1 /*{{{  Comment.  */
2 
3 /* Definitions of FR30 target.
4    Copyright (C) 1998-2019 Free Software Foundation, Inc.
5    Contributed by Cygnus Solutions.
6 
7 This file is part of GCC.
8 
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3, or (at your option)
12 any later version.
13 
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 GNU General Public License for more details.
18 
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3.  If not see
21 <http://www.gnu.org/licenses/>.  */
22 
23 /*}}}*/
24 /*{{{  Run-time target specifications.  */
25 
26 #undef  ASM_SPEC
27 #define ASM_SPEC ""
28 
29 /* Define this to be a string constant containing `-D' options to define the
30    predefined macros that identify this machine and system.  These macros will
31    be predefined unless the `-ansi' option is specified.  */
32 
33 #define TARGET_CPU_CPP_BUILTINS()		\
34   do						\
35     {						\
36       builtin_define_std ("fr30");		\
37       builtin_assert ("machine=fr30");		\
38     }						\
39    while (0)
40 
41 #undef  STARTFILE_SPEC
42 #define STARTFILE_SPEC "crt0.o%s crti.o%s crtbegin.o%s"
43 
44 /* Include the OS stub library, so that the code can be simulated.
45    This is not the right way to do this.  Ideally this kind of thing
46    should be done in the linker script - but I have not worked out how
47    to specify the location of a linker script in a gcc command line yet... */
48 #undef  ENDFILE_SPEC
49 #define ENDFILE_SPEC  "%{!mno-lsim:-lsim} crtend.o%s crtn.o%s"
50 
51 #undef  LIB_SPEC
52 #define LIB_SPEC "-lc"
53 
54 #undef  LINK_SPEC
55 #define LINK_SPEC "%{h*} %{v:-V} \
56 		   %{static:-Bstatic} %{shared:-shared} %{symbolic:-Bsymbolic}"
57 
58 /*}}}*/
59 /*{{{  Storage Layout.  */
60 
61 #define BITS_BIG_ENDIAN 1
62 
63 #define BYTES_BIG_ENDIAN 1
64 
65 #define WORDS_BIG_ENDIAN 1
66 
67 #define UNITS_PER_WORD 	4
68 
69 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE)	\
70   do						\
71     {						\
72       if (GET_MODE_CLASS (MODE) == MODE_INT	\
73 	  && GET_MODE_SIZE (MODE) < 4)		\
74 	(MODE) = SImode;			\
75     }						\
76   while (0)
77 
78 #define PARM_BOUNDARY 32
79 
80 #define STACK_BOUNDARY 32
81 
82 #define FUNCTION_BOUNDARY 32
83 
84 #define BIGGEST_ALIGNMENT 32
85 
86 #define DATA_ALIGNMENT(TYPE, ALIGN)		\
87   (TREE_CODE (TYPE) == ARRAY_TYPE		\
88    && TYPE_MODE (TREE_TYPE (TYPE)) == QImode	\
89    && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
90 
91 #define STRICT_ALIGNMENT 1
92 
93 #define PCC_BITFIELD_TYPE_MATTERS 1
94 
95 /*}}}*/
96 /*{{{  Layout of Source Language Data Types.  */
97 
98 #define SHORT_TYPE_SIZE 	16
99 #define INT_TYPE_SIZE 		32
100 #define LONG_TYPE_SIZE 		32
101 #define LONG_LONG_TYPE_SIZE 	64
102 #define FLOAT_TYPE_SIZE 	32
103 #define DOUBLE_TYPE_SIZE 	64
104 #define LONG_DOUBLE_TYPE_SIZE 	64
105 
106 #define DEFAULT_SIGNED_CHAR 1
107 
108 #undef  SIZE_TYPE
109 #define SIZE_TYPE "unsigned int"
110 
111 #undef  PTRDIFF_TYPE
112 #define PTRDIFF_TYPE "int"
113 
114 #undef  WCHAR_TYPE
115 #define WCHAR_TYPE "long int"
116 
117 #undef  WCHAR_TYPE_SIZE
118 #define WCHAR_TYPE_SIZE BITS_PER_WORD
119 
120 /*}}}*/
121 /*{{{  REGISTER BASICS.  */
122 
123 /* Number of hardware registers known to the compiler.  They receive numbers 0
124    through `FIRST_PSEUDO_REGISTER-1'; thus, the first pseudo register's number
125    really is assigned the number `FIRST_PSEUDO_REGISTER'.  */
126 #define FIRST_PSEUDO_REGISTER	21
127 
128 /* Fixed register assignments: */
129 
130 /* Here we do a BAD THING - reserve a register for use by the machine
131    description file.  There are too many places in compiler where it
132    assumes that it can issue a branch or jump instruction without
133    providing a scratch register for it, and reload just cannot cope, so
134    we keep a register back for these situations.  */
135 #define COMPILER_SCRATCH_REGISTER 0
136 
137 /* The register that contains the result of a function call.  */
138 #define RETURN_VALUE_REGNUM	 4
139 
140 /* The first register that can contain the arguments to a function.  */
141 #define FIRST_ARG_REGNUM	 4
142 
143 /* A call-used register that can be used during the function prologue.  */
144 #define PROLOGUE_TMP_REGNUM	 COMPILER_SCRATCH_REGISTER
145 
146 /* Register numbers used for passing a function's static chain pointer.  If
147    register windows are used, the register number as seen by the called
148    function is `STATIC_CHAIN_INCOMING_REGNUM', while the register number as
149    seen by the calling function is `STATIC_CHAIN_REGNUM'.  If these registers
150    are the same, `STATIC_CHAIN_INCOMING_REGNUM' need not be defined.
151 
152    The static chain register need not be a fixed register.
153 
154    If the static chain is passed in memory, these macros should not be defined;
155    instead, the next two macros should be defined.  */
156 #define STATIC_CHAIN_REGNUM 	12
157 /* #define STATIC_CHAIN_INCOMING_REGNUM */
158 
159 /* An FR30 specific hardware register.  */
160 #define ACCUMULATOR_REGNUM	13
161 
162 /* The register number of the frame pointer register, which is used to access
163    automatic variables in the stack frame.  On some machines, the hardware
164    determines which register this is.  On other machines, you can choose any
165    register you wish for this purpose.  */
166 #define FRAME_POINTER_REGNUM	14
167 
168 /* The register number of the stack pointer register, which must also be a
169    fixed register according to `FIXED_REGISTERS'.  On most machines, the
170    hardware determines which register this is.  */
171 #define STACK_POINTER_REGNUM	15
172 
173 /* The following a fake hard registers that describe some of the dedicated
174    registers on the FR30.  */
175 #define CONDITION_CODE_REGNUM	16
176 #define RETURN_POINTER_REGNUM	17
177 #define MD_HIGH_REGNUM		18
178 #define MD_LOW_REGNUM		19
179 
180 /* An initializer that says which registers are used for fixed purposes all
181    throughout the compiled code and are therefore not available for general
182    allocation.  These would include the stack pointer, the frame pointer
183    (except on machines where that can be used as a general register when no
184    frame pointer is needed), the program counter on machines where that is
185    considered one of the addressable registers, and any other numbered register
186    with a standard use.
187 
188    This information is expressed as a sequence of numbers, separated by commas
189    and surrounded by braces.  The Nth number is 1 if register N is fixed, 0
190    otherwise.
191 
192    The table initialized from this macro, and the table initialized by the
193    following one, may be overridden at run time either automatically, by the
194    actions of the macro `TARGET_CONDITIONAL_REGISTER_USAGE', or by the user
195    with the command options `-ffixed-REG', `-fcall-used-REG' and
196    `-fcall-saved-REG'.  */
197 #define FIXED_REGISTERS 			\
198   { 1, 0, 0, 0, 0, 0, 0, 0, 	/*  0 -  7 */ 	\
199     0, 0, 0, 0, 0, 0, 0, 1,	/*  8 - 15 */ 	\
200     1, 1, 1, 1, 1 }		/* 16 - 20 */
201 
202 /* XXX - MDL and MDH set as fixed for now - this is until I can get the
203    mul patterns working.  */
204 
205 /* Like `FIXED_REGISTERS' but has 1 for each register that is clobbered (in
206    general) by function calls as well as for fixed registers.  This macro
207    therefore identifies the registers that are not available for general
208    allocation of values that must live across function calls.
209 
210    If a register has 0 in `CALL_USED_REGISTERS', the compiler automatically
211    saves it on function entry and restores it on function exit, if the register
212    is used within the function.  */
213 #define CALL_USED_REGISTERS 			\
214   { 1, 1, 1, 1, 1, 1, 1, 1,	/*  0 -  7 */ 	\
215     0, 0, 0, 0, 1, 1, 0, 1,	/*  8 - 15 */ 	\
216     1, 1, 1, 1, 1 }		/* 16 - 20 */
217 
218 /* A C initializer containing the assembler's names for the machine registers,
219    each one as a C string constant.  This is what translates register numbers
220    in the compiler into assembler language.  */
221 #define REGISTER_NAMES 						\
222 {   "r0", "r1", "r2",  "r3",  "r4",  "r5", "r6", "r7",	\
223     "r8", "r9", "r10", "r11", "r12", "ac", "fp", "sp",	\
224     "cc", "rp", "mdh", "mdl", "ap"			\
225 }
226 
227 /* If defined, a C initializer for an array of structures containing a name and
228    a register number.  This macro defines additional names for hard registers,
229    thus allowing the `asm' option in declarations to refer to registers using
230    alternate names.  */
231 #define ADDITIONAL_REGISTER_NAMES 				\
232 {								\
233   {"r13", 13}, {"r14", 14}, {"r15", 15}, {"usp", 15}, {"ps", 16}\
234 }
235 
236 /*}}}*/
237 /*{{{  Register Classes.  */
238 
239 /* An enumeral type that must be defined with all the register class names as
240    enumeral values.  `NO_REGS' must be first.  `ALL_REGS' must be the last
241    register class, followed by one more enumeral value, `LIM_REG_CLASSES',
242    which is not a register class but rather tells how many classes there are.
243 
244    Each register class has a number, which is the value of casting the class
245    name to type `int'.  The number serves as an index in many of the tables
246    described below.  */
247 enum reg_class
248 {
249   NO_REGS,
250   MULTIPLY_32_REG,	/* the MDL register as used by the MULH, MULUH insns */
251   MULTIPLY_64_REG,	/* the MDH,MDL register pair as used by MUL and MULU */
252   LOW_REGS,		/* registers 0 through 7 */
253   HIGH_REGS,		/* registers 8 through 15 */
254   REAL_REGS,		/* i.e. all the general hardware registers on the FR30 */
255   ALL_REGS,
256   LIM_REG_CLASSES
257 };
258 
259 #define GENERAL_REGS 	REAL_REGS
260 #define N_REG_CLASSES 	((int) LIM_REG_CLASSES)
261 
262 /* An initializer containing the names of the register classes as C string
263    constants.  These names are used in writing some of the debugging dumps.  */
264 #define REG_CLASS_NAMES \
265 {			\
266   "NO_REGS",		\
267   "MULTIPLY_32_REG",	\
268   "MULTIPLY_64_REG",	\
269   "LOW_REGS", 		\
270   "HIGH_REGS", 		\
271   "REAL_REGS",		\
272   "ALL_REGS"		\
273  }
274 
275 /* An initializer containing the contents of the register classes, as integers
276    which are bit masks.  The Nth integer specifies the contents of class N.
277    The way the integer MASK is interpreted is that register R is in the class
278    if `MASK & (1 << R)' is 1.
279 
280    When the machine has more than 32 registers, an integer does not suffice.
281    Then the integers are replaced by sub-initializers, braced groupings
282    containing several integers.  Each sub-initializer must be suitable as an
283    initializer for the type `HARD_REG_SET' which is defined in
284    `hard-reg-set.h'.  */
285 #define REG_CLASS_CONTENTS 				\
286 { 							\
287   { 0 },						\
288   { 1 << MD_LOW_REGNUM },				\
289   { (1 << MD_LOW_REGNUM) | (1 << MD_HIGH_REGNUM) },	\
290   { (1 << 8) - 1 },					\
291   { ((1 << 8) - 1) << 8 },				\
292   { (1 << CONDITION_CODE_REGNUM) - 1 },			\
293   { (1 << FIRST_PSEUDO_REGISTER) - 1 }			\
294 }
295 
296 /* A C expression whose value is a register class containing hard register
297    REGNO.  In general there is more than one such class; choose a class which
298    is "minimal", meaning that no smaller class also contains the register.  */
299 #define REGNO_REG_CLASS(REGNO) 			\
300   ( (REGNO) < 8 ? LOW_REGS			\
301   : (REGNO) < CONDITION_CODE_REGNUM ? HIGH_REGS	\
302   : (REGNO) == MD_LOW_REGNUM ? MULTIPLY_32_REG	\
303   : (REGNO) == MD_HIGH_REGNUM ? MULTIPLY_64_REG	\
304   : ALL_REGS)
305 
306 /* A macro whose definition is the name of the class to which a valid base
307    register must belong.  A base register is one used in an address which is
308    the register value plus a displacement.  */
309 #define BASE_REG_CLASS 	REAL_REGS
310 
311 /* A macro whose definition is the name of the class to which a valid index
312    register must belong.  An index register is one used in an address where its
313    value is either multiplied by a scale factor or added to another register
314    (as well as added to a displacement).  */
315 #define INDEX_REG_CLASS REAL_REGS
316 
317 /* A C expression which is nonzero if register number NUM is suitable for use
318    as a base register in operand addresses.  It may be either a suitable hard
319    register or a pseudo register that has been allocated such a hard register.  */
320 #define REGNO_OK_FOR_BASE_P(NUM) 1
321 
322 /* A C expression which is nonzero if register number NUM is suitable for use
323    as an index register in operand addresses.  It may be either a suitable hard
324    register or a pseudo register that has been allocated such a hard register.
325 
326    The difference between an index register and a base register is that the
327    index register may be scaled.  If an address involves the sum of two
328    registers, neither one of them scaled, then either one may be labeled the
329    "base" and the other the "index"; but whichever labeling is used must fit
330    the machine's constraints of which registers may serve in each capacity.
331    The compiler will try both labelings, looking for one that is valid, and
332    will reload one or both registers only if neither labeling works.  */
333 #define REGNO_OK_FOR_INDEX_P(NUM) 1
334 
335 #define CLASS_MAX_NREGS(CLASS, MODE) targetm.hard_regno_nregs (0, MODE)
336 
337 /*}}}*/
338 /*{{{  Basic Stack Layout.  */
339 
340 /* Define this macro if pushing a word onto the stack moves the stack pointer
341    to a smaller address.  */
342 #define STACK_GROWS_DOWNWARD 1
343 
344 /* Define this to macro nonzero if the addresses of local variable slots
345    are at negative offsets from the frame pointer.  */
346 #define FRAME_GROWS_DOWNWARD 1
347 
348 /* Offset from the stack pointer register to the first location at which
349    outgoing arguments are placed.  If not specified, the default value of zero
350    is used.  This is the proper value for most machines.
351 
352    If `ARGS_GROW_DOWNWARD', this is the offset to the location above the first
353    location at which outgoing arguments are placed.  */
354 #define STACK_POINTER_OFFSET 0
355 
356 /* Offset from the argument pointer register to the first argument's address.
357    On some machines it may depend on the data type of the function.
358 
359    If `ARGS_GROW_DOWNWARD', this is the offset to the location above the first
360    argument's address.  */
361 #define FIRST_PARM_OFFSET(FUNDECL) 0
362 
363 /* A C expression whose value is RTL representing the location of the incoming
364    return address at the beginning of any function, before the prologue.  This
365    RTL is either a `REG', indicating that the return value is saved in `REG',
366    or a `MEM' representing a location in the stack.
367 
368    You only need to define this macro if you want to support call frame
369    debugging information like that provided by DWARF 2.  */
370 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (SImode, RETURN_POINTER_REGNUM)
371 
372 /*}}}*/
373 /*{{{  Register That Address the Stack Frame.  */
374 
375 /* The register number of the arg pointer register, which is used to access the
376    function's argument list.  On some machines, this is the same as the frame
377    pointer register.  On some machines, the hardware determines which register
378    this is.  On other machines, you can choose any register you wish for this
379    purpose.  If this is not the same register as the frame pointer register,
380    then you must mark it as a fixed register according to `FIXED_REGISTERS', or
381    arrange to be able to eliminate it.  */
382 #define ARG_POINTER_REGNUM 20
383 
384 /*}}}*/
385 /*{{{  Eliminating the Frame Pointer and the Arg Pointer.  */
386 
387 /* If defined, this macro specifies a table of register pairs used to eliminate
388    unneeded registers that point into the stack frame.  If it is not defined,
389    the only elimination attempted by the compiler is to replace references to
390    the frame pointer with references to the stack pointer.
391 
392    The definition of this macro is a list of structure initializations, each of
393    which specifies an original and replacement register.
394 
395    On some machines, the position of the argument pointer is not known until
396    the compilation is completed.  In such a case, a separate hard register must
397    be used for the argument pointer.  This register can be eliminated by
398    replacing it with either the frame pointer or the argument pointer,
399    depending on whether or not the frame pointer has been eliminated.
400 
401    In this case, you might specify:
402         #define ELIMINABLE_REGS  \
403         {{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
404          {ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
405          {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
406 
407    Note that the elimination of the argument pointer with the stack pointer is
408    specified first since that is the preferred elimination.  */
409 
410 #define ELIMINABLE_REGS				\
411 {						\
412   {ARG_POINTER_REGNUM,	 STACK_POINTER_REGNUM},	\
413   {ARG_POINTER_REGNUM,	 FRAME_POINTER_REGNUM},	\
414   {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}	\
415 }
416 
417 /* This macro returns the initial difference between the specified pair
418    of registers.  */
419 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET)			\
420      (OFFSET) = fr30_compute_frame_size (FROM, TO)
421 
422 /*}}}*/
423 /*{{{  Passing Function Arguments on the Stack.  */
424 
425 /* If defined, the maximum amount of space required for outgoing arguments will
426    be computed and placed into the variable
427    `crtl->outgoing_args_size'.  No space will be pushed onto the
428    stack for each call; instead, the function prologue should increase the
429    stack frame size by this amount.
430 
431    Defining both `PUSH_ROUNDING' and `ACCUMULATE_OUTGOING_ARGS' is not
432    proper.  */
433 #define ACCUMULATE_OUTGOING_ARGS 1
434 
435 /*}}}*/
436 /*{{{  Function Arguments in Registers.  */
437 
438 /* The number of register assigned to holding function arguments.  */
439 
440 #define FR30_NUM_ARG_REGS	 4
441 
442 /* A C type for declaring a variable that is used as the first argument of
443    `FUNCTION_ARG' and other related values.  For some target machines, the type
444    `int' suffices and can hold the number of bytes of argument so far.
445 
446    There is no need to record in `CUMULATIVE_ARGS' anything about the arguments
447    that have been passed on the stack.  The compiler has other variables to
448    keep track of that.  For target machines on which all arguments are passed
449    on the stack, there is no need to store anything in `CUMULATIVE_ARGS';
450    however, the data structure must exist and should not be empty, so use
451    `int'.  */
452 /* On the FR30 this value is an accumulating count of the number of argument
453    registers that have been filled with argument values, as opposed to say,
454    the number of bytes of argument accumulated so far.  */
455 #define CUMULATIVE_ARGS int
456 
457 /* A C statement (sans semicolon) for initializing the variable CUM for the
458    state at the beginning of the argument list.  The variable has type
459    `CUMULATIVE_ARGS'.  The value of FNTYPE is the tree node for the data type
460    of the function which will receive the args, or 0 if the args are to a
461    compiler support library function.  The value of INDIRECT is nonzero when
462    processing an indirect call, for example a call through a function pointer.
463    The value of INDIRECT is zero for a call to an explicitly named function, a
464    library function call, or when `INIT_CUMULATIVE_ARGS' is used to find
465    arguments for the function being compiled.
466 
467    When processing a call to a compiler support library function, LIBNAME
468    identifies which one.  It is a `symbol_ref' rtx which contains the name of
469    the function, as a string.  LIBNAME is 0 when an ordinary C function call is
470    being processed.  Thus, each time this macro is called, either LIBNAME or
471    FNTYPE is nonzero, but never both of them at once.  */
472 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
473   (CUM) = 0
474 
475 /* A C expression that is nonzero if REGNO is the number of a hard register in
476    which function arguments are sometimes passed.  This does *not* include
477    implicit arguments such as the static chain and the structure-value address.
478    On many machines, no registers can be used for this purpose since all
479    function arguments are pushed on the stack.  */
480 #define FUNCTION_ARG_REGNO_P(REGNO) \
481   ((REGNO) >= FIRST_ARG_REGNUM && ((REGNO) < FIRST_ARG_REGNUM + FR30_NUM_ARG_REGS))
482 
483 /*}}}*/
484 /*{{{  How Large Values are Returned.  */
485 
486 /* Define this macro to be 1 if all structure and union return values must be
487    in memory.  Since this results in slower code, this should be defined only
488    if needed for compatibility with other compilers or with an ABI.  If you
489    define this macro to be 0, then the conventions used for structure and union
490    return values are decided by the `TARGET_RETURN_IN_MEMORY' macro.
491 
492    If not defined, this defaults to the value 1.  */
493 #define DEFAULT_PCC_STRUCT_RETURN 1
494 
495 /*}}}*/
496 /*{{{  Generating Code for Profiling.  */
497 
498 /* A C statement or compound statement to output to FILE some assembler code to
499    call the profiling subroutine `mcount'.  Before calling, the assembler code
500    must load the address of a counter variable into a register where `mcount'
501    expects to find the address.  The name of this variable is `LP' followed by
502    the number LABELNO, so you would generate the name using `LP%d' in a
503    `fprintf'.
504 
505    The details of how the address should be passed to `mcount' are determined
506    by your operating system environment, not by GCC.  To figure them out,
507    compile a small program for profiling using the system's installed C
508    compiler and look at the assembler code that results.  */
509 #define FUNCTION_PROFILER(FILE, LABELNO)	\
510 {						\
511   fprintf (FILE, "\t mov rp, r1\n" );		\
512   fprintf (FILE, "\t ldi:32 mcount, r0\n" );	\
513   fprintf (FILE, "\t call @r0\n" );		\
514   fprintf (FILE, ".word\tLP%d\n", LABELNO);	\
515 }
516 
517 /*}}}*/
518 /*{{{  Trampolines for Nested Functions.  */
519 
520 /* A C expression for the size in bytes of the trampoline, as an integer.  */
521 #define TRAMPOLINE_SIZE 18
522 
523 /* We want the trampoline to be aligned on a 32bit boundary so that we can
524    make sure the location of the static chain & target function within
525    the trampoline is also aligned on a 32bit boundary.  */
526 #define TRAMPOLINE_ALIGNMENT 32
527 
528 /*}}}*/
529 /*{{{  Addressing Modes.  */
530 
531 /* A number, the maximum number of registers that can appear in a valid memory
532    address.  Note that it is up to you to specify a value equal to the maximum
533    number that `GO_IF_LEGITIMATE_ADDRESS' would ever accept.  */
534 #define MAX_REGS_PER_ADDRESS 1
535 
536 /* A C compound statement with a conditional `goto LABEL;' executed if X (an
537    RTX) is a legitimate memory address on the target machine for a memory
538    operand of mode MODE.  */
539 
540 /* On the FR30 we only have one real addressing mode - an address in a
541    register.  There are three special cases however:
542 
543    * indexed addressing using small positive offsets from the stack pointer
544 
545    * indexed addressing using small signed offsets from the frame pointer
546 
547    * register plus register addressing using R13 as the base register.
548 
549    At the moment we only support the first two of these special cases.  */
550 
551 #ifdef REG_OK_STRICT
552 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, LABEL)			\
553   do									\
554     {									\
555       if (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X))			\
556         goto LABEL;							\
557       if (GET_CODE (X) == PLUS						\
558 	  && ((MODE) == SImode || (MODE) == SFmode)			\
559 	  && GET_CODE (XEXP (X, 0)) == REG				\
560           && REGNO (XEXP (X, 0)) == STACK_POINTER_REGNUM		\
561 	  && GET_CODE (XEXP (X, 1)) == CONST_INT			\
562 	  && IN_RANGE (INTVAL (XEXP (X, 1)), 0, (1 <<  6) - 4))		\
563 	goto LABEL;							\
564       if (GET_CODE (X) == PLUS						\
565 	  && ((MODE) == SImode || (MODE) == SFmode)			\
566 	  && GET_CODE (XEXP (X, 0)) == REG				\
567           && REGNO (XEXP (X, 0)) == FRAME_POINTER_REGNUM		\
568 	  && GET_CODE (XEXP (X, 1)) == CONST_INT			\
569 	  && IN_RANGE (INTVAL (XEXP (X, 1)), -(1 << 9), (1 <<  9) - 4))	\
570         goto LABEL;							\
571     }									\
572   while (0)
573 #else
574 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, LABEL)			\
575   do									\
576     {									\
577       if (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X))			\
578         goto LABEL;							\
579       if (GET_CODE (X) == PLUS						\
580 	  && ((MODE) == SImode || (MODE) == SFmode)			\
581 	  && GET_CODE (XEXP (X, 0)) == REG				\
582           && REGNO (XEXP (X, 0)) == STACK_POINTER_REGNUM		\
583 	  && GET_CODE (XEXP (X, 1)) == CONST_INT			\
584 	  && IN_RANGE (INTVAL (XEXP (X, 1)), 0, (1 <<  6) - 4))		\
585 	goto LABEL;							\
586       if (GET_CODE (X) == PLUS						\
587 	  && ((MODE) == SImode || (MODE) == SFmode)			\
588 	  && GET_CODE (XEXP (X, 0)) == REG				\
589           && (REGNO (XEXP (X, 0)) == FRAME_POINTER_REGNUM		\
590 	      || REGNO (XEXP (X, 0)) == ARG_POINTER_REGNUM)		\
591 	  && GET_CODE (XEXP (X, 1)) == CONST_INT			\
592 	  && IN_RANGE (INTVAL (XEXP (X, 1)), -(1 << 9), (1 <<  9) - 4))	\
593         goto LABEL;							\
594     }									\
595   while (0)
596 #endif
597 
598 /* A C expression that is nonzero if X (assumed to be a `reg' RTX) is valid for
599    use as a base register.  For hard registers, it should always accept those
600    which the hardware permits and reject the others.  Whether the macro accepts
601    or rejects pseudo registers must be controlled by `REG_OK_STRICT' as
602    described above.  This usually requires two variant definitions, of which
603    `REG_OK_STRICT' controls the one actually used.  */
604 #ifdef REG_OK_STRICT
605 #define REG_OK_FOR_BASE_P(X) (((unsigned) REGNO (X)) <= STACK_POINTER_REGNUM)
606 #else
607 #define REG_OK_FOR_BASE_P(X) 1
608 #endif
609 
610 /* A C expression that is nonzero if X (assumed to be a `reg' RTX) is valid for
611    use as an index register.
612 
613    The difference between an index register and a base register is that the
614    index register may be scaled.  If an address involves the sum of two
615    registers, neither one of them scaled, then either one may be labeled the
616    "base" and the other the "index"; but whichever labeling is used must fit
617    the machine's constraints of which registers may serve in each capacity.
618    The compiler will try both labelings, looking for one that is valid, and
619    will reload one or both registers only if neither labeling works.  */
620 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_BASE_P (X)
621 
622 /*}}}*/
623 /*{{{  Describing Relative Costs of Operations */
624 
625 /* Define this macro as a C expression which is nonzero if accessing less than
626    a word of memory (i.e. a `char' or a `short') is no faster than accessing a
627    word of memory, i.e., if such access require more than one instruction or if
628    there is no difference in cost between byte and (aligned) word loads.
629 
630    When this macro is not defined, the compiler will access a field by finding
631    the smallest containing object; when it is defined, a fullword load will be
632    used if alignment permits.  Unless bytes accesses are faster than word
633    accesses, using word accesses is preferable since it may eliminate
634    subsequent memory access if subsequent accesses occur to other fields in the
635    same word of the structure, but to different bytes.  */
636 #define SLOW_BYTE_ACCESS 1
637 
638 /*}}}*/
639 /*{{{  Dividing the output into sections.  */
640 
641 /* A C expression whose value is a string containing the assembler operation
642    that should precede instructions and read-only data.  Normally `".text"' is
643    right.  */
644 #define TEXT_SECTION_ASM_OP "\t.text"
645 
646 /* A C expression whose value is a string containing the assembler operation to
647    identify the following data as writable initialized data.  Normally
648    `".data"' is right.  */
649 #define DATA_SECTION_ASM_OP "\t.data"
650 
651 #define BSS_SECTION_ASM_OP "\t.section .bss"
652 
653 /*}}}*/
654 /*{{{  The Overall Framework of an Assembler File.  */
655 
656 /* A C string constant describing how to begin a comment in the target
657    assembler language.  The compiler assumes that the comment will end at the
658    end of the line.  */
659 #define ASM_COMMENT_START ";"
660 
661 /* A C string constant for text to be output before each `asm' statement or
662    group of consecutive ones.  Normally this is `"#APP"', which is a comment
663    that has no effect on most assemblers but tells the GNU assembler that it
664    must check the lines that follow for all valid assembler constructs.  */
665 #define ASM_APP_ON "#APP\n"
666 
667 /* A C string constant for text to be output after each `asm' statement or
668    group of consecutive ones.  Normally this is `"#NO_APP"', which tells the
669    GNU assembler to resume making the time-saving assumptions that are valid
670    for ordinary compiler output.  */
671 #define ASM_APP_OFF "#NO_APP\n"
672 
673 /*}}}*/
674 /*{{{  Output and Generation of Labels.  */
675 
676 /* Globalizing directive for a label.  */
677 #define GLOBAL_ASM_OP "\t.globl "
678 
679 /*}}}*/
680 /*{{{  Output of Assembler Instructions.  */
681 
682 /* A C compound statement to output to stdio stream STREAM the assembler syntax
683    for an instruction operand X.  X is an RTL expression.
684 
685    CODE is a value that can be used to specify one of several ways of printing
686    the operand.  It is used when identical operands must be printed differently
687    depending on the context.  CODE comes from the `%' specification that was
688    used to request printing of the operand.  If the specification was just
689    `%DIGIT' then CODE is 0; if the specification was `%LTR DIGIT' then CODE is
690    the ASCII code for LTR.
691 
692    If X is a register, this macro should print the register's name.  The names
693    can be found in an array `reg_names' whose type is `char *[]'.  `reg_names'
694    is initialized from `REGISTER_NAMES'.
695 
696    When the machine description has a specification `%PUNCT' (a `%' followed by
697    a punctuation character), this macro is called with a null pointer for X and
698    the punctuation character for CODE.  */
699 #define PRINT_OPERAND(STREAM, X, CODE)	fr30_print_operand (STREAM, X, CODE)
700 
701 /* A C expression which evaluates to true if CODE is a valid punctuation
702    character for use in the `PRINT_OPERAND' macro.  If
703    `PRINT_OPERAND_PUNCT_VALID_P' is not defined, it means that no punctuation
704    characters (except for the standard one, `%') are used in this way.  */
705 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) (CODE == '#')
706 
707 /* A C compound statement to output to stdio stream STREAM the assembler syntax
708    for an instruction operand that is a memory reference whose address is X.  X
709    is an RTL expression.  */
710 
711 #define PRINT_OPERAND_ADDRESS(STREAM, X) fr30_print_operand_address (STREAM, X)
712 
713 #define REGISTER_PREFIX "%"
714 #define LOCAL_LABEL_PREFIX "."
715 #define USER_LABEL_PREFIX ""
716 #define IMMEDIATE_PREFIX ""
717 
718 /*}}}*/
719 /*{{{  Output of Dispatch Tables.  */
720 
721 /* This macro should be provided on machines where the addresses in a dispatch
722    table are relative to the table's own address.
723 
724    The definition should be a C statement to output to the stdio stream STREAM
725    an assembler pseudo-instruction to generate a difference between two labels.
726    VALUE and REL are the numbers of two internal labels.  The definitions of
727    these labels are output using `(*targetm.asm_out.internal_label)', and they must be
728    printed in the same way here.  For example,
729 
730         fprintf (STREAM, "\t.word L%d-L%d\n", VALUE, REL)  */
731 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
732 fprintf (STREAM, "\t.word .L%d-.L%d\n", VALUE, REL)
733 
734 /* This macro should be provided on machines where the addresses in a dispatch
735    table are absolute.
736 
737    The definition should be a C statement to output to the stdio stream STREAM
738    an assembler pseudo-instruction to generate a reference to a label.  VALUE
739    is the number of an internal label whose definition is output using
740    `(*targetm.asm_out.internal_label)'.  For example,
741 
742         fprintf (STREAM, "\t.word L%d\n", VALUE)  */
743 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
744 fprintf (STREAM, "\t.word .L%d\n", VALUE)
745 
746 /*}}}*/
747 /*{{{  Assembler Commands for Alignment.  */
748 
749 /* A C statement to output to the stdio stream STREAM an assembler command to
750    advance the location counter to a multiple of 2 to the POWER bytes.  POWER
751    will be a C expression of type `int'.  */
752 #define ASM_OUTPUT_ALIGN(STREAM, POWER) \
753   fprintf ((STREAM), "\t.p2align %d\n", (POWER))
754 
755 /*}}}*/
756 /*{{{  Miscellaneous Parameters.  */
757 
758 /* An alias for a machine mode name.  This is the machine mode that elements of
759    a jump-table should have.  */
760 #define CASE_VECTOR_MODE SImode
761 
762 /* The maximum number of bytes that a single instruction can move quickly from
763    memory to memory.  */
764 #define MOVE_MAX 8
765 
766 /* An alias for the machine mode for pointers.  On most machines, define this
767    to be the integer mode corresponding to the width of a hardware pointer;
768    `SImode' on 32-bit machine or `DImode' on 64-bit machines.  On some machines
769    you must define this to be one of the partial integer modes, such as
770    `PSImode'.
771 
772    The width of `Pmode' must be at least as large as the value of
773    `POINTER_SIZE'.  If it is not equal, you must define the macro
774    `POINTERS_EXTEND_UNSIGNED' to specify how pointers are extended to `Pmode'.  */
775 #define Pmode SImode
776 
777 /* An alias for the machine mode used for memory references to functions being
778    called, in `call' RTL expressions.  On most machines this should be
779    `QImode'.  */
780 #define FUNCTION_MODE QImode
781 
782 /*}}}*/
783 
784 /* Local Variables: */
785 /* folded-file: t   */
786 /* End:		    */
787