --  Ada 2012 (AI05-0151): Detect whether the profile of Subp_Id contains
2357      --  incomplete types coming from a limited context and replace their
2358      --  limited views with the non-limited ones. Return the list of changes
2359      --  to be used to undo the transformation.
2360
2361      function Is_Private_Concurrent_Primitive
2362        (Subp_Id : Entity_Id) return Boolean;
2363      --  Determine whether subprogram Subp_Id is a primitive of a concurrent
2364      --  type that implements an interface and has a private view.
2365
2366      function Mask_Unfrozen_Types (Spec_Id : Entity_Id) return Elist_Id;
2367      --  N is the body generated for an expression function that is not a
2368      --  completion and Spec_Id the defining entity of its spec. Mark all
2369      --  the not-yet-frozen types referenced by the simple return statement
2370      --  of the function as formally frozen.
2371
2372      procedure Restore_Limited_Views (Restore_List : Elist_Id);
2373      --  Undo the transformation done by Exchange_Limited_Views.
2374
2375      procedure Set_Trivial_Subprogram (N : Node_Id);
2376      --  Sets the Is_Trivial_Subprogram flag in both spec and body of the
2377      --  subprogram whose body is being analyzed. N is the statement node
2378      --  causing the flag to be set, if the following statement is a return
2379      --  of an entity, we mark the entity as set in source to suppress any
2380      --  warning on the stylized use of function stubs with a dummy return.
2381
2382      procedure Unmask_Unfrozen_Types (Unmask_List : Elist_Id);
2383      --  Undo the transformation done by Mask_Unfrozen_Types
2384
2385      procedure Verify_Overriding_Indicator;
2386      --  If there was a previous spec, the entity has been entered in the
2387      --  current scope previously. If the body itself carries an overriding
2388      --  indicator, check that it is consistent with the known status of the
2389      --  entity.
2390
2391      -----------------------
2392      -- Body_Has_Contract --
2393      -----------------------
2394
2395      function Body_Has_Contract return Boolean is
2396         Decls : constant List_Id := Declarations (N);
2397         Item  : Node_Id;
2398
2399      begin
2400         --  Check for aspects that may generate a contract
2401
2402         if Present (Aspect_Specifications (N)) then
2403            Item := First (Aspect_Specifications (N));
2404            while Present (Item) loop
2405               if Is_Subprogram_Contract_Annotation (Item) then
2406                  return True;
2407               end if;
2408
2409               Next (Item);
2410            end loop;
2411         end if;
2412
2413         --  Check for pragmas that may generate a contract
2414
2415         if Present (Decls) then
2416            Item := First (Decls);
2417            while Present (Item) loop
2418               if Nkind (Item) = N_Pragma
2419                 and then Is_Subprogram_Contract_Annotation (Item)
2420               then
2421                  return True;
2422               end if;
2423
2424               Next (Item);
2425            end loop;
2426         end if;
2427
2428         return False;
2429      end Body_Has_Contract;
2430
2431      ----------------------------
2432      -- Body_Has_SPARK_Mode_On --
2433      ----------------------------
2434
2435      function Body_Has_SPARK_Mode_On return Boolean is
2436         Decls : constant List_Id := Declarations (N);
2437         Item  : Node_Id;
2438
2439      begin
2440         --  Check for SPARK_Mode aspect
2441
2442         if Present (Aspect_Specifications (N)) then
2443            Item := First (Aspect_Specifications (N));
2444            while Present (Item) loop
2445               if Get_Aspect_Id (Item) = Aspect_SPARK_Mode then
2446                  return Get_SPARK_Mode_From_Annotation (Item) = On;
2447               end if;
2448
2449               Next (Item);
2450            end loop;
2451         end if;
2452
2453         --  Check for SPARK_Mode pragma
2454
2455         if Present (Decls) then
2456            Item := First (Decls);
2457            while Present (Item) loop
2458
2459               --  Pragmas that apply to a subprogram body are usually grouped
2460               --  together. Look for a potential pragma SPARK_Mode among them.
2461
2462               if Nkind (Item) = N_Pragma then
2463                  if Get_Pragma_Id (Item) = Pragma_SPARK_Mode then
2464                     return Get_SPARK_Mode_From_Annotation (Item) = On;
2465                  end if;
2466
2467               --  Otherwise the first non-pragma declarative item terminates
2468               --  the region where pragma SPARK_Mode may appear.
2469
2470               else
2471                  exit;
2472               end if;
2473
2474               Next (Item);
2475            end loop;
2476         end if;
2477
2478         --  Otherwise, the applicable SPARK_Mode is inherited from the
2479         --  enclosing subprogram or package.
2480
2481         return SPARK_Mode = On;
2482      end Body_Has_SPARK_Mode_On;
2483
2484      ----------------------------------
2485      -- Build_Subprogram_Declaration --
2486      ----------------------------------
2487
2488      procedure Build_Subprogram_Declaration is
2489         procedure Move_Pragmas (From : Node_Id; To : Node_Id);
2490         --  Relocate certain categorization pragmas from the declarative list
2491         --  of subprogram body From and insert them after node To. The pragmas
2492         --  in question are:
2493         --    Ghost
2494         --    Volatile_Function
2495         --  Also copy pragma SPARK_Mode if present in the declarative list
2496         --  of subprogram body From and insert it after node To. This pragma
2497         --  should not be moved, as it applies to the body too.
2498
2499         ------------------
2500         -- Move_Pragmas --
2501         ------------------
2502
2503         procedure Move_Pragmas (From : Node_Id; To : Node_Id) is
2504            Decl      : Node_Id;
2505            Next_Decl : Node_Id;
2506
2507         begin
2508            pragma Assert (Nkind (From) = N_Subprogram_Body);
2509
2510            --  The destination node must be part of a list, as the pragmas are
2511            --  inserted after it.
2512
2513            pragma Assert (Is_List_Member (To));
2514
2515            --  Inspect the declarations of the subprogram body looking for
2516            --  specific pragmas.
2517
2518            Decl := First (Declarations (N));
2519            while Present (Decl) loop
2520               Next_Decl := Next (Decl);
2521
2522               if Nkind (Decl) = N_Pragma then
2523                  if Pragma_Name_Unmapped (Decl) = Name_SPARK_Mode then
2524                     Insert_After (To, New_Copy_Tree (Decl));
2525
2526                  elsif Nam_In (Pragma_Name_Unmapped (Decl),
2527                                Name_Ghost,
2528                                Name_Volatile_Function)
2529                  then
2530                     Remove (Decl);
2531                     Insert_After (To, Decl);
2532                  end if;
2533               end if;
2534
2535               Decl := Next_Decl;
2536            end loop;
2537         end Move_Pragmas;
2538
2539         --  Local variables
2540
2541         Decl      : Node_Id;
2542         Subp_Decl : Node_Id;
2543
2544      --  Start of processing for Build_Subprogram_Declaration
2545
2546      begin
2547         --  Create a matching subprogram spec using the profile of the body.
2548         --  The structure of the tree is identical, but has new entities for
2549         --  the defining unit name and formal parameters.
2550
2551         Subp_Decl :=
2552           Make_Subprogram_Declaration (Loc,
2553             Specification => Copy_Subprogram_Spec (Body_Spec));
2554         Set_Comes_From_Source (Subp_Decl, True);
2555
2556         --  Also mark parameters as coming from source
2557
2558         if Present (Parameter_Specifications (Specification (Subp_Decl))) then
2559            declare
2560               Form : Entity_Id;
2561            begin
2562               Form :=
2563                 First (Parameter_Specifications (Specification (Subp_Decl)));
2564
2565               while Present (Form) loop
2566                  Set_Comes_From_Source (Defining_Identifier (Form), True);
2567                  Next (Form);
2568               end loop;
2569            end;
2570         end if;
2571
2572         --  Relocate the aspects and relevant pragmas from the subprogram body
2573         --  to the generated spec because it acts as the initial declaration.
2574
2575         Insert_Before (N, Subp_Decl);
2576         Move_Aspects (N, To => Subp_Decl);
2577         Move_Pragmas (N, To => Subp_Decl);
2578
2579         --  Ensure that the generated corresponding spec and original body
2580         --  share the same SPARK_Mode pragma or aspect. As a result, both have
2581         --  the same SPARK_Mode attributes, and the global SPARK_Mode value is
2582         --  correctly set for local subprograms.
2583
2584         Copy_SPARK_Mode_Aspect (Subp_Decl, To => N);
2585
2586         Analyze (Subp_Decl);
2587
2588         --  Propagate the attributes Rewritten_For_C and Corresponding_Proc to
2589         --  the body since the expander may generate calls using that entity.
2590         --  Required to ensure that Expand_Call rewrites calls to this
2591         --  function by calls to the built procedure.
2592
2593         if Modify_Tree_For_C
2594           and then Nkind (Body_Spec) = N_Function_Specification
2595           and then
2596              Rewritten_For_C (Defining_Entity (Specification (Subp_Decl)))
2597         then
2598            Set_Rewritten_For_C (Defining_Entity (Body_Spec));
2599            Set_Corresponding_Procedure (Defining_Entity (Body_Spec),
2600              Corresponding_Procedure
2601                (Defining_Entity (Specification (Subp_Decl))));
2602         end if;
2603
2604         --  Analyze any relocated source pragmas or pragmas created for aspect
2605         --  specifications.
2606
2607         Decl := Next (Subp_Decl);
2608         while Present (Decl) loop
2609
2610            --  Stop the search for pragmas once the body has been reached as
2611            --  this terminates the region where pragmas may appear.
2612
2613            if Decl = N then
2614               exit;
2615
2616            elsif Nkind (Decl) = N_Pragma then
2617               Analyze (Decl);
2618            end if;
2619
2620            Next (Decl);
2621         end loop;
2622
2623         Spec_Id := Defining_Entity (Subp_Decl);
2624         Set_Corresponding_Spec (N, Spec_Id);
2625
2626         --  Mark the generated spec as a source construct to ensure that all
2627         --  calls to it are properly registered in ALI files for GNATprove.
2628
2629         Set_Comes_From_Source (Spec_Id, True);
2630
2631         --  Ensure that the specs of the subprogram declaration and its body
2632         --  are identical, otherwise they will appear non-conformant due to
2633         --  rewritings in the default values of formal parameters.
2634
2635         Body_Spec := Copy_Subprogram_Spec (Body_Spec);
2636         Set_Specification (N, Body_Spec);
2637         Body_Id := Analyze_Subprogram_Specification (Body_Spec);
2638      end Build_Subprogram_Declaration;
2639
2640      ----------------------------
2641      -- Check_Anonymous_Return --
2642      ----------------------------
2643
2644      procedure Check_Anonymous_Return is
2645         Decl : Node_Id;
2646         Par  : Node_Id;
2647         Scop : Entity_Id;
2648
2649      begin
2650         if Present (Spec_Id) then
2651            Scop := Spec_Id;
2652         else
2653            Scop := Body_Id;
2654         end if;
2655
2656         if Ekind (Scop) = E_Function
2657           and then Ekind (Etype (Scop)) = E_Anonymous_Access_Type
2658           and then not Is_Thunk (Scop)
2659
2660            --  Skip internally built functions which handle the case of
2661            --  a null access (see Expand_Interface_Conversion)
2662
2663           and then not (Is_Interface (Designated_Type (Etype (Scop)))
2664                          and then not Comes_From_Source (Parent (Scop)))
2665
2666           and then (Has_Task (Designated_Type (Etype (Scop)))
2667                      or else
2668                        (Is_Class_Wide_Type (Designated_Type (Etype (Scop)))
2669                           and then
2670                         Is_Limited_Record (Designated_Type (Etype (Scop)))))
2671           and then Expander_Active
2672
2673           --  Avoid cases with no tasking support
2674
2675           and then RTE_Available (RE_Current_Master)
2676           and then not Restriction_Active (No_Task_Hierarchy)
2677         then
2678            Decl :=
2679              Make_Object_Declaration (Loc,
2680                Defining_Identifier =>
2681                  Make_Defining_Identifier (Loc, Name_uMaster),
2682                Constant_Present => True,
2683                Object_Definition =>
2684                  New_Occurrence_Of (RTE (RE_Master_Id), Loc),
2685                Expression =>
2686                  Make_Explicit_Dereference (Loc,
2687                    New_Occurrence_Of (RTE (RE_Current_Master), Loc)));
2688
2689            if Present (Declarations (N)) then
2690               Prepend (Decl, Declarations (N));
2691            else
2692               Set_Declarations (N, New_List (Decl));
2693            end if;
2694
2695            Set_Master_Id (Etype (Scop), Defining_Identifier (Decl));
2696            Set_Has_Master_Entity (Scop);
2697
2698            --  Now mark the containing scope as a task master
2699
2700            Par := N;
2701            while Nkind (Par) /= N_Compilation_Unit loop
2702               Par := Parent (Par);
2703               pragma Assert (Present (Par));
2704
2705               --  If we fall off the top, we are at the outer level, and
2706               --  the environment task is our effective master, so nothing
2707               --  to mark.
2708
2709               if Nkind_In
2710                   (Par, N_Task_Body, N_Block_Statement, N_Subprogram_Body)
2711               then
2712                  Set_Is_Task_Master (Par, True);
2713                  exit;
2714               end if;
2715            end loop;
2716         end if;
2717      end Check_Anonymous_Return;
2718
2719      -------------------------
2720      -- Check_Inline_Pragma --
2721      -------------------------
2722
2723      procedure Check_Inline_Pragma (Spec : in out Node_Id) is
2724         Prag  : Node_Id;
2725         Plist : List_Id;
2726
2727         function Is_Inline_Pragma (N : Node_Id) return Boolean;
2728         --  True when N is a pragma Inline or Inline_Always that applies
2729         --  to this subprogram.
2730
2731         -----------------------
2732         --  Is_Inline_Pragma --
2733         -----------------------
2734
2735         function Is_Inline_Pragma (N : Node_Id) return Boolean is
2736         begin
2737            if Nkind (N) = N_Pragma
2738                and then
2739                  (Pragma_Name_Unmapped (N) = Name_Inline_Always
2740                    or else (Pragma_Name_Unmapped (N) = Name_Inline
2741                      and then
2742                        (Front_End_Inlining or else Optimization_Level > 0)))
2743               and then Present (Pragma_Argument_Associations (N))
2744            then
2745               declare
2746                  Pragma_Arg : Node_Id :=
2747                    Expression (First (Pragma_Argument_Associations (N)));
2748               begin
2749                  if Nkind (Pragma_Arg) = N_Selected_Component then
2750                     Pragma_Arg := Selector_Name (Pragma_Arg);
2751                  end if;
2752
2753                  return Chars (Pragma_Arg) = Chars (Body_Id);
2754               end;
2755
2756            else
2757               return False;
2758            end if;
2759         end Is_Inline_Pragma;
2760
2761      --  Start of processing for Check_Inline_Pragma
2762
2763      begin
2764         if not Expander_Active then
2765            return;
2766         end if;
2767
2768         if Is_List_Member (N)
2769           and then Present (Next (N))
2770           and then Is_Inline_Pragma (Next (N))
2771         then
2772            Prag := Next (N);
2773
2774         elsif Nkind (N) /= N_Subprogram_Body_Stub
2775           and then Present (Declarations (N))
2776           and then Is_Inline_Pragma (First (Declarations (N)))
2777         then
2778            Prag := First (Declarations (N));
2779
2780         else
2781            Prag := Empty;
2782         end if;
2783
2784         if Present (Prag) then
2785            if Present (Spec_Id) then
2786               if Is_List_Member (N)
2787                 and then Is_List_Member (Unit_Declaration_Node (Spec_Id))
2788                 and then In_Same_List (N, Unit_Declaration_Node (Spec_Id))
2789               then
2790                  Analyze (Prag);
2791               end if;
2792
2793            else
2794               --  Create a subprogram declaration, to make treatment uniform.
2795               --  Make the sloc of the subprogram name that of the entity in
2796               --  the body, so that style checks find identical strings.
2797
2798               declare
2799                  Subp : constant Entity_Id :=
2800                           Make_Defining_Identifier
2801                             (Sloc (Body_Id), Chars (Body_Id));
2802                  Decl : constant Node_Id :=
2803                           Make_Subprogram_Declaration (Loc,
2804                             Specification =>
2805                               New_Copy_Tree (Specification (N)));
2806
2807               begin
2808                  --  Link the body and the generated spec
2809
2810                  Set_Corresponding_Body (Decl, Body_Id);
2811                  Set_Corresponding_Spec (N, Subp);
2812
2813                  Set_Defining_Unit_Name (Specification (Decl), Subp);
2814
2815                  --  To ensure proper coverage when body is inlined, indicate
2816                  --  whether the subprogram comes from source.
2817
2818                  Set_Comes_From_Source (Subp, Comes_From_Source (N));
2819
2820                  if Present (First_Formal (Body_Id)) then
2821                     Plist := Copy_Parameter_List (Body_Id);
2822                     Set_Parameter_Specifications
2823                       (Specification (Decl), Plist);
2824                  end if;
2825
2826                  --  Move aspects to the new spec
2827
2828                  if Has_Aspects (N) then
2829                     Move_Aspects (N, To => Decl);
2830                  end if;
2831
2832                  Insert_Before (N, Decl);
2833                  Analyze (Decl);
2834                  Analyze (Prag);
2835                  Set_Has_Pragma_Inline (Subp);
2836
2837                  if Pragma_Name (Prag) = Name_Inline_Always then
2838                     Set_Is_Inlined (Subp);
2839                     Set_Has_Pragma_Inline_Always (Subp);
2840                  end if;
2841
2842                  --  Prior to copying the subprogram body to create a template
2843                  --  for it for subsequent inlining, remove the pragma from
2844                  --  the current body so that the copy that will produce the
2845                  --  new body will start from a completely unanalyzed tree.
2846
2847                  if Nkind (Parent (Prag)) = N_Subprogram_Body then
2848                     Rewrite (Prag, Make_Null_Statement (Sloc (Prag)));
2849                  end if;
2850
2851                  Spec := Subp;
2852               end;
2853            end if;
2854         end if;
2855      end Check_Inline_Pragma;
2856
2857      --------------------------
2858      -- Check_Missing_Return --
2859      --------------------------
2860
2861      procedure Check_Missing_Return is
2862         Id          : Entity_Id;
2863         Missing_Ret : Boolean;
2864
2865      begin
2866         if Nkind (Body_Spec) = N_Function_Specification then
2867            if Present (Spec_Id) then
2868               Id := Spec_Id;
2869            else
2870               Id := Body_Id;
2871            end if;
2872
2873            if Return_Present (Id) then
2874               Check_Returns (HSS, 'F', Missing_Ret);
2875
2876               if Missing_Ret then
2877                  Set_Has_Missing_Return (Id);
2878               end if;
2879
2880            --  Within a premature instantiation of a package with no body, we
2881            --  build completions of the functions therein, with a Raise
2882            --  statement. No point in complaining about a missing return in
2883            --  this case.
2884
2885            elsif Ekind (Id) = E_Function
2886              and then In_Instance
2887              and then Present (Statements (HSS))
2888              and then Nkind (First (Statements (HSS))) = N_Raise_Program_Error
2889            then
2890               null;
2891
2892            elsif Is_Generic_Subprogram (Id)
2893              or else not Is_Machine_Code_Subprogram (Id)
2894            then
2895               Error_Msg_N ("missing RETURN statement in function body", N);
2896            end if;
2897
2898         --  If procedure with No_Return, check returns
2899
2900         elsif Nkind (Body_Spec) = N_Procedure_Specification then
2901            if Present (Spec_Id) then
2902               Id := Spec_Id;
2903            else
2904               Id := Body_Id;
2905            end if;
2906
2907            if No_Return (Id) then
2908               Check_Returns (HSS, 'P', Missing_Ret, Id);
2909            end if;
2910         end if;
2911
2912         --  Special checks in SPARK mode
2913
2914         if Nkind (Body_Spec) = N_Function_Specification then
2915
2916            --  In SPARK mode, last statement of a function should be a return
2917
2918            declare
2919               Stat : constant Node_Id := Last_Source_Statement (HSS);
2920            begin
2921               if Present (Stat)
2922                 and then not Nkind_In (Stat, N_Simple_Return_Statement,
2923                                              N_Extended_Return_Statement)
2924               then
2925                  Check_SPARK_05_Restriction
2926                    ("last statement in function should be RETURN", Stat);
2927               end if;
2928            end;
2929
2930         --  In SPARK mode, verify that a procedure has no return
2931
2932         elsif Nkind (Body_Spec) = N_Procedure_Specification then
2933            if Present (Spec_Id) then
2934               Id := Spec_Id;
2935            else
2936               Id := Body_Id;
2937            end if;
2938
2939            --  Would be nice to point to return statement here, can we
2940            --  borrow the Check_Returns procedure here ???
2941
2942            if Return_Present (Id) then
2943               Check_SPARK_05_Restriction
2944                 ("procedure should not have RETURN", N);
2945            end if;
2946         end if;
2947      end Check_Missing_Return;
2948
2949      -----------------------
2950      -- Disambiguate_Spec --
2951      -----------------------
2952
2953      function Disambiguate_Spec return Entity_Id is
2954         Priv_Spec : Entity_Id;
2955         Spec_N    : Entity_Id;
2956
2957         procedure Replace_Types (To_Corresponding : Boolean);
2958         --  Depending on the flag, replace the type of formal parameters of
2959         --  Body_Id if it is a concurrent type implementing interfaces with
2960         --  the corresponding record type or the other way around.
2961
2962         procedure Replace_Types (To_Corresponding : Boolean) is
2963            Formal     : Entity_Id;
2964            Formal_Typ : Entity_Id;
2965
2966         begin
2967            Formal := First_Formal (Body_Id);
2968            while Present (Formal) loop
2969               Formal_Typ := Etype (Formal);
2970
2971               if Is_Class_Wide_Type (Formal_Typ) then
2972                  Formal_Typ := Root_Type (Formal_Typ);
2973               end if;
2974
2975               --  From concurrent type to corresponding record
2976
2977               if To_Corresponding then
2978                  if Is_Concurrent_Type (Formal_Typ)
2979                    and then Present (Corresponding_Record_Type (Formal_Typ))
2980                    and then
2981                      Present (Interfaces
2982                                 (Corresponding_Record_Type (Formal_Typ)))
2983                  then
2984                     Set_Etype (Formal,
2985                       Corresponding_Record_Type (Formal_Typ));
2986                  end if;
2987
2988               --  From corresponding record to concurrent type
2989
2990               else
2991                  if Is_Concurrent_Record_Type (Formal_Typ)
2992                    and then Present (Interfaces (Formal_Typ))
2993                  then
2994                     Set_Etype (Formal,
2995                       Corresponding_Concurrent_Type (Formal_Typ));
2996                  end if;
2997               end if;
2998
2999               Next_Formal (Formal);
3000            end loop;
3001         end Replace_Types;
3002
3003      --  Start of processing for Disambiguate_Spec
3004
3005      begin
3006         --  Try to retrieve the specification of the body as is. All error
3007         --  messages are suppressed because the body may not have a spec in
3008         --  its current state.
3009
3010         Spec_N := Find_Corresponding_Spec (N, False);
3011
3012         --  It is possible that this is the body of a primitive declared
3013         --  between a private and a full view of a concurrent type. The
3014         --  controlling parameter of the spec carries the concurrent type,
3015         --  not the corresponding record type as transformed by Analyze_
3016         --  Subprogram_Specification. In such cases, we undo the change
3017         --  made by the analysis of the specification and try to find the
3018         --  spec again.
3019
3020         --  Note that wrappers already have their corresponding specs and
3021         --  bodies set during their creation, so if the candidate spec is
3022         --  a wrapper, then we definitely need to swap all types to their
3023         --  original concurrent status.
3024
3025         if No (Spec_N)
3026           or else Is_Primitive_Wrapper (Spec_N)
3027         then
3028            --  Restore all references of corresponding record types to the
3029            --  original concurrent types.
3030
3031            Replace_Types (To_Corresponding => False);
3032            Priv_Spec := Find_Corresponding_Spec (N, False);
3033
3034            --  The current body truly belongs to a primitive declared between
3035            --  a private and a full view. We leave the modified body as is,
3036            --  and return the true spec.
3037
3038            if Present (Priv_Spec)
3039              and then Is_Private_Primitive (Priv_Spec)
3040            then
3041               return Priv_Spec;
3042            end if;
3043
3044            --  In case that this is some sort of error, restore the original
3045            --  state of the body.
3046
3047            Replace_Types (To_Corresponding => True);
3048         end if;
3049
3050         return Spec_N;
3051      end Disambiguate_Spec;
3052
3053      ----------------------------
3054      -- Exchange_Limited_Views --
3055      ----------------------------
3056
3057      function Exchange_Limited_Views (Subp_Id : Entity_Id) return Elist_Id is
3058         Result : Elist_Id := No_Elist;
3059
3060         procedure Detect_And_Exchange (Id : Entity_Id);
3061         --  Determine whether Id's type denotes an incomplete type associated
3062         --  with a limited with clause and exchange the limited view with the
3063         --  non-limited one when available. Note that the non-limited view
3064         --  may exist because of a with_clause in another unit in the context,
3065         --  but cannot be used because the current view of the enclosing unit
3066         --  is still a limited view.
3067
3068         -------------------------
3069         -- Detect_And_Exchange --
3070         -------------------------
3071
3072         procedure Detect_And_Exchange (Id : Entity_Id) is
3073            Typ : constant Entity_Id := Etype (Id);
3074         begin
3075            if From_Limited_With (Typ)
3076              and then Has_Non_Limited_View (Typ)
3077              and then not From_Limited_With (Scope (Typ))
3078            then
3079               if No (Result) then
3080                  Result := New_Elmt_List;
3081               end if;
3082
3083               Prepend_Elmt (Typ, Result);
3084               Prepend_Elmt (Id, Result);
3085               Set_Etype (Id, Non_Limited_View (Typ));
3086            end if;
3087         end Detect_And_Exchange;
3088
3089         --  Local variables
3090
3091         Formal : Entity_Id;
3092
3093      --  Start of processing for Exchange_Limited_Views
3094
3095      begin
3096         --  Do not process subprogram bodies as they already use the non-
3097         --  limited view of types.
3098
3099         if not Ekind_In (Subp_Id, E_Function, E_Procedure) then
3100            return No_Elist;
3101         end if;
3102
3103         --  Examine all formals and swap views when applicable
3104
3105         Formal := First_Formal (Subp_Id);
3106         while Present (Formal) loop
3107            Detect_And_Exchange (Formal);
3108
3109            Next_Formal (Formal);
3110         end loop;
3111
3112         --  Process the return type of a function
3113
3114         if Ekind (Subp_Id) = E_Function then
3115            Detect_And_Exchange (Subp_Id);
3116         end if;
3117
3118         return Result;
3119      end Exchange_Limited_Views;
3120
3121      -------------------------------------
3122      -- Is_Private_Concurrent_Primitive --
3123      -------------------------------------
3124
3125      function Is_Private_Concurrent_Primitive
3126        (Subp_Id : Entity_Id) return Boolean
3127      is
3128         Formal_Typ : Entity_Id;
3129
3130      begin
3131         if Present (First_Formal (Subp_Id)) then
3132            Formal_Typ := Etype (First_Formal (Subp_Id));
3133
3134            if Is_Concurrent_Record_Type (Formal_Typ) then
3135               if Is_Class_Wide_Type (Formal_Typ) then
3136                  Formal_Typ := Root_Type (Formal_Typ);
3137               end if;
3138
3139               Formal_Typ := Corresponding_Concurrent_Type (Formal_Typ);
3140            end if;
3141
3142            --  The type of the first formal is a concurrent tagged type with
3143            --  a private view.
3144
3145            return
3146              Is_Concurrent_Type (Formal_Typ)
3147                and then Is_Tagged_Type (Formal_Typ)
3148                and then Has_Private_Declaration (Formal_Typ);
3149         end if;
3150
3151         return False;
3152      end Is_Private_Concurrent_Primitive;
3153
3154      -------------------------
3155      -- Mask_Unfrozen_Types --
3156      -------------------------
3157
3158      function Mask_Unfrozen_Types (Spec_Id : Entity_Id) return Elist_Id is
3159         Result : Elist_Id := No_Elist;
3160
3161         function Mask_Type_Refs (Node : Node_Id) return Traverse_Result;
3162         --  Mask all types referenced in the subtree rooted at Node
3163
3164         --------------------
3165         -- Mask_Type_Refs --
3166         --------------------
3167
3168         function Mask_Type_Refs (Node : Node_Id) return Traverse_Result is
3169            procedure Mask_Type (Typ : Entity_Id);
3170            --  ??? what does this do?
3171
3172            ---------------
3173            -- Mask_Type --
3174            ---------------
3175
3176            procedure Mask_Type (Typ : Entity_Id) is
3177            begin
3178               --  Skip Itypes created by the preanalysis
3179
3180               if Is_Itype (Typ)
3181                 and then Scope_Within_Or_Same (Scope (Typ), Spec_Id)
3182               then
3183                  return;
3184               end if;
3185
3186               if not Is_Frozen (Typ) then
3187                  if Scope (Typ) /= Current_Scope then
3188                     Set_Is_Frozen (Typ);
3189                     Append_New_Elmt (Typ, Result);
3190                  else
3191                     Freeze_Before (N, Typ);
3192                  end if;
3193               end if;
3194            end Mask_Type;
3195
3196         --  Start of processing for Mask_Type_Refs
3197
3198         begin
3199            if Is_Entity_Name (Node) and then Present (Entity (Node)) then
3200               Mask_Type (Etype (Entity (Node)));
3201
3202               if Ekind_In (Entity (Node), E_Component, E_Discriminant) then
3203                  Mask_Type (Scope (Entity (Node)));
3204               end if;
3205
3206            elsif Nkind_In (Node, N_Aggregate, N_Null, N_Type_Conversion)
3207              and then Present (Etype (Node))
3208            then
3209               Mask_Type (Etype (Node));
3210            end if;
3211
3212            return OK;
3213         end Mask_Type_Refs;
3214
3215         procedure Mask_References is new Traverse_Proc (Mask_Type_Refs);
3216
3217         --  Local variables
3218
3219         Return_Stmt : constant Node_Id :=
3220                         First (Statements (Handled_Statement_Sequence (N)));
3221
3222      --  Start of processing for Mask_Unfrozen_Types
3223
3224      begin
3225         pragma Assert (Nkind (Return_Stmt) = N_Simple_Return_Statement);
3226
3227         Mask_References (Expression (Return_Stmt));
3228
3229         return Result;
3230      end Mask_Unfrozen_Types;
3231
3232      ---------------------------
3233      -- Restore_Limited_Views --
3234      ---------------------------
3235
3236      procedure Restore_Limited_Views (Restore_List : Elist_Id) is
3237         Elmt : Elmt_Id := First_Elmt (Restore_List);
3238         Id   : Entity_Id;
3239
3240      begin
3241         while Present (Elmt) loop
3242            Id := Node (Elmt);
3243            Next_Elmt (Elmt);
3244            Set_Etype (Id, Node (Elmt));
3245            Next_Elmt (Elmt);
3246         end loop;
3247      end Restore_Limited_Views;
3248
3249      ----------------------------
3250      -- Set_Trivial_Subprogram --
3251      ----------------------------
3252
3253      procedure Set_Trivial_Subprogram (N : Node_Id) is
3254         Nxt : constant Node_Id := Next (N);
3255
3256      begin
3257         Set_Is_Trivial_Subprogram (Body_Id);
3258
3259         if Present (Spec_Id) then
3260            Set_Is_Trivial_Subprogram (Spec_Id);
3261         end if;
3262
3263         if Present (Nxt)
3264           and then Nkind (Nxt) = N_Simple_Return_Statement
3265           and then No (Next (Nxt))
3266           and then Present (Expression (Nxt))
3267           and then Is_Entity_Name (Expression (Nxt))
3268         then
3269            Set_Never_Set_In_Source (Entity (Expression (Nxt)), False);
3270         end if;
3271      end Set_Trivial_Subprogram;
3272
3273      ---------------------------
3274      -- Unmask_Unfrozen_Types --
3275      ---------------------------
3276
3277      procedure Unmask_Unfrozen_Types (Unmask_List : Elist_Id) is
3278         Elmt : Elmt_Id := First_Elmt (Unmask_List);
3279
3280      begin
3281         while Present (Elmt) loop
3282            Set_Is_Frozen (Node (Elmt), False);
3283            Next_Elmt (Elmt);
3284         end loop;
3285      end Unmask_Unfrozen_Types;
3286
3287      ---------------------------------
3288      -- Verify_Overriding_Indicator --
3289      ---------------------------------
3290
3291      procedure Verify_Overriding_Indicator is
3292      begin
3293         if Must_Override (Body_Spec) then
3294            if Nkind (Spec_Id) = N_Defining_Operator_Symbol
3295              and then Operator_Matches_Spec (Spec_Id, Spec_Id)
3296            then
3297               null;
3298
3299            elsif not Present (Overridden_Operation (Spec_Id)) then
3300               Error_Msg_NE
3301                 ("subprogram& is not overriding", Body_Spec, Spec_Id);
3302
3303            --  Overriding indicators aren't allowed for protected subprogram
3304            --  bodies (see the Confirmation in Ada Comment AC95-00213). Change
3305            --  this to a warning if -gnatd.E is enabled.
3306
3307            elsif Ekind (Scope (Spec_Id)) = E_Protected_Type then
3308               Error_Msg_Warn := Error_To_Warning;
3309               Error_Msg_N
3310                 ("<<overriding indicator not allowed for protected "
3311                  & "subprogram body", Body_Spec);
3312            end if;
3313
3314         elsif Must_Not_Override (Body_Spec) then
3315            if Present (Overridden_Operation (Spec_Id)) then
3316               Error_Msg_NE
3317                 ("subprogram& overrides inherited operation",
3318                  Body_Spec, Spec_Id);
3319
3320            elsif Nkind (Spec_Id) = N_Defining_Operator_Symbol
3321              and then Operator_Matches_Spec (Spec_Id, Spec_Id)
3322            then
3323               Error_Msg_NE
3324                 ("subprogram& overrides predefined operator ",
3325                    Body_Spec, Spec_Id);
3326
3327            --  Overriding indicators aren't allowed for protected subprogram
3328            --  bodies (see the Confirmation in Ada Comment AC95-00213). Change
3329            --  this to a warning if -gnatd.E is enabled.
3330
3331            elsif Ekind (Scope (Spec_Id)) = E_Protected_Type then
3332               Error_Msg_Warn := Error_To_Warning;
3333
3334               Error_Msg_N
3335                 ("<<overriding indicator not allowed "
3336                  & "for protected subprogram body", Body_Spec);
3337
3338            --  If this is not a primitive operation, then the overriding
3339            --  indicator is altogether illegal.
3340
3341            elsif not Is_Primitive (Spec_Id) then
3342               Error_Msg_N
3343                 ("overriding indicator only allowed "
3344                  & "if subprogram is primitive", Body_Spec);
3345            end if;
3346
3347         --  If checking the style rule and the operation overrides, then
3348         --  issue a warning about a missing overriding_indicator. Protected
3349         --  subprogram bodies are excluded from this style checking, since
3350         --  they aren't primitives (even though their declarations can
3351         --  override) and aren't allowed to have an overriding_indicator.
3352
3353         elsif Style_Check
3354           and then Present (Overridden_Operation (Spec_Id))
3355           and then Ekind (Scope (Spec_Id)) /= E_Protected_Type
3356         then
3357            pragma Assert (Unit_Declaration_Node (Body_Id) = N);
3358            Style.Missing_Overriding (N, Body_Id);
3359
3360         elsif Style_Check
3361           and then Can_Override_Operator (Spec_Id)
3362           and then not In_Predefined_Unit (Spec_Id)
3363         then
3364            pragma Assert (Unit_Declaration_Node (Body_Id) = N);
3365            Style.Missing_Overriding (N, Body_Id);
3366         end if;
3367      end Verify_Overriding_Indicator;
3368
3369      --  Local variables
3370
3371      Saved_GM   : constant Ghost_Mode_Type := Ghost_Mode;
3372      Saved_IGR  : constant Node_Id         := Ignored_Ghost_Region;
3373      Saved_EA   : constant Boolean         := Expander_Active;
3374      Saved_ISMP : constant Boolean         :=
3375                     Ignore_SPARK_Mode_Pragmas_In_Instance;
3376      --  Save the Ghost and SPARK mode-related data to restore on exit
3377
3378   --  Start of processing for Analyze_Subprogram_Body_Helper
3379
3380   begin
3381      --  A [generic] subprogram body freezes the contract of the nearest
3382      --  enclosing package body and all other contracts encountered in the
3383      --  same declarative part up to and excluding the subprogram body:
3384
3385      --    package body Nearest_Enclosing_Package
3386      --      with Refined_State => (State => Constit)
3387      --    is
3388      --       Constit : ...;
3389
3390      --       procedure Freezes_Enclosing_Package_Body
3391      --         with Refined_Depends => (Input => Constit) ...
3392
3393      --  This ensures that any annotations referenced by the contract of the
3394      --  [generic] subprogram body are available. This form of freezing is
3395      --  decoupled from the usual Freeze_xxx mechanism because it must also
3396      --  work in the context of generics where normal freezing is disabled.
3397
3398      --  Only bodies coming from source should cause this type of freezing.
3399      --  Expression functions that act as bodies and complete an initial
3400      --  declaration must be included in this category, hence the use of
3401      --  Original_Node.
3402
3403      if Comes_From_Source (Original_Node (N)) then
3404         Freeze_Previous_Contracts (N);
3405      end if;
3406
3407      --  Generic subprograms are handled separately. They always have a
3408      --  generic specification. Determine whether current scope has a
3409      --  previous declaration.
3410
3411      --  If the subprogram body is defined within an instance of the same
3412      --  name, the instance appears as a package renaming, and will be hidden
3413      --  within the subprogram.
3414
3415      if Present (Prev_Id)
3416        and then not Is_Overloadable (Prev_Id)
3417        and then (Nkind (Parent (Prev_Id)) /= N_Package_Renaming_Declaration
3418                   or else Comes_From_Source (Prev_Id))
3419      then
3420         if Is_Generic_Subprogram (Prev_Id) then
3421            Spec_Id := Prev_Id;
3422
3423            --  A subprogram body is Ghost when it is stand-alone and subject
3424            --  to pragma Ghost or when the corresponding spec is Ghost. Set
3425            --  the mode now to ensure that any nodes generated during analysis
3426            --  and expansion are properly marked as Ghost.
3427
3428            Mark_And_Set_Ghost_Body (N, Spec_Id);
3429
3430            --  If the body completes the initial declaration of a compilation
3431            --  unit which is subject to pragma Elaboration_Checks, set the
3432            --  model specified by the pragma because it applies to all parts
3433            --  of the unit.
3434
3435            Install_Elaboration_Model (Spec_Id);
3436
3437            Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
3438            Set_Is_Child_Unit       (Body_Id, Is_Child_Unit       (Spec_Id));
3439
3440            Analyze_Generic_Subprogram_Body (N, Spec_Id);
3441
3442            if Nkind (N) = N_Subprogram_Body then
3443               HSS := Handled_Statement_Sequence (N);
3444               Check_Missing_Return;
3445            end if;
3446
3447            goto Leave;
3448
3449         --  Otherwise a previous entity conflicts with the subprogram name.
3450         --  Attempting to enter name will post error.
3451
3452         else
3453            Enter_Name (Body_Id);
3454            goto Leave;
3455         end if;
3456
3457      --  Non-generic case, find the subprogram declaration, if one was seen,
3458      --  or enter new overloaded entity in the current scope. If the
3459      --  Current_Entity is the Body_Id itself, the unit is being analyzed as
3460      --  part of the context of one of its subunits. No need to redo the
3461      --  analysis.
3462
3463      elsif Prev_Id = Body_Id and then Has_Completion (Body_Id) then
3464         goto Leave;
3465
3466      else
3467         Body_Id := Analyze_Subprogram_Specification (Body_Spec);
3468
3469         if Nkind (N) = N_Subprogram_Body_Stub
3470           or else No (Corresponding_Spec (N))
3471         then
3472            if Is_Private_Concurrent_Primitive (Body_Id) then
3473               Spec_Id := Disambiguate_Spec;
3474
3475               --  A subprogram body is Ghost when it is stand-alone and
3476               --  subject to pragma Ghost or when the corresponding spec is
3477               --  Ghost. Set the mode now to ensure that any nodes generated
3478               --  during analysis and expansion are properly marked as Ghost.
3479
3480               Mark_And_Set_Ghost_Body (N, Spec_Id);
3481
3482               --  If the body completes a compilation unit which is subject
3483               --  to pragma Elaboration_Checks, set the model specified by
3484               --  the pragma because it applies to all parts of the unit.
3485
3486               Install_Elaboration_Model (Spec_Id);
3487
3488            else
3489               Spec_Id := Find_Corresponding_Spec (N);
3490
3491               --  A subprogram body is Ghost when it is stand-alone and
3492               --  subject to pragma Ghost or when the corresponding spec is
3493               --  Ghost. Set the mode now to ensure that any nodes generated
3494               --  during analysis and expansion are properly marked as Ghost.
3495
3496               Mark_And_Set_Ghost_Body (N, Spec_Id);
3497
3498               --  If the body completes a compilation unit which is subject
3499               --  to pragma Elaboration_Checks, set the model specified by
3500               --  the pragma because it applies to all parts of the unit.
3501
3502               Install_Elaboration_Model (Spec_Id);
3503
3504               --  In GNATprove mode, if the body has no previous spec, create
3505               --  one so that the inlining machinery can operate properly.
3506               --  Transfer aspects, if any, to the new spec, so that they
3507               --  are legal and can be processed ahead of the body.
3508               --  We make two copies of the given spec, one for the new
3509               --  declaration, and one for the body.
3510
3511               if No (Spec_Id) and then GNATprove_Mode
3512
3513                 --  Inlining does not apply during preanalysis of code
3514
3515                 and then Full_Analysis
3516
3517                 --  Inlining only applies to full bodies, not stubs
3518
3519                 and then Nkind (N) /= N_Subprogram_Body_Stub
3520
3521                 --  Inlining only applies to bodies in the source code, not to
3522                 --  those generated by the compiler. In particular, expression
3523                 --  functions, whose body is generated by the compiler, are
3524                 --  treated specially by GNATprove.
3525
3526                 and then Comes_From_Source (Body_Id)
3527
3528                 --  This cannot be done for a compilation unit, which is not
3529                 --  in a context where we can insert a new spec.
3530
3531                 and then Is_List_Member (N)
3532
3533                 --  Inlining only applies to subprograms without contracts,
3534                 --  as a contract is a sign that GNATprove should perform a
3535                 --  modular analysis of the subprogram instead of a contextual
3536                 --  analysis at each call site. The same test is performed in
3537                 --  Inline.Can_Be_Inlined_In_GNATprove_Mode. It is repeated
3538                 --  here in another form (because the contract has not been
3539                 --  attached to the body) to avoid front-end errors in case
3540                 --  pragmas are used instead of aspects, because the
3541                 --  corresponding pragmas in the body would not be transferred
3542                 --  to the spec, leading to legality errors.
3543
3544                 and then not Body_Has_Contract
3545                 and then not Inside_A_Generic
3546               then
3547                  Build_Subprogram_Declaration;
3548
3549               --  If this is a function that returns a constrained array, and
3550               --  we are generating SPARK_For_C, create subprogram declaration
3551               --  to simplify subsequent C generation.
3552
3553               elsif No (Spec_Id)
3554                 and then Modify_Tree_For_C
3555                 and then Nkind (Body_Spec) = N_Function_Specification
3556                 and then Is_Array_Type (Etype (Body_Id))
3557                 and then Is_Constrained (Etype (Body_Id))
3558               then
3559                  Build_Subprogram_Declaration;
3560               end if;
3561            end if;
3562
3563            --  If this is a duplicate body, no point in analyzing it
3564
3565            if Error_Posted (N) then
3566               goto Leave;
3567            end if;
3568
3569            --  A subprogram body should cause freezing of its own declaration,
3570            --  but if there was no previous explicit declaration, then the
3571            --  subprogram will get frozen too late (there may be code within
3572            --  the body that depends on the subprogram having been frozen,
3573            --  such as uses of extra formals), so we force it to be frozen
3574            --  here. Same holds if the body and spec are compilation units.
3575            --  Finally, if the return type is an anonymous access to protected
3576            --  subprogram, it must be frozen before the body because its
3577            --  expansion has generated an equivalent type that is used when
3578            --  elaborating the body.
3579
3580            --  An exception in the case of Ada 2012, AI05-177: The bodies
3581            --  created for expression functions do not freeze.
3582
3583            if No (Spec_Id)
3584              and then Nkind (Original_Node (N)) /= N_Expression_Function
3585            then
3586               Freeze_Before (N, Body_Id);
3587
3588            elsif Nkind (Parent (N)) = N_Compilation_Unit then
3589               Freeze_Before (N, Spec_Id);
3590
3591            elsif Is_Access_Subprogram_Type (Etype (Body_Id)) then
3592               Freeze_Before (N, Etype (Body_Id));
3593            end if;
3594
3595         else
3596            Spec_Id := Corresponding_Spec (N);
3597
3598            --  A subprogram body is Ghost when it is stand-alone and subject
3599            --  to pragma Ghost or when the corresponding spec is Ghost. Set
3600            --  the mode now to ensure that any nodes generated during analysis
3601            --  and expansion are properly marked as Ghost.
3602
3603            Mark_And_Set_Ghost_Body (N, Spec_Id);
3604
3605            --  If the body completes the initial declaration of a compilation
3606            --  unit which is subject to pragma Elaboration_Checks, set the
3607            --  model specified by the pragma because it applies to all parts
3608            --  of the unit.
3609
3610            Install_Elaboration_Model (Spec_Id);
3611         end if;
3612      end if;
3613
3614      --  Deactivate expansion inside the body of ignored Ghost entities,
3615      --  as this code will ultimately be ignored. This avoids requiring the
3616      --  presence of run-time units which are not needed. Only do this for
3617      --  user entities, as internally generated entitities might still need
3618      --  to be expanded (e.g. those generated for types).
3619
3620      if Present (Ignored_Ghost_Region)
3621        and then Comes_From_Source (Body_Id)
3622      then
3623         Expander_Active := False;
3624      end if;
3625
3626      --  Previously we scanned the body to look for nested subprograms, and
3627      --  rejected an inline directive if nested subprograms were present,
3628      --  because the back-end would generate conflicting symbols for the
3629      --  nested bodies. This is now unnecessary.
3630
3631      --  Look ahead to recognize a pragma Inline that appears after the body
3632
3633      Check_Inline_Pragma (Spec_Id);
3634
3635      --  Deal with special case of a fully private operation in the body of
3636      --  the protected type. We must create a declaration for the subprogram,
3637      --  in order to attach the protected subprogram that will be used in
3638      --  internal calls. We exclude compiler generated bodies from the
3639      --  expander since the issue does not arise for those cases.
3640
3641      if No (Spec_Id)
3642        and then Comes_From_Source (N)
3643        and then Is_Protected_Type (Current_Scope)
3644      then
3645         Spec_Id := Build_Private_Protected_Declaration (N);
3646      end if;
3647
3648      --  If we are generating C and this is a function returning a constrained
3649      --  array type for which we must create a procedure with an extra out
3650      --  parameter, build and analyze the body now. The procedure declaration
3651      --  has already been created. We reuse the source body of the function,
3652      --  because in an instance it may contain global references that cannot
3653      --  be reanalyzed. The source function itself is not used any further,
3654      --  so we mark it as having a completion. If the subprogram is a stub the
3655      --  transformation is done later, when the proper body is analyzed.
3656
3657      if Expander_Active
3658        and then Modify_Tree_For_C
3659        and then Present (Spec_Id)
3660        and then Ekind (Spec_Id) = E_Function
3661        and then Nkind (N) /= N_Subprogram_Body_Stub
3662        and then Rewritten_For_C (Spec_Id)
3663      then
3664         Set_Has_Completion (Spec_Id);
3665
3666         Rewrite (N, Build_Procedure_Body_Form (Spec_Id, N));
3667         Analyze (N);
3668
3669         --  The entity for the created procedure must remain invisible, so it
3670         --  does not participate in resolution of subsequent references to the
3671         --  function.
3672
3673         Set_Is_Immediately_Visible (Corresponding_Spec (N), False);
3674         goto Leave;
3675      end if;
3676
3677      --  If a separate spec is present, then deal with freezing issues
3678
3679      if Present (Spec_Id) then
3680         Spec_Decl := Unit_Declaration_Node (Spec_Id);
3681         Verify_Overriding_Indicator;
3682
3683         --  In general, the spec will be frozen when we start analyzing the
3684         --  body. However, for internally generated operations, such as
3685         --  wrapper functions for inherited operations with controlling
3686         --  results, the spec may not have been frozen by the time we expand
3687         --  the freeze actions that include the bodies. In particular, extra
3688         --  formals for accessibility or for return-in-place may need to be
3689         --  generated. Freeze nodes, if any, are inserted before the current
3690         --  body. These freeze actions are also needed in ASIS mode and in
3691         --  Compile_Only mode to enable the proper back-end type annotations.
3692         --  They are necessary in any case to insure order of elaboration
3693         --  in gigi.
3694
3695         if Nkind (N) = N_Subprogram_Body
3696           and then Was_Expression_Function (N)
3697           and then not Has_Completion (Spec_Id)
3698           and then Serious_Errors_Detected = 0
3699           and then (Expander_Active
3700                      or else ASIS_Mode
3701                      or else Operating_Mode = Check_Semantics)
3702         then
3703            --  The body generated for an expression function that is not a
3704            --  completion is a freeze point neither for the profile nor for
3705            --  anything else. That's why, in order to prevent any freezing
3706            --  during analysis, we need to mask types declared outside the
3707            --  expression (and in an outer scope) that are not yet frozen.
3708
3709            Set_Is_Frozen (Spec_Id);
3710            Mask_Types := Mask_Unfrozen_Types (Spec_Id);
3711
3712         elsif not Is_Frozen (Spec_Id)
3713           and then Serious_Errors_Detected = 0
3714         then
3715            Set_Has_Delayed_Freeze (Spec_Id);
3716            Freeze_Before (N, Spec_Id);
3717         end if;
3718      end if;
3719
3720      --  If the subprogram has a class-wide clone, build its body as a copy
3721      --  of the original body, and rewrite body of original subprogram as a
3722      --  wrapper that calls the clone. If N is a stub, this construction will
3723      --  take place when the proper body is analyzed. No action needed if this
3724      --  subprogram has been eliminated.
3725
3726      if Present (Spec_Id)
3727        and then Present (Class_Wide_Clone (Spec_Id))
3728        and then (Comes_From_Source (N) or else Was_Expression_Function (N))
3729        and then Nkind (N) /= N_Subprogram_Body_Stub
3730        and then not (Expander_Active and then Is_Eliminated (Spec_Id))
3731      then
3732         Build_Class_Wide_Clone_Body (Spec_Id, N);
3733
3734         --  This is the new body for the existing primitive operation
3735
3736         Rewrite (N, Build_Class_Wide_Clone_Call
3737           (Sloc (N), New_List, Spec_Id, Parent (Spec_Id)));
3738         Set_Has_Completion (Spec_Id, False);
3739         Analyze (N);
3740         return;
3741      end if;
3742
3743      --  Place subprogram on scope stack, and make formals visible. If there
3744      --  is a spec, the visible entity remains that of the spec.
3745
3746      if Present (Spec_Id) then
3747         Generate_Reference (Spec_Id, Body_Id, 'b', Set_Ref => False);
3748
3749         if Is_Child_Unit (Spec_Id) then
3750            Generate_Reference (Spec_Id, Scope (Spec_Id), 'k', False);
3751         end if;
3752
3753         if Style_Check then
3754            Style.Check_Identifier (Body_Id, Spec_Id);
3755         end if;
3756
3757         Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
3758         Set_Is_Child_Unit       (Body_Id, Is_Child_Unit       (Spec_Id));
3759
3760         if Is_Abstract_Subprogram (Spec_Id) then
3761            Error_Msg_N ("an abstract subprogram cannot have a body", N);
3762            goto Leave;
3763
3764         else
3765            Set_Convention (Body_Id, Convention (Spec_Id));
3766            Set_Has_Completion (Spec_Id);
3767
3768            if Is_Protected_Type (Scope (Spec_Id)) then
3769               Prot_Typ := Scope (Spec_Id);
3770            end if;
3771
3772            --  If this is a body generated for a renaming, do not check for
3773            --  full conformance. The check is redundant, because the spec of
3774            --  the body is a copy of the spec in the renaming declaration,
3775            --  and the test can lead to spurious errors on nested defaults.
3776
3777            if Present (Spec_Decl)
3778              and then not Comes_From_Source (N)
3779              and then
3780                (Nkind (Original_Node (Spec_Decl)) =
3781                                          N_Subprogram_Renaming_Declaration
3782                  or else (Present (Corresponding_Body (Spec_Decl))
3783                            and then
3784                              Nkind (Unit_Declaration_Node
3785                                       (Corresponding_Body (Spec_Decl))) =
3786                                          N_Subprogram_Renaming_Declaration))
3787            then
3788               Conformant := True;
3789
3790            --  Conversely, the spec may have been generated for specless body
3791            --  with an inline pragma. The entity comes from source, which is
3792            --  both semantically correct and necessary for proper inlining.
3793            --  The subprogram declaration itself is not in the source.
3794
3795            elsif Comes_From_Source (N)
3796              and then Present (Spec_Decl)
3797              and then not Comes_From_Source (Spec_Decl)
3798              and then Has_Pragma_Inline (Spec_Id)
3799            then
3800               Conformant := True;
3801
3802            else
3803               Check_Conformance
3804                 (Body_Id, Spec_Id,
3805                  Fully_Conformant, True, Conformant, Body_Id);
3806            end if;
3807
3808            --  If the body is not fully conformant, we have to decide if we
3809            --  should analyze it or not. If it has a really messed up profile
3810            --  then we probably should not analyze it, since we will get too
3811            --  many bogus messages.
3812
3813            --  Our decision is to go ahead in the non-fully conformant case
3814            --  only if it is at least mode conformant with the spec. Note
3815            --  that the call to Check_Fully_Conformant has issued the proper
3816            --  error messages to complain about the lack of conformance.
3817
3818            if not Conformant
3819              and then not Mode_Conformant (Body_Id, Spec_Id)
3820            then
3821               goto Leave;
3822            end if;
3823         end if;
3824
3825         --  In the case we are dealing with an expression function we check
3826         --  the formals attached to the spec instead of the body - so we don't
3827         --  reference body formals.
3828
3829         if Spec_Id /= Body_Id
3830           and then not Is_Expression_Function (Spec_Id)
3831         then
3832            Reference_Body_Formals (Spec_Id, Body_Id);
3833         end if;
3834
3835         Set_Ekind (Body_Id, E_Subprogram_Body);
3836
3837         if Nkind (N) = N_Subprogram_Body_Stub then
3838            Set_Corresponding_Spec_Of_Stub (N, Spec_Id);
3839
3840         --  Regular body
3841
3842         else
3843            Set_Corresponding_Spec (N, Spec_Id);
3844
3845            --  Ada 2005 (AI-345): If the operation is a primitive operation
3846            --  of a concurrent type, the type of the first parameter has been
3847            --  replaced with the corresponding record, which is the proper
3848            --  run-time structure to use. However, within the body there may
3849            --  be uses of the formals that depend on primitive operations
3850            --  of the type (in particular calls in prefixed form) for which
3851            --  we need the original concurrent type. The operation may have
3852            --  several controlling formals, so the replacement must be done
3853            --  for all of them.
3854
3855            if Comes_From_Source (Spec_Id)
3856              and then Present (First_Entity (Spec_Id))
3857              and then Ekind (Etype (First_Entity (Spec_Id))) = E_Record_Type
3858              and then Is_Tagged_Type (Etype (First_Entity (Spec_Id)))
3859              and then Present (Interfaces (Etype (First_Entity (Spec_Id))))
3860              and then Present (Corresponding_Concurrent_Type
3861                                  (Etype (First_Entity (Spec_Id))))
3862            then
3863               declare
3864                  Typ  : constant Entity_Id := Etype (First_Entity (Spec_Id));
3865                  Form : Entity_Id;
3866
3867               begin
3868                  Form := First_Formal (Spec_Id);
3869                  while Present (Form) loop
3870                     if Etype (Form) = Typ then
3871                        Set_Etype (Form, Corresponding_Concurrent_Type (Typ));
3872                     end if;
3873
3874                     Next_Formal (Form);
3875                  end loop;
3876               end;
3877            end if;
3878
3879            --  Make the formals visible, and place subprogram on scope stack.
3880            --  This is also the point at which we set Last_Real_Spec_Entity
3881            --  to mark the entities which will not be moved to the body.
3882
3883            Install_Formals (Spec_Id);
3884            Last_Real_Spec_Entity := Last_Entity (Spec_Id);
3885
3886            --  Within an instance, add local renaming declarations so that
3887            --  gdb can retrieve the values of actuals more easily. This is
3888            --  only relevant if generating code (and indeed we definitely
3889            --  do not want these definitions -gnatc mode, because that would
3890            --  confuse ASIS).
3891
3892            if Is_Generic_Instance (Spec_Id)
3893              and then Is_Wrapper_Package (Current_Scope)
3894              and then Expander_Active
3895            then
3896               Build_Subprogram_Instance_Renamings (N, Current_Scope);
3897            end if;
3898
3899            Push_Scope (Spec_Id);
3900
3901            --  Make sure that the subprogram is immediately visible. For
3902            --  child units that have no separate spec this is indispensable.
3903            --  Otherwise it is safe albeit redundant.
3904
3905            Set_Is_Immediately_Visible (Spec_Id);
3906         end if;
3907
3908         Set_Corresponding_Body (Unit_Declaration_Node (Spec_Id), Body_Id);
3909         Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Spec_Id));
3910         Set_Scope          (Body_Id, Scope (Spec_Id));
3911
3912      --  Case of subprogram body with no previous spec
3913
3914      else
3915         --  Check for style warning required
3916
3917         if Style_Check
3918
3919           --  Only apply check for source level subprograms for which checks
3920           --  have not been suppressed.
3921
3922           and then Comes_From_Source (Body_Id)
3923           and then not Suppress_Style_Checks (Body_Id)
3924
3925           --  No warnings within an instance
3926
3927           and then not In_Instance
3928
3929           --  No warnings for expression functions
3930
3931           and then Nkind (Original_Node (N)) /= N_Expression_Function
3932         then
3933            Style.Body_With_No_Spec (N);
3934         end if;
3935
3936         New_Overloaded_Entity (Body_Id);
3937
3938         if Nkind (N) /= N_Subprogram_Body_Stub then
3939            Set_Acts_As_Spec (N);
3940            Generate_Definition (Body_Id);
3941            Generate_Reference
3942              (Body_Id, Body_Id, 'b', Set_Ref => False, Force => True);
3943
3944            --  If the body is an entry wrapper created for an entry with
3945            --  preconditions, it must be compiled in the context of the
3946            --  enclosing synchronized object, because it may mention other
3947            --  operations of the type.
3948
3949            if Is_Entry_Wrapper (Body_Id) then
3950               declare
3951                  Prot : constant Entity_Id := Etype (First_Entity (Body_Id));
3952               begin
3953                  Push_Scope (Prot);
3954                  Install_Declarations (Prot);
3955               end;
3956            end if;
3957
3958            Install_Formals (Body_Id);
3959
3960            Push_Scope (Body_Id);
3961         end if;
3962
3963         --  For stubs and bodies with no previous spec, generate references to
3964         --  formals.
3965
3966         Generate_Reference_To_Formals (Body_Id);
3967      end if;
3968
3969      --  Entry barrier functions are generated outside the protected type and
3970      --  should not carry the SPARK_Mode of the enclosing context.
3971
3972      if Nkind (N) = N_Subprogram_Body
3973        and then Is_Entry_Barrier_Function (N)
3974      then
3975         null;
3976
3977      --  The body is generated as part of expression function expansion. When
3978      --  the expression function appears in the visible declarations of a
3979      --  package, the body is added to the private declarations. Since both
3980      --  declarative lists may be subject to a different SPARK_Mode, inherit
3981      --  the mode of the spec.
3982
3983      --    package P with SPARK_Mode is
3984      --       function Expr_Func ... is (...);         --  original
3985      --       [function Expr_Func ...;]                --  generated spec
3986      --                                                --    mode is ON
3987      --    private
3988      --       pragma SPARK_Mode (Off);
3989      --       [function Expr_Func ... is return ...;]  --  generated body
3990      --    end P;                                      --    mode is ON
3991
3992      elsif not Comes_From_Source (N)
3993        and then Present (Spec_Id)
3994        and then Is_Expression_Function (Spec_Id)
3995      then
3996         Set_SPARK_Pragma (Body_Id, SPARK_Pragma (Spec_Id));
3997         Set_SPARK_Pragma_Inherited
3998           (Body_Id, SPARK_Pragma_Inherited (Spec_Id));
3999
4000      --  Set the SPARK_Mode from the current context (may be overwritten later
4001      --  with explicit pragma). Exclude the case where the SPARK_Mode appears
4002      --  initially on a stand-alone subprogram body, but is then relocated to
4003      --  a generated corresponding spec. In this scenario the mode is shared
4004      --  between the spec and body.
4005
4006      elsif No (SPARK_Pragma (Body_Id)) then
4007         Set_SPARK_Pragma           (Body_Id, SPARK_Mode_Pragma);
4008         Set_SPARK_Pragma_Inherited (Body_Id);
4009      end if;
4010
4011      --  A subprogram body may be instantiated or inlined at a later pass.
4012      --  Restore the state of Ignore_SPARK_Mode_Pragmas_In_Instance when it
4013      --  applied to the initial declaration of the body.
4014
4015      if Present (Spec_Id) then
4016         if Ignore_SPARK_Mode_Pragmas (Spec_Id) then
4017            Ignore_SPARK_Mode_Pragmas_In_Instance := True;
4018         end if;
4019
4020      else
4021         --  Save the state of flag Ignore_SPARK_Mode_Pragmas_In_Instance in
4022         --  case the body is instantiated or inlined later and out of context.
4023         --  The body uses this attribute to restore the value of the global
4024         --  flag.
4025
4026         if Ignore_SPARK_Mode_Pragmas_In_Instance then
4027            Set_Ignore_SPARK_Mode_Pragmas (Body_Id);
4028
4029         elsif Ignore_SPARK_Mode_Pragmas (Body_Id) then
4030            Ignore_SPARK_Mode_Pragmas_In_Instance := True;
4031         end if;
4032      end if;
4033
4034      --  Preserve relevant elaboration-related attributes of the context which
4035      --  are no longer available or very expensive to recompute once analysis,
4036      --  resolution, and expansion are over.
4037
4038      if No (Spec_Id) then
4039         Mark_Elaboration_Attributes
4040           (N_Id     => Body_Id,
4041            Checks   => True,
4042            Warnings => True);
4043      end if;
4044
4045      --  If this is the proper body of a stub, we must verify that the stub
4046      --  conforms to the body, and to the previous spec if one was present.
4047      --  We know already that the body conforms to that spec. This test is
4048      --  only required for subprograms that come from source.
4049
4050      if Nkind (Parent (N)) = N_Subunit
4051        and then Comes_From_Source (N)
4052        and then not Error_Posted (Body_Id)
4053        and then Nkind (Corresponding_Stub (Parent (N))) =
4054                                                N_Subprogram_Body_Stub
4055      then
4056         declare
4057            Old_Id : constant Entity_Id :=
4058                       Defining_Entity
4059                         (Specification (Corresponding_Stub (Parent (N))));
4060
4061            Conformant : Boolean := False;
4062
4063         begin
4064            if No (Spec_Id) then
4065               Check_Fully_Conformant (Body_Id, Old_Id);
4066
4067            else
4068               Check_Conformance
4069                 (Body_Id, Old_Id, Fully_Conformant, False, Conformant);
4070
4071               if not Conformant then
4072
4073                  --  The stub was taken to be a new declaration. Indicate that
4074                  --  it lacks a body.
4075
4076                  Set_Has_Completion (Old_Id, False);
4077               end if;
4078            end if;
4079         end;
4080      end if;
4081
4082      Set_Has_Completion (Body_Id);
4083      Check_Eliminated (Body_Id);
4084
4085      --  Analyze any aspect specifications that appear on the subprogram body
4086      --  stub. Stop the analysis now as the stub does not have a declarative
4087      --  or a statement part, and it cannot be inlined.
4088
4089      if Nkind (N) = N_Subprogram_Body_Stub then
4090         if Has_Aspects (N) then
4091            Analyze_Aspects_On_Subprogram_Body_Or_Stub (N);
4092         end if;
4093
4094         goto Leave;
4095      end if;
4096
4097      --  Handle inlining
4098
4099      --  Note: Normally we don't do any inlining if expansion is off, since
4100      --  we won't generate code in any case. An exception arises in GNATprove
4101      --  mode where we want to expand some calls in place, even with expansion
4102      --  disabled, since the inlining eases formal verification.
4103
4104      if not GNATprove_Mode
4105        and then Expander_Active
4106        and then Serious_Errors_Detected = 0
4107        and then Present (Spec_Id)
4108        and then Has_Pragma_Inline (Spec_Id)
4109      then
4110         --  Legacy implementation (relying on front-end inlining)
4111
4112         if not Back_End_Inlining then
4113            if (Has_Pragma_Inline_Always (Spec_Id)
4114                 and then not Opt.Disable_FE_Inline_Always)
4115              or else (Front_End_Inlining
4116                        and then not Opt.Disable_FE_Inline)
4117            then
4118               Build_Body_To_Inline (N, Spec_Id);
4119            end if;
4120
4121         --  New implementation (relying on back-end inlining)
4122
4123         else
4124            if Has_Pragma_Inline_Always (Spec_Id)
4125              or else Optimization_Level > 0
4126            then
4127               --  Handle function returning an unconstrained type
4128
4129               if Comes_From_Source (Body_Id)
4130                 and then Ekind (Spec_Id) = E_Function
4131                 and then Returns_Unconstrained_Type (Spec_Id)
4132
4133                 --  If function builds in place, i.e. returns a limited type,
4134                 --  inlining cannot be done.
4135
4136                 and then not Is_Limited_Type (Etype (Spec_Id))
4137               then
4138                  Check_And_Split_Unconstrained_Function (N, Spec_Id, Body_Id);
4139
4140               else
4141                  declare
4142                     Subp_Body : constant Node_Id :=
4143                                   Unit_Declaration_Node (Body_Id);
4144                     Subp_Decl : constant List_Id := Declarations (Subp_Body);
4145
4146                  begin
4147                     --  Do not pass inlining to the backend if the subprogram
4148                     --  has declarations or statements which cannot be inlined
4149                     --  by the backend. This check is done here to emit an
4150                     --  error instead of the generic warning message reported
4151                     --  by the GCC backend (ie. "function might not be
4152                     --  inlinable").
4153
4154                     if Present (Subp_Decl)
4155                       and then Has_Excluded_Declaration (Spec_Id, Subp_Decl)
4156                     then
4157                        null;
4158
4159                     elsif Has_Excluded_Statement
4160                             (Spec_Id,
4161                              Statements
4162                                (Handled_Statement_Sequence (Subp_Body)))
4163                     then
4164                        null;
4165
4166                     --  If the backend inlining is available then at this
4167                     --  stage we only have to mark the subprogram as inlined.
4168                     --  The expander will take care of registering it in the
4169                     --  table of subprograms inlined by the backend a part of
4170                     --  processing calls to it (cf. Expand_Call)
4171
4172                     else
4173                        Set_Is_Inlined (Spec_Id);
4174                     end if;
4175                  end;
4176               end if;
4177            end if;
4178         end if;
4179
4180      --  In GNATprove mode, inline only when there is a separate subprogram
4181      --  declaration for now, as inlining of subprogram bodies acting as
4182      --  declarations, or subprogram stubs, are not supported by front-end
4183      --  inlining. This inlining should occur after analysis of the body, so
4184      --  that it is known whether the value of SPARK_Mode, which can be
4185      --  defined by a pragma inside the body, is applicable to the body.
4186      --  Inlining can be disabled with switch -gnatdm
4187
4188      elsif GNATprove_Mode
4189        and then Full_Analysis
4190        and then not Inside_A_Generic
4191        and then Present (Spec_Id)
4192        and then
4193          Nkind (Unit_Declaration_Node (Spec_Id)) = N_Subprogram_Declaration
4194        and then Body_Has_SPARK_Mode_On
4195        and then Can_Be_Inlined_In_GNATprove_Mode (Spec_Id, Body_Id)
4196        and then not Body_Has_Contract
4197        and then not Debug_Flag_M
4198      then
4199         Build_Body_To_Inline (N, Spec_Id);
4200      end if;
4201
4202      --  When generating code, inherited pre/postconditions are handled when
4203      --  expanding the corresponding contract.
4204
4205      --  Ada 2005 (AI-262): In library subprogram bodies, after the analysis
4206      --  of the specification we have to install the private withed units.
4207      --  This holds for child units as well.
4208
4209      if Is_Compilation_Unit (Body_Id)
4210        or else Nkind (Parent (N)) = N_Compilation_Unit
4211      then
4212         Install_Private_With_Clauses (Body_Id);
4213      end if;
4214
4215      Check_Anonymous_Return;
4216
4217      --  Set the Protected_Formal field of each extra formal of the protected
4218      --  subprogram to reference the corresponding extra formal of the
4219      --  subprogram that implements it. For regular formals this occurs when
4220      --  the protected subprogram's declaration is expanded, but the extra
4221      --  formals don't get created until the subprogram is frozen. We need to
4222      --  do this before analyzing the protected subprogram's body so that any
4223      --  references to the original subprogram's extra formals will be changed
4224      --  refer to the implementing subprogram's formals (see Expand_Formal).
4225
4226      if Present (Spec_Id)
4227        and then Is_Protected_Type (Scope (Spec_Id))
4228        and then Present (Protected_Body_Subprogram (Spec_Id))
4229      then
4230         declare
4231            Impl_Subp       : constant Entity_Id :=
4232                                Protected_Body_Subprogram (Spec_Id);
4233            Prot_Ext_Formal : Entity_Id := Extra_Formals (Spec_Id);
4234            Impl_Ext_Formal : Entity_Id := Extra_Formals (Impl_Subp);
4235
4236         begin
4237            while Present (Prot_Ext_Formal) loop
4238               pragma Assert (Present (Impl_Ext_Formal));
4239               Set_Protected_Formal (Prot_Ext_Formal, Impl_Ext_Formal);
4240               Next_Formal_With_Extras (Prot_Ext_Formal);
4241               Next_Formal_With_Extras (Impl_Ext_Formal);
4242            end loop;
4243         end;
4244      end if;
4245
4246      --  Now we can go on to analyze the body
4247
4248      HSS := Handled_Statement_Sequence (N);
4249      Set_Actual_Subtypes (N, Current_Scope);
4250
4251      --  Add a declaration for the Protection object, renaming declarations
4252      --  for discriminals and privals and finally a declaration for the entry
4253      --  family index (if applicable). This form of early expansion is done
4254      --  when the Expander is active because Install_Private_Data_Declarations
4255      --  references entities which were created during regular expansion. The
4256      --  subprogram entity must come from source, and not be an internally
4257      --  generated subprogram.
4258
4259      if Expander_Active
4260        and then Present (Prot_Typ)
4261        and then Present (Spec_Id)
4262        and then Comes_From_Source (Spec_Id)
4263        and then not Is_Eliminated (Spec_Id)
4264      then
4265         Install_Private_Data_Declarations
4266           (Sloc (N), Spec_Id, Prot_Typ, N, Declarations (N));
4267      end if;
4268
4269      --  Ada 2012 (AI05-0151): Incomplete types coming from a limited context
4270      --  may now appear in parameter and result profiles. Since the analysis
4271      --  of a subprogram body may use the parameter and result profile of the
4272      --  spec, swap any limited views with their non-limited counterpart.
4273
4274      if Ada_Version >= Ada_2012 and then Present (Spec_Id) then
4275         Exch_Views := Exchange_Limited_Views (Spec_Id);
4276      end if;
4277
4278      --  If the return type is an anonymous access type whose designated type
4279      --  is the limited view of a class-wide type and the non-limited view is
4280      --  available, update the return type accordingly.
4281
4282      if Ada_Version >= Ada_2005 and then Present (Spec_Id) then
4283         declare
4284            Etyp : Entity_Id;
4285            Rtyp : Entity_Id;
4286
4287         begin
4288            Rtyp := Etype (Spec_Id);
4289
4290            if Ekind (Rtyp) = E_Anonymous_Access_Type then
4291               Etyp := Directly_Designated_Type (Rtyp);
4292
4293               if Is_Class_Wide_Type (Etyp)
4294                 and then From_Limited_With (Etyp)
4295               then
4296                  Desig_View := Etyp;
4297                  Set_Directly_Designated_Type (Rtyp, Available_View (Etyp));
4298               end if;
4299            end if;
4300         end;
4301      end if;
4302
4303      --  Analyze any aspect specifications that appear on the subprogram body
4304
4305      if Has_Aspects (N) then
4306         Analyze_Aspects_On_Subprogram_Body_Or_Stub (N);
4307      end if;
4308
4309      Analyze_Declarations (Declarations (N));
4310
4311      --  Verify that the SPARK_Mode of the body agrees with that of its spec
4312
4313      if Present (Spec_Id) and then Present (SPARK_Pragma (Body_Id)) then
4314         if Present (SPARK_Pragma (Spec_Id)) then
4315            if Get_SPARK_Mode_From_Annotation (SPARK_Pragma (Spec_Id)) = Off
4316                 and then
4317               Get_SPARK_Mode_From_Annotation (SPARK_Pragma (Body_Id)) = On
4318            then
4319               Error_Msg_Sloc := Sloc (SPARK_Pragma (Body_Id));
4320               Error_Msg_N ("incorrect application of SPARK_Mode#", N);
4321               Error_Msg_Sloc := Sloc (SPARK_Pragma (Spec_Id));
4322               Error_Msg_NE
4323                 ("\value Off was set for SPARK_Mode on & #", N, Spec_Id);
4324            end if;
4325
4326         elsif Nkind (Parent (Parent (Spec_Id))) = N_Subprogram_Body_Stub then
4327            null;
4328
4329         else
4330            Error_Msg_Sloc := Sloc (SPARK_Pragma (Body_Id));
4331            Error_Msg_N ("incorrect application of SPARK_Mode #", N);
4332            Error_Msg_Sloc := Sloc (Spec_Id);
4333            Error_Msg_NE
4334              ("\no value was set for SPARK_Mode on & #", N, Spec_Id);
4335         end if;
4336      end if;
4337
4338      --  A subprogram body freezes its own contract. Analyze the contract
4339      --  after the declarations of the body have been processed as pragmas
4340      --  are now chained on the contract of the subprogram body.
4341
4342      Analyze_Entry_Or_Subprogram_Body_Contract (Body_Id);
4343
4344      --  Check completion, and analyze the statements
4345
4346      Check_Completion;
4347      Inspect_Deferred_Constant_Completion (Declarations (N));
4348      Analyze (HSS);
4349
4350      --  Deal with end of scope processing for the body
4351
4352      Process_End_Label (HSS, 't', Current_Scope);
4353      Update_Use_Clause_Chain;
4354      End_Scope;
4355
4356      --  If we are compiling an entry wrapper, remove the enclosing
4357      --  synchronized object from the stack.
4358
4359      if Is_Entry_Wrapper (Body_Id) then
4360         End_Scope;
4361      end if;
4362
4363      Check_Subprogram_Order (N);
4364      Set_Analyzed (Body_Id);
4365
4366      --  If we have a separate spec, then the analysis of the declarations
4367      --  caused the entities in the body to be chained to the spec id, but
4368      --  we want them chained to the body id. Only the formal parameters
4369      --  end up chained to the spec id in this case.
4370
4371      if Present (Spec_Id) then
4372
4373         --  We must conform to the categorization of our spec
4374
4375         Validate_Categorization_Dependency (N, Spec_Id);
4376
4377         --  And if this is a child unit, the parent units must conform
4378
4379         if Is_Child_Unit (Spec_Id) then
4380            Validate_Categorization_Dependency
4381              (Unit_Declaration_Node (Spec_Id), Spec_Id);
4382         end if;
4383
4384         --  Here is where we move entities from the spec to the body
4385
4386         --  Case where there are entities that stay with the spec
4387
4388         if Present (Last_Real_Spec_Entity) then
4389
4390            --  No body entities (happens when the only real spec entities come
4391            --  from precondition and postcondition pragmas).
4392
4393            if No (Last_Entity (Body_Id)) then
4394               Set_First_Entity (Body_Id, Next_Entity (Last_Real_Spec_Entity));
4395
4396            --  Body entities present (formals), so chain stuff past them
4397
4398            else
4399               Link_Entities
4400                 (Last_Entity (Body_Id), Next_Entity (Last_Real_Spec_Entity));
4401            end if;
4402
4403            Set_Next_Entity (Last_Real_Spec_Entity, Empty);
4404            Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
4405            Set_Last_Entity (Spec_Id, Last_Real_Spec_Entity);
4406
4407         --  Case where there are no spec entities, in this case there can be
4408         --  no body entities either, so just move everything.
4409
4410         --  If the body is generated for an expression function, it may have
4411         --  been preanalyzed already, if 'access was applied to it.
4412
4413         else
4414            if Nkind (Original_Node (Unit_Declaration_Node (Spec_Id))) /=
4415                                                       N_Expression_Function
4416            then
4417               pragma Assert (No (Last_Entity (Body_Id)));
4418               null;
4419            end if;
4420
4421            Set_First_Entity (Body_Id, First_Entity (Spec_Id));
4422            Set_Last_Entity  (Body_Id, Last_Entity (Spec_Id));
4423            Set_First_Entity (Spec_Id, Empty);
4424            Set_Last_Entity  (Spec_Id, Empty);
4425         end if;
4426
4427      --  Otherwise the body does not complete a previous declaration. Check
4428      --  the categorization of the body against the units it withs.
4429
4430      else
4431         Validate_Categorization_Dependency (N, Body_Id);
4432      end if;
4433
4434      Check_Missing_Return;
4435
4436      --  Now we are going to check for variables that are never modified in
4437      --  the body of the procedure. But first we deal with a special case
4438      --  where we want to modify this check. If the body of the subprogram
4439      --  starts with a raise statement or its equivalent, or if the body
4440      --  consists entirely of a null statement, then it is pretty obvious that
4441      --  it is OK to not reference the parameters. For example, this might be
4442      --  the following common idiom for a stubbed function: statement of the
4443      --  procedure raises an exception. In particular this deals with the
4444      --  common idiom of a stubbed function, which appears something like:
4445
4446      --     function F (A : Integer) return Some_Type;
4447      --        X : Some_Type;
4448      --     begin
4449      --        raise Program_Error;
4450      --        return X;
4451      --     end F;
4452
4453      --  Here the purpose of X is simply to satisfy the annoying requirement
4454      --  in Ada that there be at least one return, and we certainly do not
4455      --  want to go posting warnings on X that it is not initialized. On
4456      --  the other hand, if X is entirely unreferenced that should still
4457      --  get a warning.
4458
4459      --  What we do is to detect these cases, and if we find them, flag the
4460      --  subprogram as being Is_Trivial_Subprogram and then use that flag to
4461      --  suppress unwanted warnings. For the case of the function stub above
4462      --  we have a special test to set X as apparently assigned to suppress
4463      --  the warning.
4464
4465      declare
4466         Stm : Node_Id;
4467
4468      begin
4469         --  Skip call markers installed by the ABE mechanism, labels, and
4470         --  Push_xxx_Error_Label to find the first real statement.
4471
4472         Stm := First (Statements (HSS));
4473         while Nkind_In (Stm, N_Call_Marker, N_Label)
4474           or else Nkind (Stm) in N_Push_xxx_Label
4475         loop
4476            Next (Stm);
4477         end loop;
4478
4479         --  Do the test on the original statement before expansion
4480
4481         declare
4482            Ostm : constant Node_Id := Original_Node (Stm);
4483
4484         begin
4485            --  If explicit raise statement, turn on flag
4486
4487            if Nkind (Ostm) = N_Raise_Statement then
4488               Set_Trivial_Subprogram (Stm);
4489
4490            --  If null statement, and no following statements, turn on flag
4491
4492            elsif Nkind (Stm) = N_Null_Statement
4493              and then Comes_From_Source (Stm)
4494              and then No (Next (Stm))
4495            then
4496               Set_Trivial_Subprogram (Stm);
4497
4498            --  Check for explicit call cases which likely raise an exception
4499
4500            elsif Nkind (Ostm) = N_Procedure_Call_Statement then
4501               if Is_Entity_Name (Name (Ostm)) then
4502                  declare
4503                     Ent : constant Entity_Id := Entity (Name (Ostm));
4504
4505                  begin
4506                     --  If the procedure is marked No_Return, then likely it
4507                     --  raises an exception, but in any case it is not coming
4508                     --  back here, so turn on the flag.
4509
4510                     if Present (Ent)
4511                       and then Ekind (Ent) = E_Procedure
4512                       and then No_Return (Ent)
4513                     then
4514                        Set_Trivial_Subprogram (Stm);
4515                     end if;
4516                  end;
4517               end if;
4518            end if;
4519         end;
4520      end;
4521
4522      --  Check for variables that are never modified
4523
4524      declare
4525         E1 : Entity_Id;
4526         E2 : Entity_Id;
4527
4528      begin
4529         --  If there is a separate spec, then transfer Never_Set_In_Source
4530         --  flags from out parameters to the corresponding entities in the
4531         --  body. The reason we do that is we want to post error flags on
4532         --  the body entities, not the spec entities.
4533
4534         if Present (Spec_Id) then
4535            E1 := First_Entity (Spec_Id);
4536            while Present (E1) loop
4537               if Ekind (E1) = E_Out_Parameter then
4538                  E2 := First_Entity (Body_Id);
4539                  while Present (E2) loop
4540                     exit when Chars (E1) = Chars (E2);
4541                     Next_Entity (E2);
4542                  end loop;
4543
4544                  if Present (E2) then
4545                     Set_Never_Set_In_Source (E2, Never_Set_In_Source (E1));
4546                  end if;
4547               end if;
4548
4549               Next_Entity (E1);
4550            end loop;
4551         end if;
4552
4553         --  Check references of the subprogram spec when we are dealing with
4554         --  an expression function due to it having a generated body.
4555         --  Otherwise, we simply check the formals of the subprogram body.
4556
4557         if Present (Spec_Id)
4558           and then Is_Expression_Function (Spec_Id)
4559         then
4560            Check_References (Spec_Id);
4561         else
4562            Check_References (Body_Id);
4563         end if;
4564      end;
4565
4566      --  Check for nested subprogram, and mark outer level subprogram if so
4567
4568      declare
4569         Ent : Entity_Id;
4570
4571      begin
4572         if Present (Spec_Id) then
4573            Ent := Spec_Id;
4574         else
4575            Ent := Body_Id;
4576         end if;
4577
4578         loop
4579            Ent := Enclosing_Subprogram (Ent);
4580            exit when No (Ent) or else Is_Subprogram (Ent);
4581         end loop;
4582
4583         if Present (Ent) then
4584            Set_Has_Nested_Subprogram (Ent);
4585         end if;
4586      end;
4587
4588      --  Restore the limited views in the spec, if any, to let the back end
4589      --  process it without running into circularities.
4590
4591      if Exch_Views /= No_Elist then
4592         Restore_Limited_Views (Exch_Views);
4593      end if;
4594
4595      if Mask_Types /= No_Elist then
4596         Unmask_Unfrozen_Types (Mask_Types);
4597      end if;
4598
4599      if Present (Desig_View) then
4600         Set_Directly_Designated_Type (Etype (Spec_Id), Desig_View);
4601      end if;
4602
4603   <<Leave>>
4604      if Present (Ignored_Ghost_Region) then
4605         Expander_Active := Saved_EA;
4606      end if;
4607
4608      Ignore_SPARK_Mode_Pragmas_In_Instance := Saved_ISMP;
4609      Restore_Ghost_Region (Saved_GM, Saved_IGR);
4610   end Analyze_Subprogram_Body_Helper;
4611
4612   ------------------------------------
4613   -- Analyze_Subprogram_Declaration --
4614   ------------------------------------
4615
4616   procedure Analyze_Subprogram_Declaration (N : Node_Id) is
4617      Scop       : constant Entity_Id := Current_Scope;
4618      Designator : Entity_Id;
4619
4620      Is_Completion : Boolean;
4621      --  Indicates whether a null procedure declaration is a completion
4622
4623   begin
4624      --  Null procedures are not allowed in SPARK
4625
4626      if Nkind (Specification (N)) = N_Procedure_Specification
4627        and then Null_Present (Specification (N))
4628      then
4629         Check_SPARK_05_Restriction ("null procedure is not allowed", N);
4630
4631         --  Null procedures are allowed in protected types, following the
4632         --  recent AI12-0147.
4633
4634         if Is_Protected_Type (Current_Scope)
4635           and then Ada_Version < Ada_2012
4636         then
4637            Error_Msg_N ("protected operation cannot be a null procedure", N);
4638         end if;
4639
4640         Analyze_Null_Procedure (N, Is_Completion);
4641
4642         --  The null procedure acts as a body, nothing further is needed
4643
4644         if Is_Completion then
4645            return;
4646         end if;
4647      end if;
4648
4649      Designator := Analyze_Subprogram_Specification (Specification (N));
4650
4651      --  A reference may already have been generated for the unit name, in
4652      --  which case the following call is redundant. However it is needed for
4653      --  declarations that are the rewriting of an expression function.
4654
4655      Generate_Definition (Designator);
4656
4657      --  Set the SPARK mode from the current context (may be overwritten later
4658      --  with explicit pragma). This is not done for entry barrier functions
4659      --  because they are generated outside the protected type and should not
4660      --  carry the mode of the enclosing context.
4661
4662      if Nkind (N) = N_Subprogram_Declaration
4663        and then Is_Entry_Barrier_Function (N)
4664      then
4665         null;
4666
4667      else
4668         Set_SPARK_Pragma           (Designator, SPARK_Mode_Pragma);
4669         Set_SPARK_Pragma_Inherited (Designator);
4670      end if;
4671
4672      --  Save the state of flag Ignore_SPARK_Mode_Pragmas_In_Instance in case
4673      --  the body of this subprogram is instantiated or inlined later and out
4674      --  of context. The body uses this attribute to restore the value of the
4675      --  global flag.
4676
4677      if Ignore_SPARK_Mode_Pragmas_In_Instance then
4678         Set_Ignore_SPARK_Mode_Pragmas (Designator);
4679      end if;
4680
4681      --  Preserve relevant elaboration-related attributes of the context which
4682      --  are no longer available or very expensive to recompute once analysis,
4683      --  resolution, and expansion are over.
4684
4685      Mark_Elaboration_Attributes
4686        (N_Id     => Designator,
4687         Checks   => True,
4688         Warnings => True);
4689
4690      if Debug_Flag_C then
4691         Write_Str ("==> subprogram spec ");
4692         Write_Name (Chars (Designator));
4693         Write_Str (" from ");
4694         Write_Location (Sloc (N));
4695         Write_Eol;
4696         Indent;
4697      end if;
4698
4699      Validate_RCI_Subprogram_Declaration (N);
4700      New_Overloaded_Entity (Designator);
4701      Check_Delayed_Subprogram (Designator);
4702
4703      --  If the type of the first formal of the current subprogram is a non-
4704      --  generic tagged private type, mark the subprogram as being a private
4705      --  primitive. Ditto if this is a function with controlling result, and
4706      --  the return type is currently private. In both cases, the type of the
4707      --  controlling argument or result must be in the current scope for the
4708      --  operation to be primitive.
4709
4710      if Has_Controlling_Result (Designator)
4711        and then Is_Private_Type (Etype (Designator))
4712        and then Scope (Etype (Designator)) = Current_Scope
4713        and then not Is_Generic_Actual_Type (Etype (Designator))
4714      then
4715         Set_Is_Private_Primitive (Designator);
4716
4717      elsif Present (First_Formal (Designator)) then
4718         declare
4719            Formal_Typ : constant Entity_Id :=
4720                           Etype (First_Formal (Designator));
4721         begin
4722            Set_Is_Private_Primitive (Designator,
4723              Is_Tagged_Type (Formal_Typ)
4724                and then Scope (Formal_Typ) = Current_Scope
4725                and then Is_Private_Type (Formal_Typ)
4726                and then not Is_Generic_Actual_Type (Formal_Typ));
4727         end;
4728      end if;
4729
4730      --  Ada 2005 (AI-251): Abstract interface primitives must be abstract
4731      --  or null.
4732
4733      if Ada_Version >= Ada_2005
4734        and then Comes_From_Source (N)
4735        and then Is_Dispatching_Operation (Designator)
4736      then
4737         declare
4738            E    : Entity_Id;
4739            Etyp : Entity_Id;
4740
4741         begin
4742            if Has_Controlling_Result (Designator) then
4743               Etyp := Etype (Designator);
4744
4745            else
4746               E := First_Entity (Designator);
4747               while Present (E)
4748                 and then Is_Formal (E)
4749                 and then not Is_Controlling_Formal (E)
4750               loop
4751                  Next_Entity (E);
4752               end loop;
4753
4754               Etyp := Etype (E);
4755            end if;
4756
4757            if Is_Access_Type (Etyp) then
4758               Etyp := Directly_Designated_Type (Etyp);
4759            end if;
4760
4761            if Is_Interface (Etyp)
4762              and then not Is_Abstract_Subprogram (Designator)
4763              and then not (Ekind (Designator) = E_Procedure
4764                             and then Null_Present (Specification (N)))
4765            then
4766               Error_Msg_Name_1 := Chars (Defining_Entity (N));
4767
4768               --  Specialize error message based on procedures vs. functions,
4769               --  since functions can't be null subprograms.
4770
4771               if Ekind (Designator) = E_Procedure then
4772                  Error_Msg_N
4773                    ("interface procedure % must be abstract or null", N);
4774               else
4775                  Error_Msg_N
4776                    ("interface function % must be abstract", N);
4777               end if;
4778            end if;
4779         end;
4780      end if;
4781
4782      --  What is the following code for, it used to be
4783
4784      --  ???   Set_Suppress_Elaboration_Checks
4785      --  ???     (Designator, Elaboration_Checks_Suppressed (Designator));
4786
4787      --  The following seems equivalent, but a bit dubious
4788
4789      if Elaboration_Checks_Suppressed (Designator) then
4790         Set_Kill_Elaboration_Checks (Designator);
4791      end if;
4792
4793      --  For a compilation unit, set body required. This flag will only be
4794      --  reset if a valid Import or Interface pragma is processed later on.
4795
4796      if Nkind (Parent (N)) = N_Compilation_Unit then
4797         Set_Body_Required (Parent (N), True);
4798
4799         if Ada_Version >= Ada_2005
4800           and then Nkind (Specification (N)) = N_Procedure_Specification
4801           and then Null_Present (Specification (N))
4802         then
4803            Error_Msg_N
4804              ("null procedure cannot be declared at library level", N);
4805         end if;
4806      end if;
4807
4808      Generate_Reference_To_Formals (Designator);
4809      Check_Eliminated (Designator);
4810
4811      if Debug_Flag_C then
4812         Outdent;
4813         Write_Str ("<== subprogram spec ");
4814         Write_Name (Chars (Designator));
4815         Write_Str (" from ");
4816         Write_Location (Sloc (N));
4817         Write_Eol;
4818      end if;
4819
4820      --  Indicate that this is a protected operation, because it may be used
4821      --  in subsequent declarations within the protected type.
4822
4823      if Is_Protected_Type (Current_Scope) then
4824         Set_Convention (Designator, Convention_Protected);
4825      end if;
4826
4827      List_Inherited_Pre_Post_Aspects (Designator);
4828
4829      --  Process the aspects before establishing the proper categorization in
4830      --  case the subprogram is a compilation unit and one of its aspects is
4831      --  converted into a categorization pragma.
4832
4833      if Has_Aspects (N) then
4834         Analyze_Aspect_Specifications (N, Designator);
4835      end if;
4836
4837      if Scop /= Standard_Standard and then not Is_Child_Unit (Designator) then
4838         Set_Categorization_From_Scope (Designator, Scop);
4839
4840      --  Otherwise the unit is a compilation unit and/or a child unit. Set the
4841      --  proper categorization of the unit based on its pragmas.
4842
4843      else
4844         Push_Scope (Designator);
4845         Set_Categorization_From_Pragmas (N);
4846         Validate_Categorization_Dependency (N, Designator);
4847         Pop_Scope;
4848      end if;
4849   end Analyze_Subprogram_Declaration;
4850
4851   --------------------------------------
4852   -- Analyze_Subprogram_Specification --
4853   --------------------------------------
4854
4855   --  Reminder: N here really is a subprogram specification (not a subprogram
4856   --  declaration). This procedure is called to analyze the specification in
4857   --  both subprogram bodies and subprogram declarations (specs).
4858
4859   function Analyze_Subprogram_Specification (N : Node_Id) return Entity_Id is
4860      function Is_Invariant_Procedure_Or_Body (E : Entity_Id) return Boolean;
4861      --  Determine whether entity E denotes the spec or body of an invariant
4862      --  procedure.
4863
4864      ------------------------------------
4865      -- Is_Invariant_Procedure_Or_Body --
4866      ------------------------------------
4867
4868      function Is_Invariant_Procedure_Or_Body (E : Entity_Id) return Boolean is
4869         Decl : constant Node_Id := Unit_Declaration_Node (E);
4870         Spec : Entity_Id;
4871
4872      begin
4873         if Nkind (Decl) = N_Subprogram_Body then
4874            Spec := Corresponding_Spec (Decl);
4875         else
4876            Spec := E;
4877         end if;
4878
4879         return
4880           Present (Spec)
4881             and then Ekind (Spec) = E_Procedure
4882             and then (Is_Partial_Invariant_Procedure (Spec)
4883                        or else Is_Invariant_Procedure (Spec));
4884      end Is_Invariant_Procedure_Or_Body;
4885
4886      --  Local variables
4887
4888      Designator : constant Entity_Id := Defining_Entity (N);
4889      Formals    : constant List_Id   := Parameter_Specifications (N);
4890
4891   --  Start of processing for Analyze_Subprogram_Specification
4892
4893   begin
4894      --  User-defined operator is not allowed in SPARK, except as a renaming
4895
4896      if Nkind (Defining_Unit_Name (N)) = N_Defining_Operator_Symbol
4897        and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
4898      then
4899         Check_SPARK_05_Restriction
4900           ("user-defined operator is not allowed", N);
4901      end if;
4902
4903      --  Proceed with analysis. Do not emit a cross-reference entry if the
4904      --  specification comes from an expression function, because it may be
4905      --  the completion of a previous declaration. If it is not, the cross-
4906      --  reference entry will be emitted for the new subprogram declaration.
4907
4908      if Nkind (Parent (N)) /= N_Expression_Function then
4909         Generate_Definition (Designator);
4910      end if;
4911
4912      if Nkind (N) = N_Function_Specification then
4913         Set_Ekind (Designator, E_Function);
4914         Set_Mechanism (Designator, Default_Mechanism);
4915      else
4916         Set_Ekind (Designator, E_Procedure);
4917         Set_Etype (Designator, Standard_Void_Type);
4918      end if;
4919
4920      --  Flag Is_Inlined_Always is True by default, and reversed to False for
4921      --  those subprograms which could be inlined in GNATprove mode (because
4922      --  Body_To_Inline is non-Empty) but should not be inlined.
4923
4924      if GNATprove_Mode then
4925         Set_Is_Inlined_Always (Designator);
4926      end if;
4927
4928      --  Introduce new scope for analysis of the formals and the return type
4929
4930      Set_Scope (Designator, Current_Scope);
4931
4932      if Present (Formals) then
4933         Push_Scope (Designator);
4934         Process_Formals (Formals, N);
4935
4936         --  Check dimensions in N for formals with default expression
4937
4938         Analyze_Dimension_Formals (N, Formals);
4939
4940         --  Ada 2005 (AI-345): If this is an overriding operation of an
4941         --  inherited interface operation, and the controlling type is
4942         --  a synchronized type, replace the type with its corresponding
4943         --  record, to match the proper signature of an overriding operation.
4944         --  Same processing for an access parameter whose designated type is
4945         --  derived from a synchronized interface.
4946
4947         --  This modification is not done for invariant procedures because
4948         --  the corresponding record may not necessarely be visible when the
4949         --  concurrent type acts as the full view of a private type.
4950
4951         --    package Pack is
4952         --       type Prot is private with Type_Invariant => ...;
4953         --       procedure ConcInvariant (Obj : Prot);
4954         --    private
4955         --       protected type Prot is ...;
4956         --       type Concurrent_Record_Prot is record ...;
4957         --       procedure ConcInvariant (Obj : Prot) is
4958         --          ...
4959         --       end ConcInvariant;
4960         --    end Pack;
4961
4962         --  In the example above, both the spec and body of the invariant
4963         --  procedure must utilize the private type as the controlling type.
4964
4965         if Ada_Version >= Ada_2005
4966           and then not Is_Invariant_Procedure_Or_Body (Designator)
4967         then
4968            declare
4969               Formal     : Entity_Id;
4970               Formal_Typ : Entity_Id;
4971               Rec_Typ    : Entity_Id;
4972               Desig_Typ  : Entity_Id;
4973
4974            begin
4975               Formal := First_Formal (Designator);
4976               while Present (Formal) loop
4977                  Formal_Typ := Etype (Formal);
4978
4979                  if Is_Concurrent_Type (Formal_Typ)
4980                    and then Present (Corresponding_Record_Type (Formal_Typ))
4981                  then
4982                     Rec_Typ := Corresponding_Record_Type (Formal_Typ);
4983
4984                     if Present (Interfaces (Rec_Typ)) then
4985                        Set_Etype (Formal, Rec_Typ);
4986                     end if;
4987
4988                  elsif Ekind (Formal_Typ) = E_Anonymous_Access_Type then
4989                     Desig_Typ := Designated_Type (Formal_Typ);
4990
4991                     if Is_Concurrent_Type (Desig_Typ)
4992                       and then Present (Corresponding_Record_Type (Desig_Typ))
4993                     then
4994                        Rec_Typ := Corresponding_Record_Type (Desig_Typ);
4995
4996                        if Present (Interfaces (Rec_Typ)) then
4997                           Set_Directly_Designated_Type (Formal_Typ, Rec_Typ);
4998                        end if;
4999                     end if;
5000                  end if;
5001
5002                  Next_Formal (Formal);
5003               end loop;
5004            end;
5005         end if;
5006
5007         End_Scope;
5008
5009      --  The subprogram scope is pushed and popped around the processing of
5010      --  the return type for consistency with call above to Process_Formals
5011      --  (which itself can call Analyze_Return_Type), and to ensure that any
5012      --  itype created for the return type will be associated with the proper
5013      --  scope.
5014
5015      elsif Nkind (N) = N_Function_Specification then
5016         Push_Scope (Designator);
5017         Analyze_Return_Type (N);
5018         End_Scope;
5019      end if;
5020
5021      --  Function case
5022
5023      if Nkind (N) = N_Function_Specification then
5024
5025         --  Deal with operator symbol case
5026
5027         if Nkind (Designator) = N_Defining_Operator_Symbol then
5028            Valid_Operator_Definition (Designator);
5029         end if;
5030
5031         May_Need_Actuals (Designator);
5032
5033         --  Ada 2005 (AI-251): If the return type is abstract, verify that
5034         --  the subprogram is abstract also. This does not apply to renaming
5035         --  declarations, where abstractness is inherited, and to subprogram
5036         --  bodies generated for stream operations, which become renamings as
5037         --  bodies.
5038
5039         --  In case of primitives associated with abstract interface types
5040         --  the check is applied later (see Analyze_Subprogram_Declaration).
5041
5042         if not Nkind_In (Original_Node (Parent (N)),
5043                          N_Abstract_Subprogram_Declaration,
5044                          N_Formal_Abstract_Subprogram_Declaration,
5045                          N_Subprogram_Renaming_Declaration)
5046         then
5047            if Is_Abstract_Type (Etype (Designator))
5048              and then not Is_Interface (Etype (Designator))
5049            then
5050               Error_Msg_N
5051                 ("function that returns abstract type must be abstract", N);
5052
5053            --  Ada 2012 (AI-0073): Extend this test to subprograms with an
5054            --  access result whose designated type is abstract.
5055
5056            elsif Ada_Version >= Ada_2012
5057              and then Nkind (Result_Definition (N)) = N_Access_Definition
5058              and then
5059                not Is_Class_Wide_Type (Designated_Type (Etype (Designator)))
5060              and then Is_Abstract_Type (Designated_Type (Etype (Designator)))
5061            then
5062               Error_Msg_N
5063                 ("function whose access result designates abstract type "
5064                  & "must be abstract", N);
5065            end if;
5066         end if;
5067      end if;
5068
5069      return Designator;
5070   end Analyze_Subprogram_Specification;
5071
5072   -----------------------
5073   -- Check_Conformance --
5074   -----------------------
5075
5076   procedure Check_Conformance
5077     (New_Id                   : Entity_Id;
5078      Old_Id                   : Entity_Id;
5079      Ctype                    : Conformance_Type;
5080      Errmsg                   : Boolean;
5081      Conforms                 : out Boolean;
5082      Err_Loc                  : Node_Id := Empty;
5083      Get_Inst                 : Boolean := False;
5084      Skip_Controlling_Formals : Boolean := False)
5085   is
5086      procedure Conformance_Error (Msg : String; N : Node_Id := New_Id);
5087      --  Sets Conforms to False. If Errmsg is False, then that's all it does.
5088      --  If Errmsg is True, then processing continues to post an error message
5089      --  for conformance error on given node. Two messages are output. The
5090      --  first message points to the previous declaration with a general "no
5091      --  conformance" message. The second is the detailed reason, supplied as
5092      --  Msg. The parameter N provide information for a possible & insertion
5093      --  in the message, and also provides the location for posting the
5094      --  message in the absence of a specified Err_Loc location.
5095
5096      function Conventions_Match
5097        (Id1 : Entity_Id;
5098         Id2 : Entity_Id) return Boolean;
5099      --  Determine whether the conventions of arbitrary entities Id1 and Id2
5100      --  match.
5101
5102      -----------------------
5103      -- Conformance_Error --
5104      -----------------------
5105
5106      procedure Conformance_Error (Msg : String; N : Node_Id := New_Id) is
5107         Enode : Node_Id;
5108
5109      begin
5110         Conforms := False;
5111
5112         if Errmsg then
5113            if No (Err_Loc) then
5114               Enode := N;
5115            else
5116               Enode := Err_Loc;
5117            end if;
5118
5119            Error_Msg_Sloc := Sloc (Old_Id);
5120
5121            case Ctype is
5122               when Type_Conformant =>
5123                  Error_Msg_N -- CODEFIX
5124                    ("not type conformant with declaration#!", Enode);
5125
5126               when Mode_Conformant =>
5127                  if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
5128                     Error_Msg_N
5129                       ("not mode conformant with operation inherited#!",
5130                         Enode);
5131                  else
5132                     Error_Msg_N
5133                       ("not mode conformant with declaration#!", Enode);
5134                  end if;
5135
5136               when Subtype_Conformant =>
5137                  if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
5138                     Error_Msg_N
5139                       ("not subtype conformant with operation inherited#!",
5140                         Enode);
5141                  else
5142                     Error_Msg_N
5143                       ("not subtype conformant with declaration#!", Enode);
5144                  end if;
5145
5146               when Fully_Conformant =>
5147                  if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
5148                     Error_Msg_N -- CODEFIX
5149                       ("not fully conformant with operation inherited#!",
5150                         Enode);
5151                  else
5152                     Error_Msg_N -- CODEFIX
5153                       ("not fully conformant with declaration#!", Enode);
5154                  end if;
5155            end case;
5156
5157            Error_Msg_NE (Msg, Enode, N);
5158         end if;
5159      end Conformance_Error;
5160
5161      -----------------------
5162      -- Conventions_Match --
5163      -----------------------
5164
5165      function Conventions_Match
5166        (Id1 : Entity_Id;
5167         Id2 : Entity_Id) return Boolean
5168      is
5169      begin
5170         --  Ignore the conventions of anonymous access-to-subprogram types
5171         --  and subprogram types because these are internally generated and
5172         --  the only way these may receive a convention is if they inherit
5173         --  the convention of a related subprogram.
5174
5175         if Ekind_In (Id1, E_Anonymous_Access_Subprogram_Type,
5176                           E_Subprogram_Type)
5177              or else
5178            Ekind_In (Id2, E_Anonymous_Access_Subprogram_Type,
5179                           E_Subprogram_Type)
5180         then
5181            return True;
5182
5183         --  Otherwise compare the conventions directly
5184
5185         else
5186            return Convention (Id1) = Convention (Id2);
5187         end if;
5188      end Conventions_Match;
5189
5190      --  Local Variables
5191
5192      Old_Type           : constant Entity_Id := Etype (Old_Id);
5193      New_Type           : constant Entity_Id := Etype (New_Id);
5194      Old_Formal         : Entity_Id;
5195      New_Formal         : Entity_Id;
5196      Access_Types_Match : Boolean;
5197      Old_Formal_Base    : Entity_Id;
5198      New_Formal_Base    : Entity_Id;
5199
5200   --  Start of processing for Check_Conformance
5201
5202   begin
5203      Conforms := True;
5204
5205      --  We need a special case for operators, since they don't appear
5206      --  explicitly.
5207
5208      if Ctype = Type_Conformant then
5209         if Ekind (New_Id) = E_Operator
5210           and then Operator_Matches_Spec (New_Id, Old_Id)
5211         then
5212            return;
5213         end if;
5214      end if;
5215
5216      --  If both are functions/operators, check return types conform
5217
5218      if Old_Type /= Standard_Void_Type
5219           and then
5220         New_Type /= Standard_Void_Type
5221      then
5222         --  If we are checking interface conformance we omit controlling
5223         --  arguments and result, because we are only checking the conformance
5224         --  of the remaining parameters.
5225
5226         if Has_Controlling_Result (Old_Id)
5227           and then Has_Controlling_Result (New_Id)
5228           and then Skip_Controlling_Formals
5229         then
5230            null;
5231
5232         elsif not Conforming_Types (Old_Type, New_Type, Ctype, Get_Inst) then
5233            if Ctype >= Subtype_Conformant
5234              and then not Predicates_Match (Old_Type, New_Type)
5235            then
5236               Conformance_Error
5237                 ("\predicate of return type does not match!", New_Id);
5238            else
5239               Conformance_Error
5240                 ("\return type does not match!", New_Id);
5241            end if;
5242
5243            return;
5244         end if;
5245
5246         --  Ada 2005 (AI-231): In case of anonymous access types check the
5247         --  null-exclusion and access-to-constant attributes match.
5248
5249         if Ada_Version >= Ada_2005
5250           and then Ekind (Etype (Old_Type)) = E_Anonymous_Access_Type
5251           and then
5252             (Can_Never_Be_Null (Old_Type) /= Can_Never_Be_Null (New_Type)
5253               or else Is_Access_Constant (Etype (Old_Type)) /=
5254                       Is_Access_Constant (Etype (New_Type)))
5255         then
5256            Conformance_Error ("\return type does not match!", New_Id);
5257            return;
5258         end if;
5259
5260      --  If either is a function/operator and the other isn't, error
5261
5262      elsif Old_Type /= Standard_Void_Type
5263        or else New_Type /= Standard_Void_Type
5264      then
5265         Conformance_Error ("\functions can only match functions!", New_Id);
5266         return;
5267      end if;
5268
5269      --  In subtype conformant case, conventions must match (RM 6.3.1(16)).
5270      --  If this is a renaming as body, refine error message to indicate that
5271      --  the conflict is with the original declaration. If the entity is not
5272      --  frozen, the conventions don't have to match, the one of the renamed
5273      --  entity is inherited.
5274
5275      if Ctype >= Subtype_Conformant then
5276         if not Conventions_Match (Old_Id, New_Id) then
5277            if not Is_Frozen (New_Id) then
5278               null;
5279
5280            elsif Present (Err_Loc)
5281              and then Nkind (Err_Loc) = N_Subprogram_Renaming_Declaration
5282              and then Present (Corresponding_Spec (Err_Loc))
5283            then
5284               Error_Msg_Name_1 := Chars (New_Id);
5285               Error_Msg_Name_2 :=
5286                 Name_Ada + Convention_Id'Pos (Convention (New_Id));
5287               Conformance_Error ("\prior declaration for% has convention %!");
5288
5289            else
5290               Conformance_Error ("\calling conventions do not match!");
5291            end if;
5292
5293            return;
5294
5295         elsif Is_Formal_Subprogram (Old_Id)
5296           or else Is_Formal_Subprogram (New_Id)
5297           or else (Is_Subprogram (New_Id)
5298                     and then Present (Alias (New_Id))
5299                     and then Is_Formal_Subprogram (Alias (New_Id)))
5300         then
5301            Conformance_Error
5302              ("\formal subprograms are not subtype conformant "
5303               & "(RM 6.3.1 (17/3))");
5304         end if;
5305      end if;
5306
5307      --  Deal with parameters
5308
5309      --  Note: we use the entity information, rather than going directly
5310      --  to the specification in the tree. This is not only simpler, but
5311      --  absolutely necessary for some cases of conformance tests between
5312      --  operators, where the declaration tree simply does not exist.
5313
5314      Old_Formal := First_Formal (Old_Id);
5315      New_Formal := First_Formal (New_Id);
5316      while Present (Old_Formal) and then Present (New_Formal) loop
5317         if Is_Controlling_Formal (Old_Formal)
5318           and then Is_Controlling_Formal (New_Formal)
5319           and then Skip_Controlling_Formals
5320         then
5321            --  The controlling formals will have different types when
5322            --  comparing an interface operation with its match, but both
5323            --  or neither must be access parameters.
5324
5325            if Is_Access_Type (Etype (Old_Formal))
5326                 =
5327               Is_Access_Type (Etype (New_Formal))
5328            then
5329               goto Skip_Controlling_Formal;
5330            else
5331               Conformance_Error
5332                 ("\access parameter does not match!", New_Formal);
5333            end if;
5334         end if;
5335
5336         --  Ada 2012: Mode conformance also requires that formal parameters
5337         --  be both aliased, or neither.
5338
5339         if Ctype >= Mode_Conformant and then Ada_Version >= Ada_2012 then
5340            if Is_Aliased (Old_Formal) /= Is_Aliased (New_Formal) then
5341               Conformance_Error
5342                 ("\aliased parameter mismatch!", New_Formal);
5343            end if;
5344         end if;
5345
5346         if Ctype = Fully_Conformant then
5347
5348            --  Names must match. Error message is more accurate if we do
5349            --  this before checking that the types of the formals match.
5350
5351            if Chars (Old_Formal) /= Chars (New_Formal) then
5352               Conformance_Error ("\name& does not match!", New_Formal);
5353
5354               --  Set error posted flag on new formal as well to stop
5355               --  junk cascaded messages in some cases.
5356
5357               Set_Error_Posted (New_Formal);
5358               return;
5359            end if;
5360
5361            --  Null exclusion must match
5362
5363            if Null_Exclusion_Present (Parent (Old_Formal))
5364                 /=
5365               Null_Exclusion_Present (Parent (New_Formal))
5366            then
5367               --  Only give error if both come from source. This should be
5368               --  investigated some time, since it should not be needed ???
5369
5370               if Comes_From_Source (Old_Formal)
5371                    and then
5372                  Comes_From_Source (New_Formal)
5373               then
5374                  Conformance_Error
5375                    ("\null exclusion for& does not match", New_Formal);
5376
5377                  --  Mark error posted on the new formal to avoid duplicated
5378                  --  complaint about types not matching.
5379
5380                  Set_Error_Posted (New_Formal);
5381               end if;
5382            end if;
5383         end if;
5384
5385         --  Ada 2005 (AI-423): Possible access [sub]type and itype match. This
5386         --  case occurs whenever a subprogram is being renamed and one of its
5387         --  parameters imposes a null exclusion. For example:
5388
5389         --     type T is null record;
5390         --     type Acc_T is access T;
5391         --     subtype Acc_T_Sub is Acc_T;
5392
5393         --     procedure P     (Obj : not null Acc_T_Sub);  --  itype
5394         --     procedure Ren_P (Obj :          Acc_T_Sub)   --  subtype
5395         --       renames P;
5396
5397         Old_Formal_Base := Etype (Old_Formal);
5398         New_Formal_Base := Etype (New_Formal);
5399
5400         if Get_Inst then
5401            Old_Formal_Base := Get_Instance_Of (Old_Formal_Base);
5402            New_Formal_Base := Get_Instance_Of (New_Formal_Base);
5403         end if;
5404
5405         Access_Types_Match := Ada_Version >= Ada_2005
5406
5407           --  Ensure that this rule is only applied when New_Id is a
5408           --  renaming of Old_Id.
5409
5410           and then Nkind (Parent (Parent (New_Id))) =
5411                      N_Subprogram_Renaming_Declaration
5412           and then Nkind (Name (Parent (Parent (New_Id)))) in N_Has_Entity
5413           and then Present (Entity (Name (Parent (Parent (New_Id)))))
5414           and then Entity (Name (Parent (Parent (New_Id)))) = Old_Id
5415
5416           --  Now handle the allowed access-type case
5417
5418           and then Is_Access_Type (Old_Formal_Base)
5419           and then Is_Access_Type (New_Formal_Base)
5420
5421           --  The type kinds must match. The only exception occurs with
5422           --  multiple generics of the form:
5423
5424           --   generic                    generic
5425           --     type F is private;         type A is private;
5426           --     type F_Ptr is access F;    type A_Ptr is access A;
5427           --     with proc F_P (X : F_Ptr); with proc A_P (X : A_Ptr);
5428           --   package F_Pack is ...      package A_Pack is
5429           --                                package F_Inst is
5430           --                                  new F_Pack (A, A_Ptr, A_P);
5431
5432           --  When checking for conformance between the parameters of A_P
5433           --  and F_P, the type kinds of F_Ptr and A_Ptr will not match
5434           --  because the compiler has transformed A_Ptr into a subtype of
5435           --  F_Ptr. We catch this case in the code below.
5436
5437           and then (Ekind (Old_Formal_Base) = Ekind (New_Formal_Base)
5438                      or else
5439                        (Is_Generic_Type (Old_Formal_Base)
5440                          and then Is_Generic_Type (New_Formal_Base)
5441                          and then Is_Internal (New_Formal_Base)
5442                          and then Etype (Etype (New_Formal_Base)) =
5443                                                          Old_Formal_Base))
5444               and then Directly_Designated_Type (Old_Formal_Base) =
5445                                    Directly_Designated_Type (New_Formal_Base)
5446           and then ((Is_Itype (Old_Formal_Base)
5447                       and then Can_Never_Be_Null (Old_Formal_Base))
5448                     or else
5449                      (Is_Itype (New_Formal_Base)
5450                        and then Can_Never_Be_Null (New_Formal_Base)));
5451
5452         --  Types must always match. In the visible part of an instance,
5453         --  usual overloading rules for dispatching operations apply, and
5454         --  we check base types (not the actual subtypes).
5455
5456         if In_Instance_Visible_Part
5457           and then Is_Dispatching_Operation (New_Id)
5458         then
5459            if not Conforming_Types
5460                     (T1       => Base_Type (Etype (Old_Formal)),
5461                      T2       => Base_Type (Etype (New_Formal)),
5462                      Ctype    => Ctype,
5463                      Get_Inst => Get_Inst)
5464               and then not Access_Types_Match
5465            then
5466               Conformance_Error ("\type of & does not match!", New_Formal);
5467               return;
5468            end if;
5469
5470         elsif not Conforming_Types
5471                     (T1       => Old_Formal_Base,
5472                      T2       => New_Formal_Base,
5473                      Ctype    => Ctype,
5474                      Get_Inst => Get_Inst)
5475           and then not Access_Types_Match
5476         then
5477            --  Don't give error message if old type is Any_Type. This test
5478            --  avoids some cascaded errors, e.g. in case of a bad spec.
5479
5480            if Errmsg and then Old_Formal_Base = Any_Type then
5481               Conforms := False;
5482            else
5483               if Ctype >= Subtype_Conformant
5484                 and then
5485                   not Predicates_Match (Old_Formal_Base, New_Formal_Base)
5486               then
5487                  Conformance_Error
5488                    ("\predicate of & does not match!", New_Formal);
5489               else
5490                  Conformance_Error
5491                    ("\type of & does not match!", New_Formal);
5492
5493                  if not Dimensions_Match (Old_Formal_Base, New_Formal_Base)
5494                  then
5495                     Error_Msg_N ("\dimensions mismatch!", New_Formal);
5496                  end if;
5497               end if;
5498            end if;
5499
5500            return;
5501         end if;
5502
5503         --  For mode conformance, mode must match
5504
5505         if Ctype >= Mode_Conformant then
5506            if Parameter_Mode (Old_Formal) /= Parameter_Mode (New_Formal) then
5507               if not Ekind_In (New_Id, E_Function, E_Procedure)
5508                 or else not Is_Primitive_Wrapper (New_Id)
5509               then
5510                  Conformance_Error ("\mode of & does not match!", New_Formal);
5511
5512               else
5513                  declare
5514                     T : constant Entity_Id := Find_Dispatching_Type (New_Id);
5515                  begin
5516                     if Is_Protected_Type (Corresponding_Concurrent_Type (T))
5517                     then
5518                        Error_Msg_PT (New_Id, Ultimate_Alias (Old_Id));
5519                     else
5520                        Conformance_Error
5521                          ("\mode of & does not match!", New_Formal);
5522                     end if;
5523                  end;
5524               end if;
5525
5526               return;
5527
5528            --  Part of mode conformance for access types is having the same
5529            --  constant modifier.
5530
5531            elsif Access_Types_Match
5532              and then Is_Access_Constant (Old_Formal_Base) /=
5533                       Is_Access_Constant (New_Formal_Base)
5534            then
5535               Conformance_Error
5536                 ("\constant modifier does not match!", New_Formal);
5537               return;
5538            end if;
5539         end if;
5540
5541         if Ctype >= Subtype_Conformant then
5542
5543            --  Ada 2005 (AI-231): In case of anonymous access types check
5544            --  the null-exclusion and access-to-constant attributes must
5545            --  match. For null exclusion, we test the types rather than the
5546            --  formals themselves, since the attribute is only set reliably
5547            --  on the formals in the Ada 95 case, and we exclude the case
5548            --  where Old_Formal is marked as controlling, to avoid errors
5549            --  when matching completing bodies with dispatching declarations
5550            --  (access formals in the bodies aren't marked Can_Never_Be_Null).
5551
5552            if Ada_Version >= Ada_2005
5553              and then Ekind (Etype (Old_Formal)) = E_Anonymous_Access_Type
5554              and then Ekind (Etype (New_Formal)) = E_Anonymous_Access_Type
5555              and then
5556                ((Can_Never_Be_Null (Etype (Old_Formal)) /=
5557                  Can_Never_Be_Null (Etype (New_Formal))
5558                    and then
5559                      not Is_Controlling_Formal (Old_Formal))
5560                   or else
5561                 Is_Access_Constant (Etype (Old_Formal)) /=
5562                 Is_Access_Constant (Etype (New_Formal)))
5563
5564              --  Do not complain if error already posted on New_Formal. This
5565              --  avoids some redundant error messages.
5566
5567              and then not Error_Posted (New_Formal)
5568            then
5569               --  It is allowed to omit the null-exclusion in case of stream
5570               --  attribute subprograms. We recognize stream subprograms
5571               --  through their TSS-generated suffix.
5572
5573               declare
5574                  TSS_Name : constant TSS_Name_Type := Get_TSS_Name (New_Id);
5575
5576               begin
5577                  if TSS_Name /= TSS_Stream_Read
5578                    and then TSS_Name /= TSS_Stream_Write
5579                    and then TSS_Name /= TSS_Stream_Input
5580                    and then TSS_Name /= TSS_Stream_Output
5581                  then
5582                     --  Here we have a definite conformance error. It is worth
5583                     --  special casing the error message for the case of a
5584                     --  controlling formal (which excludes null).
5585
5586                     if Is_Controlling_Formal (New_Formal) then
5587                        Error_Msg_Node_2 := Scope (New_Formal);
5588                        Conformance_Error
5589                         ("\controlling formal & of & excludes null, "
5590                          & "declaration must exclude null as well",
5591                          New_Formal);
5592
5593                     --  Normal case (couldn't we give more detail here???)
5594
5595                     else
5596                        Conformance_Error
5597                          ("\type of & does not match!", New_Formal);
5598                     end if;
5599
5600                     return;
5601                  end if;
5602               end;
5603            end if;
5604         end if;
5605
5606         --  Full conformance checks
5607
5608         if Ctype = Fully_Conformant then
5609
5610            --  We have checked already that names match
5611
5612            if Parameter_Mode (Old_Formal) = E_In_Parameter then
5613
5614               --  Check default expressions for in parameters
5615
5616               declare
5617                  NewD : constant Boolean :=
5618                           Present (Default_Value (New_Formal));
5619                  OldD : constant Boolean :=
5620                           Present (Default_Value (Old_Formal));
5621               begin
5622                  if NewD or OldD then
5623
5624                     --  The old default value has been analyzed because the
5625                     --  current full declaration will have frozen everything
5626                     --  before. The new default value has not been analyzed,
5627                     --  so analyze it now before we check for conformance.
5628
5629                     if NewD then
5630                        Push_Scope (New_Id);
5631                        Preanalyze_Spec_Expression
5632                          (Default_Value (New_Formal), Etype (New_Formal));
5633                        End_Scope;
5634                     end if;
5635
5636                     if not (NewD and OldD)
5637                       or else not Fully_Conformant_Expressions
5638                                    (Default_Value (Old_Formal),
5639                                     Default_Value (New_Formal))
5640                     then
5641                        Conformance_Error
5642                          ("\default expression for & does not match!",
5643                           New_Formal);
5644                        return;
5645                     end if;
5646                  end if;
5647               end;
5648            end if;
5649         end if;
5650
5651         --  A couple of special checks for Ada 83 mode. These checks are
5652         --  skipped if either entity is an operator in package Standard,
5653         --  or if either old or new instance is not from the source program.
5654
5655         if Ada_Version = Ada_83
5656           and then Sloc (Old_Id) > Standard_Location
5657           and then Sloc (New_Id) > Standard_Location
5658           and then Comes_From_Source (Old_Id)
5659           and then Comes_From_Source (New_Id)
5660         then
5661            declare
5662               Old_Param : constant Node_Id := Declaration_Node (Old_Formal);
5663               New_Param : constant Node_Id := Declaration_Node (New_Formal);
5664
5665            begin
5666               --  Explicit IN must be present or absent in both cases. This
5667               --  test is required only in the full conformance case.
5668
5669               if In_Present (Old_Param) /= In_Present (New_Param)
5670                 and then Ctype = Fully_Conformant
5671               then
5672                  Conformance_Error
5673                    ("\(Ada 83) IN must appear in both declarations",
5674                     New_Formal);
5675                  return;
5676               end if;
5677
5678               --  Grouping (use of comma in param lists) must be the same
5679               --  This is where we catch a misconformance like:
5680
5681               --    A, B : Integer
5682               --    A : Integer; B : Integer
5683
5684               --  which are represented identically in the tree except
5685               --  for the setting of the flags More_Ids and Prev_Ids.
5686
5687               if More_Ids (Old_Param) /= More_Ids (New_Param)
5688                 or else Prev_Ids (Old_Param) /= Prev_Ids (New_Param)
5689               then
5690                  Conformance_Error
5691                    ("\grouping of & does not match!", New_Formal);
5692                  return;
5693               end if;
5694            end;
5695         end if;
5696
5697         --  This label is required when skipping controlling formals
5698
5699         <<Skip_Controlling_Formal>>
5700
5701         Next_Formal (Old_Formal);
5702         Next_Formal (New_Formal);
5703      end loop;
5704
5705      if Present (Old_Formal) then
5706         Conformance_Error ("\too few parameters!");
5707         return;
5708
5709      elsif Present (New_Formal) then
5710         Conformance_Error ("\too many parameters!", New_Formal);
5711         return;
5712      end if;
5713   end Check_Conformance;
5714
5715   -----------------------
5716   -- Check_Conventions --
5717   -----------------------
5718
5719   procedure Check_Conventions (Typ : Entity_Id) is
5720      Ifaces_List : Elist_Id;
5721
5722      procedure Check_Convention (Op : Entity_Id);
5723      --  Verify that the convention of inherited dispatching operation Op is
5724      --  consistent among all subprograms it overrides. In order to minimize
5725      --  the search, Search_From is utilized to designate a specific point in
5726      --  the list rather than iterating over the whole list once more.
5727
5728      ----------------------
5729      -- Check_Convention --
5730      ----------------------
5731
5732      procedure Check_Convention (Op : Entity_Id) is
5733         Op_Conv         : constant Convention_Id := Convention (Op);
5734         Iface_Conv      : Convention_Id;
5735         Iface_Elmt      : Elmt_Id;
5736         Iface_Prim_Elmt : Elmt_Id;
5737         Iface_Prim      : Entity_Id;
5738
5739      begin
5740         Iface_Elmt := First_Elmt (Ifaces_List);
5741         while Present (Iface_Elmt) loop
5742            Iface_Prim_Elmt :=
5743              First_Elmt (Primitive_Operations (Node (Iface_Elmt)));
5744            while Present (Iface_Prim_Elmt) loop
5745               Iface_Prim := Node (Iface_Prim_Elmt);
5746               Iface_Conv := Convention (Iface_Prim);
5747
5748               if Is_Interface_Conformant (Typ, Iface_Prim, Op)
5749                 and then Iface_Conv /= Op_Conv
5750               then
5751                  Error_Msg_N
5752                    ("inconsistent conventions in primitive operations", Typ);
5753
5754                  Error_Msg_Name_1 := Chars (Op);
5755                  Error_Msg_Name_2 := Get_Convention_Name (Op_Conv);
5756                  Error_Msg_Sloc   := Sloc (Op);
5757
5758                  if Comes_From_Source (Op) or else No (Alias (Op)) then
5759                     if not Present (Overridden_Operation (Op)) then
5760                        Error_Msg_N ("\\primitive % defined #", Typ);
5761                     else
5762                        Error_Msg_N
5763                          ("\\overriding operation % with "
5764                           & "convention % defined #", Typ);
5765                     end if;
5766
5767                  else pragma Assert (Present (Alias (Op)));
5768                     Error_Msg_Sloc := Sloc (Alias (Op));
5769                     Error_Msg_N ("\\inherited operation % with "
5770                                  & "convention % defined #", Typ);
5771                  end if;
5772
5773                  Error_Msg_Name_1 := Chars (Op);
5774                  Error_Msg_Name_2 := Get_Convention_Name (Iface_Conv);
5775                  Error_Msg_Sloc   := Sloc (Iface_Prim);
5776                  Error_Msg_N ("\\overridden operation % with "
5777                               & "convention % defined #", Typ);
5778
5779                  --  Avoid cascading errors
5780
5781                  return;
5782               end if;
5783
5784               Next_Elmt (Iface_Prim_Elmt);
5785            end loop;
5786
5787            Next_Elmt (Iface_Elmt);
5788         end loop;
5789      end Check_Convention;
5790
5791      --  Local variables
5792
5793      Prim_Op      : Entity_Id;
5794      Prim_Op_Elmt : Elmt_Id;
5795
5796   --  Start of processing for Check_Conventions
5797
5798   begin
5799      if not Has_Interfaces (Typ) then
5800         return;
5801      end if;
5802
5803      Collect_Interfaces (Typ, Ifaces_List);
5804
5805      --  The algorithm checks every overriding dispatching operation against
5806      --  all the corresponding overridden dispatching operations, detecting
5807      --  differences in conventions.
5808
5809      Prim_Op_Elmt := First_Elmt (Primitive_Operations (Typ));
5810      while Present (Prim_Op_Elmt) loop
5811         Prim_Op := Node (Prim_Op_Elmt);
5812
5813         --  A small optimization: skip the predefined dispatching operations
5814         --  since they always have the same convention.
5815
5816         if not Is_Predefined_Dispatching_Operation (Prim_Op) then
5817            Check_Convention (Prim_Op);
5818         end if;
5819
5820         Next_Elmt (Prim_Op_Elmt);
5821      end loop;
5822   end Check_Conventions;
5823
5824   ------------------------------
5825   -- Check_Delayed_Subprogram --
5826   ------------------------------
5827
5828   procedure Check_Delayed_Subprogram (Designator : Entity_Id) is
5829      procedure Possible_Freeze (T : Entity_Id);
5830      --  T is the type of either a formal parameter or of the return type. If
5831      --  T is not yet frozen and needs a delayed freeze, then the subprogram
5832      --  itself must be delayed.
5833
5834      ---------------------
5835      -- Possible_Freeze --
5836      ---------------------
5837
5838      procedure Possible_Freeze (T : Entity_Id) is
5839         Scop : constant Entity_Id := Scope (Designator);
5840
5841      begin
5842         --  If the subprogram appears within a package instance (which may be
5843         --  the wrapper package of a subprogram instance) the freeze node for
5844         --  that package will freeze the subprogram at the proper place, so
5845         --  do not emit a freeze node for the subprogram, given that it may
5846         --  appear in the wrong scope.
5847
5848         if Ekind (Scop) = E_Package
5849           and then not Comes_From_Source (Scop)
5850           and then Is_Generic_Instance (Scop)
5851         then
5852            null;
5853
5854         elsif Has_Delayed_Freeze (T) and then not Is_Frozen (T) then
5855            Set_Has_Delayed_Freeze (Designator);
5856
5857         elsif Is_Access_Type (T)
5858           and then Has_Delayed_Freeze (Designated_Type (T))
5859           and then not Is_Frozen (Designated_Type (T))
5860         then
5861            Set_Has_Delayed_Freeze (Designator);
5862         end if;
5863      end Possible_Freeze;
5864
5865      --  Local variables
5866
5867      F : Entity_Id;
5868
5869   --  Start of processing for Check_Delayed_Subprogram
5870
5871   begin
5872      --  All subprograms, including abstract subprograms, may need a freeze
5873      --  node if some formal type or the return type needs one.
5874
5875      Possible_Freeze (Etype (Designator));
5876      Possible_Freeze (Base_Type (Etype (Designator))); -- needed ???
5877
5878      --  Need delayed freeze if any of the formal types themselves need a
5879      --  delayed freeze and are not yet frozen.
5880
5881      F := First_Formal (Designator);
5882      while Present (F) loop
5883         Possible_Freeze (Etype (F));
5884         Possible_Freeze (Base_Type (Etype (F))); -- needed ???
5885         Next_Formal (F);
5886      end loop;
5887
5888      --  Mark functions that return by reference. Note that it cannot be done
5889      --  for delayed_freeze subprograms because the underlying returned type
5890      --  may not be known yet (for private types).
5891
5892      if not Has_Delayed_Freeze (Designator) and then Expander_Active then
5893         declare
5894            Typ  : constant Entity_Id := Etype (Designator);
5895            Utyp : constant Entity_Id := Underlying_Type (Typ);
5896
5897         begin
5898            if Is_Limited_View (Typ) then
5899               Set_Returns_By_Ref (Designator);
5900
5901            elsif Present (Utyp) and then CW_Or_Has_Controlled_Part (Utyp) then
5902               Set_Returns_By_Ref (Designator);
5903            end if;
5904         end;
5905      end if;
5906   end Check_Delayed_Subprogram;
5907
5908   ------------------------------------
5909   -- Check_Discriminant_Conformance --
5910   ------------------------------------
5911
5912   procedure Check_Discriminant_Conformance
5913     (N        : Node_Id;
5914      Prev     : Entity_Id;
5915      Prev_Loc : Node_Id)
5916   is
5917      Old_Discr      : Entity_Id := First_Discriminant (Prev);
5918      New_Discr      : Node_Id   := First (Discriminant_Specifications (N));
5919      New_Discr_Id   : Entity_Id;
5920      New_Discr_Type : Entity_Id;
5921
5922      procedure Conformance_Error (Msg : String; N : Node_Id);
5923      --  Post error message for conformance error on given node. Two messages
5924      --  are output. The first points to the previous declaration with a
5925      --  general "no conformance" message. The second is the detailed reason,
5926      --  supplied as Msg. The parameter N provide information for a possible
5927      --  & insertion in the message.
5928
5929      -----------------------
5930      -- Conformance_Error --
5931      -----------------------
5932
5933      procedure Conformance_Error (Msg : String; N : Node_Id) is
5934      begin
5935         Error_Msg_Sloc := Sloc (Prev_Loc);
5936         Error_Msg_N -- CODEFIX
5937           ("not fully conformant with declaration#!", N);
5938         Error_Msg_NE (Msg, N, N);
5939      end Conformance_Error;
5940
5941   --  Start of processing for Check_Discriminant_Conformance
5942
5943   begin
5944      while Present (Old_Discr) and then Present (New_Discr) loop
5945         New_Discr_Id := Defining_Identifier (New_Discr);
5946
5947         --  The subtype mark of the discriminant on the full type has not
5948         --  been analyzed so we do it here. For an access discriminant a new
5949         --  type is created.
5950
5951         if Nkind (Discriminant_Type (New_Discr)) = N_Access_Definition then
5952            New_Discr_Type :=
5953              Access_Definition (N, Discriminant_Type (New_Discr));
5954
5955         else
5956            Analyze (Discriminant_Type (New_Discr));
5957            New_Discr_Type := Etype (Discriminant_Type (New_Discr));
5958
5959            --  Ada 2005: if the discriminant definition carries a null
5960            --  exclusion, create an itype to check properly for consistency
5961            --  with partial declaration.
5962
5963            if Is_Access_Type (New_Discr_Type)
5964              and then Null_Exclusion_Present (New_Discr)
5965            then
5966               New_Discr_Type :=
5967                 Create_Null_Excluding_Itype
5968                   (T           => New_Discr_Type,
5969                    Related_Nod => New_Discr,
5970                    Scope_Id    => Current_Scope);
5971            end if;
5972         end if;
5973
5974         if not Conforming_Types
5975                  (Etype (Old_Discr), New_Discr_Type, Fully_Conformant)
5976         then
5977            Conformance_Error ("type of & does not match!", New_Discr_Id);
5978            return;
5979         else
5980            --  Treat the new discriminant as an occurrence of the old one,
5981            --  for navigation purposes, and fill in some semantic
5982            --  information, for completeness.
5983
5984            Generate_Reference (Old_Discr, New_Discr_Id, 'r');
5985            Set_Etype (New_Discr_Id, Etype (Old_Discr));
5986            Set_Scope (New_Discr_Id, Scope (Old_Discr));
5987         end if;
5988
5989         --  Names must match
5990
5991         if Chars (Old_Discr) /= Chars (Defining_Identifier (New_Discr)) then
5992            Conformance_Error ("name & does not match!", New_Discr_Id);
5993            return;
5994         end if;
5995
5996         --  Default expressions must match
5997
5998         declare
5999            NewD : constant Boolean :=
6000                     Present (Expression (New_Discr));
6001            OldD : constant Boolean :=
6002                     Present (Expression (Parent (Old_Discr)));
6003
6004         begin
6005            if NewD or OldD then
6006
6007               --  The old default value has been analyzed and expanded,
6008               --  because the current full declaration will have frozen
6009               --  everything before. The new default values have not been
6010               --  expanded, so expand now to check conformance.
6011
6012               if NewD then
6013                  Preanalyze_Spec_Expression
6014                    (Expression (New_Discr), New_Discr_Type);
6015               end if;
6016
6017               if not (NewD and OldD)
6018                 or else not Fully_Conformant_Expressions
6019                              (Expression (Parent (Old_Discr)),
6020                               Expression (New_Discr))
6021
6022               then
6023                  Conformance_Error
6024                    ("default expression for & does not match!",
6025                     New_Discr_Id);
6026                  return;
6027               end if;
6028            end if;
6029         end;
6030
6031         --  In Ada 83 case, grouping must match: (A,B : X) /= (A : X; B : X)
6032
6033         if Ada_Version = Ada_83 then
6034            declare
6035               Old_Disc : constant Node_Id := Declaration_Node (Old_Discr);
6036
6037            begin
6038               --  Grouping (use of comma in param lists) must be the same
6039               --  This is where we catch a misconformance like:
6040
6041               --    A, B : Integer
6042               --    A : Integer; B : Integer
6043
6044               --  which are represented identically in the tree except
6045               --  for the setting of the flags More_Ids and Prev_Ids.
6046
6047               if More_Ids (Old_Disc) /= More_Ids (New_Discr)
6048                 or else Prev_Ids (Old_Disc) /= Prev_Ids (New_Discr)
6049               then
6050                  Conformance_Error
6051                    ("grouping of & does not match!", New_Discr_Id);
6052                  return;
6053               end if;
6054            end;
6055         end if;
6056
6057         Next_Discriminant (Old_Discr);
6058         Next (New_Discr);
6059      end loop;
6060
6061      if Present (Old_Discr) then
6062         Conformance_Error ("too few discriminants!", Defining_Identifier (N));
6063         return;
6064
6065      elsif Present (New_Discr) then
6066         Conformance_Error
6067           ("too many discriminants!", Defining_Identifier (New_Discr));
6068         return;
6069      end if;
6070   end Check_Discriminant_Conformance;
6071
6072   ----------------------------
6073   -- Check_Fully_Conformant --
6074   ----------------------------
6075
6076   procedure Check_Fully_Conformant
6077     (New_Id  : Entity_Id;
6078      Old_Id  : Entity_Id;
6079      Err_Loc : Node_Id := Empty)
6080   is
6081      Result : Boolean;
6082      pragma Warnings (Off, Result);
6083   begin
6084      Check_Conformance
6085        (New_Id, Old_Id, Fully_Conformant, True, Result, Err_Loc);
6086   end Check_Fully_Conformant;
6087
6088   --------------------------
6089   -- Check_Limited_Return --
6090   --------------------------
6091
6092   procedure Check_Limited_Return
6093     (N      : Node_Id;
6094      Expr   : Node_Id;
6095      R_Type : Entity_Id)
6096   is
6097   begin
6098      --  Ada 2005 (AI-318-02): Return-by-reference types have been removed and
6099      --  replaced by anonymous access results. This is an incompatibility with
6100      --  Ada 95. Not clear whether this should be enforced yet or perhaps
6101      --  controllable with special switch. ???
6102
6103      --  A limited interface that is not immutably limited is OK
6104
6105      if Is_Limited_Interface (R_Type)
6106        and then
6107          not (Is_Task_Interface (R_Type)
6108                or else Is_Protected_Interface (R_Type)
6109                or else Is_Synchronized_Interface (R_Type))
6110      then
6111         null;
6112
6113      elsif Is_Limited_Type (R_Type)
6114        and then not Is_Interface (R_Type)
6115        and then Comes_From_Source (N)
6116        and then not In_Instance_Body
6117        and then not OK_For_Limited_Init_In_05 (R_Type, Expr)
6118      then
6119         --  Error in Ada 2005
6120
6121         if Ada_Version >= Ada_2005
6122           and then not Debug_Flag_Dot_L
6123           and then not GNAT_Mode
6124         then
6125            Error_Msg_N
6126              ("(Ada 2005) cannot copy object of a limited type "
6127               & "(RM-2005 6.5(5.5/2))", Expr);
6128
6129            if Is_Limited_View (R_Type) then
6130               Error_Msg_N
6131                 ("\return by reference not permitted in Ada 2005", Expr);
6132            end if;
6133
6134         --  Warn in Ada 95 mode, to give folks a heads up about this
6135         --  incompatibility.
6136
6137         --  In GNAT mode, this is just a warning, to allow it to be evilly
6138         --  turned off. Otherwise it is a real error.
6139
6140         --  In a generic context, simplify the warning because it makes no
6141         --  sense to discuss pass-by-reference or copy.
6142
6143         elsif Warn_On_Ada_2005_Compatibility or GNAT_Mode then
6144            if Inside_A_Generic then
6145               Error_Msg_N
6146                 ("return of limited object not permitted in Ada 2005 "
6147                  & "(RM-2005 6.5(5.5/2))?y?", Expr);
6148
6149            elsif Is_Limited_View (R_Type) then
6150               Error_Msg_N
6151                 ("return by reference not permitted in Ada 2005 "
6152                  & "(RM-2005 6.5(5.5/2))?y?", Expr);
6153            else
6154               Error_Msg_N
6155                 ("cannot copy object of a limited type in Ada 2005 "
6156                  & "(RM-2005 6.5(5.5/2))?y?", Expr);
6157            end if;
6158
6159         --  Ada 95 mode, and compatibility warnings disabled
6160
6161         else
6162            pragma Assert (Ada_Version <= Ada_95);
6163            pragma Assert (not (Warn_On_Ada_2005_Compatibility or GNAT_Mode));
6164            return; --  skip continuation messages below
6165         end if;
6166
6167         if not Inside_A_Generic then
6168            Error_Msg_N
6169              ("\consider switching to return of access type", Expr);
6170            Explain_Limited_Type (R_Type, Expr);
6171         end if;
6172      end if;
6173   end Check_Limited_Return;
6174
6175   ---------------------------
6176   -- Check_Mode_Conformant --
6177   ---------------------------
6178
6179   procedure Check_Mode_Conformant
6180     (New_Id   : Entity_Id;
6181      Old_Id   : Entity_Id;
6182      Err_Loc  : Node_Id := Empty;
6183      Get_Inst : Boolean := False)
6184   is
6185      Result : Boolean;
6186      pragma Warnings (Off, Result);
6187   begin
6188      Check_Conformance
6189        (New_Id, Old_Id, Mode_Conformant, True, Result, Err_Loc, Get_Inst);
6190   end Check_Mode_Conformant;
6191
6192   --------------------------------
6193   -- Check_Overriding_Indicator --
6194   --------------------------------
6195
6196   procedure Check_Overriding_Indicator
6197     (Subp            : Entity_Id;
6198      Overridden_Subp : Entity_Id;
6199      Is_Primitive    : Boolean)
6200   is
6201      Decl : Node_Id;
6202      Spec : Node_Id;
6203
6204   begin
6205      --  No overriding indicator for literals
6206
6207      if Ekind (Subp) = E_Enumeration_Literal then
6208         return;
6209
6210      elsif Ekind (Subp) = E_Entry then
6211         Decl := Parent (Subp);
6212
6213         --  No point in analyzing a malformed operator
6214
6215      elsif Nkind (Subp) = N_Defining_Operator_Symbol
6216        and then Error_Posted (Subp)
6217      then
6218         return;
6219
6220      else
6221         Decl := Unit_Declaration_Node (Subp);
6222      end if;
6223
6224      if Nkind_In (Decl, N_Subprogram_Body,
6225                         N_Subprogram_Body_Stub,
6226                         N_Subprogram_Declaration,
6227                         N_Abstract_Subprogram_Declaration,
6228                         N_Subprogram_Renaming_Declaration)
6229      then
6230         Spec := Specification (Decl);
6231
6232      elsif Nkind (Decl) = N_Entry_Declaration then
6233         Spec := Decl;
6234
6235      else
6236         return;
6237      end if;
6238
6239      --  The overriding operation is type conformant with the overridden one,
6240      --  but the names of the formals are not required to match. If the names
6241      --  appear permuted in the overriding operation, this is a possible
6242      --  source of confusion that is worth diagnosing. Controlling formals
6243      --  often carry names that reflect the type, and it is not worthwhile
6244      --  requiring that their names match.
6245
6246      if Present (Overridden_Subp)
6247        and then Nkind (Subp) /= N_Defining_Operator_Symbol
6248      then
6249         declare
6250            Form1 : Entity_Id;
6251            Form2 : Entity_Id;
6252
6253         begin
6254            Form1 := First_Formal (Subp);
6255            Form2 := First_Formal (Overridden_Subp);
6256
6257            --  If the overriding operation is a synchronized operation, skip
6258            --  the first parameter of the overridden operation, which is
6259            --  implicit in the new one. If the operation is declared in the
6260            --  body it is not primitive and all formals must match.
6261
6262            if Is_Concurrent_Type (Scope (Subp))
6263              and then Is_Tagged_Type (Scope (Subp))
6264              and then not Has_Completion (Scope (Subp))
6265            then
6266               Form2 := Next_Formal (Form2);
6267            end if;
6268
6269            if Present (Form1) then
6270               Form1 := Next_Formal (Form1);
6271               Form2 := Next_Formal (Form2);
6272            end if;
6273
6274            while Present (Form1) loop
6275               if not Is_Controlling_Formal (Form1)
6276                 and then Present (Next_Formal (Form2))
6277                 and then Chars (Form1) = Chars (Next_Formal (Form2))
6278               then
6279                  Error_Msg_Node_2 := Alias (Overridden_Subp);
6280                  Error_Msg_Sloc := Sloc (Error_Msg_Node_2);
6281                  Error_Msg_NE
6282                    ("& does not match corresponding formal of&#",
6283                     Form1, Form1);
6284                  exit;
6285               end if;
6286
6287               Next_Formal (Form1);
6288               Next_Formal (Form2);
6289            end loop;
6290         end;
6291      end if;
6292
6293      --  If there is an overridden subprogram, then check that there is no
6294      --  "not overriding" indicator, and mark the subprogram as overriding.
6295      --  This is not done if the overridden subprogram is marked as hidden,
6296      --  which can occur for the case of inherited controlled operations
6297      --  (see Derive_Subprogram), unless the inherited subprogram's parent
6298      --  subprogram is not itself hidden. (Note: This condition could probably
6299      --  be simplified, leaving out the testing for the specific controlled
6300      --  cases, but it seems safer and clearer this way, and echoes similar
6301      --  special-case tests of this kind in other places.)
6302
6303      if Present (Overridden_Subp)
6304        and then (not Is_Hidden (Overridden_Subp)
6305                   or else
6306                     (Nam_In (Chars (Overridden_Subp), Name_Initialize,
6307                                                       Name_Adjust,
6308                                                       Name_Finalize)
6309                      and then Present (Alias (Overridden_Subp))
6310                      and then not Is_Hidden (Alias (Overridden_Subp))))
6311      then
6312         if Must_Not_Override (Spec) then
6313            Error_Msg_Sloc := Sloc (Overridden_Subp);
6314
6315            if Ekind (Subp) = E_Entry then
6316               Error_Msg_NE
6317                 ("entry & overrides inherited operation #", Spec, Subp);
6318            else
6319               Error_Msg_NE
6320                 ("subprogram & overrides inherited operation #", Spec, Subp);
6321            end if;
6322
6323         --  Special-case to fix a GNAT oddity: Limited_Controlled is declared
6324         --  as an extension of Root_Controlled, and thus has a useless Adjust
6325         --  operation. This operation should not be inherited by other limited
6326         --  controlled types. An explicit Adjust for them is not overriding.
6327
6328         elsif Must_Override (Spec)
6329           and then Chars (Overridden_Subp) = Name_Adjust
6330           and then Is_Limited_Type (Etype (First_Formal (Subp)))
6331           and then Present (Alias (Overridden_Subp))
6332           and then In_Predefined_Unit (Alias (Overridden_Subp))
6333         then
6334            Get_Name_String
6335              (Unit_File_Name (Get_Source_Unit (Alias (Overridden_Subp))));
6336            Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
6337
6338         elsif Is_Subprogram (Subp) then
6339            if Is_Init_Proc (Subp) then
6340               null;
6341
6342            elsif No (Overridden_Operation (Subp)) then
6343
6344               --  For entities generated by Derive_Subprograms the overridden
6345               --  operation is the inherited primitive (which is available
6346               --  through the attribute alias)
6347
6348               if (Is_Dispatching_Operation (Subp)
6349                    or else Is_Dispatching_Operation (Overridden_Subp))
6350                 and then not Comes_From_Source (Overridden_Subp)
6351                 and then Find_Dispatching_Type (Overridden_Subp) =
6352                          Find_Dispatching_Type (Subp)
6353                 and then Present (Alias (Overridden_Subp))
6354                 and then Comes_From_Source (Alias (Overridden_Subp))
6355               then
6356                  Set_Overridden_Operation    (Subp, Alias (Overridden_Subp));
6357                  Inherit_Subprogram_Contract (Subp, Alias (Overridden_Subp));
6358
6359               else
6360                  Set_Overridden_Operation    (Subp, Overridden_Subp);
6361                  Inherit_Subprogram_Contract (Subp, Overridden_Subp);
6362               end if;
6363            end if;
6364         end if;
6365
6366         --  If primitive flag is set or this is a protected operation, then
6367         --  the operation is overriding at the point of its declaration, so
6368         --  warn if necessary. Otherwise it may have been declared before the
6369         --  operation it overrides and no check is required.
6370
6371         if Style_Check
6372           and then not Must_Override (Spec)
6373           and then (Is_Primitive
6374                      or else Ekind (Scope (Subp)) = E_Protected_Type)
6375         then
6376            Style.Missing_Overriding (Decl, Subp);
6377         end if;
6378
6379      --  If Subp is an operator, it may override a predefined operation, if
6380      --  it is defined in the same scope as the type to which it applies.
6381      --  In that case Overridden_Subp is empty because of our implicit
6382      --  representation for predefined operators. We have to check whether the
6383      --  signature of Subp matches that of a predefined operator. Note that
6384      --  first argument provides the name of the operator, and the second
6385      --  argument the signature that may match that of a standard operation.
6386      --  If the indicator is overriding, then the operator must match a
6387      --  predefined signature, because we know already that there is no
6388      --  explicit overridden operation.
6389
6390      elsif Nkind (Subp) = N_Defining_Operator_Symbol then
6391         if Must_Not_Override (Spec) then
6392
6393            --  If this is not a primitive or a protected subprogram, then
6394            --  "not overriding" is illegal.
6395
6396            if not Is_Primitive
6397              and then Ekind (Scope (Subp)) /= E_Protected_Type
6398            then
6399               Error_Msg_N ("overriding indicator only allowed "
6400                            & "if subprogram is primitive", Subp);
6401
6402            elsif Can_Override_Operator (Subp) then
6403               Error_Msg_NE
6404                 ("subprogram& overrides predefined operator ", Spec, Subp);
6405            end if;
6406
6407         elsif Must_Override (Spec) then
6408            if No (Overridden_Operation (Subp))
6409              and then not Can_Override_Operator (Subp)
6410            then
6411               Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
6412            end if;
6413
6414         elsif not Error_Posted (Subp)
6415           and then Style_Check
6416           and then Can_Override_Operator (Subp)
6417           and then not In_Predefined_Unit (Subp)
6418         then
6419            --  If style checks are enabled, indicate that the indicator is
6420            --  missing. However, at the point of declaration, the type of
6421            --  which this is a primitive operation may be private, in which
6422            --  case the indicator would be premature.
6423
6424            if Has_Private_Declaration (Etype (Subp))
6425              or else Has_Private_Declaration (Etype (First_Formal (Subp)))
6426            then
6427               null;
6428            else
6429               Style.Missing_Overriding (Decl, Subp);
6430            end if;
6431         end if;
6432
6433      elsif Must_Override (Spec) then
6434         if Ekind (Subp) = E_Entry then
6435            Error_Msg_NE ("entry & is not overriding", Spec, Subp);
6436         else
6437            Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
6438         end if;
6439
6440      --  If the operation is marked "not overriding" and it's not primitive
6441      --  then an error is issued, unless this is an operation of a task or
6442      --  protected type (RM05-8.3.1(3/2-4/2)). Error cases where "overriding"
6443      --  has been specified have already been checked above.
6444
6445      elsif Must_Not_Override (Spec)
6446        and then not Is_Primitive
6447        and then Ekind (Subp) /= E_Entry
6448        and then Ekind (Scope (Subp)) /= E_Protected_Type
6449      then
6450         Error_Msg_N
6451           ("overriding indicator only allowed if subprogram is primitive",
6452            Subp);
6453         return;
6454      end if;
6455   end Check_Overriding_Indicator;
6456
6457   -------------------
6458   -- Check_Returns --
6459   -------------------
6460
6461   --  Note: this procedure needs to know far too much about how the expander
6462   --  messes with exceptions. The use of the flag Exception_Junk and the
6463   --  incorporation of knowledge of Exp_Ch11.Expand_Local_Exception_Handlers
6464   --  works, but is not very clean. It would be better if the expansion
6465   --  routines would leave Original_Node working nicely, and we could use
6466   --  Original_Node here to ignore all the peculiar expander messing ???
6467
6468   procedure Check_Returns
6469     (HSS  : Node_Id;
6470      Mode : Character;
6471      Err  : out Boolean;
6472      Proc : Entity_Id := Empty)
6473   is
6474      Handler : Node_Id;
6475
6476      procedure Check_Statement_Sequence (L : List_Id);
6477      --  Internal recursive procedure to check a list of statements for proper
6478      --  termination by a return statement (or a transfer of control or a
6479      --  compound statement that is itself internally properly terminated).
6480
6481      ------------------------------
6482      -- Check_Statement_Sequence --
6483      ------------------------------
6484
6485      procedure Check_Statement_Sequence (L : List_Id) is
6486         Last_Stm : Node_Id;
6487         Stm      : Node_Id;
6488         Kind     : Node_Kind;
6489
6490         function Assert_False return Boolean;
6491         --  Returns True if Last_Stm is a pragma Assert (False) that has been
6492         --  rewritten as a null statement when assertions are off. The assert
6493         --  is not active, but it is still enough to kill the warning.
6494
6495         ------------------
6496         -- Assert_False --
6497         ------------------
6498
6499         function Assert_False return Boolean is
6500            Orig : constant Node_Id := Original_Node (Last_Stm);
6501
6502         begin
6503            if Nkind (Orig) = N_Pragma
6504              and then Pragma_Name (Orig) = Name_Assert
6505              and then not Error_Posted (Orig)
6506            then
6507               declare
6508                  Arg : constant Node_Id :=
6509                          First (Pragma_Argument_Associations (Orig));
6510                  Exp : constant Node_Id := Expression (Arg);
6511               begin
6512                  return Nkind (Exp) = N_Identifier
6513                    and then Chars (Exp) = Name_False;
6514               end;
6515
6516            else
6517               return False;
6518            end if;
6519         end Assert_False;
6520
6521         --  Local variables
6522
6523         Raise_Exception_Call : Boolean;
6524         --  Set True if statement sequence terminated by Raise_Exception call
6525         --  or a Reraise_Occurrence call.
6526
6527      --  Start of processing for Check_Statement_Sequence
6528
6529      begin
6530         Raise_Exception_Call := False;
6531
6532         --  Get last real statement
6533
6534         Last_Stm := Last (L);
6535
6536         --  Deal with digging out exception handler statement sequences that
6537         --  have been transformed by the local raise to goto optimization.
6538         --  See Exp_Ch11.Expand_Local_Exception_Handlers for details. If this
6539         --  optimization has occurred, we are looking at something like:
6540
6541         --  begin
6542         --     original stmts in block
6543
6544         --  exception            \
6545         --     when excep1 =>     |
6546         --        goto L1;        | omitted if No_Exception_Propagation
6547         --     when excep2 =>     |
6548         --        goto L2;       /
6549         --  end;
6550
6551         --  goto L3;      -- skip handler when exception not raised
6552
6553         --  <<L1>>        -- target label for local exception
6554         --     begin
6555         --        estmts1
6556         --     end;
6557
6558         --     goto L3;
6559
6560         --  <<L2>>
6561         --     begin
6562         --        estmts2
6563         --     end;
6564
6565         --  <<L3>>
6566
6567         --  and what we have to do is to dig out the estmts1 and estmts2
6568         --  sequences (which were the original sequences of statements in
6569         --  the exception handlers) and check them.
6570
6571         if Nkind (Last_Stm) = N_Label and then Exception_Junk (Last_Stm) then
6572            Stm := Last_Stm;
6573            loop
6574               Prev (Stm);
6575               exit when No (Stm);
6576               exit when Nkind (Stm) /= N_Block_Statement;
6577               exit when not Exception_Junk (Stm);
6578               Prev (Stm);
6579               exit when No (Stm);
6580               exit when Nkind (Stm) /= N_Label;
6581               exit when not Exception_Junk (Stm);
6582               Check_Statement_Sequence
6583                 (Statements (Handled_Statement_Sequence (Next (Stm))));
6584
6585               Prev (Stm);
6586               Last_Stm := Stm;
6587               exit when No (Stm);
6588               exit when Nkind (Stm) /= N_Goto_Statement;
6589               exit when not Exception_Junk (Stm);
6590            end loop;
6591         end if;
6592
6593         --  Don't count pragmas
6594
6595         while Nkind (Last_Stm) = N_Pragma
6596
6597         --  Don't count call to SS_Release (can happen after Raise_Exception)
6598
6599           or else
6600             (Nkind (Last_Stm) = N_Procedure_Call_Statement
6601                and then
6602              Nkind (Name (Last_Stm)) = N_Identifier
6603                and then
6604              Is_RTE (Entity (Name (Last_Stm)), RE_SS_Release))
6605
6606         --  Don't count exception junk
6607
6608           or else
6609             (Nkind_In (Last_Stm, N_Goto_Statement,
6610                                   N_Label,
6611                                   N_Object_Declaration)
6612               and then Exception_Junk (Last_Stm))
6613           or else Nkind (Last_Stm) in N_Push_xxx_Label
6614           or else Nkind (Last_Stm) in N_Pop_xxx_Label
6615
6616         --  Inserted code, such as finalization calls, is irrelevant: we only
6617         --  need to check original source.
6618
6619           or else Is_Rewrite_Insertion (Last_Stm)
6620         loop
6621            Prev (Last_Stm);
6622         end loop;
6623
6624         --  Here we have the "real" last statement
6625
6626         Kind := Nkind (Last_Stm);
6627
6628         --  Transfer of control, OK. Note that in the No_Return procedure
6629         --  case, we already diagnosed any explicit return statements, so
6630         --  we can treat them as OK in this context.
6631
6632         if Is_Transfer (Last_Stm) then
6633            return;
6634
6635         --  Check cases of explicit non-indirect procedure calls
6636
6637         elsif Kind = N_Procedure_Call_Statement
6638           and then Is_Entity_Name (Name (Last_Stm))
6639         then
6640            --  Check call to Raise_Exception procedure which is treated
6641            --  specially, as is a call to Reraise_Occurrence.
6642
6643            --  We suppress the warning in these cases since it is likely that
6644            --  the programmer really does not expect to deal with the case
6645            --  of Null_Occurrence, and thus would find a warning about a
6646            --  missing return curious, and raising Program_Error does not
6647            --  seem such a bad behavior if this does occur.
6648
6649            --  Note that in the Ada 2005 case for Raise_Exception, the actual
6650            --  behavior will be to raise Constraint_Error (see AI-329).
6651
6652            if Is_RTE (Entity (Name (Last_Stm)), RE_Raise_Exception)
6653                 or else
6654               Is_RTE (Entity (Name (Last_Stm)), RE_Reraise_Occurrence)
6655            then
6656               Raise_Exception_Call := True;
6657
6658               --  For Raise_Exception call, test first argument, if it is
6659               --  an attribute reference for a 'Identity call, then we know
6660               --  that the call cannot possibly return.
6661
6662               declare
6663                  Arg : constant Node_Id :=
6664                          Original_Node (First_Actual (Last_Stm));
6665               begin
6666                  if Nkind (Arg) = N_Attribute_Reference
6667                    and then Attribute_Name (Arg) = Name_Identity
6668                  then
6669                     return;
6670                  end if;
6671               end;
6672            end if;
6673
6674         --  If statement, need to look inside if there is an else and check
6675         --  each constituent statement sequence for proper termination.
6676
6677         elsif Kind = N_If_Statement
6678           and then Present (Else_Statements (Last_Stm))
6679         then
6680            Check_Statement_Sequence (Then_Statements (Last_Stm));
6681            Check_Statement_Sequence (Else_Statements (Last_Stm));
6682
6683            if Present (Elsif_Parts (Last_Stm)) then
6684               declare
6685                  Elsif_Part : Node_Id := First (Elsif_Parts (Last_Stm));
6686
6687               begin
6688                  while Present (Elsif_Part) loop
6689                     Check_Statement_Sequence (Then_Statements (Elsif_Part));
6690                     Next (Elsif_Part);
6691                  end loop;
6692               end;
6693            end if;
6694
6695            return;
6696
6697         --  Case statement, check each case for proper termination
6698
6699         elsif Kind = N_Case_Statement then
6700            declare
6701               Case_Alt : Node_Id;
6702            begin
6703               Case_Alt := First_Non_Pragma (Alternatives (Last_Stm));
6704               while Present (Case_Alt) loop
6705                  Check_Statement_Sequence (Statements (Case_Alt));
6706                  Next_Non_Pragma (Case_Alt);
6707               end loop;
6708            end;
6709
6710            return;
6711
6712         --  Block statement, check its handled sequence of statements
6713
6714         elsif Kind = N_Block_Statement then
6715            declare
6716               Err1 : Boolean;
6717
6718            begin
6719               Check_Returns
6720                 (Handled_Statement_Sequence (Last_Stm), Mode, Err1);
6721
6722               if Err1 then
6723                  Err := True;
6724               end if;
6725
6726               return;
6727            end;
6728
6729         --  Loop statement. If there is an iteration scheme, we can definitely
6730         --  fall out of the loop. Similarly if there is an exit statement, we
6731         --  can fall out. In either case we need a following return.
6732
6733         elsif Kind = N_Loop_Statement then
6734            if Present (Iteration_Scheme (Last_Stm))
6735              or else Has_Exit (Entity (Identifier (Last_Stm)))
6736            then
6737               null;
6738
6739            --  A loop with no exit statement or iteration scheme is either
6740            --  an infinite loop, or it has some other exit (raise/return).
6741            --  In either case, no warning is required.
6742
6743            else
6744               return;
6745            end if;
6746
6747         --  Timed entry call, check entry call and delay alternatives
6748
6749         --  Note: in expanded code, the timed entry call has been converted
6750         --  to a set of expanded statements on which the check will work
6751         --  correctly in any case.
6752
6753         elsif Kind = N_Timed_Entry_Call then
6754            declare
6755               ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
6756               DCA : constant Node_Id := Delay_Alternative      (Last_Stm);
6757
6758            begin
6759               --  If statement sequence of entry call alternative is missing,
6760               --  then we can definitely fall through, and we post the error
6761               --  message on the entry call alternative itself.
6762
6763               if No (Statements (ECA)) then
6764                  Last_Stm := ECA;
6765
6766               --  If statement sequence of delay alternative is missing, then
6767               --  we can definitely fall through, and we post the error
6768               --  message on the delay alternative itself.
6769
6770               --  Note: if both ECA and DCA are missing the return, then we
6771               --  post only one message, should be enough to fix the bugs.
6772               --  If not we will get a message next time on the DCA when the
6773               --  ECA is fixed.
6774
6775               elsif No (Statements (DCA)) then
6776                  Last_Stm := DCA;
6777
6778               --  Else check both statement sequences
6779
6780               else
6781                  Check_Statement_Sequence (Statements (ECA));
6782                  Check_Statement_Sequence (Statements (DCA));
6783                  return;
6784               end if;
6785            end;
6786
6787         --  Conditional entry call, check entry call and else part
6788
6789         --  Note: in expanded code, the conditional entry call has been
6790         --  converted to a set of expanded statements on which the check
6791         --  will work correctly in any case.
6792
6793         elsif Kind = N_Conditional_Entry_Call then
6794            declare
6795               ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
6796
6797            begin
6798               --  If statement sequence of entry call alternative is missing,
6799               --  then we can definitely fall through, and we post the error
6800               --  message on the entry call alternative itself.
6801
6802               if No (Statements (ECA)) then
6803                  Last_Stm := ECA;
6804
6805               --  Else check statement sequence and else part
6806
6807               else
6808                  Check_Statement_Sequence (Statements (ECA));
6809                  Check_Statement_Sequence (Else_Statements (Last_Stm));
6810                  return;
6811               end if;
6812            end;
6813         end if;
6814
6815         --  If we fall through, issue appropriate message
6816
6817         if Mode = 'F' then
6818
6819            --  Kill warning if last statement is a raise exception call,
6820            --  or a pragma Assert (False). Note that with assertions enabled,
6821            --  such a pragma has been converted into a raise exception call
6822            --  already, so the Assert_False is for the assertions off case.
6823
6824            if not Raise_Exception_Call and then not Assert_False then
6825
6826               --  In GNATprove mode, it is an error to have a missing return
6827
6828               Error_Msg_Warn := SPARK_Mode /= On;
6829
6830               --  Issue error message or warning
6831
6832               Error_Msg_N
6833                 ("RETURN statement missing following this statement<<!",
6834                  Last_Stm);
6835               Error_Msg_N
6836                 ("\Program_Error ]<<!", Last_Stm);
6837            end if;
6838
6839            --  Note: we set Err even though we have not issued a warning
6840            --  because we still have a case of a missing return. This is
6841            --  an extremely marginal case, probably will never be noticed
6842            --  but we might as well get it right.
6843
6844            Err := True;
6845
6846         --  Otherwise we have the case of a procedure marked No_Return
6847
6848         else
6849            if not Raise_Exception_Call then
6850               if GNATprove_Mode then
6851                  Error_Msg_N
6852                    ("implied return after this statement would have raised "
6853                     & "Program_Error", Last_Stm);
6854
6855               --  In normal compilation mode, do not warn on a generated call
6856               --  (e.g. in the body of a renaming as completion).
6857
6858               elsif Comes_From_Source (Last_Stm) then
6859                  Error_Msg_N
6860                    ("implied return after this statement will raise "
6861                     & "Program_Error??", Last_Stm);
6862               end if;
6863
6864               Error_Msg_Warn := SPARK_Mode /= On;
6865               Error_Msg_NE
6866                 ("\procedure & is marked as No_Return<<!", Last_Stm, Proc);
6867            end if;
6868
6869            declare
6870               RE : constant Node_Id :=
6871                      Make_Raise_Program_Error (Sloc (Last_Stm),
6872                        Reason => PE_Implicit_Return);
6873            begin
6874               Insert_After (Last_Stm, RE);
6875               Analyze (RE);
6876            end;
6877         end if;
6878      end Check_Statement_Sequence;
6879
6880   --  Start of processing for Check_Returns
6881
6882   begin
6883      Err := False;
6884      Check_Statement_Sequence (Statements (HSS));
6885
6886      if Present (Exception_Handlers (HSS)) then
6887         Handler := First_Non_Pragma (Exception_Handlers (HSS));
6888         while Present (Handler) loop
6889            Check_Statement_Sequence (Statements (Handler));
6890            Next_Non_Pragma (Handler);
6891         end loop;
6892      end if;
6893   end Check_Returns;
6894
6895   ----------------------------
6896   -- Check_Subprogram_Order --
6897   ----------------------------
6898
6899   procedure Check_Subprogram_Order (N : Node_Id) is
6900
6901      function Subprogram_Name_Greater (S1, S2 : String) return Boolean;
6902      --  This is used to check if S1 > S2 in the sense required by this test,
6903      --  for example nameab < namec, but name2 < name10.
6904
6905      -----------------------------
6906      -- Subprogram_Name_Greater --
6907      -----------------------------
6908
6909      function Subprogram_Name_Greater (S1, S2 : String) return Boolean is
6910         L1, L2 : Positive;
6911         N1, N2 : Natural;
6912
6913      begin
6914         --  Deal with special case where names are identical except for a
6915         --  numerical suffix. These are handled specially, taking the numeric
6916         --  ordering from the suffix into account.
6917
6918         L1 := S1'Last;
6919         while S1 (L1) in '0' .. '9' loop
6920            L1 := L1 - 1;
6921         end loop;
6922
6923         L2 := S2'Last;
6924         while S2 (L2) in '0' .. '9' loop
6925            L2 := L2 - 1;
6926         end loop;
6927
6928         --  If non-numeric parts non-equal, do straight compare
6929
6930         if S1 (S1'First .. L1) /= S2 (S2'First .. L2) then
6931            return S1 > S2;
6932
6933         --  If non-numeric parts equal, compare suffixed numeric parts. Note
6934         --  that a missing suffix is treated as numeric zero in this test.
6935
6936         else
6937            N1 := 0;
6938            while L1 < S1'Last loop
6939               L1 := L1 + 1;
6940               N1 := N1 * 10 + Character'Pos (S1 (L1)) - Character'Pos ('0');
6941            end loop;
6942
6943            N2 := 0;
6944            while L2 < S2'Last loop
6945               L2 := L2 + 1;
6946               N2 := N2 * 10 + Character'Pos (S2 (L2)) - Character'Pos ('0');
6947            end loop;
6948
6949            return N1 > N2;
6950         end if;
6951      end Subprogram_Name_Greater;
6952
6953   --  Start of processing for Check_Subprogram_Order
6954
6955   begin
6956      --  Check body in alpha order if this is option
6957
6958      if Style_Check
6959        and then Style_Check_Order_Subprograms
6960        and then Nkind (N) = N_Subprogram_Body
6961        and then Comes_From_Source (N)
6962        and then In_Extended_Main_Source_Unit (N)
6963      then
6964         declare
6965            LSN : String_Ptr
6966                    renames Scope_Stack.Table
6967                              (Scope_Stack.Last).Last_Subprogram_Name;
6968
6969            Body_Id : constant Entity_Id :=
6970                        Defining_Entity (Specification (N));
6971
6972         begin
6973            Get_Decoded_Name_String (Chars (Body_Id));
6974
6975            if LSN /= null then
6976               if Subprogram_Name_Greater
6977                    (LSN.all, Name_Buffer (1 .. Name_Len))
6978               then
6979                  Style.Subprogram_Not_In_Alpha_Order (Body_Id);
6980               end if;
6981
6982               Free (LSN);
6983            end if;
6984
6985            LSN := new String'(Name_Buffer (1 .. Name_Len));
6986         end;
6987      end if;
6988   end Check_Subprogram_Order;
6989
6990   ------------------------------
6991   -- Check_Subtype_Conformant --
6992   ------------------------------
6993
6994   procedure Check_Subtype_Conformant
6995     (New_Id                   : Entity_Id;
6996      Old_Id                   : Entity_Id;
6997      Err_Loc                  : Node_Id := Empty;
6998      Skip_Controlling_Formals : Boolean := False;
6999      Get_Inst                 : Boolean := False)
7000   is
7001      Result : Boolean;
7002      pragma Warnings (Off, Result);
7003   begin
7004      Check_Conformance
7005        (New_Id, Old_Id, Subtype_Conformant, True, Result, Err_Loc,
7006         Skip_Controlling_Formals => Skip_Controlling_Formals,
7007         Get_Inst                 => Get_Inst);
7008   end Check_Subtype_Conformant;
7009
7010   -----------------------------------
7011   -- Check_Synchronized_Overriding --
7012   -----------------------------------
7013
7014   procedure Check_Synchronized_Overriding
7015     (Def_Id          : Entity_Id;
7016      Overridden_Subp : out Entity_Id)
7017   is
7018      Ifaces_List : Elist_Id;
7019      In_Scope    : Boolean;
7020      Typ         : Entity_Id;
7021
7022      function Matches_Prefixed_View_Profile
7023        (Prim_Params  : List_Id;
7024         Iface_Params : List_Id) return Boolean;
7025      --  Determine whether a subprogram's parameter profile Prim_Params
7026      --  matches that of a potentially overridden interface subprogram
7027      --  Iface_Params. Also determine if the type of first parameter of
7028      --  Iface_Params is an implemented interface.
7029
7030      -----------------------------------
7031      -- Matches_Prefixed_View_Profile --
7032      -----------------------------------
7033
7034      function Matches_Prefixed_View_Profile
7035        (Prim_Params  : List_Id;
7036         Iface_Params : List_Id) return Boolean
7037      is
7038         function Is_Implemented
7039           (Ifaces_List : Elist_Id;
7040            Iface       : Entity_Id) return Boolean;
7041         --  Determine if Iface is implemented by the current task or
7042         --  protected type.
7043
7044         --------------------
7045         -- Is_Implemented --
7046         --------------------
7047
7048         function Is_Implemented
7049           (Ifaces_List : Elist_Id;
7050            Iface       : Entity_Id) return Boolean
7051         is
7052            Iface_Elmt : Elmt_Id;
7053
7054         begin
7055            Iface_Elmt := First_Elmt (Ifaces_List);
7056            while Present (Iface_Elmt) loop
7057               if Node (Iface_Elmt) = Iface then
7058                  return True;
7059               end if;
7060
7061               Next_Elmt (Iface_Elmt);
7062            end loop;
7063
7064            return False;
7065         end Is_Implemented;
7066
7067         --  Local variables
7068
7069         Iface_Id     : Entity_Id;
7070         Iface_Param  : Node_Id;
7071         Iface_Typ    : Entity_Id;
7072         Prim_Id      : Entity_Id;
7073         Prim_Param   : Node_Id;
7074         Prim_Typ     : Entity_Id;
7075
7076      --  Start of processing for Matches_Prefixed_View_Profile
7077
7078      begin
7079         Iface_Param := First (Iface_Params);
7080         Iface_Typ   := Etype (Defining_Identifier (Iface_Param));
7081
7082         if Is_Access_Type (Iface_Typ) then
7083            Iface_Typ := Designated_Type (Iface_Typ);
7084         end if;
7085
7086         Prim_Param := First (Prim_Params);
7087
7088         --  The first parameter of the potentially overridden subprogram must
7089         --  be an interface implemented by Prim.
7090
7091         if not Is_Interface (Iface_Typ)
7092           or else not Is_Implemented (Ifaces_List, Iface_Typ)
7093         then
7094            return False;
7095         end if;
7096
7097         --  The checks on the object parameters are done, so move on to the
7098         --  rest of the parameters.
7099
7100         if not In_Scope then
7101            Prim_Param := Next (Prim_Param);
7102         end if;
7103
7104         Iface_Param := Next (Iface_Param);
7105         while Present (Iface_Param) and then Present (Prim_Param) loop
7106            Iface_Id  := Defining_Identifier (Iface_Param);
7107            Iface_Typ := Find_Parameter_Type (Iface_Param);
7108
7109            Prim_Id  := Defining_Identifier (Prim_Param);
7110            Prim_Typ := Find_Parameter_Type (Prim_Param);
7111
7112            if Ekind (Iface_Typ) = E_Anonymous_Access_Type
7113              and then Ekind (Prim_Typ) = E_Anonymous_Access_Type
7114              and then Is_Concurrent_Type (Designated_Type (Prim_Typ))
7115            then
7116               Iface_Typ := Designated_Type (Iface_Typ);
7117               Prim_Typ  := Designated_Type (Prim_Typ);
7118            end if;
7119
7120            --  Case of multiple interface types inside a parameter profile
7121
7122            --     (Obj_Param : in out Iface; ...; Param : Iface)
7123
7124            --  If the interface type is implemented, then the matching type in
7125            --  the primitive should be the implementing record type.
7126
7127            if Ekind (Iface_Typ) = E_Record_Type
7128              and then Is_Interface (Iface_Typ)
7129              and then Is_Implemented (Ifaces_List, Iface_Typ)
7130            then
7131               if Prim_Typ /= Typ then
7132                  return False;
7133               end if;
7134
7135            --  The two parameters must be both mode and subtype conformant
7136
7137            elsif Ekind (Iface_Id) /= Ekind (Prim_Id)
7138              or else not
7139                Conforming_Types (Iface_Typ, Prim_Typ, Subtype_Conformant)
7140            then
7141               return False;
7142            end if;
7143
7144            Next (Iface_Param);
7145            Next (Prim_Param);
7146         end loop;
7147
7148         --  One of the two lists contains more parameters than the other
7149
7150         if Present (Iface_Param) or else Present (Prim_Param) then
7151            return False;
7152         end if;
7153
7154         return True;
7155      end Matches_Prefixed_View_Profile;
7156
7157   --  Start of processing for Check_Synchronized_Overriding
7158
7159   begin
7160      Overridden_Subp := Empty;
7161
7162      --  Def_Id must be an entry or a subprogram. We should skip predefined
7163      --  primitives internally generated by the front end; however at this
7164      --  stage predefined primitives are still not fully decorated. As a
7165      --  minor optimization we skip here internally generated subprograms.
7166
7167      if (Ekind (Def_Id) /= E_Entry
7168           and then Ekind (Def_Id) /= E_Function
7169           and then Ekind (Def_Id) /= E_Procedure)
7170        or else not Comes_From_Source (Def_Id)
7171      then
7172         return;
7173      end if;
7174
7175      --  Search for the concurrent declaration since it contains the list of
7176      --  all implemented interfaces. In this case, the subprogram is declared
7177      --  within the scope of a protected or a task type.
7178
7179      if Present (Scope (Def_Id))
7180        and then Is_Concurrent_Type (Scope (Def_Id))
7181        and then not Is_Generic_Actual_Type (Scope (Def_Id))
7182      then
7183         Typ := Scope (Def_Id);
7184         In_Scope := True;
7185
7186      --  The enclosing scope is not a synchronized type and the subprogram
7187      --  has no formals.
7188
7189      elsif No (First_Formal (Def_Id)) then
7190         return;
7191
7192      --  The subprogram has formals and hence it may be a primitive of a
7193      --  concurrent type.
7194
7195      else
7196         Typ := Etype (First_Formal (Def_Id));
7197
7198         if Is_Access_Type (Typ) then
7199            Typ := Directly_Designated_Type (Typ);
7200         end if;
7201
7202         if Is_Concurrent_Type (Typ)
7203           and then not Is_Generic_Actual_Type (Typ)
7204         then
7205            In_Scope := False;
7206
7207         --  This case occurs when the concurrent type is declared within a
7208         --  generic unit. As a result the corresponding record has been built
7209         --  and used as the type of the first formal, we just have to retrieve
7210         --  the corresponding concurrent type.
7211
7212         elsif Is_Concurrent_Record_Type (Typ)
7213           and then not Is_Class_Wide_Type (Typ)
7214           and then Present (Corresponding_Concurrent_Type (Typ))
7215         then
7216            Typ := Corresponding_Concurrent_Type (Typ);
7217            In_Scope := False;
7218
7219         else
7220            return;
7221         end if;
7222      end if;
7223
7224      --  There is no overriding to check if this is an inherited operation in
7225      --  a type derivation for a generic actual.
7226
7227      Collect_Interfaces (Typ, Ifaces_List);
7228
7229      if Is_Empty_Elmt_List (Ifaces_List) then
7230         return;
7231      end if;
7232
7233      --  Determine whether entry or subprogram Def_Id overrides a primitive
7234      --  operation that belongs to one of the interfaces in Ifaces_List.
7235
7236      declare
7237         Candidate : Entity_Id := Empty;
7238         Hom       : Entity_Id := Empty;
7239         Subp      : Entity_Id := Empty;
7240
7241      begin
7242         --  Traverse the homonym chain, looking for a potentially overridden
7243         --  subprogram that belongs to an implemented interface.
7244
7245         Hom := Current_Entity_In_Scope (Def_Id);
7246         while Present (Hom) loop
7247            Subp := Hom;
7248
7249            if Subp = Def_Id
7250              or else not Is_Overloadable (Subp)
7251              or else not Is_Primitive (Subp)
7252              or else not Is_Dispatching_Operation (Subp)
7253              or else not Present (Find_Dispatching_Type (Subp))
7254              or else not Is_Interface (Find_Dispatching_Type (Subp))
7255            then
7256               null;
7257
7258            --  Entries and procedures can override abstract or null interface
7259            --  procedures.
7260
7261            elsif Ekind_In (Def_Id, E_Entry, E_Procedure)
7262              and then Ekind (Subp) = E_Procedure
7263              and then Matches_Prefixed_View_Profile
7264                         (Parameter_Specifications (Parent (Def_Id)),
7265                          Parameter_Specifications (Parent (Subp)))
7266            then
7267               Candidate := Subp;
7268
7269               --  For an overridden subprogram Subp, check whether the mode
7270               --  of its first parameter is correct depending on the kind of
7271               --  synchronized type.
7272
7273               declare
7274                  Formal : constant Node_Id := First_Formal (Candidate);
7275
7276               begin
7277                  --  In order for an entry or a protected procedure to
7278                  --  override, the first parameter of the overridden routine
7279                  --  must be of mode "out", "in out", or access-to-variable.
7280
7281                  if Ekind_In (Candidate, E_Entry, E_Procedure)
7282                    and then Is_Protected_Type (Typ)
7283                    and then Ekind (Formal) /= E_In_Out_Parameter
7284                    and then Ekind (Formal) /= E_Out_Parameter
7285                    and then Nkind (Parameter_Type (Parent (Formal))) /=
7286                                                       N_Access_Definition
7287                  then
7288                     null;
7289
7290                  --  All other cases are OK since a task entry or routine does
7291                  --  not have a restriction on the mode of the first parameter
7292                  --  of the overridden interface routine.
7293
7294                  else
7295                     Overridden_Subp := Candidate;
7296                     return;
7297                  end if;
7298               end;
7299
7300            --  Functions can override abstract interface functions. Return
7301            --  types must be subtype conformant.
7302
7303            elsif Ekind (Def_Id) = E_Function
7304              and then Ekind (Subp) = E_Function
7305              and then Matches_Prefixed_View_Profile
7306                         (Parameter_Specifications (Parent (Def_Id)),
7307                          Parameter_Specifications (Parent (Subp)))
7308              and then Conforming_Types
7309                         (Etype (Def_Id), Etype (Subp), Subtype_Conformant)
7310            then
7311               Candidate := Subp;
7312
7313               --  If an inherited subprogram is implemented by a protected
7314               --  function, then the first parameter of the inherited
7315               --  subprogram shall be of mode in, but not an access-to-
7316               --  variable parameter (RM 9.4(11/9)).
7317
7318               if Present (First_Formal (Subp))
7319                 and then Ekind (First_Formal (Subp)) = E_In_Parameter
7320                 and then
7321                   (not Is_Access_Type (Etype (First_Formal (Subp)))
7322                      or else
7323                    Is_Access_Constant (Etype (First_Formal (Subp))))
7324               then
7325                  Overridden_Subp := Subp;
7326                  return;
7327               end if;
7328            end if;
7329
7330            Hom := Homonym (Hom);
7331         end loop;
7332
7333         --  After examining all candidates for overriding, we are left with
7334         --  the best match, which is a mode-incompatible interface routine.
7335
7336         if In_Scope and then Present (Candidate) then
7337            Error_Msg_PT (Def_Id, Candidate);
7338         end if;
7339
7340         Overridden_Subp := Candidate;
7341         return;
7342      end;
7343   end Check_Synchronized_Overriding;
7344
7345   ---------------------------
7346   -- Check_Type_Conformant --
7347   ---------------------------
7348
7349   procedure Check_Type_Conformant
7350     (New_Id  : Entity_Id;
7351      Old_Id  : Entity_Id;
7352      Err_Loc : Node_Id := Empty)
7353   is
7354      Result : Boolean;
7355      pragma Warnings (Off, Result);
7356   begin
7357      Check_Conformance
7358        (New_Id, Old_Id, Type_Conformant, True, Result, Err_Loc);
7359   end Check_Type_Conformant;
7360
7361   ---------------------------
7362   -- Can_Override_Operator --
7363   ---------------------------
7364
7365   function Can_Override_Operator (Subp : Entity_Id) return Boolean is
7366      Typ : Entity_Id;
7367
7368   begin
7369      if Nkind (Subp) /= N_Defining_Operator_Symbol then
7370         return False;
7371
7372      else
7373         Typ := Base_Type (Etype (First_Formal (Subp)));
7374
7375         --  Check explicitly that the operation is a primitive of the type
7376
7377         return Operator_Matches_Spec (Subp, Subp)
7378           and then not Is_Generic_Type (Typ)
7379           and then Scope (Subp) = Scope (Typ)
7380           and then not Is_Class_Wide_Type (Typ);
7381      end if;
7382   end Can_Override_Operator;
7383
7384   ----------------------
7385   -- Conforming_Types --
7386   ----------------------
7387
7388   function Conforming_Types
7389     (T1       : Entity_Id;
7390      T2       : Entity_Id;
7391      Ctype    : Conformance_Type;
7392      Get_Inst : Boolean := False) return Boolean
7393   is
7394      function Base_Types_Match
7395        (Typ_1 : Entity_Id;
7396         Typ_2 : Entity_Id) return Boolean;
7397      --  If neither Typ_1 nor Typ_2 are generic actual types, or if they are
7398      --  in different scopes (e.g. parent and child instances), then verify
7399      --  that the base types are equal. Otherwise Typ_1 and Typ_2 must be on
7400      --  the same subtype chain. The whole purpose of this procedure is to
7401      --  prevent spurious ambiguities in an instantiation that may arise if
7402      --  two distinct generic types are instantiated with the same actual.
7403
7404      function Find_Designated_Type (Typ : Entity_Id) return Entity_Id;
7405      --  An access parameter can designate an incomplete type. If the
7406      --  incomplete type is the limited view of a type from a limited_
7407      --  with_clause, check whether the non-limited view is available.
7408      --  If it is a (non-limited) incomplete type, get the full view.
7409
7410      function Matches_Limited_With_View
7411        (Typ_1 : Entity_Id;
7412         Typ_2 : Entity_Id) return Boolean;
7413      --  Returns True if and only if either Typ_1 denotes a limited view of
7414      --  Typ_2 or Typ_2 denotes a limited view of Typ_1. This can arise when
7415      --  the limited with view of a type is used in a subprogram declaration
7416      --  and the subprogram body is in the scope of a regular with clause for
7417      --  the same unit. In such a case, the two type entities are considered
7418      --  identical for purposes of conformance checking.
7419
7420      ----------------------
7421      -- Base_Types_Match --
7422      ----------------------
7423
7424      function Base_Types_Match
7425        (Typ_1 : Entity_Id;
7426         Typ_2 : Entity_Id) return Boolean
7427      is
7428         Base_1 : constant Entity_Id := Base_Type (Typ_1);
7429         Base_2 : constant Entity_Id := Base_Type (Typ_2);
7430
7431      begin
7432         if Typ_1 = Typ_2 then
7433            return True;
7434
7435         elsif Base_1 = Base_2 then
7436
7437            --  The following is too permissive. A more precise test should
7438            --  check that the generic actual is an ancestor subtype of the
7439            --  other ???.
7440
7441            --  See code in Find_Corresponding_Spec that applies an additional
7442            --  filter to handle accidental amiguities in instances.
7443
7444            return
7445              not Is_Generic_Actual_Type (Typ_1)
7446                or else not Is_Generic_Actual_Type (Typ_2)
7447                or else Scope (Typ_1) /= Scope (Typ_2);
7448
7449         --  If Typ_2 is a generic actual type it is declared as the subtype of
7450         --  the actual. If that actual is itself a subtype we need to use its
7451         --  own base type to check for compatibility.
7452
7453         elsif Ekind (Base_2) = Ekind (Typ_2)
7454           and then Base_1 = Base_Type (Base_2)
7455         then
7456            return True;
7457
7458         elsif Ekind (Base_1) = Ekind (Typ_1)
7459           and then Base_2 = Base_Type (Base_1)
7460         then
7461            return True;
7462
7463         else
7464            return False;
7465         end if;
7466      end Base_Types_Match;
7467
7468      --------------------------
7469      -- Find_Designated_Type --
7470      --------------------------
7471
7472      function Find_Designated_Type (Typ : Entity_Id) return Entity_Id is
7473         Desig : Entity_Id;
7474
7475      begin
7476         Desig := Directly_Designated_Type (Typ);
7477
7478         if Ekind (Desig) = E_Incomplete_Type then
7479
7480            --  If regular incomplete type, get full view if available
7481
7482            if Present (Full_View (Desig)) then
7483               Desig := Full_View (Desig);
7484
7485            --  If limited view of a type, get non-limited view if available,
7486            --  and check again for a regular incomplete type.
7487
7488            elsif Present (Non_Limited_View (Desig)) then
7489               Desig := Get_Full_View (Non_Limited_View (Desig));
7490            end if;
7491         end if;
7492
7493         return Desig;
7494      end Find_Designated_Type;
7495
7496      -------------------------------
7497      -- Matches_Limited_With_View --
7498      -------------------------------
7499
7500      function Matches_Limited_With_View
7501        (Typ_1 : Entity_Id;
7502         Typ_2 : Entity_Id) return Boolean
7503      is
7504         function Is_Matching_Limited_View
7505           (Typ  : Entity_Id;
7506            View : Entity_Id) return Boolean;
7507         --  Determine whether non-limited view View denotes type Typ in some
7508         --  conformant fashion.
7509
7510         ------------------------------
7511         -- Is_Matching_Limited_View --
7512         ------------------------------
7513
7514         function Is_Matching_Limited_View
7515           (Typ  : Entity_Id;
7516            View : Entity_Id) return Boolean
7517         is
7518            Root_Typ  : Entity_Id;
7519            Root_View : Entity_Id;
7520
7521         begin
7522            --  The non-limited view directly denotes the type
7523
7524            if Typ = View then
7525               return True;
7526
7527            --  The type is a subtype of the non-limited view
7528
7529            elsif Is_Subtype_Of (Typ, View) then
7530               return True;
7531
7532            --  Both the non-limited view and the type denote class-wide types
7533
7534            elsif Is_Class_Wide_Type (Typ)
7535              and then Is_Class_Wide_Type (View)
7536            then
7537               Root_Typ  := Root_Type (Typ);
7538               Root_View := Root_Type (View);
7539
7540               if Root_Typ = Root_View then
7541                  return True;
7542
7543               --  An incomplete tagged type and its full view may receive two
7544               --  distinct class-wide types when the related package has not
7545               --  been analyzed yet.
7546
7547               --    package Pack is
7548               --       type T is tagged;              --  CW_1
7549               --       type T is tagged null record;  --  CW_2
7550               --    end Pack;
7551
7552               --  This is because the package lacks any semantic information
7553               --  that may eventually link both views of T. As a consequence,
7554               --  a client of the limited view of Pack will see CW_2 while a
7555               --  client of the non-limited view of Pack will see CW_1.
7556
7557               elsif Is_Incomplete_Type (Root_Typ)
7558                 and then Present (Full_View (Root_Typ))
7559                 and then Full_View (Root_Typ) = Root_View
7560               then
7561                  return True;
7562
7563               elsif Is_Incomplete_Type (Root_View)
7564                 and then Present (Full_View (Root_View))
7565                 and then Full_View (Root_View) = Root_Typ
7566               then
7567                  return True;
7568               end if;
7569            end if;
7570
7571            return False;
7572         end Is_Matching_Limited_View;
7573
7574      --  Start of processing for Matches_Limited_With_View
7575
7576      begin
7577         --  In some cases a type imported through a limited_with clause, and
7578         --  its non-limited view are both visible, for example in an anonymous
7579         --  access-to-class-wide type in a formal, or when building the body
7580         --  for a subprogram renaming after the subprogram has been frozen.
7581         --  In these cases both entities designate the same type. In addition,
7582         --  if one of them is an actual in an instance, it may be a subtype of
7583         --  the non-limited view of the other.
7584
7585         if From_Limited_With (Typ_1)
7586           and then From_Limited_With (Typ_2)
7587           and then Available_View (Typ_1) = Available_View (Typ_2)
7588         then
7589            return True;
7590
7591         elsif From_Limited_With (Typ_1) then
7592            return Is_Matching_Limited_View (Typ_2, Available_View (Typ_1));
7593
7594         elsif From_Limited_With (Typ_2) then
7595            return Is_Matching_Limited_View (Typ_1, Available_View (Typ_2));
7596
7597         else
7598            return False;
7599         end if;
7600      end Matches_Limited_With_View;
7601
7602      --  Local variables
7603
7604      Are_Anonymous_Access_To_Subprogram_Types : Boolean := False;
7605
7606      Type_1 : Entity_Id := T1;
7607      Type_2 : Entity_Id := T2;
7608
7609   --  Start of processing for Conforming_Types
7610
7611   begin
7612      --  The context is an instance association for a formal access-to-
7613      --  subprogram type; the formal parameter types require mapping because
7614      --  they may denote other formal parameters of the generic unit.
7615
7616      if Get_Inst then
7617         Type_1 := Get_Instance_Of (T1);
7618         Type_2 := Get_Instance_Of (T2);
7619      end if;
7620
7621      --  If one of the types is a view of the other introduced by a limited
7622      --  with clause, treat these as conforming for all purposes.
7623
7624      if Matches_Limited_With_View (T1, T2) then
7625         return True;
7626
7627      elsif Base_Types_Match (Type_1, Type_2) then
7628         if Ctype <= Mode_Conformant then
7629            return True;
7630
7631         else
7632            return
7633              Subtypes_Statically_Match (Type_1, Type_2)
7634                and then Dimensions_Match (Type_1, Type_2);
7635         end if;
7636
7637      elsif Is_Incomplete_Or_Private_Type (Type_1)
7638        and then Present (Full_View (Type_1))
7639        and then Base_Types_Match (Full_View (Type_1), Type_2)
7640      then
7641         return
7642           Ctype <= Mode_Conformant
7643             or else Subtypes_Statically_Match (Full_View (Type_1), Type_2);
7644
7645      elsif Ekind (Type_2) = E_Incomplete_Type
7646        and then Present (Full_View (Type_2))
7647        and then Base_Types_Match (Type_1, Full_View (Type_2))
7648      then
7649         return
7650           Ctype <= Mode_Conformant
7651             or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
7652
7653      elsif Is_Private_Type (Type_2)
7654        and then In_Instance
7655        and then Present (Full_View (Type_2))
7656        and then Base_Types_Match (Type_1, Full_View (Type_2))
7657      then
7658         return
7659           Ctype <= Mode_Conformant
7660             or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
7661
7662      --  Another confusion between views in a nested instance with an
7663      --  actual private type whose full view is not in scope.
7664
7665      elsif Ekind (Type_2) = E_Private_Subtype
7666        and then In_Instance
7667        and then Etype (Type_2) = Type_1
7668      then
7669         return True;
7670
7671      --  In Ada 2012, incomplete types (including limited views) can appear
7672      --  as actuals in instantiations, where they are conformant to the
7673      --  corresponding incomplete formal.
7674
7675      elsif Is_Incomplete_Type (Type_1)
7676        and then Is_Incomplete_Type (Type_2)
7677        and then In_Instance
7678        and then (Used_As_Generic_Actual (Type_1)
7679                   or else Used_As_Generic_Actual (Type_2))
7680      then
7681         return True;
7682      end if;
7683
7684      --  Ada 2005 (AI-254): Anonymous access-to-subprogram types must be
7685      --  treated recursively because they carry a signature. As far as
7686      --  conformance is concerned, convention plays no role, and either
7687      --  or both could be access to protected subprograms.
7688
7689      Are_Anonymous_Access_To_Subprogram_Types :=
7690        Ekind_In (Type_1, E_Anonymous_Access_Subprogram_Type,
7691                          E_Anonymous_Access_Protected_Subprogram_Type)
7692          and then
7693        Ekind_In (Type_2, E_Anonymous_Access_Subprogram_Type,
7694                          E_Anonymous_Access_Protected_Subprogram_Type);
7695
7696      --  Test anonymous access type case. For this case, static subtype
7697      --  matching is required for mode conformance (RM 6.3.1(15)). We check
7698      --  the base types because we may have built internal subtype entities
7699      --  to handle null-excluding types (see Process_Formals).
7700
7701      if (Ekind (Base_Type (Type_1)) = E_Anonymous_Access_Type
7702            and then
7703          Ekind (Base_Type (Type_2)) = E_Anonymous_Access_Type)
7704
7705        -- Ada 2005 (AI-254)
7706
7707        or else Are_Anonymous_Access_To_Subprogram_Types
7708      then
7709         declare
7710            Desig_1 : Entity_Id;
7711            Desig_2 : Entity_Id;
7712
7713         begin
7714            --  In Ada 2005, access constant indicators must match for
7715            --  subtype conformance.
7716
7717            if Ada_Version >= Ada_2005
7718              and then Ctype >= Subtype_Conformant
7719              and then
7720                Is_Access_Constant (Type_1) /= Is_Access_Constant (Type_2)
7721            then
7722               return False;
7723            end if;
7724
7725            Desig_1 := Find_Designated_Type (Type_1);
7726            Desig_2 := Find_Designated_Type (Type_2);
7727
7728            --  If the context is an instance association for a formal
7729            --  access-to-subprogram type; formal access parameter designated
7730            --  types require mapping because they may denote other formal
7731            --  parameters of the generic unit.
7732
7733            if Get_Inst then
7734               Desig_1 := Get_Instance_Of (Desig_1);
7735               Desig_2 := Get_Instance_Of (Desig_2);
7736            end if;
7737
7738            --  It is possible for a Class_Wide_Type to be introduced for an
7739            --  incomplete type, in which case there is a separate class_ wide
7740            --  type for the full view. The types conform if their Etypes
7741            --  conform, i.e. one may be the full view of the other. This can
7742            --  only happen in the context of an access parameter, other uses
7743            --  of an incomplete Class_Wide_Type are illegal.
7744
7745            if Is_Class_Wide_Type (Desig_1)
7746                 and then
7747               Is_Class_Wide_Type (Desig_2)
7748            then
7749               return
7750                 Conforming_Types
7751                   (Etype (Base_Type (Desig_1)),
7752                    Etype (Base_Type (Desig_2)), Ctype);
7753
7754            elsif Are_Anonymous_Access_To_Subprogram_Types then
7755               if Ada_Version < Ada_2005 then
7756                  return
7757                    Ctype = Type_Conformant
7758                      or else Subtypes_Statically_Match (Desig_1, Desig_2);
7759
7760               --  We must check the conformance of the signatures themselves
7761
7762               else
7763                  declare
7764                     Conformant : Boolean;
7765                  begin
7766                     Check_Conformance
7767                       (Desig_1, Desig_2, Ctype, False, Conformant);
7768                     return Conformant;
7769                  end;
7770               end if;
7771
7772            --  A limited view of an actual matches the corresponding
7773            --  incomplete formal.
7774
7775            elsif Ekind (Desig_2) = E_Incomplete_Subtype
7776              and then From_Limited_With (Desig_2)
7777              and then Used_As_Generic_Actual (Etype (Desig_2))
7778            then
7779               return True;
7780
7781            else
7782               return Base_Type (Desig_1) = Base_Type (Desig_2)
7783                and then (Ctype = Type_Conformant
7784                           or else
7785                             Subtypes_Statically_Match (Desig_1, Desig_2));
7786            end if;
7787         end;
7788
7789      --  Otherwise definitely no match
7790
7791      else
7792         if ((Ekind (Type_1) = E_Anonymous_Access_Type
7793               and then Is_Access_Type (Type_2))
7794            or else (Ekind (Type_2) = E_Anonymous_Access_Type
7795                      and then Is_Access_Type (Type_1)))
7796           and then
7797             Conforming_Types
7798               (Designated_Type (Type_1), Designated_Type (Type_2), Ctype)
7799         then
7800            May_Hide_Profile := True;
7801         end if;
7802
7803         return False;
7804      end if;
7805   end Conforming_Types;
7806
7807   --------------------------
7808   -- Create_Extra_Formals --
7809   --------------------------
7810
7811   procedure Create_Extra_Formals (E : Entity_Id) is
7812      First_Extra : Entity_Id := Empty;
7813      Formal      : Entity_Id;
7814      Last_Extra  : Entity_Id := Empty;
7815
7816      function Add_Extra_Formal
7817        (Assoc_Entity : Entity_Id;
7818         Typ          : Entity_Id;
7819         Scope        : Entity_Id;
7820         Suffix       : String) return Entity_Id;
7821      --  Add an extra formal to the current list of formals and extra formals.
7822      --  The extra formal is added to the end of the list of extra formals,
7823      --  and also returned as the result. These formals are always of mode IN.
7824      --  The new formal has the type Typ, is declared in Scope, and its name
7825      --  is given by a concatenation of the name of Assoc_Entity and Suffix.
7826      --  The following suffixes are currently used. They should not be changed
7827      --  without coordinating with CodePeer, which makes use of these to
7828      --  provide better messages.
7829
7830      --  O denotes the Constrained bit.
7831      --  L denotes the accessibility level.
7832      --  BIP_xxx denotes an extra formal for a build-in-place function. See
7833      --  the full list in exp_ch6.BIP_Formal_Kind.
7834
7835      ----------------------
7836      -- Add_Extra_Formal --
7837      ----------------------
7838
7839      function Add_Extra_Formal
7840        (Assoc_Entity : Entity_Id;
7841         Typ          : Entity_Id;
7842         Scope        : Entity_Id;
7843         Suffix       : String) return Entity_Id
7844      is
7845         EF : constant Entity_Id :=
7846                Make_Defining_Identifier (Sloc (Assoc_Entity),
7847                  Chars  => New_External_Name (Chars (Assoc_Entity),
7848                                               Suffix => Suffix));
7849
7850      begin
7851         --  A little optimization. Never generate an extra formal for the
7852         --  _init operand of an initialization procedure, since it could
7853         --  never be used.
7854
7855         if Chars (Formal) = Name_uInit then
7856            return Empty;
7857         end if;
7858
7859         Set_Ekind           (EF, E_In_Parameter);
7860         Set_Actual_Subtype  (EF, Typ);
7861         Set_Etype           (EF, Typ);
7862         Set_Scope           (EF, Scope);
7863         Set_Mechanism       (EF, Default_Mechanism);
7864         Set_Formal_Validity (EF);
7865
7866         if No (First_Extra) then
7867            First_Extra := EF;
7868            Set_Extra_Formals (Scope, EF);
7869         end if;
7870
7871         if Present (Last_Extra) then
7872            Set_Extra_Formal (Last_Extra, EF);
7873         end if;
7874
7875         Last_Extra := EF;
7876
7877         return EF;
7878      end Add_Extra_Formal;
7879
7880      --  Local variables
7881
7882      Formal_Type : Entity_Id;
7883      P_Formal    : Entity_Id := Empty;
7884
7885   --  Start of processing for Create_Extra_Formals
7886
7887   begin
7888      --  We never generate extra formals if expansion is not active because we
7889      --  don't need them unless we are generating code.
7890
7891      if not Expander_Active then
7892         return;
7893      end if;
7894
7895      --  No need to generate extra formals in interface thunks whose target
7896      --  primitive has no extra formals.
7897
7898      if Is_Thunk (E) and then No (Extra_Formals (Thunk_Entity (E))) then
7899         return;
7900      end if;
7901
7902      --  If this is a derived subprogram then the subtypes of the parent
7903      --  subprogram's formal parameters will be used to determine the need
7904      --  for extra formals.
7905
7906      if Is_Overloadable (E) and then Present (Alias (E)) then
7907         P_Formal := First_Formal (Alias (E));
7908      end if;
7909
7910      Formal := First_Formal (E);
7911      while Present (Formal) loop
7912         Last_Extra := Formal;
7913         Next_Formal (Formal);
7914      end loop;
7915
7916      --  If Extra_Formals were already created, don't do it again. This
7917      --  situation may arise for subprogram types created as part of
7918      --  dispatching calls (see Expand_Dispatching_Call).
7919
7920      if Present (Last_Extra) and then Present (Extra_Formal (Last_Extra)) then
7921         return;
7922      end if;
7923
7924      --  If the subprogram is a predefined dispatching subprogram then don't
7925      --  generate any extra constrained or accessibility level formals. In
7926      --  general we suppress these for internal subprograms (by not calling
7927      --  Freeze_Subprogram and Create_Extra_Formals at all), but internally
7928      --  generated stream attributes do get passed through because extra
7929      --  build-in-place formals are needed in some cases (limited 'Input).
7930
7931      if Is_Predefined_Internal_Operation (E) then
7932         goto Test_For_Func_Result_Extras;
7933      end if;
7934
7935      Formal := First_Formal (E);
7936      while Present (Formal) loop
7937
7938         --  Create extra formal for supporting the attribute 'Constrained.
7939         --  The case of a private type view without discriminants also
7940         --  requires the extra formal if the underlying type has defaulted
7941         --  discriminants.
7942
7943         if Ekind (Formal) /= E_In_Parameter then
7944            if Present (P_Formal) then
7945               Formal_Type := Etype (P_Formal);
7946            else
7947               Formal_Type := Etype (Formal);
7948            end if;
7949
7950            --  Do not produce extra formals for Unchecked_Union parameters.
7951            --  Jump directly to the end of the loop.
7952
7953            if Is_Unchecked_Union (Base_Type (Formal_Type)) then
7954               goto Skip_Extra_Formal_Generation;
7955            end if;
7956
7957            if not Has_Discriminants (Formal_Type)
7958              and then Ekind (Formal_Type) in Private_Kind
7959              and then Present (Underlying_Type (Formal_Type))
7960            then
7961               Formal_Type := Underlying_Type (Formal_Type);
7962            end if;
7963
7964            --  Suppress the extra formal if formal's subtype is constrained or
7965            --  indefinite, or we're compiling for Ada 2012 and the underlying
7966            --  type is tagged and limited. In Ada 2012, a limited tagged type
7967            --  can have defaulted discriminants, but 'Constrained is required
7968            --  to return True, so the formal is never needed (see AI05-0214).
7969            --  Note that this ensures consistency of calling sequences for
7970            --  dispatching operations when some types in a class have defaults
7971            --  on discriminants and others do not (and requiring the extra
7972            --  formal would introduce distributed overhead).
7973
7974            --  If the type does not have a completion yet, treat as prior to
7975            --  Ada 2012 for consistency.
7976
7977            if Has_Discriminants (Formal_Type)
7978              and then not Is_Constrained (Formal_Type)
7979              and then Is_Definite_Subtype (Formal_Type)
7980              and then (Ada_Version < Ada_2012
7981                         or else No (Underlying_Type (Formal_Type))
7982                         or else not
7983                           (Is_Limited_Type (Formal_Type)
7984                             and then
7985                               (Is_Tagged_Type
7986                                  (Underlying_Type (Formal_Type)))))
7987            then
7988               Set_Extra_Constrained
7989                 (Formal, Add_Extra_Formal (Formal, Standard_Boolean, E, "O"));
7990            end if;
7991         end if;
7992
7993         --  Create extra formal for supporting accessibility checking. This
7994         --  is done for both anonymous access formals and formals of named
7995         --  access types that are marked as controlling formals. The latter
7996         --  case can occur when Expand_Dispatching_Call creates a subprogram
7997         --  type and substitutes the types of access-to-class-wide actuals
7998         --  for the anonymous access-to-specific-type of controlling formals.
7999         --  Base_Type is applied because in cases where there is a null
8000         --  exclusion the formal may have an access subtype.
8001
8002         --  This is suppressed if we specifically suppress accessibility
8003         --  checks at the package level for either the subprogram, or the
8004         --  package in which it resides. However, we do not suppress it
8005         --  simply if the scope has accessibility checks suppressed, since
8006         --  this could cause trouble when clients are compiled with a
8007         --  different suppression setting. The explicit checks at the
8008         --  package level are safe from this point of view.
8009
8010         if (Ekind (Base_Type (Etype (Formal))) = E_Anonymous_Access_Type
8011              or else (Is_Controlling_Formal (Formal)
8012                        and then Is_Access_Type (Base_Type (Etype (Formal)))))
8013           and then not
8014             (Explicit_Suppress (E, Accessibility_Check)
8015               or else
8016              Explicit_Suppress (Scope (E), Accessibility_Check))
8017           and then
8018             (No (P_Formal)
8019               or else Present (Extra_Accessibility (P_Formal)))
8020         then
8021            Set_Extra_Accessibility
8022              (Formal, Add_Extra_Formal (Formal, Standard_Natural, E, "L"));
8023         end if;
8024
8025         --  This label is required when skipping extra formal generation for
8026         --  Unchecked_Union parameters.
8027
8028         <<Skip_Extra_Formal_Generation>>
8029
8030         if Present (P_Formal) then
8031            Next_Formal (P_Formal);
8032         end if;
8033
8034         Next_Formal (Formal);
8035      end loop;
8036
8037      <<Test_For_Func_Result_Extras>>
8038
8039      --  Ada 2012 (AI05-234): "the accessibility level of the result of a
8040      --  function call is ... determined by the point of call ...".
8041
8042      if Needs_Result_Accessibility_Level (E) then
8043         Set_Extra_Accessibility_Of_Result
8044           (E, Add_Extra_Formal (E, Standard_Natural, E, "L"));
8045      end if;
8046
8047      --  Ada 2005 (AI-318-02): In the case of build-in-place functions, add
8048      --  appropriate extra formals. See type Exp_Ch6.BIP_Formal_Kind.
8049
8050      if Is_Build_In_Place_Function (E) then
8051         declare
8052            Result_Subt : constant Entity_Id := Etype (E);
8053            Full_Subt   : constant Entity_Id := Available_View (Result_Subt);
8054            Formal_Typ  : Entity_Id;
8055            Subp_Decl   : Node_Id;
8056            Discard     : Entity_Id;
8057
8058         begin
8059            --  In the case of functions with unconstrained result subtypes,
8060            --  add a 4-state formal indicating whether the return object is
8061            --  allocated by the caller (1), or should be allocated by the
8062            --  callee on the secondary stack (2), in the global heap (3), or
8063            --  in a user-defined storage pool (4). For the moment we just use
8064            --  Natural for the type of this formal. Note that this formal
8065            --  isn't usually needed in the case where the result subtype is
8066            --  constrained, but it is needed when the function has a tagged
8067            --  result, because generally such functions can be called in a
8068            --  dispatching context and such calls must be handled like calls
8069            --  to a class-wide function.
8070
8071            if Needs_BIP_Alloc_Form (E) then
8072               Discard :=
8073                 Add_Extra_Formal
8074                   (E, Standard_Natural,
8075                    E, BIP_Formal_Suffix (BIP_Alloc_Form));
8076
8077               --  Add BIP_Storage_Pool, in case BIP_Alloc_Form indicates to
8078               --  use a user-defined pool. This formal is not added on
8079               --  ZFP as those targets do not support pools.
8080
8081               if RTE_Available (RE_Root_Storage_Pool_Ptr) then
8082                  Discard :=
8083                    Add_Extra_Formal
8084                      (E, RTE (RE_Root_Storage_Pool_Ptr),
8085                       E, BIP_Formal_Suffix (BIP_Storage_Pool));
8086               end if;
8087            end if;
8088
8089            --  In the case of functions whose result type needs finalization,
8090            --  add an extra formal which represents the finalization master.
8091
8092            if Needs_BIP_Finalization_Master (E) then
8093               Discard :=
8094                 Add_Extra_Formal
8095                   (E, RTE (RE_Finalization_Master_Ptr),
8096                    E, BIP_Formal_Suffix (BIP_Finalization_Master));
8097            end if;
8098
8099            --  When the result type contains tasks, add two extra formals: the
8100            --  master of the tasks to be created, and the caller's activation
8101            --  chain.
8102
8103            if Has_Task (Full_Subt) then
8104               Discard :=
8105                 Add_Extra_Formal
8106                   (E, RTE (RE_Master_Id),
8107                    E, BIP_Formal_Suffix (BIP_Task_Master));
8108               Discard :=
8109                 Add_Extra_Formal
8110                   (E, RTE (RE_Activation_Chain_Access),
8111                    E, BIP_Formal_Suffix (BIP_Activation_Chain));
8112            end if;
8113
8114            --  All build-in-place functions get an extra formal that will be
8115            --  passed the address of the return object within the caller.
8116
8117            Formal_Typ :=
8118              Create_Itype (E_Anonymous_Access_Type, E, Scope_Id => Scope (E));
8119
8120            --  Incomplete_View_From_Limited_With is needed here because
8121            --  gigi gets confused if the designated type is the full view
8122            --  coming from a limited-with'ed package. In the normal case,
8123            --  (no limited with) Incomplete_View_From_Limited_With
8124            --  returns Result_Subt.
8125
8126            Set_Directly_Designated_Type
8127              (Formal_Typ, Incomplete_View_From_Limited_With (Result_Subt));
8128            Set_Etype (Formal_Typ, Formal_Typ);
8129            Set_Depends_On_Private
8130              (Formal_Typ, Has_Private_Component (Formal_Typ));
8131            Set_Is_Public (Formal_Typ, Is_Public (Scope (Formal_Typ)));
8132            Set_Is_Access_Constant (Formal_Typ, False);
8133
8134            --  Ada 2005 (AI-50217): Propagate the attribute that indicates
8135            --  the designated type comes from the limited view (for back-end
8136            --  purposes).
8137
8138            Set_From_Limited_With
8139              (Formal_Typ, From_Limited_With (Result_Subt));
8140
8141            Layout_Type (Formal_Typ);
8142
8143            --  Force the definition of the Itype in case of internal function
8144            --  calls within the same or nested scope.
8145
8146            if Is_Subprogram_Or_Generic_Subprogram (E) then
8147               Subp_Decl := Parent (E);
8148
8149               --  The insertion point for an Itype reference should be after
8150               --  the unit declaration node of the subprogram. An exception
8151               --  to this are inherited operations from a parent type in which
8152               --  case the derived type acts as their parent.
8153
8154               if Nkind_In (Subp_Decl, N_Function_Specification,
8155                                       N_Procedure_Specification)
8156               then
8157                  Subp_Decl := Parent (Subp_Decl);
8158               end if;
8159
8160               Build_Itype_Reference (Formal_Typ, Subp_Decl);
8161            end if;
8162
8163            Discard :=
8164              Add_Extra_Formal
8165                (E, Formal_Typ, E, BIP_Formal_Suffix (BIP_Object_Access));
8166         end;
8167      end if;
8168
8169      --  If this is an instance of a generic, we need to have extra formals
8170      --  for the Alias.
8171
8172      if Is_Generic_Instance (E) and then Present (Alias (E)) then
8173         Set_Extra_Formals (Alias (E), Extra_Formals (E));
8174      end if;
8175   end Create_Extra_Formals;
8176
8177   -----------------------------
8178   -- Enter_Overloaded_Entity --
8179   -----------------------------
8180
8181   procedure Enter_Overloaded_Entity (S : Entity_Id) is
8182      function Matches_Predefined_Op return Boolean;
8183      --  This returns an approximation of whether S matches a predefined
8184      --  operator, based on the operator symbol, and the parameter and result
8185      --  types. The rules are scattered throughout chapter 4 of the Ada RM.
8186
8187      ---------------------------
8188      -- Matches_Predefined_Op --
8189      ---------------------------
8190
8191      function Matches_Predefined_Op return Boolean is
8192         Formal_1    : constant Entity_Id := First_Formal (S);
8193         Formal_2    : constant Entity_Id := Next_Formal (Formal_1);
8194         Op          : constant Name_Id   := Chars (S);
8195         Result_Type : constant Entity_Id := Base_Type (Etype (S));
8196         Type_1      : constant Entity_Id := Base_Type (Etype (Formal_1));
8197
8198      begin
8199         --  Binary operator
8200
8201         if Present (Formal_2) then
8202            declare
8203               Type_2 : constant Entity_Id := Base_Type (Etype (Formal_2));
8204
8205            begin
8206               --  All but "&" and "**" have same-types parameters
8207
8208               case Op is
8209                  when Name_Op_Concat
8210                     | Name_Op_Expon
8211                  =>
8212                     null;
8213
8214                  when others =>
8215                     if Type_1 /= Type_2 then
8216                        return False;
8217                     end if;
8218               end case;
8219
8220               --  Check parameter and result types
8221
8222               case Op is
8223                  when Name_Op_And
8224                     | Name_Op_Or
8225                     | Name_Op_Xor
8226                  =>
8227                     return
8228                       Is_Boolean_Type (Result_Type)
8229                         and then Result_Type = Type_1;
8230
8231                  when Name_Op_Mod
8232                     | Name_Op_Rem
8233                  =>
8234                     return
8235                       Is_Integer_Type (Result_Type)
8236                         and then Result_Type = Type_1;
8237
8238                  when Name_Op_Add
8239                     | Name_Op_Divide
8240                     | Name_Op_Multiply
8241                     | Name_Op_Subtract
8242                  =>
8243                     return
8244                       Is_Numeric_Type (Result_Type)
8245                         and then Result_Type = Type_1;
8246
8247                  when Name_Op_Eq
8248                     | Name_Op_Ne
8249                  =>
8250                     return
8251                       Is_Boolean_Type (Result_Type)
8252                         and then not Is_Limited_Type (Type_1);
8253
8254                  when Name_Op_Ge
8255                     | Name_Op_Gt
8256                     | Name_Op_Le
8257                     | Name_Op_Lt
8258                  =>
8259                     return
8260                       Is_Boolean_Type (Result_Type)
8261                         and then (Is_Array_Type (Type_1)
8262                                    or else Is_Scalar_Type (Type_1));
8263
8264                  when Name_Op_Concat =>
8265                     return Is_Array_Type (Result_Type);
8266
8267                  when Name_Op_Expon =>
8268                     return
8269                       (Is_Integer_Type (Result_Type)
8270                           or else Is_Floating_Point_Type (Result_Type))
8271                         and then Result_Type = Type_1
8272                         and then Type_2 = Standard_Integer;
8273
8274                  when others =>
8275                     raise Program_Error;
8276               end case;
8277            end;
8278
8279         --  Unary operator
8280
8281         else
8282            case Op is
8283               when Name_Op_Abs
8284                  | Name_Op_Add
8285                  | Name_Op_Subtract
8286               =>
8287                  return
8288                    Is_Numeric_Type (Result_Type)
8289                      and then Result_Type = Type_1;
8290
8291               when Name_Op_Not =>
8292                  return
8293                    Is_Boolean_Type (Result_Type)
8294                      and then Result_Type = Type_1;
8295
8296               when others =>
8297                  raise Program_Error;
8298            end case;
8299         end if;
8300      end Matches_Predefined_Op;
8301
8302      --  Local variables
8303
8304      E   : Entity_Id := Current_Entity_In_Scope (S);
8305      C_E : Entity_Id := Current_Entity (S);
8306
8307   --  Start of processing for Enter_Overloaded_Entity
8308
8309   begin
8310      if Present (E) then
8311         Set_Has_Homonym (E);
8312         Set_Has_Homonym (S);
8313      end if;
8314
8315      Set_Is_Immediately_Visible (S);
8316      Set_Scope (S, Current_Scope);
8317
8318      --  Chain new entity if front of homonym in current scope, so that
8319      --  homonyms are contiguous.
8320
8321      if Present (E) and then E /= C_E then
8322         while Homonym (C_E) /= E loop
8323            C_E := Homonym (C_E);
8324         end loop;
8325
8326         Set_Homonym (C_E, S);
8327
8328      else
8329         E := C_E;
8330         Set_Current_Entity (S);
8331      end if;
8332
8333      Set_Homonym (S, E);
8334
8335      if Is_Inherited_Operation (S) then
8336         Append_Inherited_Subprogram (S);
8337      else
8338         Append_Entity (S, Current_Scope);
8339      end if;
8340
8341      Set_Public_Status (S);
8342
8343      if Debug_Flag_E then
8344         Write_Str ("New overloaded entity chain: ");
8345         Write_Name (Chars (S));
8346
8347         E := S;
8348         while Present (E) loop
8349            Write_Str (" "); Write_Int (Int (E));
8350            E := Homonym (E);
8351         end loop;
8352
8353         Write_Eol;
8354      end if;
8355
8356      --  Generate warning for hiding
8357
8358      if Warn_On_Hiding
8359        and then Comes_From_Source (S)
8360        and then In_Extended_Main_Source_Unit (S)
8361      then
8362         E := S;
8363         loop
8364            E := Homonym (E);
8365            exit when No (E);
8366
8367            --  Warn unless genuine overloading. Do not emit warning on
8368            --  hiding predefined operators in Standard (these are either an
8369            --  (artifact of our implicit declarations, or simple noise) but
8370            --  keep warning on a operator defined on a local subtype, because
8371            --  of the real danger that different operators may be applied in
8372            --  various parts of the program.
8373
8374            --  Note that if E and S have the same scope, there is never any
8375            --  hiding. Either the two conflict, and the program is illegal,
8376            --  or S is overriding an implicit inherited subprogram.
8377
8378            if Scope (E) /= Scope (S)
8379              and then (not Is_Overloadable (E)
8380                         or else Subtype_Conformant (E, S))
8381              and then (Is_Immediately_Visible (E)
8382                         or else Is_Potentially_Use_Visible (S))
8383            then
8384               if Scope (E) = Standard_Standard then
8385                  if Nkind (S) = N_Defining_Operator_Symbol
8386                    and then Scope (Base_Type (Etype (First_Formal (S)))) /=
8387                               Scope (S)
8388                    and then Matches_Predefined_Op
8389                  then
8390                     Error_Msg_N
8391                       ("declaration of & hides predefined operator?h?", S);
8392                  end if;
8393
8394               --  E not immediately within Standard
8395
8396               else
8397                  Error_Msg_Sloc := Sloc (E);
8398                  Error_Msg_N ("declaration of & hides one #?h?", S);
8399               end if;
8400            end if;
8401         end loop;
8402      end if;
8403   end Enter_Overloaded_Entity;
8404
8405   -----------------------------
8406   -- Check_Untagged_Equality --
8407   -----------------------------
8408
8409   procedure Check_Untagged_Equality (Eq_Op : Entity_Id) is
8410      Typ      : constant Entity_Id := Etype (First_Formal (Eq_Op));
8411      Decl     : constant Node_Id   := Unit_Declaration_Node (Eq_Op);
8412      Obj_Decl : Node_Id;
8413
8414   begin
8415      --  This check applies only if we have a subprogram declaration with an
8416      --  untagged record type.
8417
8418      if Nkind (Decl) /= N_Subprogram_Declaration
8419        or else not Is_Record_Type (Typ)
8420        or else Is_Tagged_Type (Typ)
8421      then
8422         return;
8423      end if;
8424
8425      --  In Ada 2012 case, we will output errors or warnings depending on
8426      --  the setting of debug flag -gnatd.E.
8427
8428      if Ada_Version >= Ada_2012 then
8429         Error_Msg_Warn := Debug_Flag_Dot_EE;
8430
8431      --  In earlier versions of Ada, nothing to do unless we are warning on
8432      --  Ada 2012 incompatibilities (Warn_On_Ada_2012_Incompatibility set).
8433
8434      else
8435         if not Warn_On_Ada_2012_Compatibility then
8436            return;
8437         end if;
8438      end if;
8439
8440      --  Cases where the type has already been frozen
8441
8442      if Is_Frozen (Typ) then
8443
8444         --  The check applies to a primitive operation, so check that type
8445         --  and equality operation are in the same scope.
8446
8447         if Scope (Typ) /= Current_Scope then
8448            return;
8449
8450         --  If the type is a generic actual (sub)type, the operation is not
8451         --  primitive either because the base type is declared elsewhere.
8452
8453         elsif Is_Generic_Actual_Type (Typ) then
8454            return;
8455
8456         --  Here we have a definite error of declaration after freezing
8457
8458         else
8459            if Ada_Version >= Ada_2012 then
8460               Error_Msg_NE
8461                 ("equality operator must be declared before type & is "
8462                  & "frozen (RM 4.5.2 (9.8)) (Ada 2012)<<", Eq_Op, Typ);
8463
8464               --  In Ada 2012 mode with error turned to warning, output one
8465               --  more warning to warn that the equality operation may not
8466               --  compose. This is the consequence of ignoring the error.
8467
8468               if Error_Msg_Warn then
8469                  Error_Msg_N ("\equality operation may not compose??", Eq_Op);
8470               end if;
8471
8472            else
8473               Error_Msg_NE
8474                 ("equality operator must be declared before type& is "
8475                  & "frozen (RM 4.5.2 (9.8)) (Ada 2012)?y?", Eq_Op, Typ);
8476            end if;
8477
8478            --  If we are in the package body, we could just move the
8479            --  declaration to the package spec, so add a message saying that.
8480
8481            if In_Package_Body (Scope (Typ)) then
8482               if Ada_Version >= Ada_2012 then
8483                  Error_Msg_N
8484                    ("\move declaration to package spec<<", Eq_Op);
8485               else
8486                  Error_Msg_N
8487                    ("\move declaration to package spec (Ada 2012)?y?", Eq_Op);
8488               end if;
8489
8490            --  Otherwise try to find the freezing point for better message.
8491
8492            else
8493               Obj_Decl := Next (Parent (Typ));
8494               while Present (Obj_Decl) and then Obj_Decl /= Decl loop
8495                  if Nkind (Obj_Decl) = N_Object_Declaration
8496                    and then Etype (Defining_Identifier (Obj_Decl)) = Typ
8497                  then
8498                     --  Freezing point, output warnings
8499
8500                     if Ada_Version >= Ada_2012 then
8501                        Error_Msg_NE
8502                          ("type& is frozen by declaration??", Obj_Decl, Typ);
8503                        Error_Msg_N
8504                          ("\an equality operator cannot be declared after "
8505                           & "this point??",
8506                           Obj_Decl);
8507                     else
8508                        Error_Msg_NE
8509                          ("type& is frozen by declaration (Ada 2012)?y?",
8510                           Obj_Decl, Typ);
8511                        Error_Msg_N
8512                          ("\an equality operator cannot be declared after "
8513                           & "this point (Ada 2012)?y?",
8514                           Obj_Decl);
8515                     end if;
8516
8517                     exit;
8518
8519                  --  If we reach generated code for subprogram declaration
8520                  --  or body, it is the body that froze the type and the
8521                  --  declaration is legal.
8522
8523                  elsif Sloc (Obj_Decl) = Sloc (Decl) then
8524                     return;
8525                  end if;
8526
8527                  Next (Obj_Decl);
8528               end loop;
8529            end if;
8530         end if;
8531
8532      --  Here if type is not frozen yet. It is illegal to have a primitive
8533      --  equality declared in the private part if the type is visible.
8534
8535      elsif not In_Same_List (Parent (Typ), Decl)
8536        and then not Is_Limited_Type (Typ)
8537      then
8538         --  Shouldn't we give an RM reference here???
8539
8540         if Ada_Version >= Ada_2012 then
8541            Error_Msg_N
8542              ("equality operator appears too late<<", Eq_Op);
8543         else
8544            Error_Msg_N
8545              ("equality operator appears too late (Ada 2012)?y?", Eq_Op);
8546         end if;
8547
8548      --  No error detected
8549
8550      else
8551         return;
8552      end if;
8553   end Check_Untagged_Equality;
8554
8555   -----------------------------
8556   -- Find_Corresponding_Spec --
8557   -----------------------------
8558
8559   function Find_Corresponding_Spec
8560     (N          : Node_Id;
8561      Post_Error : Boolean := True) return Entity_Id
8562   is
8563      Spec       : constant Node_Id   := Specification (N);
8564      Designator : constant Entity_Id := Defining_Entity (Spec);
8565
8566      E : Entity_Id;
8567
8568      function Different_Generic_Profile (E : Entity_Id) return Boolean;
8569      --  Even if fully conformant, a body may depend on a generic actual when
8570      --  the spec does not, or vice versa, in which case they were distinct
8571      --  entities in the generic.
8572
8573      -------------------------------
8574      -- Different_Generic_Profile --
8575      -------------------------------
8576
8577      function Different_Generic_Profile (E : Entity_Id) return Boolean is
8578         F1, F2 : Entity_Id;
8579
8580         function Same_Generic_Actual (T1, T2 : Entity_Id) return Boolean;
8581         --  Check that the types of corresponding formals have the same
8582         --  generic actual if any. We have to account for subtypes of a
8583         --  generic formal, declared between a spec and a body, which may
8584         --  appear distinct in an instance but matched in the generic, and
8585         --  the subtype may be used either in the spec or the body of the
8586         --  subprogram being checked.
8587
8588         -------------------------
8589         -- Same_Generic_Actual --
8590         -------------------------
8591
8592         function Same_Generic_Actual (T1, T2 : Entity_Id) return Boolean is
8593
8594            function Is_Declared_Subtype (S1, S2 : Entity_Id) return Boolean;
8595            --  Predicate to check whether S1 is a subtype of S2 in the source
8596            --  of the instance.
8597
8598            -------------------------
8599            -- Is_Declared_Subtype --
8600            -------------------------
8601
8602            function Is_Declared_Subtype (S1, S2 : Entity_Id) return Boolean is
8603            begin
8604               return Comes_From_Source (Parent (S1))
8605                 and then Nkind (Parent (S1)) = N_Subtype_Declaration
8606                 and then Is_Entity_Name (Subtype_Indication (Parent (S1)))
8607                 and then Entity (Subtype_Indication (Parent (S1))) = S2;
8608            end Is_Declared_Subtype;
8609
8610         --  Start of processing for Same_Generic_Actual
8611
8612         begin
8613            return Is_Generic_Actual_Type (T1) = Is_Generic_Actual_Type (T2)
8614              or else Is_Declared_Subtype (T1, T2)
8615              or else Is_Declared_Subtype (T2, T1);
8616         end Same_Generic_Actual;
8617
8618      --  Start of processing for Different_Generic_Profile
8619
8620      begin
8621         if not In_Instance then
8622            return False;
8623
8624         elsif Ekind (E) = E_Function
8625           and then not Same_Generic_Actual (Etype (E), Etype (Designator))
8626         then
8627            return True;
8628         end if;
8629
8630         F1 := First_Formal (Designator);
8631         F2 := First_Formal (E);
8632         while Present (F1) loop
8633            if not Same_Generic_Actual (Etype (F1), Etype (F2)) then
8634               return True;
8635            end if;
8636
8637            Next_Formal (F1);
8638            Next_Formal (F2);
8639         end loop;
8640
8641         return False;
8642      end Different_Generic_Profile;
8643
8644   --  Start of processing for Find_Corresponding_Spec
8645
8646   begin
8647      E := Current_Entity (Designator);
8648      while Present (E) loop
8649
8650         --  We are looking for a matching spec. It must have the same scope,
8651         --  and the same name, and either be type conformant, or be the case
8652         --  of a library procedure spec and its body (which belong to one
8653         --  another regardless of whether they are type conformant or not).
8654
8655         if Scope (E) = Current_Scope then
8656            if Current_Scope = Standard_Standard
8657              or else (Ekind (E) = Ekind (Designator)
8658                        and then Type_Conformant (E, Designator))
8659            then
8660               --  Within an instantiation, we know that spec and body are
8661               --  subtype conformant, because they were subtype conformant in
8662               --  the generic. We choose the subtype-conformant entity here as
8663               --  well, to resolve spurious ambiguities in the instance that
8664               --  were not present in the generic (i.e. when two different
8665               --  types are given the same actual). If we are looking for a
8666               --  spec to match a body, full conformance is expected.
8667
8668               if In_Instance then
8669
8670                  --  Inherit the convention and "ghostness" of the matching
8671                  --  spec to ensure proper full and subtype conformance.
8672
8673                  Set_Convention (Designator, Convention (E));
8674
8675                  --  Skip past subprogram bodies and subprogram renamings that
8676                  --  may appear to have a matching spec, but that aren't fully
8677                  --  conformant with it. That can occur in cases where an
8678                  --  actual type causes unrelated homographs in the instance.
8679
8680                  if Nkind_In (N, N_Subprogram_Body,
8681                                  N_Subprogram_Renaming_Declaration)
8682                    and then Present (Homonym (E))
8683                    and then not Fully_Conformant (Designator, E)
8684                  then
8685                     goto Next_Entity;
8686
8687                  elsif not Subtype_Conformant (Designator, E) then
8688                     goto Next_Entity;
8689
8690                  elsif Different_Generic_Profile (E) then
8691                     goto Next_Entity;
8692                  end if;
8693               end if;
8694
8695               --  Ada 2012 (AI05-0165): For internally generated bodies of
8696               --  null procedures locate the internally generated spec. We
8697               --  enforce mode conformance since a tagged type may inherit
8698               --  from interfaces several null primitives which differ only
8699               --  in the mode of the formals.
8700
8701               if not (Comes_From_Source (E))
8702                 and then Is_Null_Procedure (E)
8703                 and then not Mode_Conformant (Designator, E)
8704               then
8705                  null;
8706
8707               --  For null procedures coming from source that are completions,
8708               --  analysis of the generated body will establish the link.
8709
8710               elsif Comes_From_Source (E)
8711                 and then Nkind (Spec) = N_Procedure_Specification
8712                 and then Null_Present (Spec)
8713               then
8714                  return E;
8715
8716               --  Expression functions can be completions, but cannot be
8717               --  completed by an explicit body.
8718
8719               elsif Comes_From_Source (E)
8720                 and then Comes_From_Source (N)
8721                 and then Nkind (N) = N_Subprogram_Body
8722                 and then Nkind (Original_Node (Unit_Declaration_Node (E))) =
8723                            N_Expression_Function
8724               then
8725                  Error_Msg_Sloc := Sloc (E);
8726                  Error_Msg_N ("body conflicts with expression function#", N);
8727                  return Empty;
8728
8729               elsif not Has_Completion (E) then
8730                  if Nkind (N) /= N_Subprogram_Body_Stub then
8731                     Set_Corresponding_Spec (N, E);
8732                  end if;
8733
8734                  Set_Has_Completion (E);
8735                  return E;
8736
8737               elsif Nkind (Parent (N)) = N_Subunit then
8738
8739                  --  If this is the proper body of a subunit, the completion
8740                  --  flag is set when analyzing the stub.
8741
8742                  return E;
8743
8744               --  If E is an internal function with a controlling result that
8745               --  was created for an operation inherited by a null extension,
8746               --  it may be overridden by a body without a previous spec (one
8747               --  more reason why these should be shunned). In that case we
8748               --  remove the generated body if present, because the current
8749               --  one is the explicit overriding.
8750
8751               elsif Ekind (E) = E_Function
8752                 and then Ada_Version >= Ada_2005
8753                 and then not Comes_From_Source (E)
8754                 and then Has_Controlling_Result (E)
8755                 and then Is_Null_Extension (Etype (E))
8756                 and then Comes_From_Source (Spec)
8757               then
8758                  Set_Has_Completion (E, False);
8759
8760                  if Expander_Active
8761                    and then Nkind (Parent (E)) = N_Function_Specification
8762                  then
8763                     Remove
8764                       (Unit_Declaration_Node
8765                          (Corresponding_Body (Unit_Declaration_Node (E))));
8766
8767                     return E;
8768
8769                  --  If expansion is disabled, or if the wrapper function has
8770                  --  not been generated yet, this a late body overriding an
8771                  --  inherited operation, or it is an overriding by some other
8772                  --  declaration before the controlling result is frozen. In
8773                  --  either case this is a declaration of a new entity.
8774
8775                  else
8776                     return Empty;
8777                  end if;
8778
8779               --  If the body already exists, then this is an error unless
8780               --  the previous declaration is the implicit declaration of a
8781               --  derived subprogram. It is also legal for an instance to
8782               --  contain type conformant overloadable declarations (but the
8783               --  generic declaration may not), per 8.3(26/2).
8784
8785               elsif No (Alias (E))
8786                 and then not Is_Intrinsic_Subprogram (E)
8787                 and then not In_Instance
8788                 and then Post_Error
8789               then
8790                  Error_Msg_Sloc := Sloc (E);
8791
8792                  if Is_Imported (E) then
8793                     Error_Msg_NE
8794                      ("body not allowed for imported subprogram & declared#",
8795                        N, E);
8796                  else
8797                     Error_Msg_NE ("duplicate body for & declared#", N, E);
8798                  end if;
8799               end if;
8800
8801            --  Child units cannot be overloaded, so a conformance mismatch
8802            --  between body and a previous spec is an error.
8803
8804            elsif Is_Child_Unit (E)
8805              and then
8806                Nkind (Unit_Declaration_Node (Designator)) = N_Subprogram_Body
8807              and then
8808                Nkind (Parent (Unit_Declaration_Node (Designator))) =
8809                  N_Compilation_Unit
8810              and then Post_Error
8811            then
8812               Error_Msg_N
8813                 ("body of child unit does not match previous declaration", N);
8814            end if;
8815         end if;
8816
8817         <<Next_Entity>>
8818            E := Homonym (E);
8819      end loop;
8820
8821      --  On exit, we know that no previous declaration of subprogram exists
8822
8823      return Empty;
8824   end Find_Corresponding_Spec;
8825
8826   ----------------------
8827   -- Fully_Conformant --
8828   ----------------------
8829
8830   function Fully_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
8831      Result : Boolean;
8832   begin
8833      Check_Conformance (New_Id, Old_Id, Fully_Conformant, False, Result);
8834      return Result;
8835   end Fully_Conformant;
8836
8837   ----------------------------------
8838   -- Fully_Conformant_Expressions --
8839   ----------------------------------
8840
8841   function Fully_Conformant_Expressions
8842     (Given_E1 : Node_Id;
8843      Given_E2 : Node_Id;
8844      Report   : Boolean := False) return Boolean
8845   is
8846      E1 : constant Node_Id := Original_Node (Given_E1);
8847      E2 : constant Node_Id := Original_Node (Given_E2);
8848      --  We always test conformance on original nodes, since it is possible
8849      --  for analysis and/or expansion to make things look as though they
8850      --  conform when they do not, e.g. by converting 1+2 into 3.
8851
8852      function FCE (Given_E1 : Node_Id; Given_E2 : Node_Id) return Boolean;
8853      --  ???
8854
8855      function FCL (L1 : List_Id; L2 : List_Id) return Boolean;
8856      --  Compare elements of two lists for conformance. Elements have to be
8857      --  conformant, and actuals inserted as default parameters do not match
8858      --  explicit actuals with the same value.
8859
8860      function FCO (Op_Node : Node_Id; Call_Node : Node_Id) return Boolean;
8861      --  Compare an operator node with a function call
8862
8863      ---------
8864      -- FCE --
8865      ---------
8866
8867      function FCE (Given_E1 : Node_Id; Given_E2 : Node_Id) return Boolean is
8868      begin
8869         return Fully_Conformant_Expressions (Given_E1, Given_E2, Report);
8870      end FCE;
8871
8872      ---------
8873      -- FCL --
8874      ---------
8875
8876      function FCL (L1 : List_Id; L2 : List_Id) return Boolean is
8877         N1 : Node_Id;
8878         N2 : Node_Id;
8879
8880      begin
8881         if L1 = No_List then
8882            N1 := Empty;
8883         else
8884            N1 := First (L1);
8885         end if;
8886
8887         if L2 = No_List then
8888            N2 := Empty;
8889         else
8890            N2 := First (L2);
8891         end if;
8892
8893         --  Compare two lists, skipping rewrite insertions (we want to compare
8894         --  the original trees, not the expanded versions).
8895
8896         loop
8897            if Is_Rewrite_Insertion (N1) then
8898               Next (N1);
8899            elsif Is_Rewrite_Insertion (N2) then
8900               Next (N2);
8901            elsif No (N1) then
8902               return No (N2);
8903            elsif No (N2) then
8904               return False;
8905            elsif not FCE (N1, N2) then
8906               return False;
8907            else
8908               Next (N1);
8909               Next (N2);
8910            end if;
8911         end loop;
8912      end FCL;
8913
8914      ---------
8915      -- FCO --
8916      ---------
8917
8918      function FCO (Op_Node : Node_Id; Call_Node : Node_Id) return Boolean is
8919         Actuals : constant List_Id := Parameter_Associations (Call_Node);
8920         Act     : Node_Id;
8921
8922      begin
8923         if No (Actuals)
8924            or else Entity (Op_Node) /= Entity (Name (Call_Node))
8925         then
8926            return False;
8927
8928         else
8929            Act := First (Actuals);
8930
8931            if Nkind (Op_Node) in N_Binary_Op then
8932               if not FCE (Left_Opnd (Op_Node), Act) then
8933                  return False;
8934               end if;
8935
8936               Next (Act);
8937            end if;
8938
8939            return Present (Act)
8940              and then FCE (Right_Opnd (Op_Node), Act)
8941              and then No (Next (Act));
8942         end if;
8943      end FCO;
8944
8945      --  Local variables
8946
8947      Result : Boolean;
8948
8949   --  Start of processing for Fully_Conformant_Expressions
8950
8951   begin
8952      Result := True;
8953
8954      --  Nonconformant if paren count does not match. Note: if some idiot
8955      --  complains that we don't do this right for more than 3 levels of
8956      --  parentheses, they will be treated with the respect they deserve.
8957
8958      if Paren_Count (E1) /= Paren_Count (E2) then
8959         return False;
8960
8961      --  If same entities are referenced, then they are conformant even if
8962      --  they have different forms (RM 8.3.1(19-20)).
8963
8964      elsif Is_Entity_Name (E1) and then Is_Entity_Name (E2) then
8965         if Present (Entity (E1)) then
8966            Result := Entity (E1) = Entity (E2)
8967
8968              --  One may be a discriminant that has been replaced by the
8969              --  corresponding discriminal.
8970
8971              or else
8972                (Chars (Entity (E1)) = Chars (Entity (E2))
8973                  and then Ekind (Entity (E1)) = E_Discriminant
8974                  and then Ekind (Entity (E2)) = E_In_Parameter)
8975
8976             --  The discriminant of a protected type is transformed into
8977             --  a local constant and then into a parameter of a protected
8978             --  operation.
8979
8980             or else
8981               (Ekind (Entity (E1)) = E_Constant
8982                 and then Ekind (Entity (E2)) = E_In_Parameter
8983                 and then Present (Discriminal_Link (Entity (E1)))
8984                 and then Discriminal_Link (Entity (E1)) =
8985                          Discriminal_Link (Entity (E2)))
8986
8987             --  AI12-050: The loop variables of quantified expressions match
8988             --  if they have the same identifier, even though they may have
8989             --  different entities.
8990
8991              or else
8992                (Chars (Entity (E1)) = Chars (Entity (E2))
8993                  and then Ekind (Entity (E1)) = E_Loop_Parameter
8994                  and then Ekind (Entity (E2)) = E_Loop_Parameter)
8995
8996              --  A call to an instantiation of Unchecked_Conversion is
8997              --  rewritten with the name of the generated function created for
8998              --  the instance, and this must be special-cased.
8999
9000              or else
9001                 (Ekind (Entity (E1)) = E_Function
9002                   and then Is_Intrinsic_Subprogram (Entity (E1))
9003                   and then Is_Generic_Instance (Entity (E1))
9004                   and then Entity (E2) = Alias (Entity (E1)));
9005            if Report and not Result then
9006               Error_Msg_Sloc :=
9007                 Text_Ptr'Max (Sloc (Entity (E1)), Sloc (Entity (E2)));
9008               Error_Msg_NE
9009                 ("Meaning of& differs because of declaration#", E1, E2);
9010            end if;
9011
9012            return Result;
9013
9014         elsif Nkind (E1) = N_Expanded_Name
9015           and then Nkind (E2) = N_Expanded_Name
9016           and then Nkind (Selector_Name (E1)) = N_Character_Literal
9017           and then Nkind (Selector_Name (E2)) = N_Character_Literal
9018         then
9019            return Chars (Selector_Name (E1)) = Chars (Selector_Name (E2));
9020
9021         else
9022            --  Identifiers in component associations don't always have
9023            --  entities, but their names must conform.
9024
9025            return Nkind  (E1) = N_Identifier
9026              and then Nkind (E2) = N_Identifier
9027              and then Chars (E1) = Chars (E2);
9028         end if;
9029
9030      elsif Nkind (E1) = N_Character_Literal
9031        and then Nkind (E2) = N_Expanded_Name
9032      then
9033         return Nkind (Selector_Name (E2)) = N_Character_Literal
9034           and then Chars (E1) = Chars (Selector_Name (E2));
9035
9036      elsif Nkind (E2) = N_Character_Literal
9037        and then Nkind (E1) = N_Expanded_Name
9038      then
9039         return Nkind (Selector_Name (E1)) = N_Character_Literal
9040           and then Chars (E2) = Chars (Selector_Name (E1));
9041
9042      elsif Nkind (E1) in N_Op and then Nkind (E2) = N_Function_Call then
9043         return FCO (E1, E2);
9044
9045      elsif Nkind (E2) in N_Op and then Nkind (E1) = N_Function_Call then
9046         return FCO (E2, E1);
9047
9048      --  Otherwise we must have the same syntactic entity
9049
9050      elsif Nkind (E1) /= Nkind (E2) then
9051         return False;
9052
9053      --  At this point, we specialize by node type
9054
9055      else
9056         case Nkind (E1) is
9057            when N_Aggregate =>
9058               return
9059                 FCL (Expressions (E1), Expressions (E2))
9060                   and then
9061                 FCL (Component_Associations (E1),
9062                      Component_Associations (E2));
9063
9064            when N_Allocator =>
9065               if Nkind (Expression (E1)) = N_Qualified_Expression
9066                    or else
9067                  Nkind (Expression (E2)) = N_Qualified_Expression
9068               then
9069                  return FCE (Expression (E1), Expression (E2));
9070
9071               --  Check that the subtype marks and any constraints
9072               --  are conformant
9073
9074               else
9075                  declare
9076                     Indic1 : constant Node_Id := Expression (E1);
9077                     Indic2 : constant Node_Id := Expression (E2);
9078                     Elt1   : Node_Id;
9079                     Elt2   : Node_Id;
9080
9081                  begin
9082                     if Nkind (Indic1) /= N_Subtype_Indication then
9083                        return
9084                          Nkind (Indic2) /= N_Subtype_Indication
9085                            and then Entity (Indic1) = Entity (Indic2);
9086
9087                     elsif Nkind (Indic2) /= N_Subtype_Indication then
9088                        return
9089                          Nkind (Indic1) /= N_Subtype_Indication
9090                            and then Entity (Indic1) = Entity (Indic2);
9091
9092                     else
9093                        if Entity (Subtype_Mark (Indic1)) /=
9094                          Entity (Subtype_Mark (Indic2))
9095                        then
9096                           return False;
9097                        end if;
9098
9099                        Elt1 := First (Constraints (Constraint (Indic1)));
9100                        Elt2 := First (Constraints (Constraint (Indic2)));
9101                        while Present (Elt1) and then Present (Elt2) loop
9102                           if not FCE (Elt1, Elt2) then
9103                              return False;
9104                           end if;
9105
9106                           Next (Elt1);
9107                           Next (Elt2);
9108                        end loop;
9109
9110                        return True;
9111                     end if;
9112                  end;
9113               end if;
9114
9115            when N_Attribute_Reference =>
9116               return
9117                 Attribute_Name (E1) = Attribute_Name (E2)
9118                   and then FCL (Expressions (E1), Expressions (E2));
9119
9120            when N_Binary_Op =>
9121               return
9122                 Entity (E1) = Entity (E2)
9123                   and then FCE (Left_Opnd  (E1), Left_Opnd  (E2))
9124                   and then FCE (Right_Opnd (E1), Right_Opnd (E2));
9125
9126            when N_Membership_Test
9127               | N_Short_Circuit
9128            =>
9129               return
9130                 FCE (Left_Opnd  (E1), Left_Opnd  (E2))
9131                   and then
9132                 FCE (Right_Opnd (E1), Right_Opnd (E2));
9133
9134            when N_Case_Expression =>
9135               declare
9136                  Alt1 : Node_Id;
9137                  Alt2 : Node_Id;
9138
9139               begin
9140                  if not FCE (Expression (E1), Expression (E2)) then
9141                     return False;
9142
9143                  else
9144                     Alt1 := First (Alternatives (E1));
9145                     Alt2 := First (Alternatives (E2));
9146                     loop
9147                        if Present (Alt1) /= Present (Alt2) then
9148                           return False;
9149                        elsif No (Alt1) then
9150                           return True;
9151                        end if;
9152
9153                        if not FCE (Expression (Alt1), Expression (Alt2))
9154                          or else not FCL (Discrete_Choices (Alt1),
9155                                           Discrete_Choices (Alt2))
9156                        then
9157                           return False;
9158                        end if;
9159
9160                        Next (Alt1);
9161                        Next (Alt2);
9162                     end loop;
9163                  end if;
9164               end;
9165
9166            when N_Character_Literal =>
9167               return
9168                 Char_Literal_Value (E1) = Char_Literal_Value (E2);
9169
9170            when N_Component_Association =>
9171               return
9172                 FCL (Choices (E1), Choices (E2))
9173                   and then
9174                 FCE (Expression (E1), Expression (E2));
9175
9176            when N_Explicit_Dereference =>
9177               return
9178                 FCE (Prefix (E1), Prefix (E2));
9179
9180            when N_Extension_Aggregate =>
9181               return
9182                 FCL (Expressions (E1), Expressions (E2))
9183                   and then Null_Record_Present (E1) =
9184                            Null_Record_Present (E2)
9185                   and then FCL (Component_Associations (E1),
9186                               Component_Associations (E2));
9187
9188            when N_Function_Call =>
9189               return
9190                 FCE (Name (E1), Name (E2))
9191                   and then
9192                 FCL (Parameter_Associations (E1),
9193                      Parameter_Associations (E2));
9194
9195            when N_If_Expression =>
9196               return
9197                 FCL (Expressions (E1), Expressions (E2));
9198
9199            when N_Indexed_Component =>
9200               return
9201                 FCE (Prefix (E1), Prefix (E2))
9202                   and then
9203                 FCL (Expressions (E1), Expressions (E2));
9204
9205            when N_Integer_Literal =>
9206               return (Intval (E1) = Intval (E2));
9207
9208            when N_Null =>
9209               return True;
9210
9211            when N_Operator_Symbol =>
9212               return
9213                 Chars (E1) = Chars (E2);
9214
9215            when N_Others_Choice =>
9216               return True;
9217
9218            when N_Parameter_Association =>
9219               return
9220                 Chars (Selector_Name (E1)) = Chars (Selector_Name (E2))
9221                   and then FCE (Explicit_Actual_Parameter (E1),
9222                                 Explicit_Actual_Parameter (E2));
9223
9224            when N_Qualified_Expression
9225               | N_Type_Conversion
9226               | N_Unchecked_Type_Conversion
9227            =>
9228               return
9229                 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
9230                   and then
9231                 FCE (Expression (E1), Expression (E2));
9232
9233            when N_Quantified_Expression =>
9234               if not FCE (Condition (E1), Condition (E2)) then
9235                  return False;
9236               end if;
9237
9238               if Present (Loop_Parameter_Specification (E1))
9239                 and then Present (Loop_Parameter_Specification (E2))
9240               then
9241                  declare
9242                     L1 : constant Node_Id :=
9243                       Loop_Parameter_Specification (E1);
9244                     L2 : constant Node_Id :=
9245                       Loop_Parameter_Specification (E2);
9246
9247                  begin
9248                     return
9249                       Reverse_Present (L1) = Reverse_Present (L2)
9250                         and then
9251                           FCE (Defining_Identifier (L1),
9252                                Defining_Identifier (L2))
9253                         and then
9254                           FCE (Discrete_Subtype_Definition (L1),
9255                                Discrete_Subtype_Definition (L2));
9256                  end;
9257
9258               elsif Present (Iterator_Specification (E1))
9259                 and then Present (Iterator_Specification (E2))
9260               then
9261                  declare
9262                     I1 : constant Node_Id := Iterator_Specification (E1);
9263                     I2 : constant Node_Id := Iterator_Specification (E2);
9264
9265                  begin
9266                     return
9267                       FCE (Defining_Identifier (I1),
9268                            Defining_Identifier (I2))
9269                       and then
9270                         Of_Present (I1) = Of_Present (I2)
9271                       and then
9272                         Reverse_Present (I1) = Reverse_Present (I2)
9273                       and then FCE (Name (I1), Name (I2))
9274                       and then FCE (Subtype_Indication (I1),
9275                                      Subtype_Indication (I2));
9276                  end;
9277
9278               --  The quantified expressions used different specifications to
9279               --  walk their respective ranges.
9280
9281               else
9282                  return False;
9283               end if;
9284
9285            when N_Range =>
9286               return
9287                 FCE (Low_Bound (E1), Low_Bound (E2))
9288                   and then
9289                 FCE (High_Bound (E1), High_Bound (E2));
9290
9291            when N_Real_Literal =>
9292               return (Realval (E1) = Realval (E2));
9293
9294            when N_Selected_Component =>
9295               return
9296                 FCE (Prefix (E1), Prefix (E2))
9297                   and then
9298                 FCE (Selector_Name (E1), Selector_Name (E2));
9299
9300            when N_Slice =>
9301               return
9302                 FCE (Prefix (E1), Prefix (E2))
9303                   and then
9304                 FCE (Discrete_Range (E1), Discrete_Range (E2));
9305
9306            when N_String_Literal =>
9307               declare
9308                  S1 : constant String_Id := Strval (E1);
9309                  S2 : constant String_Id := Strval (E2);
9310                  L1 : constant Nat       := String_Length (S1);
9311                  L2 : constant Nat       := String_Length (S2);
9312
9313               begin
9314                  if L1 /= L2 then
9315                     return False;
9316
9317                  else
9318                     for J in 1 .. L1 loop
9319                        if Get_String_Char (S1, J) /=
9320                           Get_String_Char (S2, J)
9321                        then
9322                           return False;
9323                        end if;
9324                     end loop;
9325
9326                     return True;
9327                  end if;
9328               end;
9329
9330            when N_Unary_Op =>
9331               return
9332                 Entity (E1) = Entity (E2)
9333                   and then
9334                 FCE (Right_Opnd (E1), Right_Opnd (E2));
9335
9336            --  All other node types cannot appear in this context. Strictly
9337            --  we should raise a fatal internal error. Instead we just ignore
9338            --  the nodes. This means that if anyone makes a mistake in the
9339            --  expander and mucks an expression tree irretrievably, the result
9340            --  will be a failure to detect a (probably very obscure) case
9341            --  of non-conformance, which is better than bombing on some
9342            --  case where two expressions do in fact conform.
9343
9344            when others =>
9345               return True;
9346         end case;
9347      end if;
9348   end Fully_Conformant_Expressions;
9349
9350   ----------------------------------------
9351   -- Fully_Conformant_Discrete_Subtypes --
9352   ----------------------------------------
9353
9354   function Fully_Conformant_Discrete_Subtypes
9355     (Given_S1 : Node_Id;
9356      Given_S2 : Node_Id) return Boolean
9357   is
9358      S1 : constant Node_Id := Original_Node (Given_S1);
9359      S2 : constant Node_Id := Original_Node (Given_S2);
9360
9361      function Conforming_Bounds (B1, B2 : Node_Id) return Boolean;
9362      --  Special-case for a bound given by a discriminant, which in the body
9363      --  is replaced with the discriminal of the enclosing type.
9364
9365      function Conforming_Ranges (R1, R2 : Node_Id) return Boolean;
9366      --  Check both bounds
9367
9368      -----------------------
9369      -- Conforming_Bounds --
9370      -----------------------
9371
9372      function Conforming_Bounds (B1, B2 : Node_Id) return Boolean is
9373      begin
9374         if Is_Entity_Name (B1)
9375           and then Is_Entity_Name (B2)
9376           and then Ekind (Entity (B1)) = E_Discriminant
9377         then
9378            return Chars (B1) = Chars (B2);
9379
9380         else
9381            return Fully_Conformant_Expressions (B1, B2);
9382         end if;
9383      end Conforming_Bounds;
9384
9385      -----------------------
9386      -- Conforming_Ranges --
9387      -----------------------
9388
9389      function Conforming_Ranges (R1, R2 : Node_Id) return Boolean is
9390      begin
9391         return
9392           Conforming_Bounds (Low_Bound (R1), Low_Bound (R2))
9393             and then
9394           Conforming_Bounds (High_Bound (R1), High_Bound (R2));
9395      end Conforming_Ranges;
9396
9397   --  Start of processing for Fully_Conformant_Discrete_Subtypes
9398
9399   begin
9400      if Nkind (S1) /= Nkind (S2) then
9401         return False;
9402
9403      elsif Is_Entity_Name (S1) then
9404         return Entity (S1) = Entity (S2);
9405
9406      elsif Nkind (S1) = N_Range then
9407         return Conforming_Ranges (S1, S2);
9408
9409      elsif Nkind (S1) = N_Subtype_Indication then
9410         return
9411            Entity (Subtype_Mark (S1)) = Entity (Subtype_Mark (S2))
9412              and then
9413            Conforming_Ranges
9414              (Range_Expression (Constraint (S1)),
9415               Range_Expression (Constraint (S2)));
9416      else
9417         return True;
9418      end if;
9419   end Fully_Conformant_Discrete_Subtypes;
9420
9421   --------------------
9422   -- Install_Entity --
9423   --------------------
9424
9425   procedure Install_Entity (E : Entity_Id) is
9426      Prev : constant Entity_Id := Current_Entity (E);
9427   begin
9428      Set_Is_Immediately_Visible (E);
9429      Set_Current_Entity (E);
9430      Set_Homonym (E, Prev);
9431   end Install_Entity;
9432
9433   ---------------------
9434   -- Install_Formals --
9435   ---------------------
9436
9437   procedure Install_Formals (Id : Entity_Id) is
9438      F : Entity_Id;
9439   begin
9440      F := First_Formal (Id);
9441      while Present (F) loop
9442         Install_Entity (F);
9443         Next_Formal (F);
9444      end loop;
9445   end Install_Formals;
9446
9447   -----------------------------
9448   -- Is_Interface_Conformant --
9449   -----------------------------
9450
9451   function Is_Interface_Conformant
9452     (Tagged_Type : Entity_Id;
9453      Iface_Prim  : Entity_Id;
9454      Prim        : Entity_Id) return Boolean
9455   is
9456      --  The operation may in fact be an inherited (implicit) operation
9457      --  rather than the original interface primitive, so retrieve the
9458      --  ultimate ancestor.
9459
9460      Iface : constant Entity_Id :=
9461                Find_Dispatching_Type (Ultimate_Alias (Iface_Prim));
9462      Typ   : constant Entity_Id := Find_Dispatching_Type (Prim);
9463
9464      function Controlling_Formal (Prim : Entity_Id) return Entity_Id;
9465      --  Return the controlling formal of Prim
9466
9467      ------------------------
9468      -- Controlling_Formal --
9469      ------------------------
9470
9471      function Controlling_Formal (Prim : Entity_Id) return Entity_Id is
9472         E : Entity_Id;
9473
9474      begin
9475         E := First_Entity (Prim);
9476         while Present (E) loop
9477            if Is_Formal (E) and then Is_Controlling_Formal (E) then
9478               return E;
9479            end if;
9480
9481            Next_Entity (E);
9482         end loop;
9483
9484         return Empty;
9485      end Controlling_Formal;
9486
9487      --  Local variables
9488
9489      Iface_Ctrl_F : constant Entity_Id := Controlling_Formal (Iface_Prim);
9490      Prim_Ctrl_F  : constant Entity_Id := Controlling_Formal (Prim);
9491
9492   --  Start of processing for Is_Interface_Conformant
9493
9494   begin
9495      pragma Assert (Is_Subprogram (Iface_Prim)
9496        and then Is_Subprogram (Prim)
9497        and then Is_Dispatching_Operation (Iface_Prim)
9498        and then Is_Dispatching_Operation (Prim));
9499
9500      pragma Assert (Is_Interface (Iface)
9501        or else (Present (Alias (Iface_Prim))
9502                   and then
9503                     Is_Interface
9504                       (Find_Dispatching_Type (Ultimate_Alias (Iface_Prim)))));
9505
9506      if Prim = Iface_Prim
9507        or else not Is_Subprogram (Prim)
9508        or else Ekind (Prim) /= Ekind (Iface_Prim)
9509        or else not Is_Dispatching_Operation (Prim)
9510        or else Scope (Prim) /= Scope (Tagged_Type)
9511        or else No (Typ)
9512        or else Base_Type (Typ) /= Base_Type (Tagged_Type)
9513        or else not Primitive_Names_Match (Iface_Prim, Prim)
9514      then
9515         return False;
9516
9517      --  The mode of the controlling formals must match
9518
9519      elsif Present (Iface_Ctrl_F)
9520        and then Present (Prim_Ctrl_F)
9521        and then Ekind (Iface_Ctrl_F) /= Ekind (Prim_Ctrl_F)
9522      then
9523         return False;
9524
9525      --  Case of a procedure, or a function whose result type matches the
9526      --  result type of the interface primitive, or a function that has no
9527      --  controlling result (I or access I).
9528
9529      elsif Ekind (Iface_Prim) = E_Procedure
9530        or else Etype (Prim) = Etype (Iface_Prim)
9531        or else not Has_Controlling_Result (Prim)
9532      then
9533         return Type_Conformant
9534                  (Iface_Prim, Prim, Skip_Controlling_Formals => True);
9535
9536      --  Case of a function returning an interface, or an access to one. Check
9537      --  that the return types correspond.
9538
9539      elsif Implements_Interface (Typ, Iface) then
9540         if (Ekind (Etype (Prim)) = E_Anonymous_Access_Type)
9541              /=
9542            (Ekind (Etype (Iface_Prim)) = E_Anonymous_Access_Type)
9543         then
9544            return False;
9545         else
9546            return
9547              Type_Conformant (Prim, Ultimate_Alias (Iface_Prim),
9548                Skip_Controlling_Formals => True);
9549         end if;
9550
9551      else
9552         return False;
9553      end if;
9554   end Is_Interface_Conformant;
9555
9556   ---------------------------------
9557   -- Is_Non_Overriding_Operation --
9558   ---------------------------------
9559
9560   function Is_Non_Overriding_Operation
9561     (Prev_E : Entity_Id;
9562      New_E  : Entity_Id) return Boolean
9563   is
9564      Formal : Entity_Id;
9565      F_Typ  : Entity_Id;
9566      G_Typ  : Entity_Id := Empty;
9567
9568      function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id;
9569      --  If F_Type is a derived type associated with a generic actual subtype,
9570      --  then return its Generic_Parent_Type attribute, else return Empty.
9571
9572      function Types_Correspond
9573        (P_Type : Entity_Id;
9574         N_Type : Entity_Id) return Boolean;
9575      --  Returns true if and only if the types (or designated types in the
9576      --  case of anonymous access types) are the same or N_Type is derived
9577      --  directly or indirectly from P_Type.
9578
9579      -----------------------------
9580      -- Get_Generic_Parent_Type --
9581      -----------------------------
9582
9583      function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id is
9584         G_Typ : Entity_Id;
9585         Defn  : Node_Id;
9586         Indic : Node_Id;
9587
9588      begin
9589         if Is_Derived_Type (F_Typ)
9590           and then Nkind (Parent (F_Typ)) = N_Full_Type_Declaration
9591         then
9592            --  The tree must be traversed to determine the parent subtype in
9593            --  the generic unit, which unfortunately isn't always available
9594            --  via semantic attributes. ??? (Note: The use of Original_Node
9595            --  is needed for cases where a full derived type has been
9596            --  rewritten.)
9597
9598            --  If the parent type is a scalar type, the derivation creates
9599            --  an anonymous base type for it, and the source type is its
9600            --  first subtype.
9601
9602            if Is_Scalar_Type (F_Typ)
9603              and then not Comes_From_Source (F_Typ)
9604            then
9605               Defn :=
9606                 Type_Definition
9607                   (Original_Node (Parent (First_Subtype (F_Typ))));
9608            else
9609               Defn := Type_Definition (Original_Node (Parent (F_Typ)));
9610            end if;
9611            if Nkind (Defn) = N_Derived_Type_Definition then
9612               Indic := Subtype_Indication (Defn);
9613
9614               if Nkind (Indic) = N_Subtype_Indication then
9615                  G_Typ := Entity (Subtype_Mark (Indic));
9616               else
9617                  G_Typ := Entity (Indic);
9618               end if;
9619
9620               if Nkind (Parent (G_Typ)) = N_Subtype_Declaration
9621                 and then Present (Generic_Parent_Type (Parent (G_Typ)))
9622               then
9623                  return Generic_Parent_Type (Parent (G_Typ));
9624               end if;
9625            end if;
9626         end if;
9627
9628         return Empty;
9629      end Get_Generic_Parent_Type;
9630
9631      ----------------------
9632      -- Types_Correspond --
9633      ----------------------
9634
9635      function Types_Correspond
9636        (P_Type : Entity_Id;
9637         N_Type : Entity_Id) return Boolean
9638      is
9639         Prev_Type : Entity_Id := Base_Type (P_Type);
9640         New_Type  : Entity_Id := Base_Type (N_Type);
9641
9642      begin
9643         if Ekind (Prev_Type) = E_Anonymous_Access_Type then
9644            Prev_Type := Designated_Type (Prev_Type);
9645         end if;
9646
9647         if Ekind (New_Type) = E_Anonymous_Access_Type then
9648            New_Type := Designated_Type (New_Type);
9649         end if;
9650
9651         if Prev_Type = New_Type then
9652            return True;
9653
9654         elsif not Is_Class_Wide_Type (New_Type) then
9655            while Etype (New_Type) /= New_Type loop
9656               New_Type := Etype (New_Type);
9657
9658               if New_Type = Prev_Type then
9659                  return True;
9660               end if;
9661            end loop;
9662         end if;
9663         return False;
9664      end Types_Correspond;
9665
9666   --  Start of processing for Is_Non_Overriding_Operation
9667
9668   begin
9669      --  In the case where both operations are implicit derived subprograms
9670      --  then neither overrides the other. This can only occur in certain
9671      --  obscure cases (e.g., derivation from homographs created in a generic
9672      --  instantiation).
9673
9674      if Present (Alias (Prev_E)) and then Present (Alias (New_E)) then
9675         return True;
9676
9677      elsif Ekind (Current_Scope) = E_Package
9678        and then Is_Generic_Instance (Current_Scope)
9679        and then In_Private_Part (Current_Scope)
9680        and then Comes_From_Source (New_E)
9681      then
9682         --  We examine the formals and result type of the inherited operation,
9683         --  to determine whether their type is derived from (the instance of)
9684         --  a generic type. The first such formal or result type is the one
9685         --  tested.
9686
9687         Formal := First_Formal (Prev_E);
9688         F_Typ  := Empty;
9689         while Present (Formal) loop
9690            F_Typ := Base_Type (Etype (Formal));
9691
9692            if Ekind (F_Typ) = E_Anonymous_Access_Type then
9693               F_Typ := Designated_Type (F_Typ);
9694            end if;
9695
9696            G_Typ := Get_Generic_Parent_Type (F_Typ);
9697            exit when Present (G_Typ);
9698
9699            Next_Formal (Formal);
9700         end loop;
9701
9702         --  If the function dispatches on result check the result type
9703
9704         if No (G_Typ) and then Ekind (Prev_E) = E_Function then
9705            G_Typ := Get_Generic_Parent_Type (Base_Type (Etype (Prev_E)));
9706         end if;
9707
9708         if No (G_Typ) then
9709            return False;
9710         end if;
9711
9712         --  If the generic type is a private type, then the original operation
9713         --  was not overriding in the generic, because there was no primitive
9714         --  operation to override.
9715
9716         if Nkind (Parent (G_Typ)) = N_Formal_Type_Declaration
9717           and then Nkind (Formal_Type_Definition (Parent (G_Typ))) =
9718                      N_Formal_Private_Type_Definition
9719         then
9720            return True;
9721
9722         --  The generic parent type is the ancestor of a formal derived
9723         --  type declaration. We need to check whether it has a primitive
9724         --  operation that should be overridden by New_E in the generic.
9725
9726         else
9727            declare
9728               P_Formal : Entity_Id;
9729               N_Formal : Entity_Id;
9730               P_Typ    : Entity_Id;
9731               N_Typ    : Entity_Id;
9732               P_Prim   : Entity_Id;
9733               Prim_Elt : Elmt_Id := First_Elmt (Primitive_Operations (G_Typ));
9734
9735            begin
9736               while Present (Prim_Elt) loop
9737                  P_Prim := Node (Prim_Elt);
9738
9739                  if Chars (P_Prim) = Chars (New_E)
9740                    and then Ekind (P_Prim) = Ekind (New_E)
9741                  then
9742                     P_Formal := First_Formal (P_Prim);
9743                     N_Formal := First_Formal (New_E);
9744                     while Present (P_Formal) and then Present (N_Formal) loop
9745                        P_Typ := Etype (P_Formal);
9746                        N_Typ := Etype (N_Formal);
9747
9748                        if not Types_Correspond (P_Typ, N_Typ) then
9749                           exit;
9750                        end if;
9751
9752                        Next_Entity (P_Formal);
9753                        Next_Entity (N_Formal);
9754                     end loop;
9755
9756                     --  Found a matching primitive operation belonging to the
9757                     --  formal ancestor type, so the new subprogram is
9758                     --  overriding.
9759
9760                     if No (P_Formal)
9761                       and then No (N_Formal)
9762                       and then (Ekind (New_E) /= E_Function
9763                                  or else
9764                                    Types_Correspond
9765                                      (Etype (P_Prim), Etype (New_E)))
9766                     then
9767                        return False;
9768                     end if;
9769                  end if;
9770
9771                  Next_Elmt (Prim_Elt);
9772               end loop;
9773
9774               --  If no match found, then the new subprogram does not override
9775               --  in the generic (nor in the instance).
9776
9777               --  If the type in question is not abstract, and the subprogram
9778               --  is, this will be an error if the new operation is in the
9779               --  private part of the instance. Emit a warning now, which will
9780               --  make the subsequent error message easier to understand.
9781
9782               if Present (F_Typ) and then not Is_Abstract_Type (F_Typ)
9783                 and then Is_Abstract_Subprogram (Prev_E)
9784                 and then In_Private_Part (Current_Scope)
9785               then
9786                  Error_Msg_Node_2 := F_Typ;
9787                  Error_Msg_NE
9788                    ("private operation& in generic unit does not override "
9789                     & "any primitive operation of& (RM 12.3 (18))??",
9790                     New_E, New_E);
9791               end if;
9792
9793               return True;
9794            end;
9795         end if;
9796      else
9797         return False;
9798      end if;
9799   end Is_Non_Overriding_Operation;
9800
9801   -------------------------------------
9802   -- List_Inherited_Pre_Post_Aspects --
9803   -------------------------------------
9804
9805   procedure List_Inherited_Pre_Post_Aspects (E : Entity_Id) is
9806   begin
9807      if Opt.List_Inherited_Aspects
9808        and then Is_Subprogram_Or_Generic_Subprogram (E)
9809      then
9810         declare
9811            Subps : constant Subprogram_List := Inherited_Subprograms (E);
9812            Items : Node_Id;
9813            Prag  : Node_Id;
9814
9815         begin
9816            for Index in Subps'Range loop
9817               Items := Contract (Subps (Index));
9818
9819               if Present (Items) then
9820                  Prag := Pre_Post_Conditions (Items);
9821                  while Present (Prag) loop
9822                     Error_Msg_Sloc := Sloc (Prag);
9823
9824                     if Class_Present (Prag)
9825                       and then not Split_PPC (Prag)
9826                     then
9827                        if Pragma_Name (Prag) = Name_Precondition then
9828                           Error_Msg_N
9829                             ("info: & inherits `Pre''Class` aspect from "
9830                              & "#?L?", E);
9831                        else
9832                           Error_Msg_N
9833                             ("info: & inherits `Post''Class` aspect from "
9834                              & "#?L?", E);
9835                        end if;
9836                     end if;
9837
9838                     Prag := Next_Pragma (Prag);
9839                  end loop;
9840               end if;
9841            end loop;
9842         end;
9843      end if;
9844   end List_Inherited_Pre_Post_Aspects;
9845
9846   ------------------------------
9847   -- Make_Inequality_Operator --
9848   ------------------------------
9849
9850   --  S is the defining identifier of an equality operator. We build a
9851   --  subprogram declaration with the right signature. This operation is
9852   --  intrinsic, because it is always expanded as the negation of the
9853   --  call to the equality function.
9854
9855   procedure Make_Inequality_Operator (S : Entity_Id) is
9856      Loc     : constant Source_Ptr := Sloc (S);
9857      Decl    : Node_Id;
9858      Formals : List_Id;
9859      Op_Name : Entity_Id;
9860
9861      FF : constant Entity_Id := First_Formal (S);
9862      NF : constant Entity_Id := Next_Formal (FF);
9863
9864   begin
9865      --  Check that equality was properly defined, ignore call if not
9866
9867      if No (NF) then
9868         return;
9869      end if;
9870
9871      declare
9872         A : constant Entity_Id :=
9873               Make_Defining_Identifier (Sloc (FF),
9874                 Chars => Chars (FF));
9875
9876         B : constant Entity_Id :=
9877               Make_Defining_Identifier (Sloc (NF),
9878                 Chars => Chars (NF));
9879
9880      begin
9881         Op_Name := Make_Defining_Operator_Symbol (Loc, Name_Op_Ne);
9882
9883         Formals := New_List (
9884           Make_Parameter_Specification (Loc,
9885             Defining_Identifier => A,
9886             Parameter_Type      =>
9887               New_Occurrence_Of (Etype (First_Formal (S)),
9888                 Sloc (Etype (First_Formal (S))))),
9889
9890           Make_Parameter_Specification (Loc,
9891             Defining_Identifier => B,
9892             Parameter_Type      =>
9893               New_Occurrence_Of (Etype (Next_Formal (First_Formal (S))),
9894                 Sloc (Etype (Next_Formal (First_Formal (S)))))));
9895
9896         Decl :=
9897           Make_Subprogram_Declaration (Loc,
9898             Specification =>
9899               Make_Function_Specification (Loc,
9900                 Defining_Unit_Name       => Op_Name,
9901                 Parameter_Specifications => Formals,
9902                 Result_Definition        =>
9903                   New_Occurrence_Of (Standard_Boolean, Loc)));
9904
9905         --  Insert inequality right after equality if it is explicit or after
9906         --  the derived type when implicit. These entities are created only
9907         --  for visibility purposes, and eventually replaced in the course
9908         --  of expansion, so they do not need to be attached to the tree and
9909         --  seen by the back-end. Keeping them internal also avoids spurious
9910         --  freezing problems. The declaration is inserted in the tree for
9911         --  analysis, and removed afterwards. If the equality operator comes
9912         --  from an explicit declaration, attach the inequality immediately
9913         --  after. Else the equality is inherited from a derived type
9914         --  declaration, so insert inequality after that declaration.
9915
9916         if No (Alias (S)) then
9917            Insert_After (Unit_Declaration_Node (S), Decl);
9918         elsif Is_List_Member (Parent (S)) then
9919            Insert_After (Parent (S), Decl);
9920         else
9921            Insert_After (Parent (Etype (First_Formal (S))), Decl);
9922         end if;
9923
9924         Mark_Rewrite_Insertion (Decl);
9925         Set_Is_Intrinsic_Subprogram (Op_Name);
9926         Analyze (Decl);
9927         Remove (Decl);
9928         Set_Has_Completion (Op_Name);
9929         Set_Corresponding_Equality (Op_Name, S);
9930         Set_Is_Abstract_Subprogram (Op_Name, Is_Abstract_Subprogram (S));
9931      end;
9932   end Make_Inequality_Operator;
9933
9934   ----------------------
9935   -- May_Need_Actuals --
9936   ----------------------
9937
9938   procedure May_Need_Actuals (Fun : Entity_Id) is
9939      F : Entity_Id;
9940      B : Boolean;
9941
9942   begin
9943      F := First_Formal (Fun);
9944      B := True;
9945      while Present (F) loop
9946         if No (Default_Value (F)) then
9947            B := False;
9948            exit;
9949         end if;
9950
9951         Next_Formal (F);
9952      end loop;
9953
9954      Set_Needs_No_Actuals (Fun, B);
9955   end May_Need_Actuals;
9956
9957   ---------------------
9958   -- Mode_Conformant --
9959   ---------------------
9960
9961   function Mode_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
9962      Result : Boolean;
9963   begin
9964      Check_Conformance (New_Id, Old_Id, Mode_Conformant, False, Result);
9965      return Result;
9966   end Mode_Conformant;
9967
9968   ---------------------------
9969   -- New_Overloaded_Entity --
9970   ---------------------------
9971
9972   procedure New_Overloaded_Entity
9973     (S            : Entity_Id;
9974      Derived_Type : Entity_Id := Empty)
9975   is
9976      Overridden_Subp : Entity_Id := Empty;
9977      --  Set if the current scope has an operation that is type-conformant
9978      --  with S, and becomes hidden by S.
9979
9980      Is_Primitive_Subp : Boolean;
9981      --  Set to True if the new subprogram is primitive
9982
9983      E : Entity_Id;
9984      --  Entity that S overrides
9985
9986      procedure Check_For_Primitive_Subprogram
9987        (Is_Primitive  : out Boolean;
9988         Is_Overriding : Boolean := False);
9989      --  If the subprogram being analyzed is a primitive operation of the type
9990      --  of a formal or result, set the Has_Primitive_Operations flag on the
9991      --  type, and set Is_Primitive to True (otherwise set to False). Set the
9992      --  corresponding flag on the entity itself for later use.
9993
9994      function Has_Matching_Entry_Or_Subprogram (E : Entity_Id) return Boolean;
9995      --  True if a) E is a subprogram whose first formal is a concurrent type
9996      --  defined in the scope of E that has some entry or subprogram whose
9997      --  profile matches E, or b) E is an internally built dispatching
9998      --  subprogram of a protected type and there is a matching subprogram
9999      --  defined in the enclosing scope of the protected type, or c) E is
10000      --  an entry of a synchronized type and a matching procedure has been
10001      --  previously defined in the enclosing scope of the synchronized type.
10002
10003      function Is_Private_Declaration (E : Entity_Id) return Boolean;
10004      --  Check that E is declared in the private part of the current package,
10005      --  or in the package body, where it may hide a previous declaration.
10006      --  We can't use In_Private_Part by itself because this flag is also
10007      --  set when freezing entities, so we must examine the place of the
10008      --  declaration in the tree, and recognize wrapper packages as well.
10009
10010      function Is_Overriding_Alias
10011        (Old_E : Entity_Id;
10012         New_E : Entity_Id) return Boolean;
10013      --  Check whether new subprogram and old subprogram are both inherited
10014      --  from subprograms that have distinct dispatch table entries. This can
10015      --  occur with derivations from instances with accidental homonyms. The
10016      --  function is conservative given that the converse is only true within
10017      --  instances that contain accidental overloadings.
10018
10019      procedure Report_Conflict (S : Entity_Id; E : Entity_Id);
10020      --  Report conflict between entities S and E
10021
10022      ------------------------------------
10023      -- Check_For_Primitive_Subprogram --
10024      ------------------------------------
10025
10026      procedure Check_For_Primitive_Subprogram
10027        (Is_Primitive  : out Boolean;
10028         Is_Overriding : Boolean := False)
10029      is
10030         Formal : Entity_Id;
10031         F_Typ  : Entity_Id;
10032         B_Typ  : Entity_Id;
10033
10034         function Visible_Part_Type (T : Entity_Id) return Boolean;
10035         --  Returns true if T is declared in the visible part of the current
10036         --  package scope; otherwise returns false. Assumes that T is declared
10037         --  in a package.
10038
10039         procedure Check_Private_Overriding (T : Entity_Id);
10040         --  Checks that if a primitive abstract subprogram of a visible
10041         --  abstract type is declared in a private part, then it must override
10042         --  an abstract subprogram declared in the visible part. Also checks
10043         --  that if a primitive function with a controlling result is declared
10044         --  in a private part, then it must override a function declared in
10045         --  the visible part.
10046
10047         ------------------------------
10048         -- Check_Private_Overriding --
10049         ------------------------------
10050
10051         procedure Check_Private_Overriding (T : Entity_Id) is
10052            function Overrides_Private_Part_Op return Boolean;
10053            --  This detects the special case where the overriding subprogram
10054            --  is overriding a subprogram that was declared in the same
10055            --  private part. That case is illegal by 3.9.3(10).
10056
10057            function Overrides_Visible_Function
10058              (Partial_View : Entity_Id) return Boolean;
10059            --  True if S overrides a function in the visible part. The
10060            --  overridden function could be explicitly or implicitly declared.
10061
10062            -------------------------------
10063            -- Overrides_Private_Part_Op --
10064            -------------------------------
10065
10066            function Overrides_Private_Part_Op return Boolean is
10067               Over_Decl : constant Node_Id :=
10068                             Unit_Declaration_Node (Overridden_Operation (S));
10069               Subp_Decl : constant Node_Id := Unit_Declaration_Node (S);
10070
10071            begin
10072               pragma Assert (Is_Overriding);
10073               pragma Assert
10074                 (Nkind (Over_Decl) = N_Abstract_Subprogram_Declaration);
10075               pragma Assert
10076                 (Nkind (Subp_Decl) = N_Abstract_Subprogram_Declaration);
10077
10078               return In_Same_List (Over_Decl, Subp_Decl);
10079            end Overrides_Private_Part_Op;
10080
10081            --------------------------------
10082            -- Overrides_Visible_Function --
10083            --------------------------------
10084
10085            function Overrides_Visible_Function
10086              (Partial_View : Entity_Id) return Boolean
10087            is
10088            begin
10089               if not Is_Overriding or else not Has_Homonym (S) then
10090                  return False;
10091               end if;
10092
10093               if not Present (Partial_View) then
10094                  return True;
10095               end if;
10096
10097               --  Search through all the homonyms H of S in the current
10098               --  package spec, and return True if we find one that matches.
10099               --  Note that Parent (H) will be the declaration of the
10100               --  partial view of T for a match.
10101
10102               declare
10103                  H : Entity_Id := S;
10104               begin
10105                  loop
10106                     H := Homonym (H);
10107                     exit when not Present (H) or else Scope (H) /= Scope (S);
10108
10109                     if Nkind_In
10110                       (Parent (H),
10111                        N_Private_Extension_Declaration,
10112                        N_Private_Type_Declaration)
10113                       and then Defining_Identifier (Parent (H)) = Partial_View
10114                     then
10115                        return True;
10116                     end if;
10117                  end loop;
10118               end;
10119
10120               return False;
10121            end Overrides_Visible_Function;
10122
10123         --  Start of processing for Check_Private_Overriding
10124
10125         begin
10126            if Is_Package_Or_Generic_Package (Current_Scope)
10127              and then In_Private_Part (Current_Scope)
10128              and then Visible_Part_Type (T)
10129              and then not In_Instance
10130            then
10131               if Is_Abstract_Type (T)
10132                 and then Is_Abstract_Subprogram (S)
10133                 and then (not Is_Overriding
10134                             or else not Is_Abstract_Subprogram (E)
10135                             or else Overrides_Private_Part_Op)
10136               then
10137                  Error_Msg_N
10138                    ("abstract subprograms must be visible (RM 3.9.3(10))!",
10139                     S);
10140
10141               elsif Ekind (S) = E_Function then
10142                  declare
10143                     Partial_View : constant Entity_Id :=
10144                                      Incomplete_Or_Partial_View (T);
10145
10146                  begin
10147                     if not Overrides_Visible_Function (Partial_View) then
10148
10149                        --  Here, S is "function ... return T;" declared in
10150                        --  the private part, not overriding some visible
10151                        --  operation.  That's illegal in the tagged case
10152                        --  (but not if the private type is untagged).
10153
10154                        if ((Present (Partial_View)
10155                              and then Is_Tagged_Type (Partial_View))
10156                          or else (not Present (Partial_View)
10157                                    and then Is_Tagged_Type (T)))
10158                          and then T = Base_Type (Etype (S))
10159                        then
10160                           Error_Msg_N
10161                             ("private function with tagged result must"
10162                              & " override visible-part function", S);
10163                           Error_Msg_N
10164                             ("\move subprogram to the visible part"
10165                              & " (RM 3.9.3(10))", S);
10166
10167                        --  AI05-0073: extend this test to the case of a
10168                        --  function with a controlling access result.
10169
10170                        elsif Ekind (Etype (S)) = E_Anonymous_Access_Type
10171                          and then Is_Tagged_Type (Designated_Type (Etype (S)))
10172                          and then
10173                            not Is_Class_Wide_Type
10174                                  (Designated_Type (Etype (S)))
10175                          and then Ada_Version >= Ada_2012
10176                        then
10177                           Error_Msg_N
10178                             ("private function with controlling access "
10179                              & "result must override visible-part function",
10180                              S);
10181                           Error_Msg_N
10182                             ("\move subprogram to the visible part"
10183                              & " (RM 3.9.3(10))", S);
10184                        end if;
10185                     end if;
10186                  end;
10187               end if;
10188            end if;
10189         end Check_Private_Overriding;
10190
10191         -----------------------
10192         -- Visible_Part_Type --
10193         -----------------------
10194
10195         function Visible_Part_Type (T : Entity_Id) return Boolean is
10196            P : constant Node_Id := Unit_Declaration_Node (Scope (T));
10197
10198         begin
10199            --  If the entity is a private type, then it must be declared in a
10200            --  visible part.
10201
10202            if Ekind (T) in Private_Kind then
10203               return True;
10204
10205            elsif Is_Type (T) and then Has_Private_Declaration (T) then
10206               return True;
10207
10208            elsif Is_List_Member (Declaration_Node (T))
10209              and then List_Containing (Declaration_Node (T)) =
10210                         Visible_Declarations (Specification (P))
10211            then
10212               return True;
10213
10214            else
10215               return False;
10216            end if;
10217         end Visible_Part_Type;
10218
10219      --  Start of processing for Check_For_Primitive_Subprogram
10220
10221      begin
10222         Is_Primitive := False;
10223
10224         if not Comes_From_Source (S) then
10225            null;
10226
10227         --  If subprogram is at library level, it is not primitive operation
10228
10229         elsif Current_Scope = Standard_Standard then
10230            null;
10231
10232         elsif (Is_Package_Or_Generic_Package (Current_Scope)
10233                 and then not In_Package_Body (Current_Scope))
10234           or else Is_Overriding
10235         then
10236            --  For function, check return type
10237
10238            if Ekind (S) = E_Function then
10239               if Ekind (Etype (S)) = E_Anonymous_Access_Type then
10240                  F_Typ := Designated_Type (Etype (S));
10241               else
10242                  F_Typ := Etype (S);
10243               end if;
10244
10245               B_Typ := Base_Type (F_Typ);
10246
10247               if Scope (B_Typ) = Current_Scope
10248                 and then not Is_Class_Wide_Type (B_Typ)
10249                 and then not Is_Generic_Type (B_Typ)
10250               then
10251                  Is_Primitive := True;
10252                  Set_Has_Primitive_Operations (B_Typ);
10253                  Set_Is_Primitive (S);
10254                  Check_Private_Overriding (B_Typ);
10255
10256                  --  The Ghost policy in effect at the point of declaration
10257                  --  or a tagged type and a primitive operation must match
10258                  --  (SPARK RM 6.9(16)).
10259
10260                  Check_Ghost_Primitive (S, B_Typ);
10261               end if;
10262            end if;
10263
10264            --  For all subprograms, check formals
10265
10266            Formal := First_Formal (S);
10267            while Present (Formal) loop
10268               if Ekind (Etype (Formal)) = E_Anonymous_Access_Type then
10269                  F_Typ := Designated_Type (Etype (Formal));
10270               else
10271                  F_Typ := Etype (Formal);
10272               end if;
10273
10274               B_Typ := Base_Type (F_Typ);
10275
10276               if Ekind (B_Typ) = E_Access_Subtype then
10277                  B_Typ := Base_Type (B_Typ);
10278               end if;
10279
10280               if Scope (B_Typ) = Current_Scope
10281                 and then not Is_Class_Wide_Type (B_Typ)
10282                 and then not Is_Generic_Type (B_Typ)
10283               then
10284                  Is_Primitive := True;
10285                  Set_Is_Primitive (S);
10286                  Set_Has_Primitive_Operations (B_Typ);
10287                  Check_Private_Overriding (B_Typ);
10288
10289                  --  The Ghost policy in effect at the point of declaration
10290                  --  of a tagged type and a primitive operation must match
10291                  --  (SPARK RM 6.9(16)).
10292
10293                  Check_Ghost_Primitive (S, B_Typ);
10294               end if;
10295
10296               Next_Formal (Formal);
10297            end loop;
10298
10299         --  Special case: An equality function can be redefined for a type
10300         --  occurring in a declarative part, and won't otherwise be treated as
10301         --  a primitive because it doesn't occur in a package spec and doesn't
10302         --  override an inherited subprogram. It's important that we mark it
10303         --  primitive so it can be returned by Collect_Primitive_Operations
10304         --  and be used in composing the equality operation of later types
10305         --  that have a component of the type.
10306
10307         elsif Chars (S) = Name_Op_Eq
10308           and then Etype (S) = Standard_Boolean
10309         then
10310            B_Typ := Base_Type (Etype (First_Formal (S)));
10311
10312            if Scope (B_Typ) = Current_Scope
10313              and then
10314                Base_Type (Etype (Next_Formal (First_Formal (S)))) = B_Typ
10315              and then not Is_Limited_Type (B_Typ)
10316            then
10317               Is_Primitive := True;
10318               Set_Is_Primitive (S);
10319               Set_Has_Primitive_Operations (B_Typ);
10320               Check_Private_Overriding (B_Typ);
10321
10322               --  The Ghost policy in effect at the point of declaration of a
10323               --  tagged type and a primitive operation must match
10324               --  (SPARK RM 6.9(16)).
10325
10326               Check_Ghost_Primitive (S, B_Typ);
10327            end if;
10328         end if;
10329      end Check_For_Primitive_Subprogram;
10330
10331      --------------------------------------
10332      -- Has_Matching_Entry_Or_Subprogram --
10333      --------------------------------------
10334
10335      function Has_Matching_Entry_Or_Subprogram
10336        (E : Entity_Id) return Boolean
10337      is
10338         function Check_Conforming_Parameters
10339           (E1_Param : Node_Id;
10340            E2_Param : Node_Id) return Boolean;
10341         --  Starting from the given parameters, check that all the parameters
10342         --  of two entries or subprograms are subtype conformant. Used to skip
10343         --  the check on the controlling argument.
10344
10345         function Matching_Entry_Or_Subprogram
10346           (Conc_Typ : Entity_Id;
10347            Subp     : Entity_Id) return Entity_Id;
10348         --  Return the first entry or subprogram of the given concurrent type
10349         --  whose name matches the name of Subp and has a profile conformant
10350         --  with Subp; return Empty if not found.
10351
10352         function Matching_Dispatching_Subprogram
10353           (Conc_Typ : Entity_Id;
10354            Ent      : Entity_Id) return Entity_Id;
10355         --  Return the first dispatching primitive of Conc_Type defined in the
10356         --  enclosing scope of Conc_Type (i.e. before the full definition of
10357         --  this concurrent type) whose name matches the entry Ent and has a
10358         --  profile conformant with the profile of the corresponding (not yet
10359         --  built) dispatching primitive of Ent; return Empty if not found.
10360
10361         function Matching_Original_Protected_Subprogram
10362           (Prot_Typ : Entity_Id;
10363            Subp     : Entity_Id) return Entity_Id;
10364         --  Return the first subprogram defined in the enclosing scope of
10365         --  Prot_Typ (before the full definition of this protected type)
10366         --  whose name matches the original name of Subp and has a profile
10367         --  conformant with the profile of Subp; return Empty if not found.
10368
10369         ---------------------------------
10370         -- Check_Conforming_Parameters --
10371         ---------------------------------
10372
10373         function Check_Conforming_Parameters
10374           (E1_Param : Node_Id;
10375            E2_Param : Node_Id) return Boolean
10376         is
10377            Param_E1 : Node_Id := E1_Param;
10378            Param_E2 : Node_Id := E2_Param;
10379
10380         begin
10381            while Present (Param_E1) and then Present (Param_E2) loop
10382               if Ekind (Defining_Identifier (Param_E1)) /=
10383                    Ekind (Defining_Identifier (Param_E2))
10384                 or else not
10385                   Conforming_Types
10386                     (Find_Parameter_Type (Param_E1),
10387                      Find_Parameter_Type (Param_E2),
10388                      Subtype_Conformant)
10389               then
10390                  return False;
10391               end if;
10392
10393               Next (Param_E1);
10394               Next (Param_E2);
10395            end loop;
10396
10397            --  The candidate is not valid if one of the two lists contains
10398            --  more parameters than the other
10399
10400            return No (Param_E1) and then No (Param_E2);
10401         end Check_Conforming_Parameters;
10402
10403         ----------------------------------
10404         -- Matching_Entry_Or_Subprogram --
10405         ----------------------------------
10406
10407         function Matching_Entry_Or_Subprogram
10408           (Conc_Typ : Entity_Id;
10409            Subp     : Entity_Id) return Entity_Id
10410         is
10411            E : Entity_Id;
10412
10413         begin
10414            E := First_Entity (Conc_Typ);
10415            while Present (E) loop
10416               if Chars (Subp) = Chars (E)
10417                 and then (Ekind (E) = E_Entry or else Is_Subprogram (E))
10418                 and then
10419                   Check_Conforming_Parameters
10420                     (First (Parameter_Specifications (Parent (E))),
10421                      Next (First (Parameter_Specifications (Parent (Subp)))))
10422               then
10423                  return E;
10424               end if;
10425
10426               Next_Entity (E);
10427            end loop;
10428
10429            return Empty;
10430         end Matching_Entry_Or_Subprogram;
10431
10432         -------------------------------------
10433         -- Matching_Dispatching_Subprogram --
10434         -------------------------------------
10435
10436         function Matching_Dispatching_Subprogram
10437           (Conc_Typ : Entity_Id;
10438            Ent      : Entity_Id) return Entity_Id
10439         is
10440            E : Entity_Id;
10441
10442         begin
10443            --  Search for entities in the enclosing scope of this synchonized
10444            --  type.
10445
10446            pragma Assert (Is_Concurrent_Type (Conc_Typ));
10447            Push_Scope (Scope (Conc_Typ));
10448            E := Current_Entity_In_Scope (Ent);
10449            Pop_Scope;
10450
10451            while Present (E) loop
10452               if Scope (E) = Scope (Conc_Typ)
10453                 and then Comes_From_Source (E)
10454                 and then Ekind (E) = E_Procedure
10455                 and then Present (First_Entity (E))
10456                 and then Is_Controlling_Formal (First_Entity (E))
10457                 and then Etype (First_Entity (E)) = Conc_Typ
10458                 and then
10459                   Check_Conforming_Parameters
10460                     (First (Parameter_Specifications (Parent (Ent))),
10461                      Next (First (Parameter_Specifications (Parent (E)))))
10462               then
10463                  return E;
10464               end if;
10465
10466               E := Homonym (E);
10467            end loop;
10468
10469            return Empty;
10470         end Matching_Dispatching_Subprogram;
10471
10472         --------------------------------------------
10473         -- Matching_Original_Protected_Subprogram --
10474         --------------------------------------------
10475
10476         function Matching_Original_Protected_Subprogram
10477           (Prot_Typ : Entity_Id;
10478            Subp     : Entity_Id) return Entity_Id
10479         is
10480            ICF : constant Boolean :=
10481                    Is_Controlling_Formal (First_Entity (Subp));
10482            E   : Entity_Id;
10483
10484         begin
10485            --  Temporarily decorate the first parameter of Subp as controlling
10486            --  formal, required to invoke Subtype_Conformant.
10487
10488            Set_Is_Controlling_Formal (First_Entity (Subp));
10489
10490            E :=
10491              Current_Entity_In_Scope (Original_Protected_Subprogram (Subp));
10492
10493            while Present (E) loop
10494               if Scope (E) = Scope (Prot_Typ)
10495                 and then Comes_From_Source (E)
10496                 and then Ekind (Subp) = Ekind (E)
10497                 and then Present (First_Entity (E))
10498                 and then Is_Controlling_Formal (First_Entity (E))
10499                 and then Etype (First_Entity (E)) = Prot_Typ
10500                 and then Subtype_Conformant (Subp, E,
10501                            Skip_Controlling_Formals => True)
10502               then
10503                  Set_Is_Controlling_Formal (First_Entity (Subp), ICF);
10504                  return E;
10505               end if;
10506
10507               E := Homonym (E);
10508            end loop;
10509
10510            Set_Is_Controlling_Formal (First_Entity (Subp), ICF);
10511
10512            return Empty;
10513         end Matching_Original_Protected_Subprogram;
10514
10515      --  Start of processing for Has_Matching_Entry_Or_Subprogram
10516
10517      begin
10518         --  Case 1: E is a subprogram whose first formal is a concurrent type
10519         --  defined in the scope of E that has an entry or subprogram whose
10520         --  profile matches E.
10521
10522         if Comes_From_Source (E)
10523           and then Is_Subprogram (E)
10524           and then Present (First_Entity (E))
10525           and then Is_Concurrent_Record_Type (Etype (First_Entity (E)))
10526         then
10527            if Scope (E) =
10528                 Scope (Corresponding_Concurrent_Type
10529                         (Etype (First_Entity (E))))
10530              and then
10531                Present
10532                  (Matching_Entry_Or_Subprogram
10533                     (Corresponding_Concurrent_Type (Etype (First_Entity (E))),
10534                      Subp => E))
10535            then
10536               Report_Conflict (E,
10537                 Matching_Entry_Or_Subprogram
10538                   (Corresponding_Concurrent_Type (Etype (First_Entity (E))),
10539                    Subp => E));
10540               return True;
10541            end if;
10542
10543         --  Case 2: E is an internally built dispatching subprogram of a
10544         --  protected type and there is a subprogram defined in the enclosing
10545         --  scope of the protected type that has the original name of E and
10546         --  its profile is conformant with the profile of E. We check the
10547         --  name of the original protected subprogram associated with E since
10548         --  the expander builds dispatching primitives of protected functions
10549         --  and procedures with other names (see Exp_Ch9.Build_Selected_Name).
10550
10551         elsif not Comes_From_Source (E)
10552           and then Is_Subprogram (E)
10553           and then Present (First_Entity (E))
10554           and then Is_Concurrent_Record_Type (Etype (First_Entity (E)))
10555           and then Present (Original_Protected_Subprogram (E))
10556           and then
10557             Present
10558               (Matching_Original_Protected_Subprogram
10559                 (Corresponding_Concurrent_Type (Etype (First_Entity (E))),
10560                  Subp => E))
10561         then
10562            Report_Conflict (E,
10563              Matching_Original_Protected_Subprogram
10564                (Corresponding_Concurrent_Type (Etype (First_Entity (E))),
10565                 Subp => E));
10566            return True;
10567
10568         --  Case 3: E is an entry of a synchronized type and a matching
10569         --  procedure has been previously defined in the enclosing scope
10570         --  of the synchronized type.
10571
10572         elsif Comes_From_Source (E)
10573           and then Ekind (E) = E_Entry
10574           and then
10575             Present (Matching_Dispatching_Subprogram (Current_Scope, E))
10576         then
10577            Report_Conflict (E,
10578              Matching_Dispatching_Subprogram (Current_Scope, E));
10579            return True;
10580         end if;
10581
10582         return False;
10583      end Has_Matching_Entry_Or_Subprogram;
10584
10585      ----------------------------
10586      -- Is_Private_Declaration --
10587      ----------------------------
10588
10589      function Is_Private_Declaration (E : Entity_Id) return Boolean is
10590         Decl       : constant Node_Id := Unit_Declaration_Node (E);
10591         Priv_Decls : List_Id;
10592
10593      begin
10594         if Is_Package_Or_Generic_Package (Current_Scope)
10595           and then In_Private_Part (Current_Scope)
10596         then
10597            Priv_Decls :=
10598              Private_Declarations (Package_Specification (Current_Scope));
10599
10600            return In_Package_Body (Current_Scope)
10601              or else
10602                (Is_List_Member (Decl)
10603                  and then List_Containing (Decl) = Priv_Decls)
10604              or else (Nkind (Parent (Decl)) = N_Package_Specification
10605                        and then not
10606                          Is_Compilation_Unit
10607                            (Defining_Entity (Parent (Decl)))
10608                        and then List_Containing (Parent (Parent (Decl))) =
10609                                                                Priv_Decls);
10610         else
10611            return False;
10612         end if;
10613      end Is_Private_Declaration;
10614
10615      --------------------------
10616      -- Is_Overriding_Alias --
10617      --------------------------
10618
10619      function Is_Overriding_Alias
10620        (Old_E : Entity_Id;
10621         New_E : Entity_Id) return Boolean
10622      is
10623         AO : constant Entity_Id := Alias (Old_E);
10624         AN : constant Entity_Id := Alias (New_E);
10625
10626      begin
10627         return Scope (AO) /= Scope (AN)
10628           or else No (DTC_Entity (AO))
10629           or else No (DTC_Entity (AN))
10630           or else DT_Position (AO) = DT_Position (AN);
10631      end Is_Overriding_Alias;
10632
10633      ---------------------
10634      -- Report_Conflict --
10635      ---------------------
10636
10637      procedure Report_Conflict (S : Entity_Id; E : Entity_Id) is
10638      begin
10639         Error_Msg_Sloc := Sloc (E);
10640
10641         --  Generate message, with useful additional warning if in generic
10642
10643         if Is_Generic_Unit (E) then
10644            Error_Msg_N ("previous generic unit cannot be overloaded", S);
10645            Error_Msg_N ("\& conflicts with declaration#", S);
10646         else
10647            Error_Msg_N ("& conflicts with declaration#", S);
10648         end if;
10649      end Report_Conflict;
10650
10651   --  Start of processing for New_Overloaded_Entity
10652
10653   begin
10654      --  We need to look for an entity that S may override. This must be a
10655      --  homonym in the current scope, so we look for the first homonym of
10656      --  S in the current scope as the starting point for the search.
10657
10658      E := Current_Entity_In_Scope (S);
10659
10660      --  Ada 2005 (AI-251): Derivation of abstract interface primitives.
10661      --  They are directly added to the list of primitive operations of
10662      --  Derived_Type, unless this is a rederivation in the private part
10663      --  of an operation that was already derived in the visible part of
10664      --  the current package.
10665
10666      if Ada_Version >= Ada_2005
10667        and then Present (Derived_Type)
10668        and then Present (Alias (S))
10669        and then Is_Dispatching_Operation (Alias (S))
10670        and then Present (Find_Dispatching_Type (Alias (S)))
10671        and then Is_Interface (Find_Dispatching_Type (Alias (S)))
10672      then
10673         --  For private types, when the full-view is processed we propagate to
10674         --  the full view the non-overridden entities whose attribute "alias"
10675         --  references an interface primitive. These entities were added by
10676         --  Derive_Subprograms to ensure that interface primitives are
10677         --  covered.
10678
10679         --  Inside_Freeze_Actions is non zero when S corresponds with an
10680         --  internal entity that links an interface primitive with its
10681         --  covering primitive through attribute Interface_Alias (see
10682         --  Add_Internal_Interface_Entities).
10683
10684         if Inside_Freezing_Actions = 0
10685           and then Is_Package_Or_Generic_Package (Current_Scope)
10686           and then In_Private_Part (Current_Scope)
10687           and then Nkind (Parent (E)) = N_Private_Extension_Declaration
10688           and then Nkind (Parent (S)) = N_Full_Type_Declaration
10689           and then Full_View (Defining_Identifier (Parent (E)))
10690                      = Defining_Identifier (Parent (S))
10691           and then Alias (E) = Alias (S)
10692         then
10693            Check_Operation_From_Private_View (S, E);
10694            Set_Is_Dispatching_Operation (S);
10695
10696         --  Common case
10697
10698         else
10699            Enter_Overloaded_Entity (S);
10700            Check_Dispatching_Operation (S, Empty);
10701            Check_For_Primitive_Subprogram (Is_Primitive_Subp);
10702         end if;
10703
10704         return;
10705      end if;
10706
10707      --  For synchronized types check conflicts of this entity with previously
10708      --  defined entities.
10709
10710      if Ada_Version >= Ada_2005
10711        and then Has_Matching_Entry_Or_Subprogram (S)
10712      then
10713         return;
10714      end if;
10715
10716      --  If there is no homonym then this is definitely not overriding
10717
10718      if No (E) then
10719         Enter_Overloaded_Entity (S);
10720         Check_Dispatching_Operation (S, Empty);
10721         Check_For_Primitive_Subprogram (Is_Primitive_Subp);
10722
10723         --  If subprogram has an explicit declaration, check whether it has an
10724         --  overriding indicator.
10725
10726         if Comes_From_Source (S) then
10727            Check_Synchronized_Overriding (S, Overridden_Subp);
10728
10729            --  (Ada 2012: AI05-0125-1): If S is a dispatching operation then
10730            --  it may have overridden some hidden inherited primitive. Update
10731            --  Overridden_Subp to avoid spurious errors when checking the
10732            --  overriding indicator.
10733
10734            if Ada_Version >= Ada_2012
10735              and then No (Overridden_Subp)
10736              and then Is_Dispatching_Operation (S)
10737              and then Present (Overridden_Operation (S))
10738            then
10739               Overridden_Subp := Overridden_Operation (S);
10740            end if;
10741
10742            Check_Overriding_Indicator
10743              (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
10744
10745            --  The Ghost policy in effect at the point of declaration of a
10746            --  parent subprogram and an overriding subprogram must match
10747            --  (SPARK RM 6.9(17)).
10748
10749            Check_Ghost_Overriding (S, Overridden_Subp);
10750         end if;
10751
10752      --  If there is a homonym that is not overloadable, then we have an
10753      --  error, except for the special cases checked explicitly below.
10754
10755      elsif not Is_Overloadable (E) then
10756
10757         --  Check for spurious conflict produced by a subprogram that has the
10758         --  same name as that of the enclosing generic package. The conflict
10759         --  occurs within an instance, between the subprogram and the renaming
10760         --  declaration for the package. After the subprogram, the package
10761         --  renaming declaration becomes hidden.
10762
10763         if Ekind (E) = E_Package
10764           and then Present (Renamed_Object (E))
10765           and then Renamed_Object (E) = Current_Scope
10766           and then Nkind (Parent (Renamed_Object (E))) =
10767                                                     N_Package_Specification
10768           and then Present (Generic_Parent (Parent (Renamed_Object (E))))
10769         then
10770            Set_Is_Hidden (E);
10771            Set_Is_Immediately_Visible (E, False);
10772            Enter_Overloaded_Entity (S);
10773            Set_Homonym (S, Homonym (E));
10774            Check_Dispatching_Operation (S, Empty);
10775            Check_Overriding_Indicator (S, Empty, Is_Primitive => False);
10776
10777         --  If the subprogram is implicit it is hidden by the previous
10778         --  declaration. However if it is dispatching, it must appear in the
10779         --  dispatch table anyway, because it can be dispatched to even if it
10780         --  cannot be called directly.
10781
10782         elsif Present (Alias (S)) and then not Comes_From_Source (S) then
10783            Set_Scope (S, Current_Scope);
10784
10785            if Is_Dispatching_Operation (Alias (S)) then
10786               Check_Dispatching_Operation (S, Empty);
10787            end if;
10788
10789            return;
10790
10791         else
10792            Report_Conflict (S, E);
10793            return;
10794         end if;
10795
10796      --  E exists and is overloadable
10797
10798      else
10799         Check_Synchronized_Overriding (S, Overridden_Subp);
10800
10801         --  Loop through E and its homonyms to determine if any of them is
10802         --  the candidate for overriding by S.
10803
10804         while Present (E) loop
10805
10806            --  Definitely not interesting if not in the current scope
10807
10808            if Scope (E) /= Current_Scope then
10809               null;
10810
10811            --  A function can overload the name of an abstract state. The
10812            --  state can be viewed as a function with a profile that cannot
10813            --  be matched by anything.
10814
10815            elsif Ekind (S) = E_Function
10816              and then Ekind (E) = E_Abstract_State
10817            then
10818               Enter_Overloaded_Entity (S);
10819               return;
10820
10821            --  Ada 2012 (AI05-0165): For internally generated bodies of null
10822            --  procedures locate the internally generated spec. We enforce
10823            --  mode conformance since a tagged type may inherit from
10824            --  interfaces several null primitives which differ only in
10825            --  the mode of the formals.
10826
10827            elsif not Comes_From_Source (S)
10828              and then Is_Null_Procedure (S)
10829              and then not Mode_Conformant (E, S)
10830            then
10831               null;
10832
10833            --  Check if we have type conformance
10834
10835            elsif Type_Conformant (E, S) then
10836
10837               --  If the old and new entities have the same profile and one
10838               --  is not the body of the other, then this is an error, unless
10839               --  one of them is implicitly declared.
10840
10841               --  There are some cases when both can be implicit, for example
10842               --  when both a literal and a function that overrides it are
10843               --  inherited in a derivation, or when an inherited operation
10844               --  of a tagged full type overrides the inherited operation of
10845               --  a private extension. Ada 83 had a special rule for the
10846               --  literal case. In Ada 95, the later implicit operation hides
10847               --  the former, and the literal is always the former. In the
10848               --  odd case where both are derived operations declared at the
10849               --  same point, both operations should be declared, and in that
10850               --  case we bypass the following test and proceed to the next
10851               --  part. This can only occur for certain obscure cases in
10852               --  instances, when an operation on a type derived from a formal
10853               --  private type does not override a homograph inherited from
10854               --  the actual. In subsequent derivations of such a type, the
10855               --  DT positions of these operations remain distinct, if they
10856               --  have been set.
10857
10858               if Present (Alias (S))
10859                 and then (No (Alias (E))
10860                            or else Comes_From_Source (E)
10861                            or else Is_Abstract_Subprogram (S)
10862                            or else
10863                              (Is_Dispatching_Operation (E)
10864                                and then Is_Overriding_Alias (E, S)))
10865                 and then Ekind (E) /= E_Enumeration_Literal
10866               then
10867                  --  When an derived operation is overloaded it may be due to
10868                  --  the fact that the full view of a private extension
10869                  --  re-inherits. It has to be dealt with.
10870
10871                  if Is_Package_Or_Generic_Package (Current_Scope)
10872                    and then In_Private_Part (Current_Scope)
10873                  then
10874                     Check_Operation_From_Private_View (S, E);
10875                  end if;
10876
10877                  --  In any case the implicit operation remains hidden by the
10878                  --  existing declaration, which is overriding. Indicate that
10879                  --  E overrides the operation from which S is inherited.
10880
10881                  if Present (Alias (S)) then
10882                     Set_Overridden_Operation    (E, Alias (S));
10883                     Inherit_Subprogram_Contract (E, Alias (S));
10884
10885                  else
10886                     Set_Overridden_Operation    (E, S);
10887                     Inherit_Subprogram_Contract (E, S);
10888                  end if;
10889
10890                  if Comes_From_Source (E) then
10891                     Check_Overriding_Indicator (E, S, Is_Primitive => False);
10892
10893                     --  The Ghost policy in effect at the point of declaration
10894                     --  of a parent subprogram and an overriding subprogram
10895                     --  must match (SPARK RM 6.9(17)).
10896
10897                     Check_Ghost_Overriding (E, S);
10898                  end if;
10899
10900                  return;
10901
10902               --  Within an instance, the renaming declarations for actual
10903               --  subprograms may become ambiguous, but they do not hide each
10904               --  other.
10905
10906               elsif Ekind (E) /= E_Entry
10907                 and then not Comes_From_Source (E)
10908                 and then not Is_Generic_Instance (E)
10909                 and then (Present (Alias (E))
10910                            or else Is_Intrinsic_Subprogram (E))
10911                 and then (not In_Instance
10912                            or else No (Parent (E))
10913                            or else Nkind (Unit_Declaration_Node (E)) /=
10914                                      N_Subprogram_Renaming_Declaration)
10915               then
10916                  --  A subprogram child unit is not allowed to override an
10917                  --  inherited subprogram (10.1.1(20)).
10918
10919                  if Is_Child_Unit (S) then
10920                     Error_Msg_N
10921                       ("child unit overrides inherited subprogram in parent",
10922                        S);
10923                     return;
10924                  end if;
10925
10926                  if Is_Non_Overriding_Operation (E, S) then
10927                     Enter_Overloaded_Entity (S);
10928
10929                     if No (Derived_Type)
10930                       or else Is_Tagged_Type (Derived_Type)
10931                     then
10932                        Check_Dispatching_Operation (S, Empty);
10933                     end if;
10934
10935                     return;
10936                  end if;
10937
10938                  --  E is a derived operation or an internal operator which
10939                  --  is being overridden. Remove E from further visibility.
10940                  --  Furthermore, if E is a dispatching operation, it must be
10941                  --  replaced in the list of primitive operations of its type
10942                  --  (see Override_Dispatching_Operation).
10943
10944                  Overridden_Subp := E;
10945
10946                  --  It is possible for E to be in the current scope and
10947                  --  yet not in the entity chain. This can only occur in a
10948                  --  generic context where E is an implicit concatenation
10949                  --  in the formal part, because in a generic body the
10950                  --  entity chain starts with the formals.
10951
10952                  --  In GNATprove mode, a wrapper for an operation with
10953                  --  axiomatization may be a homonym of another declaration
10954                  --  for an actual subprogram (needs refinement ???).
10955
10956                  if No (Prev_Entity (E)) then
10957                     if In_Instance
10958                       and then GNATprove_Mode
10959                       and then
10960                         Nkind (Original_Node (Unit_Declaration_Node (S))) =
10961                                          N_Subprogram_Renaming_Declaration
10962                     then
10963                        return;
10964                     else
10965                        pragma Assert (Chars (E) = Name_Op_Concat);
10966                        null;
10967                     end if;
10968                  end if;
10969
10970                  --  E must be removed both from the entity_list of the
10971                  --  current scope, and from the visibility chain.
10972
10973                  if Debug_Flag_E then
10974                     Write_Str ("Override implicit operation ");
10975                     Write_Int (Int (E));
10976                     Write_Eol;
10977                  end if;
10978
10979                  --  If E is a predefined concatenation, it stands for four
10980                  --  different operations. As a result, a single explicit
10981                  --  declaration does not hide it. In a possible ambiguous
10982                  --  situation, Disambiguate chooses the user-defined op,
10983                  --  so it is correct to retain the previous internal one.
10984
10985                  if Chars (E) /= Name_Op_Concat
10986                    or else Ekind (E) /= E_Operator
10987                  then
10988                     --  For nondispatching derived operations that are
10989                     --  overridden by a subprogram declared in the private
10990                     --  part of a package, we retain the derived subprogram
10991                     --  but mark it as not immediately visible. If the
10992                     --  derived operation was declared in the visible part
10993                     --  then this ensures that it will still be visible
10994                     --  outside the package with the proper signature
10995                     --  (calls from outside must also be directed to this
10996                     --  version rather than the overriding one, unlike the
10997                     --  dispatching case). Calls from inside the package
10998                     --  will still resolve to the overriding subprogram
10999                     --  since the derived one is marked as not visible
11000                     --  within the package.
11001
11002                     --  If the private operation is dispatching, we achieve
11003                     --  the overriding by keeping the implicit operation
11004                     --  but setting its alias to be the overriding one. In
11005                     --  this fashion the proper body is executed in all
11006                     --  cases, but the original signature is used outside
11007                     --  of the package.
11008
11009                     --  If the overriding is not in the private part, we
11010                     --  remove the implicit operation altogether.
11011
11012                     if Is_Private_Declaration (S) then
11013                        if not Is_Dispatching_Operation (E) then
11014                           Set_Is_Immediately_Visible (E, False);
11015                        else
11016                           --  Work done in Override_Dispatching_Operation, so
11017                           --  nothing else needs to be done here.
11018
11019                           null;
11020                        end if;
11021
11022                     else
11023                        Remove_Entity_And_Homonym (E);
11024                     end if;
11025                  end if;
11026
11027                  Enter_Overloaded_Entity (S);
11028
11029                  --  For entities generated by Derive_Subprograms the
11030                  --  overridden operation is the inherited primitive
11031                  --  (which is available through the attribute alias).
11032
11033                  if not (Comes_From_Source (E))
11034                    and then Is_Dispatching_Operation (E)
11035                    and then Find_Dispatching_Type (E) =
11036                             Find_Dispatching_Type (S)
11037                    and then Present (Alias (E))
11038                    and then Comes_From_Source (Alias (E))
11039                  then
11040                     Set_Overridden_Operation    (S, Alias (E));
11041                     Inherit_Subprogram_Contract (S, Alias (E));
11042
11043                  --  Normal case of setting entity as overridden
11044
11045                  --  Note: Static_Initialization and Overridden_Operation
11046                  --  attributes use the same field in subprogram entities.
11047                  --  Static_Initialization is only defined for internal
11048                  --  initialization procedures, where Overridden_Operation
11049                  --  is irrelevant. Therefore the setting of this attribute
11050                  --  must check whether the target is an init_proc.
11051
11052                  elsif not Is_Init_Proc (S) then
11053                     Set_Overridden_Operation    (S, E);
11054                     Inherit_Subprogram_Contract (S, E);
11055                  end if;
11056
11057                  Check_Overriding_Indicator (S, E, Is_Primitive => True);
11058
11059                  --  The Ghost policy in effect at the point of declaration
11060                  --  of a parent subprogram and an overriding subprogram
11061                  --  must match (SPARK RM 6.9(17)).
11062
11063                  Check_Ghost_Overriding (S, E);
11064
11065                  --  If S is a user-defined subprogram or a null procedure
11066                  --  expanded to override an inherited null procedure, or a
11067                  --  predefined dispatching primitive then indicate that E
11068                  --  overrides the operation from which S is inherited.
11069
11070                  if Comes_From_Source (S)
11071                    or else
11072                      (Present (Parent (S))
11073                        and then Nkind (Parent (S)) = N_Procedure_Specification
11074                        and then Null_Present (Parent (S)))
11075                    or else
11076                      (Present (Alias (E))
11077                        and then
11078                          Is_Predefined_Dispatching_Operation (Alias (E)))
11079                  then
11080                     if Present (Alias (E)) then
11081                        Set_Overridden_Operation    (S, Alias (E));
11082                        Inherit_Subprogram_Contract (S, Alias (E));
11083                     end if;
11084                  end if;
11085
11086                  if Is_Dispatching_Operation (E) then
11087
11088                     --  An overriding dispatching subprogram inherits the
11089                     --  convention of the overridden subprogram (AI-117).
11090
11091                     Set_Convention (S, Convention (E));
11092                     Check_Dispatching_Operation (S, E);
11093
11094                  else
11095                     Check_Dispatching_Operation (S, Empty);
11096                  end if;
11097
11098                  Check_For_Primitive_Subprogram
11099                    (Is_Primitive_Subp, Is_Overriding => True);
11100                  goto Check_Inequality;
11101
11102               --  Apparent redeclarations in instances can occur when two
11103               --  formal types get the same actual type. The subprograms in
11104               --  in the instance are legal,  even if not callable from the
11105               --  outside. Calls from within are disambiguated elsewhere.
11106               --  For dispatching operations in the visible part, the usual
11107               --  rules apply, and operations with the same profile are not
11108               --  legal (B830001).
11109
11110               elsif (In_Instance_Visible_Part
11111                       and then not Is_Dispatching_Operation (E))
11112                 or else In_Instance_Not_Visible
11113               then
11114                  null;
11115
11116               --  Here we have a real error (identical profile)
11117
11118               else
11119                  Error_Msg_Sloc := Sloc (E);
11120
11121                  --  Avoid cascaded errors if the entity appears in
11122                  --  subsequent calls.
11123
11124                  Set_Scope (S, Current_Scope);
11125
11126                  --  Generate error, with extra useful warning for the case
11127                  --  of a generic instance with no completion.
11128
11129                  if Is_Generic_Instance (S)
11130                    and then not Has_Completion (E)
11131                  then
11132                     Error_Msg_N
11133                       ("instantiation cannot provide body for&", S);
11134                     Error_Msg_N ("\& conflicts with declaration#", S);
11135                  else
11136                     Error_Msg_N ("& conflicts with declaration#", S);
11137                  end if;
11138
11139                  return;
11140               end if;
11141
11142            else
11143               --  If one subprogram has an access parameter and the other
11144               --  a parameter of an access type, calls to either might be
11145               --  ambiguous. Verify that parameters match except for the
11146               --  access parameter.
11147
11148               if May_Hide_Profile then
11149                  declare
11150                     F1 : Entity_Id;
11151                     F2 : Entity_Id;
11152
11153                  begin
11154                     F1 := First_Formal (S);
11155                     F2 := First_Formal (E);
11156                     while Present (F1) and then Present (F2) loop
11157                        if Is_Access_Type (Etype (F1)) then
11158                           if not Is_Access_Type (Etype (F2))
11159                              or else not Conforming_Types
11160                                (Designated_Type (Etype (F1)),
11161                                 Designated_Type (Etype (F2)),
11162                                 Type_Conformant)
11163                           then
11164                              May_Hide_Profile := False;
11165                           end if;
11166
11167                        elsif
11168                          not Conforming_Types
11169                            (Etype (F1), Etype (F2), Type_Conformant)
11170                        then
11171                           May_Hide_Profile := False;
11172                        end if;
11173
11174                        Next_Formal (F1);
11175                        Next_Formal (F2);
11176                     end loop;
11177
11178                     if May_Hide_Profile
11179                       and then No (F1)
11180                       and then No (F2)
11181                     then
11182                        Error_Msg_NE ("calls to& may be ambiguous??", S, S);
11183                     end if;
11184                  end;
11185               end if;
11186            end if;
11187
11188            E := Homonym (E);
11189         end loop;
11190
11191         --  On exit, we know that S is a new entity
11192
11193         Enter_Overloaded_Entity (S);
11194         Check_For_Primitive_Subprogram (Is_Primitive_Subp);
11195         Check_Overriding_Indicator
11196           (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
11197
11198         --  The Ghost policy in effect at the point of declaration of a parent
11199         --  subprogram and an overriding subprogram must match
11200         --  (SPARK RM 6.9(17)).
11201
11202         Check_Ghost_Overriding (S, Overridden_Subp);
11203
11204         --  Overloading is not allowed in SPARK, except for operators
11205
11206         if Nkind (S) /= N_Defining_Operator_Symbol then
11207            Error_Msg_Sloc := Sloc (Homonym (S));
11208            Check_SPARK_05_Restriction
11209              ("overloading not allowed with entity#", S);
11210         end if;
11211
11212         --  If S is a derived operation for an untagged type then by
11213         --  definition it's not a dispatching operation (even if the parent
11214         --  operation was dispatching), so Check_Dispatching_Operation is not
11215         --  called in that case.
11216
11217         if No (Derived_Type)
11218           or else Is_Tagged_Type (Derived_Type)
11219         then
11220            Check_Dispatching_Operation (S, Empty);
11221         end if;
11222      end if;
11223
11224      --  If this is a user-defined equality operator that is not a derived
11225      --  subprogram, create the corresponding inequality. If the operation is
11226      --  dispatching, the expansion is done elsewhere, and we do not create
11227      --  an explicit inequality operation.
11228
11229      <<Check_Inequality>>
11230         if Chars (S) = Name_Op_Eq
11231           and then Etype (S) = Standard_Boolean
11232           and then Present (Parent (S))
11233           and then not Is_Dispatching_Operation (S)
11234         then
11235            Make_Inequality_Operator (S);
11236            Check_Untagged_Equality (S);
11237         end if;
11238   end New_Overloaded_Entity;
11239
11240   ----------------------------------
11241   -- Preanalyze_Formal_Expression --
11242   ----------------------------------
11243
11244   procedure Preanalyze_Formal_Expression (N : Node_Id; T : Entity_Id) is
11245      Save_In_Spec_Expression : constant Boolean := In_Spec_Expression;
11246   begin
11247      In_Spec_Expression := True;
11248      Preanalyze_With_Freezing_And_Resolve (N, T);
11249      In_Spec_Expression := Save_In_Spec_Expression;
11250   end Preanalyze_Formal_Expression;
11251
11252   ---------------------
11253   -- Process_Formals --
11254   ---------------------
11255
11256   procedure Process_Formals
11257     (T           : List_Id;
11258      Related_Nod : Node_Id)
11259   is
11260      function Designates_From_Limited_With (Typ : Entity_Id) return Boolean;
11261      --  Determine whether an access type designates a type coming from a
11262      --  limited view.
11263
11264      function Is_Class_Wide_Default (D : Node_Id) return Boolean;
11265      --  Check whether the default has a class-wide type. After analysis the
11266      --  default has the type of the formal, so we must also check explicitly
11267      --  for an access attribute.
11268
11269      ----------------------------------
11270      -- Designates_From_Limited_With --
11271      ----------------------------------
11272
11273      function Designates_From_Limited_With (Typ : Entity_Id) return Boolean is
11274         Desig : Entity_Id := Typ;
11275
11276      begin
11277         if Is_Access_Type (Desig) then
11278            Desig := Directly_Designated_Type (Desig);
11279         end if;
11280
11281         if Is_Class_Wide_Type (Desig) then
11282            Desig := Root_Type (Desig);
11283         end if;
11284
11285         return
11286           Ekind (Desig) = E_Incomplete_Type
11287             and then From_Limited_With (Desig);
11288      end Designates_From_Limited_With;
11289
11290      ---------------------------
11291      -- Is_Class_Wide_Default --
11292      ---------------------------
11293
11294      function Is_Class_Wide_Default (D : Node_Id) return Boolean is
11295      begin
11296         return Is_Class_Wide_Type (Designated_Type (Etype (D)))
11297           or else (Nkind (D) = N_Attribute_Reference
11298                     and then Attribute_Name (D) = Name_Access
11299                     and then Is_Class_Wide_Type (Etype (Prefix (D))));
11300      end Is_Class_Wide_Default;
11301
11302      --  Local variables
11303
11304      Context     : constant Node_Id := Parent (Parent (T));
11305      Default     : Node_Id;
11306      Formal      : Entity_Id;
11307      Formal_Type : Entity_Id;
11308      Param_Spec  : Node_Id;
11309      Ptype       : Entity_Id;
11310
11311      Num_Out_Params  : Nat       := 0;
11312      First_Out_Param : Entity_Id := Empty;
11313      --  Used for setting Is_Only_Out_Parameter
11314
11315   --  Start of processing for Process_Formals
11316
11317   begin
11318      --  In order to prevent premature use of the formals in the same formal
11319      --  part, the Ekind is left undefined until all default expressions are
11320      --  analyzed. The Ekind is established in a separate loop at the end.
11321
11322      Param_Spec := First (T);
11323      while Present (Param_Spec) loop
11324         Formal := Defining_Identifier (Param_Spec);
11325         Set_Never_Set_In_Source (Formal, True);
11326         Enter_Name (Formal);
11327
11328         --  Case of ordinary parameters
11329
11330         if Nkind (Parameter_Type (Param_Spec)) /= N_Access_Definition then
11331            Find_Type (Parameter_Type (Param_Spec));
11332            Ptype := Parameter_Type (Param_Spec);
11333
11334            if Ptype = Error then
11335               goto Continue;
11336            end if;
11337
11338            Formal_Type := Entity (Ptype);
11339
11340            if Is_Incomplete_Type (Formal_Type)
11341              or else
11342               (Is_Class_Wide_Type (Formal_Type)
11343                 and then Is_Incomplete_Type (Root_Type (Formal_Type)))
11344            then
11345               --  Ada 2005 (AI-326): Tagged incomplete types allowed in
11346               --  primitive operations, as long as their completion is
11347               --  in the same declarative part. If in the private part
11348               --  this means that the type cannot be a Taft-amendment type.
11349               --  Check is done on package exit. For access to subprograms,
11350               --  the use is legal for Taft-amendment types.
11351
11352               --  Ada 2012: tagged incomplete types are allowed as generic
11353               --  formal types. They do not introduce dependencies and the
11354               --  corresponding generic subprogram does not have a delayed
11355               --  freeze, because it does not need a freeze node. However,
11356               --  it is still the case that untagged incomplete types cannot
11357               --  be Taft-amendment types and must be completed in private
11358               --  part, so the subprogram must appear in the list of private
11359               --  dependents of the type.
11360
11361               if Is_Tagged_Type (Formal_Type)
11362                 or else (Ada_Version >= Ada_2012
11363                           and then not From_Limited_With (Formal_Type)
11364                           and then not Is_Generic_Type (Formal_Type))
11365               then
11366                  if Ekind (Scope (Current_Scope)) = E_Package
11367                    and then not Is_Generic_Type (Formal_Type)
11368                    and then not Is_Class_Wide_Type (Formal_Type)
11369                  then
11370                     if not Nkind_In
11371                              (Parent (T), N_Access_Function_Definition,
11372                                           N_Access_Procedure_Definition)
11373                     then
11374                        Append_Elmt (Current_Scope,
11375                          Private_Dependents (Base_Type (Formal_Type)));
11376
11377                        --  Freezing is delayed to ensure that Register_Prim
11378                        --  will get called for this operation, which is needed
11379                        --  in cases where static dispatch tables aren't built.
11380                        --  (Note that the same is done for controlling access
11381                        --  parameter cases in function Access_Definition.)
11382
11383                        if not Is_Thunk (Current_Scope) then
11384                           Set_Has_Delayed_Freeze (Current_Scope);
11385                        end if;
11386                     end if;
11387                  end if;
11388
11389               elsif not Nkind_In (Parent (T), N_Access_Function_Definition,
11390                                               N_Access_Procedure_Definition)
11391               then
11392                  --  AI05-0151: Tagged incomplete types are allowed in all
11393                  --  formal parts. Untagged incomplete types are not allowed
11394                  --  in bodies. Limited views of either kind are not allowed
11395                  --  if there is no place at which the non-limited view can
11396                  --  become available.
11397
11398                  --  Incomplete formal untagged types are not allowed in
11399                  --  subprogram bodies (but are legal in their declarations).
11400                  --  This excludes bodies created for null procedures, which
11401                  --  are basic declarations.
11402
11403                  if Is_Generic_Type (Formal_Type)
11404                    and then not Is_Tagged_Type (Formal_Type)
11405                    and then Nkind (Parent (Related_Nod)) = N_Subprogram_Body
11406                  then
11407                     Error_Msg_N
11408                       ("invalid use of formal incomplete type", Param_Spec);
11409
11410                  elsif Ada_Version >= Ada_2012 then
11411                     if Is_Tagged_Type (Formal_Type)
11412                       and then (not From_Limited_With (Formal_Type)
11413                                  or else not In_Package_Body)
11414                     then
11415                        null;
11416
11417                     elsif Nkind_In (Context, N_Accept_Statement,
11418                                              N_Accept_Alternative,
11419                                              N_Entry_Body)
11420                       or else (Nkind (Context) = N_Subprogram_Body
11421                                 and then Comes_From_Source (Context))
11422                     then
11423                        Error_Msg_NE
11424                          ("invalid use of untagged incomplete type &",
11425                           Ptype, Formal_Type);
11426                     end if;
11427
11428                  else
11429                     Error_Msg_NE
11430                       ("invalid use of incomplete type&",
11431                        Param_Spec, Formal_Type);
11432
11433                     --  Further checks on the legality of incomplete types
11434                     --  in formal parts are delayed until the freeze point
11435                     --  of the enclosing subprogram or access to subprogram.
11436                  end if;
11437               end if;
11438
11439            elsif Ekind (Formal_Type) = E_Void then
11440               Error_Msg_NE
11441                 ("premature use of&",
11442                  Parameter_Type (Param_Spec), Formal_Type);
11443            end if;
11444
11445            --  Ada 2012 (AI-142): Handle aliased parameters
11446
11447            if Ada_Version >= Ada_2012
11448              and then Aliased_Present (Param_Spec)
11449            then
11450               Set_Is_Aliased (Formal);
11451            end if;
11452
11453            --  Ada 2005 (AI-231): Create and decorate an internal subtype
11454            --  declaration corresponding to the null-excluding type of the
11455            --  formal in the enclosing scope. Finally, replace the parameter
11456            --  type of the formal with the internal subtype.
11457
11458            if Ada_Version >= Ada_2005
11459              and then Null_Exclusion_Present (Param_Spec)
11460            then
11461               if not Is_Access_Type (Formal_Type) then
11462                  Error_Msg_N
11463                    ("`NOT NULL` allowed only for an access type", Param_Spec);
11464
11465               else
11466                  if Can_Never_Be_Null (Formal_Type)
11467                    and then Comes_From_Source (Related_Nod)
11468                  then
11469                     Error_Msg_NE
11470                       ("`NOT NULL` not allowed (& already excludes null)",
11471                        Param_Spec, Formal_Type);
11472                  end if;
11473
11474                  Formal_Type :=
11475                    Create_Null_Excluding_Itype
11476                      (T           => Formal_Type,
11477                       Related_Nod => Related_Nod,
11478                       Scope_Id    => Scope (Current_Scope));
11479
11480                  --  If the designated type of the itype is an itype that is
11481                  --  not frozen yet, we set the Has_Delayed_Freeze attribute
11482                  --  on the access subtype, to prevent order-of-elaboration
11483                  --  issues in the backend.
11484
11485                  --  Example:
11486                  --     type T is access procedure;
11487                  --     procedure Op (O : not null T);
11488
11489                  if Is_Itype (Directly_Designated_Type (Formal_Type))
11490                    and then
11491                      not Is_Frozen (Directly_Designated_Type (Formal_Type))
11492                  then
11493                     Set_Has_Delayed_Freeze (Formal_Type);
11494                  end if;
11495               end if;
11496            end if;
11497
11498         --  An access formal type
11499
11500         else
11501            Formal_Type :=
11502              Access_Definition (Related_Nod, Parameter_Type (Param_Spec));
11503
11504            --  No need to continue if we already notified errors
11505
11506            if not Present (Formal_Type) then
11507               return;
11508            end if;
11509
11510            --  Ada 2005 (AI-254)
11511
11512            declare
11513               AD : constant Node_Id :=
11514                      Access_To_Subprogram_Definition
11515                        (Parameter_Type (Param_Spec));
11516            begin
11517               if Present (AD) and then Protected_Present (AD) then
11518                  Formal_Type :=
11519                    Replace_Anonymous_Access_To_Protected_Subprogram
11520                      (Param_Spec);
11521               end if;
11522            end;
11523         end if;
11524
11525         Set_Etype (Formal, Formal_Type);
11526
11527         --  Deal with default expression if present
11528
11529         Default := Expression (Param_Spec);
11530
11531         if Present (Default) then
11532            Check_SPARK_05_Restriction
11533              ("default expression is not allowed", Default);
11534
11535            if Out_Present (Param_Spec) then
11536               Error_Msg_N
11537                 ("default initialization only allowed for IN parameters",
11538                  Param_Spec);
11539            end if;
11540
11541            --  Do the special preanalysis of the expression (see section on
11542            --  "Handling of Default Expressions" in the spec of package Sem).
11543
11544            Preanalyze_Formal_Expression (Default, Formal_Type);
11545
11546            --  An access to constant cannot be the default for
11547            --  an access parameter that is an access to variable.
11548
11549            if Ekind (Formal_Type) = E_Anonymous_Access_Type
11550              and then not Is_Access_Constant (Formal_Type)
11551              and then Is_Access_Type (Etype (Default))
11552              and then Is_Access_Constant (Etype (Default))
11553            then
11554               Error_Msg_N
11555                 ("formal that is access to variable cannot be initialized "
11556                  & "with an access-to-constant expression", Default);
11557            end if;
11558
11559            --  Check that the designated type of an access parameter's default
11560            --  is not a class-wide type unless the parameter's designated type
11561            --  is also class-wide.
11562
11563            if Ekind (Formal_Type) = E_Anonymous_Access_Type
11564              and then not Designates_From_Limited_With (Formal_Type)
11565              and then Is_Class_Wide_Default (Default)
11566              and then not Is_Class_Wide_Type (Designated_Type (Formal_Type))
11567            then
11568               Error_Msg_N
11569                 ("access to class-wide expression not allowed here", Default);
11570            end if;
11571
11572            --  Check incorrect use of dynamically tagged expressions
11573
11574            if Is_Tagged_Type (Formal_Type) then
11575               Check_Dynamically_Tagged_Expression
11576                 (Expr        => Default,
11577                  Typ         => Formal_Type,
11578                  Related_Nod => Default);
11579            end if;
11580         end if;
11581
11582         --  Ada 2005 (AI-231): Static checks
11583
11584         if Ada_Version >= Ada_2005
11585           and then Is_Access_Type (Etype (Formal))
11586           and then Can_Never_Be_Null (Etype (Formal))
11587         then
11588            Null_Exclusion_Static_Checks (Param_Spec);
11589         end if;
11590
11591         --  The following checks are relevant only when SPARK_Mode is on as
11592         --  these are not standard Ada legality rules.
11593
11594         if SPARK_Mode = On then
11595            if Ekind_In (Scope (Formal), E_Function, E_Generic_Function) then
11596
11597               --  A function cannot have a parameter of mode IN OUT or OUT
11598               --  (SPARK RM 6.1).
11599
11600               if Ekind_In (Formal, E_In_Out_Parameter, E_Out_Parameter) then
11601                  Error_Msg_N
11602                    ("function cannot have parameter of mode `OUT` or "
11603                     & "`IN OUT`", Formal);
11604               end if;
11605
11606            --  A procedure cannot have an effectively volatile formal
11607            --  parameter of mode IN because it behaves as a constant
11608            --  (SPARK RM 7.1.3(6)). -- ??? maybe 7.1.3(4)
11609
11610            elsif Ekind (Scope (Formal)) = E_Procedure
11611              and then Ekind (Formal) = E_In_Parameter
11612              and then Is_Effectively_Volatile (Formal)
11613            then
11614               Error_Msg_N
11615                 ("formal parameter of mode `IN` cannot be volatile", Formal);
11616            end if;
11617         end if;
11618
11619      <<Continue>>
11620         Next (Param_Spec);
11621      end loop;
11622
11623      --  If this is the formal part of a function specification, analyze the
11624      --  subtype mark in the context where the formals are visible but not
11625      --  yet usable, and may hide outer homographs.
11626
11627      if Nkind (Related_Nod) = N_Function_Specification then
11628         Analyze_Return_Type (Related_Nod);
11629      end if;
11630
11631      --  Now set the kind (mode) of each formal
11632
11633      Param_Spec := First (T);
11634      while Present (Param_Spec) loop
11635         Formal := Defining_Identifier (Param_Spec);
11636         Set_Formal_Mode (Formal);
11637
11638         if Ekind (Formal) = E_In_Parameter then
11639            Set_Default_Value (Formal, Expression (Param_Spec));
11640
11641            if Present (Expression (Param_Spec)) then
11642               Default := Expression (Param_Spec);
11643
11644               if Is_Scalar_Type (Etype (Default)) then
11645                  if Nkind (Parameter_Type (Param_Spec)) /=
11646                                              N_Access_Definition
11647                  then
11648                     Formal_Type := Entity (Parameter_Type (Param_Spec));
11649                  else
11650                     Formal_Type :=
11651                       Access_Definition
11652                         (Related_Nod, Parameter_Type (Param_Spec));
11653                  end if;
11654
11655                  Apply_Scalar_Range_Check (Default, Formal_Type);
11656               end if;
11657            end if;
11658
11659         elsif Ekind (Formal) = E_Out_Parameter then
11660            Num_Out_Params := Num_Out_Params + 1;
11661
11662            if Num_Out_Params = 1 then
11663               First_Out_Param := Formal;
11664            end if;
11665
11666         elsif Ekind (Formal) = E_In_Out_Parameter then
11667            Num_Out_Params := Num_Out_Params + 1;
11668         end if;
11669
11670         --  Skip remaining processing if formal type was in error
11671
11672         if Etype (Formal) = Any_Type or else Error_Posted (Formal) then
11673            goto Next_Parameter;
11674         end if;
11675
11676         --  Force call by reference if aliased
11677
11678         declare
11679            Conv : constant Convention_Id := Convention (Etype (Formal));
11680         begin
11681            if Is_Aliased (Formal) then
11682               Set_Mechanism (Formal, By_Reference);
11683
11684               --  Warn if user asked this to be passed by copy
11685
11686               if Conv = Convention_Ada_Pass_By_Copy then
11687                  Error_Msg_N
11688                    ("cannot pass aliased parameter & by copy??", Formal);
11689               end if;
11690
11691            --  Force mechanism if type has Convention Ada_Pass_By_Ref/Copy
11692
11693            elsif Conv = Convention_Ada_Pass_By_Copy then
11694               Set_Mechanism (Formal, By_Copy);
11695
11696            elsif Conv = Convention_Ada_Pass_By_Reference then
11697               Set_Mechanism (Formal, By_Reference);
11698            end if;
11699         end;
11700
11701      <<Next_Parameter>>
11702         Next (Param_Spec);
11703      end loop;
11704
11705      if Present (First_Out_Param) and then Num_Out_Params = 1 then
11706         Set_Is_Only_Out_Parameter (First_Out_Param);
11707      end if;
11708   end Process_Formals;
11709
11710   ----------------------------
11711   -- Reference_Body_Formals --
11712   ----------------------------
11713
11714   procedure Reference_Body_Formals (Spec : Entity_Id; Bod : Entity_Id) is
11715      Fs : Entity_Id;
11716      Fb : Entity_Id;
11717
11718   begin
11719      if Error_Posted (Spec) then
11720         return;
11721      end if;
11722
11723      --  Iterate over both lists. They may be of different lengths if the two
11724      --  specs are not conformant.
11725
11726      Fs := First_Formal (Spec);
11727      Fb := First_Formal (Bod);
11728      while Present (Fs) and then Present (Fb) loop
11729         Generate_Reference (Fs, Fb, 'b');
11730
11731         if Style_Check then
11732            Style.Check_Identifier (Fb, Fs);
11733         end if;
11734
11735         Set_Spec_Entity (Fb, Fs);
11736         Set_Referenced (Fs, False);
11737         Next_Formal (Fs);
11738         Next_Formal (Fb);
11739      end loop;
11740   end Reference_Body_Formals;
11741
11742   -------------------------
11743   -- Set_Actual_Subtypes --
11744   -------------------------
11745
11746   procedure Set_Actual_Subtypes (N : Node_Id; Subp : Entity_Id) is
11747      Decl       : Node_Id;
11748      Formal     : Entity_Id;
11749      T          : Entity_Id;
11750      First_Stmt : Node_Id := Empty;
11751      AS_Needed  : Boolean;
11752
11753   begin
11754      --  If this is an empty initialization procedure, no need to create
11755      --  actual subtypes (small optimization).
11756
11757      if Ekind (Subp) = E_Procedure and then Is_Null_Init_Proc (Subp) then
11758         return;
11759
11760      --  Within a predicate function we do not want to generate local
11761      --  subtypes that may generate nested predicate functions.
11762
11763      elsif Is_Subprogram (Subp) and then Is_Predicate_Function (Subp) then
11764         return;
11765      end if;
11766
11767      --  The subtype declarations may freeze the formals. The body generated
11768      --  for an expression function is not a freeze point, so do not emit
11769      --  these declarations (small loss of efficiency in rare cases).
11770
11771      if Nkind (N) = N_Subprogram_Body
11772        and then Was_Expression_Function (N)
11773      then
11774         return;
11775      end if;
11776
11777      Formal := First_Formal (Subp);
11778      while Present (Formal) loop
11779         T := Etype (Formal);
11780
11781         --  We never need an actual subtype for a constrained formal
11782
11783         if Is_Constrained (T) then
11784            AS_Needed := False;
11785
11786         --  If we have unknown discriminants, then we do not need an actual
11787         --  subtype, or more accurately we cannot figure it out. Note that
11788         --  all class-wide types have unknown discriminants.
11789
11790         elsif Has_Unknown_Discriminants (T) then
11791            AS_Needed := False;
11792
11793         --  At this stage we have an unconstrained type that may need an
11794         --  actual subtype. For sure the actual subtype is needed if we have
11795         --  an unconstrained array type. However, in an instance, the type
11796         --  may appear as a subtype of the full view, while the actual is
11797         --  in fact private (in which case no actual subtype is needed) so
11798         --  check the kind of the base type.
11799
11800         elsif Is_Array_Type (Base_Type (T)) then
11801            AS_Needed := True;
11802
11803         --  The only other case needing an actual subtype is an unconstrained
11804         --  record type which is an IN parameter (we cannot generate actual
11805         --  subtypes for the OUT or IN OUT case, since an assignment can
11806         --  change the discriminant values. However we exclude the case of
11807         --  initialization procedures, since discriminants are handled very
11808         --  specially in this context, see the section entitled "Handling of
11809         --  Discriminants" in Einfo.
11810
11811         --  We also exclude the case of Discrim_SO_Functions (functions used
11812         --  in front-end layout mode for size/offset values), since in such
11813         --  functions only discriminants are referenced, and not only are such
11814         --  subtypes not needed, but they cannot always be generated, because
11815         --  of order of elaboration issues.
11816
11817         elsif Is_Record_Type (T)
11818           and then Ekind (Formal) = E_In_Parameter
11819           and then Chars (Formal) /= Name_uInit
11820           and then not Is_Unchecked_Union (T)
11821           and then not Is_Discrim_SO_Function (Subp)
11822         then
11823            AS_Needed := True;
11824
11825         --  All other cases do not need an actual subtype
11826
11827         else
11828            AS_Needed := False;
11829         end if;
11830
11831         --  Generate actual subtypes for unconstrained arrays and
11832         --  unconstrained discriminated records.
11833
11834         if AS_Needed then
11835            if Nkind (N) = N_Accept_Statement then
11836
11837               --  If expansion is active, the formal is replaced by a local
11838               --  variable that renames the corresponding entry of the
11839               --  parameter block, and it is this local variable that may
11840               --  require an actual subtype.
11841
11842               if Expander_Active then
11843                  Decl := Build_Actual_Subtype (T, Renamed_Object (Formal));
11844               else
11845                  Decl := Build_Actual_Subtype (T, Formal);
11846               end if;
11847
11848               if Present (Handled_Statement_Sequence (N)) then
11849                  First_Stmt :=
11850                    First (Statements (Handled_Statement_Sequence (N)));
11851                  Prepend (Decl, Statements (Handled_Statement_Sequence (N)));
11852                  Mark_Rewrite_Insertion (Decl);
11853               else
11854                  --  If the accept statement has no body, there will be no
11855                  --  reference to the actuals, so no need to compute actual
11856                  --  subtypes.
11857
11858                  return;
11859               end if;
11860
11861            else
11862               Decl := Build_Actual_Subtype (T, Formal);
11863               Prepend (Decl, Declarations (N));
11864               Mark_Rewrite_Insertion (Decl);
11865            end if;
11866
11867            --  The declaration uses the bounds of an existing object, and
11868            --  therefore needs no constraint checks.
11869
11870            Analyze (Decl, Suppress => All_Checks);
11871            Set_Is_Actual_Subtype (Defining_Identifier (Decl));
11872
11873            --  We need to freeze manually the generated type when it is
11874            --  inserted anywhere else than in a declarative part.
11875
11876            if Present (First_Stmt) then
11877               Insert_List_Before_And_Analyze (First_Stmt,
11878                 Freeze_Entity (Defining_Identifier (Decl), N));
11879
11880            --  Ditto if the type has a dynamic predicate, because the
11881            --  generated function will mention the actual subtype. The
11882            --  predicate may come from an explicit aspect of be inherited.
11883
11884            elsif Has_Predicates (T) then
11885               Insert_List_Before_And_Analyze (Decl,
11886                 Freeze_Entity (Defining_Identifier (Decl), N));
11887            end if;
11888
11889            if Nkind (N) = N_Accept_Statement
11890              and then Expander_Active
11891            then
11892               Set_Actual_Subtype (Renamed_Object (Formal),
11893                 Defining_Identifier (Decl));
11894            else
11895               Set_Actual_Subtype (Formal, Defining_Identifier (Decl));
11896            end if;
11897         end if;
11898
11899         Next_Formal (Formal);
11900      end loop;
11901   end Set_Actual_Subtypes;
11902
11903   ---------------------
11904   -- Set_Formal_Mode --
11905   ---------------------
11906
11907   procedure Set_Formal_Mode (Formal_Id : Entity_Id) is
11908      Spec : constant Node_Id   := Parent (Formal_Id);
11909      Id   : constant Entity_Id := Scope (Formal_Id);
11910
11911   begin
11912      --  Note: we set Is_Known_Valid for IN parameters and IN OUT parameters
11913      --  since we ensure that corresponding actuals are always valid at the
11914      --  point of the call.
11915
11916      if Out_Present (Spec) then
11917         if Ekind_In (Id, E_Entry, E_Entry_Family)
11918           or else Is_Subprogram_Or_Generic_Subprogram (Id)
11919         then
11920            Set_Has_Out_Or_In_Out_Parameter (Id, True);
11921         end if;
11922
11923         if Ekind_In (Id, E_Function, E_Generic_Function) then
11924
11925            --  [IN] OUT parameters allowed for functions in Ada 2012
11926
11927            if Ada_Version >= Ada_2012 then
11928
11929               --  Even in Ada 2012 operators can only have IN parameters
11930
11931               if Is_Operator_Symbol_Name (Chars (Scope (Formal_Id))) then
11932                  Error_Msg_N ("operators can only have IN parameters", Spec);
11933               end if;
11934
11935               if In_Present (Spec) then
11936                  Set_Ekind (Formal_Id, E_In_Out_Parameter);
11937               else
11938                  Set_Ekind (Formal_Id, E_Out_Parameter);
11939               end if;
11940
11941            --  But not in earlier versions of Ada
11942
11943            else
11944               Error_Msg_N ("functions can only have IN parameters", Spec);
11945               Set_Ekind (Formal_Id, E_In_Parameter);
11946            end if;
11947
11948         elsif In_Present (Spec) then
11949            Set_Ekind (Formal_Id, E_In_Out_Parameter);
11950
11951         else
11952            Set_Ekind               (Formal_Id, E_Out_Parameter);
11953            Set_Never_Set_In_Source (Formal_Id, True);
11954            Set_Is_True_Constant    (Formal_Id, False);
11955            Set_Current_Value       (Formal_Id, Empty);
11956         end if;
11957
11958      else
11959         Set_Ekind (Formal_Id, E_In_Parameter);
11960      end if;
11961
11962      --  Set Is_Known_Non_Null for access parameters since the language
11963      --  guarantees that access parameters are always non-null. We also set
11964      --  Can_Never_Be_Null, since there is no way to change the value.
11965
11966      if Nkind (Parameter_Type (Spec)) = N_Access_Definition then
11967
11968         --  Ada 2005 (AI-231): In Ada 95, access parameters are always non-
11969         --  null; In Ada 2005, only if then null_exclusion is explicit.
11970
11971         if Ada_Version < Ada_2005
11972           or else Can_Never_Be_Null (Etype (Formal_Id))
11973         then
11974            Set_Is_Known_Non_Null (Formal_Id);
11975            Set_Can_Never_Be_Null (Formal_Id);
11976         end if;
11977
11978      --  Ada 2005 (AI-231): Null-exclusion access subtype
11979
11980      elsif Is_Access_Type (Etype (Formal_Id))
11981        and then Can_Never_Be_Null (Etype (Formal_Id))
11982      then
11983         Set_Is_Known_Non_Null (Formal_Id);
11984
11985         --  We can also set Can_Never_Be_Null (thus preventing some junk
11986         --  access checks) for the case of an IN parameter, which cannot
11987         --  be changed, or for an IN OUT parameter, which can be changed but
11988         --  not to a null value. But for an OUT parameter, the initial value
11989         --  passed in can be null, so we can't set this flag in that case.
11990
11991         if Ekind (Formal_Id) /= E_Out_Parameter then
11992            Set_Can_Never_Be_Null (Formal_Id);
11993         end if;
11994      end if;
11995
11996      Set_Mechanism (Formal_Id, Default_Mechanism);
11997      Set_Formal_Validity (Formal_Id);
11998   end Set_Formal_Mode;
11999
12000   -------------------------
12001   -- Set_Formal_Validity --
12002   -------------------------
12003
12004   procedure Set_Formal_Validity (Formal_Id : Entity_Id) is
12005   begin
12006      --  If no validity checking, then we cannot assume anything about the
12007      --  validity of parameters, since we do not know there is any checking
12008      --  of the validity on the call side.
12009
12010      if not Validity_Checks_On then
12011         return;
12012
12013      --  If validity checking for parameters is enabled, this means we are
12014      --  not supposed to make any assumptions about argument values.
12015
12016      elsif Validity_Check_Parameters then
12017         return;
12018
12019      --  If we are checking in parameters, we will assume that the caller is
12020      --  also checking parameters, so we can assume the parameter is valid.
12021
12022      elsif Ekind (Formal_Id) = E_In_Parameter
12023        and then Validity_Check_In_Params
12024      then
12025         Set_Is_Known_Valid (Formal_Id, True);
12026
12027      --  Similar treatment for IN OUT parameters
12028
12029      elsif Ekind (Formal_Id) = E_In_Out_Parameter
12030        and then Validity_Check_In_Out_Params
12031      then
12032         Set_Is_Known_Valid (Formal_Id, True);
12033      end if;
12034   end Set_Formal_Validity;
12035
12036   ------------------------
12037   -- Subtype_Conformant --
12038   ------------------------
12039
12040   function Subtype_Conformant
12041     (New_Id                   : Entity_Id;
12042      Old_Id                   : Entity_Id;
12043      Skip_Controlling_Formals : Boolean := False) return Boolean
12044   is
12045      Result : Boolean;
12046   begin
12047      Check_Conformance (New_Id, Old_Id, Subtype_Conformant, False, Result,
12048        Skip_Controlling_Formals => Skip_Controlling_Formals);
12049      return Result;
12050   end Subtype_Conformant;
12051
12052   ---------------------
12053   -- Type_Conformant --
12054   ---------------------
12055
12056   function Type_Conformant
12057     (New_Id                   : Entity_Id;
12058      Old_Id                   : Entity_Id;
12059      Skip_Controlling_Formals : Boolean := False) return Boolean
12060   is
12061      Result : Boolean;
12062   begin
12063      May_Hide_Profile := False;
12064      Check_Conformance
12065        (New_Id, Old_Id, Type_Conformant, False, Result,
12066         Skip_Controlling_Formals => Skip_Controlling_Formals);
12067      return Result;
12068   end Type_Conformant;
12069
12070   -------------------------------
12071   -- Valid_Operator_Definition --
12072   -------------------------------
12073
12074   procedure Valid_Operator_Definition (Designator : Entity_Id) is
12075      N    : Integer := 0;
12076      F    : Entity_Id;
12077      Id   : constant Name_Id := Chars (Designator);
12078      N_OK : Boolean;
12079
12080   begin
12081      F := First_Formal (Designator);
12082      while Present (F) loop
12083         N := N + 1;
12084
12085         if Present (Default_Value (F)) then
12086            Error_Msg_N
12087              ("default values not allowed for operator parameters",
12088               Parent (F));
12089
12090         --  For function instantiations that are operators, we must check
12091         --  separately that the corresponding generic only has in-parameters.
12092         --  For subprogram declarations this is done in Set_Formal_Mode. Such
12093         --  an error could not arise in earlier versions of the language.
12094
12095         elsif Ekind (F) /= E_In_Parameter then
12096            Error_Msg_N ("operators can only have IN parameters", F);
12097         end if;
12098
12099         Next_Formal (F);
12100      end loop;
12101
12102      --  Verify that user-defined operators have proper number of arguments
12103      --  First case of operators which can only be unary
12104
12105      if Nam_In (Id, Name_Op_Not, Name_Op_Abs) then
12106         N_OK := (N = 1);
12107
12108      --  Case of operators which can be unary or binary
12109
12110      elsif Nam_In (Id, Name_Op_Add, Name_Op_Subtract) then
12111         N_OK := (N in 1 .. 2);
12112
12113      --  All other operators can only be binary
12114
12115      else
12116         N_OK := (N = 2);
12117      end if;
12118
12119      if not N_OK then
12120         Error_Msg_N
12121           ("incorrect number of arguments for operator", Designator);
12122      end if;
12123
12124      if Id = Name_Op_Ne
12125        and then Base_Type (Etype (Designator)) = Standard_Boolean
12126        and then not Is_Intrinsic_Subprogram (Designator)
12127      then
12128         Error_Msg_N
12129           ("explicit definition of inequality not allowed", Designator);
12130      end if;
12131   end Valid_Operator_Definition;
12132
12133end Sem_Ch6;
12134