1 /* Declarations for the C-SKY back end.
2    Copyright (C) 2018-2019 Free Software Foundation, Inc.
3    Contributed by C-SKY Microsystems and Mentor Graphics.
4 
5    This file is part of GCC.
6 
7    GCC is free software; you can redistribute it and/or modify it
8    under the terms of the GNU General Public License as published
9    by the Free Software Foundation; either version 3, or (at your
10    option) any later version.
11 
12    GCC is distributed in the hope that it will be useful, but WITHOUT
13    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14    or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
15    License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with GCC; see the file COPYING3.  If not see
19    <http://www.gnu.org/licenses/>.  */
20 
21 
22 #ifndef GCC_CSKY_H
23 #define GCC_CSKY_H
24 
25 /* In some places e.g. csky_secondary_reload, we use -1 to indicate an
26    invalid register.  In other places where N is unsigned the comparison
27    to zero would give an error, so explicitly cast to int here.  */
28 #define CSKY_GENERAL_REGNO_P(N)			\
29   ((N) < CSKY_NGPR_REGS && (int)(N) >= 0)
30 
31 #define CSKY_VREG_P(N)		     \
32   ((N) >= CSKY_FIRST_VFP_REGNUM && (N) <= CSKY_LAST_VFP_REGNUM)
33 
34 #define CSKY_HILO_REG_P(N)   \
35   ((N) == CSKY_HI_REGNUM || (N) == CSKY_LO_REGNUM)
36 
37 /* Helper macros for constant constraints and predicates.  */
38 #define CSKY_VALUE_BETWEEN(VALUE, LOW, HIGH)	\
39   ((VALUE) >= (LOW) && (VALUE) <= (HIGH))
40 
41 #define CSKY_CONST_OK_FOR_I(VALUE)  \
42   CSKY_VALUE_BETWEEN (VALUE, 0, 65535)
43 
44 #define CSKY_CONST_OK_FOR_J(VALUE)  \
45   CSKY_VALUE_BETWEEN (VALUE, 1, 32)
46 
47 #define CSKY_CONST_OK_FOR_K(VALUE)  \
48   CSKY_VALUE_BETWEEN (VALUE, 0, 31)
49 
50 #define CSKY_CONST_OK_FOR_L(VALUE)  \
51   CSKY_VALUE_BETWEEN (VALUE, 1, 8)
52 
53 #define CSKY_CONST_OK_FOR_M(VALUE)  \
54   CSKY_VALUE_BETWEEN (VALUE, 1, 4096)
55 
56 #define CSKY_CONST_OK_FOR_N(VALUE)  \
57   CSKY_VALUE_BETWEEN (VALUE, 1, 256)
58 
59 #define CSKY_CONST_OK_FOR_O(VALUE)  \
60   CSKY_VALUE_BETWEEN (VALUE, 0, 4095)
61 
62 #define CSKY_CONST_OK_FOR_P(VALUE)  \
63   (((VALUE) & 0x3) == 0 && CSKY_VALUE_BETWEEN (VALUE, 4, 508))
64 
65 #define CSKY_CONST_OK_FOR_T(VALUE)  \
66   CSKY_VALUE_BETWEEN (VALUE, -256, -1)
67 
68 #define CSKY_CONST_OK_FOR_Ub(VALUE)  \
69   (exact_log2 (VALUE & 0xFFFFFFFF) >= 0)
70 
71 #define CSKY_CONST_OK_FOR_Uc(VALUE)	     \
72   ((VALUE) == (HOST_WIDE_INT) -1	     \
73    || (exact_log2 ((VALUE) + 1) >= 0	     \
74        && exact_log2 ((VALUE) + 1) <= 31))
75 
76 #define CSKY_CONST_OK_FOR_Ud(VALUE)				\
77   ((CSKY_CONST_OK_FOR_I ((VALUE) & 0xffffffff)			\
78     || CSKY_CONST_OK_FOR_Ub ((VALUE))				\
79     || CSKY_CONST_OK_FOR_Uc (((VALUE) << 32) >> 32))		\
80    && (CSKY_CONST_OK_FOR_I ((VALUE) >> 32)			\
81        || CSKY_CONST_OK_FOR_Ub ((VALUE) >> 32)			\
82        || CSKY_CONST_OK_FOR_Uc ((VALUE) >> 32)))		\
83 
84 #define CSKY_CONST_OK_FOR_Ug(VALUE)  \
85   (((VALUE) & 0x3) == 0 && CSKY_VALUE_BETWEEN (VALUE, -508, -4))
86 
87 #define CSKY_CONST_OK_FOR_Uh(VALUE)  \
88   CSKY_VALUE_BETWEEN (VALUE, -31, 0)
89 
90 #define CSKY_CONST_OK_FOR_Uj(VALUE)  \
91   (((VALUE) & 0x3) == 0 && CSKY_VALUE_BETWEEN (VALUE, 1, 1024))
92 
93 #define CSKY_CONST_OK_FOR_Uk(VALUE)  \
94   CSKY_VALUE_BETWEEN (VALUE, 1, 65536)
95 
96 #define CSKY_CONST_OK_FOR_Ul(VALUE)  \
97   (((VALUE) & 0x3) == 0 && CSKY_VALUE_BETWEEN (VALUE, -1024, -4))
98 
99 #define CSKY_CONST_OK_FOR_Um(VALUE)  \
100   CSKY_VALUE_BETWEEN (VALUE, -4096, -1)
101 
102 #define CSKY_CONST_OK_FOR_US(VALUE) \
103   CSKY_VALUE_BETWEEN (VALUE, -8, -1)
104 
105 #define CSKY_CONST_OK_FOR_MOVIH(VALUE)		\
106   (((VALUE) & 0xFFFF) == 0)
107 
108 #ifndef TARGET_CPU_DEFAULT
109 #define TARGET_CPU_DEFAULT CSKY_TARGET_CORE_GET(ck810f)
110 #endif
111 
112 /* Options that are enabled by default are specified as such in the
113    .opt file.  */
114 #define TARGET_DEFAULT 0
115 
116 /* The highest CSKY architecture version supported by the target.  */
117 #define CSKY_TARGET_ARCH(arch) \
118   (csky_base_arch == CSKY_TARGET_ARCH_GET (arch))
119 
120 /* Define some macros for target code generation options.  */
121 #define TARGET_SOFT_FPU \
122   (csky_fpu_index == TARGET_FPU_fpv2_sf)
123 #define TARGET_CASESI \
124   (optimize_size && TARGET_CONSTANT_POOL \
125    && (CSKY_TARGET_ARCH (CK801) || CSKY_TARGET_ARCH (CK802)))
126 #define TARGET_TLS \
127   (CSKY_TARGET_ARCH (CK807) || CSKY_TARGET_ARCH (CK810))
128 
129 /* Number of loads/stores handled by ldm/stm.  */
130 #define CSKY_MIN_MULTIPLE_STLD	3
131 #define CSKY_MAX_MULTIPLE_STLD	12
132 
133 /* Pull in enums and defines for processor/arch variants.  This makes
134    it possible to use CSKY_TARGET_ARCH in macros defined in this file.  */
135 #include "csky_opts.h"
136 extern enum csky_base_architecture csky_base_arch;
137 
138 /* Pull in enums and defines for ISA features.  Likewise required to
139    support use of CSKY_ISA_FEATURE in this file.
140    Note that the CSKY_ISA_FEATURE macro tests properties of the
141    particular processor we're compiling for, not code generation
142    options that may have dependencies on those features.  The latter
143    are handled by TARGET_xxxx macros/variables instead.  See csky.opt.  */
144 #include "csky_isa.h"
145 extern int csky_arch_isa_features[];
146 #define CSKY_ISA_FEATURE(IDENT) \
147   csky_arch_isa_features[CSKY_ISA_FEATURE_GET (IDENT)]
148 
149 /******************************************************************
150  *			   Storage Layout			  *
151  ******************************************************************/
152 
153 
154 /* Define this if most significant bit is lowest numbered
155    in instructions that operate on numbered bit-fields.  */
156 #define BITS_BIG_ENDIAN	 0
157 
158 /* If the most significant byte of a word is the lowest numbered.  */
159 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
160 
161 /* If the most significant word of a multiword number is the lowest.  */
162 #define WORDS_BIG_ENDIAN (BYTES_BIG_ENDIAN)
163 
164 /* Width of a word, in units (bytes).  */
165 #define UNITS_PER_WORD 4
166 
167 /* Define this macro if it is advisable to hold scalars in registers
168    in a wider mode than that declared by the program.  In such cases,
169    the value is constrained to be within the bounds of the declared
170    type, but kept valid in the wider mode.  The signedness of the
171    extension may differ from that of the type.  */
172 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE)	\
173   if (GET_MODE_CLASS (MODE) == MODE_INT		\
174       && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
175     (MODE) = SImode;
176 
177 
178 /* Allocation boundary (in *bits*) for storing arguments in argument list.  */
179 #define PARM_BOUNDARY	32
180 
181 /* Boundary (in *bits*) on which stack pointer should be aligned.
182    Per C-SKY, the published V2 ABI document is incorrect and the proper
183    alignment is on a 4-byte boundary rather than 8 bytes.  */
184 #define STACK_BOUNDARY	32
185 
186 /* Align definitions of arrays, unions and structures so that
187    initializations and copies can be made more efficient.  This is not
188    ABI-changing, so it only affects places where we can see the
189    definition. Increasing the alignment tends to introduce padding,
190    so don't do this when optimizing for size/conserving stack space. */
191 #define CSKY_EXPAND_ALIGNMENT(COND, EXP, ALIGN) \
192   (((COND) && ((ALIGN) < BITS_PER_WORD)		 \
193     && (TREE_CODE (EXP) == ARRAY_TYPE		 \
194 	|| TREE_CODE (EXP) == UNION_TYPE	 \
195 	|| TREE_CODE (EXP) == RECORD_TYPE))	 \
196    ? BITS_PER_WORD : (ALIGN))
197 
198 /* Align global data. */
199 #define DATA_ALIGNMENT(EXP, ALIGN)	\
200   CSKY_EXPAND_ALIGNMENT (!optimize_size, EXP, ALIGN)
201 
202 /* Similarly, make sure that objects on the stack are sensibly aligned.  */
203 #define LOCAL_ALIGNMENT(EXP, ALIGN)	  \
204   CSKY_EXPAND_ALIGNMENT (!flag_conserve_stack, EXP, ALIGN)
205 
206 /* No data type wants to be aligned rounder than this.  */
207 #define BIGGEST_ALIGNMENT 32
208 
209 /* Every structures size must be a multiple of 8 bits.  */
210 #define STRUCTURE_SIZE_BOUNDARY 8
211 
212 /* Look at the fundamental type that is used for a bit-field and use
213    that to impose alignment on the enclosing structure.
214    struct s {int a:8}; should have same alignment as "int", not "char".  */
215 #define PCC_BITFIELD_TYPE_MATTERS 1
216 
217 /* Largest integer machine mode for structures.  If undefined, the default
218    is GET_MODE_SIZE(DImode).  */
219 #define MAX_FIXED_MODE_SIZE 64
220 
221 /* Allocation boundary (in *bits*) for the code of a function.
222    Optimize ck801 and ck802 a little harder for size.  */
223 #define FUNCTION_BOUNDARY					\
224   (((CSKY_TARGET_ARCH (CK801) || CSKY_TARGET_ARCH (CK802))	\
225     && optimize_size)						\
226    ? 16 : 32)
227 
228 /* C-SKY does not support unaligned access.  */
229 #define STRICT_ALIGNMENT    1
230 
231 #undef SIZE_TYPE
232 #define SIZE_TYPE "unsigned int"
233 
234 #undef PTRDIFF_TYPE
235 #define PTRDIFF_TYPE "int"
236 
237 #undef WCHAR_TYPE
238 #define WCHAR_TYPE "long int"
239 
240 #undef UINT_LEAST32_TYPE
241 #define UINT_LEAST32_TYPE "unsigned int"
242 
243 #undef INT_LEAST32_TYPE
244 #define INT_LEAST32_TYPE "int"
245 
246 #undef WCHAR_TYPE_SIZE
247 #define WCHAR_TYPE_SIZE BITS_PER_WORD
248 
249 /******************************************************************
250  *		Layout of Source Language Data Types		  *
251  ******************************************************************/
252 
253 
254 /* 'char' is unsigned by default for backward compatibility.  */
255 #define DEFAULT_SIGNED_CHAR    0
256 
257 
258 /******************************************************************
259  *		Stack Layout and Calling Conventions		  *
260  ******************************************************************/
261 
262 
263 /* Basic Stack Layout  */
264 
265 
266 /* Define this if pushing a word on the stack
267    makes the stack pointer a smaller address.  */
268 #define STACK_GROWS_DOWNWARD	1
269 
270 /* Define this to nonzero if the nominal address of the stack frame
271    is at the high-address end of the local variables;
272    that is, each additional local variable allocated
273    goes at a more negative offset in the frame.  */
274 #define FRAME_GROWS_DOWNWARD	1
275 
276 /* Offset of first parameter from the argument pointer register value.  */
277 #define FIRST_PARM_OFFSET(FNDECL) 0
278 
279 /* A C expression whose value is RTL representing the value of the return
280    address for the frame COUNT steps up from the current frame.  */
281 #define RETURN_ADDR_RTX(COUNT, FRAME) \
282   csky_return_addr (COUNT, FRAME)
283 
284 /* Pick up the return address upon entry to a procedure. Used for
285    dwarf2 unwind information.  This also enables the table driven
286    mechanism.  */
287 #define INCOMING_RETURN_ADDR_RTX  gen_rtx_REG (Pmode, CSKY_LR_REGNUM)
288 
289 
290 /* Exception Handling Support  */
291 
292 /* The register that holds the return address in exception handlers.  */
293 #define EH_RETURN_STACKADJ_RTX	gen_rtx_REG (SImode, CSKY_EH_STACKADJ_REGNUM)
294 
295 /* Select a format to encode pointers in exception handling data.  */
296 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
297   (((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4)
298 
299 /* Registers That Address the Stack Frame  */
300 
301 
302 /* Register to use for pushing function arguments.  */
303 #define STACK_POINTER_REGNUM  CSKY_SP_REGNUM
304 
305 /* Base register for access to local variables of the function.  */
306 #define FRAME_POINTER_REGNUM  8
307 
308 /* Base register for access to arguments of the function.  This is a fake
309    register that is always eliminated.  */
310 #define ARG_POINTER_REGNUM    32
311 
312 /* Static chain register.
313    Register use is more restricted on CK801.  */
314 #define STATIC_CHAIN_REGNUM   (CSKY_TARGET_ARCH (CK801) ? 13 : 12)
315 
316 
317 /* Eliminating Frame Pointer and Arg Pointer  */
318 
319 
320 /* Definitions for register eliminations.
321 
322    This is an array of structures.  Each structure initializes one pair
323    of eliminable registers.  The "from" register number is given first,
324    followed by "to".  Eliminations of the same "from" register are listed
325    in order of preference.
326 
327    We have two registers that can be eliminated on the CSKY.  First, the
328    arg pointer register can often be eliminated in favor of the stack
329    pointer register.  Secondly, the pseudo frame pointer register can always
330    be eliminated; it is replaced with the stack pointer.  */
331 #define ELIMINABLE_REGS		  \
332 {{ ARG_POINTER_REGNUM,	      STACK_POINTER_REGNUM	      },\
333  { ARG_POINTER_REGNUM,	      FRAME_POINTER_REGNUM	      },\
334  { FRAME_POINTER_REGNUM,      STACK_POINTER_REGNUM	      }}
335 
336 /* Define the offset between two registers, one to be eliminated, and the
337    other its replacement, at the start of a routine.  */
338 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET)	  \
339   (OFFSET) = csky_initial_elimination_offset (FROM, TO)
340 
341 
342 /* Passing Function Arguments on the Stack  */
343 
344 
345 /* Define this if the maximum size of all the outgoing args is to be
346    accumulated and pushed during the prologue.  The amount can be
347    found in the variable crtl->outgoing_args_size.  */
348 #define ACCUMULATE_OUTGOING_ARGS 1
349 
350 
351 /* Passing Arguments in Registers  */
352 
353 
354 /* A C type for declaring a variable that is used as the first argument of
355    TARGET_ FUNCTION_ARG and other related values.  */
356 #define CUMULATIVE_ARGS	 int
357 
358 /* Initialize a variable CUM of type CUMULATIVE_ARGS
359    for a call to a function whose data type is FNTYPE.
360    For a library call, FNTYPE is 0.
361 
362    On CSKY, the offset always starts at 0: the first parm reg is always
363    the same reg.  */
364 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
365   ((CUM) = 0)
366 
367 /* True if N is a possible register number for function argument passing.
368    On the CSKY, r0-r3 are used to pass args.
369    The int cast is to prevent a complaint about unsigned comparison to
370    zero, since CSKY_FIRST_PARM_REGNUM is zero.  */
371 #define FUNCTION_ARG_REGNO_P(REGNO)	    \
372   (((int)(REGNO) >= CSKY_FIRST_PARM_REGNUM) &&		\
373    ((REGNO) < (CSKY_NPARM_REGS + CSKY_FIRST_PARM_REGNUM)))
374 
375 /* How Large Values Are Returned  */
376 
377 
378 /* Define DEFAULT_PCC_STRUCT_RETURN to 1 if all structure and union return
379    values must be in memory.  On the CSKY, small
380    structures (eight bytes or fewer) are returned in
381    the register pair r0/r1.  */
382 #define DEFAULT_PCC_STRUCT_RETURN 0
383 
384 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
385    the stack pointer does not matter.  The value is tested only in
386    functions that have frame pointers.
387    No definition is equivalent to always zero.
388 
389    On the CSKY, the function epilogue recovers the stack pointer from the
390    frame.  */
391 #define EXIT_IGNORE_STACK 1
392 
393 
394 /******************************************************************
395  *		Register Usage & Register Classes		  *
396  ******************************************************************/
397 
398 
399 #define FIRST_PSEUDO_REGISTER 71
400 
401 /* 1 for registers that have pervasive standard uses
402    and are not available for the register allocator.
403    On C-SKY, r14 is SP, r26 is used by linker,
404    r27 is used by assembler, r28 is data base address,
405    r29 is GOT base address, r30 is handler base address,
406    r31 is TLS register.  */
407 #define FIXED_REGISTERS							\
408  /*  r0	   r1	 r2    r3    r4	   r5	 r6    r7  */			\
409 {    0,	   0,	 0,    0,    0,	   0,	 0,    0,			\
410  /*  r8	   r9	 r10   r11   r12   r13	 r14   r15 */			\
411      0,	   0,	 0,    0,    0,	   0,	 1,    0,			\
412  /*  r16   r17	 r18   r19   r20   r21	 r22   r23 */			\
413      0,	   0,	 0,    0,    0,	   0,	 0,    0,			\
414  /*  r24   r25	 r26   r27   r28   r29	 r30   tls */			\
415      0,	   0,	 1,    1,    1,	   1,	 1,    1,			\
416  /*  reserved	 c     hi    lo	 */					\
417      1,		 1,    0,    0,						\
418  /*  reserved */							\
419      1,	   1,	 1,    1,    1,	   1,	 1,    1,			\
420      1,	   1,	 1,    1,    1,	   1,	 1,    1,			\
421  /*  vr0   vr1	 vr2   vr3   vr4   vr5	 vr6   vr7  */			\
422      0,	   0,	 0,    0,    0,	   0,	 0,    0,			\
423  /*  vr8   vr9	 vr10  vr11  vr12  vr13	 vr14  vr15 */			\
424      0,	   0,	 0,    0,    0,	   0,	 0,    0 ,			\
425  /*  reserved */							\
426      1,	   1,								\
427  /*  epc */								\
428      1									\
429 }
430 
431 /* 1 for registers that is clobbered (in general) by function calls.
432    If a register has 0, the compiler automatically saves it on
433    function entry and restores it on function exit, if the register
434    is used within the function.  */
435 #define CALL_USED_REGISTERS \
436  /*  r0	   r1	 r2    r3    r4	   r5	 r6    r7  */			\
437 {    1,	   1,	 1,    1,    0,	   0,	 0,    0,			\
438  /*  r8	   r9	 r10   r11   r12   r13	 r14   r15 */			\
439      0,	   0,	 0,    0,    1,	   1,	 1,    0,			\
440  /*  r16   r17	 r18   r19   r20   r21	 r22   r23 */			\
441      0,	   0,	 1,    1,    1,	   1,	 1,    1,			\
442  /*  r24   r25	 r26   r27   r28   r29	 r30   r31 */			\
443      1,	   1,	 1,    1,    1,	   1,	 1,    1,			\
444  /*  reserved	 c     hi    lo */					\
445      1,		 1,    1,    1,						\
446  /*  reserved */							\
447      1,	   1,	 1,    1,    1,	   1,	 1,    1,			\
448      1,	   1,	 1,    1,    1,	   1,	 1,    1,			\
449  /*  vr0   vr1	 vr2   vr3   vr4   vr5	 vr6   vr7 */			\
450      1,	   1,	 1,    1,    1,	   1,	 1,    1,			\
451  /*  vr8   vr9	 vr10  vr11  vr12  vr13	 vr14  vr15 */			\
452      1,	   1,	 1,    1,    1,	   1,	 1,    1,			\
453  /*  reserved */							\
454      1,	   1,								\
455  /*  epc */								\
456      1									\
457 }
458 
459 /* Like `CALL_USED_REGISTERS' but used to overcome a historical
460    problem which makes CALL_USED_REGISTERS *always* include
461    all the FIXED_REGISTERS.  Until this problem has been
462    resolved this macro can be used to overcome this situation.
463    In particular, block_propagate() requires this list
464    be accurate, or we can remove registers which should be live.
465    This macro is used in get_csky_live_regs().  */
466 #define CALL_REALLY_USED_REGISTERS \
467  /*  r0	   r1	 r2    r3    r4	   r5	 r6    r7  */			\
468 {    1,	   1,	 1,    1,    0,	   0,	 0,    0,			\
469  /*  r8	   r9	 r10   r11   r12   r13	 r14   r15 */			\
470      0,	   0,	 0,    0,    1,	   1,	 1,    0,			\
471  /*  r16   r17	 r18   r19   r20   r21	 r22   r23 */			\
472      0,	   0,	 1,    1,    1,	   1,	 1,    1,			\
473  /*  r24   r25	 r26   r27   r28   r29	 r30   r31 */			\
474      1,	   1,	 1,    1,    1,	   1,	 1,    1,			\
475  /*  reserved	 c     hi    lo */					\
476      1,		 1,    1,    1,						\
477  /*  reserved */							\
478      1,	   1,	 1,    1,    1,	   1,	 1,    1,			\
479      1,	   1,	 1,    1,    1,	   1,	 1,    1,			\
480  /*  vr0   vr1	 vr2   vr3   vr4   vr5	 vr6   vr7 */			\
481      1,	   1,	 1,    1,    1,	   1,	 1,    1,			\
482  /*  vr8   vr9	 vr10  vr11  vr12  vr13	 vr14  vr15 */			\
483      1,	   1,	 1,    1,    1,	   1,	 1,    1,			\
484  /*  reserved */							\
485      1,	   1,								\
486  /*  epc */								\
487      1									\
488 }
489 
490 #define REGISTER_NAMES							\
491 {									\
492   "a0",	 "a1",	"a2",  "a3",  "l0",  "l1",  "l2",  "l3",		\
493   "l4",	 "l5",	"l6",  "l7",  "t0",  "t1",  "sp",  "lr",		\
494   "l8",	 "l9",	"t2",  "t3",  "t4",  "t5",  "t6",  "t7",		\
495   "t8",	 "t9",	"r26", "r27", "gb",  "r29", "svbr", "r31",		\
496   /* reserved */							\
497   "reserved",								\
498   /* CC register: 33 */							\
499   "c",									\
500   /* DSP instruction register: 34, 35 */				\
501   "hi", "lo",								\
502   "reserved", "reserved", "reserved", "reserved", "reserved",		\
503   "reserved", "reserved", "reserved", "reserved", "reserved",		\
504   "reserved", "reserved", "reserved", "reserved", "reserved",		\
505   "reserved",								\
506   /* V registers: 52~67 */						\
507   "vr0", "vr1", "vr2",	"vr3",	"vr4",	"vr5",	"vr6",	"vr7",		\
508   "vr8", "vr9", "vr10", "vr11", "vr12", "vr13", "vr14", "vr15",		\
509   "reserved", "reserved",						\
510   "epc"									\
511 }
512 
513 /* Table of additional register names to use in user input.  */
514 #define ADDITIONAL_REGISTER_NAMES   \
515 {				    \
516   {"r0",  0},			    \
517   {"r1",  1},			    \
518   {"r2",  2},			    \
519   {"r3",  3},			    \
520   {"r4",  4},			    \
521   {"r5",  5},			    \
522   {"r6",  6},			    \
523   {"r7",  7},			    \
524   {"r8",  8},			    \
525   {"r9",  9},			    \
526   {"r10", 10},			    \
527   {"r11", 11},			    \
528   {"r12", 12},			    \
529   {"r13", 13},			    \
530   {"r14", 14},			    \
531   {"r15", 15},			    \
532   {"r16", 16},			    \
533   {"r17", 17},			    \
534   {"r18", 18},			    \
535   {"r19", 19},			    \
536   {"r20", 20},			    \
537   {"r21", 21},			    \
538   {"r22", 22},			    \
539   {"r23", 23},			    \
540   {"r24", 24},			    \
541   {"r25", 25},			    \
542   {"r26", 26},			    \
543   {"r27", 27},			    \
544   {"r28", 28},			    \
545   {"r29", 29},			    \
546   {"r30", 30},			    \
547   {"r31", 31},			    \
548 }
549 
550 /* The order in which registers should be allocated.
551    It is better to use the registers the caller need not save.
552    Allocate r0 through r3 in reverse order since r3 is least likely
553    to contain a function parameter; in addition results are returned
554    in r0.  It is quite good to use lr since other calls may clobber
555    it anyway.  */
556 #define REG_ALLOC_ORDER						\
557 /*   r3	   r2	 r1    r0   r12	  r13	r18   r19 */		\
558   {   3,    2,	  1,	0,   12,   13,	 18,   19,		\
559 /*  r20	  r21	r22   r23   r24	  r25 */			\
560      20,   21,	 22,   23,   24,   25,				\
561 /*   r15   r4	 r5   r6     r7	   r8	 r9   r10   r11 */	\
562      15,    4,	  5,   6,     7,    8,	  9,   10,   11,	\
563 /*  r16	  r17	r26   r27   r28	  r29	r30    hi    lo	 */	\
564      16,   17,	 26,   27,   28,   29,	 30,   34,   35,	\
565 /*  vr0	  vr1	vr2   vr3   vr4	  vr5	vr6   vr7  */		\
566      52,   53,	 54,   55,   56,   57,	 58,   59,		\
567 /*  vr8	  vr9	vr10  vr11  vr12  vr13	vr14  vr15 */		\
568      60,   61,	 62,   63,   64,   65,	 66,   67,		\
569 /*  reserved  */						\
570      36,   37,	 38,   39,   40,   41,	 42,   43,		\
571      44,   45,	 46,   47,   48,   49,	 50,   51,		\
572 /*  sp	  tls	reserved     c	   reserved	    epc */	\
573      14,   31,	 32,	     33,   68,	 69,	     70	 }
574 
575 /*  Register classes.  */
576 enum reg_class
577 {
578   NO_REGS,
579   MINI_REGS,
580   SP_REGS,
581   LOW_REGS,
582   GENERAL_REGS,
583   C_REGS,
584   HI_REGS,
585   LO_REGS,
586   HILO_REGS,
587   V_REGS,
588   OTHER_REGS,
589   RESERVE_REGS,
590   ALL_REGS,
591   LIM_REG_CLASSES
592 };
593 
594 #define N_REG_CLASSES  (int) LIM_REG_CLASSES
595 
596 /* Give names of register classes as strings for dump file.  */
597 #define REG_CLASS_NAMES \
598 {			\
599   "NO_REGS",		\
600   "MINI_REGS",		\
601   "SP_REGS",		\
602   "LOW_REGS",		\
603   "GENERAL_REGS",	\
604   "C_REGS",		\
605   "HI_REGS",		\
606   "LO_REGS",		\
607   "HILO_REGS",		\
608   "V_REGS",		\
609   "OTHER_REGS",		\
610   "RESERVE_REGS",	\
611   "ALL_REGS",		\
612 }
613 
614 /* Define which registers fit in which classes.  This is an initializer
615    for a vector of HARD_REG_SET of length N_REG_CLASSES.  */
616 #define REG_CLASS_CONTENTS					     \
617 {								     \
618   {0x00000000, 0x00000000, 0x00000000 },  /* NO_REGS	       */    \
619   {0x000000FF, 0x00000000, 0x00000000 },  /* MINI_REGS	       */    \
620   {0x00004000, 0x00000000, 0x00000000 },  /* SP_REGS	       */    \
621   {0x0000FFFF, 0x00000000, 0x00000000 },  /* LOW_REGS	       */    \
622   {0xFFFFFFFF, 0x00000000, 0x00000000 },  /* GENERAL_REGS      */    \
623   {0x00000000, 0x00000002, 0x00000000 },  /* C_REGS	       */    \
624   {0x00000000, 0x00000004, 0x00000000 },  /* HI_REG	       */    \
625   {0x00000000, 0x00000008, 0x00000000 },  /* LO_REG	       */    \
626   {0x00000000, 0x0000000c, 0x00000000 },  /* HILO_REGS	       */    \
627   {0x00000000, 0xFFF00000, 0x0000000F },  /* V_REGS	       */    \
628   {0x00000000, 0x00000000, 0x00000040 },  /* OTHER_REGS	       */    \
629   {0x00000000, 0x0FF00001, 0x00000030 },  /* RESERVE_REGS      */    \
630   {0xFFFFFFFF, 0xFFFFFFFF, 0x0000007F },  /* ALL_REGS	       */    \
631 }
632 
633 /* Return register class from regno.  */
634 extern enum reg_class regno_reg_class[FIRST_PSEUDO_REGISTER];
635 #define REGNO_REG_CLASS(REGNO) regno_reg_class[REGNO]
636 
637 /* The class value for index registers, and the one for base regs.  */
638 #define INDEX_REG_CLASS	 (CSKY_ISA_FEATURE (2E3) ? GENERAL_REGS : NO_REGS)
639 #define BASE_REG_CLASS	GENERAL_REGS
640 
641 /* TODO is it necessary to set it to MINI_REGS to emit more 16-bit
642    instructions?  */
643 #define MODE_BASE_REG_CLASS(MODE) GENERAL_REGS
644 
645 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
646    and check its validity for a certain class.
647    We have two alternate definitions for each of them.
648    The usual definition accepts all pseudo regs; the other rejects
649    them unless they have been allocated suitable hard regs.
650    The symbol REG_OK_STRICT causes the latter definition to be used.
651 
652    Most source files want to accept pseudo regs in the hope that
653    they will get allocated to the class that the insn wants them to be in.
654    Source files for reload pass need to be strict.
655    After reload, it makes no difference, since pseudo regs have
656    been eliminated by then.
657 
658    The reg_renumber is used to map pseudo regs into hardware
659    regs, it is set up as a result of register allocation.  */
660 #ifdef REG_OK_STRICT
661 #define REGNO_OK_FOR_BASE_P(REGNO)		       \
662   (CSKY_GENERAL_REGNO_P (REGNO)			       \
663    || CSKY_GENERAL_REGNO_P (reg_renumber[(REGNO)]) )
664 #else
665 #define REGNO_OK_FOR_BASE_P(REGNO)		       \
666   (CSKY_GENERAL_REGNO_P (REGNO)			       \
667    || (REGNO) >= FIRST_PSEUDO_REGISTER)
668 #endif
669 
670 
671 #ifdef REG_OK_STRICT
672 #define REGNO_OK_FOR_INDEX_P(REGNO)			\
673   (CSKY_GENERAL_REGNO_P (REGNO)				\
674    || CSKY_GENERAL_REGNO_P (reg_renumber[(REGNO)]) )
675 #else
676 #define REGNO_OK_FOR_INDEX_P(REGNO)		      \
677   (CSKY_GENERAL_REGNO_P (REGNO)			      \
678    || (REGNO) >= FIRST_PSEUDO_REGISTER)
679 #endif
680 
681 
682 /******************************************************************
683  *			  Addressing Modes			  *
684  ******************************************************************/
685 
686 
687 /* Recognize any constant value that is a valid address.  */
688 #define CONSTANT_ADDRESS_P(X) \
689   (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF)
690 
691 /* Maximum number of registers that can appear in a valid memory address.
692    Shifts in addresses can't be by a register.  */
693 #define MAX_REGS_PER_ADDRESS 2
694 
695 
696 /******************************************************************
697  *			  Run-time Target			  *
698  ******************************************************************/
699 
700 
701 #define TARGET_CPU_CPP_BUILTINS()		      \
702   csky_cpu_cpp_builtins (pfile)
703 
704 /******************************************************************
705  *			Per-function Data			  *
706  ******************************************************************/
707 
708 
709 /* Initialize data used by insn expanders.  This is called from insn_emit,
710    once for every function before code is generated.  */
711 #define INIT_EXPANDERS	csky_init_expanders ()
712 
713 
714 /******************************************************************
715  *    Dividing the Output into Sections (Texts, Data, . . . )	  *
716  ******************************************************************/
717 
718 
719 /* Switch to the text or data segment.  */
720 #define TEXT_SECTION_ASM_OP  "\t.text"
721 #define DATA_SECTION_ASM_OP  "\t.data"
722 
723 /* The subroutine calls in the .init and .fini sections create literal
724    pools which must be jumped around...  */
725 #define FORCE_CODE_SECTION_ALIGN    \
726   asm ("br 1f ; .literals ; .align 2 ; 1:");
727 
728 /* Define this macro to be an expression with a nonzero value if
729    jump tables (for tablejump insns) should be output in the text section,
730    along with the assembler instructions.  */
731 #define JUMP_TABLES_IN_TEXT_SECTION TARGET_CASESI
732 
733 
734 /******************************************************************
735  *			Assembler Format			  *
736  ******************************************************************/
737 
738 
739 /* A C string constant for text to be output before(after) each asm
740    statement or group of consecutive ones.  */
741 #undef	ASM_APP_ON
742 #define ASM_APP_ON    "// inline asm begin\n"
743 #undef	ASM_APP_OFF
744 #define ASM_APP_OFF   "// inline asm end\n"
745 
746 /* A C string constant describing how to begin a comment in the target
747    assembler language.  */
748 #define ASM_COMMENT_START "\t//"
749 
750 /* This says how to output an assembler line
751    to define a global common symbol, with alignment information.  */
752 #undef	ASM_OUTPUT_ALIGNED_COMMON
753 #define ASM_OUTPUT_ALIGNED_COMMON(STREAM, NAME, SIZE, ALIGN)	\
754   do								\
755     {								\
756       fputs ("\t.comm\t", STREAM);				\
757       assemble_name (STREAM, NAME);				\
758       fprintf (STREAM, ",%lu, %u\n", (unsigned long)(SIZE),	\
759 	       (ALIGN) / BITS_PER_UNIT);			\
760     }								\
761 while (0)
762 
763 /* Define a local common symbol whose alignment we wish to specify.
764    ALIGN comes in as bits, we have to turn it into bytes.  */
765 #undef	ASM_OUTPUT_ALIGNED_LOCAL
766 #define ASM_OUTPUT_ALIGNED_LOCAL(STREAM, NAME, SIZE, ALIGN)	\
767   do								\
768 {								\
769   fputs ("\t.bss\t", (STREAM));					\
770   assemble_name ((STREAM), (NAME));				\
771   fprintf ((STREAM), ",%d, %d\n", (int)(SIZE),			\
772 	   (ALIGN) / BITS_PER_UNIT);				\
773 }								\
774 while (0)
775 
776 /* Globalizing directive for a label.  */
777 #define GLOBAL_ASM_OP "\t.global\t"
778 
779 /* Output a reference to a label.  */
780 #undef	ASM_OUTPUT_LABELREF
781 #define ASM_OUTPUT_LABELREF(STREAM, NAME)     \
782   fprintf (STREAM, "%s%s", user_label_prefix, \
783 	   (* targetm.strip_name_encoding) (NAME))
784 
785 /* Make an internal label into a string.  */
786 #undef	ASM_GENERATE_INTERNAL_LABEL
787 #define ASM_GENERATE_INTERNAL_LABEL(STRING, PREFIX, NUM)  \
788   sprintf (STRING, "*.%s%ld", PREFIX, (long) NUM)
789 
790 /* This is how to output an insn to push a register on the stack.
791    It need not be very fast code.  */
792 #define ASM_OUTPUT_REG_PUSH(STREAM,REGNO)		    \
793   fprintf (STREAM, "\tsubi\t %s,%d\n\tst.w\t %s,(%s)\n",    \
794 	   reg_names[STACK_POINTER_REGNUM],		    \
795 	   (STACK_BOUNDARY / BITS_PER_UNIT),		    \
796 	   reg_names[REGNO],				    \
797 	   reg_names[STACK_POINTER_REGNUM])
798 
799 /* This is how to output an insn to pop a register from the stack.  */
800 #define ASM_OUTPUT_REG_POP(STREAM,REGNO)		    \
801   fprintf (STREAM, "\tld.w\t %s,(%s)\n\taddi\t %s,%d\n",    \
802 	   reg_names[REGNO],				    \
803 	   reg_names[STACK_POINTER_REGNUM],		    \
804 	   reg_names[STACK_POINTER_REGNUM],		    \
805 	   (STACK_BOUNDARY / BITS_PER_UNIT))
806 
807 /* Output an element of a dispatch table.  */
808 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM,VALUE)  \
809   fprintf (STREAM, "\t.long\t.L%d\n", VALUE)
810 
811 /* This is how to output an assembler line
812    that says to advance the location counter by SIZE bytes.  */
813 #undef	ASM_OUTPUT_SKIP
814 #define ASM_OUTPUT_SKIP(STREAM,SIZE)  \
815   fprintf (STREAM, "\t.fill %d, 1\n", (int)(SIZE))
816 
817 /* Align output to a power of two.  Note ".align 0" is redundant,
818    and also GAS will treat it as ".align 2" which we do not want.  */
819 #define ASM_OUTPUT_ALIGN(STREAM, POWER)			\
820   do							\
821     {							\
822       if ((POWER) > 0)					\
823 	fprintf (STREAM, "\t.align\t%d\n", POWER);	\
824     }							\
825   while (0)
826 
827 
828 /******************************************************************
829  *		Controlling the Compilation Driver		  *
830  ******************************************************************/
831 
832 
833 /* Define this macro as a C expression for the initializer of an
834    array of string to tell the driver program which options are
835    defaults for this target and thus do not need to be handled
836    specially when using MULTILIB_OPTIONS.  */
837 #undef MULTILIB_DEFAULTS
838 #define MULTILIB_DEFAULTS    \
839     {"mlittle-endian", "mcpu=ck810f", "msoft-float"}
840 
841 /* Support for a compile-time default CPU, et cetera.  The rules are:
842    --with-arch is ignored if -march or -mcpu are specified.
843    --with-cpu is ignored if -march or -mcpu are specified, and is overridden
844     by --with-arch. */
845 #define OPTION_DEFAULT_SPECS \
846   {"arch", "%{!march=*:%{!mcpu=*:-march=%(VALUE)}}" }, \
847   {"cpu", "%{!march=*:%{!mcpu=*:-mcpu=%(VALUE)}}" }, \
848   {"endian", "%{!mbig-endian:%{!mlittle-endian:-m%(VALUE)-endian}}" }, \
849   {"float", "%{!msoft-float:%{!mhard-float:-m%(VALUE)-float}}" },
850 
851 
852 /******************************************************************
853  *		      Position Independent Code			  *
854  ******************************************************************/
855 
856 /* Define the global table register.  */
857 #define PIC_OFFSET_TABLE_REGNUM (flag_pic ? CSKY_GB_REGNUM : INVALID_REGNUM)
858 
859 /* Nonzero if x is a legitimate immediate operand on the target machine
860    when generating position-independent code.  */
861 #define LEGITIMATE_PIC_OPERAND_P(X) \
862   csky_legitimate_pic_operand_p (X)
863 
864 
865 /******************************************************************
866  *	      Controlling Debugging Information Format		  *
867  ******************************************************************/
868 
869 
870 /* Define this macro if GCC should produce dwarf version 2 format debugging
871    output in response to the `-g' option.  */
872 #define DWARF2_DEBUGGING_INFO 1
873 
874 /* Define this macro to 0 if your target supports DWARF 2 frame unwind
875    information, but it does not yet work with exception handling.  */
876 #define DWARF2_UNWIND_INFO 1
877 
878 /* Define this if you have arranged for GCC to support
879    more than one format of debugging output.
880    The value of this macro only affects the default debugging output.  */
881 #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
882 
883 /* Define this macro if the target’s representation
884    for dwarf registers used in .eh_frame or .debug_frame
885    is different from that used in other debug info sections.
886    Given a GCC hard register number,
887    this macro should return the .eh_frame register number.*/
888 #define DWARF_FRAME_REGNUM(REG)	 DBX_REGISTER_NUMBER (REG)
889 
890 /* If INCOMING_RETURN_ADDR_RTX is defined & the RTL is REG,
891    define DWARF_FRAME_RETURN_COLUMN to DWARF_FRAME_REGNUM.  */
892 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (CSKY_LR_REGNUM)
893 
894 /* Use r0 and r1 to pass exception handling information.  */
895 #define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? N : INVALID_REGNUM)
896 
897 /* How to renumber registers for dbx and gdb.  */
898 extern const int csky_dbx_regno[];
899 #define DBX_REGISTER_NUMBER(REGNO) ((unsigned int) csky_dbx_regno[REGNO])
900 
901 
902 /******************************************************************
903  *		      Miscellaneous Parameters			  *
904  ******************************************************************/
905 
906 
907 /* Specify the machine mode that this machine uses
908    for the index in the tablejump instruction.  */
909 #define CASE_VECTOR_MODE SImode
910 
911 /* Define if operations between registers always perform the operation
912    on the full register even if a narrower mode is specified.  */
913 #define WORD_REGISTER_OPERATIONS 1
914 
915 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
916    will either zero-extend or sign-extend.  The value of this macro should
917    be the code that says which one of the two operations is implicitly
918    done, UNKNOWN if none.  */
919 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
920 
921 /* Max number of bytes we can move from memory to memory
922    in one reasonably fast instruction.  */
923 #define MOVE_MAX 4
924 
925 /* Shift counts are truncated to 6-bits (0 to 63) instead of the expected
926    5-bits, so we cannot define SHIFT_COUNT_TRUNCATED to true for this
927    target.  */
928 #define SHIFT_COUNT_TRUNCATED 0
929 
930 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 32, 1)
931 
932 /* The machine modes of pointers and functions.  */
933 #define Pmode  SImode
934 #define FUNCTION_MODE  Pmode
935 
936 /* Define this macro to be a C expression to indicate when jump-tables
937    should contain relative addresses.  */
938 #define CASE_VECTOR_PC_RELATIVE \
939   (optimize_size && TARGET_CONSTANT_POOL \
940    && (CSKY_TARGET_ARCH (CK802) || CSKY_TARGET_ARCH (CK801)))
941 
942 /* Return the preferred mode for an addr_diff_vec when the minimum
943    and maximum offset are known.  */
944 #define CASE_VECTOR_SHORTEN_MODE(min, max, body)		    \
945   (min >= 0 && max < 512					    \
946    ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 1, QImode)	    \
947    : min >= -256 && max < 256					    \
948      ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 0, QImode)	    \
949      : min >= 0 && max < 8192					    \
950        ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 1, HImode)   \
951        : min >= -4096 && max < 4096				    \
952 	 ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 0, HImode) \
953 	 : SImode)
954 
955 /* This is how to output an element of a case-vector that is relative.  */
956 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL)	    \
957   do								    \
958     {								    \
959       if (optimize_size && TARGET_CONSTANT_POOL			    \
960 	  && (CSKY_TARGET_ARCH (CK802) || CSKY_TARGET_ARCH (CK801)))  \
961 	{							    \
962 	  switch (GET_MODE (BODY))				    \
963 	    {							    \
964 	    case E_QImode:					    \
965 	      asm_fprintf (STREAM, "\t.byte\t(.L%d-.L%d)/2\n",	    \
966 			   VALUE, REL);				    \
967 	      break;						    \
968 	    case E_HImode: /* TBH */				    \
969 	      asm_fprintf (STREAM, "\t.short\t(.L%d-.L%d)/2\n",	    \
970 			   VALUE, REL);				    \
971 	      break;						    \
972 	    case E_SImode:					    \
973 	      asm_fprintf (STREAM, "\t.long\t.L%d-.L%d\n",	    \
974 			   VALUE, REL);				    \
975 	      break;						    \
976 	    default:						    \
977 	      gcc_unreachable ();				    \
978 	    }							    \
979 	}							    \
980       else							    \
981 	asm_fprintf (STREAM, "\t.long\t.L%d@GOTOFF\n", VALUE);	    \
982     } while (0)
983 
984 /* This macro is not documented yet.
985    But we do need it to make jump table vector aligned.  */
986 #define ADDR_VEC_ALIGN(JUMPTABLE) 0
987 
988 /* We have to undef this first to override the version from elfos.h.  */
989 #undef	ASM_OUTPUT_CASE_LABEL
990 #define ASM_OUTPUT_CASE_LABEL(stream, prefix, num, table)	\
991   do								\
992     {								\
993       if (GET_MODE (PATTERN (table)) == SImode)			\
994 	ASM_OUTPUT_ALIGN (stream, 2);				\
995       (*targetm.asm_out.internal_label) (stream, prefix, num);	\
996     } while (0)
997 
998 /* Make sure subsequent insns are aligned after a byte-sized jump offset
999    table.  */
1000 #define ASM_OUTPUT_CASE_END(stream, num, table)	  \
1001   do						  \
1002     {						  \
1003       if (GET_MODE (PATTERN (table)) == QImode)	  \
1004 	ASM_OUTPUT_ALIGN (stream, 1);		  \
1005     } while (0)
1006 
1007 
1008 
1009 
1010 /******************************************************************
1011  *		  Trampolines for Nested Functions		  *
1012  ******************************************************************/
1013 
1014 
1015 /* Length in units of the trampoline for entering a nested function.  */
1016 #define TRAMPOLINE_SIZE	 (CSKY_ISA_FEATURE (2E3) ? 16 : 20)
1017 
1018 /* Alignment required for a trampoline in bits.  */
1019 #define TRAMPOLINE_ALIGNMENT  32
1020 
1021 
1022 /******************************************************************
1023  *	      Describing Relative Costs of Operations		  *
1024  ******************************************************************/
1025 
1026 
1027 /* Nonzero if access to memory by bytes is slow and undesirable.
1028    For RISC chips, it means that access to memory by bytes is no
1029    better than access by words when possible, so grab a whole word
1030    and maybe make use of that.  */
1031 #define SLOW_BYTE_ACCESS  0
1032 
1033 /* On C-SKY, function CSE would allow use of 16-bit jsr instructions
1034    instead of normal 32-bit calls.  But it also needs a separate constant
1035    pool entry for the function address and an instruction to load it, and
1036    may cause additional spills due to increased register pressure, etc.
1037    It doesn't seem like a good idea overall.  */
1038 #define NO_FUNCTION_CSE 1
1039 
1040 /* Try to generate sequences that don't involve branches, we can then use
1041    conditional instructions.  */
1042 #define BRANCH_COST(speed_p, predictable_p)			\
1043   csky_default_branch_cost (speed_p, predictable_p)
1044 
1045 /* False if short circuit operation is preferred.  */
1046 #define LOGICAL_OP_NON_SHORT_CIRCUIT \
1047   (csky_default_logical_op_non_short_circuit ())
1048 
1049 
1050 /******************************************************************
1051  *		   Generating Code for Profiling		  *
1052  ******************************************************************/
1053 
1054 
1055 #define FUNCTION_PROFILER(FILE, LABELNO)
1056 
1057 #endif /* GCC_CSKY_H */
1058