1 // types.cc -- Go frontend types.
2 
3 // Copyright 2009 The Go Authors. All rights reserved.
4 // Use of this source code is governed by a BSD-style
5 // license that can be found in the LICENSE file.
6 
7 #include "go-system.h"
8 
9 #include <ostream>
10 
11 #include "go-c.h"
12 #include "gogo.h"
13 #include "go-diagnostics.h"
14 #include "go-encode-id.h"
15 #include "operator.h"
16 #include "expressions.h"
17 #include "statements.h"
18 #include "export.h"
19 #include "import.h"
20 #include "backend.h"
21 #include "types.h"
22 
23 // Forward declarations so that we don't have to make types.h #include
24 // backend.h.
25 
26 static void
27 get_backend_struct_fields(Gogo* gogo, Struct_type* type, bool use_placeholder,
28 			  std::vector<Backend::Btyped_identifier>* bfields);
29 
30 static void
31 get_backend_slice_fields(Gogo* gogo, Array_type* type, bool use_placeholder,
32 			 std::vector<Backend::Btyped_identifier>* bfields);
33 
34 static void
35 get_backend_interface_fields(Gogo* gogo, Interface_type* type,
36 			     bool use_placeholder,
37 			     std::vector<Backend::Btyped_identifier>* bfields);
38 
39 // Class Type.
40 
Type(Type_classification classification)41 Type::Type(Type_classification classification)
42   : classification_(classification), btype_(NULL), type_descriptor_var_(NULL),
43     gc_symbol_var_(NULL)
44 {
45 }
46 
~Type()47 Type::~Type()
48 {
49 }
50 
51 // Get the base type for a type--skip names and forward declarations.
52 
53 Type*
base()54 Type::base()
55 {
56   switch (this->classification_)
57     {
58     case TYPE_NAMED:
59       return this->named_type()->named_base();
60     case TYPE_FORWARD:
61       return this->forward_declaration_type()->real_type()->base();
62     default:
63       return this;
64     }
65 }
66 
67 const Type*
base() const68 Type::base() const
69 {
70   switch (this->classification_)
71     {
72     case TYPE_NAMED:
73       return this->named_type()->named_base();
74     case TYPE_FORWARD:
75       return this->forward_declaration_type()->real_type()->base();
76     default:
77       return this;
78     }
79 }
80 
81 // Skip defined forward declarations.
82 
83 Type*
forwarded()84 Type::forwarded()
85 {
86   Type* t = this;
87   Forward_declaration_type* ftype = t->forward_declaration_type();
88   while (ftype != NULL && ftype->is_defined())
89     {
90       t = ftype->real_type();
91       ftype = t->forward_declaration_type();
92     }
93   return t;
94 }
95 
96 const Type*
forwarded() const97 Type::forwarded() const
98 {
99   const Type* t = this;
100   const Forward_declaration_type* ftype = t->forward_declaration_type();
101   while (ftype != NULL && ftype->is_defined())
102     {
103       t = ftype->real_type();
104       ftype = t->forward_declaration_type();
105     }
106   return t;
107 }
108 
109 // Skip alias definitions.
110 
111 Type*
unalias()112 Type::unalias()
113 {
114   Type* t = this->forwarded();
115   Named_type* nt = t->named_type();
116   while (nt != NULL && nt->is_alias())
117     {
118       t = nt->real_type()->forwarded();
119       nt = t->named_type();
120     }
121   return t;
122 }
123 
124 const Type*
unalias() const125 Type::unalias() const
126 {
127   const Type* t = this->forwarded();
128   const Named_type* nt = t->named_type();
129   while (nt != NULL && nt->is_alias())
130     {
131       t = nt->real_type()->forwarded();
132       nt = t->named_type();
133     }
134   return t;
135 }
136 
137 // If this is a named type, return it.  Otherwise, return NULL.
138 
139 Named_type*
named_type()140 Type::named_type()
141 {
142   return this->forwarded()->convert_no_base<Named_type, TYPE_NAMED>();
143 }
144 
145 const Named_type*
named_type() const146 Type::named_type() const
147 {
148   return this->forwarded()->convert_no_base<const Named_type, TYPE_NAMED>();
149 }
150 
151 // Return true if this type is not defined.
152 
153 bool
is_undefined() const154 Type::is_undefined() const
155 {
156   return this->forwarded()->forward_declaration_type() != NULL;
157 }
158 
159 // Return true if this is a basic type: a type which is not composed
160 // of other types, and is not void.
161 
162 bool
is_basic_type() const163 Type::is_basic_type() const
164 {
165   switch (this->classification_)
166     {
167     case TYPE_INTEGER:
168     case TYPE_FLOAT:
169     case TYPE_COMPLEX:
170     case TYPE_BOOLEAN:
171     case TYPE_STRING:
172     case TYPE_NIL:
173       return true;
174 
175     case TYPE_ERROR:
176     case TYPE_VOID:
177     case TYPE_FUNCTION:
178     case TYPE_POINTER:
179     case TYPE_STRUCT:
180     case TYPE_ARRAY:
181     case TYPE_MAP:
182     case TYPE_CHANNEL:
183     case TYPE_INTERFACE:
184       return false;
185 
186     case TYPE_NAMED:
187     case TYPE_FORWARD:
188       return this->base()->is_basic_type();
189 
190     default:
191       go_unreachable();
192     }
193 }
194 
195 // Return true if this is an abstract type.
196 
197 bool
is_abstract() const198 Type::is_abstract() const
199 {
200   switch (this->classification())
201     {
202     case TYPE_INTEGER:
203       return this->integer_type()->is_abstract();
204     case TYPE_FLOAT:
205       return this->float_type()->is_abstract();
206     case TYPE_COMPLEX:
207       return this->complex_type()->is_abstract();
208     case TYPE_STRING:
209       return this->is_abstract_string_type();
210     case TYPE_BOOLEAN:
211       return this->is_abstract_boolean_type();
212     default:
213       return false;
214     }
215 }
216 
217 // Return a non-abstract version of an abstract type.
218 
219 Type*
make_non_abstract_type()220 Type::make_non_abstract_type()
221 {
222   go_assert(this->is_abstract());
223   switch (this->classification())
224     {
225     case TYPE_INTEGER:
226       if (this->integer_type()->is_rune())
227 	return Type::lookup_integer_type("int32");
228       else
229 	return Type::lookup_integer_type("int");
230     case TYPE_FLOAT:
231       return Type::lookup_float_type("float64");
232     case TYPE_COMPLEX:
233       return Type::lookup_complex_type("complex128");
234     case TYPE_STRING:
235       return Type::lookup_string_type();
236     case TYPE_BOOLEAN:
237       return Type::lookup_bool_type();
238     default:
239       go_unreachable();
240     }
241 }
242 
243 // Return true if this is an error type.  Don't give an error if we
244 // try to dereference an undefined forwarding type, as this is called
245 // in the parser when the type may legitimately be undefined.
246 
247 bool
is_error_type() const248 Type::is_error_type() const
249 {
250   const Type* t = this->forwarded();
251   // Note that we return false for an undefined forward type.
252   switch (t->classification_)
253     {
254     case TYPE_ERROR:
255       return true;
256     case TYPE_NAMED:
257       return t->named_type()->is_named_error_type();
258     default:
259       return false;
260     }
261 }
262 
263 // If this is a pointer type, return the type to which it points.
264 // Otherwise, return NULL.
265 
266 Type*
points_to() const267 Type::points_to() const
268 {
269   const Pointer_type* ptype = this->convert<const Pointer_type,
270 					    TYPE_POINTER>();
271   return ptype == NULL ? NULL : ptype->points_to();
272 }
273 
274 // Return whether this is a slice type.
275 
276 bool
is_slice_type() const277 Type::is_slice_type() const
278 {
279   return this->array_type() != NULL && this->array_type()->length() == NULL;
280 }
281 
282 // Return whether this is the predeclared constant nil being used as a
283 // type.
284 
285 bool
is_nil_constant_as_type() const286 Type::is_nil_constant_as_type() const
287 {
288   const Type* t = this->forwarded();
289   if (t->forward_declaration_type() != NULL)
290     {
291       const Named_object* no = t->forward_declaration_type()->named_object();
292       if (no->is_unknown())
293 	no = no->unknown_value()->real_named_object();
294       if (no != NULL
295 	  && no->is_const()
296 	  && no->const_value()->expr()->is_nil_expression())
297 	return true;
298     }
299   return false;
300 }
301 
302 // Traverse a type.
303 
304 int
traverse(Type * type,Traverse * traverse)305 Type::traverse(Type* type, Traverse* traverse)
306 {
307   go_assert((traverse->traverse_mask() & Traverse::traverse_types) != 0
308 	     || (traverse->traverse_mask()
309 		 & Traverse::traverse_expressions) != 0);
310   if (traverse->remember_type(type))
311     {
312       // We have already traversed this type.
313       return TRAVERSE_CONTINUE;
314     }
315   if ((traverse->traverse_mask() & Traverse::traverse_types) != 0)
316     {
317       int t = traverse->type(type);
318       if (t == TRAVERSE_EXIT)
319 	return TRAVERSE_EXIT;
320       else if (t == TRAVERSE_SKIP_COMPONENTS)
321 	return TRAVERSE_CONTINUE;
322     }
323   // An array type has an expression which we need to traverse if
324   // traverse_expressions is set.
325   if (type->do_traverse(traverse) == TRAVERSE_EXIT)
326     return TRAVERSE_EXIT;
327   return TRAVERSE_CONTINUE;
328 }
329 
330 // Default implementation for do_traverse for child class.
331 
332 int
do_traverse(Traverse *)333 Type::do_traverse(Traverse*)
334 {
335   return TRAVERSE_CONTINUE;
336 }
337 
338 // Return whether two types are identical.  If REASON is not NULL,
339 // optionally set *REASON to the reason the types are not identical.
340 
341 bool
are_identical(const Type * t1,const Type * t2,int flags,std::string * reason)342 Type::are_identical(const Type* t1, const Type* t2, int flags,
343 		    std::string* reason)
344 {
345   if (t1 == NULL || t2 == NULL)
346     {
347       // Something is wrong.
348       return (flags & COMPARE_ERRORS) == 0 ? true : t1 == t2;
349     }
350 
351   // Skip defined forward declarations.
352   t1 = t1->forwarded();
353   t2 = t2->forwarded();
354 
355   if ((flags & COMPARE_ALIASES) == 0)
356     {
357       // Ignore aliases.
358       t1 = t1->unalias();
359       t2 = t2->unalias();
360     }
361 
362   if (t1 == t2)
363     return true;
364 
365   // An undefined forward declaration is an error.
366   if (t1->forward_declaration_type() != NULL
367       || t2->forward_declaration_type() != NULL)
368     return (flags & COMPARE_ERRORS) == 0;
369 
370   // Avoid cascading errors with error types.
371   if (t1->is_error_type() || t2->is_error_type())
372     {
373       if ((flags & COMPARE_ERRORS) == 0)
374 	return true;
375       return t1->is_error_type() && t2->is_error_type();
376     }
377 
378   // Get a good reason for the sink type.  Note that the sink type on
379   // the left hand side of an assignment is handled in are_assignable.
380   if (t1->is_sink_type() || t2->is_sink_type())
381     {
382       if (reason != NULL)
383 	*reason = "invalid use of _";
384       return false;
385     }
386 
387   // A named type is only identical to itself.
388   if (t1->named_type() != NULL || t2->named_type() != NULL)
389     return false;
390 
391   // Check type shapes.
392   if (t1->classification() != t2->classification())
393     return false;
394 
395   switch (t1->classification())
396     {
397     case TYPE_VOID:
398     case TYPE_BOOLEAN:
399     case TYPE_STRING:
400     case TYPE_NIL:
401       // These types are always identical.
402       return true;
403 
404     case TYPE_INTEGER:
405       return t1->integer_type()->is_identical(t2->integer_type());
406 
407     case TYPE_FLOAT:
408       return t1->float_type()->is_identical(t2->float_type());
409 
410     case TYPE_COMPLEX:
411       return t1->complex_type()->is_identical(t2->complex_type());
412 
413     case TYPE_FUNCTION:
414       return t1->function_type()->is_identical(t2->function_type(),
415 					       false, flags, reason);
416 
417     case TYPE_POINTER:
418       return Type::are_identical(t1->points_to(), t2->points_to(), flags,
419 				 reason);
420 
421     case TYPE_STRUCT:
422       return t1->struct_type()->is_identical(t2->struct_type(), flags);
423 
424     case TYPE_ARRAY:
425       return t1->array_type()->is_identical(t2->array_type(), flags);
426 
427     case TYPE_MAP:
428       return t1->map_type()->is_identical(t2->map_type(), flags);
429 
430     case TYPE_CHANNEL:
431       return t1->channel_type()->is_identical(t2->channel_type(), flags);
432 
433     case TYPE_INTERFACE:
434       return t1->interface_type()->is_identical(t2->interface_type(), flags);
435 
436     case TYPE_CALL_MULTIPLE_RESULT:
437       if (reason != NULL)
438 	*reason = "invalid use of multiple-value function call";
439       return false;
440 
441     default:
442       go_unreachable();
443     }
444 }
445 
446 // Return true if it's OK to have a binary operation with types LHS
447 // and RHS.  This is not used for shifts or comparisons.
448 
449 bool
are_compatible_for_binop(const Type * lhs,const Type * rhs)450 Type::are_compatible_for_binop(const Type* lhs, const Type* rhs)
451 {
452   if (Type::are_identical(lhs, rhs, Type::COMPARE_TAGS, NULL))
453     return true;
454 
455   // A constant of abstract bool type may be mixed with any bool type.
456   if ((rhs->is_abstract_boolean_type() && lhs->is_boolean_type())
457       || (lhs->is_abstract_boolean_type() && rhs->is_boolean_type()))
458     return true;
459 
460   // A constant of abstract string type may be mixed with any string
461   // type.
462   if ((rhs->is_abstract_string_type() && lhs->is_string_type())
463       || (lhs->is_abstract_string_type() && rhs->is_string_type()))
464     return true;
465 
466   lhs = lhs->base();
467   rhs = rhs->base();
468 
469   // A constant of abstract integer, float, or complex type may be
470   // mixed with an integer, float, or complex type.
471   if ((rhs->is_abstract()
472        && (rhs->integer_type() != NULL
473 	   || rhs->float_type() != NULL
474 	   || rhs->complex_type() != NULL)
475        && (lhs->integer_type() != NULL
476 	   || lhs->float_type() != NULL
477 	   || lhs->complex_type() != NULL))
478       || (lhs->is_abstract()
479 	  && (lhs->integer_type() != NULL
480 	      || lhs->float_type() != NULL
481 	      || lhs->complex_type() != NULL)
482 	  && (rhs->integer_type() != NULL
483 	      || rhs->float_type() != NULL
484 	      || rhs->complex_type() != NULL)))
485     return true;
486 
487   // The nil type may be compared to a pointer, an interface type, a
488   // slice type, a channel type, a map type, or a function type.
489   if (lhs->is_nil_type()
490       && (rhs->points_to() != NULL
491 	  || rhs->interface_type() != NULL
492 	  || rhs->is_slice_type()
493 	  || rhs->map_type() != NULL
494 	  || rhs->channel_type() != NULL
495 	  || rhs->function_type() != NULL))
496     return true;
497   if (rhs->is_nil_type()
498       && (lhs->points_to() != NULL
499 	  || lhs->interface_type() != NULL
500 	  || lhs->is_slice_type()
501 	  || lhs->map_type() != NULL
502 	  || lhs->channel_type() != NULL
503 	  || lhs->function_type() != NULL))
504     return true;
505 
506   return false;
507 }
508 
509 // Return true if a value with type T1 may be compared with a value of
510 // type T2.  IS_EQUALITY_OP is true for == or !=, false for <, etc.
511 
512 bool
are_compatible_for_comparison(bool is_equality_op,const Type * t1,const Type * t2,std::string * reason)513 Type::are_compatible_for_comparison(bool is_equality_op, const Type *t1,
514 				    const Type *t2, std::string *reason)
515 {
516   if (t1 != t2
517       && !Type::are_assignable(t1, t2, NULL)
518       && !Type::are_assignable(t2, t1, NULL))
519     {
520       if (reason != NULL)
521 	*reason = "incompatible types in binary expression";
522       return false;
523     }
524 
525   if (!is_equality_op)
526     {
527       if (t1->integer_type() == NULL
528 	  && t1->float_type() == NULL
529 	  && !t1->is_string_type())
530 	{
531 	  if (reason != NULL)
532 	    *reason = _("invalid comparison of non-ordered type");
533 	  return false;
534 	}
535     }
536   else if (t1->is_slice_type()
537 	   || t1->map_type() != NULL
538 	   || t1->function_type() != NULL
539 	   || t2->is_slice_type()
540 	   || t2->map_type() != NULL
541 	   || t2->function_type() != NULL)
542     {
543       if (!t1->is_nil_type() && !t2->is_nil_type())
544 	{
545 	  if (reason != NULL)
546 	    {
547 	      if (t1->is_slice_type() || t2->is_slice_type())
548 		*reason = _("slice can only be compared to nil");
549 	      else if (t1->map_type() != NULL || t2->map_type() != NULL)
550 		*reason = _("map can only be compared to nil");
551 	      else
552 		*reason = _("func can only be compared to nil");
553 
554 	      // Match 6g error messages.
555 	      if (t1->interface_type() != NULL || t2->interface_type() != NULL)
556 		{
557 		  char buf[200];
558 		  snprintf(buf, sizeof buf, _("invalid operation (%s)"),
559 			   reason->c_str());
560 		  *reason = buf;
561 		}
562 	    }
563 	  return false;
564 	}
565     }
566   else
567     {
568       if (!t1->is_boolean_type()
569 	  && t1->integer_type() == NULL
570 	  && t1->float_type() == NULL
571 	  && t1->complex_type() == NULL
572 	  && !t1->is_string_type()
573 	  && t1->points_to() == NULL
574 	  && t1->channel_type() == NULL
575 	  && t1->interface_type() == NULL
576 	  && t1->struct_type() == NULL
577 	  && t1->array_type() == NULL
578 	  && !t1->is_nil_type())
579 	{
580 	  if (reason != NULL)
581 	    *reason = _("invalid comparison of non-comparable type");
582 	  return false;
583 	}
584 
585       if (t1->unalias()->named_type() != NULL)
586 	return t1->unalias()->named_type()->named_type_is_comparable(reason);
587       else if (t2->unalias()->named_type() != NULL)
588 	return t2->unalias()->named_type()->named_type_is_comparable(reason);
589       else if (t1->struct_type() != NULL)
590 	{
591 	  if (t1->struct_type()->is_struct_incomparable())
592 	    {
593 	      if (reason != NULL)
594 		*reason = _("invalid comparison of generated struct");
595 	      return false;
596 	    }
597 	  const Struct_field_list* fields = t1->struct_type()->fields();
598 	  for (Struct_field_list::const_iterator p = fields->begin();
599 	       p != fields->end();
600 	       ++p)
601 	    {
602 	      if (!p->type()->is_comparable())
603 		{
604 		  if (reason != NULL)
605 		    *reason = _("invalid comparison of non-comparable struct");
606 		  return false;
607 		}
608 	    }
609 	}
610       else if (t1->array_type() != NULL)
611 	{
612 	  if (t1->array_type()->is_array_incomparable())
613 	    {
614 	      if (reason != NULL)
615 		*reason = _("invalid comparison of generated array");
616 	      return false;
617 	    }
618 	  if (t1->array_type()->length()->is_nil_expression()
619 	      || !t1->array_type()->element_type()->is_comparable())
620 	    {
621 	      if (reason != NULL)
622 		*reason = _("invalid comparison of non-comparable array");
623 	      return false;
624 	    }
625 	}
626     }
627 
628   return true;
629 }
630 
631 // Return true if a value with type RHS may be assigned to a variable
632 // with type LHS.  If REASON is not NULL, set *REASON to the reason
633 // the types are not assignable.
634 
635 bool
are_assignable(const Type * lhs,const Type * rhs,std::string * reason)636 Type::are_assignable(const Type* lhs, const Type* rhs, std::string* reason)
637 {
638   // Do some checks first.  Make sure the types are defined.
639   if (rhs != NULL && !rhs->is_undefined())
640     {
641       if (rhs->is_void_type())
642 	{
643 	  if (reason != NULL)
644 	    *reason = "non-value used as value";
645 	  return false;
646 	}
647       if (rhs->is_call_multiple_result_type())
648 	{
649 	  if (reason != NULL)
650 	    reason->assign(_("multiple-value function call in "
651 			     "single-value context"));
652 	  return false;
653 	}
654     }
655 
656   // Any value may be assigned to the blank identifier.
657   if (lhs != NULL
658       && !lhs->is_undefined()
659       && lhs->is_sink_type())
660     return true;
661 
662   // Identical types are assignable.
663   if (Type::are_identical(lhs, rhs, Type::COMPARE_TAGS, reason))
664     return true;
665 
666   // Ignore aliases, except for error messages.
667   const Type* lhs_orig = lhs;
668   const Type* rhs_orig = rhs;
669   lhs = lhs->unalias();
670   rhs = rhs->unalias();
671 
672   // The types are assignable if they have identical underlying types
673   // and either LHS or RHS is not a named type.
674   if (((lhs->named_type() != NULL && rhs->named_type() == NULL)
675        || (rhs->named_type() != NULL && lhs->named_type() == NULL))
676       && Type::are_identical(lhs->base(), rhs->base(), Type::COMPARE_TAGS,
677 			     reason))
678     return true;
679 
680   // The types are assignable if LHS is an interface type and RHS
681   // implements the required methods.
682   const Interface_type* lhs_interface_type = lhs->interface_type();
683   if (lhs_interface_type != NULL)
684     {
685       if (lhs_interface_type->implements_interface(rhs, reason))
686 	return true;
687       const Interface_type* rhs_interface_type = rhs->interface_type();
688       if (rhs_interface_type != NULL
689 	  && lhs_interface_type->is_compatible_for_assign(rhs_interface_type,
690 							  reason))
691 	return true;
692     }
693 
694   // The type are assignable if RHS is a bidirectional channel type,
695   // LHS is a channel type, they have identical element types, and
696   // either LHS or RHS is not a named type.
697   if (lhs->channel_type() != NULL
698       && rhs->channel_type() != NULL
699       && rhs->channel_type()->may_send()
700       && rhs->channel_type()->may_receive()
701       && (lhs->named_type() == NULL || rhs->named_type() == NULL)
702       && Type::are_identical(lhs->channel_type()->element_type(),
703 			     rhs->channel_type()->element_type(),
704 			     Type::COMPARE_TAGS,
705 			     reason))
706     return true;
707 
708   // The nil type may be assigned to a pointer, function, slice, map,
709   // channel, or interface type.
710   if (rhs->is_nil_type()
711       && (lhs->points_to() != NULL
712 	  || lhs->function_type() != NULL
713 	  || lhs->is_slice_type()
714 	  || lhs->map_type() != NULL
715 	  || lhs->channel_type() != NULL
716 	  || lhs->interface_type() != NULL))
717     return true;
718 
719   // An untyped numeric constant may be assigned to a numeric type if
720   // it is representable in that type.
721   if ((rhs->is_abstract()
722        && (rhs->integer_type() != NULL
723 	   || rhs->float_type() != NULL
724 	   || rhs->complex_type() != NULL))
725       && (lhs->integer_type() != NULL
726 	  || lhs->float_type() != NULL
727 	  || lhs->complex_type() != NULL))
728     return true;
729 
730   // Give some better error messages.
731   if (reason != NULL && reason->empty())
732     {
733       if (rhs->interface_type() != NULL)
734 	reason->assign(_("need explicit conversion"));
735       else if (lhs_orig->named_type() != NULL
736 	       && rhs_orig->named_type() != NULL)
737 	{
738 	  size_t len = (lhs_orig->named_type()->name().length()
739 			+ rhs_orig->named_type()->name().length()
740 			+ 100);
741 	  char* buf = new char[len];
742 	  snprintf(buf, len, _("cannot use type %s as type %s"),
743 		   rhs_orig->named_type()->message_name().c_str(),
744 		   lhs_orig->named_type()->message_name().c_str());
745 	  reason->assign(buf);
746 	  delete[] buf;
747 	}
748     }
749 
750   return false;
751 }
752 
753 // Return true if a value with type RHS may be converted to type LHS.
754 // If REASON is not NULL, set *REASON to the reason the types are not
755 // convertible.
756 
757 bool
are_convertible(const Type * lhs,const Type * rhs,std::string * reason)758 Type::are_convertible(const Type* lhs, const Type* rhs, std::string* reason)
759 {
760   // The types are convertible if they are assignable.
761   if (Type::are_assignable(lhs, rhs, reason))
762     return true;
763 
764   // Ignore aliases.
765   lhs = lhs->unalias();
766   rhs = rhs->unalias();
767 
768   // A pointer to a regular type may not be converted to a pointer to
769   // a type that may not live in the heap, except when converting from
770   // unsafe.Pointer.
771   if (lhs->points_to() != NULL
772       && rhs->points_to() != NULL
773       && !lhs->points_to()->in_heap()
774       && rhs->points_to()->in_heap()
775       && !rhs->is_unsafe_pointer_type())
776     {
777       if (reason != NULL)
778 	reason->assign(_("conversion from normal type to notinheap type"));
779       return false;
780     }
781 
782   // The types are convertible if they have identical underlying
783   // types, ignoring struct field tags.
784   if ((lhs->named_type() != NULL || rhs->named_type() != NULL)
785       && Type::are_identical(lhs->base(), rhs->base(), 0, reason))
786     return true;
787 
788   // The types are convertible if they are both unnamed pointer types
789   // and their pointer base types have identical underlying types,
790   // ignoring struct field tags.
791   if (lhs->named_type() == NULL
792       && rhs->named_type() == NULL
793       && lhs->points_to() != NULL
794       && rhs->points_to() != NULL
795       && (lhs->points_to()->named_type() != NULL
796 	  || rhs->points_to()->named_type() != NULL)
797       && Type::are_identical(lhs->points_to()->base(),
798 			     rhs->points_to()->base(),
799 			     0, reason))
800     return true;
801 
802   // Integer and floating point types are convertible to each other.
803   if ((lhs->integer_type() != NULL || lhs->float_type() != NULL)
804       && (rhs->integer_type() != NULL || rhs->float_type() != NULL))
805     return true;
806 
807   // Complex types are convertible to each other.
808   if (lhs->complex_type() != NULL && rhs->complex_type() != NULL)
809     return true;
810 
811   // An integer, or []byte, or []rune, may be converted to a string.
812   if (lhs->is_string_type())
813     {
814       if (rhs->integer_type() != NULL)
815 	return true;
816       if (rhs->is_slice_type())
817 	{
818 	  const Type* e = rhs->array_type()->element_type()->forwarded();
819 	  if (e->integer_type() != NULL
820 	      && (e->integer_type()->is_byte()
821 		  || e->integer_type()->is_rune()))
822 	    return true;
823 	}
824     }
825 
826   // A string may be converted to []byte or []rune.
827   if (rhs->is_string_type() && lhs->is_slice_type())
828     {
829       const Type* e = lhs->array_type()->element_type()->forwarded();
830       if (e->integer_type() != NULL
831 	  && (e->integer_type()->is_byte() || e->integer_type()->is_rune()))
832 	return true;
833     }
834 
835   // An unsafe.Pointer type may be converted to any pointer type or to
836   // a type whose underlying type is uintptr, and vice-versa.
837   if (lhs->is_unsafe_pointer_type()
838       && (rhs->points_to() != NULL
839 	  || (rhs->integer_type() != NULL
840 	      && rhs->integer_type() == Type::lookup_integer_type("uintptr")->real_type())))
841     return true;
842   if (rhs->is_unsafe_pointer_type()
843       && (lhs->points_to() != NULL
844 	  || (lhs->integer_type() != NULL
845 	      && lhs->integer_type() == Type::lookup_integer_type("uintptr")->real_type())))
846     return true;
847 
848   // Give a better error message.
849   if (reason != NULL)
850     {
851       if (reason->empty())
852 	*reason = "invalid type conversion";
853       else
854 	{
855 	  std::string s = "invalid type conversion (";
856 	  s += *reason;
857 	  s += ')';
858 	  *reason = s;
859 	}
860     }
861 
862   return false;
863 }
864 
865 // Copy expressions if it may change the size.
866 //
867 // The only type that has an expression is an array type.  The only
868 // types whose size can be changed by the size of an array type are an
869 // array type itself, or a struct type with an array field.
870 Type*
copy_expressions()871 Type::copy_expressions()
872 {
873   // This is run during parsing, so types may not be valid yet.
874   // We only have to worry about array type literals.
875   switch (this->classification_)
876     {
877     default:
878       return this;
879 
880     case TYPE_ARRAY:
881       {
882 	Array_type* at = this->array_type();
883 	if (at->length() == NULL)
884 	  return this;
885 	Expression* len = at->length()->copy();
886 	if (at->length() == len)
887 	  return this;
888 	return Type::make_array_type(at->element_type(), len);
889       }
890 
891     case TYPE_STRUCT:
892       {
893 	Struct_type* st = this->struct_type();
894 	const Struct_field_list* sfl = st->fields();
895 	if (sfl == NULL)
896 	  return this;
897 	bool changed = false;
898 	Struct_field_list *nsfl = new Struct_field_list();
899 	for (Struct_field_list::const_iterator pf = sfl->begin();
900 	     pf != sfl->end();
901 	     ++pf)
902 	  {
903 	    Type* ft = pf->type()->copy_expressions();
904 	    Struct_field nf(Typed_identifier((pf->is_anonymous()
905 					      ? ""
906 					      : pf->field_name()),
907 					     ft,
908 					     pf->location()));
909 	    if (pf->has_tag())
910 	      nf.set_tag(pf->tag());
911 	    nsfl->push_back(nf);
912 	    if (ft != pf->type())
913 	      changed = true;
914 	  }
915 	if (!changed)
916 	  {
917 	    delete(nsfl);
918 	    return this;
919 	  }
920 	return Type::make_struct_type(nsfl, st->location());
921       }
922     }
923 
924   go_unreachable();
925 }
926 
927 // Return a hash code for the type to be used for method lookup.
928 
929 unsigned int
hash_for_method(Gogo * gogo,int flags) const930 Type::hash_for_method(Gogo* gogo, int flags) const
931 {
932   const Type* t = this->forwarded();
933   if (t->named_type() != NULL && t->named_type()->is_alias())
934     {
935       unsigned int r =
936 	t->named_type()->real_type()->hash_for_method(gogo, flags);
937       if ((flags & Type::COMPARE_ALIASES) != 0)
938 	r += TYPE_FORWARD;
939       return r;
940     }
941   unsigned int ret = t->classification_;
942   return ret + t->do_hash_for_method(gogo, flags);
943 }
944 
945 // Default implementation of do_hash_for_method.  This is appropriate
946 // for types with no subfields.
947 
948 unsigned int
do_hash_for_method(Gogo *,int) const949 Type::do_hash_for_method(Gogo*, int) const
950 {
951   return 0;
952 }
953 
954 // A hash table mapping unnamed types to the backend representation of
955 // those types.
956 
957 Type::Type_btypes Type::type_btypes;
958 
959 // Return the backend representation for this type.
960 
961 Btype*
get_backend(Gogo * gogo)962 Type::get_backend(Gogo* gogo)
963 {
964   if (this->btype_ != NULL)
965     return this->btype_;
966 
967   if (this->named_type() != NULL && this->named_type()->is_alias()) {
968     Btype* bt = this->unalias()->get_backend(gogo);
969     if (gogo != NULL && gogo->named_types_are_converted())
970       this->btype_ = bt;
971     return bt;
972   }
973 
974   if (this->forward_declaration_type() != NULL
975       || this->named_type() != NULL)
976     return this->get_btype_without_hash(gogo);
977 
978   if (this->is_error_type())
979     return gogo->backend()->error_type();
980 
981   // To avoid confusing the backend, translate all identical Go types
982   // to the same backend representation.  We use a hash table to do
983   // that.  There is no need to use the hash table for named types, as
984   // named types are only identical to themselves.
985 
986   std::pair<Type*, Type_btype_entry> val;
987   val.first = this;
988   val.second.btype = NULL;
989   val.second.is_placeholder = false;
990   std::pair<Type_btypes::iterator, bool> ins =
991     Type::type_btypes.insert(val);
992   if (!ins.second && ins.first->second.btype != NULL)
993     {
994       // Note that GOGO can be NULL here, but only when the GCC
995       // middle-end is asking for a frontend type.  That will only
996       // happen for simple types, which should never require
997       // placeholders.
998       if (!ins.first->second.is_placeholder)
999 	this->btype_ = ins.first->second.btype;
1000       else if (gogo->named_types_are_converted())
1001 	{
1002 	  this->finish_backend(gogo, ins.first->second.btype);
1003 	  ins.first->second.is_placeholder = false;
1004 	}
1005 
1006       // We set the has_padding field of a Struct_type when we convert
1007       // to the backend type, so if we have multiple Struct_type's
1008       // mapping to the same backend type we need to copy the
1009       // has_padding field.  FIXME: This is awkward.  We shouldn't
1010       // really change the type when setting the backend type, but
1011       // there isn't any other good time to add the padding field.
1012       if (ins.first->first->struct_type() != NULL
1013 	  && ins.first->first->struct_type()->has_padding())
1014 	this->struct_type()->set_has_padding();
1015 
1016       return ins.first->second.btype;
1017     }
1018 
1019   Btype* bt = this->get_btype_without_hash(gogo);
1020 
1021   if (ins.first->second.btype == NULL)
1022     {
1023       ins.first->second.btype = bt;
1024       ins.first->second.is_placeholder = false;
1025     }
1026   else
1027     {
1028       // We have already created a backend representation for this
1029       // type.  This can happen when an unnamed type is defined using
1030       // a named type which in turns uses an identical unnamed type.
1031       // Use the representation we created earlier and ignore the one we just
1032       // built.
1033       if (this->btype_ == bt)
1034 	this->btype_ = ins.first->second.btype;
1035       bt = ins.first->second.btype;
1036     }
1037 
1038   return bt;
1039 }
1040 
1041 // Return the backend representation for a type without looking in the
1042 // hash table for identical types.  This is used for named types,
1043 // since a named type is never identical to any other type.
1044 
1045 Btype*
get_btype_without_hash(Gogo * gogo)1046 Type::get_btype_without_hash(Gogo* gogo)
1047 {
1048   if (this->btype_ == NULL)
1049     {
1050       Btype* bt = this->do_get_backend(gogo);
1051 
1052       // For a recursive function or pointer type, we will temporarily
1053       // return a circular pointer type during the recursion.  We
1054       // don't want to record that for a forwarding type, as it may
1055       // confuse us later.
1056       if (this->forward_declaration_type() != NULL
1057 	  && gogo->backend()->is_circular_pointer_type(bt))
1058 	return bt;
1059 
1060       if (gogo == NULL || !gogo->named_types_are_converted())
1061 	return bt;
1062 
1063       this->btype_ = bt;
1064     }
1065   return this->btype_;
1066 }
1067 
1068 // Get the backend representation of a type without forcing the
1069 // creation of the backend representation of all supporting types.
1070 // This will return a backend type that has the correct size but may
1071 // be incomplete.  E.g., a pointer will just be a placeholder pointer,
1072 // and will not contain the final representation of the type to which
1073 // it points.  This is used while converting all named types to the
1074 // backend representation, to avoid problems with indirect references
1075 // to types which are not yet complete.  When this is called, the
1076 // sizes of all direct references (e.g., a struct field) should be
1077 // known, but the sizes of indirect references (e.g., the type to
1078 // which a pointer points) may not.
1079 
1080 Btype*
get_backend_placeholder(Gogo * gogo)1081 Type::get_backend_placeholder(Gogo* gogo)
1082 {
1083   if (gogo->named_types_are_converted())
1084     return this->get_backend(gogo);
1085   if (this->btype_ != NULL)
1086     return this->btype_;
1087 
1088   Btype* bt;
1089   switch (this->classification_)
1090     {
1091     case TYPE_ERROR:
1092     case TYPE_VOID:
1093     case TYPE_BOOLEAN:
1094     case TYPE_INTEGER:
1095     case TYPE_FLOAT:
1096     case TYPE_COMPLEX:
1097     case TYPE_STRING:
1098     case TYPE_NIL:
1099       // These are simple types that can just be created directly.
1100       return this->get_backend(gogo);
1101 
1102     case TYPE_MAP:
1103     case TYPE_CHANNEL:
1104       // All maps and channels have the same backend representation.
1105       return this->get_backend(gogo);
1106 
1107     case TYPE_NAMED:
1108     case TYPE_FORWARD:
1109       // Named types keep track of their own dependencies and manage
1110       // their own placeholders.
1111       if (this->named_type() != NULL && this->named_type()->is_alias())
1112         return this->unalias()->get_backend_placeholder(gogo);
1113       return this->get_backend(gogo);
1114 
1115     case TYPE_INTERFACE:
1116       if (this->interface_type()->is_empty())
1117 	return Interface_type::get_backend_empty_interface_type(gogo);
1118       break;
1119 
1120     default:
1121       break;
1122     }
1123 
1124   std::pair<Type*, Type_btype_entry> val;
1125   val.first = this;
1126   val.second.btype = NULL;
1127   val.second.is_placeholder = false;
1128   std::pair<Type_btypes::iterator, bool> ins =
1129     Type::type_btypes.insert(val);
1130   if (!ins.second && ins.first->second.btype != NULL)
1131     return ins.first->second.btype;
1132 
1133   switch (this->classification_)
1134     {
1135     case TYPE_FUNCTION:
1136       {
1137 	// A Go function type is a pointer to a struct type.
1138 	Location loc = this->function_type()->location();
1139 	bt = gogo->backend()->placeholder_pointer_type("", loc, false);
1140       }
1141       break;
1142 
1143     case TYPE_POINTER:
1144       {
1145 	Location loc = Linemap::unknown_location();
1146 	bt = gogo->backend()->placeholder_pointer_type("", loc, false);
1147 	Pointer_type* pt = this->convert<Pointer_type, TYPE_POINTER>();
1148 	Type::placeholder_pointers.push_back(pt);
1149       }
1150       break;
1151 
1152     case TYPE_STRUCT:
1153       // We don't have to make the struct itself be a placeholder.  We
1154       // are promised that we know the sizes of the struct fields.
1155       // But we may have to use a placeholder for any particular
1156       // struct field.
1157       {
1158 	std::vector<Backend::Btyped_identifier> bfields;
1159 	get_backend_struct_fields(gogo, this->struct_type(), true, &bfields);
1160 	bt = gogo->backend()->struct_type(bfields);
1161       }
1162       break;
1163 
1164     case TYPE_ARRAY:
1165       if (this->is_slice_type())
1166 	{
1167 	  std::vector<Backend::Btyped_identifier> bfields;
1168 	  get_backend_slice_fields(gogo, this->array_type(), true, &bfields);
1169 	  bt = gogo->backend()->struct_type(bfields);
1170 	}
1171       else
1172 	{
1173 	  Btype* element = this->array_type()->get_backend_element(gogo, true);
1174 	  Bexpression* len = this->array_type()->get_backend_length(gogo);
1175 	  bt = gogo->backend()->array_type(element, len);
1176 	}
1177       break;
1178 
1179     case TYPE_INTERFACE:
1180       {
1181 	go_assert(!this->interface_type()->is_empty());
1182 	std::vector<Backend::Btyped_identifier> bfields;
1183 	get_backend_interface_fields(gogo, this->interface_type(), true,
1184 				     &bfields);
1185 	bt = gogo->backend()->struct_type(bfields);
1186       }
1187       break;
1188 
1189     case TYPE_SINK:
1190     case TYPE_CALL_MULTIPLE_RESULT:
1191       /* Note that various classifications were handled in the earlier
1192 	 switch.  */
1193     default:
1194       go_unreachable();
1195     }
1196 
1197   if (ins.first->second.btype == NULL)
1198     {
1199       ins.first->second.btype = bt;
1200       ins.first->second.is_placeholder = true;
1201     }
1202   else
1203     {
1204       // A placeholder for this type got created along the way.  Use
1205       // that one and ignore the one we just built.
1206       bt = ins.first->second.btype;
1207     }
1208 
1209   return bt;
1210 }
1211 
1212 // Complete the backend representation.  This is called for a type
1213 // using a placeholder type.
1214 
1215 void
finish_backend(Gogo * gogo,Btype * placeholder)1216 Type::finish_backend(Gogo* gogo, Btype *placeholder)
1217 {
1218   switch (this->classification_)
1219     {
1220     case TYPE_ERROR:
1221     case TYPE_VOID:
1222     case TYPE_BOOLEAN:
1223     case TYPE_INTEGER:
1224     case TYPE_FLOAT:
1225     case TYPE_COMPLEX:
1226     case TYPE_STRING:
1227     case TYPE_NIL:
1228       go_unreachable();
1229 
1230     case TYPE_FUNCTION:
1231       {
1232 	Btype* bt = this->do_get_backend(gogo);
1233 	if (!gogo->backend()->set_placeholder_pointer_type(placeholder, bt))
1234 	  go_assert(saw_errors());
1235       }
1236       break;
1237 
1238     case TYPE_POINTER:
1239       {
1240 	Btype* bt = this->do_get_backend(gogo);
1241 	if (!gogo->backend()->set_placeholder_pointer_type(placeholder, bt))
1242 	  go_assert(saw_errors());
1243       }
1244       break;
1245 
1246     case TYPE_STRUCT:
1247       // The struct type itself is done, but we have to make sure that
1248       // all the field types are converted.
1249       this->struct_type()->finish_backend_fields(gogo);
1250       break;
1251 
1252     case TYPE_ARRAY:
1253       // The array type itself is done, but make sure the element type
1254       // is converted.
1255       this->array_type()->finish_backend_element(gogo);
1256       break;
1257 
1258     case TYPE_MAP:
1259     case TYPE_CHANNEL:
1260       go_unreachable();
1261 
1262     case TYPE_INTERFACE:
1263       // The interface type itself is done, but make sure the method
1264       // types are converted.
1265       this->interface_type()->finish_backend_methods(gogo);
1266       break;
1267 
1268     case TYPE_NAMED:
1269     case TYPE_FORWARD:
1270       go_unreachable();
1271 
1272     case TYPE_SINK:
1273     case TYPE_CALL_MULTIPLE_RESULT:
1274     default:
1275       go_unreachable();
1276     }
1277 
1278   this->btype_ = placeholder;
1279 }
1280 
1281 // Return a pointer to the type descriptor for this type.
1282 
1283 Bexpression*
type_descriptor_pointer(Gogo * gogo,Location location)1284 Type::type_descriptor_pointer(Gogo* gogo, Location location)
1285 {
1286   Type* t = this->unalias();
1287   if (t->type_descriptor_var_ == NULL)
1288     {
1289       t->make_type_descriptor_var(gogo);
1290       go_assert(t->type_descriptor_var_ != NULL);
1291     }
1292   Bexpression* var_expr =
1293       gogo->backend()->var_expression(t->type_descriptor_var_, location);
1294   Bexpression* var_addr =
1295       gogo->backend()->address_expression(var_expr, location);
1296   Type* td_type = Type::make_type_descriptor_type();
1297   Btype* td_btype = td_type->get_backend(gogo);
1298   Btype* ptd_btype = gogo->backend()->pointer_type(td_btype);
1299   return gogo->backend()->convert_expression(ptd_btype, var_addr, location);
1300 }
1301 
1302 // A mapping from unnamed types to type descriptor variables.
1303 
1304 Type::Type_descriptor_vars Type::type_descriptor_vars;
1305 
1306 // Build the type descriptor for this type.
1307 
1308 void
make_type_descriptor_var(Gogo * gogo)1309 Type::make_type_descriptor_var(Gogo* gogo)
1310 {
1311   go_assert(this->type_descriptor_var_ == NULL);
1312 
1313   Named_type* nt = this->named_type();
1314 
1315   // We can have multiple instances of unnamed types, but we only want
1316   // to emit the type descriptor once.  We use a hash table.  This is
1317   // not necessary for named types, as they are unique, and we store
1318   // the type descriptor in the type itself.
1319   Bvariable** phash = NULL;
1320   if (nt == NULL)
1321     {
1322       Bvariable* bvnull = NULL;
1323       std::pair<Type_descriptor_vars::iterator, bool> ins =
1324 	Type::type_descriptor_vars.insert(std::make_pair(this, bvnull));
1325       if (!ins.second)
1326 	{
1327 	  // We've already built a type descriptor for this type.
1328 	  this->type_descriptor_var_ = ins.first->second;
1329 	  return;
1330 	}
1331       phash = &ins.first->second;
1332     }
1333 
1334   // The type descriptor symbol for the unsafe.Pointer type is defined in
1335   // libgo/go-unsafe-pointer.c, so we just return a reference to that
1336   // symbol if necessary.
1337   if (this->is_unsafe_pointer_type())
1338     {
1339       Location bloc = Linemap::predeclared_location();
1340 
1341       Type* td_type = Type::make_type_descriptor_type();
1342       Btype* td_btype = td_type->get_backend(gogo);
1343       std::string name = gogo->type_descriptor_name(this, nt);
1344       std::string asm_name(go_selectively_encode_id(name));
1345       this->type_descriptor_var_ =
1346 	  gogo->backend()->immutable_struct_reference(name, asm_name,
1347 						      td_btype,
1348 						      bloc);
1349 
1350       if (phash != NULL)
1351 	*phash = this->type_descriptor_var_;
1352       return;
1353     }
1354 
1355   std::string var_name = gogo->type_descriptor_name(this, nt);
1356 
1357   // Build the contents of the type descriptor.
1358   Expression* initializer = this->do_type_descriptor(gogo, NULL);
1359 
1360   Btype* initializer_btype = initializer->type()->get_backend(gogo);
1361 
1362   Location loc = nt == NULL ? Linemap::predeclared_location() : nt->location();
1363 
1364   const Package* dummy;
1365   if (this->type_descriptor_defined_elsewhere(nt, &dummy))
1366     {
1367       std::string asm_name(go_selectively_encode_id(var_name));
1368       this->type_descriptor_var_ =
1369 	  gogo->backend()->immutable_struct_reference(var_name, asm_name,
1370 						      initializer_btype,
1371 						      loc);
1372       if (phash != NULL)
1373 	*phash = this->type_descriptor_var_;
1374       return;
1375     }
1376 
1377   // See if this type descriptor can appear in multiple packages.
1378   bool is_common = false;
1379   if (nt != NULL)
1380     {
1381       // We create the descriptor for a builtin type whenever we need
1382       // it.
1383       is_common = nt->is_builtin();
1384     }
1385   else
1386     {
1387       // This is an unnamed type.  The descriptor could be defined in
1388       // any package where it is needed, and the linker will pick one
1389       // descriptor to keep.
1390       is_common = true;
1391     }
1392 
1393   // We are going to build the type descriptor in this package.  We
1394   // must create the variable before we convert the initializer to the
1395   // backend representation, because the initializer may refer to the
1396   // type descriptor of this type.  By setting type_descriptor_var_ we
1397   // ensure that type_descriptor_pointer will work if called while
1398   // converting INITIALIZER.
1399 
1400   std::string asm_name(go_selectively_encode_id(var_name));
1401   this->type_descriptor_var_ =
1402       gogo->backend()->immutable_struct(var_name, asm_name, false, is_common,
1403 				      initializer_btype, loc);
1404   if (phash != NULL)
1405     *phash = this->type_descriptor_var_;
1406 
1407   Translate_context context(gogo, NULL, NULL, NULL);
1408   context.set_is_const();
1409   Bexpression* binitializer = initializer->get_backend(&context);
1410 
1411   gogo->backend()->immutable_struct_set_init(this->type_descriptor_var_,
1412 					     var_name, false, is_common,
1413 					     initializer_btype, loc,
1414 					     binitializer);
1415 }
1416 
1417 // Return true if this type descriptor is defined in a different
1418 // package.  If this returns true it sets *PACKAGE to the package.
1419 
1420 bool
type_descriptor_defined_elsewhere(Named_type * nt,const Package ** package)1421 Type::type_descriptor_defined_elsewhere(Named_type* nt,
1422 					const Package** package)
1423 {
1424   if (nt != NULL)
1425     {
1426       if (nt->named_object()->package() != NULL)
1427 	{
1428 	  // This is a named type defined in a different package.  The
1429 	  // type descriptor should be defined in that package.
1430 	  *package = nt->named_object()->package();
1431 	  return true;
1432 	}
1433     }
1434   else
1435     {
1436       if (this->points_to() != NULL
1437 	  && this->points_to()->named_type() != NULL
1438 	  && this->points_to()->named_type()->named_object()->package() != NULL)
1439 	{
1440 	  // This is an unnamed pointer to a named type defined in a
1441 	  // different package.  The descriptor should be defined in
1442 	  // that package.
1443 	  *package = this->points_to()->named_type()->named_object()->package();
1444 	  return true;
1445 	}
1446     }
1447   return false;
1448 }
1449 
1450 // Return a composite literal for a type descriptor.
1451 
1452 Expression*
type_descriptor(Gogo * gogo,Type * type)1453 Type::type_descriptor(Gogo* gogo, Type* type)
1454 {
1455   return type->do_type_descriptor(gogo, NULL);
1456 }
1457 
1458 // Return a composite literal for a type descriptor with a name.
1459 
1460 Expression*
named_type_descriptor(Gogo * gogo,Type * type,Named_type * name)1461 Type::named_type_descriptor(Gogo* gogo, Type* type, Named_type* name)
1462 {
1463   go_assert(name != NULL && type->named_type() != name);
1464   return type->do_type_descriptor(gogo, name);
1465 }
1466 
1467 // Make a builtin struct type from a list of fields.  The fields are
1468 // pairs of a name and a type.
1469 
1470 Struct_type*
make_builtin_struct_type(int nfields,...)1471 Type::make_builtin_struct_type(int nfields, ...)
1472 {
1473   va_list ap;
1474   va_start(ap, nfields);
1475 
1476   Location bloc = Linemap::predeclared_location();
1477   Struct_field_list* sfl = new Struct_field_list();
1478   for (int i = 0; i < nfields; i++)
1479     {
1480       const char* field_name = va_arg(ap, const char *);
1481       Type* type = va_arg(ap, Type*);
1482       sfl->push_back(Struct_field(Typed_identifier(field_name, type, bloc)));
1483     }
1484 
1485   va_end(ap);
1486 
1487   Struct_type* ret = Type::make_struct_type(sfl, bloc);
1488   ret->set_is_struct_incomparable();
1489   return ret;
1490 }
1491 
1492 // A list of builtin named types.
1493 
1494 std::vector<Named_type*> Type::named_builtin_types;
1495 
1496 // Make a builtin named type.
1497 
1498 Named_type*
make_builtin_named_type(const char * name,Type * type)1499 Type::make_builtin_named_type(const char* name, Type* type)
1500 {
1501   Location bloc = Linemap::predeclared_location();
1502   Named_object* no = Named_object::make_type(name, NULL, type, bloc);
1503   Named_type* ret = no->type_value();
1504   Type::named_builtin_types.push_back(ret);
1505   return ret;
1506 }
1507 
1508 // Convert the named builtin types.
1509 
1510 void
convert_builtin_named_types(Gogo * gogo)1511 Type::convert_builtin_named_types(Gogo* gogo)
1512 {
1513   for (std::vector<Named_type*>::const_iterator p =
1514 	 Type::named_builtin_types.begin();
1515        p != Type::named_builtin_types.end();
1516        ++p)
1517     {
1518       bool r = (*p)->verify();
1519       go_assert(r);
1520       (*p)->convert(gogo);
1521     }
1522 }
1523 
1524 // Return the type of a type descriptor.  We should really tie this to
1525 // runtime.Type rather than copying it.  This must match the struct "_type"
1526 // declared in libgo/go/runtime/type.go.
1527 
1528 Type*
make_type_descriptor_type()1529 Type::make_type_descriptor_type()
1530 {
1531   static Type* ret;
1532   if (ret == NULL)
1533     {
1534       Location bloc = Linemap::predeclared_location();
1535 
1536       Type* uint8_type = Type::lookup_integer_type("uint8");
1537       Type* pointer_uint8_type = Type::make_pointer_type(uint8_type);
1538       Type* uint32_type = Type::lookup_integer_type("uint32");
1539       Type* uintptr_type = Type::lookup_integer_type("uintptr");
1540       Type* string_type = Type::lookup_string_type();
1541       Type* pointer_string_type = Type::make_pointer_type(string_type);
1542 
1543       // This is an unnamed version of unsafe.Pointer.  Perhaps we
1544       // should use the named version instead, although that would
1545       // require us to create the unsafe package if it has not been
1546       // imported.  It probably doesn't matter.
1547       Type* void_type = Type::make_void_type();
1548       Type* unsafe_pointer_type = Type::make_pointer_type(void_type);
1549 
1550       Typed_identifier_list *params = new Typed_identifier_list();
1551       params->push_back(Typed_identifier("key", unsafe_pointer_type, bloc));
1552       params->push_back(Typed_identifier("seed", uintptr_type, bloc));
1553 
1554       Typed_identifier_list* results = new Typed_identifier_list();
1555       results->push_back(Typed_identifier("", uintptr_type, bloc));
1556 
1557       Type* hash_fntype = Type::make_function_type(NULL, params, results,
1558 						   bloc);
1559 
1560       params = new Typed_identifier_list();
1561       params->push_back(Typed_identifier("key1", unsafe_pointer_type, bloc));
1562       params->push_back(Typed_identifier("key2", unsafe_pointer_type, bloc));
1563 
1564       results = new Typed_identifier_list();
1565       results->push_back(Typed_identifier("", Type::lookup_bool_type(), bloc));
1566 
1567       Type* equal_fntype = Type::make_function_type(NULL, params, results,
1568 						    bloc);
1569 
1570       // Forward declaration for the type descriptor type.
1571       Named_object* named_type_descriptor_type =
1572 	Named_object::make_type_declaration("_type", NULL, bloc);
1573       Type* ft = Type::make_forward_declaration(named_type_descriptor_type);
1574       Type* pointer_type_descriptor_type = Type::make_pointer_type(ft);
1575 
1576       // The type of a method on a concrete type.
1577       Struct_type* method_type =
1578 	Type::make_builtin_struct_type(5,
1579 				       "name", pointer_string_type,
1580 				       "pkgPath", pointer_string_type,
1581 				       "mtyp", pointer_type_descriptor_type,
1582 				       "typ", pointer_type_descriptor_type,
1583 				       "tfn", unsafe_pointer_type);
1584       Named_type* named_method_type =
1585 	Type::make_builtin_named_type("method", method_type);
1586 
1587       // Information for types with a name or methods.
1588       Type* slice_named_method_type =
1589 	Type::make_array_type(named_method_type, NULL);
1590       Struct_type* uncommon_type =
1591 	Type::make_builtin_struct_type(3,
1592 				       "name", pointer_string_type,
1593 				       "pkgPath", pointer_string_type,
1594 				       "methods", slice_named_method_type);
1595       Named_type* named_uncommon_type =
1596 	Type::make_builtin_named_type("uncommonType", uncommon_type);
1597 
1598       Type* pointer_uncommon_type =
1599 	Type::make_pointer_type(named_uncommon_type);
1600 
1601       // The type descriptor type.
1602 
1603       Struct_type* type_descriptor_type =
1604 	Type::make_builtin_struct_type(12,
1605 				       "size", uintptr_type,
1606 				       "ptrdata", uintptr_type,
1607 				       "hash", uint32_type,
1608 				       "kind", uint8_type,
1609 				       "align", uint8_type,
1610 				       "fieldAlign", uint8_type,
1611 				       "hashfn", hash_fntype,
1612 				       "equalfn", equal_fntype,
1613 				       "gcdata", pointer_uint8_type,
1614 				       "string", pointer_string_type,
1615 				       "", pointer_uncommon_type,
1616 				       "ptrToThis",
1617 				       pointer_type_descriptor_type);
1618 
1619       Named_type* named = Type::make_builtin_named_type("_type",
1620 							type_descriptor_type);
1621 
1622       named_type_descriptor_type->set_type_value(named);
1623 
1624       ret = named;
1625     }
1626 
1627   return ret;
1628 }
1629 
1630 // Make the type of a pointer to a type descriptor as represented in
1631 // Go.
1632 
1633 Type*
make_type_descriptor_ptr_type()1634 Type::make_type_descriptor_ptr_type()
1635 {
1636   static Type* ret;
1637   if (ret == NULL)
1638     ret = Type::make_pointer_type(Type::make_type_descriptor_type());
1639   return ret;
1640 }
1641 
1642 // Return the alignment required by the memequalN function.  N is a
1643 // type size: 16, 32, 64, or 128.  The memequalN functions are defined
1644 // in libgo/go/runtime/alg.go.
1645 
1646 int64_t
memequal_align(Gogo * gogo,int size)1647 Type::memequal_align(Gogo* gogo, int size)
1648 {
1649   const char* tn;
1650   switch (size)
1651     {
1652     case 16:
1653       tn = "int16";
1654       break;
1655     case 32:
1656       tn = "int32";
1657       break;
1658     case 64:
1659       tn = "int64";
1660       break;
1661     case 128:
1662       // The code uses [2]int64, which must have the same alignment as
1663       // int64.
1664       tn = "int64";
1665       break;
1666     default:
1667       go_unreachable();
1668     }
1669 
1670   Type* t = Type::lookup_integer_type(tn);
1671 
1672   int64_t ret;
1673   if (!t->backend_type_align(gogo, &ret))
1674     go_unreachable();
1675   return ret;
1676 }
1677 
1678 // Return whether this type needs specially built type functions.
1679 // This returns true for types that are comparable and either can not
1680 // use an identity comparison, or are a non-standard size.
1681 
1682 bool
needs_specific_type_functions(Gogo * gogo)1683 Type::needs_specific_type_functions(Gogo* gogo)
1684 {
1685   Named_type* nt = this->named_type();
1686   if (nt != NULL && nt->is_alias())
1687     return false;
1688   if (!this->is_comparable())
1689     return false;
1690   if (!this->compare_is_identity(gogo))
1691     return true;
1692 
1693   // We create a few predeclared types for type descriptors; they are
1694   // really just for the backend and don't need hash or equality
1695   // functions.
1696   if (nt != NULL && Linemap::is_predeclared_location(nt->location()))
1697     return false;
1698 
1699   int64_t size, align;
1700   if (!this->backend_type_size(gogo, &size)
1701       || !this->backend_type_align(gogo, &align))
1702     {
1703       go_assert(saw_errors());
1704       return false;
1705     }
1706   // This switch matches the one in Type::type_functions.
1707   switch (size)
1708     {
1709     case 0:
1710     case 1:
1711     case 2:
1712       return align < Type::memequal_align(gogo, 16);
1713     case 4:
1714       return align < Type::memequal_align(gogo, 32);
1715     case 8:
1716       return align < Type::memequal_align(gogo, 64);
1717     case 16:
1718       return align < Type::memequal_align(gogo, 128);
1719     default:
1720       return true;
1721     }
1722 }
1723 
1724 // Set *HASH_FN and *EQUAL_FN to the runtime functions which compute a
1725 // hash code for this type and which compare whether two values of
1726 // this type are equal.  If NAME is not NULL it is the name of this
1727 // type.  HASH_FNTYPE and EQUAL_FNTYPE are the types of these
1728 // functions, for convenience; they may be NULL.
1729 
1730 void
type_functions(Gogo * gogo,Named_type * name,Function_type * hash_fntype,Function_type * equal_fntype,Named_object ** hash_fn,Named_object ** equal_fn)1731 Type::type_functions(Gogo* gogo, Named_type* name, Function_type* hash_fntype,
1732 		     Function_type* equal_fntype, Named_object** hash_fn,
1733 		     Named_object** equal_fn)
1734 {
1735   // If the unaliased type is not a named type, then the type does not
1736   // have a name after all.
1737   if (name != NULL)
1738     name = name->unalias()->named_type();
1739 
1740   if (!this->is_comparable())
1741     {
1742       *hash_fn = NULL;
1743       *equal_fn = NULL;
1744       return;
1745     }
1746 
1747   if (hash_fntype == NULL || equal_fntype == NULL)
1748     {
1749       Location bloc = Linemap::predeclared_location();
1750 
1751       Type* uintptr_type = Type::lookup_integer_type("uintptr");
1752       Type* void_type = Type::make_void_type();
1753       Type* unsafe_pointer_type = Type::make_pointer_type(void_type);
1754 
1755       if (hash_fntype == NULL)
1756 	{
1757 	  Typed_identifier_list* params = new Typed_identifier_list();
1758 	  params->push_back(Typed_identifier("key", unsafe_pointer_type,
1759 					     bloc));
1760 	  params->push_back(Typed_identifier("seed", uintptr_type, bloc));
1761 
1762 	  Typed_identifier_list* results = new Typed_identifier_list();
1763 	  results->push_back(Typed_identifier("", uintptr_type, bloc));
1764 
1765 	  hash_fntype = Type::make_function_type(NULL, params, results, bloc);
1766 	}
1767       if (equal_fntype == NULL)
1768 	{
1769 	  Typed_identifier_list* params = new Typed_identifier_list();
1770 	  params->push_back(Typed_identifier("key1", unsafe_pointer_type,
1771 					     bloc));
1772 	  params->push_back(Typed_identifier("key2", unsafe_pointer_type,
1773 					     bloc));
1774 
1775 	  Typed_identifier_list* results = new Typed_identifier_list();
1776 	  results->push_back(Typed_identifier("", Type::lookup_bool_type(),
1777 					      bloc));
1778 
1779 	  equal_fntype = Type::make_function_type(NULL, params, results, bloc);
1780 	}
1781     }
1782 
1783   const char* hash_fnname;
1784   const char* equal_fnname;
1785   if (this->compare_is_identity(gogo))
1786     {
1787       int64_t size, align;
1788       if (!this->backend_type_size(gogo, &size)
1789 	  || !this->backend_type_align(gogo, &align))
1790 	{
1791 	  go_assert(saw_errors());
1792 	  return;
1793 	}
1794       bool build_functions = false;
1795       // This switch matches the one in Type::needs_specific_type_functions.
1796       // The alignment tests are because of the memequal functions,
1797       // which assume that the values are aligned as required for an
1798       // integer of that size.
1799       switch (size)
1800 	{
1801 	case 0:
1802 	  hash_fnname = "runtime.memhash0";
1803 	  equal_fnname = "runtime.memequal0";
1804 	  break;
1805 	case 1:
1806 	  hash_fnname = "runtime.memhash8";
1807 	  equal_fnname = "runtime.memequal8";
1808 	  break;
1809 	case 2:
1810 	  if (align < Type::memequal_align(gogo, 16))
1811 	    build_functions = true;
1812 	  else
1813 	    {
1814 	      hash_fnname = "runtime.memhash16";
1815 	      equal_fnname = "runtime.memequal16";
1816 	    }
1817 	  break;
1818 	case 4:
1819 	  if (align < Type::memequal_align(gogo, 32))
1820 	    build_functions = true;
1821 	  else
1822 	    {
1823 	      hash_fnname = "runtime.memhash32";
1824 	      equal_fnname = "runtime.memequal32";
1825 	    }
1826 	  break;
1827 	case 8:
1828 	  if (align < Type::memequal_align(gogo, 64))
1829 	    build_functions = true;
1830 	  else
1831 	    {
1832 	      hash_fnname = "runtime.memhash64";
1833 	      equal_fnname = "runtime.memequal64";
1834 	    }
1835 	  break;
1836 	case 16:
1837 	  if (align < Type::memequal_align(gogo, 128))
1838 	    build_functions = true;
1839 	  else
1840 	    {
1841 	      hash_fnname = "runtime.memhash128";
1842 	      equal_fnname = "runtime.memequal128";
1843 	    }
1844 	  break;
1845 	default:
1846 	  build_functions = true;
1847 	  break;
1848 	}
1849       if (build_functions)
1850 	{
1851 	  // We don't have a built-in function for a type of this size
1852 	  // and alignment.  Build a function to use that calls the
1853 	  // generic hash/equality functions for identity, passing the size.
1854 	  this->specific_type_functions(gogo, name, size, hash_fntype,
1855 					equal_fntype, hash_fn, equal_fn);
1856 	  return;
1857 	}
1858     }
1859   else
1860     {
1861       switch (this->base()->classification())
1862 	{
1863 	case Type::TYPE_ERROR:
1864 	case Type::TYPE_VOID:
1865 	case Type::TYPE_NIL:
1866 	case Type::TYPE_FUNCTION:
1867 	case Type::TYPE_MAP:
1868 	  // For these types is_comparable should have returned false.
1869 	  go_unreachable();
1870 
1871 	case Type::TYPE_BOOLEAN:
1872 	case Type::TYPE_INTEGER:
1873 	case Type::TYPE_POINTER:
1874 	case Type::TYPE_CHANNEL:
1875 	  // For these types compare_is_identity should have returned true.
1876 	  go_unreachable();
1877 
1878 	case Type::TYPE_FLOAT:
1879 	  switch (this->float_type()->bits())
1880 	    {
1881 	    case 32:
1882 	      hash_fnname = "runtime.f32hash";
1883 	      equal_fnname = "runtime.f32equal";
1884 	      break;
1885 	    case 64:
1886 	      hash_fnname = "runtime.f64hash";
1887 	      equal_fnname = "runtime.f64equal";
1888 	      break;
1889 	    default:
1890 	      go_unreachable();
1891 	    }
1892 	  break;
1893 
1894 	case Type::TYPE_COMPLEX:
1895 	  switch (this->complex_type()->bits())
1896 	    {
1897 	    case 64:
1898 	      hash_fnname = "runtime.c64hash";
1899 	      equal_fnname = "runtime.c64equal";
1900 	      break;
1901 	    case 128:
1902 	      hash_fnname = "runtime.c128hash";
1903 	      equal_fnname = "runtime.c128equal";
1904 	      break;
1905 	    default:
1906 	      go_unreachable();
1907 	    }
1908 	  break;
1909 
1910 	case Type::TYPE_STRING:
1911 	  hash_fnname = "runtime.strhash";
1912 	  equal_fnname = "runtime.strequal";
1913 	  break;
1914 
1915 	case Type::TYPE_STRUCT:
1916 	  {
1917 	    // This is a struct which can not be compared using a
1918 	    // simple identity function.  We need to build a function
1919 	    // for comparison.
1920 	    this->specific_type_functions(gogo, name, -1, hash_fntype,
1921 					  equal_fntype, hash_fn, equal_fn);
1922 	    return;
1923 	  }
1924 
1925 	case Type::TYPE_ARRAY:
1926 	  if (this->is_slice_type())
1927 	    {
1928 	      // Type::is_compatible_for_comparison should have
1929 	      // returned false.
1930 	      go_unreachable();
1931 	    }
1932 	  else
1933 	    {
1934 	      // This is an array which can not be compared using a
1935 	      // simple identity function.  We need to build a
1936 	      // function for comparison.
1937 	      this->specific_type_functions(gogo, name, -1, hash_fntype,
1938 					    equal_fntype, hash_fn, equal_fn);
1939 	      return;
1940 	    }
1941 	  break;
1942 
1943 	case Type::TYPE_INTERFACE:
1944 	  if (this->interface_type()->is_empty())
1945 	    {
1946 	      hash_fnname = "runtime.nilinterhash";
1947 	      equal_fnname = "runtime.nilinterequal";
1948 	    }
1949 	  else
1950 	    {
1951 	      hash_fnname = "runtime.interhash";
1952 	      equal_fnname = "runtime.interequal";
1953 	    }
1954 	  break;
1955 
1956 	case Type::TYPE_NAMED:
1957 	case Type::TYPE_FORWARD:
1958 	  go_unreachable();
1959 
1960 	default:
1961 	  go_unreachable();
1962 	}
1963     }
1964 
1965 
1966   Location bloc = Linemap::predeclared_location();
1967   *hash_fn = Named_object::make_function_declaration(hash_fnname, NULL,
1968 						     hash_fntype, bloc);
1969   (*hash_fn)->func_declaration_value()->set_asm_name(hash_fnname);
1970   *equal_fn = Named_object::make_function_declaration(equal_fnname, NULL,
1971 						      equal_fntype, bloc);
1972   (*equal_fn)->func_declaration_value()->set_asm_name(equal_fnname);
1973 }
1974 
1975 // A hash table mapping types to the specific hash functions.
1976 
1977 Type::Type_functions Type::type_functions_table;
1978 
1979 // Handle a type function which is specific to a type: if SIZE == -1,
1980 // this is a struct or array that can not use an identity comparison.
1981 // Otherwise, it is a type that uses an identity comparison but is not
1982 // one of the standard supported sizes.
1983 
1984 void
specific_type_functions(Gogo * gogo,Named_type * name,int64_t size,Function_type * hash_fntype,Function_type * equal_fntype,Named_object ** hash_fn,Named_object ** equal_fn)1985 Type::specific_type_functions(Gogo* gogo, Named_type* name, int64_t size,
1986 			      Function_type* hash_fntype,
1987 			      Function_type* equal_fntype,
1988 			      Named_object** hash_fn,
1989 			      Named_object** equal_fn)
1990 {
1991   Hash_equal_fn fnull(NULL, NULL);
1992   std::pair<Type*, Hash_equal_fn> val(name != NULL ? name : this, fnull);
1993   std::pair<Type_functions::iterator, bool> ins =
1994     Type::type_functions_table.insert(val);
1995   if (!ins.second)
1996     {
1997       // We already have functions for this type
1998       *hash_fn = ins.first->second.first;
1999       *equal_fn = ins.first->second.second;
2000       return;
2001     }
2002 
2003   std::string hash_name;
2004   std::string equal_name;
2005   gogo->specific_type_function_names(this, name, &hash_name, &equal_name);
2006 
2007   Location bloc = Linemap::predeclared_location();
2008 
2009   const Package* package = NULL;
2010   bool is_defined_elsewhere =
2011     this->type_descriptor_defined_elsewhere(name, &package);
2012   if (is_defined_elsewhere)
2013     {
2014       *hash_fn = Named_object::make_function_declaration(hash_name, package,
2015 							 hash_fntype, bloc);
2016       *equal_fn = Named_object::make_function_declaration(equal_name, package,
2017 							  equal_fntype, bloc);
2018     }
2019   else
2020     {
2021       *hash_fn = gogo->declare_package_function(hash_name, hash_fntype, bloc);
2022       *equal_fn = gogo->declare_package_function(equal_name, equal_fntype,
2023 						 bloc);
2024     }
2025 
2026   ins.first->second.first = *hash_fn;
2027   ins.first->second.second = *equal_fn;
2028 
2029   if (!is_defined_elsewhere)
2030     {
2031       if (gogo->in_global_scope())
2032 	this->write_specific_type_functions(gogo, name, size, hash_name,
2033 					    hash_fntype, equal_name,
2034 					    equal_fntype);
2035       else
2036 	gogo->queue_specific_type_function(this, name, size, hash_name,
2037 					   hash_fntype, equal_name,
2038 					   equal_fntype);
2039     }
2040 }
2041 
2042 // Write the hash and equality functions for a type which needs to be
2043 // written specially.
2044 
2045 void
write_specific_type_functions(Gogo * gogo,Named_type * name,int64_t size,const std::string & hash_name,Function_type * hash_fntype,const std::string & equal_name,Function_type * equal_fntype)2046 Type::write_specific_type_functions(Gogo* gogo, Named_type* name, int64_t size,
2047 				    const std::string& hash_name,
2048 				    Function_type* hash_fntype,
2049 				    const std::string& equal_name,
2050 				    Function_type* equal_fntype)
2051 {
2052   Location bloc = Linemap::predeclared_location();
2053 
2054   if (gogo->specific_type_functions_are_written())
2055     {
2056       go_assert(saw_errors());
2057       return;
2058     }
2059 
2060   go_assert(this->is_comparable());
2061 
2062   Named_object* hash_fn = gogo->start_function(hash_name, hash_fntype, false,
2063 					       bloc);
2064   hash_fn->func_value()->set_is_type_specific_function();
2065   gogo->start_block(bloc);
2066 
2067   if (size != -1)
2068     this->write_identity_hash(gogo, size);
2069   else if (name != NULL && name->real_type()->named_type() != NULL)
2070     this->write_named_hash(gogo, name, hash_fntype, equal_fntype);
2071   else if (this->struct_type() != NULL)
2072     this->struct_type()->write_hash_function(gogo, name, hash_fntype,
2073 					     equal_fntype);
2074   else if (this->array_type() != NULL)
2075     this->array_type()->write_hash_function(gogo, name, hash_fntype,
2076 					    equal_fntype);
2077   else
2078     go_unreachable();
2079 
2080   Block* b = gogo->finish_block(bloc);
2081   gogo->add_block(b, bloc);
2082   gogo->lower_block(hash_fn, b);
2083   gogo->finish_function(bloc);
2084 
2085   Named_object *equal_fn = gogo->start_function(equal_name, equal_fntype,
2086 						false, bloc);
2087   equal_fn->func_value()->set_is_type_specific_function();
2088   gogo->start_block(bloc);
2089 
2090   if (size != -1)
2091     this->write_identity_equal(gogo, size);
2092   else if (name != NULL && name->real_type()->named_type() != NULL)
2093     this->write_named_equal(gogo, name);
2094   else if (this->struct_type() != NULL)
2095     this->struct_type()->write_equal_function(gogo, name);
2096   else if (this->array_type() != NULL)
2097     this->array_type()->write_equal_function(gogo, name);
2098   else
2099     go_unreachable();
2100 
2101   b = gogo->finish_block(bloc);
2102   gogo->add_block(b, bloc);
2103   gogo->lower_block(equal_fn, b);
2104   gogo->finish_function(bloc);
2105 
2106   // Build the function descriptors for the type descriptor to refer to.
2107   hash_fn->func_value()->descriptor(gogo, hash_fn);
2108   equal_fn->func_value()->descriptor(gogo, equal_fn);
2109 }
2110 
2111 // Write a hash function for a type that can use an identity hash but
2112 // is not one of the standard supported sizes.  For example, this
2113 // would be used for the type [3]byte.  This builds a return statement
2114 // that returns a call to the memhash function, passing the key and
2115 // seed from the function arguments (already constructed before this
2116 // is called), and the constant size.
2117 
2118 void
write_identity_hash(Gogo * gogo,int64_t size)2119 Type::write_identity_hash(Gogo* gogo, int64_t size)
2120 {
2121   Location bloc = Linemap::predeclared_location();
2122 
2123   Type* unsafe_pointer_type = Type::make_pointer_type(Type::make_void_type());
2124   Type* uintptr_type = Type::lookup_integer_type("uintptr");
2125 
2126   Typed_identifier_list* params = new Typed_identifier_list();
2127   params->push_back(Typed_identifier("key", unsafe_pointer_type, bloc));
2128   params->push_back(Typed_identifier("seed", uintptr_type, bloc));
2129   params->push_back(Typed_identifier("size", uintptr_type, bloc));
2130 
2131   Typed_identifier_list* results = new Typed_identifier_list();
2132   results->push_back(Typed_identifier("", uintptr_type, bloc));
2133 
2134   Function_type* memhash_fntype = Type::make_function_type(NULL, params,
2135 							   results, bloc);
2136 
2137   Named_object* memhash =
2138     Named_object::make_function_declaration("runtime.memhash", NULL,
2139 					    memhash_fntype, bloc);
2140   memhash->func_declaration_value()->set_asm_name("runtime.memhash");
2141 
2142   Named_object* key_arg = gogo->lookup("key", NULL);
2143   go_assert(key_arg != NULL);
2144   Named_object* seed_arg = gogo->lookup("seed", NULL);
2145   go_assert(seed_arg != NULL);
2146 
2147   Expression* key_ref = Expression::make_var_reference(key_arg, bloc);
2148   Expression* seed_ref = Expression::make_var_reference(seed_arg, bloc);
2149   Expression* size_arg = Expression::make_integer_int64(size, uintptr_type,
2150 							bloc);
2151   Expression_list* args = new Expression_list();
2152   args->push_back(key_ref);
2153   args->push_back(seed_ref);
2154   args->push_back(size_arg);
2155   Expression* func = Expression::make_func_reference(memhash, NULL, bloc);
2156   Expression* call = Expression::make_call(func, args, false, bloc);
2157 
2158   Expression_list* vals = new Expression_list();
2159   vals->push_back(call);
2160   Statement* s = Statement::make_return_statement(vals, bloc);
2161   gogo->add_statement(s);
2162 }
2163 
2164 // Write an equality function for a type that can use an identity
2165 // equality comparison but is not one of the standard supported sizes.
2166 // For example, this would be used for the type [3]byte.  This builds
2167 // a return statement that returns a call to the memequal function,
2168 // passing the two keys from the function arguments (already
2169 // constructed before this is called), and the constant size.
2170 
2171 void
write_identity_equal(Gogo * gogo,int64_t size)2172 Type::write_identity_equal(Gogo* gogo, int64_t size)
2173 {
2174   Location bloc = Linemap::predeclared_location();
2175 
2176   Type* unsafe_pointer_type = Type::make_pointer_type(Type::make_void_type());
2177   Type* uintptr_type = Type::lookup_integer_type("uintptr");
2178 
2179   Typed_identifier_list* params = new Typed_identifier_list();
2180   params->push_back(Typed_identifier("key1", unsafe_pointer_type, bloc));
2181   params->push_back(Typed_identifier("key2", unsafe_pointer_type, bloc));
2182   params->push_back(Typed_identifier("size", uintptr_type, bloc));
2183 
2184   Typed_identifier_list* results = new Typed_identifier_list();
2185   results->push_back(Typed_identifier("", Type::lookup_bool_type(), bloc));
2186 
2187   Function_type* memequal_fntype = Type::make_function_type(NULL, params,
2188 							    results, bloc);
2189 
2190   Named_object* memequal =
2191     Named_object::make_function_declaration("runtime.memequal", NULL,
2192 					    memequal_fntype, bloc);
2193   memequal->func_declaration_value()->set_asm_name("runtime.memequal");
2194 
2195   Named_object* key1_arg = gogo->lookup("key1", NULL);
2196   go_assert(key1_arg != NULL);
2197   Named_object* key2_arg = gogo->lookup("key2", NULL);
2198   go_assert(key2_arg != NULL);
2199 
2200   Expression* key1_ref = Expression::make_var_reference(key1_arg, bloc);
2201   Expression* key2_ref = Expression::make_var_reference(key2_arg, bloc);
2202   Expression* size_arg = Expression::make_integer_int64(size, uintptr_type,
2203 							bloc);
2204   Expression_list* args = new Expression_list();
2205   args->push_back(key1_ref);
2206   args->push_back(key2_ref);
2207   args->push_back(size_arg);
2208   Expression* func = Expression::make_func_reference(memequal, NULL, bloc);
2209   Expression* call = Expression::make_call(func, args, false, bloc);
2210 
2211   Expression_list* vals = new Expression_list();
2212   vals->push_back(call);
2213   Statement* s = Statement::make_return_statement(vals, bloc);
2214   gogo->add_statement(s);
2215 }
2216 
2217 // Write a hash function that simply calls the hash function for a
2218 // named type.  This is used when one named type is defined as
2219 // another.  This ensures that this case works when the other named
2220 // type is defined in another package and relies on calling hash
2221 // functions defined only in that package.
2222 
2223 void
write_named_hash(Gogo * gogo,Named_type * name,Function_type * hash_fntype,Function_type * equal_fntype)2224 Type::write_named_hash(Gogo* gogo, Named_type* name,
2225 		       Function_type* hash_fntype, Function_type* equal_fntype)
2226 {
2227   Location bloc = Linemap::predeclared_location();
2228 
2229   Named_type* base_type = name->real_type()->named_type();
2230   while (base_type->is_alias())
2231     {
2232       base_type = base_type->real_type()->named_type();
2233       go_assert(base_type != NULL);
2234     }
2235   go_assert(base_type != NULL);
2236 
2237   // The pointer to the type we are going to hash.  This is an
2238   // unsafe.Pointer.
2239   Named_object* key_arg = gogo->lookup("key", NULL);
2240   go_assert(key_arg != NULL);
2241 
2242   // The seed argument to the hash function.
2243   Named_object* seed_arg = gogo->lookup("seed", NULL);
2244   go_assert(seed_arg != NULL);
2245 
2246   Named_object* hash_fn;
2247   Named_object* equal_fn;
2248   name->real_type()->type_functions(gogo, base_type, hash_fntype, equal_fntype,
2249 				    &hash_fn, &equal_fn);
2250 
2251   // Call the hash function for the base type.
2252   Expression* key_ref = Expression::make_var_reference(key_arg, bloc);
2253   Expression* seed_ref = Expression::make_var_reference(seed_arg, bloc);
2254   Expression_list* args = new Expression_list();
2255   args->push_back(key_ref);
2256   args->push_back(seed_ref);
2257   Expression* func = Expression::make_func_reference(hash_fn, NULL, bloc);
2258   Expression* call = Expression::make_call(func, args, false, bloc);
2259 
2260   // Return the hash of the base type.
2261   Expression_list* vals = new Expression_list();
2262   vals->push_back(call);
2263   Statement* s = Statement::make_return_statement(vals, bloc);
2264   gogo->add_statement(s);
2265 }
2266 
2267 // Write an equality function that simply calls the equality function
2268 // for a named type.  This is used when one named type is defined as
2269 // another.  This ensures that this case works when the other named
2270 // type is defined in another package and relies on calling equality
2271 // functions defined only in that package.
2272 
2273 void
write_named_equal(Gogo * gogo,Named_type * name)2274 Type::write_named_equal(Gogo* gogo, Named_type* name)
2275 {
2276   Location bloc = Linemap::predeclared_location();
2277 
2278   // The pointers to the types we are going to compare.  These have
2279   // type unsafe.Pointer.
2280   Named_object* key1_arg = gogo->lookup("key1", NULL);
2281   Named_object* key2_arg = gogo->lookup("key2", NULL);
2282   go_assert(key1_arg != NULL && key2_arg != NULL);
2283 
2284   Named_type* base_type = name->real_type()->named_type();
2285   go_assert(base_type != NULL);
2286 
2287   // Build temporaries with the base type.
2288   Type* pt = Type::make_pointer_type(base_type);
2289 
2290   Expression* ref = Expression::make_var_reference(key1_arg, bloc);
2291   ref = Expression::make_cast(pt, ref, bloc);
2292   Temporary_statement* p1 = Statement::make_temporary(pt, ref, bloc);
2293   gogo->add_statement(p1);
2294 
2295   ref = Expression::make_var_reference(key2_arg, bloc);
2296   ref = Expression::make_cast(pt, ref, bloc);
2297   Temporary_statement* p2 = Statement::make_temporary(pt, ref, bloc);
2298   gogo->add_statement(p2);
2299 
2300   // Compare the values for equality.
2301   Expression* t1 = Expression::make_temporary_reference(p1, bloc);
2302   t1 = Expression::make_dereference(t1, Expression::NIL_CHECK_NOT_NEEDED, bloc);
2303 
2304   Expression* t2 = Expression::make_temporary_reference(p2, bloc);
2305   t2 = Expression::make_dereference(t2, Expression::NIL_CHECK_NOT_NEEDED, bloc);
2306 
2307   Expression* cond = Expression::make_binary(OPERATOR_EQEQ, t1, t2, bloc);
2308 
2309   // Return the equality comparison.
2310   Expression_list* vals = new Expression_list();
2311   vals->push_back(cond);
2312   Statement* s = Statement::make_return_statement(vals, bloc);
2313   gogo->add_statement(s);
2314 }
2315 
2316 // Return a composite literal for the type descriptor for a plain type
2317 // of kind RUNTIME_TYPE_KIND named NAME.
2318 
2319 Expression*
type_descriptor_constructor(Gogo * gogo,int runtime_type_kind,Named_type * name,const Methods * methods,bool only_value_methods)2320 Type::type_descriptor_constructor(Gogo* gogo, int runtime_type_kind,
2321 				  Named_type* name, const Methods* methods,
2322 				  bool only_value_methods)
2323 {
2324   Location bloc = Linemap::predeclared_location();
2325 
2326   Type* td_type = Type::make_type_descriptor_type();
2327   const Struct_field_list* fields = td_type->struct_type()->fields();
2328 
2329   Expression_list* vals = new Expression_list();
2330   vals->reserve(12);
2331 
2332   if (!this->has_pointer())
2333     runtime_type_kind |= RUNTIME_TYPE_KIND_NO_POINTERS;
2334   if (this->points_to() != NULL)
2335     runtime_type_kind |= RUNTIME_TYPE_KIND_DIRECT_IFACE;
2336   int64_t ptrsize;
2337   int64_t ptrdata;
2338   if (this->needs_gcprog(gogo, &ptrsize, &ptrdata))
2339     runtime_type_kind |= RUNTIME_TYPE_KIND_GC_PROG;
2340 
2341   Struct_field_list::const_iterator p = fields->begin();
2342   go_assert(p->is_field_name("size"));
2343   Expression::Type_info type_info = Expression::TYPE_INFO_SIZE;
2344   vals->push_back(Expression::make_type_info(this, type_info));
2345 
2346   ++p;
2347   go_assert(p->is_field_name("ptrdata"));
2348   type_info = Expression::TYPE_INFO_DESCRIPTOR_PTRDATA;
2349   vals->push_back(Expression::make_type_info(this, type_info));
2350 
2351   ++p;
2352   go_assert(p->is_field_name("hash"));
2353   unsigned int h;
2354   if (name != NULL)
2355     h = name->hash_for_method(gogo, Type::COMPARE_TAGS);
2356   else
2357     h = this->hash_for_method(gogo, Type::COMPARE_TAGS);
2358   vals->push_back(Expression::make_integer_ul(h, p->type(), bloc));
2359 
2360   ++p;
2361   go_assert(p->is_field_name("kind"));
2362   vals->push_back(Expression::make_integer_ul(runtime_type_kind, p->type(),
2363 					      bloc));
2364 
2365   ++p;
2366   go_assert(p->is_field_name("align"));
2367   type_info = Expression::TYPE_INFO_ALIGNMENT;
2368   vals->push_back(Expression::make_type_info(this, type_info));
2369 
2370   ++p;
2371   go_assert(p->is_field_name("fieldAlign"));
2372   type_info = Expression::TYPE_INFO_FIELD_ALIGNMENT;
2373   vals->push_back(Expression::make_type_info(this, type_info));
2374 
2375   ++p;
2376   go_assert(p->is_field_name("hashfn"));
2377   Function_type* hash_fntype = p->type()->function_type();
2378 
2379   ++p;
2380   go_assert(p->is_field_name("equalfn"));
2381   Function_type* equal_fntype = p->type()->function_type();
2382 
2383   Named_object* hash_fn;
2384   Named_object* equal_fn;
2385   this->type_functions(gogo, name, hash_fntype, equal_fntype, &hash_fn,
2386 		       &equal_fn);
2387   if (hash_fn == NULL)
2388     vals->push_back(Expression::make_cast(hash_fntype,
2389 					  Expression::make_nil(bloc),
2390 					  bloc));
2391   else
2392     vals->push_back(Expression::make_func_reference(hash_fn, NULL, bloc));
2393   if (equal_fn == NULL)
2394     vals->push_back(Expression::make_cast(equal_fntype,
2395 					  Expression::make_nil(bloc),
2396 					  bloc));
2397   else
2398     vals->push_back(Expression::make_func_reference(equal_fn, NULL, bloc));
2399 
2400   ++p;
2401   go_assert(p->is_field_name("gcdata"));
2402   vals->push_back(Expression::make_gc_symbol(this));
2403 
2404   ++p;
2405   go_assert(p->is_field_name("string"));
2406   Expression* s = Expression::make_string((name != NULL
2407 					   ? name->reflection(gogo)
2408 					   : this->reflection(gogo)),
2409 					  bloc);
2410   vals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
2411 
2412   ++p;
2413   go_assert(p->is_field_name("uncommonType"));
2414   if (name == NULL && methods == NULL)
2415     vals->push_back(Expression::make_nil(bloc));
2416   else
2417     {
2418       if (methods == NULL)
2419 	methods = name->methods();
2420       vals->push_back(this->uncommon_type_constructor(gogo,
2421 						      p->type()->deref(),
2422 						      name, methods,
2423 						      only_value_methods));
2424     }
2425 
2426   ++p;
2427   go_assert(p->is_field_name("ptrToThis"));
2428   if (name == NULL && methods == NULL)
2429     vals->push_back(Expression::make_nil(bloc));
2430   else
2431     {
2432       Type* pt;
2433       if (name != NULL)
2434 	pt = Type::make_pointer_type(name);
2435       else
2436 	pt = Type::make_pointer_type(this);
2437       vals->push_back(Expression::make_type_descriptor(pt, bloc));
2438     }
2439 
2440   ++p;
2441   go_assert(p == fields->end());
2442 
2443   return Expression::make_struct_composite_literal(td_type, vals, bloc);
2444 }
2445 
2446 // The maximum length of a GC ptrmask bitmap.  This corresponds to the
2447 // length used by the gc toolchain, and also appears in
2448 // libgo/go/reflect/type.go.
2449 
2450 static const int64_t max_ptrmask_bytes = 2048;
2451 
2452 // Return a pointer to the Garbage Collection information for this type.
2453 
2454 Bexpression*
gc_symbol_pointer(Gogo * gogo)2455 Type::gc_symbol_pointer(Gogo* gogo)
2456 {
2457   Type* t = this->unalias();
2458 
2459   if (!t->has_pointer())
2460     return gogo->backend()->nil_pointer_expression();
2461 
2462   if (t->gc_symbol_var_ == NULL)
2463     {
2464       t->make_gc_symbol_var(gogo);
2465       go_assert(t->gc_symbol_var_ != NULL);
2466     }
2467   Location bloc = Linemap::predeclared_location();
2468   Bexpression* var_expr =
2469       gogo->backend()->var_expression(t->gc_symbol_var_, bloc);
2470   Bexpression* addr_expr =
2471       gogo->backend()->address_expression(var_expr, bloc);
2472 
2473   Type* uint8_type = Type::lookup_integer_type("uint8");
2474   Type* pointer_uint8_type = Type::make_pointer_type(uint8_type);
2475   Btype* ubtype = pointer_uint8_type->get_backend(gogo);
2476   return gogo->backend()->convert_expression(ubtype, addr_expr, bloc);
2477 }
2478 
2479 // A mapping from unnamed types to GC symbol variables.
2480 
2481 Type::GC_symbol_vars Type::gc_symbol_vars;
2482 
2483 // Build the GC symbol for this type.
2484 
2485 void
make_gc_symbol_var(Gogo * gogo)2486 Type::make_gc_symbol_var(Gogo* gogo)
2487 {
2488   go_assert(this->gc_symbol_var_ == NULL);
2489 
2490   Named_type* nt = this->named_type();
2491 
2492   // We can have multiple instances of unnamed types and similar to type
2493   // descriptors, we only want to the emit the GC data once, so we use a
2494   // hash table.
2495   Bvariable** phash = NULL;
2496   if (nt == NULL)
2497     {
2498       Bvariable* bvnull = NULL;
2499       std::pair<GC_symbol_vars::iterator, bool> ins =
2500 	Type::gc_symbol_vars.insert(std::make_pair(this, bvnull));
2501       if (!ins.second)
2502 	{
2503 	  // We've already built a gc symbol for this type.
2504 	  this->gc_symbol_var_ = ins.first->second;
2505 	  return;
2506 	}
2507       phash = &ins.first->second;
2508     }
2509 
2510   int64_t ptrsize;
2511   int64_t ptrdata;
2512   if (!this->needs_gcprog(gogo, &ptrsize, &ptrdata))
2513     {
2514       this->gc_symbol_var_ = this->gc_ptrmask_var(gogo, ptrsize, ptrdata);
2515       if (phash != NULL)
2516 	*phash = this->gc_symbol_var_;
2517       return;
2518     }
2519 
2520   std::string sym_name = gogo->gc_symbol_name(this);
2521 
2522   // Build the contents of the gc symbol.
2523   Expression* sym_init = this->gcprog_constructor(gogo, ptrsize, ptrdata);
2524   Btype* sym_btype = sym_init->type()->get_backend(gogo);
2525 
2526   // If the type descriptor for this type is defined somewhere else, so is the
2527   // GC symbol.
2528   const Package* dummy;
2529   if (this->type_descriptor_defined_elsewhere(nt, &dummy))
2530     {
2531       std::string asm_name(go_selectively_encode_id(sym_name));
2532       this->gc_symbol_var_ =
2533           gogo->backend()->implicit_variable_reference(sym_name, asm_name,
2534                                                        sym_btype);
2535       if (phash != NULL)
2536 	*phash = this->gc_symbol_var_;
2537       return;
2538     }
2539 
2540   // See if this gc symbol can appear in multiple packages.
2541   bool is_common = false;
2542   if (nt != NULL)
2543     {
2544       // We create the symbol for a builtin type whenever we need
2545       // it.
2546       is_common = nt->is_builtin();
2547     }
2548   else
2549     {
2550       // This is an unnamed type.  The descriptor could be defined in
2551       // any package where it is needed, and the linker will pick one
2552       // descriptor to keep.
2553       is_common = true;
2554     }
2555 
2556   // Since we are building the GC symbol in this package, we must create the
2557   // variable before converting the initializer to its backend representation
2558   // because the initializer may refer to the GC symbol for this type.
2559   std::string asm_name(go_selectively_encode_id(sym_name));
2560   this->gc_symbol_var_ =
2561       gogo->backend()->implicit_variable(sym_name, asm_name,
2562 					 sym_btype, false, true, is_common, 0);
2563   if (phash != NULL)
2564     *phash = this->gc_symbol_var_;
2565 
2566   Translate_context context(gogo, NULL, NULL, NULL);
2567   context.set_is_const();
2568   Bexpression* sym_binit = sym_init->get_backend(&context);
2569   gogo->backend()->implicit_variable_set_init(this->gc_symbol_var_, sym_name,
2570 					      sym_btype, false, true, is_common,
2571 					      sym_binit);
2572 }
2573 
2574 // Return whether this type needs a GC program, and set *PTRDATA to
2575 // the size of the pointer data in bytes and *PTRSIZE to the size of a
2576 // pointer.
2577 
2578 bool
needs_gcprog(Gogo * gogo,int64_t * ptrsize,int64_t * ptrdata)2579 Type::needs_gcprog(Gogo* gogo, int64_t* ptrsize, int64_t* ptrdata)
2580 {
2581   Type* voidptr = Type::make_pointer_type(Type::make_void_type());
2582   if (!voidptr->backend_type_size(gogo, ptrsize))
2583     go_unreachable();
2584 
2585   if (!this->backend_type_ptrdata(gogo, ptrdata))
2586     {
2587       go_assert(saw_errors());
2588       return false;
2589     }
2590 
2591   return *ptrdata / *ptrsize > max_ptrmask_bytes;
2592 }
2593 
2594 // A simple class used to build a GC ptrmask for a type.
2595 
2596 class Ptrmask
2597 {
2598  public:
Ptrmask(size_t count)2599   Ptrmask(size_t count)
2600     : bits_((count + 7) / 8, 0)
2601   {}
2602 
2603   void
2604   set_from(Gogo*, Type*, int64_t ptrsize, int64_t offset);
2605 
2606   std::string
2607   symname() const;
2608 
2609   Expression*
2610   constructor(Gogo* gogo) const;
2611 
2612  private:
2613   void
set(size_t index)2614   set(size_t index)
2615   { this->bits_.at(index / 8) |= 1 << (index % 8); }
2616 
2617   // The actual bits.
2618   std::vector<unsigned char> bits_;
2619 };
2620 
2621 // Set bits in ptrmask starting from OFFSET based on TYPE.  OFFSET
2622 // counts in bytes.  PTRSIZE is the size of a pointer on the target
2623 // system.
2624 
2625 void
set_from(Gogo * gogo,Type * type,int64_t ptrsize,int64_t offset)2626 Ptrmask::set_from(Gogo* gogo, Type* type, int64_t ptrsize, int64_t offset)
2627 {
2628   switch (type->base()->classification())
2629     {
2630     default:
2631     case Type::TYPE_NIL:
2632     case Type::TYPE_CALL_MULTIPLE_RESULT:
2633     case Type::TYPE_NAMED:
2634     case Type::TYPE_FORWARD:
2635       go_unreachable();
2636 
2637     case Type::TYPE_ERROR:
2638     case Type::TYPE_VOID:
2639     case Type::TYPE_BOOLEAN:
2640     case Type::TYPE_INTEGER:
2641     case Type::TYPE_FLOAT:
2642     case Type::TYPE_COMPLEX:
2643     case Type::TYPE_SINK:
2644       break;
2645 
2646     case Type::TYPE_FUNCTION:
2647     case Type::TYPE_POINTER:
2648     case Type::TYPE_MAP:
2649     case Type::TYPE_CHANNEL:
2650       // These types are all a single pointer.
2651       go_assert((offset % ptrsize) == 0);
2652       this->set(offset / ptrsize);
2653       break;
2654 
2655     case Type::TYPE_STRING:
2656       // A string starts with a single pointer.
2657       go_assert((offset % ptrsize) == 0);
2658       this->set(offset / ptrsize);
2659       break;
2660 
2661     case Type::TYPE_INTERFACE:
2662       // An interface is two pointers.
2663       go_assert((offset % ptrsize) == 0);
2664       this->set(offset / ptrsize);
2665       this->set((offset / ptrsize) + 1);
2666       break;
2667 
2668     case Type::TYPE_STRUCT:
2669       {
2670 	if (!type->has_pointer())
2671 	  return;
2672 
2673 	const Struct_field_list* fields = type->struct_type()->fields();
2674 	int64_t soffset = 0;
2675 	for (Struct_field_list::const_iterator pf = fields->begin();
2676 	     pf != fields->end();
2677 	     ++pf)
2678 	  {
2679 	    int64_t field_align;
2680 	    if (!pf->type()->backend_type_field_align(gogo, &field_align))
2681 	      {
2682 		go_assert(saw_errors());
2683 		return;
2684 	      }
2685 	    soffset = (soffset + (field_align - 1)) &~ (field_align - 1);
2686 
2687 	    this->set_from(gogo, pf->type(), ptrsize, offset + soffset);
2688 
2689 	    int64_t field_size;
2690 	    if (!pf->type()->backend_type_size(gogo, &field_size))
2691 	      {
2692 		go_assert(saw_errors());
2693 		return;
2694 	      }
2695 	    soffset += field_size;
2696 	  }
2697       }
2698       break;
2699 
2700     case Type::TYPE_ARRAY:
2701       if (type->is_slice_type())
2702 	{
2703 	  // A slice starts with a single pointer.
2704 	  go_assert((offset % ptrsize) == 0);
2705 	  this->set(offset / ptrsize);
2706 	  break;
2707 	}
2708       else
2709 	{
2710 	  if (!type->has_pointer())
2711 	    return;
2712 
2713 	  int64_t len;
2714 	  if (!type->array_type()->int_length(&len))
2715 	    {
2716 	      go_assert(saw_errors());
2717 	      return;
2718 	    }
2719 
2720 	  Type* element_type = type->array_type()->element_type();
2721 	  int64_t ele_size;
2722 	  if (!element_type->backend_type_size(gogo, &ele_size))
2723 	    {
2724 	      go_assert(saw_errors());
2725 	      return;
2726 	    }
2727 
2728 	  int64_t eoffset = 0;
2729 	  for (int64_t i = 0; i < len; i++, eoffset += ele_size)
2730 	    this->set_from(gogo, element_type, ptrsize, offset + eoffset);
2731 	  break;
2732 	}
2733     }
2734 }
2735 
2736 // Return a symbol name for this ptrmask.  This is used to coalesce
2737 // identical ptrmasks, which are common.  The symbol name must use
2738 // only characters that are valid in symbols.  It's nice if it's
2739 // short.  We convert it to a string that uses only 32 characters,
2740 // avoiding digits and u and U.
2741 
2742 std::string
symname() const2743 Ptrmask::symname() const
2744 {
2745   const char chars[33] = "abcdefghijklmnopqrstvwxyzABCDEFG";
2746   go_assert(chars[32] == '\0');
2747   std::string ret;
2748   unsigned int b = 0;
2749   int remaining = 0;
2750   for (std::vector<unsigned char>::const_iterator p = this->bits_.begin();
2751        p != this->bits_.end();
2752        ++p)
2753     {
2754       b |= *p << remaining;
2755       remaining += 8;
2756       while (remaining >= 5)
2757 	{
2758 	  ret += chars[b & 0x1f];
2759 	  b >>= 5;
2760 	  remaining -= 5;
2761 	}
2762     }
2763   while (remaining > 0)
2764     {
2765       ret += chars[b & 0x1f];
2766       b >>= 5;
2767       remaining -= 5;
2768     }
2769   return ret;
2770 }
2771 
2772 // Return a constructor for this ptrmask.  This will be used to
2773 // initialize the runtime ptrmask value.
2774 
2775 Expression*
constructor(Gogo * gogo) const2776 Ptrmask::constructor(Gogo* gogo) const
2777 {
2778   Location bloc = Linemap::predeclared_location();
2779   Type* byte_type = gogo->lookup_global("byte")->type_value();
2780   Expression* len = Expression::make_integer_ul(this->bits_.size(), NULL,
2781 						bloc);
2782   Array_type* at = Type::make_array_type(byte_type, len);
2783   Expression_list* vals = new Expression_list();
2784   vals->reserve(this->bits_.size());
2785   for (std::vector<unsigned char>::const_iterator p = this->bits_.begin();
2786        p != this->bits_.end();
2787        ++p)
2788     vals->push_back(Expression::make_integer_ul(*p, byte_type, bloc));
2789   return Expression::make_array_composite_literal(at, vals, bloc);
2790 }
2791 
2792 // The hash table mapping a ptrmask symbol name to the ptrmask variable.
2793 Type::GC_gcbits_vars Type::gc_gcbits_vars;
2794 
2795 // Return a ptrmask variable for a type.  For a type descriptor this
2796 // is only used for variables that are small enough to not need a
2797 // gcprog, but for a global variable this is used for a variable of
2798 // any size.  PTRDATA is the number of bytes of the type that contain
2799 // pointer data.  PTRSIZE is the size of a pointer on the target
2800 // system.
2801 
2802 Bvariable*
gc_ptrmask_var(Gogo * gogo,int64_t ptrsize,int64_t ptrdata)2803 Type::gc_ptrmask_var(Gogo* gogo, int64_t ptrsize, int64_t ptrdata)
2804 {
2805   Ptrmask ptrmask(ptrdata / ptrsize);
2806   if (ptrdata >= ptrsize)
2807     ptrmask.set_from(gogo, this, ptrsize, 0);
2808   else
2809     {
2810       // This can happen in error cases.  Just build an empty gcbits.
2811       go_assert(saw_errors());
2812     }
2813 
2814   std::string sym_name = gogo->ptrmask_symbol_name(ptrmask.symname());
2815   Bvariable* bvnull = NULL;
2816   std::pair<GC_gcbits_vars::iterator, bool> ins =
2817     Type::gc_gcbits_vars.insert(std::make_pair(sym_name, bvnull));
2818   if (!ins.second)
2819     {
2820       // We've already built a GC symbol for this set of gcbits.
2821       return ins.first->second;
2822     }
2823 
2824   Expression* val = ptrmask.constructor(gogo);
2825   Translate_context context(gogo, NULL, NULL, NULL);
2826   context.set_is_const();
2827   Bexpression* bval = val->get_backend(&context);
2828 
2829   std::string asm_name(go_selectively_encode_id(sym_name));
2830   Btype *btype = val->type()->get_backend(gogo);
2831   Bvariable* ret = gogo->backend()->implicit_variable(sym_name, asm_name,
2832 						      btype, false, true,
2833 						      true, 0);
2834   gogo->backend()->implicit_variable_set_init(ret, sym_name, btype, false,
2835 					      true, true, bval);
2836   ins.first->second = ret;
2837   return ret;
2838 }
2839 
2840 // A GCProg is used to build a program for the garbage collector.
2841 // This is used for types with a lot of pointer data, to reduce the
2842 // size of the data in the compiled program.  The program is expanded
2843 // at runtime.  For the format, see runGCProg in libgo/go/runtime/mbitmap.go.
2844 
2845 class GCProg
2846 {
2847  public:
GCProg()2848   GCProg()
2849     : bytes_(), index_(0), nb_(0)
2850   {}
2851 
2852   // The number of bits described so far.
2853   int64_t
bit_index() const2854   bit_index() const
2855   { return this->index_; }
2856 
2857   void
2858   set_from(Gogo*, Type*, int64_t ptrsize, int64_t offset);
2859 
2860   void
2861   end();
2862 
2863   Expression*
2864   constructor(Gogo* gogo) const;
2865 
2866  private:
2867   void
2868   ptr(int64_t);
2869 
2870   bool
2871   should_repeat(int64_t, int64_t);
2872 
2873   void
2874   repeat(int64_t, int64_t);
2875 
2876   void
2877   zero_until(int64_t);
2878 
2879   void
2880   lit(unsigned char);
2881 
2882   void
2883   varint(int64_t);
2884 
2885   void
2886   flushlit();
2887 
2888   // Add a byte to the program.
2889   void
byte(unsigned char x)2890   byte(unsigned char x)
2891   { this->bytes_.push_back(x); }
2892 
2893   // The maximum number of bytes of literal bits.
2894   static const int max_literal = 127;
2895 
2896   // The program.
2897   std::vector<unsigned char> bytes_;
2898   // The index of the last bit described.
2899   int64_t index_;
2900   // The current set of literal bits.
2901   unsigned char b_[max_literal];
2902   // The current number of literal bits.
2903   int nb_;
2904 };
2905 
2906 // Set data in gcprog starting from OFFSET based on TYPE.  OFFSET
2907 // counts in bytes.  PTRSIZE is the size of a pointer on the target
2908 // system.
2909 
2910 void
set_from(Gogo * gogo,Type * type,int64_t ptrsize,int64_t offset)2911 GCProg::set_from(Gogo* gogo, Type* type, int64_t ptrsize, int64_t offset)
2912 {
2913   switch (type->base()->classification())
2914     {
2915     default:
2916     case Type::TYPE_NIL:
2917     case Type::TYPE_CALL_MULTIPLE_RESULT:
2918     case Type::TYPE_NAMED:
2919     case Type::TYPE_FORWARD:
2920       go_unreachable();
2921 
2922     case Type::TYPE_ERROR:
2923     case Type::TYPE_VOID:
2924     case Type::TYPE_BOOLEAN:
2925     case Type::TYPE_INTEGER:
2926     case Type::TYPE_FLOAT:
2927     case Type::TYPE_COMPLEX:
2928     case Type::TYPE_SINK:
2929       break;
2930 
2931     case Type::TYPE_FUNCTION:
2932     case Type::TYPE_POINTER:
2933     case Type::TYPE_MAP:
2934     case Type::TYPE_CHANNEL:
2935       // These types are all a single pointer.
2936       go_assert((offset % ptrsize) == 0);
2937       this->ptr(offset / ptrsize);
2938       break;
2939 
2940     case Type::TYPE_STRING:
2941       // A string starts with a single pointer.
2942       go_assert((offset % ptrsize) == 0);
2943       this->ptr(offset / ptrsize);
2944       break;
2945 
2946     case Type::TYPE_INTERFACE:
2947       // An interface is two pointers.
2948       go_assert((offset % ptrsize) == 0);
2949       this->ptr(offset / ptrsize);
2950       this->ptr((offset / ptrsize) + 1);
2951       break;
2952 
2953     case Type::TYPE_STRUCT:
2954       {
2955 	if (!type->has_pointer())
2956 	  return;
2957 
2958 	const Struct_field_list* fields = type->struct_type()->fields();
2959 	int64_t soffset = 0;
2960 	for (Struct_field_list::const_iterator pf = fields->begin();
2961 	     pf != fields->end();
2962 	     ++pf)
2963 	  {
2964 	    int64_t field_align;
2965 	    if (!pf->type()->backend_type_field_align(gogo, &field_align))
2966 	      {
2967 		go_assert(saw_errors());
2968 		return;
2969 	      }
2970 	    soffset = (soffset + (field_align - 1)) &~ (field_align - 1);
2971 
2972 	    this->set_from(gogo, pf->type(), ptrsize, offset + soffset);
2973 
2974 	    int64_t field_size;
2975 	    if (!pf->type()->backend_type_size(gogo, &field_size))
2976 	      {
2977 		go_assert(saw_errors());
2978 		return;
2979 	      }
2980 	    soffset += field_size;
2981 	  }
2982       }
2983       break;
2984 
2985     case Type::TYPE_ARRAY:
2986       if (type->is_slice_type())
2987 	{
2988 	  // A slice starts with a single pointer.
2989 	  go_assert((offset % ptrsize) == 0);
2990 	  this->ptr(offset / ptrsize);
2991 	  break;
2992 	}
2993       else
2994 	{
2995 	  if (!type->has_pointer())
2996 	    return;
2997 
2998 	  int64_t len;
2999 	  if (!type->array_type()->int_length(&len))
3000 	    {
3001 	      go_assert(saw_errors());
3002 	      return;
3003 	    }
3004 
3005 	  Type* element_type = type->array_type()->element_type();
3006 
3007 	  // Flatten array of array to a big array by multiplying counts.
3008 	  while (element_type->array_type() != NULL
3009 		 && !element_type->is_slice_type())
3010 	    {
3011 	      int64_t ele_len;
3012 	      if (!element_type->array_type()->int_length(&ele_len))
3013 		{
3014 		  go_assert(saw_errors());
3015 		  return;
3016 		}
3017 
3018 	      len *= ele_len;
3019 	      element_type = element_type->array_type()->element_type();
3020 	    }
3021 
3022 	  int64_t ele_size;
3023 	  if (!element_type->backend_type_size(gogo, &ele_size))
3024 	    {
3025 	      go_assert(saw_errors());
3026 	      return;
3027 	    }
3028 
3029 	  go_assert(len > 0 && ele_size > 0);
3030 
3031 	  if (!this->should_repeat(ele_size / ptrsize, len))
3032 	    {
3033 	      // Cheaper to just emit the bits.
3034 	      int64_t eoffset = 0;
3035 	      for (int64_t i = 0; i < len; i++, eoffset += ele_size)
3036 		this->set_from(gogo, element_type, ptrsize, offset + eoffset);
3037 	    }
3038 	  else
3039 	    {
3040 	      go_assert((offset % ptrsize) == 0);
3041 	      go_assert((ele_size % ptrsize) == 0);
3042 	      this->set_from(gogo, element_type, ptrsize, offset);
3043 	      this->zero_until((offset + ele_size) / ptrsize);
3044 	      this->repeat(ele_size / ptrsize, len - 1);
3045 	    }
3046 
3047 	  break;
3048 	}
3049     }
3050 }
3051 
3052 // Emit a 1 into the bit stream of a GC program at the given bit index.
3053 
3054 void
ptr(int64_t index)3055 GCProg::ptr(int64_t index)
3056 {
3057   go_assert(index >= this->index_);
3058   this->zero_until(index);
3059   this->lit(1);
3060 }
3061 
3062 // Return whether it is worthwhile to use a repeat to describe c
3063 // elements of n bits each, compared to just emitting c copies of the
3064 // n-bit description.
3065 
3066 bool
should_repeat(int64_t n,int64_t c)3067 GCProg::should_repeat(int64_t n, int64_t c)
3068 {
3069   // Repeat if there is more than 1 item and if the total data doesn't
3070   // fit into four bytes.
3071   return c > 1 && c * n > 4 * 8;
3072 }
3073 
3074 // Emit an instruction to repeat the description of the last n words c
3075 // times (including the initial description, so c + 1 times in total).
3076 
3077 void
repeat(int64_t n,int64_t c)3078 GCProg::repeat(int64_t n, int64_t c)
3079 {
3080   if (n == 0 || c == 0)
3081     return;
3082   this->flushlit();
3083   if (n < 128)
3084     this->byte(0x80 | static_cast<unsigned char>(n & 0x7f));
3085   else
3086     {
3087       this->byte(0x80);
3088       this->varint(n);
3089     }
3090   this->varint(c);
3091   this->index_ += n * c;
3092 }
3093 
3094 // Add zeros to the bit stream up to the given index.
3095 
3096 void
zero_until(int64_t index)3097 GCProg::zero_until(int64_t index)
3098 {
3099   go_assert(index >= this->index_);
3100   int64_t skip = index - this->index_;
3101   if (skip == 0)
3102     return;
3103   if (skip < 4 * 8)
3104     {
3105       for (int64_t i = 0; i < skip; ++i)
3106 	this->lit(0);
3107       return;
3108     }
3109   this->lit(0);
3110   this->flushlit();
3111   this->repeat(1, skip - 1);
3112 }
3113 
3114 // Add a single literal bit to the program.
3115 
3116 void
lit(unsigned char x)3117 GCProg::lit(unsigned char x)
3118 {
3119   if (this->nb_ == GCProg::max_literal)
3120     this->flushlit();
3121   this->b_[this->nb_] = x;
3122   ++this->nb_;
3123   ++this->index_;
3124 }
3125 
3126 // Emit the varint encoding of x.
3127 
3128 void
varint(int64_t x)3129 GCProg::varint(int64_t x)
3130 {
3131   go_assert(x >= 0);
3132   while (x >= 0x80)
3133     {
3134       this->byte(0x80 | static_cast<unsigned char>(x & 0x7f));
3135       x >>= 7;
3136     }
3137   this->byte(static_cast<unsigned char>(x & 0x7f));
3138 }
3139 
3140 // Flush any pending literal bits.
3141 
3142 void
flushlit()3143 GCProg::flushlit()
3144 {
3145   if (this->nb_ == 0)
3146     return;
3147   this->byte(static_cast<unsigned char>(this->nb_));
3148   unsigned char bits = 0;
3149   for (int i = 0; i < this->nb_; ++i)
3150     {
3151       bits |= this->b_[i] << (i % 8);
3152       if ((i + 1) % 8 == 0)
3153 	{
3154 	  this->byte(bits);
3155 	  bits = 0;
3156 	}
3157     }
3158   if (this->nb_ % 8 != 0)
3159     this->byte(bits);
3160   this->nb_ = 0;
3161 }
3162 
3163 // Mark the end of a GC program.
3164 
3165 void
end()3166 GCProg::end()
3167 {
3168   this->flushlit();
3169   this->byte(0);
3170 }
3171 
3172 // Return an Expression for the bytes in a GC program.
3173 
3174 Expression*
constructor(Gogo * gogo) const3175 GCProg::constructor(Gogo* gogo) const
3176 {
3177   Location bloc = Linemap::predeclared_location();
3178 
3179   // The first four bytes are the length of the program in target byte
3180   // order.  Build a struct whose first type is uint32 to make this
3181   // work.
3182 
3183   Type* uint32_type = Type::lookup_integer_type("uint32");
3184 
3185   Type* byte_type = gogo->lookup_global("byte")->type_value();
3186   Expression* len = Expression::make_integer_ul(this->bytes_.size(), NULL,
3187 						bloc);
3188   Array_type* at = Type::make_array_type(byte_type, len);
3189 
3190   Struct_type* st = Type::make_builtin_struct_type(2, "len", uint32_type,
3191 						   "bytes", at);
3192 
3193   Expression_list* vals = new Expression_list();
3194   vals->reserve(this->bytes_.size());
3195   for (std::vector<unsigned char>::const_iterator p = this->bytes_.begin();
3196        p != this->bytes_.end();
3197        ++p)
3198     vals->push_back(Expression::make_integer_ul(*p, byte_type, bloc));
3199   Expression* bytes = Expression::make_array_composite_literal(at, vals, bloc);
3200 
3201   vals = new Expression_list();
3202   vals->push_back(Expression::make_integer_ul(this->bytes_.size(), uint32_type,
3203 					      bloc));
3204   vals->push_back(bytes);
3205 
3206   return Expression::make_struct_composite_literal(st, vals, bloc);
3207 }
3208 
3209 // Return a composite literal for the garbage collection program for
3210 // this type.  This is only used for types that are too large to use a
3211 // ptrmask.
3212 
3213 Expression*
gcprog_constructor(Gogo * gogo,int64_t ptrsize,int64_t ptrdata)3214 Type::gcprog_constructor(Gogo* gogo, int64_t ptrsize, int64_t ptrdata)
3215 {
3216   Location bloc = Linemap::predeclared_location();
3217 
3218   GCProg prog;
3219   prog.set_from(gogo, this, ptrsize, 0);
3220   int64_t offset = prog.bit_index() * ptrsize;
3221   prog.end();
3222 
3223   int64_t type_size;
3224   if (!this->backend_type_size(gogo, &type_size))
3225     {
3226       go_assert(saw_errors());
3227       return Expression::make_error(bloc);
3228     }
3229 
3230   go_assert(offset >= ptrdata && offset <= type_size);
3231 
3232   return prog.constructor(gogo);
3233 }
3234 
3235 // Return a composite literal for the uncommon type information for
3236 // this type.  UNCOMMON_STRUCT_TYPE is the type of the uncommon type
3237 // struct.  If name is not NULL, it is the name of the type.  If
3238 // METHODS is not NULL, it is the list of methods.  ONLY_VALUE_METHODS
3239 // is true if only value methods should be included.  At least one of
3240 // NAME and METHODS must not be NULL.
3241 
3242 Expression*
uncommon_type_constructor(Gogo * gogo,Type * uncommon_type,Named_type * name,const Methods * methods,bool only_value_methods) const3243 Type::uncommon_type_constructor(Gogo* gogo, Type* uncommon_type,
3244 				Named_type* name, const Methods* methods,
3245 				bool only_value_methods) const
3246 {
3247   Location bloc = Linemap::predeclared_location();
3248 
3249   const Struct_field_list* fields = uncommon_type->struct_type()->fields();
3250 
3251   Expression_list* vals = new Expression_list();
3252   vals->reserve(3);
3253 
3254   Struct_field_list::const_iterator p = fields->begin();
3255   go_assert(p->is_field_name("name"));
3256 
3257   ++p;
3258   go_assert(p->is_field_name("pkgPath"));
3259 
3260   if (name == NULL)
3261     {
3262       vals->push_back(Expression::make_nil(bloc));
3263       vals->push_back(Expression::make_nil(bloc));
3264     }
3265   else
3266     {
3267       Named_object* no = name->named_object();
3268       std::string n = Gogo::unpack_hidden_name(no->name());
3269       Expression* s = Expression::make_string(n, bloc);
3270       vals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
3271 
3272       if (name->is_builtin())
3273 	vals->push_back(Expression::make_nil(bloc));
3274       else
3275 	{
3276 	  const Package* package = no->package();
3277 	  const std::string& pkgpath(package == NULL
3278 				     ? gogo->pkgpath()
3279 				     : package->pkgpath());
3280 	  s = Expression::make_string(pkgpath, bloc);
3281 	  vals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
3282 	}
3283     }
3284 
3285   ++p;
3286   go_assert(p->is_field_name("methods"));
3287   vals->push_back(this->methods_constructor(gogo, p->type(), methods,
3288 					    only_value_methods));
3289 
3290   ++p;
3291   go_assert(p == fields->end());
3292 
3293   Expression* r = Expression::make_struct_composite_literal(uncommon_type,
3294 							    vals, bloc);
3295   return Expression::make_unary(OPERATOR_AND, r, bloc);
3296 }
3297 
3298 // Sort methods by name.
3299 
3300 class Sort_methods
3301 {
3302  public:
3303   bool
operator ()(const std::pair<std::string,const Method * > & m1,const std::pair<std::string,const Method * > & m2) const3304   operator()(const std::pair<std::string, const Method*>& m1,
3305 	     const std::pair<std::string, const Method*>& m2) const
3306   {
3307     return (Gogo::unpack_hidden_name(m1.first)
3308 	    < Gogo::unpack_hidden_name(m2.first));
3309   }
3310 };
3311 
3312 // Return a composite literal for the type method table for this type.
3313 // METHODS_TYPE is the type of the table, and is a slice type.
3314 // METHODS is the list of methods.  If ONLY_VALUE_METHODS is true,
3315 // then only value methods are used.
3316 
3317 Expression*
methods_constructor(Gogo * gogo,Type * methods_type,const Methods * methods,bool only_value_methods) const3318 Type::methods_constructor(Gogo* gogo, Type* methods_type,
3319 			  const Methods* methods,
3320 			  bool only_value_methods) const
3321 {
3322   Location bloc = Linemap::predeclared_location();
3323 
3324   std::vector<std::pair<std::string, const Method*> > smethods;
3325   if (methods != NULL)
3326     {
3327       smethods.reserve(methods->count());
3328       for (Methods::const_iterator p = methods->begin();
3329 	   p != methods->end();
3330 	   ++p)
3331 	{
3332 	  if (p->second->is_ambiguous())
3333 	    continue;
3334 	  if (only_value_methods && !p->second->is_value_method())
3335 	    continue;
3336 
3337 	  // This is where we implement the magic //go:nointerface
3338 	  // comment.  If we saw that comment, we don't add this
3339 	  // method to the type descriptor.
3340 	  if (p->second->nointerface())
3341 	    continue;
3342 
3343 	  smethods.push_back(std::make_pair(p->first, p->second));
3344 	}
3345     }
3346 
3347   if (smethods.empty())
3348     return Expression::make_slice_composite_literal(methods_type, NULL, bloc);
3349 
3350   std::sort(smethods.begin(), smethods.end(), Sort_methods());
3351 
3352   Type* method_type = methods_type->array_type()->element_type();
3353 
3354   Expression_list* vals = new Expression_list();
3355   vals->reserve(smethods.size());
3356   for (std::vector<std::pair<std::string, const Method*> >::const_iterator p
3357 	 = smethods.begin();
3358        p != smethods.end();
3359        ++p)
3360     vals->push_back(this->method_constructor(gogo, method_type, p->first,
3361 					     p->second, only_value_methods));
3362 
3363   return Expression::make_slice_composite_literal(methods_type, vals, bloc);
3364 }
3365 
3366 // Return a composite literal for a single method.  METHOD_TYPE is the
3367 // type of the entry.  METHOD_NAME is the name of the method and M is
3368 // the method information.
3369 
3370 Expression*
method_constructor(Gogo *,Type * method_type,const std::string & method_name,const Method * m,bool only_value_methods) const3371 Type::method_constructor(Gogo*, Type* method_type,
3372 			 const std::string& method_name,
3373 			 const Method* m,
3374 			 bool only_value_methods) const
3375 {
3376   Location bloc = Linemap::predeclared_location();
3377 
3378   const Struct_field_list* fields = method_type->struct_type()->fields();
3379 
3380   Expression_list* vals = new Expression_list();
3381   vals->reserve(5);
3382 
3383   Struct_field_list::const_iterator p = fields->begin();
3384   go_assert(p->is_field_name("name"));
3385   const std::string n = Gogo::unpack_hidden_name(method_name);
3386   Expression* s = Expression::make_string(n, bloc);
3387   vals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
3388 
3389   ++p;
3390   go_assert(p->is_field_name("pkgPath"));
3391   if (!Gogo::is_hidden_name(method_name))
3392     vals->push_back(Expression::make_nil(bloc));
3393   else
3394     {
3395       s = Expression::make_string(Gogo::hidden_name_pkgpath(method_name),
3396 				  bloc);
3397       vals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
3398     }
3399 
3400   Named_object* no = (m->needs_stub_method()
3401 		      ? m->stub_object()
3402 		      : m->named_object());
3403 
3404   Function_type* mtype;
3405   if (no->is_function())
3406     mtype = no->func_value()->type();
3407   else
3408     mtype = no->func_declaration_value()->type();
3409   go_assert(mtype->is_method());
3410   Type* nonmethod_type = mtype->copy_without_receiver();
3411 
3412   ++p;
3413   go_assert(p->is_field_name("mtyp"));
3414   vals->push_back(Expression::make_type_descriptor(nonmethod_type, bloc));
3415 
3416   ++p;
3417   go_assert(p->is_field_name("typ"));
3418   bool want_pointer_receiver = !only_value_methods && m->is_value_method();
3419   nonmethod_type = mtype->copy_with_receiver_as_param(want_pointer_receiver);
3420   vals->push_back(Expression::make_type_descriptor(nonmethod_type, bloc));
3421 
3422   ++p;
3423   go_assert(p->is_field_name("tfn"));
3424   vals->push_back(Expression::make_func_code_reference(no, bloc));
3425 
3426   ++p;
3427   go_assert(p == fields->end());
3428 
3429   return Expression::make_struct_composite_literal(method_type, vals, bloc);
3430 }
3431 
3432 // Return a composite literal for the type descriptor of a plain type.
3433 // RUNTIME_TYPE_KIND is the value of the kind field.  If NAME is not
3434 // NULL, it is the name to use as well as the list of methods.
3435 
3436 Expression*
plain_type_descriptor(Gogo * gogo,int runtime_type_kind,Named_type * name)3437 Type::plain_type_descriptor(Gogo* gogo, int runtime_type_kind,
3438 			    Named_type* name)
3439 {
3440   return this->type_descriptor_constructor(gogo, runtime_type_kind,
3441 					   name, NULL, true);
3442 }
3443 
3444 // Return the type reflection string for this type.
3445 
3446 std::string
reflection(Gogo * gogo) const3447 Type::reflection(Gogo* gogo) const
3448 {
3449   std::string ret;
3450 
3451   // The do_reflection virtual function should set RET to the
3452   // reflection string.
3453   this->do_reflection(gogo, &ret);
3454 
3455   return ret;
3456 }
3457 
3458 // Return whether the backend size of the type is known.
3459 
3460 bool
is_backend_type_size_known(Gogo * gogo)3461 Type::is_backend_type_size_known(Gogo* gogo)
3462 {
3463   switch (this->classification_)
3464     {
3465     case TYPE_ERROR:
3466     case TYPE_VOID:
3467     case TYPE_BOOLEAN:
3468     case TYPE_INTEGER:
3469     case TYPE_FLOAT:
3470     case TYPE_COMPLEX:
3471     case TYPE_STRING:
3472     case TYPE_FUNCTION:
3473     case TYPE_POINTER:
3474     case TYPE_NIL:
3475     case TYPE_MAP:
3476     case TYPE_CHANNEL:
3477     case TYPE_INTERFACE:
3478       return true;
3479 
3480     case TYPE_STRUCT:
3481       {
3482 	const Struct_field_list* fields = this->struct_type()->fields();
3483 	for (Struct_field_list::const_iterator pf = fields->begin();
3484 	     pf != fields->end();
3485 	     ++pf)
3486 	  if (!pf->type()->is_backend_type_size_known(gogo))
3487 	    return false;
3488 	return true;
3489       }
3490 
3491     case TYPE_ARRAY:
3492       {
3493 	const Array_type* at = this->array_type();
3494 	if (at->length() == NULL)
3495 	  return true;
3496 	else
3497 	  {
3498 	    Numeric_constant nc;
3499 	    if (!at->length()->numeric_constant_value(&nc))
3500 	      return false;
3501 	    mpz_t ival;
3502 	    if (!nc.to_int(&ival))
3503 	      return false;
3504 	    mpz_clear(ival);
3505 	    return at->element_type()->is_backend_type_size_known(gogo);
3506 	  }
3507       }
3508 
3509     case TYPE_NAMED:
3510       this->named_type()->convert(gogo);
3511       return this->named_type()->is_named_backend_type_size_known();
3512 
3513     case TYPE_FORWARD:
3514       {
3515 	Forward_declaration_type* fdt = this->forward_declaration_type();
3516 	return fdt->real_type()->is_backend_type_size_known(gogo);
3517       }
3518 
3519     case TYPE_SINK:
3520     case TYPE_CALL_MULTIPLE_RESULT:
3521       go_unreachable();
3522 
3523     default:
3524       go_unreachable();
3525     }
3526 }
3527 
3528 // If the size of the type can be determined, set *PSIZE to the size
3529 // in bytes and return true.  Otherwise, return false.  This queries
3530 // the backend.
3531 
3532 bool
backend_type_size(Gogo * gogo,int64_t * psize)3533 Type::backend_type_size(Gogo* gogo, int64_t *psize)
3534 {
3535   if (!this->is_backend_type_size_known(gogo))
3536     return false;
3537   if (this->is_error_type())
3538     return false;
3539   Btype* bt = this->get_backend_placeholder(gogo);
3540   *psize = gogo->backend()->type_size(bt);
3541   if (*psize == -1)
3542     {
3543       if (this->named_type() != NULL)
3544 	go_error_at(this->named_type()->location(),
3545 		 "type %s larger than address space",
3546 		 Gogo::message_name(this->named_type()->name()).c_str());
3547       else
3548 	go_error_at(Linemap::unknown_location(),
3549 		    "type %s larger than address space",
3550 		    this->reflection(gogo).c_str());
3551 
3552       // Make this an error type to avoid knock-on errors.
3553       this->classification_ = TYPE_ERROR;
3554       return false;
3555     }
3556   return true;
3557 }
3558 
3559 // If the alignment of the type can be determined, set *PALIGN to
3560 // the alignment in bytes and return true.  Otherwise, return false.
3561 
3562 bool
backend_type_align(Gogo * gogo,int64_t * palign)3563 Type::backend_type_align(Gogo* gogo, int64_t *palign)
3564 {
3565   if (!this->is_backend_type_size_known(gogo))
3566     return false;
3567   Btype* bt = this->get_backend_placeholder(gogo);
3568   *palign = gogo->backend()->type_alignment(bt);
3569   return true;
3570 }
3571 
3572 // Like backend_type_align, but return the alignment when used as a
3573 // field.
3574 
3575 bool
backend_type_field_align(Gogo * gogo,int64_t * palign)3576 Type::backend_type_field_align(Gogo* gogo, int64_t *palign)
3577 {
3578   if (!this->is_backend_type_size_known(gogo))
3579     return false;
3580   Btype* bt = this->get_backend_placeholder(gogo);
3581   *palign = gogo->backend()->type_field_alignment(bt);
3582   return true;
3583 }
3584 
3585 // Get the ptrdata value for a type.  This is the size of the prefix
3586 // of the type that contains all pointers.  Store the ptrdata in
3587 // *PPTRDATA and return whether we found it.
3588 
3589 bool
backend_type_ptrdata(Gogo * gogo,int64_t * pptrdata)3590 Type::backend_type_ptrdata(Gogo* gogo, int64_t* pptrdata)
3591 {
3592   *pptrdata = 0;
3593 
3594   if (!this->has_pointer())
3595     return true;
3596 
3597   if (!this->is_backend_type_size_known(gogo))
3598     return false;
3599 
3600   switch (this->classification_)
3601     {
3602     case TYPE_ERROR:
3603       return true;
3604 
3605     case TYPE_FUNCTION:
3606     case TYPE_POINTER:
3607     case TYPE_MAP:
3608     case TYPE_CHANNEL:
3609       // These types are nothing but a pointer.
3610       return this->backend_type_size(gogo, pptrdata);
3611 
3612     case TYPE_INTERFACE:
3613       // An interface is a struct of two pointers.
3614       return this->backend_type_size(gogo, pptrdata);
3615 
3616     case TYPE_STRING:
3617       {
3618 	// A string is a struct whose first field is a pointer, and
3619 	// whose second field is not.
3620 	Type* uint8_type = Type::lookup_integer_type("uint8");
3621 	Type* ptr = Type::make_pointer_type(uint8_type);
3622 	return ptr->backend_type_size(gogo, pptrdata);
3623       }
3624 
3625     case TYPE_NAMED:
3626     case TYPE_FORWARD:
3627       return this->base()->backend_type_ptrdata(gogo, pptrdata);
3628 
3629     case TYPE_STRUCT:
3630       {
3631 	const Struct_field_list* fields = this->struct_type()->fields();
3632 	int64_t offset = 0;
3633 	const Struct_field *ptr = NULL;
3634 	int64_t ptr_offset = 0;
3635 	for (Struct_field_list::const_iterator pf = fields->begin();
3636 	     pf != fields->end();
3637 	     ++pf)
3638 	  {
3639 	    int64_t field_align;
3640 	    if (!pf->type()->backend_type_field_align(gogo, &field_align))
3641 	      return false;
3642 	    offset = (offset + (field_align - 1)) &~ (field_align - 1);
3643 
3644 	    if (pf->type()->has_pointer())
3645 	      {
3646 		ptr = &*pf;
3647 		ptr_offset = offset;
3648 	      }
3649 
3650 	    int64_t field_size;
3651 	    if (!pf->type()->backend_type_size(gogo, &field_size))
3652 	      return false;
3653 	    offset += field_size;
3654 	  }
3655 
3656 	if (ptr != NULL)
3657 	  {
3658 	    int64_t ptr_ptrdata;
3659 	    if (!ptr->type()->backend_type_ptrdata(gogo, &ptr_ptrdata))
3660 	      return false;
3661 	    *pptrdata = ptr_offset + ptr_ptrdata;
3662 	  }
3663 	return true;
3664       }
3665 
3666     case TYPE_ARRAY:
3667       if (this->is_slice_type())
3668 	{
3669 	  // A slice is a struct whose first field is a pointer, and
3670 	  // whose remaining fields are not.
3671 	  Type* element_type = this->array_type()->element_type();
3672 	  Type* ptr = Type::make_pointer_type(element_type);
3673 	  return ptr->backend_type_size(gogo, pptrdata);
3674 	}
3675       else
3676 	{
3677 	  Numeric_constant nc;
3678 	  if (!this->array_type()->length()->numeric_constant_value(&nc))
3679 	    return false;
3680 	  int64_t len;
3681 	  if (!nc.to_memory_size(&len))
3682 	    return false;
3683 
3684 	  Type* element_type = this->array_type()->element_type();
3685 	  int64_t ele_size;
3686 	  int64_t ele_ptrdata;
3687 	  if (!element_type->backend_type_size(gogo, &ele_size)
3688 	      || !element_type->backend_type_ptrdata(gogo, &ele_ptrdata))
3689 	    return false;
3690 	  go_assert(ele_size > 0 && ele_ptrdata > 0);
3691 
3692 	  *pptrdata = (len - 1) * ele_size + ele_ptrdata;
3693 	  return true;
3694 	}
3695 
3696     default:
3697     case TYPE_VOID:
3698     case TYPE_BOOLEAN:
3699     case TYPE_INTEGER:
3700     case TYPE_FLOAT:
3701     case TYPE_COMPLEX:
3702     case TYPE_SINK:
3703     case TYPE_NIL:
3704     case TYPE_CALL_MULTIPLE_RESULT:
3705       go_unreachable();
3706     }
3707 }
3708 
3709 // Get the ptrdata value to store in a type descriptor.  This is
3710 // normally the same as backend_type_ptrdata, but for a type that is
3711 // large enough to use a gcprog we may need to store a different value
3712 // if it ends with an array.  If the gcprog uses a repeat descriptor
3713 // for the array, and if the array element ends with non-pointer data,
3714 // then the gcprog will produce a value that describes the complete
3715 // array where the backend ptrdata will omit the non-pointer elements
3716 // of the final array element.  This is a subtle difference but the
3717 // run time code checks it to verify that it has expanded a gcprog as
3718 // expected.
3719 
3720 bool
descriptor_ptrdata(Gogo * gogo,int64_t * pptrdata)3721 Type::descriptor_ptrdata(Gogo* gogo, int64_t* pptrdata)
3722 {
3723   int64_t backend_ptrdata;
3724   if (!this->backend_type_ptrdata(gogo, &backend_ptrdata))
3725     return false;
3726 
3727   int64_t ptrsize;
3728   if (!this->needs_gcprog(gogo, &ptrsize, &backend_ptrdata))
3729     {
3730       *pptrdata = backend_ptrdata;
3731       return true;
3732     }
3733 
3734   GCProg prog;
3735   prog.set_from(gogo, this, ptrsize, 0);
3736   int64_t offset = prog.bit_index() * ptrsize;
3737 
3738   go_assert(offset >= backend_ptrdata);
3739   *pptrdata = offset;
3740   return true;
3741 }
3742 
3743 // Default function to export a type.
3744 
3745 void
do_export(Export *) const3746 Type::do_export(Export*) const
3747 {
3748   go_unreachable();
3749 }
3750 
3751 // Import a type.
3752 
3753 Type*
import_type(Import * imp)3754 Type::import_type(Import* imp)
3755 {
3756   if (imp->match_c_string("("))
3757     return Function_type::do_import(imp);
3758   else if (imp->match_c_string("*"))
3759     return Pointer_type::do_import(imp);
3760   else if (imp->match_c_string("struct "))
3761     return Struct_type::do_import(imp);
3762   else if (imp->match_c_string("["))
3763     return Array_type::do_import(imp);
3764   else if (imp->match_c_string("map "))
3765     return Map_type::do_import(imp);
3766   else if (imp->match_c_string("chan "))
3767     return Channel_type::do_import(imp);
3768   else if (imp->match_c_string("interface"))
3769     return Interface_type::do_import(imp);
3770   else
3771     {
3772       go_error_at(imp->location(), "import error: expected type");
3773       return Type::make_error_type();
3774     }
3775 }
3776 
3777 // Class Error_type.
3778 
3779 // Return the backend representation of an Error type.
3780 
3781 Btype*
do_get_backend(Gogo * gogo)3782 Error_type::do_get_backend(Gogo* gogo)
3783 {
3784   return gogo->backend()->error_type();
3785 }
3786 
3787 // Return an expression for the type descriptor for an error type.
3788 
3789 
3790 Expression*
do_type_descriptor(Gogo *,Named_type *)3791 Error_type::do_type_descriptor(Gogo*, Named_type*)
3792 {
3793   return Expression::make_error(Linemap::predeclared_location());
3794 }
3795 
3796 // We should not be asked for the reflection string for an error type.
3797 
3798 void
do_reflection(Gogo *,std::string *) const3799 Error_type::do_reflection(Gogo*, std::string*) const
3800 {
3801   go_assert(saw_errors());
3802 }
3803 
3804 Type*
make_error_type()3805 Type::make_error_type()
3806 {
3807   static Error_type singleton_error_type;
3808   return &singleton_error_type;
3809 }
3810 
3811 // Class Void_type.
3812 
3813 // Get the backend representation of a void type.
3814 
3815 Btype*
do_get_backend(Gogo * gogo)3816 Void_type::do_get_backend(Gogo* gogo)
3817 {
3818   return gogo->backend()->void_type();
3819 }
3820 
3821 Type*
make_void_type()3822 Type::make_void_type()
3823 {
3824   static Void_type singleton_void_type;
3825   return &singleton_void_type;
3826 }
3827 
3828 // Class Boolean_type.
3829 
3830 // Return the backend representation of the boolean type.
3831 
3832 Btype*
do_get_backend(Gogo * gogo)3833 Boolean_type::do_get_backend(Gogo* gogo)
3834 {
3835   return gogo->backend()->bool_type();
3836 }
3837 
3838 // Make the type descriptor.
3839 
3840 Expression*
do_type_descriptor(Gogo * gogo,Named_type * name)3841 Boolean_type::do_type_descriptor(Gogo* gogo, Named_type* name)
3842 {
3843   if (name != NULL)
3844     return this->plain_type_descriptor(gogo, RUNTIME_TYPE_KIND_BOOL, name);
3845   else
3846     {
3847       Named_object* no = gogo->lookup_global("bool");
3848       go_assert(no != NULL);
3849       return Type::type_descriptor(gogo, no->type_value());
3850     }
3851 }
3852 
3853 Type*
make_boolean_type()3854 Type::make_boolean_type()
3855 {
3856   static Boolean_type boolean_type;
3857   return &boolean_type;
3858 }
3859 
3860 // The named type "bool".
3861 
3862 static Named_type* named_bool_type;
3863 
3864 // Get the named type "bool".
3865 
3866 Named_type*
lookup_bool_type()3867 Type::lookup_bool_type()
3868 {
3869   return named_bool_type;
3870 }
3871 
3872 // Make the named type "bool".
3873 
3874 Named_type*
make_named_bool_type()3875 Type::make_named_bool_type()
3876 {
3877   Type* bool_type = Type::make_boolean_type();
3878   Named_object* named_object =
3879     Named_object::make_type("bool", NULL, bool_type,
3880                             Linemap::predeclared_location());
3881   Named_type* named_type = named_object->type_value();
3882   named_bool_type = named_type;
3883   return named_type;
3884 }
3885 
3886 // Class Integer_type.
3887 
3888 Integer_type::Named_integer_types Integer_type::named_integer_types;
3889 
3890 // Create a new integer type.  Non-abstract integer types always have
3891 // names.
3892 
3893 Named_type*
create_integer_type(const char * name,bool is_unsigned,int bits,int runtime_type_kind)3894 Integer_type::create_integer_type(const char* name, bool is_unsigned,
3895 				  int bits, int runtime_type_kind)
3896 {
3897   Integer_type* integer_type = new Integer_type(false, is_unsigned, bits,
3898 						runtime_type_kind);
3899   std::string sname(name);
3900   Named_object* named_object =
3901     Named_object::make_type(sname, NULL, integer_type,
3902                             Linemap::predeclared_location());
3903   Named_type* named_type = named_object->type_value();
3904   std::pair<Named_integer_types::iterator, bool> ins =
3905     Integer_type::named_integer_types.insert(std::make_pair(sname, named_type));
3906   go_assert(ins.second);
3907   return named_type;
3908 }
3909 
3910 // Look up an existing integer type.
3911 
3912 Named_type*
lookup_integer_type(const char * name)3913 Integer_type::lookup_integer_type(const char* name)
3914 {
3915   Named_integer_types::const_iterator p =
3916     Integer_type::named_integer_types.find(name);
3917   go_assert(p != Integer_type::named_integer_types.end());
3918   return p->second;
3919 }
3920 
3921 // Create a new abstract integer type.
3922 
3923 Integer_type*
create_abstract_integer_type()3924 Integer_type::create_abstract_integer_type()
3925 {
3926   static Integer_type* abstract_type;
3927   if (abstract_type == NULL)
3928     {
3929       Type* int_type = Type::lookup_integer_type("int");
3930       abstract_type = new Integer_type(true, false,
3931 				       int_type->integer_type()->bits(),
3932 				       RUNTIME_TYPE_KIND_INT);
3933     }
3934   return abstract_type;
3935 }
3936 
3937 // Create a new abstract character type.
3938 
3939 Integer_type*
create_abstract_character_type()3940 Integer_type::create_abstract_character_type()
3941 {
3942   static Integer_type* abstract_type;
3943   if (abstract_type == NULL)
3944     {
3945       abstract_type = new Integer_type(true, false, 32,
3946 				       RUNTIME_TYPE_KIND_INT32);
3947       abstract_type->set_is_rune();
3948     }
3949   return abstract_type;
3950 }
3951 
3952 // Integer type compatibility.
3953 
3954 bool
is_identical(const Integer_type * t) const3955 Integer_type::is_identical(const Integer_type* t) const
3956 {
3957   if (this->is_unsigned_ != t->is_unsigned_ || this->bits_ != t->bits_)
3958     return false;
3959   return this->is_abstract_ == t->is_abstract_;
3960 }
3961 
3962 // Hash code.
3963 
3964 unsigned int
do_hash_for_method(Gogo *,int) const3965 Integer_type::do_hash_for_method(Gogo*, int) const
3966 {
3967   return ((this->bits_ << 4)
3968 	  + ((this->is_unsigned_ ? 1 : 0) << 8)
3969 	  + ((this->is_abstract_ ? 1 : 0) << 9));
3970 }
3971 
3972 // Convert an Integer_type to the backend representation.
3973 
3974 Btype*
do_get_backend(Gogo * gogo)3975 Integer_type::do_get_backend(Gogo* gogo)
3976 {
3977   if (this->is_abstract_)
3978     {
3979       go_assert(saw_errors());
3980       return gogo->backend()->error_type();
3981     }
3982   return gogo->backend()->integer_type(this->is_unsigned_, this->bits_);
3983 }
3984 
3985 // The type descriptor for an integer type.  Integer types are always
3986 // named.
3987 
3988 Expression*
do_type_descriptor(Gogo * gogo,Named_type * name)3989 Integer_type::do_type_descriptor(Gogo* gogo, Named_type* name)
3990 {
3991   go_assert(name != NULL || saw_errors());
3992   return this->plain_type_descriptor(gogo, this->runtime_type_kind_, name);
3993 }
3994 
3995 // We should not be asked for the reflection string of a basic type.
3996 
3997 void
do_reflection(Gogo *,std::string *) const3998 Integer_type::do_reflection(Gogo*, std::string*) const
3999 {
4000   go_assert(saw_errors());
4001 }
4002 
4003 // Make an integer type.
4004 
4005 Named_type*
make_integer_type(const char * name,bool is_unsigned,int bits,int runtime_type_kind)4006 Type::make_integer_type(const char* name, bool is_unsigned, int bits,
4007 			int runtime_type_kind)
4008 {
4009   return Integer_type::create_integer_type(name, is_unsigned, bits,
4010 					   runtime_type_kind);
4011 }
4012 
4013 // Make an abstract integer type.
4014 
4015 Integer_type*
make_abstract_integer_type()4016 Type::make_abstract_integer_type()
4017 {
4018   return Integer_type::create_abstract_integer_type();
4019 }
4020 
4021 // Make an abstract character type.
4022 
4023 Integer_type*
make_abstract_character_type()4024 Type::make_abstract_character_type()
4025 {
4026   return Integer_type::create_abstract_character_type();
4027 }
4028 
4029 // Look up an integer type.
4030 
4031 Named_type*
lookup_integer_type(const char * name)4032 Type::lookup_integer_type(const char* name)
4033 {
4034   return Integer_type::lookup_integer_type(name);
4035 }
4036 
4037 // Class Float_type.
4038 
4039 Float_type::Named_float_types Float_type::named_float_types;
4040 
4041 // Create a new float type.  Non-abstract float types always have
4042 // names.
4043 
4044 Named_type*
create_float_type(const char * name,int bits,int runtime_type_kind)4045 Float_type::create_float_type(const char* name, int bits,
4046 			      int runtime_type_kind)
4047 {
4048   Float_type* float_type = new Float_type(false, bits, runtime_type_kind);
4049   std::string sname(name);
4050   Named_object* named_object =
4051     Named_object::make_type(sname, NULL, float_type,
4052                             Linemap::predeclared_location());
4053   Named_type* named_type = named_object->type_value();
4054   std::pair<Named_float_types::iterator, bool> ins =
4055     Float_type::named_float_types.insert(std::make_pair(sname, named_type));
4056   go_assert(ins.second);
4057   return named_type;
4058 }
4059 
4060 // Look up an existing float type.
4061 
4062 Named_type*
lookup_float_type(const char * name)4063 Float_type::lookup_float_type(const char* name)
4064 {
4065   Named_float_types::const_iterator p =
4066     Float_type::named_float_types.find(name);
4067   go_assert(p != Float_type::named_float_types.end());
4068   return p->second;
4069 }
4070 
4071 // Create a new abstract float type.
4072 
4073 Float_type*
create_abstract_float_type()4074 Float_type::create_abstract_float_type()
4075 {
4076   static Float_type* abstract_type;
4077   if (abstract_type == NULL)
4078     abstract_type = new Float_type(true, 64, RUNTIME_TYPE_KIND_FLOAT64);
4079   return abstract_type;
4080 }
4081 
4082 // Whether this type is identical with T.
4083 
4084 bool
is_identical(const Float_type * t) const4085 Float_type::is_identical(const Float_type* t) const
4086 {
4087   if (this->bits_ != t->bits_)
4088     return false;
4089   return this->is_abstract_ == t->is_abstract_;
4090 }
4091 
4092 // Hash code.
4093 
4094 unsigned int
do_hash_for_method(Gogo *,int) const4095 Float_type::do_hash_for_method(Gogo*, int) const
4096 {
4097   return (this->bits_ << 4) + ((this->is_abstract_ ? 1 : 0) << 8);
4098 }
4099 
4100 // Convert to the backend representation.
4101 
4102 Btype*
do_get_backend(Gogo * gogo)4103 Float_type::do_get_backend(Gogo* gogo)
4104 {
4105   return gogo->backend()->float_type(this->bits_);
4106 }
4107 
4108 // The type descriptor for a float type.  Float types are always named.
4109 
4110 Expression*
do_type_descriptor(Gogo * gogo,Named_type * name)4111 Float_type::do_type_descriptor(Gogo* gogo, Named_type* name)
4112 {
4113   go_assert(name != NULL || saw_errors());
4114   return this->plain_type_descriptor(gogo, this->runtime_type_kind_, name);
4115 }
4116 
4117 // We should not be asked for the reflection string of a basic type.
4118 
4119 void
do_reflection(Gogo *,std::string *) const4120 Float_type::do_reflection(Gogo*, std::string*) const
4121 {
4122   go_assert(saw_errors());
4123 }
4124 
4125 // Make a floating point type.
4126 
4127 Named_type*
make_float_type(const char * name,int bits,int runtime_type_kind)4128 Type::make_float_type(const char* name, int bits, int runtime_type_kind)
4129 {
4130   return Float_type::create_float_type(name, bits, runtime_type_kind);
4131 }
4132 
4133 // Make an abstract float type.
4134 
4135 Float_type*
make_abstract_float_type()4136 Type::make_abstract_float_type()
4137 {
4138   return Float_type::create_abstract_float_type();
4139 }
4140 
4141 // Look up a float type.
4142 
4143 Named_type*
lookup_float_type(const char * name)4144 Type::lookup_float_type(const char* name)
4145 {
4146   return Float_type::lookup_float_type(name);
4147 }
4148 
4149 // Class Complex_type.
4150 
4151 Complex_type::Named_complex_types Complex_type::named_complex_types;
4152 
4153 // Create a new complex type.  Non-abstract complex types always have
4154 // names.
4155 
4156 Named_type*
create_complex_type(const char * name,int bits,int runtime_type_kind)4157 Complex_type::create_complex_type(const char* name, int bits,
4158 				  int runtime_type_kind)
4159 {
4160   Complex_type* complex_type = new Complex_type(false, bits,
4161 						runtime_type_kind);
4162   std::string sname(name);
4163   Named_object* named_object =
4164     Named_object::make_type(sname, NULL, complex_type,
4165                             Linemap::predeclared_location());
4166   Named_type* named_type = named_object->type_value();
4167   std::pair<Named_complex_types::iterator, bool> ins =
4168     Complex_type::named_complex_types.insert(std::make_pair(sname,
4169 							    named_type));
4170   go_assert(ins.second);
4171   return named_type;
4172 }
4173 
4174 // Look up an existing complex type.
4175 
4176 Named_type*
lookup_complex_type(const char * name)4177 Complex_type::lookup_complex_type(const char* name)
4178 {
4179   Named_complex_types::const_iterator p =
4180     Complex_type::named_complex_types.find(name);
4181   go_assert(p != Complex_type::named_complex_types.end());
4182   return p->second;
4183 }
4184 
4185 // Create a new abstract complex type.
4186 
4187 Complex_type*
create_abstract_complex_type()4188 Complex_type::create_abstract_complex_type()
4189 {
4190   static Complex_type* abstract_type;
4191   if (abstract_type == NULL)
4192     abstract_type = new Complex_type(true, 128, RUNTIME_TYPE_KIND_COMPLEX128);
4193   return abstract_type;
4194 }
4195 
4196 // Whether this type is identical with T.
4197 
4198 bool
is_identical(const Complex_type * t) const4199 Complex_type::is_identical(const Complex_type *t) const
4200 {
4201   if (this->bits_ != t->bits_)
4202     return false;
4203   return this->is_abstract_ == t->is_abstract_;
4204 }
4205 
4206 // Hash code.
4207 
4208 unsigned int
do_hash_for_method(Gogo *,int) const4209 Complex_type::do_hash_for_method(Gogo*, int) const
4210 {
4211   return (this->bits_ << 4) + ((this->is_abstract_ ? 1 : 0) << 8);
4212 }
4213 
4214 // Convert to the backend representation.
4215 
4216 Btype*
do_get_backend(Gogo * gogo)4217 Complex_type::do_get_backend(Gogo* gogo)
4218 {
4219   return gogo->backend()->complex_type(this->bits_);
4220 }
4221 
4222 // The type descriptor for a complex type.  Complex types are always
4223 // named.
4224 
4225 Expression*
do_type_descriptor(Gogo * gogo,Named_type * name)4226 Complex_type::do_type_descriptor(Gogo* gogo, Named_type* name)
4227 {
4228   go_assert(name != NULL || saw_errors());
4229   return this->plain_type_descriptor(gogo, this->runtime_type_kind_, name);
4230 }
4231 
4232 // We should not be asked for the reflection string of a basic type.
4233 
4234 void
do_reflection(Gogo *,std::string *) const4235 Complex_type::do_reflection(Gogo*, std::string*) const
4236 {
4237   go_assert(saw_errors());
4238 }
4239 
4240 // Make a complex type.
4241 
4242 Named_type*
make_complex_type(const char * name,int bits,int runtime_type_kind)4243 Type::make_complex_type(const char* name, int bits, int runtime_type_kind)
4244 {
4245   return Complex_type::create_complex_type(name, bits, runtime_type_kind);
4246 }
4247 
4248 // Make an abstract complex type.
4249 
4250 Complex_type*
make_abstract_complex_type()4251 Type::make_abstract_complex_type()
4252 {
4253   return Complex_type::create_abstract_complex_type();
4254 }
4255 
4256 // Look up a complex type.
4257 
4258 Named_type*
lookup_complex_type(const char * name)4259 Type::lookup_complex_type(const char* name)
4260 {
4261   return Complex_type::lookup_complex_type(name);
4262 }
4263 
4264 // Class String_type.
4265 
4266 // Convert String_type to the backend representation.  A string is a
4267 // struct with two fields: a pointer to the characters and a length.
4268 
4269 Btype*
do_get_backend(Gogo * gogo)4270 String_type::do_get_backend(Gogo* gogo)
4271 {
4272   static Btype* backend_string_type;
4273   if (backend_string_type == NULL)
4274     {
4275       std::vector<Backend::Btyped_identifier> fields(2);
4276 
4277       Type* b = gogo->lookup_global("byte")->type_value();
4278       Type* pb = Type::make_pointer_type(b);
4279 
4280       // We aren't going to get back to this field to finish the
4281       // backend representation, so force it to be finished now.
4282       if (!gogo->named_types_are_converted())
4283 	{
4284 	  Btype* bt = pb->get_backend_placeholder(gogo);
4285 	  pb->finish_backend(gogo, bt);
4286 	}
4287 
4288       fields[0].name = "__data";
4289       fields[0].btype = pb->get_backend(gogo);
4290       fields[0].location = Linemap::predeclared_location();
4291 
4292       Type* int_type = Type::lookup_integer_type("int");
4293       fields[1].name = "__length";
4294       fields[1].btype = int_type->get_backend(gogo);
4295       fields[1].location = fields[0].location;
4296 
4297       backend_string_type = gogo->backend()->struct_type(fields);
4298     }
4299   return backend_string_type;
4300 }
4301 
4302 // The type descriptor for the string type.
4303 
4304 Expression*
do_type_descriptor(Gogo * gogo,Named_type * name)4305 String_type::do_type_descriptor(Gogo* gogo, Named_type* name)
4306 {
4307   if (name != NULL)
4308     return this->plain_type_descriptor(gogo, RUNTIME_TYPE_KIND_STRING, name);
4309   else
4310     {
4311       Named_object* no = gogo->lookup_global("string");
4312       go_assert(no != NULL);
4313       return Type::type_descriptor(gogo, no->type_value());
4314     }
4315 }
4316 
4317 // We should not be asked for the reflection string of a basic type.
4318 
4319 void
do_reflection(Gogo *,std::string * ret) const4320 String_type::do_reflection(Gogo*, std::string* ret) const
4321 {
4322   ret->append("string");
4323 }
4324 
4325 // Make a string type.
4326 
4327 Type*
make_string_type()4328 Type::make_string_type()
4329 {
4330   static String_type string_type;
4331   return &string_type;
4332 }
4333 
4334 // The named type "string".
4335 
4336 static Named_type* named_string_type;
4337 
4338 // Get the named type "string".
4339 
4340 Named_type*
lookup_string_type()4341 Type::lookup_string_type()
4342 {
4343   return named_string_type;
4344 }
4345 
4346 // Make the named type string.
4347 
4348 Named_type*
make_named_string_type()4349 Type::make_named_string_type()
4350 {
4351   Type* string_type = Type::make_string_type();
4352   Named_object* named_object =
4353     Named_object::make_type("string", NULL, string_type,
4354                             Linemap::predeclared_location());
4355   Named_type* named_type = named_object->type_value();
4356   named_string_type = named_type;
4357   return named_type;
4358 }
4359 
4360 // The sink type.  This is the type of the blank identifier _.  Any
4361 // type may be assigned to it.
4362 
4363 class Sink_type : public Type
4364 {
4365  public:
Sink_type()4366   Sink_type()
4367     : Type(TYPE_SINK)
4368   { }
4369 
4370  protected:
4371   bool
do_compare_is_identity(Gogo *)4372   do_compare_is_identity(Gogo*)
4373   { return false; }
4374 
4375   Btype*
do_get_backend(Gogo *)4376   do_get_backend(Gogo*)
4377   { go_unreachable(); }
4378 
4379   Expression*
do_type_descriptor(Gogo *,Named_type *)4380   do_type_descriptor(Gogo*, Named_type*)
4381   { go_unreachable(); }
4382 
4383   void
do_reflection(Gogo *,std::string *) const4384   do_reflection(Gogo*, std::string*) const
4385   { go_unreachable(); }
4386 
4387   void
do_mangled_name(Gogo *,std::string *) const4388   do_mangled_name(Gogo*, std::string*) const
4389   { go_unreachable(); }
4390 };
4391 
4392 // Make the sink type.
4393 
4394 Type*
make_sink_type()4395 Type::make_sink_type()
4396 {
4397   static Sink_type sink_type;
4398   return &sink_type;
4399 }
4400 
4401 // Class Function_type.
4402 
4403 // Traversal.
4404 
4405 int
do_traverse(Traverse * traverse)4406 Function_type::do_traverse(Traverse* traverse)
4407 {
4408   if (this->receiver_ != NULL
4409       && Type::traverse(this->receiver_->type(), traverse) == TRAVERSE_EXIT)
4410     return TRAVERSE_EXIT;
4411   if (this->parameters_ != NULL
4412       && this->parameters_->traverse(traverse) == TRAVERSE_EXIT)
4413     return TRAVERSE_EXIT;
4414   if (this->results_ != NULL
4415       && this->results_->traverse(traverse) == TRAVERSE_EXIT)
4416     return TRAVERSE_EXIT;
4417   return TRAVERSE_CONTINUE;
4418 }
4419 
4420 // Returns whether T is a valid redeclaration of this type.  If this
4421 // returns false, and REASON is not NULL, *REASON may be set to a
4422 // brief explanation of why it returned false.
4423 
4424 bool
is_valid_redeclaration(const Function_type * t,std::string * reason) const4425 Function_type::is_valid_redeclaration(const Function_type* t,
4426 				      std::string* reason) const
4427 {
4428   if (!this->is_identical(t, false, COMPARE_TAGS, reason))
4429     return false;
4430 
4431   // A redeclaration of a function is required to use the same names
4432   // for the receiver and parameters.
4433   if (this->receiver() != NULL
4434       && this->receiver()->name() != t->receiver()->name())
4435     {
4436       if (reason != NULL)
4437 	*reason = "receiver name changed";
4438       return false;
4439     }
4440 
4441   const Typed_identifier_list* parms1 = this->parameters();
4442   const Typed_identifier_list* parms2 = t->parameters();
4443   if (parms1 != NULL)
4444     {
4445       Typed_identifier_list::const_iterator p1 = parms1->begin();
4446       for (Typed_identifier_list::const_iterator p2 = parms2->begin();
4447 	   p2 != parms2->end();
4448 	   ++p2, ++p1)
4449 	{
4450 	  if (p1->name() != p2->name())
4451 	    {
4452 	      if (reason != NULL)
4453 		*reason = "parameter name changed";
4454 	      return false;
4455 	    }
4456 
4457 	  // This is called at parse time, so we may have unknown
4458 	  // types.
4459 	  Type* t1 = p1->type()->forwarded();
4460 	  Type* t2 = p2->type()->forwarded();
4461 	  if (t1 != t2
4462 	      && t1->forward_declaration_type() != NULL
4463 	      && (t2->forward_declaration_type() == NULL
4464 		  || (t1->forward_declaration_type()->named_object()
4465 		      != t2->forward_declaration_type()->named_object())))
4466 	    return false;
4467 	}
4468     }
4469 
4470   const Typed_identifier_list* results1 = this->results();
4471   const Typed_identifier_list* results2 = t->results();
4472   if (results1 != NULL)
4473     {
4474       Typed_identifier_list::const_iterator res1 = results1->begin();
4475       for (Typed_identifier_list::const_iterator res2 = results2->begin();
4476 	   res2 != results2->end();
4477 	   ++res2, ++res1)
4478 	{
4479 	  if (res1->name() != res2->name())
4480 	    {
4481 	      if (reason != NULL)
4482 		*reason = "result name changed";
4483 	      return false;
4484 	    }
4485 
4486 	  // This is called at parse time, so we may have unknown
4487 	  // types.
4488 	  Type* t1 = res1->type()->forwarded();
4489 	  Type* t2 = res2->type()->forwarded();
4490 	  if (t1 != t2
4491 	      && t1->forward_declaration_type() != NULL
4492 	      && (t2->forward_declaration_type() == NULL
4493 		  || (t1->forward_declaration_type()->named_object()
4494 		      != t2->forward_declaration_type()->named_object())))
4495 	    return false;
4496 	}
4497     }
4498 
4499   return true;
4500 }
4501 
4502 // Check whether T is the same as this type.
4503 
4504 bool
is_identical(const Function_type * t,bool ignore_receiver,int flags,std::string * reason) const4505 Function_type::is_identical(const Function_type* t, bool ignore_receiver,
4506 			    int flags, std::string* reason) const
4507 {
4508   if (this->is_backend_function_type() != t->is_backend_function_type())
4509     return false;
4510 
4511   if (!ignore_receiver)
4512     {
4513       const Typed_identifier* r1 = this->receiver();
4514       const Typed_identifier* r2 = t->receiver();
4515       if ((r1 != NULL) != (r2 != NULL))
4516 	{
4517 	  if (reason != NULL)
4518 	    *reason = _("different receiver types");
4519 	  return false;
4520 	}
4521       if (r1 != NULL)
4522 	{
4523 	  if (!Type::are_identical(r1->type(), r2->type(), flags, reason))
4524 	    {
4525 	      if (reason != NULL && !reason->empty())
4526 		*reason = "receiver: " + *reason;
4527 	      return false;
4528 	    }
4529 	}
4530     }
4531 
4532   const Typed_identifier_list* parms1 = this->parameters();
4533   if (parms1 != NULL && parms1->empty())
4534     parms1 = NULL;
4535   const Typed_identifier_list* parms2 = t->parameters();
4536   if (parms2 != NULL && parms2->empty())
4537     parms2 = NULL;
4538   if ((parms1 != NULL) != (parms2 != NULL))
4539     {
4540       if (reason != NULL)
4541 	*reason = _("different number of parameters");
4542       return false;
4543     }
4544   if (parms1 != NULL)
4545     {
4546       Typed_identifier_list::const_iterator p1 = parms1->begin();
4547       for (Typed_identifier_list::const_iterator p2 = parms2->begin();
4548 	   p2 != parms2->end();
4549 	   ++p2, ++p1)
4550 	{
4551 	  if (p1 == parms1->end())
4552 	    {
4553 	      if (reason != NULL)
4554 		*reason = _("different number of parameters");
4555 	      return false;
4556 	    }
4557 
4558 	  if (!Type::are_identical(p1->type(), p2->type(), flags, NULL))
4559 	    {
4560 	      if (reason != NULL)
4561 		*reason = _("different parameter types");
4562 	      return false;
4563 	    }
4564 	}
4565       if (p1 != parms1->end())
4566 	{
4567 	  if (reason != NULL)
4568 	    *reason = _("different number of parameters");
4569 	return false;
4570 	}
4571     }
4572 
4573   if (this->is_varargs() != t->is_varargs())
4574     {
4575       if (reason != NULL)
4576 	*reason = _("different varargs");
4577       return false;
4578     }
4579 
4580   const Typed_identifier_list* results1 = this->results();
4581   if (results1 != NULL && results1->empty())
4582     results1 = NULL;
4583   const Typed_identifier_list* results2 = t->results();
4584   if (results2 != NULL && results2->empty())
4585     results2 = NULL;
4586   if ((results1 != NULL) != (results2 != NULL))
4587     {
4588       if (reason != NULL)
4589 	*reason = _("different number of results");
4590       return false;
4591     }
4592   if (results1 != NULL)
4593     {
4594       Typed_identifier_list::const_iterator res1 = results1->begin();
4595       for (Typed_identifier_list::const_iterator res2 = results2->begin();
4596 	   res2 != results2->end();
4597 	   ++res2, ++res1)
4598 	{
4599 	  if (res1 == results1->end())
4600 	    {
4601 	      if (reason != NULL)
4602 		*reason = _("different number of results");
4603 	      return false;
4604 	    }
4605 
4606 	  if (!Type::are_identical(res1->type(), res2->type(), flags, NULL))
4607 	    {
4608 	      if (reason != NULL)
4609 		*reason = _("different result types");
4610 	      return false;
4611 	    }
4612 	}
4613       if (res1 != results1->end())
4614 	{
4615 	  if (reason != NULL)
4616 	    *reason = _("different number of results");
4617 	  return false;
4618 	}
4619     }
4620 
4621   return true;
4622 }
4623 
4624 // Hash code.
4625 
4626 unsigned int
do_hash_for_method(Gogo * gogo,int flags) const4627 Function_type::do_hash_for_method(Gogo* gogo, int flags) const
4628 {
4629   unsigned int ret = 0;
4630   // We ignore the receiver type for hash codes, because we need to
4631   // get the same hash code for a method in an interface and a method
4632   // declared for a type.  The former will not have a receiver.
4633   if (this->parameters_ != NULL)
4634     {
4635       int shift = 1;
4636       for (Typed_identifier_list::const_iterator p = this->parameters_->begin();
4637 	   p != this->parameters_->end();
4638 	   ++p, ++shift)
4639 	ret += p->type()->hash_for_method(gogo, flags) << shift;
4640     }
4641   if (this->results_ != NULL)
4642     {
4643       int shift = 2;
4644       for (Typed_identifier_list::const_iterator p = this->results_->begin();
4645 	   p != this->results_->end();
4646 	   ++p, ++shift)
4647 	ret += p->type()->hash_for_method(gogo, flags) << shift;
4648     }
4649   if (this->is_varargs_)
4650     ret += 1;
4651   ret <<= 4;
4652   return ret;
4653 }
4654 
4655 // Hash result parameters.
4656 
4657 unsigned int
operator ()(const Typed_identifier_list * t) const4658 Function_type::Results_hash::operator()(const Typed_identifier_list* t) const
4659 {
4660   unsigned int hash = 0;
4661   for (Typed_identifier_list::const_iterator p = t->begin();
4662        p != t->end();
4663        ++p)
4664     {
4665       hash <<= 2;
4666       hash = Gogo::hash_string(p->name(), hash);
4667       hash += p->type()->hash_for_method(NULL, Type::COMPARE_TAGS);
4668     }
4669   return hash;
4670 }
4671 
4672 // Compare result parameters so that can map identical result
4673 // parameters to a single struct type.
4674 
4675 bool
operator ()(const Typed_identifier_list * a,const Typed_identifier_list * b) const4676 Function_type::Results_equal::operator()(const Typed_identifier_list* a,
4677 					 const Typed_identifier_list* b) const
4678 {
4679   if (a->size() != b->size())
4680     return false;
4681   Typed_identifier_list::const_iterator pa = a->begin();
4682   for (Typed_identifier_list::const_iterator pb = b->begin();
4683        pb != b->end();
4684        ++pa, ++pb)
4685     {
4686       if (pa->name() != pb->name()
4687 	  || !Type::are_identical(pa->type(), pb->type(), Type::COMPARE_TAGS,
4688 				  NULL))
4689 	return false;
4690     }
4691   return true;
4692 }
4693 
4694 // Hash from results to a backend struct type.
4695 
4696 Function_type::Results_structs Function_type::results_structs;
4697 
4698 // Get the backend representation for a function type.
4699 
4700 Btype*
get_backend_fntype(Gogo * gogo)4701 Function_type::get_backend_fntype(Gogo* gogo)
4702 {
4703   if (this->fnbtype_ == NULL)
4704     {
4705       Backend::Btyped_identifier breceiver;
4706       if (this->receiver_ != NULL)
4707         {
4708           breceiver.name = Gogo::unpack_hidden_name(this->receiver_->name());
4709 
4710           // We always pass the address of the receiver parameter, in
4711           // order to make interface calls work with unknown types.
4712           Type* rtype = this->receiver_->type();
4713           if (rtype->points_to() == NULL)
4714             rtype = Type::make_pointer_type(rtype);
4715           breceiver.btype = rtype->get_backend(gogo);
4716           breceiver.location = this->receiver_->location();
4717         }
4718 
4719       std::vector<Backend::Btyped_identifier> bparameters;
4720       if (this->parameters_ != NULL)
4721         {
4722           bparameters.resize(this->parameters_->size());
4723           size_t i = 0;
4724           for (Typed_identifier_list::const_iterator p =
4725                    this->parameters_->begin(); p != this->parameters_->end();
4726                ++p, ++i)
4727 	    {
4728               bparameters[i].name = Gogo::unpack_hidden_name(p->name());
4729               bparameters[i].btype = p->type()->get_backend(gogo);
4730               bparameters[i].location = p->location();
4731             }
4732           go_assert(i == bparameters.size());
4733         }
4734 
4735       std::vector<Backend::Btyped_identifier> bresults;
4736       Btype* bresult_struct = NULL;
4737       if (this->results_ != NULL)
4738         {
4739           bresults.resize(this->results_->size());
4740           size_t i = 0;
4741           for (Typed_identifier_list::const_iterator p =
4742                    this->results_->begin();
4743 	       p != this->results_->end();
4744                ++p, ++i)
4745 	    {
4746               bresults[i].name = Gogo::unpack_hidden_name(p->name());
4747               bresults[i].btype = p->type()->get_backend(gogo);
4748               bresults[i].location = p->location();
4749             }
4750           go_assert(i == bresults.size());
4751 
4752 	  if (this->results_->size() > 1)
4753 	    {
4754 	      // Use the same results struct for all functions that
4755 	      // return the same set of results.  This is useful to
4756 	      // unify calls to interface methods with other calls.
4757 	      std::pair<Typed_identifier_list*, Btype*> val;
4758 	      val.first = this->results_;
4759 	      val.second = NULL;
4760 	      std::pair<Results_structs::iterator, bool> ins =
4761 		Function_type::results_structs.insert(val);
4762 	      if (ins.second)
4763 		{
4764 		  // Build a new struct type.
4765 		  Struct_field_list* sfl = new Struct_field_list;
4766 		  for (Typed_identifier_list::const_iterator p =
4767 			 this->results_->begin();
4768 		       p != this->results_->end();
4769 		       ++p)
4770 		    {
4771 		      Typed_identifier tid = *p;
4772 		      if (tid.name().empty())
4773 			tid = Typed_identifier("UNNAMED", tid.type(),
4774 					       tid.location());
4775 		      sfl->push_back(Struct_field(tid));
4776 		    }
4777 		  Struct_type* st = Type::make_struct_type(sfl,
4778 							   this->location());
4779 		  st->set_is_struct_incomparable();
4780 		  ins.first->second = st->get_backend(gogo);
4781 		}
4782 	      bresult_struct = ins.first->second;
4783 	    }
4784         }
4785 
4786       this->fnbtype_ = gogo->backend()->function_type(breceiver, bparameters,
4787                                                       bresults, bresult_struct,
4788                                                       this->location());
4789 
4790     }
4791 
4792   return this->fnbtype_;
4793 }
4794 
4795 // Get the backend representation for a Go function type.
4796 
4797 Btype*
do_get_backend(Gogo * gogo)4798 Function_type::do_get_backend(Gogo* gogo)
4799 {
4800   // When we do anything with a function value other than call it, it
4801   // is represented as a pointer to a struct whose first field is the
4802   // actual function.  So that is what we return as the type of a Go
4803   // function.
4804 
4805   Location loc = this->location();
4806   Btype* struct_type =
4807     gogo->backend()->placeholder_struct_type("__go_descriptor", loc);
4808   Btype* ptr_struct_type = gogo->backend()->pointer_type(struct_type);
4809 
4810   std::vector<Backend::Btyped_identifier> fields(1);
4811   fields[0].name = "code";
4812   fields[0].btype = this->get_backend_fntype(gogo);
4813   fields[0].location = loc;
4814   if (!gogo->backend()->set_placeholder_struct_type(struct_type, fields))
4815     return gogo->backend()->error_type();
4816   return ptr_struct_type;
4817 }
4818 
4819 // The type of a function type descriptor.
4820 
4821 Type*
make_function_type_descriptor_type()4822 Function_type::make_function_type_descriptor_type()
4823 {
4824   static Type* ret;
4825   if (ret == NULL)
4826     {
4827       Type* tdt = Type::make_type_descriptor_type();
4828       Type* ptdt = Type::make_type_descriptor_ptr_type();
4829 
4830       Type* bool_type = Type::lookup_bool_type();
4831 
4832       Type* slice_type = Type::make_array_type(ptdt, NULL);
4833 
4834       Struct_type* s = Type::make_builtin_struct_type(4,
4835 						      "", tdt,
4836 						      "dotdotdot", bool_type,
4837 						      "in", slice_type,
4838 						      "out", slice_type);
4839 
4840       ret = Type::make_builtin_named_type("FuncType", s);
4841     }
4842 
4843   return ret;
4844 }
4845 
4846 // The type descriptor for a function type.
4847 
4848 Expression*
do_type_descriptor(Gogo * gogo,Named_type * name)4849 Function_type::do_type_descriptor(Gogo* gogo, Named_type* name)
4850 {
4851   Location bloc = Linemap::predeclared_location();
4852 
4853   Type* ftdt = Function_type::make_function_type_descriptor_type();
4854 
4855   const Struct_field_list* fields = ftdt->struct_type()->fields();
4856 
4857   Expression_list* vals = new Expression_list();
4858   vals->reserve(4);
4859 
4860   Struct_field_list::const_iterator p = fields->begin();
4861   go_assert(p->is_field_name("_type"));
4862   vals->push_back(this->type_descriptor_constructor(gogo,
4863 						    RUNTIME_TYPE_KIND_FUNC,
4864 						    name, NULL, true));
4865 
4866   ++p;
4867   go_assert(p->is_field_name("dotdotdot"));
4868   vals->push_back(Expression::make_boolean(this->is_varargs(), bloc));
4869 
4870   ++p;
4871   go_assert(p->is_field_name("in"));
4872   vals->push_back(this->type_descriptor_params(p->type(), this->receiver(),
4873 					       this->parameters()));
4874 
4875   ++p;
4876   go_assert(p->is_field_name("out"));
4877   vals->push_back(this->type_descriptor_params(p->type(), NULL,
4878 					       this->results()));
4879 
4880   ++p;
4881   go_assert(p == fields->end());
4882 
4883   return Expression::make_struct_composite_literal(ftdt, vals, bloc);
4884 }
4885 
4886 // Return a composite literal for the parameters or results of a type
4887 // descriptor.
4888 
4889 Expression*
type_descriptor_params(Type * params_type,const Typed_identifier * receiver,const Typed_identifier_list * params)4890 Function_type::type_descriptor_params(Type* params_type,
4891 				      const Typed_identifier* receiver,
4892 				      const Typed_identifier_list* params)
4893 {
4894   Location bloc = Linemap::predeclared_location();
4895 
4896   if (receiver == NULL && params == NULL)
4897     return Expression::make_slice_composite_literal(params_type, NULL, bloc);
4898 
4899   Expression_list* vals = new Expression_list();
4900   vals->reserve((params == NULL ? 0 : params->size())
4901 		+ (receiver != NULL ? 1 : 0));
4902 
4903   if (receiver != NULL)
4904     vals->push_back(Expression::make_type_descriptor(receiver->type(), bloc));
4905 
4906   if (params != NULL)
4907     {
4908       for (Typed_identifier_list::const_iterator p = params->begin();
4909 	   p != params->end();
4910 	   ++p)
4911 	vals->push_back(Expression::make_type_descriptor(p->type(), bloc));
4912     }
4913 
4914   return Expression::make_slice_composite_literal(params_type, vals, bloc);
4915 }
4916 
4917 // The reflection string.
4918 
4919 void
do_reflection(Gogo * gogo,std::string * ret) const4920 Function_type::do_reflection(Gogo* gogo, std::string* ret) const
4921 {
4922   // FIXME: Turn this off until we straighten out the type of the
4923   // struct field used in a go statement which calls a method.
4924   // go_assert(this->receiver_ == NULL);
4925 
4926   ret->append("func");
4927 
4928   if (this->receiver_ != NULL)
4929     {
4930       ret->push_back('(');
4931       this->append_reflection(this->receiver_->type(), gogo, ret);
4932       ret->push_back(')');
4933     }
4934 
4935   ret->push_back('(');
4936   const Typed_identifier_list* params = this->parameters();
4937   if (params != NULL)
4938     {
4939       bool is_varargs = this->is_varargs_;
4940       for (Typed_identifier_list::const_iterator p = params->begin();
4941 	   p != params->end();
4942 	   ++p)
4943 	{
4944 	  if (p != params->begin())
4945 	    ret->append(", ");
4946 	  if (!is_varargs || p + 1 != params->end())
4947 	    this->append_reflection(p->type(), gogo, ret);
4948 	  else
4949 	    {
4950 	      ret->append("...");
4951 	      this->append_reflection(p->type()->array_type()->element_type(),
4952 				      gogo, ret);
4953 	    }
4954 	}
4955     }
4956   ret->push_back(')');
4957 
4958   const Typed_identifier_list* results = this->results();
4959   if (results != NULL && !results->empty())
4960     {
4961       if (results->size() == 1)
4962 	ret->push_back(' ');
4963       else
4964 	ret->append(" (");
4965       for (Typed_identifier_list::const_iterator p = results->begin();
4966 	   p != results->end();
4967 	   ++p)
4968 	{
4969 	  if (p != results->begin())
4970 	    ret->append(", ");
4971 	  this->append_reflection(p->type(), gogo, ret);
4972 	}
4973       if (results->size() > 1)
4974 	ret->push_back(')');
4975     }
4976 }
4977 
4978 // Export a function type.
4979 
4980 void
do_export(Export * exp) const4981 Function_type::do_export(Export* exp) const
4982 {
4983   // We don't write out the receiver.  The only function types which
4984   // should have a receiver are the ones associated with explicitly
4985   // defined methods.  For those the receiver type is written out by
4986   // Function::export_func.
4987 
4988   exp->write_c_string("(");
4989   bool first = true;
4990   if (this->parameters_ != NULL)
4991     {
4992       bool is_varargs = this->is_varargs_;
4993       for (Typed_identifier_list::const_iterator p =
4994 	     this->parameters_->begin();
4995 	   p != this->parameters_->end();
4996 	   ++p)
4997 	{
4998 	  if (first)
4999 	    first = false;
5000 	  else
5001 	    exp->write_c_string(", ");
5002 	  exp->write_name(p->name());
5003 	  exp->write_c_string(" ");
5004 	  if (!is_varargs || p + 1 != this->parameters_->end())
5005 	    exp->write_type(p->type());
5006 	  else
5007 	    {
5008 	      exp->write_c_string("...");
5009 	      exp->write_type(p->type()->array_type()->element_type());
5010 	    }
5011 	}
5012     }
5013   exp->write_c_string(")");
5014 
5015   const Typed_identifier_list* results = this->results_;
5016   if (results != NULL)
5017     {
5018       exp->write_c_string(" ");
5019       if (results->size() == 1 && results->begin()->name().empty())
5020 	exp->write_type(results->begin()->type());
5021       else
5022 	{
5023 	  first = true;
5024 	  exp->write_c_string("(");
5025 	  for (Typed_identifier_list::const_iterator p = results->begin();
5026 	       p != results->end();
5027 	       ++p)
5028 	    {
5029 	      if (first)
5030 		first = false;
5031 	      else
5032 		exp->write_c_string(", ");
5033 	      exp->write_name(p->name());
5034 	      exp->write_c_string(" ");
5035 	      exp->write_type(p->type());
5036 	    }
5037 	  exp->write_c_string(")");
5038 	}
5039     }
5040 }
5041 
5042 // Import a function type.
5043 
5044 Function_type*
do_import(Import * imp)5045 Function_type::do_import(Import* imp)
5046 {
5047   imp->require_c_string("(");
5048   Typed_identifier_list* parameters;
5049   bool is_varargs = false;
5050   if (imp->peek_char() == ')')
5051     parameters = NULL;
5052   else
5053     {
5054       parameters = new Typed_identifier_list();
5055       while (true)
5056 	{
5057 	  std::string name = imp->read_name();
5058 	  imp->require_c_string(" ");
5059 
5060 	  if (imp->match_c_string("..."))
5061 	    {
5062 	      imp->advance(3);
5063 	      is_varargs = true;
5064 	    }
5065 
5066 	  Type* ptype = imp->read_type();
5067 	  if (is_varargs)
5068 	    ptype = Type::make_array_type(ptype, NULL);
5069 	  parameters->push_back(Typed_identifier(name, ptype,
5070 						 imp->location()));
5071 	  if (imp->peek_char() != ',')
5072 	    break;
5073 	  go_assert(!is_varargs);
5074 	  imp->require_c_string(", ");
5075 	}
5076     }
5077   imp->require_c_string(")");
5078 
5079   Typed_identifier_list* results;
5080   if (imp->peek_char() != ' ')
5081     results = NULL;
5082   else
5083     {
5084       imp->advance(1);
5085       results = new Typed_identifier_list;
5086       if (imp->peek_char() != '(')
5087 	{
5088 	  Type* rtype = imp->read_type();
5089 	  results->push_back(Typed_identifier("", rtype, imp->location()));
5090 	}
5091       else
5092 	{
5093 	  imp->advance(1);
5094 	  while (true)
5095 	    {
5096 	      std::string name = imp->read_name();
5097 	      imp->require_c_string(" ");
5098 	      Type* rtype = imp->read_type();
5099 	      results->push_back(Typed_identifier(name, rtype,
5100 						  imp->location()));
5101 	      if (imp->peek_char() != ',')
5102 		break;
5103 	      imp->require_c_string(", ");
5104 	    }
5105 	  imp->require_c_string(")");
5106 	}
5107     }
5108 
5109   Function_type* ret = Type::make_function_type(NULL, parameters, results,
5110 						imp->location());
5111   if (is_varargs)
5112     ret->set_is_varargs();
5113   return ret;
5114 }
5115 
5116 // Make a copy of a function type without a receiver.
5117 
5118 Function_type*
copy_without_receiver() const5119 Function_type::copy_without_receiver() const
5120 {
5121   go_assert(this->is_method());
5122   Function_type *ret = Type::make_function_type(NULL, this->parameters_,
5123 						this->results_,
5124 						this->location_);
5125   if (this->is_varargs())
5126     ret->set_is_varargs();
5127   if (this->is_builtin())
5128     ret->set_is_builtin();
5129   return ret;
5130 }
5131 
5132 // Make a copy of a function type with a receiver.
5133 
5134 Function_type*
copy_with_receiver(Type * receiver_type) const5135 Function_type::copy_with_receiver(Type* receiver_type) const
5136 {
5137   go_assert(!this->is_method());
5138   Typed_identifier* receiver = new Typed_identifier("", receiver_type,
5139 						    this->location_);
5140   Function_type* ret = Type::make_function_type(receiver, this->parameters_,
5141 						this->results_,
5142 						this->location_);
5143   if (this->is_varargs_)
5144     ret->set_is_varargs();
5145   return ret;
5146 }
5147 
5148 // Make a copy of a function type with the receiver as the first
5149 // parameter.
5150 
5151 Function_type*
copy_with_receiver_as_param(bool want_pointer_receiver) const5152 Function_type::copy_with_receiver_as_param(bool want_pointer_receiver) const
5153 {
5154   go_assert(this->is_method());
5155   Typed_identifier_list* new_params = new Typed_identifier_list();
5156   Type* rtype = this->receiver_->type();
5157   if (want_pointer_receiver)
5158     rtype = Type::make_pointer_type(rtype);
5159   Typed_identifier receiver(this->receiver_->name(), rtype,
5160 			    this->receiver_->location());
5161   new_params->push_back(receiver);
5162   const Typed_identifier_list* orig_params = this->parameters_;
5163   if (orig_params != NULL && !orig_params->empty())
5164     {
5165       for (Typed_identifier_list::const_iterator p = orig_params->begin();
5166 	   p != orig_params->end();
5167 	   ++p)
5168 	new_params->push_back(*p);
5169     }
5170   return Type::make_function_type(NULL, new_params, this->results_,
5171 				  this->location_);
5172 }
5173 
5174 // Make a copy of a function type ignoring any receiver and adding a
5175 // closure parameter.
5176 
5177 Function_type*
copy_with_names() const5178 Function_type::copy_with_names() const
5179 {
5180   Typed_identifier_list* new_params = new Typed_identifier_list();
5181   const Typed_identifier_list* orig_params = this->parameters_;
5182   if (orig_params != NULL && !orig_params->empty())
5183     {
5184       static int count;
5185       char buf[50];
5186       for (Typed_identifier_list::const_iterator p = orig_params->begin();
5187 	   p != orig_params->end();
5188 	   ++p)
5189 	{
5190 	  snprintf(buf, sizeof buf, "pt.%u", count);
5191 	  ++count;
5192 	  new_params->push_back(Typed_identifier(buf, p->type(),
5193 						 p->location()));
5194 	}
5195     }
5196 
5197   const Typed_identifier_list* orig_results = this->results_;
5198   Typed_identifier_list* new_results;
5199   if (orig_results == NULL || orig_results->empty())
5200     new_results = NULL;
5201   else
5202     {
5203       new_results = new Typed_identifier_list();
5204       for (Typed_identifier_list::const_iterator p = orig_results->begin();
5205 	   p != orig_results->end();
5206 	   ++p)
5207 	new_results->push_back(Typed_identifier("", p->type(),
5208 						p->location()));
5209     }
5210 
5211   return Type::make_function_type(NULL, new_params, new_results,
5212 				  this->location());
5213 }
5214 
5215 // Make a function type.
5216 
5217 Function_type*
make_function_type(Typed_identifier * receiver,Typed_identifier_list * parameters,Typed_identifier_list * results,Location location)5218 Type::make_function_type(Typed_identifier* receiver,
5219 			 Typed_identifier_list* parameters,
5220 			 Typed_identifier_list* results,
5221 			 Location location)
5222 {
5223   return new Function_type(receiver, parameters, results, location);
5224 }
5225 
5226 // Make a backend function type.
5227 
5228 Backend_function_type*
make_backend_function_type(Typed_identifier * receiver,Typed_identifier_list * parameters,Typed_identifier_list * results,Location location)5229 Type::make_backend_function_type(Typed_identifier* receiver,
5230                                  Typed_identifier_list* parameters,
5231                                  Typed_identifier_list* results,
5232                                  Location location)
5233 {
5234   return new Backend_function_type(receiver, parameters, results, location);
5235 }
5236 
5237 // Class Pointer_type.
5238 
5239 // Traversal.
5240 
5241 int
do_traverse(Traverse * traverse)5242 Pointer_type::do_traverse(Traverse* traverse)
5243 {
5244   return Type::traverse(this->to_type_, traverse);
5245 }
5246 
5247 // Hash code.
5248 
5249 unsigned int
do_hash_for_method(Gogo * gogo,int flags) const5250 Pointer_type::do_hash_for_method(Gogo* gogo, int flags) const
5251 {
5252   return this->to_type_->hash_for_method(gogo, flags) << 4;
5253 }
5254 
5255 // Get the backend representation for a pointer type.
5256 
5257 Btype*
do_get_backend(Gogo * gogo)5258 Pointer_type::do_get_backend(Gogo* gogo)
5259 {
5260   Btype* to_btype = this->to_type_->get_backend(gogo);
5261   return gogo->backend()->pointer_type(to_btype);
5262 }
5263 
5264 // The type of a pointer type descriptor.
5265 
5266 Type*
make_pointer_type_descriptor_type()5267 Pointer_type::make_pointer_type_descriptor_type()
5268 {
5269   static Type* ret;
5270   if (ret == NULL)
5271     {
5272       Type* tdt = Type::make_type_descriptor_type();
5273       Type* ptdt = Type::make_type_descriptor_ptr_type();
5274 
5275       Struct_type* s = Type::make_builtin_struct_type(2,
5276 						      "", tdt,
5277 						      "elem", ptdt);
5278 
5279       ret = Type::make_builtin_named_type("PtrType", s);
5280     }
5281 
5282   return ret;
5283 }
5284 
5285 // The type descriptor for a pointer type.
5286 
5287 Expression*
do_type_descriptor(Gogo * gogo,Named_type * name)5288 Pointer_type::do_type_descriptor(Gogo* gogo, Named_type* name)
5289 {
5290   if (this->is_unsafe_pointer_type())
5291     {
5292       go_assert(name != NULL);
5293       return this->plain_type_descriptor(gogo,
5294 					 RUNTIME_TYPE_KIND_UNSAFE_POINTER,
5295 					 name);
5296     }
5297   else
5298     {
5299       Location bloc = Linemap::predeclared_location();
5300 
5301       const Methods* methods;
5302       Type* deref = this->points_to();
5303       if (deref->named_type() != NULL)
5304 	methods = deref->named_type()->methods();
5305       else if (deref->struct_type() != NULL)
5306 	methods = deref->struct_type()->methods();
5307       else
5308 	methods = NULL;
5309 
5310       Type* ptr_tdt = Pointer_type::make_pointer_type_descriptor_type();
5311 
5312       const Struct_field_list* fields = ptr_tdt->struct_type()->fields();
5313 
5314       Expression_list* vals = new Expression_list();
5315       vals->reserve(2);
5316 
5317       Struct_field_list::const_iterator p = fields->begin();
5318       go_assert(p->is_field_name("_type"));
5319       vals->push_back(this->type_descriptor_constructor(gogo,
5320 							RUNTIME_TYPE_KIND_PTR,
5321 							name, methods, false));
5322 
5323       ++p;
5324       go_assert(p->is_field_name("elem"));
5325       vals->push_back(Expression::make_type_descriptor(deref, bloc));
5326 
5327       return Expression::make_struct_composite_literal(ptr_tdt, vals, bloc);
5328     }
5329 }
5330 
5331 // Reflection string.
5332 
5333 void
do_reflection(Gogo * gogo,std::string * ret) const5334 Pointer_type::do_reflection(Gogo* gogo, std::string* ret) const
5335 {
5336   ret->push_back('*');
5337   this->append_reflection(this->to_type_, gogo, ret);
5338 }
5339 
5340 // Export.
5341 
5342 void
do_export(Export * exp) const5343 Pointer_type::do_export(Export* exp) const
5344 {
5345   exp->write_c_string("*");
5346   if (this->is_unsafe_pointer_type())
5347     exp->write_c_string("any");
5348   else
5349     exp->write_type(this->to_type_);
5350 }
5351 
5352 // Import.
5353 
5354 Pointer_type*
do_import(Import * imp)5355 Pointer_type::do_import(Import* imp)
5356 {
5357   imp->require_c_string("*");
5358   if (imp->match_c_string("any"))
5359     {
5360       imp->advance(3);
5361       return Type::make_pointer_type(Type::make_void_type());
5362     }
5363   Type* to = imp->read_type();
5364   return Type::make_pointer_type(to);
5365 }
5366 
5367 // Cache of pointer types. Key is "to" type, value is pointer type
5368 // that points to key.
5369 
5370 Type::Pointer_type_table Type::pointer_types;
5371 
5372 // A list of placeholder pointer types.  We keep this so we can ensure
5373 // they are finalized.
5374 
5375 std::vector<Pointer_type*> Type::placeholder_pointers;
5376 
5377 // Make a pointer type.
5378 
5379 Pointer_type*
make_pointer_type(Type * to_type)5380 Type::make_pointer_type(Type* to_type)
5381 {
5382   Pointer_type_table::const_iterator p = pointer_types.find(to_type);
5383   if (p != pointer_types.end())
5384     return p->second;
5385   Pointer_type* ret = new Pointer_type(to_type);
5386   pointer_types[to_type] = ret;
5387   return ret;
5388 }
5389 
5390 // This helper is invoked immediately after named types have been
5391 // converted, to clean up any unresolved pointer types remaining in
5392 // the pointer type cache.
5393 //
5394 // The motivation for this routine: occasionally the compiler creates
5395 // some specific pointer type as part of a lowering operation (ex:
5396 // pointer-to-void), then Type::backend_type_size() is invoked on the
5397 // type (which creates a Btype placeholder for it), that placeholder
5398 // passed somewhere along the line to the back end, but since there is
5399 // no reference to the type in user code, there is never a call to
5400 // Type::finish_backend for the type (hence the Btype remains as an
5401 // unresolved placeholder).  Calling this routine will clean up such
5402 // instances.
5403 
5404 void
finish_pointer_types(Gogo * gogo)5405 Type::finish_pointer_types(Gogo* gogo)
5406 {
5407   // We don't use begin() and end() because it is possible to add new
5408   // placeholder pointer types as we finalized existing ones.
5409   for (size_t i = 0; i < Type::placeholder_pointers.size(); i++)
5410     {
5411       Pointer_type* pt = Type::placeholder_pointers[i];
5412       Type_btypes::iterator tbti = Type::type_btypes.find(pt);
5413       if (tbti != Type::type_btypes.end() && tbti->second.is_placeholder)
5414         {
5415           pt->finish_backend(gogo, tbti->second.btype);
5416           tbti->second.is_placeholder = false;
5417         }
5418     }
5419 }
5420 
5421 // Class Nil_type.
5422 
5423 // Get the backend representation of a nil type.  FIXME: Is this ever
5424 // actually called?
5425 
5426 Btype*
do_get_backend(Gogo * gogo)5427 Nil_type::do_get_backend(Gogo* gogo)
5428 {
5429   return gogo->backend()->pointer_type(gogo->backend()->void_type());
5430 }
5431 
5432 // Make the nil type.
5433 
5434 Type*
make_nil_type()5435 Type::make_nil_type()
5436 {
5437   static Nil_type singleton_nil_type;
5438   return &singleton_nil_type;
5439 }
5440 
5441 // The type of a function call which returns multiple values.  This is
5442 // really a struct, but we don't want to confuse a function call which
5443 // returns a struct with a function call which returns multiple
5444 // values.
5445 
5446 class Call_multiple_result_type : public Type
5447 {
5448  public:
Call_multiple_result_type(Call_expression * call)5449   Call_multiple_result_type(Call_expression* call)
5450     : Type(TYPE_CALL_MULTIPLE_RESULT),
5451       call_(call)
5452   { }
5453 
5454  protected:
5455   bool
do_has_pointer() const5456   do_has_pointer() const
5457   { return false; }
5458 
5459   bool
do_compare_is_identity(Gogo *)5460   do_compare_is_identity(Gogo*)
5461   { return false; }
5462 
5463   Btype*
do_get_backend(Gogo * gogo)5464   do_get_backend(Gogo* gogo)
5465   {
5466     go_assert(saw_errors());
5467     return gogo->backend()->error_type();
5468   }
5469 
5470   Expression*
do_type_descriptor(Gogo *,Named_type *)5471   do_type_descriptor(Gogo*, Named_type*)
5472   {
5473     go_assert(saw_errors());
5474     return Expression::make_error(Linemap::unknown_location());
5475   }
5476 
5477   void
do_reflection(Gogo *,std::string *) const5478   do_reflection(Gogo*, std::string*) const
5479   { go_assert(saw_errors()); }
5480 
5481   void
do_mangled_name(Gogo *,std::string *) const5482   do_mangled_name(Gogo*, std::string*) const
5483   { go_assert(saw_errors()); }
5484 
5485  private:
5486   // The expression being called.
5487   Call_expression* call_;
5488 };
5489 
5490 // Make a call result type.
5491 
5492 Type*
make_call_multiple_result_type(Call_expression * call)5493 Type::make_call_multiple_result_type(Call_expression* call)
5494 {
5495   return new Call_multiple_result_type(call);
5496 }
5497 
5498 // Class Struct_field.
5499 
5500 // Get the name of a field.
5501 
5502 const std::string&
field_name() const5503 Struct_field::field_name() const
5504 {
5505   const std::string& name(this->typed_identifier_.name());
5506   if (!name.empty())
5507     return name;
5508   else
5509     {
5510       // This is called during parsing, before anything is lowered, so
5511       // we have to be pretty careful to avoid dereferencing an
5512       // unknown type name.
5513       Type* t = this->typed_identifier_.type();
5514       Type* dt = t;
5515       if (t->classification() == Type::TYPE_POINTER)
5516 	{
5517 	  // Very ugly.
5518 	  Pointer_type* ptype = static_cast<Pointer_type*>(t);
5519 	  dt = ptype->points_to();
5520 	}
5521       if (dt->forward_declaration_type() != NULL)
5522 	return dt->forward_declaration_type()->name();
5523       else if (dt->named_type() != NULL)
5524 	{
5525 	  // Note that this can be an alias name.
5526 	  return dt->named_type()->name();
5527 	}
5528       else if (t->is_error_type() || dt->is_error_type())
5529 	{
5530 	  static const std::string error_string = "*error*";
5531 	  return error_string;
5532 	}
5533       else
5534 	{
5535 	  // Avoid crashing in the erroneous case where T is named but
5536 	  // DT is not.
5537 	  go_assert(t != dt);
5538 	  if (t->forward_declaration_type() != NULL)
5539 	    return t->forward_declaration_type()->name();
5540 	  else if (t->named_type() != NULL)
5541 	    return t->named_type()->name();
5542 	  else
5543 	    go_unreachable();
5544 	}
5545     }
5546 }
5547 
5548 // Return whether this field is named NAME.
5549 
5550 bool
is_field_name(const std::string & name) const5551 Struct_field::is_field_name(const std::string& name) const
5552 {
5553   const std::string& me(this->typed_identifier_.name());
5554   if (!me.empty())
5555     return me == name;
5556   else
5557     {
5558       Type* t = this->typed_identifier_.type();
5559       if (t->points_to() != NULL)
5560 	t = t->points_to();
5561       Named_type* nt = t->named_type();
5562       if (nt != NULL && nt->name() == name)
5563 	return true;
5564 
5565       // This is a horrible hack caused by the fact that we don't pack
5566       // the names of builtin types.  FIXME.
5567       if (!this->is_imported_
5568 	  && nt != NULL
5569 	  && nt->is_builtin()
5570 	  && nt->name() == Gogo::unpack_hidden_name(name))
5571 	return true;
5572 
5573       return false;
5574     }
5575 }
5576 
5577 // Return whether this field is an unexported field named NAME.
5578 
5579 bool
is_unexported_field_name(Gogo * gogo,const std::string & name) const5580 Struct_field::is_unexported_field_name(Gogo* gogo,
5581 				       const std::string& name) const
5582 {
5583   const std::string& field_name(this->field_name());
5584   if (Gogo::is_hidden_name(field_name)
5585       && name == Gogo::unpack_hidden_name(field_name)
5586       && gogo->pack_hidden_name(name, false) != field_name)
5587     return true;
5588 
5589   // Check for the name of a builtin type.  This is like the test in
5590   // is_field_name, only there we return false if this->is_imported_,
5591   // and here we return true.
5592   if (this->is_imported_ && this->is_anonymous())
5593     {
5594       Type* t = this->typed_identifier_.type();
5595       if (t->points_to() != NULL)
5596 	t = t->points_to();
5597       Named_type* nt = t->named_type();
5598       if (nt != NULL
5599 	  && nt->is_builtin()
5600 	  && nt->name() == Gogo::unpack_hidden_name(name))
5601 	return true;
5602     }
5603 
5604   return false;
5605 }
5606 
5607 // Return whether this field is an embedded built-in type.
5608 
5609 bool
is_embedded_builtin(Gogo * gogo) const5610 Struct_field::is_embedded_builtin(Gogo* gogo) const
5611 {
5612   const std::string& name(this->field_name());
5613   // We know that a field is an embedded type if it is anonymous.
5614   // We can decide if it is a built-in type by checking to see if it is
5615   // registered globally under the field's name.
5616   // This allows us to distinguish between embedded built-in types and
5617   // embedded types that are aliases to built-in types.
5618   return (this->is_anonymous()
5619           && !Gogo::is_hidden_name(name)
5620           && gogo->lookup_global(name.c_str()) != NULL);
5621 }
5622 
5623 // Class Struct_type.
5624 
5625 // A hash table used to find identical unnamed structs so that they
5626 // share method tables.
5627 
5628 Struct_type::Identical_structs Struct_type::identical_structs;
5629 
5630 // A hash table used to merge method sets for identical unnamed
5631 // structs.
5632 
5633 Struct_type::Struct_method_tables Struct_type::struct_method_tables;
5634 
5635 // Traversal.
5636 
5637 int
do_traverse(Traverse * traverse)5638 Struct_type::do_traverse(Traverse* traverse)
5639 {
5640   Struct_field_list* fields = this->fields_;
5641   if (fields != NULL)
5642     {
5643       for (Struct_field_list::iterator p = fields->begin();
5644 	   p != fields->end();
5645 	   ++p)
5646 	{
5647 	  if (Type::traverse(p->type(), traverse) == TRAVERSE_EXIT)
5648 	    return TRAVERSE_EXIT;
5649 	}
5650     }
5651   return TRAVERSE_CONTINUE;
5652 }
5653 
5654 // Verify that the struct type is complete and valid.
5655 
5656 bool
do_verify()5657 Struct_type::do_verify()
5658 {
5659   Struct_field_list* fields = this->fields_;
5660   if (fields == NULL)
5661     return true;
5662   for (Struct_field_list::iterator p = fields->begin();
5663        p != fields->end();
5664        ++p)
5665     {
5666       Type* t = p->type();
5667       if (p->is_anonymous())
5668 	{
5669 	  if ((t->named_type() != NULL && t->points_to() != NULL)
5670               || (t->named_type() == NULL && t->points_to() != NULL
5671                   && t->points_to()->points_to() != NULL))
5672 	    {
5673 	      go_error_at(p->location(), "embedded type may not be a pointer");
5674 	      p->set_type(Type::make_error_type());
5675 	    }
5676 	  else if (t->points_to() != NULL
5677 		   && t->points_to()->interface_type() != NULL)
5678 	    {
5679 	      go_error_at(p->location(),
5680 		       "embedded type may not be pointer to interface");
5681 	      p->set_type(Type::make_error_type());
5682 	    }
5683 	}
5684     }
5685   return true;
5686 }
5687 
5688 // Whether this contains a pointer.
5689 
5690 bool
do_has_pointer() const5691 Struct_type::do_has_pointer() const
5692 {
5693   const Struct_field_list* fields = this->fields();
5694   if (fields == NULL)
5695     return false;
5696   for (Struct_field_list::const_iterator p = fields->begin();
5697        p != fields->end();
5698        ++p)
5699     {
5700       if (p->type()->has_pointer())
5701 	return true;
5702     }
5703   return false;
5704 }
5705 
5706 // Whether this type is identical to T.
5707 
5708 bool
is_identical(const Struct_type * t,int flags) const5709 Struct_type::is_identical(const Struct_type* t, int flags) const
5710 {
5711   if (this->is_struct_incomparable_ != t->is_struct_incomparable_)
5712     return false;
5713   const Struct_field_list* fields1 = this->fields();
5714   const Struct_field_list* fields2 = t->fields();
5715   if (fields1 == NULL || fields2 == NULL)
5716     return fields1 == fields2;
5717   Struct_field_list::const_iterator pf2 = fields2->begin();
5718   for (Struct_field_list::const_iterator pf1 = fields1->begin();
5719        pf1 != fields1->end();
5720        ++pf1, ++pf2)
5721     {
5722       if (pf2 == fields2->end())
5723 	return false;
5724       if (pf1->field_name() != pf2->field_name())
5725 	return false;
5726       if (pf1->is_anonymous() != pf2->is_anonymous()
5727 	  || !Type::are_identical(pf1->type(), pf2->type(), flags, NULL))
5728 	return false;
5729       if ((flags & Type::COMPARE_TAGS) != 0)
5730 	{
5731 	  if (!pf1->has_tag())
5732 	    {
5733 	      if (pf2->has_tag())
5734 		return false;
5735 	    }
5736 	  else
5737 	    {
5738 	      if (!pf2->has_tag())
5739 		return false;
5740 	      if (pf1->tag() != pf2->tag())
5741 		return false;
5742 	    }
5743 	}
5744     }
5745   if (pf2 != fields2->end())
5746     return false;
5747   return true;
5748 }
5749 
5750 // Whether comparisons of this struct type are simple identity
5751 // comparisons.
5752 
5753 bool
do_compare_is_identity(Gogo * gogo)5754 Struct_type::do_compare_is_identity(Gogo* gogo)
5755 {
5756   const Struct_field_list* fields = this->fields_;
5757   if (fields == NULL)
5758     return true;
5759   int64_t offset = 0;
5760   for (Struct_field_list::const_iterator pf = fields->begin();
5761        pf != fields->end();
5762        ++pf)
5763     {
5764       if (Gogo::is_sink_name(pf->field_name()))
5765 	return false;
5766 
5767       if (!pf->type()->compare_is_identity(gogo))
5768 	return false;
5769 
5770       int64_t field_align;
5771       if (!pf->type()->backend_type_align(gogo, &field_align))
5772 	return false;
5773       if ((offset & (field_align - 1)) != 0)
5774 	{
5775 	  // This struct has padding.  We don't guarantee that that
5776 	  // padding is zero-initialized for a stack variable, so we
5777 	  // can't use memcmp to compare struct values.
5778 	  return false;
5779 	}
5780 
5781       int64_t field_size;
5782       if (!pf->type()->backend_type_size(gogo, &field_size))
5783 	return false;
5784       offset += field_size;
5785     }
5786 
5787   int64_t struct_size;
5788   if (!this->backend_type_size(gogo, &struct_size))
5789     return false;
5790   if (offset != struct_size)
5791     {
5792       // Trailing padding may not be zero when on the stack.
5793       return false;
5794     }
5795 
5796   return true;
5797 }
5798 
5799 // Return whether this struct type is reflexive--whether a value of
5800 // this type is always equal to itself.
5801 
5802 bool
do_is_reflexive()5803 Struct_type::do_is_reflexive()
5804 {
5805   const Struct_field_list* fields = this->fields_;
5806   if (fields == NULL)
5807     return true;
5808   for (Struct_field_list::const_iterator pf = fields->begin();
5809        pf != fields->end();
5810        ++pf)
5811     {
5812       if (!pf->type()->is_reflexive())
5813 	return false;
5814     }
5815   return true;
5816 }
5817 
5818 // Return whether this struct type needs a key update when used as a
5819 // map key.
5820 
5821 bool
do_needs_key_update()5822 Struct_type::do_needs_key_update()
5823 {
5824   const Struct_field_list* fields = this->fields_;
5825   if (fields == NULL)
5826     return false;
5827   for (Struct_field_list::const_iterator pf = fields->begin();
5828        pf != fields->end();
5829        ++pf)
5830     {
5831       if (pf->type()->needs_key_update())
5832 	return true;
5833     }
5834   return false;
5835 }
5836 
5837 // Return whether computing the hash value of an instance of this
5838 // struct type might panic.
5839 
5840 bool
do_hash_might_panic()5841 Struct_type::do_hash_might_panic()
5842 {
5843   const Struct_field_list* fields = this->fields_;
5844   if (fields == NULL)
5845     return false;
5846   for (Struct_field_list::const_iterator pf = fields->begin();
5847        pf != fields->end();
5848        ++pf)
5849     {
5850       if (pf->type()->hash_might_panic())
5851 	return true;
5852     }
5853   return false;
5854 }
5855 
5856 // Return whether this struct type is permitted to be in the heap.
5857 
5858 bool
do_in_heap()5859 Struct_type::do_in_heap()
5860 {
5861   const Struct_field_list* fields = this->fields_;
5862   if (fields == NULL)
5863     return true;
5864   for (Struct_field_list::const_iterator pf = fields->begin();
5865        pf != fields->end();
5866        ++pf)
5867     {
5868       if (!pf->type()->in_heap())
5869 	return false;
5870     }
5871   return true;
5872 }
5873 
5874 // Build identity and hash functions for this struct.
5875 
5876 // Hash code.
5877 
5878 unsigned int
do_hash_for_method(Gogo * gogo,int flags) const5879 Struct_type::do_hash_for_method(Gogo* gogo, int flags) const
5880 {
5881   unsigned int ret = 0;
5882   if (this->fields() != NULL)
5883     {
5884       for (Struct_field_list::const_iterator pf = this->fields()->begin();
5885 	   pf != this->fields()->end();
5886 	   ++pf)
5887 	ret = (ret << 1) + pf->type()->hash_for_method(gogo, flags);
5888     }
5889   ret <<= 2;
5890   if (this->is_struct_incomparable_)
5891     ret <<= 1;
5892   return ret;
5893 }
5894 
5895 // Find the local field NAME.
5896 
5897 const Struct_field*
find_local_field(const std::string & name,unsigned int * pindex) const5898 Struct_type::find_local_field(const std::string& name,
5899 			      unsigned int *pindex) const
5900 {
5901   const Struct_field_list* fields = this->fields_;
5902   if (fields == NULL)
5903     return NULL;
5904   unsigned int i = 0;
5905   for (Struct_field_list::const_iterator pf = fields->begin();
5906        pf != fields->end();
5907        ++pf, ++i)
5908     {
5909       if (pf->is_field_name(name))
5910 	{
5911 	  if (pindex != NULL)
5912 	    *pindex = i;
5913 	  return &*pf;
5914 	}
5915     }
5916   return NULL;
5917 }
5918 
5919 // Return an expression for field NAME in STRUCT_EXPR, or NULL.
5920 
5921 Field_reference_expression*
field_reference(Expression * struct_expr,const std::string & name,Location location) const5922 Struct_type::field_reference(Expression* struct_expr, const std::string& name,
5923 			     Location location) const
5924 {
5925   unsigned int depth;
5926   return this->field_reference_depth(struct_expr, name, location, NULL,
5927 				     &depth);
5928 }
5929 
5930 // Return an expression for a field, along with the depth at which it
5931 // was found.
5932 
5933 Field_reference_expression*
field_reference_depth(Expression * struct_expr,const std::string & name,Location location,Saw_named_type * saw,unsigned int * depth) const5934 Struct_type::field_reference_depth(Expression* struct_expr,
5935 				   const std::string& name,
5936 				   Location location,
5937 				   Saw_named_type* saw,
5938 				   unsigned int* depth) const
5939 {
5940   const Struct_field_list* fields = this->fields_;
5941   if (fields == NULL)
5942     return NULL;
5943 
5944   // Look for a field with this name.
5945   unsigned int i = 0;
5946   for (Struct_field_list::const_iterator pf = fields->begin();
5947        pf != fields->end();
5948        ++pf, ++i)
5949     {
5950       if (pf->is_field_name(name))
5951 	{
5952 	  *depth = 0;
5953 	  return Expression::make_field_reference(struct_expr, i, location);
5954 	}
5955     }
5956 
5957   // Look for an anonymous field which contains a field with this
5958   // name.
5959   unsigned int found_depth = 0;
5960   Field_reference_expression* ret = NULL;
5961   i = 0;
5962   for (Struct_field_list::const_iterator pf = fields->begin();
5963        pf != fields->end();
5964        ++pf, ++i)
5965     {
5966       if (!pf->is_anonymous())
5967 	continue;
5968 
5969       Struct_type* st = pf->type()->deref()->struct_type();
5970       if (st == NULL)
5971 	continue;
5972 
5973       Saw_named_type* hold_saw = saw;
5974       Saw_named_type saw_here;
5975       Named_type* nt = pf->type()->named_type();
5976       if (nt == NULL)
5977 	nt = pf->type()->deref()->named_type();
5978       if (nt != NULL)
5979 	{
5980 	  Saw_named_type* q;
5981 	  for (q = saw; q != NULL; q = q->next)
5982 	    {
5983 	      if (q->nt == nt)
5984 		{
5985 		  // If this is an error, it will be reported
5986 		  // elsewhere.
5987 		  break;
5988 		}
5989 	    }
5990 	  if (q != NULL)
5991 	    continue;
5992 	  saw_here.next = saw;
5993 	  saw_here.nt = nt;
5994 	  saw = &saw_here;
5995 	}
5996 
5997       // Look for a reference using a NULL struct expression.  If we
5998       // find one, fill in the struct expression with a reference to
5999       // this field.
6000       unsigned int subdepth;
6001       Field_reference_expression* sub = st->field_reference_depth(NULL, name,
6002 								  location,
6003 								  saw,
6004 								  &subdepth);
6005 
6006       saw = hold_saw;
6007 
6008       if (sub == NULL)
6009 	continue;
6010 
6011       if (ret == NULL || subdepth < found_depth)
6012 	{
6013 	  if (ret != NULL)
6014 	    delete ret;
6015 	  ret = sub;
6016 	  found_depth = subdepth;
6017 	  Expression* here = Expression::make_field_reference(struct_expr, i,
6018 							      location);
6019 	  if (pf->type()->points_to() != NULL)
6020             here = Expression::make_dereference(here,
6021                                                 Expression::NIL_CHECK_DEFAULT,
6022                                                 location);
6023 	  while (sub->expr() != NULL)
6024 	    {
6025 	      sub = sub->expr()->deref()->field_reference_expression();
6026 	      go_assert(sub != NULL);
6027 	    }
6028 	  sub->set_struct_expression(here);
6029           sub->set_implicit(true);
6030 	}
6031       else if (subdepth > found_depth)
6032 	delete sub;
6033       else
6034 	{
6035 	  // We do not handle ambiguity here--it should be handled by
6036 	  // Type::bind_field_or_method.
6037 	  delete sub;
6038 	  found_depth = 0;
6039 	  ret = NULL;
6040 	}
6041     }
6042 
6043   if (ret != NULL)
6044     *depth = found_depth + 1;
6045 
6046   return ret;
6047 }
6048 
6049 // Return the total number of fields, including embedded fields.
6050 
6051 unsigned int
total_field_count() const6052 Struct_type::total_field_count() const
6053 {
6054   if (this->fields_ == NULL)
6055     return 0;
6056   unsigned int ret = 0;
6057   for (Struct_field_list::const_iterator pf = this->fields_->begin();
6058        pf != this->fields_->end();
6059        ++pf)
6060     {
6061       if (!pf->is_anonymous() || pf->type()->struct_type() == NULL)
6062 	++ret;
6063       else
6064 	ret += pf->type()->struct_type()->total_field_count();
6065     }
6066   return ret;
6067 }
6068 
6069 // Return whether NAME is an unexported field, for better error reporting.
6070 
6071 bool
is_unexported_local_field(Gogo * gogo,const std::string & name) const6072 Struct_type::is_unexported_local_field(Gogo* gogo,
6073 				       const std::string& name) const
6074 {
6075   const Struct_field_list* fields = this->fields_;
6076   if (fields != NULL)
6077     {
6078       for (Struct_field_list::const_iterator pf = fields->begin();
6079 	   pf != fields->end();
6080 	   ++pf)
6081 	if (pf->is_unexported_field_name(gogo, name))
6082 	  return true;
6083     }
6084   return false;
6085 }
6086 
6087 // Finalize the methods of an unnamed struct.
6088 
6089 void
finalize_methods(Gogo * gogo)6090 Struct_type::finalize_methods(Gogo* gogo)
6091 {
6092   if (this->all_methods_ != NULL)
6093     return;
6094 
6095   // It is possible to have multiple identical structs that have
6096   // methods.  We want them to share method tables.  Otherwise we will
6097   // emit identical methods more than once, which is bad since they
6098   // will even have the same names.
6099   std::pair<Identical_structs::iterator, bool> ins =
6100     Struct_type::identical_structs.insert(std::make_pair(this, this));
6101   if (!ins.second)
6102     {
6103       // An identical struct was already entered into the hash table.
6104       // Note that finalize_methods is, fortunately, not recursive.
6105       this->all_methods_ = ins.first->second->all_methods_;
6106       return;
6107     }
6108 
6109   Type::finalize_methods(gogo, this, this->location_, &this->all_methods_);
6110 }
6111 
6112 // Return the method NAME, or NULL if there isn't one or if it is
6113 // ambiguous.  Set *IS_AMBIGUOUS if the method exists but is
6114 // ambiguous.
6115 
6116 Method*
method_function(const std::string & name,bool * is_ambiguous) const6117 Struct_type::method_function(const std::string& name, bool* is_ambiguous) const
6118 {
6119   return Type::method_function(this->all_methods_, name, is_ambiguous);
6120 }
6121 
6122 // Return a pointer to the interface method table for this type for
6123 // the interface INTERFACE.  IS_POINTER is true if this is for a
6124 // pointer to THIS.
6125 
6126 Expression*
interface_method_table(Interface_type * interface,bool is_pointer)6127 Struct_type::interface_method_table(Interface_type* interface,
6128 				    bool is_pointer)
6129 {
6130   std::pair<Struct_type*, Struct_type::Struct_method_table_pair*>
6131     val(this, NULL);
6132   std::pair<Struct_type::Struct_method_tables::iterator, bool> ins =
6133     Struct_type::struct_method_tables.insert(val);
6134 
6135   Struct_method_table_pair* smtp;
6136   if (!ins.second)
6137     smtp = ins.first->second;
6138   else
6139     {
6140       smtp = new Struct_method_table_pair();
6141       smtp->first = NULL;
6142       smtp->second = NULL;
6143       ins.first->second = smtp;
6144     }
6145 
6146   return Type::interface_method_table(this, interface, is_pointer,
6147 				      &smtp->first, &smtp->second);
6148 }
6149 
6150 // Convert struct fields to the backend representation.  This is not
6151 // declared in types.h so that types.h doesn't have to #include
6152 // backend.h.
6153 
6154 static void
get_backend_struct_fields(Gogo * gogo,Struct_type * type,bool use_placeholder,std::vector<Backend::Btyped_identifier> * bfields)6155 get_backend_struct_fields(Gogo* gogo, Struct_type* type, bool use_placeholder,
6156 			  std::vector<Backend::Btyped_identifier>* bfields)
6157 {
6158   const Struct_field_list* fields = type->fields();
6159   bfields->resize(fields->size());
6160   size_t i = 0;
6161   int64_t lastsize = 0;
6162   bool saw_nonzero = false;
6163   for (Struct_field_list::const_iterator p = fields->begin();
6164        p != fields->end();
6165        ++p, ++i)
6166     {
6167       (*bfields)[i].name = Gogo::unpack_hidden_name(p->field_name());
6168       (*bfields)[i].btype = (use_placeholder
6169 			     ? p->type()->get_backend_placeholder(gogo)
6170 			     : p->type()->get_backend(gogo));
6171       (*bfields)[i].location = p->location();
6172       lastsize = gogo->backend()->type_size((*bfields)[i].btype);
6173       if (lastsize != 0)
6174         saw_nonzero = true;
6175     }
6176   go_assert(i == fields->size());
6177   if (saw_nonzero && lastsize == 0)
6178     {
6179       // For nonzero-sized structs which end in a zero-sized thing, we add
6180       // an extra byte of padding to the type. This padding ensures that
6181       // taking the address of the zero-sized thing can't manufacture a
6182       // pointer to the next object in the heap. See issue 9401.
6183       size_t n = fields->size();
6184       bfields->resize(n + 1);
6185       (*bfields)[n].name = "_";
6186       (*bfields)[n].btype = Type::lookup_integer_type("uint8")->get_backend(gogo);
6187       (*bfields)[n].location = (*bfields)[n-1].location;
6188       type->set_has_padding();
6189     }
6190 }
6191 
6192 // Get the backend representation for a struct type.
6193 
6194 Btype*
do_get_backend(Gogo * gogo)6195 Struct_type::do_get_backend(Gogo* gogo)
6196 {
6197   std::vector<Backend::Btyped_identifier> bfields;
6198   get_backend_struct_fields(gogo, this, false, &bfields);
6199   return gogo->backend()->struct_type(bfields);
6200 }
6201 
6202 // Finish the backend representation of the fields of a struct.
6203 
6204 void
finish_backend_fields(Gogo * gogo)6205 Struct_type::finish_backend_fields(Gogo* gogo)
6206 {
6207   const Struct_field_list* fields = this->fields_;
6208   if (fields != NULL)
6209     {
6210       for (Struct_field_list::const_iterator p = fields->begin();
6211 	   p != fields->end();
6212 	   ++p)
6213 	p->type()->get_backend(gogo);
6214     }
6215 }
6216 
6217 // The type of a struct type descriptor.
6218 
6219 Type*
make_struct_type_descriptor_type()6220 Struct_type::make_struct_type_descriptor_type()
6221 {
6222   static Type* ret;
6223   if (ret == NULL)
6224     {
6225       Type* tdt = Type::make_type_descriptor_type();
6226       Type* ptdt = Type::make_type_descriptor_ptr_type();
6227 
6228       Type* uintptr_type = Type::lookup_integer_type("uintptr");
6229       Type* string_type = Type::lookup_string_type();
6230       Type* pointer_string_type = Type::make_pointer_type(string_type);
6231 
6232       Struct_type* sf =
6233 	Type::make_builtin_struct_type(5,
6234 				       "name", pointer_string_type,
6235 				       "pkgPath", pointer_string_type,
6236 				       "typ", ptdt,
6237 				       "tag", pointer_string_type,
6238 				       "offsetAnon", uintptr_type);
6239       Type* nsf = Type::make_builtin_named_type("structField", sf);
6240 
6241       Type* slice_type = Type::make_array_type(nsf, NULL);
6242 
6243       Struct_type* s = Type::make_builtin_struct_type(2,
6244 						      "", tdt,
6245 						      "fields", slice_type);
6246 
6247       ret = Type::make_builtin_named_type("StructType", s);
6248     }
6249 
6250   return ret;
6251 }
6252 
6253 // Build a type descriptor for a struct type.
6254 
6255 Expression*
do_type_descriptor(Gogo * gogo,Named_type * name)6256 Struct_type::do_type_descriptor(Gogo* gogo, Named_type* name)
6257 {
6258   Location bloc = Linemap::predeclared_location();
6259 
6260   Type* stdt = Struct_type::make_struct_type_descriptor_type();
6261 
6262   const Struct_field_list* fields = stdt->struct_type()->fields();
6263 
6264   Expression_list* vals = new Expression_list();
6265   vals->reserve(2);
6266 
6267   const Methods* methods = this->methods();
6268   // A named struct should not have methods--the methods should attach
6269   // to the named type.
6270   go_assert(methods == NULL || name == NULL);
6271 
6272   Struct_field_list::const_iterator ps = fields->begin();
6273   go_assert(ps->is_field_name("_type"));
6274   vals->push_back(this->type_descriptor_constructor(gogo,
6275 						    RUNTIME_TYPE_KIND_STRUCT,
6276 						    name, methods, true));
6277 
6278   ++ps;
6279   go_assert(ps->is_field_name("fields"));
6280 
6281   Expression_list* elements = new Expression_list();
6282   elements->reserve(this->fields_->size());
6283   Type* element_type = ps->type()->array_type()->element_type();
6284   for (Struct_field_list::const_iterator pf = this->fields_->begin();
6285        pf != this->fields_->end();
6286        ++pf)
6287     {
6288       const Struct_field_list* f = element_type->struct_type()->fields();
6289 
6290       Expression_list* fvals = new Expression_list();
6291       fvals->reserve(5);
6292 
6293       Struct_field_list::const_iterator q = f->begin();
6294       go_assert(q->is_field_name("name"));
6295       std::string n = Gogo::unpack_hidden_name(pf->field_name());
6296       Expression* s = Expression::make_string(n, bloc);
6297       fvals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
6298 
6299       ++q;
6300       go_assert(q->is_field_name("pkgPath"));
6301       bool is_embedded_builtin = pf->is_embedded_builtin(gogo);
6302       if (!Gogo::is_hidden_name(pf->field_name()) && !is_embedded_builtin)
6303         fvals->push_back(Expression::make_nil(bloc));
6304       else
6305 	{
6306 	  std::string n;
6307           if (is_embedded_builtin)
6308             n = gogo->package_name();
6309           else
6310             n = Gogo::hidden_name_pkgpath(pf->field_name());
6311 	  Expression* s = Expression::make_string(n, bloc);
6312 	  fvals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
6313 	}
6314 
6315       ++q;
6316       go_assert(q->is_field_name("typ"));
6317       fvals->push_back(Expression::make_type_descriptor(pf->type(), bloc));
6318 
6319       ++q;
6320       go_assert(q->is_field_name("tag"));
6321       if (!pf->has_tag())
6322 	fvals->push_back(Expression::make_nil(bloc));
6323       else
6324 	{
6325 	  Expression* s = Expression::make_string(pf->tag(), bloc);
6326 	  fvals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
6327 	}
6328 
6329       ++q;
6330       go_assert(q->is_field_name("offsetAnon"));
6331       Type* uintptr_type = Type::lookup_integer_type("uintptr");
6332       Expression* o = Expression::make_struct_field_offset(this, &*pf);
6333       Expression* one = Expression::make_integer_ul(1, uintptr_type, bloc);
6334       o = Expression::make_binary(OPERATOR_LSHIFT, o, one, bloc);
6335       int av = pf->is_anonymous() ? 1 : 0;
6336       Expression* anon = Expression::make_integer_ul(av, uintptr_type, bloc);
6337       o = Expression::make_binary(OPERATOR_OR, o, anon, bloc);
6338       fvals->push_back(o);
6339 
6340       Expression* v = Expression::make_struct_composite_literal(element_type,
6341 								fvals, bloc);
6342       elements->push_back(v);
6343     }
6344 
6345   vals->push_back(Expression::make_slice_composite_literal(ps->type(),
6346 							   elements, bloc));
6347 
6348   return Expression::make_struct_composite_literal(stdt, vals, bloc);
6349 }
6350 
6351 // Write the hash function for a struct which can not use the identity
6352 // function.
6353 
6354 void
write_hash_function(Gogo * gogo,Named_type *,Function_type * hash_fntype,Function_type * equal_fntype)6355 Struct_type::write_hash_function(Gogo* gogo, Named_type*,
6356 				 Function_type* hash_fntype,
6357 				 Function_type* equal_fntype)
6358 {
6359   Location bloc = Linemap::predeclared_location();
6360 
6361   // The pointer to the struct that we are going to hash.  This is an
6362   // argument to the hash function we are implementing here.
6363   Named_object* key_arg = gogo->lookup("key", NULL);
6364   go_assert(key_arg != NULL);
6365   Type* key_arg_type = key_arg->var_value()->type();
6366 
6367   // The seed argument to the hash function.
6368   Named_object* seed_arg = gogo->lookup("seed", NULL);
6369   go_assert(seed_arg != NULL);
6370 
6371   Type* uintptr_type = Type::lookup_integer_type("uintptr");
6372 
6373   // Make a temporary to hold the return value, initialized to the seed.
6374   Expression* ref = Expression::make_var_reference(seed_arg, bloc);
6375   Temporary_statement* retval = Statement::make_temporary(uintptr_type, ref,
6376 							  bloc);
6377   gogo->add_statement(retval);
6378 
6379   // Make a temporary to hold the key as a uintptr.
6380   ref = Expression::make_var_reference(key_arg, bloc);
6381   ref = Expression::make_cast(uintptr_type, ref, bloc);
6382   Temporary_statement* key = Statement::make_temporary(uintptr_type, ref,
6383 						       bloc);
6384   gogo->add_statement(key);
6385 
6386   // Loop over the struct fields.
6387   const Struct_field_list* fields = this->fields_;
6388   for (Struct_field_list::const_iterator pf = fields->begin();
6389        pf != fields->end();
6390        ++pf)
6391     {
6392       if (Gogo::is_sink_name(pf->field_name()))
6393 	continue;
6394 
6395       // Get a pointer to the value of this field.
6396       Expression* offset = Expression::make_struct_field_offset(this, &*pf);
6397       ref = Expression::make_temporary_reference(key, bloc);
6398       Expression* subkey = Expression::make_binary(OPERATOR_PLUS, ref, offset,
6399 						   bloc);
6400       subkey = Expression::make_cast(key_arg_type, subkey, bloc);
6401 
6402       // Get the hash function to use for the type of this field.
6403       Named_object* hash_fn;
6404       Named_object* equal_fn;
6405       pf->type()->type_functions(gogo, pf->type()->named_type(), hash_fntype,
6406 				 equal_fntype, &hash_fn, &equal_fn);
6407 
6408       // Call the hash function for the field, passing retval as the seed.
6409       ref = Expression::make_temporary_reference(retval, bloc);
6410       Expression_list* args = new Expression_list();
6411       args->push_back(subkey);
6412       args->push_back(ref);
6413       Expression* func = Expression::make_func_reference(hash_fn, NULL, bloc);
6414       Expression* call = Expression::make_call(func, args, false, bloc);
6415 
6416       // Set retval to the result.
6417       Temporary_reference_expression* tref =
6418 	Expression::make_temporary_reference(retval, bloc);
6419       tref->set_is_lvalue();
6420       Statement* s = Statement::make_assignment(tref, call, bloc);
6421       gogo->add_statement(s);
6422     }
6423 
6424   // Return retval to the caller of the hash function.
6425   Expression_list* vals = new Expression_list();
6426   ref = Expression::make_temporary_reference(retval, bloc);
6427   vals->push_back(ref);
6428   Statement* s = Statement::make_return_statement(vals, bloc);
6429   gogo->add_statement(s);
6430 }
6431 
6432 // Write the equality function for a struct which can not use the
6433 // identity function.
6434 
6435 void
write_equal_function(Gogo * gogo,Named_type * name)6436 Struct_type::write_equal_function(Gogo* gogo, Named_type* name)
6437 {
6438   Location bloc = Linemap::predeclared_location();
6439 
6440   // The pointers to the structs we are going to compare.
6441   Named_object* key1_arg = gogo->lookup("key1", NULL);
6442   Named_object* key2_arg = gogo->lookup("key2", NULL);
6443   go_assert(key1_arg != NULL && key2_arg != NULL);
6444 
6445   // Build temporaries with the right types.
6446   Type* pt = Type::make_pointer_type(name != NULL
6447 				     ? static_cast<Type*>(name)
6448 				     : static_cast<Type*>(this));
6449 
6450   Expression* ref = Expression::make_var_reference(key1_arg, bloc);
6451   ref = Expression::make_unsafe_cast(pt, ref, bloc);
6452   Temporary_statement* p1 = Statement::make_temporary(pt, ref, bloc);
6453   gogo->add_statement(p1);
6454 
6455   ref = Expression::make_var_reference(key2_arg, bloc);
6456   ref = Expression::make_unsafe_cast(pt, ref, bloc);
6457   Temporary_statement* p2 = Statement::make_temporary(pt, ref, bloc);
6458   gogo->add_statement(p2);
6459 
6460   const Struct_field_list* fields = this->fields_;
6461   unsigned int field_index = 0;
6462   for (Struct_field_list::const_iterator pf = fields->begin();
6463        pf != fields->end();
6464        ++pf, ++field_index)
6465     {
6466       if (Gogo::is_sink_name(pf->field_name()))
6467 	continue;
6468 
6469       // Compare one field in both P1 and P2.
6470       Expression* f1 = Expression::make_temporary_reference(p1, bloc);
6471       f1 = Expression::make_dereference(f1, Expression::NIL_CHECK_DEFAULT,
6472                                         bloc);
6473       f1 = Expression::make_field_reference(f1, field_index, bloc);
6474 
6475       Expression* f2 = Expression::make_temporary_reference(p2, bloc);
6476       f2 = Expression::make_dereference(f2, Expression::NIL_CHECK_DEFAULT,
6477                                         bloc);
6478       f2 = Expression::make_field_reference(f2, field_index, bloc);
6479 
6480       Expression* cond = Expression::make_binary(OPERATOR_NOTEQ, f1, f2, bloc);
6481 
6482       // If the values are not equal, return false.
6483       gogo->start_block(bloc);
6484       Expression_list* vals = new Expression_list();
6485       vals->push_back(Expression::make_boolean(false, bloc));
6486       Statement* s = Statement::make_return_statement(vals, bloc);
6487       gogo->add_statement(s);
6488       Block* then_block = gogo->finish_block(bloc);
6489 
6490       s = Statement::make_if_statement(cond, then_block, NULL, bloc);
6491       gogo->add_statement(s);
6492     }
6493 
6494   // All the fields are equal, so return true.
6495   Expression_list* vals = new Expression_list();
6496   vals->push_back(Expression::make_boolean(true, bloc));
6497   Statement* s = Statement::make_return_statement(vals, bloc);
6498   gogo->add_statement(s);
6499 }
6500 
6501 // Reflection string.
6502 
6503 void
do_reflection(Gogo * gogo,std::string * ret) const6504 Struct_type::do_reflection(Gogo* gogo, std::string* ret) const
6505 {
6506   ret->append("struct {");
6507 
6508   for (Struct_field_list::const_iterator p = this->fields_->begin();
6509        p != this->fields_->end();
6510        ++p)
6511     {
6512       if (p != this->fields_->begin())
6513 	ret->push_back(';');
6514       ret->push_back(' ');
6515       if (!p->is_anonymous())
6516 	{
6517 	  ret->append(Gogo::unpack_hidden_name(p->field_name()));
6518 	  ret->push_back(' ');
6519 	}
6520       if (p->is_anonymous()
6521 	  && p->type()->named_type() != NULL
6522 	  && p->type()->named_type()->is_alias())
6523 	p->type()->named_type()->append_reflection_type_name(gogo, true, ret);
6524       else
6525 	this->append_reflection(p->type(), gogo, ret);
6526 
6527       if (p->has_tag())
6528 	{
6529 	  const std::string& tag(p->tag());
6530 	  ret->append(" \"");
6531 	  for (std::string::const_iterator p = tag.begin();
6532 	       p != tag.end();
6533 	       ++p)
6534 	    {
6535 	      if (*p == '\0')
6536 		ret->append("\\x00");
6537 	      else if (*p == '\n')
6538 		ret->append("\\n");
6539 	      else if (*p == '\t')
6540 		ret->append("\\t");
6541 	      else if (*p == '"')
6542 		ret->append("\\\"");
6543 	      else if (*p == '\\')
6544 		ret->append("\\\\");
6545 	      else
6546 		ret->push_back(*p);
6547 	    }
6548 	  ret->push_back('"');
6549 	}
6550     }
6551 
6552   if (!this->fields_->empty())
6553     ret->push_back(' ');
6554 
6555   ret->push_back('}');
6556 }
6557 
6558 // If the offset of field INDEX in the backend implementation can be
6559 // determined, set *POFFSET to the offset in bytes and return true.
6560 // Otherwise, return false.
6561 
6562 bool
backend_field_offset(Gogo * gogo,unsigned int index,int64_t * poffset)6563 Struct_type::backend_field_offset(Gogo* gogo, unsigned int index,
6564 				  int64_t* poffset)
6565 {
6566   if (!this->is_backend_type_size_known(gogo))
6567     return false;
6568   Btype* bt = this->get_backend_placeholder(gogo);
6569   *poffset = gogo->backend()->type_field_offset(bt, index);
6570   return true;
6571 }
6572 
6573 // Export.
6574 
6575 void
do_export(Export * exp) const6576 Struct_type::do_export(Export* exp) const
6577 {
6578   exp->write_c_string("struct { ");
6579   const Struct_field_list* fields = this->fields_;
6580   go_assert(fields != NULL);
6581   for (Struct_field_list::const_iterator p = fields->begin();
6582        p != fields->end();
6583        ++p)
6584     {
6585       if (p->is_anonymous())
6586 	exp->write_string("? ");
6587       else
6588 	{
6589 	  exp->write_string(p->field_name());
6590 	  exp->write_c_string(" ");
6591 	}
6592       exp->write_type(p->type());
6593 
6594       if (p->has_tag())
6595 	{
6596 	  exp->write_c_string(" ");
6597 	  Expression* expr =
6598             Expression::make_string(p->tag(), Linemap::predeclared_location());
6599 
6600 	  Export_function_body efb(exp, 0);
6601 	  expr->export_expression(&efb);
6602 	  exp->write_string(efb.body());
6603 
6604 	  delete expr;
6605 	}
6606 
6607       exp->write_c_string("; ");
6608     }
6609   exp->write_c_string("}");
6610 }
6611 
6612 // Import.
6613 
6614 Struct_type*
do_import(Import * imp)6615 Struct_type::do_import(Import* imp)
6616 {
6617   imp->require_c_string("struct { ");
6618   Struct_field_list* fields = new Struct_field_list;
6619   if (imp->peek_char() != '}')
6620     {
6621       while (true)
6622 	{
6623 	  std::string name;
6624 	  if (imp->match_c_string("? "))
6625 	    imp->advance(2);
6626 	  else
6627 	    {
6628 	      name = imp->read_identifier();
6629 	      imp->require_c_string(" ");
6630 	    }
6631 	  Type* ftype = imp->read_type();
6632 
6633 	  Struct_field sf(Typed_identifier(name, ftype, imp->location()));
6634 	  sf.set_is_imported();
6635 
6636 	  if (imp->peek_char() == ' ')
6637 	    {
6638 	      imp->advance(1);
6639 	      Expression* expr = Expression::import_expression(imp,
6640 							       imp->location());
6641 	      String_expression* sexpr = expr->string_expression();
6642 	      go_assert(sexpr != NULL);
6643 	      sf.set_tag(sexpr->val());
6644 	      delete sexpr;
6645 	    }
6646 
6647 	  imp->require_c_string("; ");
6648 	  fields->push_back(sf);
6649 	  if (imp->peek_char() == '}')
6650 	    break;
6651 	}
6652     }
6653   imp->require_c_string("}");
6654 
6655   return Type::make_struct_type(fields, imp->location());
6656 }
6657 
6658 // Whether we can write this struct type to a C header file.
6659 // We can't if any of the fields are structs defined in a different package.
6660 
6661 bool
can_write_to_c_header(std::vector<const Named_object * > * requires,std::vector<const Named_object * > * declare) const6662 Struct_type::can_write_to_c_header(
6663     std::vector<const Named_object*>* requires,
6664     std::vector<const Named_object*>* declare) const
6665 {
6666   const Struct_field_list* fields = this->fields_;
6667   if (fields == NULL || fields->empty())
6668     return false;
6669   int sinks = 0;
6670   for (Struct_field_list::const_iterator p = fields->begin();
6671        p != fields->end();
6672        ++p)
6673     {
6674       if (p->is_anonymous())
6675 	return false;
6676       if (!this->can_write_type_to_c_header(p->type(), requires, declare))
6677 	return false;
6678       if (Gogo::message_name(p->field_name()) == "_")
6679 	sinks++;
6680     }
6681   if (sinks > 1)
6682     return false;
6683   return true;
6684 }
6685 
6686 // Whether we can write the type T to a C header file.
6687 
6688 bool
can_write_type_to_c_header(const Type * t,std::vector<const Named_object * > * requires,std::vector<const Named_object * > * declare) const6689 Struct_type::can_write_type_to_c_header(
6690     const Type* t,
6691     std::vector<const Named_object*>* requires,
6692     std::vector<const Named_object*>* declare) const
6693 {
6694   t = t->forwarded();
6695   switch (t->classification())
6696     {
6697     case TYPE_ERROR:
6698     case TYPE_FORWARD:
6699       return false;
6700 
6701     case TYPE_VOID:
6702     case TYPE_BOOLEAN:
6703     case TYPE_INTEGER:
6704     case TYPE_FLOAT:
6705     case TYPE_COMPLEX:
6706     case TYPE_STRING:
6707     case TYPE_FUNCTION:
6708     case TYPE_MAP:
6709     case TYPE_CHANNEL:
6710     case TYPE_INTERFACE:
6711       return true;
6712 
6713     case TYPE_POINTER:
6714       // Don't try to handle a pointer to an array.
6715       if (t->points_to()->array_type() != NULL
6716 	  && !t->points_to()->is_slice_type())
6717 	return false;
6718 
6719       if (t->points_to()->named_type() != NULL
6720 	  && t->points_to()->struct_type() != NULL)
6721 	declare->push_back(t->points_to()->named_type()->named_object());
6722       return true;
6723 
6724     case TYPE_STRUCT:
6725       return t->struct_type()->can_write_to_c_header(requires, declare);
6726 
6727     case TYPE_ARRAY:
6728       if (t->is_slice_type())
6729 	return true;
6730       return this->can_write_type_to_c_header(t->array_type()->element_type(),
6731 					      requires, declare);
6732 
6733     case TYPE_NAMED:
6734       {
6735 	const Named_object* no = t->named_type()->named_object();
6736 	if (no->package() != NULL)
6737 	  {
6738 	    if (t->is_unsafe_pointer_type())
6739 	      return true;
6740 	    return false;
6741 	  }
6742 	if (t->struct_type() != NULL)
6743 	  {
6744 	    requires->push_back(no);
6745 	    return t->struct_type()->can_write_to_c_header(requires, declare);
6746 	  }
6747 	return this->can_write_type_to_c_header(t->base(), requires, declare);
6748       }
6749 
6750     case TYPE_CALL_MULTIPLE_RESULT:
6751     case TYPE_NIL:
6752     case TYPE_SINK:
6753     default:
6754       go_unreachable();
6755     }
6756 }
6757 
6758 // Write this struct to a C header file.
6759 
6760 void
write_to_c_header(std::ostream & os) const6761 Struct_type::write_to_c_header(std::ostream& os) const
6762 {
6763   const Struct_field_list* fields = this->fields_;
6764   for (Struct_field_list::const_iterator p = fields->begin();
6765        p != fields->end();
6766        ++p)
6767     {
6768       os << '\t';
6769       this->write_field_to_c_header(os, p->field_name(), p->type());
6770       os << ';' << std::endl;
6771     }
6772 }
6773 
6774 // Write the type of a struct field to a C header file.
6775 
6776 void
write_field_to_c_header(std::ostream & os,const std::string & name,const Type * t) const6777 Struct_type::write_field_to_c_header(std::ostream& os, const std::string& name,
6778 				     const Type *t) const
6779 {
6780   bool print_name = true;
6781   t = t->forwarded();
6782   switch (t->classification())
6783     {
6784     case TYPE_VOID:
6785       os << "void";
6786       break;
6787 
6788     case TYPE_BOOLEAN:
6789       os << "_Bool";
6790       break;
6791 
6792     case TYPE_INTEGER:
6793       {
6794 	const Integer_type* it = t->integer_type();
6795 	if (it->is_unsigned())
6796 	  os << 'u';
6797 	os << "int" << it->bits() << "_t";
6798       }
6799       break;
6800 
6801     case TYPE_FLOAT:
6802       switch (t->float_type()->bits())
6803 	{
6804 	case 32:
6805 	  os << "float";
6806 	  break;
6807 	case 64:
6808 	  os << "double";
6809 	  break;
6810 	default:
6811 	  go_unreachable();
6812 	}
6813       break;
6814 
6815     case TYPE_COMPLEX:
6816       switch (t->complex_type()->bits())
6817 	{
6818 	case 64:
6819 	  os << "float _Complex";
6820 	  break;
6821 	case 128:
6822 	  os << "double _Complex";
6823 	  break;
6824 	default:
6825 	  go_unreachable();
6826 	}
6827       break;
6828 
6829     case TYPE_STRING:
6830       os << "String";
6831       break;
6832 
6833     case TYPE_FUNCTION:
6834       os << "FuncVal*";
6835       break;
6836 
6837     case TYPE_POINTER:
6838       {
6839 	std::vector<const Named_object*> requires;
6840 	std::vector<const Named_object*> declare;
6841 	if (!this->can_write_type_to_c_header(t->points_to(), &requires,
6842 					      &declare))
6843 	  os << "void*";
6844 	else
6845 	  {
6846 	    this->write_field_to_c_header(os, "", t->points_to());
6847 	    os << '*';
6848 	  }
6849       }
6850       break;
6851 
6852     case TYPE_MAP:
6853       os << "Map*";
6854       break;
6855 
6856     case TYPE_CHANNEL:
6857       os << "Chan*";
6858       break;
6859 
6860     case TYPE_INTERFACE:
6861       if (t->interface_type()->is_empty())
6862 	os << "Eface";
6863       else
6864 	os << "Iface";
6865       break;
6866 
6867     case TYPE_STRUCT:
6868       os << "struct {" << std::endl;
6869       t->struct_type()->write_to_c_header(os);
6870       os << "\t}";
6871       break;
6872 
6873     case TYPE_ARRAY:
6874       if (t->is_slice_type())
6875 	os << "Slice";
6876       else
6877 	{
6878 	  const Type *ele = t;
6879 	  std::vector<const Type*> array_types;
6880 	  while (ele->array_type() != NULL && !ele->is_slice_type())
6881 	    {
6882 	      array_types.push_back(ele);
6883 	      ele = ele->array_type()->element_type();
6884 	    }
6885 	  this->write_field_to_c_header(os, "", ele);
6886 	  os << ' ' << Gogo::message_name(name);
6887 	  print_name = false;
6888 	  while (!array_types.empty())
6889 	    {
6890 	      ele = array_types.back();
6891 	      array_types.pop_back();
6892 	      os << '[';
6893 	      Numeric_constant nc;
6894 	      if (!ele->array_type()->length()->numeric_constant_value(&nc))
6895 		go_unreachable();
6896 	      mpz_t val;
6897 	      if (!nc.to_int(&val))
6898 		go_unreachable();
6899 	      char* s = mpz_get_str(NULL, 10, val);
6900 	      os << s;
6901 	      free(s);
6902 	      mpz_clear(val);
6903 	      os << ']';
6904 	    }
6905 	}
6906       break;
6907 
6908     case TYPE_NAMED:
6909       {
6910 	const Named_object* no = t->named_type()->named_object();
6911 	if (t->struct_type() != NULL)
6912 	  os << "struct " << no->message_name();
6913 	else if (t->is_unsafe_pointer_type())
6914 	  os << "void*";
6915 	else if (t == Type::lookup_integer_type("uintptr"))
6916 	  os << "uintptr_t";
6917 	else
6918 	  {
6919 	    this->write_field_to_c_header(os, name, t->base());
6920 	    print_name = false;
6921 	  }
6922       }
6923       break;
6924 
6925     case TYPE_ERROR:
6926     case TYPE_FORWARD:
6927     case TYPE_CALL_MULTIPLE_RESULT:
6928     case TYPE_NIL:
6929     case TYPE_SINK:
6930     default:
6931       go_unreachable();
6932     }
6933 
6934   if (print_name && !name.empty())
6935     os << ' ' << Gogo::message_name(name);
6936 }
6937 
6938 // Make a struct type.
6939 
6940 Struct_type*
make_struct_type(Struct_field_list * fields,Location location)6941 Type::make_struct_type(Struct_field_list* fields,
6942 		       Location location)
6943 {
6944   return new Struct_type(fields, location);
6945 }
6946 
6947 // Class Array_type.
6948 
6949 // Store the length of an array as an int64_t into *PLEN.  Return
6950 // false if the length can not be determined.  This will assert if
6951 // called for a slice.
6952 
6953 bool
int_length(int64_t * plen) const6954 Array_type::int_length(int64_t* plen) const
6955 {
6956   go_assert(this->length_ != NULL);
6957   Numeric_constant nc;
6958   if (!this->length_->numeric_constant_value(&nc))
6959     return false;
6960   return nc.to_memory_size(plen);
6961 }
6962 
6963 // Whether two array types are identical.
6964 
6965 bool
is_identical(const Array_type * t,int flags) const6966 Array_type::is_identical(const Array_type* t, int flags) const
6967 {
6968   if (!Type::are_identical(this->element_type(), t->element_type(),
6969 			   flags, NULL))
6970     return false;
6971 
6972   if (this->is_array_incomparable_ != t->is_array_incomparable_)
6973     return false;
6974 
6975   Expression* l1 = this->length();
6976   Expression* l2 = t->length();
6977 
6978   // Slices of the same element type are identical.
6979   if (l1 == NULL && l2 == NULL)
6980     return true;
6981 
6982   // Arrays of the same element type are identical if they have the
6983   // same length.
6984   if (l1 != NULL && l2 != NULL)
6985     {
6986       if (l1 == l2)
6987 	return true;
6988 
6989       // Try to determine the lengths.  If we can't, assume the arrays
6990       // are not identical.
6991       bool ret = false;
6992       Numeric_constant nc1, nc2;
6993       if (l1->numeric_constant_value(&nc1)
6994 	  && l2->numeric_constant_value(&nc2))
6995 	{
6996 	  mpz_t v1;
6997 	  if (nc1.to_int(&v1))
6998 	    {
6999 	      mpz_t v2;
7000 	      if (nc2.to_int(&v2))
7001 		{
7002 		  ret = mpz_cmp(v1, v2) == 0;
7003 		  mpz_clear(v2);
7004 		}
7005 	      mpz_clear(v1);
7006 	    }
7007 	}
7008       return ret;
7009     }
7010 
7011   // Otherwise the arrays are not identical.
7012   return false;
7013 }
7014 
7015 // Traversal.
7016 
7017 int
do_traverse(Traverse * traverse)7018 Array_type::do_traverse(Traverse* traverse)
7019 {
7020   if (Type::traverse(this->element_type_, traverse) == TRAVERSE_EXIT)
7021     return TRAVERSE_EXIT;
7022   if (this->length_ != NULL
7023       && Expression::traverse(&this->length_, traverse) == TRAVERSE_EXIT)
7024     return TRAVERSE_EXIT;
7025   return TRAVERSE_CONTINUE;
7026 }
7027 
7028 // Check that the length is valid.
7029 
7030 bool
verify_length()7031 Array_type::verify_length()
7032 {
7033   if (this->length_ == NULL)
7034     return true;
7035 
7036   Type_context context(Type::lookup_integer_type("int"), false);
7037   this->length_->determine_type(&context);
7038 
7039   if (!this->length_->is_constant())
7040     {
7041       go_error_at(this->length_->location(), "array bound is not constant");
7042       return false;
7043     }
7044 
7045   // For array types, the length expression can be an untyped constant
7046   // representable as an int, but we don't allow explicitly non-integer
7047   // values such as "float64(10)". See issues #13485 and #13486.
7048   if (this->length_->type()->integer_type() == NULL
7049       && !this->length_->type()->is_error_type())
7050     {
7051       go_error_at(this->length_->location(), "invalid array bound");
7052       return false;
7053     }
7054 
7055   Numeric_constant nc;
7056   if (!this->length_->numeric_constant_value(&nc))
7057     {
7058       if (this->length_->type()->integer_type() != NULL
7059 	  || this->length_->type()->float_type() != NULL)
7060 	go_error_at(this->length_->location(), "array bound is not constant");
7061       else
7062 	go_error_at(this->length_->location(), "array bound is not numeric");
7063       return false;
7064     }
7065 
7066   Type* int_type = Type::lookup_integer_type("int");
7067   unsigned int tbits = int_type->integer_type()->bits();
7068   unsigned long val;
7069   switch (nc.to_unsigned_long(&val))
7070     {
7071     case Numeric_constant::NC_UL_VALID:
7072       if (sizeof(val) >= tbits / 8 && val >> (tbits - 1) != 0)
7073 	{
7074 	  go_error_at(this->length_->location(), "array bound overflows");
7075 	  return false;
7076 	}
7077       break;
7078     case Numeric_constant::NC_UL_NOTINT:
7079       go_error_at(this->length_->location(), "array bound truncated to integer");
7080       return false;
7081     case Numeric_constant::NC_UL_NEGATIVE:
7082       go_error_at(this->length_->location(), "negative array bound");
7083       return false;
7084     case Numeric_constant::NC_UL_BIG:
7085       {
7086 	mpz_t val;
7087 	if (!nc.to_int(&val))
7088 	  go_unreachable();
7089 	unsigned int bits = mpz_sizeinbase(val, 2);
7090 	mpz_clear(val);
7091 	if (bits >= tbits)
7092 	  {
7093 	    go_error_at(this->length_->location(), "array bound overflows");
7094 	    return false;
7095 	  }
7096       }
7097       break;
7098     default:
7099       go_unreachable();
7100     }
7101 
7102   return true;
7103 }
7104 
7105 // Verify the type.
7106 
7107 bool
do_verify()7108 Array_type::do_verify()
7109 {
7110   if (this->element_type()->is_error_type())
7111     return false;
7112   if (!this->verify_length())
7113     this->length_ = Expression::make_error(this->length_->location());
7114   return true;
7115 }
7116 
7117 // Whether the type contains pointers.  This is always true for a
7118 // slice.  For an array it is true if the element type has pointers
7119 // and the length is greater than zero.
7120 
7121 bool
do_has_pointer() const7122 Array_type::do_has_pointer() const
7123 {
7124   if (this->length_ == NULL)
7125     return true;
7126   if (!this->element_type_->has_pointer())
7127     return false;
7128 
7129   Numeric_constant nc;
7130   if (!this->length_->numeric_constant_value(&nc))
7131     {
7132       // Error reported elsewhere.
7133       return false;
7134     }
7135 
7136   unsigned long val;
7137   switch (nc.to_unsigned_long(&val))
7138     {
7139     case Numeric_constant::NC_UL_VALID:
7140       return val > 0;
7141     case Numeric_constant::NC_UL_BIG:
7142       return true;
7143     default:
7144       // Error reported elsewhere.
7145       return false;
7146     }
7147 }
7148 
7149 // Whether we can use memcmp to compare this array.
7150 
7151 bool
do_compare_is_identity(Gogo * gogo)7152 Array_type::do_compare_is_identity(Gogo* gogo)
7153 {
7154   if (this->length_ == NULL)
7155     return false;
7156 
7157   // Check for [...], which indicates that this is not a real type.
7158   if (this->length_->is_nil_expression())
7159     return false;
7160 
7161   if (!this->element_type_->compare_is_identity(gogo))
7162     return false;
7163 
7164   // If there is any padding, then we can't use memcmp.
7165   int64_t size;
7166   int64_t align;
7167   if (!this->element_type_->backend_type_size(gogo, &size)
7168       || !this->element_type_->backend_type_align(gogo, &align))
7169     return false;
7170   if ((size & (align - 1)) != 0)
7171     return false;
7172 
7173   return true;
7174 }
7175 
7176 // Array type hash code.
7177 
7178 unsigned int
do_hash_for_method(Gogo * gogo,int flags) const7179 Array_type::do_hash_for_method(Gogo* gogo, int flags) const
7180 {
7181   unsigned int ret;
7182 
7183   // There is no very convenient way to get a hash code for the
7184   // length.
7185   ret = this->element_type_->hash_for_method(gogo, flags) + 1;
7186   if (this->is_array_incomparable_)
7187     ret <<= 1;
7188   return ret;
7189 }
7190 
7191 // Write the hash function for an array which can not use the identify
7192 // function.
7193 
7194 void
write_hash_function(Gogo * gogo,Named_type * name,Function_type * hash_fntype,Function_type * equal_fntype)7195 Array_type::write_hash_function(Gogo* gogo, Named_type* name,
7196 				Function_type* hash_fntype,
7197 				Function_type* equal_fntype)
7198 {
7199   Location bloc = Linemap::predeclared_location();
7200 
7201   // The pointer to the array that we are going to hash.  This is an
7202   // argument to the hash function we are implementing here.
7203   Named_object* key_arg = gogo->lookup("key", NULL);
7204   go_assert(key_arg != NULL);
7205   Type* key_arg_type = key_arg->var_value()->type();
7206 
7207   // The seed argument to the hash function.
7208   Named_object* seed_arg = gogo->lookup("seed", NULL);
7209   go_assert(seed_arg != NULL);
7210 
7211   Type* uintptr_type = Type::lookup_integer_type("uintptr");
7212 
7213   // Make a temporary to hold the return value, initialized to the seed.
7214   Expression* ref = Expression::make_var_reference(seed_arg, bloc);
7215   Temporary_statement* retval = Statement::make_temporary(uintptr_type, ref,
7216 							  bloc);
7217   gogo->add_statement(retval);
7218 
7219   // Make a temporary to hold the key as a uintptr.
7220   ref = Expression::make_var_reference(key_arg, bloc);
7221   ref = Expression::make_cast(uintptr_type, ref, bloc);
7222   Temporary_statement* key = Statement::make_temporary(uintptr_type, ref,
7223 						       bloc);
7224   gogo->add_statement(key);
7225 
7226   // Loop over the array elements.
7227   // for i = range a
7228   Type* int_type = Type::lookup_integer_type("int");
7229   Temporary_statement* index = Statement::make_temporary(int_type, NULL, bloc);
7230   gogo->add_statement(index);
7231 
7232   Expression* iref = Expression::make_temporary_reference(index, bloc);
7233   Expression* aref = Expression::make_var_reference(key_arg, bloc);
7234   Type* pt = Type::make_pointer_type(name != NULL
7235 				     ? static_cast<Type*>(name)
7236 				     : static_cast<Type*>(this));
7237   aref = Expression::make_cast(pt, aref, bloc);
7238   For_range_statement* for_range = Statement::make_for_range_statement(iref,
7239 								       NULL,
7240 								       aref,
7241 								       bloc);
7242 
7243   gogo->start_block(bloc);
7244 
7245   // Get the hash function for the element type.
7246   Named_object* hash_fn;
7247   Named_object* equal_fn;
7248   this->element_type_->type_functions(gogo, this->element_type_->named_type(),
7249 				      hash_fntype, equal_fntype, &hash_fn,
7250 				      &equal_fn);
7251 
7252   // Get a pointer to this element in the loop.
7253   Expression* subkey = Expression::make_temporary_reference(key, bloc);
7254   subkey = Expression::make_cast(key_arg_type, subkey, bloc);
7255 
7256   // Get the size of each element.
7257   Expression* ele_size = Expression::make_type_info(this->element_type_,
7258 						    Expression::TYPE_INFO_SIZE);
7259 
7260   // Get the hash of this element, passing retval as the seed.
7261   ref = Expression::make_temporary_reference(retval, bloc);
7262   Expression_list* args = new Expression_list();
7263   args->push_back(subkey);
7264   args->push_back(ref);
7265   Expression* func = Expression::make_func_reference(hash_fn, NULL, bloc);
7266   Expression* call = Expression::make_call(func, args, false, bloc);
7267 
7268   // Set retval to the result.
7269   Temporary_reference_expression* tref =
7270     Expression::make_temporary_reference(retval, bloc);
7271   tref->set_is_lvalue();
7272   Statement* s = Statement::make_assignment(tref, call, bloc);
7273   gogo->add_statement(s);
7274 
7275   // Increase the element pointer.
7276   tref = Expression::make_temporary_reference(key, bloc);
7277   tref->set_is_lvalue();
7278   s = Statement::make_assignment_operation(OPERATOR_PLUSEQ, tref, ele_size,
7279 					   bloc);
7280   Block* statements = gogo->finish_block(bloc);
7281 
7282   for_range->add_statements(statements);
7283   gogo->add_statement(for_range);
7284 
7285   // Return retval to the caller of the hash function.
7286   Expression_list* vals = new Expression_list();
7287   ref = Expression::make_temporary_reference(retval, bloc);
7288   vals->push_back(ref);
7289   s = Statement::make_return_statement(vals, bloc);
7290   gogo->add_statement(s);
7291 }
7292 
7293 // Write the equality function for an array which can not use the
7294 // identity function.
7295 
7296 void
write_equal_function(Gogo * gogo,Named_type * name)7297 Array_type::write_equal_function(Gogo* gogo, Named_type* name)
7298 {
7299   Location bloc = Linemap::predeclared_location();
7300 
7301   // The pointers to the arrays we are going to compare.
7302   Named_object* key1_arg = gogo->lookup("key1", NULL);
7303   Named_object* key2_arg = gogo->lookup("key2", NULL);
7304   go_assert(key1_arg != NULL && key2_arg != NULL);
7305 
7306   // Build temporaries for the keys with the right types.
7307   Type* pt = Type::make_pointer_type(name != NULL
7308 				     ? static_cast<Type*>(name)
7309 				     : static_cast<Type*>(this));
7310 
7311   Expression* ref = Expression::make_var_reference(key1_arg, bloc);
7312   ref = Expression::make_unsafe_cast(pt, ref, bloc);
7313   Temporary_statement* p1 = Statement::make_temporary(pt, ref, bloc);
7314   gogo->add_statement(p1);
7315 
7316   ref = Expression::make_var_reference(key2_arg, bloc);
7317   ref = Expression::make_unsafe_cast(pt, ref, bloc);
7318   Temporary_statement* p2 = Statement::make_temporary(pt, ref, bloc);
7319   gogo->add_statement(p2);
7320 
7321   // Loop over the array elements.
7322   // for i = range a
7323   Type* int_type = Type::lookup_integer_type("int");
7324   Temporary_statement* index = Statement::make_temporary(int_type, NULL, bloc);
7325   gogo->add_statement(index);
7326 
7327   Expression* iref = Expression::make_temporary_reference(index, bloc);
7328   Expression* aref = Expression::make_temporary_reference(p1, bloc);
7329   For_range_statement* for_range = Statement::make_for_range_statement(iref,
7330 								       NULL,
7331 								       aref,
7332 								       bloc);
7333 
7334   gogo->start_block(bloc);
7335 
7336   // Compare element in P1 and P2.
7337   Expression* e1 = Expression::make_temporary_reference(p1, bloc);
7338   e1 = Expression::make_dereference(e1, Expression::NIL_CHECK_DEFAULT, bloc);
7339   ref = Expression::make_temporary_reference(index, bloc);
7340   e1 = Expression::make_array_index(e1, ref, NULL, NULL, bloc);
7341 
7342   Expression* e2 = Expression::make_temporary_reference(p2, bloc);
7343   e2 = Expression::make_dereference(e2, Expression::NIL_CHECK_DEFAULT, bloc);
7344   ref = Expression::make_temporary_reference(index, bloc);
7345   e2 = Expression::make_array_index(e2, ref, NULL, NULL, bloc);
7346 
7347   Expression* cond = Expression::make_binary(OPERATOR_NOTEQ, e1, e2, bloc);
7348 
7349   // If the elements are not equal, return false.
7350   gogo->start_block(bloc);
7351   Expression_list* vals = new Expression_list();
7352   vals->push_back(Expression::make_boolean(false, bloc));
7353   Statement* s = Statement::make_return_statement(vals, bloc);
7354   gogo->add_statement(s);
7355   Block* then_block = gogo->finish_block(bloc);
7356 
7357   s = Statement::make_if_statement(cond, then_block, NULL, bloc);
7358   gogo->add_statement(s);
7359 
7360   Block* statements = gogo->finish_block(bloc);
7361 
7362   for_range->add_statements(statements);
7363   gogo->add_statement(for_range);
7364 
7365   // All the elements are equal, so return true.
7366   vals = new Expression_list();
7367   vals->push_back(Expression::make_boolean(true, bloc));
7368   s = Statement::make_return_statement(vals, bloc);
7369   gogo->add_statement(s);
7370 }
7371 
7372 // Get the backend representation of the fields of a slice.  This is
7373 // not declared in types.h so that types.h doesn't have to #include
7374 // backend.h.
7375 //
7376 // We use int for the count and capacity fields.  This matches 6g.
7377 // The language more or less assumes that we can't allocate space of a
7378 // size which does not fit in int.
7379 
7380 static void
get_backend_slice_fields(Gogo * gogo,Array_type * type,bool use_placeholder,std::vector<Backend::Btyped_identifier> * bfields)7381 get_backend_slice_fields(Gogo* gogo, Array_type* type, bool use_placeholder,
7382 			 std::vector<Backend::Btyped_identifier>* bfields)
7383 {
7384   bfields->resize(3);
7385 
7386   Type* pet = Type::make_pointer_type(type->element_type());
7387   Btype* pbet = (use_placeholder
7388 		 ? pet->get_backend_placeholder(gogo)
7389 		 : pet->get_backend(gogo));
7390   Location ploc = Linemap::predeclared_location();
7391 
7392   Backend::Btyped_identifier* p = &(*bfields)[0];
7393   p->name = "__values";
7394   p->btype = pbet;
7395   p->location = ploc;
7396 
7397   Type* int_type = Type::lookup_integer_type("int");
7398 
7399   p = &(*bfields)[1];
7400   p->name = "__count";
7401   p->btype = int_type->get_backend(gogo);
7402   p->location = ploc;
7403 
7404   p = &(*bfields)[2];
7405   p->name = "__capacity";
7406   p->btype = int_type->get_backend(gogo);
7407   p->location = ploc;
7408 }
7409 
7410 // Get the backend representation for the type of this array.  A fixed array is
7411 // simply represented as ARRAY_TYPE with the appropriate index--i.e., it is
7412 // just like an array in C.  An open array is a struct with three
7413 // fields: a data pointer, the length, and the capacity.
7414 
7415 Btype*
do_get_backend(Gogo * gogo)7416 Array_type::do_get_backend(Gogo* gogo)
7417 {
7418   if (this->length_ == NULL)
7419     {
7420       std::vector<Backend::Btyped_identifier> bfields;
7421       get_backend_slice_fields(gogo, this, false, &bfields);
7422       return gogo->backend()->struct_type(bfields);
7423     }
7424   else
7425     {
7426       Btype* element = this->get_backend_element(gogo, false);
7427       Bexpression* len = this->get_backend_length(gogo);
7428       return gogo->backend()->array_type(element, len);
7429     }
7430 }
7431 
7432 // Return the backend representation of the element type.
7433 
7434 Btype*
get_backend_element(Gogo * gogo,bool use_placeholder)7435 Array_type::get_backend_element(Gogo* gogo, bool use_placeholder)
7436 {
7437   if (use_placeholder)
7438     return this->element_type_->get_backend_placeholder(gogo);
7439   else
7440     return this->element_type_->get_backend(gogo);
7441 }
7442 
7443 // Return the backend representation of the length. The length may be
7444 // computed using a function call, so we must only evaluate it once.
7445 
7446 Bexpression*
get_backend_length(Gogo * gogo)7447 Array_type::get_backend_length(Gogo* gogo)
7448 {
7449   go_assert(this->length_ != NULL);
7450   if (this->blength_ == NULL)
7451     {
7452       if (this->length_->is_error_expression())
7453         {
7454           this->blength_ = gogo->backend()->error_expression();
7455           return this->blength_;
7456         }
7457       Numeric_constant nc;
7458       mpz_t val;
7459       if (this->length_->numeric_constant_value(&nc) && nc.to_int(&val))
7460 	{
7461 	  if (mpz_sgn(val) < 0)
7462 	    {
7463 	      this->blength_ = gogo->backend()->error_expression();
7464 	      return this->blength_;
7465 	    }
7466 	  Type* t = nc.type();
7467 	  if (t == NULL)
7468 	    t = Type::lookup_integer_type("int");
7469 	  else if (t->is_abstract())
7470 	    t = t->make_non_abstract_type();
7471           Btype* btype = t->get_backend(gogo);
7472           this->blength_ =
7473 	    gogo->backend()->integer_constant_expression(btype, val);
7474 	  mpz_clear(val);
7475 	}
7476       else
7477 	{
7478 	  // Make up a translation context for the array length
7479 	  // expression.  FIXME: This won't work in general.
7480 	  Translate_context context(gogo, NULL, NULL, NULL);
7481 	  this->blength_ = this->length_->get_backend(&context);
7482 
7483 	  Btype* ibtype = Type::lookup_integer_type("int")->get_backend(gogo);
7484 	  this->blength_ =
7485 	    gogo->backend()->convert_expression(ibtype, this->blength_,
7486 						this->length_->location());
7487 	}
7488     }
7489   return this->blength_;
7490 }
7491 
7492 // Finish backend representation of the array.
7493 
7494 void
finish_backend_element(Gogo * gogo)7495 Array_type::finish_backend_element(Gogo* gogo)
7496 {
7497   Type* et = this->array_type()->element_type();
7498   et->get_backend(gogo);
7499   if (this->is_slice_type())
7500     {
7501       // This relies on the fact that we always use the same
7502       // structure for a pointer to any given type.
7503       Type* pet = Type::make_pointer_type(et);
7504       pet->get_backend(gogo);
7505     }
7506 }
7507 
7508 // Return an expression for a pointer to the values in ARRAY.
7509 
7510 Expression*
get_value_pointer(Gogo *,Expression * array,bool is_lvalue) const7511 Array_type::get_value_pointer(Gogo*, Expression* array, bool is_lvalue) const
7512 {
7513   if (this->length() != NULL)
7514     {
7515       // Fixed array.
7516       go_assert(array->type()->array_type() != NULL);
7517       Type* etype = array->type()->array_type()->element_type();
7518       array = Expression::make_unary(OPERATOR_AND, array, array->location());
7519       return Expression::make_cast(Type::make_pointer_type(etype), array,
7520                                    array->location());
7521     }
7522 
7523   // Slice.
7524 
7525   if (is_lvalue)
7526     {
7527       Temporary_reference_expression* tref =
7528           array->temporary_reference_expression();
7529       Var_expression* ve = array->var_expression();
7530       if (tref != NULL)
7531         {
7532           tref = tref->copy()->temporary_reference_expression();
7533           tref->set_is_lvalue();
7534           array = tref;
7535         }
7536       else if (ve != NULL)
7537         {
7538           ve = new Var_expression(ve->named_object(), ve->location());
7539           array = ve;
7540         }
7541     }
7542 
7543   return Expression::make_slice_info(array,
7544                                      Expression::SLICE_INFO_VALUE_POINTER,
7545                                      array->location());
7546 }
7547 
7548 // Return an expression for the length of the array ARRAY which has this
7549 // type.
7550 
7551 Expression*
get_length(Gogo *,Expression * array) const7552 Array_type::get_length(Gogo*, Expression* array) const
7553 {
7554   if (this->length_ != NULL)
7555     return this->length_;
7556 
7557   // This is a slice.  We need to read the length field.
7558   return Expression::make_slice_info(array, Expression::SLICE_INFO_LENGTH,
7559                                      array->location());
7560 }
7561 
7562 // Return an expression for the capacity of the array ARRAY which has this
7563 // type.
7564 
7565 Expression*
get_capacity(Gogo *,Expression * array) const7566 Array_type::get_capacity(Gogo*, Expression* array) const
7567 {
7568   if (this->length_ != NULL)
7569     return this->length_;
7570 
7571   // This is a slice.  We need to read the capacity field.
7572   return Expression::make_slice_info(array, Expression::SLICE_INFO_CAPACITY,
7573                                      array->location());
7574 }
7575 
7576 // Export.
7577 
7578 void
do_export(Export * exp) const7579 Array_type::do_export(Export* exp) const
7580 {
7581   exp->write_c_string("[");
7582   if (this->length_ != NULL)
7583     {
7584       Numeric_constant nc;
7585       mpz_t val;
7586       if (!this->length_->numeric_constant_value(&nc) || !nc.to_int(&val))
7587         {
7588 	  go_assert(saw_errors());
7589           return;
7590         }
7591       char* s = mpz_get_str(NULL, 10, val);
7592       exp->write_string(s);
7593       exp->write_string(" ");
7594       mpz_clear(val);
7595     }
7596   exp->write_c_string("] ");
7597   exp->write_type(this->element_type_);
7598 }
7599 
7600 // Import.
7601 
7602 Array_type*
do_import(Import * imp)7603 Array_type::do_import(Import* imp)
7604 {
7605   imp->require_c_string("[");
7606   Expression* length;
7607   if (imp->peek_char() == ']')
7608     length = NULL;
7609   else
7610     length = Expression::import_expression(imp, imp->location());
7611   imp->require_c_string("] ");
7612   Type* element_type = imp->read_type();
7613   return Type::make_array_type(element_type, length);
7614 }
7615 
7616 // The type of an array type descriptor.
7617 
7618 Type*
make_array_type_descriptor_type()7619 Array_type::make_array_type_descriptor_type()
7620 {
7621   static Type* ret;
7622   if (ret == NULL)
7623     {
7624       Type* tdt = Type::make_type_descriptor_type();
7625       Type* ptdt = Type::make_type_descriptor_ptr_type();
7626 
7627       Type* uintptr_type = Type::lookup_integer_type("uintptr");
7628 
7629       Struct_type* sf =
7630 	Type::make_builtin_struct_type(4,
7631 				       "", tdt,
7632 				       "elem", ptdt,
7633 				       "slice", ptdt,
7634 				       "len", uintptr_type);
7635 
7636       ret = Type::make_builtin_named_type("ArrayType", sf);
7637     }
7638 
7639   return ret;
7640 }
7641 
7642 // The type of an slice type descriptor.
7643 
7644 Type*
make_slice_type_descriptor_type()7645 Array_type::make_slice_type_descriptor_type()
7646 {
7647   static Type* ret;
7648   if (ret == NULL)
7649     {
7650       Type* tdt = Type::make_type_descriptor_type();
7651       Type* ptdt = Type::make_type_descriptor_ptr_type();
7652 
7653       Struct_type* sf =
7654 	Type::make_builtin_struct_type(2,
7655 				       "", tdt,
7656 				       "elem", ptdt);
7657 
7658       ret = Type::make_builtin_named_type("SliceType", sf);
7659     }
7660 
7661   return ret;
7662 }
7663 
7664 // Build a type descriptor for an array/slice type.
7665 
7666 Expression*
do_type_descriptor(Gogo * gogo,Named_type * name)7667 Array_type::do_type_descriptor(Gogo* gogo, Named_type* name)
7668 {
7669   if (this->length_ != NULL)
7670     return this->array_type_descriptor(gogo, name);
7671   else
7672     return this->slice_type_descriptor(gogo, name);
7673 }
7674 
7675 // Build a type descriptor for an array type.
7676 
7677 Expression*
array_type_descriptor(Gogo * gogo,Named_type * name)7678 Array_type::array_type_descriptor(Gogo* gogo, Named_type* name)
7679 {
7680   Location bloc = Linemap::predeclared_location();
7681 
7682   Type* atdt = Array_type::make_array_type_descriptor_type();
7683 
7684   const Struct_field_list* fields = atdt->struct_type()->fields();
7685 
7686   Expression_list* vals = new Expression_list();
7687   vals->reserve(3);
7688 
7689   Struct_field_list::const_iterator p = fields->begin();
7690   go_assert(p->is_field_name("_type"));
7691   vals->push_back(this->type_descriptor_constructor(gogo,
7692 						    RUNTIME_TYPE_KIND_ARRAY,
7693 						    name, NULL, true));
7694 
7695   ++p;
7696   go_assert(p->is_field_name("elem"));
7697   vals->push_back(Expression::make_type_descriptor(this->element_type_, bloc));
7698 
7699   ++p;
7700   go_assert(p->is_field_name("slice"));
7701   Type* slice_type = Type::make_array_type(this->element_type_, NULL);
7702   vals->push_back(Expression::make_type_descriptor(slice_type, bloc));
7703 
7704   ++p;
7705   go_assert(p->is_field_name("len"));
7706   vals->push_back(Expression::make_cast(p->type(), this->length_, bloc));
7707 
7708   ++p;
7709   go_assert(p == fields->end());
7710 
7711   return Expression::make_struct_composite_literal(atdt, vals, bloc);
7712 }
7713 
7714 // Build a type descriptor for a slice type.
7715 
7716 Expression*
slice_type_descriptor(Gogo * gogo,Named_type * name)7717 Array_type::slice_type_descriptor(Gogo* gogo, Named_type* name)
7718 {
7719   Location bloc = Linemap::predeclared_location();
7720 
7721   Type* stdt = Array_type::make_slice_type_descriptor_type();
7722 
7723   const Struct_field_list* fields = stdt->struct_type()->fields();
7724 
7725   Expression_list* vals = new Expression_list();
7726   vals->reserve(2);
7727 
7728   Struct_field_list::const_iterator p = fields->begin();
7729   go_assert(p->is_field_name("_type"));
7730   vals->push_back(this->type_descriptor_constructor(gogo,
7731 						    RUNTIME_TYPE_KIND_SLICE,
7732 						    name, NULL, true));
7733 
7734   ++p;
7735   go_assert(p->is_field_name("elem"));
7736   vals->push_back(Expression::make_type_descriptor(this->element_type_, bloc));
7737 
7738   ++p;
7739   go_assert(p == fields->end());
7740 
7741   return Expression::make_struct_composite_literal(stdt, vals, bloc);
7742 }
7743 
7744 // Reflection string.
7745 
7746 void
do_reflection(Gogo * gogo,std::string * ret) const7747 Array_type::do_reflection(Gogo* gogo, std::string* ret) const
7748 {
7749   ret->push_back('[');
7750   if (this->length_ != NULL)
7751     {
7752       Numeric_constant nc;
7753       if (!this->length_->numeric_constant_value(&nc))
7754 	{
7755 	  go_assert(saw_errors());
7756 	  return;
7757 	}
7758       mpz_t val;
7759       if (!nc.to_int(&val))
7760 	{
7761 	  go_assert(saw_errors());
7762 	  return;
7763 	}
7764       char* s = mpz_get_str(NULL, 10, val);
7765       ret->append(s);
7766       free(s);
7767       mpz_clear(val);
7768     }
7769   ret->push_back(']');
7770 
7771   this->append_reflection(this->element_type_, gogo, ret);
7772 }
7773 
7774 // Make an array type.
7775 
7776 Array_type*
make_array_type(Type * element_type,Expression * length)7777 Type::make_array_type(Type* element_type, Expression* length)
7778 {
7779   return new Array_type(element_type, length);
7780 }
7781 
7782 // Class Map_type.
7783 
7784 Named_object* Map_type::zero_value;
7785 int64_t Map_type::zero_value_size;
7786 int64_t Map_type::zero_value_align;
7787 
7788 // If this map requires the "fat" functions, return the pointer to
7789 // pass as the zero value to those functions.  Otherwise, in the
7790 // normal case, return NULL.  The map requires the "fat" functions if
7791 // the value size is larger than max_zero_size bytes.  max_zero_size
7792 // must match maxZero in libgo/go/runtime/hashmap.go.
7793 
7794 Expression*
fat_zero_value(Gogo * gogo)7795 Map_type::fat_zero_value(Gogo* gogo)
7796 {
7797   int64_t valsize;
7798   if (!this->val_type_->backend_type_size(gogo, &valsize))
7799     {
7800       go_assert(saw_errors());
7801       return NULL;
7802     }
7803   if (valsize <= Map_type::max_zero_size)
7804     return NULL;
7805 
7806   if (Map_type::zero_value_size < valsize)
7807     Map_type::zero_value_size = valsize;
7808 
7809   int64_t valalign;
7810   if (!this->val_type_->backend_type_align(gogo, &valalign))
7811     {
7812       go_assert(saw_errors());
7813       return NULL;
7814     }
7815 
7816   if (Map_type::zero_value_align < valalign)
7817     Map_type::zero_value_align = valalign;
7818 
7819   Location bloc = Linemap::predeclared_location();
7820 
7821   if (Map_type::zero_value == NULL)
7822     {
7823       // The final type will be set in backend_zero_value.
7824       Type* uint8_type = Type::lookup_integer_type("uint8");
7825       Expression* size = Expression::make_integer_ul(0, NULL, bloc);
7826       Array_type* array_type = Type::make_array_type(uint8_type, size);
7827       array_type->set_is_array_incomparable();
7828       Variable* var = new Variable(array_type, NULL, true, false, false, bloc);
7829       std::string name = gogo->map_zero_value_name();
7830       Map_type::zero_value = Named_object::make_variable(name, NULL, var);
7831     }
7832 
7833   Expression* z = Expression::make_var_reference(Map_type::zero_value, bloc);
7834   z = Expression::make_unary(OPERATOR_AND, z, bloc);
7835   Type* unsafe_ptr_type = Type::make_pointer_type(Type::make_void_type());
7836   z = Expression::make_cast(unsafe_ptr_type, z, bloc);
7837   return z;
7838 }
7839 
7840 // Return whether VAR is the map zero value.
7841 
7842 bool
is_zero_value(Variable * var)7843 Map_type::is_zero_value(Variable* var)
7844 {
7845   return (Map_type::zero_value != NULL
7846 	  && Map_type::zero_value->var_value() == var);
7847 }
7848 
7849 // Return the backend representation for the zero value.
7850 
7851 Bvariable*
backend_zero_value(Gogo * gogo)7852 Map_type::backend_zero_value(Gogo* gogo)
7853 {
7854   Location bloc = Linemap::predeclared_location();
7855 
7856   go_assert(Map_type::zero_value != NULL);
7857 
7858   Type* uint8_type = Type::lookup_integer_type("uint8");
7859   Btype* buint8_type = uint8_type->get_backend(gogo);
7860 
7861   Type* int_type = Type::lookup_integer_type("int");
7862 
7863   Expression* e = Expression::make_integer_int64(Map_type::zero_value_size,
7864 						 int_type, bloc);
7865   Translate_context context(gogo, NULL, NULL, NULL);
7866   Bexpression* blength = e->get_backend(&context);
7867 
7868   Btype* barray_type = gogo->backend()->array_type(buint8_type, blength);
7869 
7870   std::string zname = Map_type::zero_value->name();
7871   std::string asm_name(go_selectively_encode_id(zname));
7872   Bvariable* zvar =
7873       gogo->backend()->implicit_variable(zname, asm_name,
7874                                          barray_type, false, false, true,
7875 					 Map_type::zero_value_align);
7876   gogo->backend()->implicit_variable_set_init(zvar, zname, barray_type,
7877 					      false, false, true, NULL);
7878   return zvar;
7879 }
7880 
7881 // Traversal.
7882 
7883 int
do_traverse(Traverse * traverse)7884 Map_type::do_traverse(Traverse* traverse)
7885 {
7886   if (Type::traverse(this->key_type_, traverse) == TRAVERSE_EXIT
7887       || Type::traverse(this->val_type_, traverse) == TRAVERSE_EXIT)
7888     return TRAVERSE_EXIT;
7889   return TRAVERSE_CONTINUE;
7890 }
7891 
7892 // Check that the map type is OK.
7893 
7894 bool
do_verify()7895 Map_type::do_verify()
7896 {
7897   // The runtime support uses "map[void]void".
7898   if (!this->key_type_->is_comparable() && !this->key_type_->is_void_type())
7899     go_error_at(this->location_, "invalid map key type");
7900   if (!this->key_type_->in_heap())
7901     go_error_at(this->location_, "go:notinheap map key not allowed");
7902   if (!this->val_type_->in_heap())
7903     go_error_at(this->location_, "go:notinheap map value not allowed");
7904   return true;
7905 }
7906 
7907 // Whether two map types are identical.
7908 
7909 bool
is_identical(const Map_type * t,int flags) const7910 Map_type::is_identical(const Map_type* t, int flags) const
7911 {
7912   return (Type::are_identical(this->key_type(), t->key_type(), flags, NULL)
7913 	  && Type::are_identical(this->val_type(), t->val_type(), flags,
7914 				 NULL));
7915 }
7916 
7917 // Hash code.
7918 
7919 unsigned int
do_hash_for_method(Gogo * gogo,int flags) const7920 Map_type::do_hash_for_method(Gogo* gogo, int flags) const
7921 {
7922   return (this->key_type_->hash_for_method(gogo, flags)
7923 	  + this->val_type_->hash_for_method(gogo, flags)
7924 	  + 2);
7925 }
7926 
7927 // Get the backend representation for a map type.  A map type is
7928 // represented as a pointer to a struct.  The struct is hmap in
7929 // runtime/hashmap.go.
7930 
7931 Btype*
do_get_backend(Gogo * gogo)7932 Map_type::do_get_backend(Gogo* gogo)
7933 {
7934   static Btype* backend_map_type;
7935   if (backend_map_type == NULL)
7936     {
7937       std::vector<Backend::Btyped_identifier> bfields(9);
7938 
7939       Location bloc = Linemap::predeclared_location();
7940 
7941       Type* int_type = Type::lookup_integer_type("int");
7942       bfields[0].name = "count";
7943       bfields[0].btype = int_type->get_backend(gogo);
7944       bfields[0].location = bloc;
7945 
7946       Type* uint8_type = Type::lookup_integer_type("uint8");
7947       bfields[1].name = "flags";
7948       bfields[1].btype = uint8_type->get_backend(gogo);
7949       bfields[1].location = bloc;
7950 
7951       bfields[2].name = "B";
7952       bfields[2].btype = bfields[1].btype;
7953       bfields[2].location = bloc;
7954 
7955       Type* uint16_type = Type::lookup_integer_type("uint16");
7956       bfields[3].name = "noverflow";
7957       bfields[3].btype = uint16_type->get_backend(gogo);
7958       bfields[3].location = bloc;
7959 
7960       Type* uint32_type = Type::lookup_integer_type("uint32");
7961       bfields[4].name = "hash0";
7962       bfields[4].btype = uint32_type->get_backend(gogo);
7963       bfields[4].location = bloc;
7964 
7965       Btype* bvt = gogo->backend()->void_type();
7966       Btype* bpvt = gogo->backend()->pointer_type(bvt);
7967       bfields[5].name = "buckets";
7968       bfields[5].btype = bpvt;
7969       bfields[5].location = bloc;
7970 
7971       bfields[6].name = "oldbuckets";
7972       bfields[6].btype = bpvt;
7973       bfields[6].location = bloc;
7974 
7975       Type* uintptr_type = Type::lookup_integer_type("uintptr");
7976       bfields[7].name = "nevacuate";
7977       bfields[7].btype = uintptr_type->get_backend(gogo);
7978       bfields[7].location = bloc;
7979 
7980       bfields[8].name = "extra";
7981       bfields[8].btype = bpvt;
7982       bfields[8].location = bloc;
7983 
7984       Btype *bt = gogo->backend()->struct_type(bfields);
7985       bt = gogo->backend()->named_type("runtime.hmap", bt, bloc);
7986       backend_map_type = gogo->backend()->pointer_type(bt);
7987     }
7988   return backend_map_type;
7989 }
7990 
7991 // The type of a map type descriptor.
7992 
7993 Type*
make_map_type_descriptor_type()7994 Map_type::make_map_type_descriptor_type()
7995 {
7996   static Type* ret;
7997   if (ret == NULL)
7998     {
7999       Type* tdt = Type::make_type_descriptor_type();
8000       Type* ptdt = Type::make_type_descriptor_ptr_type();
8001       Type* uint8_type = Type::lookup_integer_type("uint8");
8002       Type* uint16_type = Type::lookup_integer_type("uint16");
8003       Type* uint32_type = Type::lookup_integer_type("uint32");
8004 
8005       Struct_type* sf =
8006 	Type::make_builtin_struct_type(8,
8007 				       "", tdt,
8008 				       "key", ptdt,
8009 				       "elem", ptdt,
8010 				       "bucket", ptdt,
8011 				       "keysize", uint8_type,
8012 				       "valuesize", uint8_type,
8013 				       "bucketsize", uint16_type,
8014 				       "flags", uint32_type);
8015 
8016       ret = Type::make_builtin_named_type("MapType", sf);
8017     }
8018 
8019   return ret;
8020 }
8021 
8022 // Build a type descriptor for a map type.
8023 
8024 Expression*
do_type_descriptor(Gogo * gogo,Named_type * name)8025 Map_type::do_type_descriptor(Gogo* gogo, Named_type* name)
8026 {
8027   Location bloc = Linemap::predeclared_location();
8028 
8029   Type* mtdt = Map_type::make_map_type_descriptor_type();
8030   Type* uint8_type = Type::lookup_integer_type("uint8");
8031   Type* uint16_type = Type::lookup_integer_type("uint16");
8032   Type* uint32_type = Type::lookup_integer_type("uint32");
8033 
8034   int64_t keysize;
8035   if (!this->key_type_->backend_type_size(gogo, &keysize))
8036     {
8037       go_error_at(this->location_, "error determining map key type size");
8038       return Expression::make_error(this->location_);
8039     }
8040 
8041   int64_t valsize;
8042   if (!this->val_type_->backend_type_size(gogo, &valsize))
8043     {
8044       go_error_at(this->location_, "error determining map value type size");
8045       return Expression::make_error(this->location_);
8046     }
8047 
8048   int64_t ptrsize;
8049   if (!Type::make_pointer_type(uint8_type)->backend_type_size(gogo, &ptrsize))
8050     {
8051       go_assert(saw_errors());
8052       return Expression::make_error(this->location_);
8053     }
8054 
8055   Type* bucket_type = this->bucket_type(gogo, keysize, valsize);
8056   if (bucket_type == NULL)
8057     {
8058       go_assert(saw_errors());
8059       return Expression::make_error(this->location_);
8060     }
8061 
8062   int64_t bucketsize;
8063   if (!bucket_type->backend_type_size(gogo, &bucketsize))
8064     {
8065       go_assert(saw_errors());
8066       return Expression::make_error(this->location_);
8067     }
8068 
8069   const Struct_field_list* fields = mtdt->struct_type()->fields();
8070 
8071   Expression_list* vals = new Expression_list();
8072   vals->reserve(12);
8073 
8074   Struct_field_list::const_iterator p = fields->begin();
8075   go_assert(p->is_field_name("_type"));
8076   vals->push_back(this->type_descriptor_constructor(gogo,
8077 						    RUNTIME_TYPE_KIND_MAP,
8078 						    name, NULL, true));
8079 
8080   ++p;
8081   go_assert(p->is_field_name("key"));
8082   vals->push_back(Expression::make_type_descriptor(this->key_type_, bloc));
8083 
8084   ++p;
8085   go_assert(p->is_field_name("elem"));
8086   vals->push_back(Expression::make_type_descriptor(this->val_type_, bloc));
8087 
8088   ++p;
8089   go_assert(p->is_field_name("bucket"));
8090   vals->push_back(Expression::make_type_descriptor(bucket_type, bloc));
8091 
8092   ++p;
8093   go_assert(p->is_field_name("keysize"));
8094   if (keysize > Map_type::max_key_size)
8095     vals->push_back(Expression::make_integer_int64(ptrsize, uint8_type, bloc));
8096   else
8097     vals->push_back(Expression::make_integer_int64(keysize, uint8_type, bloc));
8098 
8099   ++p;
8100   go_assert(p->is_field_name("valuesize"));
8101   if (valsize > Map_type::max_val_size)
8102     vals->push_back(Expression::make_integer_int64(ptrsize, uint8_type, bloc));
8103   else
8104     vals->push_back(Expression::make_integer_int64(valsize, uint8_type, bloc));
8105 
8106   ++p;
8107   go_assert(p->is_field_name("bucketsize"));
8108   vals->push_back(Expression::make_integer_int64(bucketsize, uint16_type,
8109 						 bloc));
8110 
8111   ++p;
8112   go_assert(p->is_field_name("flags"));
8113   // As with the other fields, the flag bits must match the reflect
8114   // and runtime packages.
8115   unsigned long flags = 0;
8116   if (keysize > Map_type::max_key_size)
8117     flags |= 1;
8118   if (valsize > Map_type::max_val_size)
8119     flags |= 2;
8120   if (this->key_type_->is_reflexive())
8121     flags |= 4;
8122   if (this->key_type_->needs_key_update())
8123     flags |= 8;
8124   if (this->key_type_->hash_might_panic())
8125     flags |= 16;
8126   vals->push_back(Expression::make_integer_ul(flags, uint32_type, bloc));
8127 
8128   ++p;
8129   go_assert(p == fields->end());
8130 
8131   return Expression::make_struct_composite_literal(mtdt, vals, bloc);
8132 }
8133 
8134 // Return the bucket type to use for a map type.  This must correspond
8135 // to libgo/go/runtime/hashmap.go.
8136 
8137 Type*
bucket_type(Gogo * gogo,int64_t keysize,int64_t valsize)8138 Map_type::bucket_type(Gogo* gogo, int64_t keysize, int64_t valsize)
8139 {
8140   if (this->bucket_type_ != NULL)
8141     return this->bucket_type_;
8142 
8143   Type* key_type = this->key_type_;
8144   if (keysize > Map_type::max_key_size)
8145     key_type = Type::make_pointer_type(key_type);
8146 
8147   Type* val_type = this->val_type_;
8148   if (valsize > Map_type::max_val_size)
8149     val_type = Type::make_pointer_type(val_type);
8150 
8151   Expression* bucket_size = Expression::make_integer_ul(Map_type::bucket_size,
8152 							NULL, this->location_);
8153 
8154   Type* uint8_type = Type::lookup_integer_type("uint8");
8155   Array_type* topbits_type = Type::make_array_type(uint8_type, bucket_size);
8156   topbits_type->set_is_array_incomparable();
8157   Array_type* keys_type = Type::make_array_type(key_type, bucket_size);
8158   keys_type->set_is_array_incomparable();
8159   Array_type* values_type = Type::make_array_type(val_type, bucket_size);
8160   values_type->set_is_array_incomparable();
8161 
8162   // If keys and values have no pointers, the map implementation can
8163   // keep a list of overflow pointers on the side so that buckets can
8164   // be marked as having no pointers.  Arrange for the bucket to have
8165   // no pointers by changing the type of the overflow field to uintptr
8166   // in this case.  See comment on the hmap.overflow field in
8167   // libgo/go/runtime/hashmap.go.
8168   Type* overflow_type;
8169   if (!key_type->has_pointer() && !val_type->has_pointer())
8170     overflow_type = Type::lookup_integer_type("uintptr");
8171   else
8172     {
8173       // This should really be a pointer to the bucket type itself,
8174       // but that would require us to construct a Named_type for it to
8175       // give it a way to refer to itself.  Since nothing really cares
8176       // (except perhaps for someone using a debugger) just use an
8177       // unsafe pointer.
8178       overflow_type = Type::make_pointer_type(Type::make_void_type());
8179     }
8180 
8181   // Make sure the overflow pointer is the last memory in the struct,
8182   // because the runtime assumes it can use size-ptrSize as the offset
8183   // of the overflow pointer.  We double-check that property below
8184   // once the offsets and size are computed.
8185 
8186   int64_t topbits_field_size, topbits_field_align;
8187   int64_t keys_field_size, keys_field_align;
8188   int64_t values_field_size, values_field_align;
8189   int64_t overflow_field_size, overflow_field_align;
8190   if (!topbits_type->backend_type_size(gogo, &topbits_field_size)
8191       || !topbits_type->backend_type_field_align(gogo, &topbits_field_align)
8192       || !keys_type->backend_type_size(gogo, &keys_field_size)
8193       || !keys_type->backend_type_field_align(gogo, &keys_field_align)
8194       || !values_type->backend_type_size(gogo, &values_field_size)
8195       || !values_type->backend_type_field_align(gogo, &values_field_align)
8196       || !overflow_type->backend_type_size(gogo, &overflow_field_size)
8197       || !overflow_type->backend_type_field_align(gogo, &overflow_field_align))
8198     {
8199       go_assert(saw_errors());
8200       return NULL;
8201     }
8202 
8203   Struct_type* ret;
8204   int64_t max_align = std::max(std::max(topbits_field_align, keys_field_align),
8205 			       values_field_align);
8206   if (max_align <= overflow_field_align)
8207     ret =  make_builtin_struct_type(4,
8208 				    "topbits", topbits_type,
8209 				    "keys", keys_type,
8210 				    "values", values_type,
8211 				    "overflow", overflow_type);
8212   else
8213     {
8214       size_t off = topbits_field_size;
8215       off = ((off + keys_field_align - 1)
8216 	     &~ static_cast<size_t>(keys_field_align - 1));
8217       off += keys_field_size;
8218       off = ((off + values_field_align - 1)
8219 	     &~ static_cast<size_t>(values_field_align - 1));
8220       off += values_field_size;
8221 
8222       int64_t padded_overflow_field_size =
8223 	((overflow_field_size + max_align - 1)
8224 	 &~ static_cast<size_t>(max_align - 1));
8225 
8226       size_t ovoff = off;
8227       ovoff = ((ovoff + max_align - 1)
8228 	       &~ static_cast<size_t>(max_align - 1));
8229       size_t pad = (ovoff - off
8230 		    + padded_overflow_field_size - overflow_field_size);
8231 
8232       Expression* pad_expr = Expression::make_integer_ul(pad, NULL,
8233 							 this->location_);
8234       Array_type* pad_type = Type::make_array_type(uint8_type, pad_expr);
8235       pad_type->set_is_array_incomparable();
8236 
8237       ret = make_builtin_struct_type(5,
8238 				     "topbits", topbits_type,
8239 				     "keys", keys_type,
8240 				     "values", values_type,
8241 				     "pad", pad_type,
8242 				     "overflow", overflow_type);
8243     }
8244 
8245   // Verify that the overflow field is just before the end of the
8246   // bucket type.
8247 
8248   Btype* btype = ret->get_backend(gogo);
8249   int64_t offset = gogo->backend()->type_field_offset(btype,
8250 						      ret->field_count() - 1);
8251   int64_t size;
8252   if (!ret->backend_type_size(gogo, &size))
8253     {
8254       go_assert(saw_errors());
8255       return NULL;
8256     }
8257 
8258   int64_t ptr_size;
8259   if (!Type::make_pointer_type(uint8_type)->backend_type_size(gogo, &ptr_size))
8260     {
8261       go_assert(saw_errors());
8262       return NULL;
8263     }
8264 
8265   go_assert(offset + ptr_size == size);
8266 
8267   ret->set_is_struct_incomparable();
8268 
8269   this->bucket_type_ = ret;
8270   return ret;
8271 }
8272 
8273 // Return the hashmap type for a map type.
8274 
8275 Type*
hmap_type(Type * bucket_type)8276 Map_type::hmap_type(Type* bucket_type)
8277 {
8278   if (this->hmap_type_ != NULL)
8279     return this->hmap_type_;
8280 
8281   Type* int_type = Type::lookup_integer_type("int");
8282   Type* uint8_type = Type::lookup_integer_type("uint8");
8283   Type* uint16_type = Type::lookup_integer_type("uint16");
8284   Type* uint32_type = Type::lookup_integer_type("uint32");
8285   Type* uintptr_type = Type::lookup_integer_type("uintptr");
8286   Type* void_ptr_type = Type::make_pointer_type(Type::make_void_type());
8287 
8288   Type* ptr_bucket_type = Type::make_pointer_type(bucket_type);
8289 
8290   Struct_type* ret = make_builtin_struct_type(9,
8291 					      "count", int_type,
8292 					      "flags", uint8_type,
8293 					      "B", uint8_type,
8294 					      "noverflow", uint16_type,
8295 					      "hash0", uint32_type,
8296 					      "buckets", ptr_bucket_type,
8297 					      "oldbuckets", ptr_bucket_type,
8298 					      "nevacuate", uintptr_type,
8299 					      "extra", void_ptr_type);
8300   ret->set_is_struct_incomparable();
8301   this->hmap_type_ = ret;
8302   return ret;
8303 }
8304 
8305 // Return the iterator type for a map type.  This is the type of the
8306 // value used when doing a range over a map.
8307 
8308 Type*
hiter_type(Gogo * gogo)8309 Map_type::hiter_type(Gogo* gogo)
8310 {
8311   if (this->hiter_type_ != NULL)
8312     return this->hiter_type_;
8313 
8314   int64_t keysize, valsize;
8315   if (!this->key_type_->backend_type_size(gogo, &keysize)
8316       || !this->val_type_->backend_type_size(gogo, &valsize))
8317     {
8318       go_assert(saw_errors());
8319       return NULL;
8320     }
8321 
8322   Type* key_ptr_type = Type::make_pointer_type(this->key_type_);
8323   Type* val_ptr_type = Type::make_pointer_type(this->val_type_);
8324   Type* uint8_type = Type::lookup_integer_type("uint8");
8325   Type* uint8_ptr_type = Type::make_pointer_type(uint8_type);
8326   Type* uintptr_type = Type::lookup_integer_type("uintptr");
8327   Type* bucket_type = this->bucket_type(gogo, keysize, valsize);
8328   Type* bucket_ptr_type = Type::make_pointer_type(bucket_type);
8329   Type* hmap_type = this->hmap_type(bucket_type);
8330   Type* hmap_ptr_type = Type::make_pointer_type(hmap_type);
8331   Type* void_ptr_type = Type::make_pointer_type(Type::make_void_type());
8332   Type* bool_type = Type::lookup_bool_type();
8333 
8334   Struct_type* ret = make_builtin_struct_type(15,
8335 					      "key", key_ptr_type,
8336 					      "val", val_ptr_type,
8337 					      "t", uint8_ptr_type,
8338 					      "h", hmap_ptr_type,
8339 					      "buckets", bucket_ptr_type,
8340 					      "bptr", bucket_ptr_type,
8341 					      "overflow", void_ptr_type,
8342 					      "oldoverflow", void_ptr_type,
8343 					      "startBucket", uintptr_type,
8344 					      "offset", uint8_type,
8345 					      "wrapped", bool_type,
8346 					      "B", uint8_type,
8347 					      "i", uint8_type,
8348 					      "bucket", uintptr_type,
8349 					      "checkBucket", uintptr_type);
8350   ret->set_is_struct_incomparable();
8351   this->hiter_type_ = ret;
8352   return ret;
8353 }
8354 
8355 // Reflection string for a map.
8356 
8357 void
do_reflection(Gogo * gogo,std::string * ret) const8358 Map_type::do_reflection(Gogo* gogo, std::string* ret) const
8359 {
8360   ret->append("map[");
8361   this->append_reflection(this->key_type_, gogo, ret);
8362   ret->append("]");
8363   this->append_reflection(this->val_type_, gogo, ret);
8364 }
8365 
8366 // Export a map type.
8367 
8368 void
do_export(Export * exp) const8369 Map_type::do_export(Export* exp) const
8370 {
8371   exp->write_c_string("map [");
8372   exp->write_type(this->key_type_);
8373   exp->write_c_string("] ");
8374   exp->write_type(this->val_type_);
8375 }
8376 
8377 // Import a map type.
8378 
8379 Map_type*
do_import(Import * imp)8380 Map_type::do_import(Import* imp)
8381 {
8382   imp->require_c_string("map [");
8383   Type* key_type = imp->read_type();
8384   imp->require_c_string("] ");
8385   Type* val_type = imp->read_type();
8386   return Type::make_map_type(key_type, val_type, imp->location());
8387 }
8388 
8389 // Make a map type.
8390 
8391 Map_type*
make_map_type(Type * key_type,Type * val_type,Location location)8392 Type::make_map_type(Type* key_type, Type* val_type, Location location)
8393 {
8394   return new Map_type(key_type, val_type, location);
8395 }
8396 
8397 // Class Channel_type.
8398 
8399 // Verify.
8400 
8401 bool
do_verify()8402 Channel_type::do_verify()
8403 {
8404   // We have no location for this error, but this is not something the
8405   // ordinary user will see.
8406   if (!this->element_type_->in_heap())
8407     go_error_at(Linemap::unknown_location(),
8408 		"chan of go:notinheap type not allowed");
8409   return true;
8410 }
8411 
8412 // Hash code.
8413 
8414 unsigned int
do_hash_for_method(Gogo * gogo,int flags) const8415 Channel_type::do_hash_for_method(Gogo* gogo, int flags) const
8416 {
8417   unsigned int ret = 0;
8418   if (this->may_send_)
8419     ret += 1;
8420   if (this->may_receive_)
8421     ret += 2;
8422   if (this->element_type_ != NULL)
8423     ret += this->element_type_->hash_for_method(gogo, flags) << 2;
8424   return ret << 3;
8425 }
8426 
8427 // Whether this type is the same as T.
8428 
8429 bool
is_identical(const Channel_type * t,int flags) const8430 Channel_type::is_identical(const Channel_type* t, int flags) const
8431 {
8432   if (!Type::are_identical(this->element_type(), t->element_type(), flags,
8433 			   NULL))
8434     return false;
8435   return (this->may_send_ == t->may_send_
8436 	  && this->may_receive_ == t->may_receive_);
8437 }
8438 
8439 // Return the backend representation for a channel type.  A channel is a pointer
8440 // to a __go_channel struct.  The __go_channel struct is defined in
8441 // libgo/runtime/channel.h.
8442 
8443 Btype*
do_get_backend(Gogo * gogo)8444 Channel_type::do_get_backend(Gogo* gogo)
8445 {
8446   static Btype* backend_channel_type;
8447   if (backend_channel_type == NULL)
8448     {
8449       std::vector<Backend::Btyped_identifier> bfields;
8450       Btype* bt = gogo->backend()->struct_type(bfields);
8451       bt = gogo->backend()->named_type("__go_channel", bt,
8452                                        Linemap::predeclared_location());
8453       backend_channel_type = gogo->backend()->pointer_type(bt);
8454     }
8455   return backend_channel_type;
8456 }
8457 
8458 // Build a type descriptor for a channel type.
8459 
8460 Type*
make_chan_type_descriptor_type()8461 Channel_type::make_chan_type_descriptor_type()
8462 {
8463   static Type* ret;
8464   if (ret == NULL)
8465     {
8466       Type* tdt = Type::make_type_descriptor_type();
8467       Type* ptdt = Type::make_type_descriptor_ptr_type();
8468 
8469       Type* uintptr_type = Type::lookup_integer_type("uintptr");
8470 
8471       Struct_type* sf =
8472 	Type::make_builtin_struct_type(3,
8473 				       "", tdt,
8474 				       "elem", ptdt,
8475 				       "dir", uintptr_type);
8476 
8477       ret = Type::make_builtin_named_type("ChanType", sf);
8478     }
8479 
8480   return ret;
8481 }
8482 
8483 // Build a type descriptor for a map type.
8484 
8485 Expression*
do_type_descriptor(Gogo * gogo,Named_type * name)8486 Channel_type::do_type_descriptor(Gogo* gogo, Named_type* name)
8487 {
8488   Location bloc = Linemap::predeclared_location();
8489 
8490   Type* ctdt = Channel_type::make_chan_type_descriptor_type();
8491 
8492   const Struct_field_list* fields = ctdt->struct_type()->fields();
8493 
8494   Expression_list* vals = new Expression_list();
8495   vals->reserve(3);
8496 
8497   Struct_field_list::const_iterator p = fields->begin();
8498   go_assert(p->is_field_name("_type"));
8499   vals->push_back(this->type_descriptor_constructor(gogo,
8500 						    RUNTIME_TYPE_KIND_CHAN,
8501 						    name, NULL, true));
8502 
8503   ++p;
8504   go_assert(p->is_field_name("elem"));
8505   vals->push_back(Expression::make_type_descriptor(this->element_type_, bloc));
8506 
8507   ++p;
8508   go_assert(p->is_field_name("dir"));
8509   // These bits must match the ones in libgo/runtime/go-type.h.
8510   int val = 0;
8511   if (this->may_receive_)
8512     val |= 1;
8513   if (this->may_send_)
8514     val |= 2;
8515   vals->push_back(Expression::make_integer_ul(val, p->type(), bloc));
8516 
8517   ++p;
8518   go_assert(p == fields->end());
8519 
8520   return Expression::make_struct_composite_literal(ctdt, vals, bloc);
8521 }
8522 
8523 // Reflection string.
8524 
8525 void
do_reflection(Gogo * gogo,std::string * ret) const8526 Channel_type::do_reflection(Gogo* gogo, std::string* ret) const
8527 {
8528   if (!this->may_send_)
8529     ret->append("<-");
8530   ret->append("chan");
8531   if (!this->may_receive_)
8532     ret->append("<-");
8533   ret->push_back(' ');
8534   this->append_reflection(this->element_type_, gogo, ret);
8535 }
8536 
8537 // Export.
8538 
8539 void
do_export(Export * exp) const8540 Channel_type::do_export(Export* exp) const
8541 {
8542   exp->write_c_string("chan ");
8543   if (this->may_send_ && !this->may_receive_)
8544     exp->write_c_string("-< ");
8545   else if (this->may_receive_ && !this->may_send_)
8546     exp->write_c_string("<- ");
8547   exp->write_type(this->element_type_);
8548 }
8549 
8550 // Import.
8551 
8552 Channel_type*
do_import(Import * imp)8553 Channel_type::do_import(Import* imp)
8554 {
8555   imp->require_c_string("chan ");
8556 
8557   bool may_send;
8558   bool may_receive;
8559   if (imp->match_c_string("-< "))
8560     {
8561       imp->advance(3);
8562       may_send = true;
8563       may_receive = false;
8564     }
8565   else if (imp->match_c_string("<- "))
8566     {
8567       imp->advance(3);
8568       may_receive = true;
8569       may_send = false;
8570     }
8571   else
8572     {
8573       may_send = true;
8574       may_receive = true;
8575     }
8576 
8577   Type* element_type = imp->read_type();
8578 
8579   return Type::make_channel_type(may_send, may_receive, element_type);
8580 }
8581 
8582 // Return the type that the runtime package uses for one case of a
8583 // select statement.  An array of values of this type is allocated on
8584 // the stack.  This must match scase in libgo/go/runtime/select.go.
8585 
8586 Type*
select_case_type()8587 Channel_type::select_case_type()
8588 {
8589   static Struct_type* scase_type;
8590   if (scase_type == NULL)
8591     {
8592       Type* unsafe_pointer_type =
8593 	Type::make_pointer_type(Type::make_void_type());
8594       Type* uint16_type = Type::lookup_integer_type("uint16");
8595       Type* int64_type = Type::lookup_integer_type("int64");
8596       scase_type =
8597 	Type::make_builtin_struct_type(4,
8598 				       "c", unsafe_pointer_type,
8599 				       "elem", unsafe_pointer_type,
8600 				       "kind", uint16_type,
8601 				       "releasetime", int64_type);
8602       scase_type->set_is_struct_incomparable();
8603     }
8604   return scase_type;
8605 }
8606 
8607 // Make a new channel type.
8608 
8609 Channel_type*
make_channel_type(bool send,bool receive,Type * element_type)8610 Type::make_channel_type(bool send, bool receive, Type* element_type)
8611 {
8612   return new Channel_type(send, receive, element_type);
8613 }
8614 
8615 // Class Interface_type.
8616 
8617 // Return the list of methods.
8618 
8619 const Typed_identifier_list*
methods() const8620 Interface_type::methods() const
8621 {
8622   go_assert(this->methods_are_finalized_ || saw_errors());
8623   return this->all_methods_;
8624 }
8625 
8626 // Return the number of methods.
8627 
8628 size_t
method_count() const8629 Interface_type::method_count() const
8630 {
8631   go_assert(this->methods_are_finalized_ || saw_errors());
8632   return this->all_methods_ == NULL ? 0 : this->all_methods_->size();
8633 }
8634 
8635 // Traversal.
8636 
8637 int
do_traverse(Traverse * traverse)8638 Interface_type::do_traverse(Traverse* traverse)
8639 {
8640   Typed_identifier_list* methods = (this->methods_are_finalized_
8641 				    ? this->all_methods_
8642 				    : this->parse_methods_);
8643   if (methods == NULL)
8644     return TRAVERSE_CONTINUE;
8645   return methods->traverse(traverse);
8646 }
8647 
8648 // Finalize the methods.  This handles interface inheritance.
8649 
8650 void
finalize_methods()8651 Interface_type::finalize_methods()
8652 {
8653   if (this->methods_are_finalized_)
8654     return;
8655   this->methods_are_finalized_ = true;
8656   if (this->parse_methods_ == NULL)
8657     return;
8658 
8659   this->all_methods_ = new Typed_identifier_list();
8660   this->all_methods_->reserve(this->parse_methods_->size());
8661   Typed_identifier_list inherit;
8662   for (Typed_identifier_list::const_iterator pm =
8663 	 this->parse_methods_->begin();
8664        pm != this->parse_methods_->end();
8665        ++pm)
8666     {
8667       const Typed_identifier* p = &*pm;
8668       if (p->name().empty())
8669 	inherit.push_back(*p);
8670       else if (this->find_method(p->name()) == NULL)
8671 	this->all_methods_->push_back(*p);
8672       else
8673 	go_error_at(p->location(), "duplicate method %qs",
8674 		 Gogo::message_name(p->name()).c_str());
8675     }
8676 
8677   std::vector<Named_type*> seen;
8678   seen.reserve(inherit.size());
8679   bool issued_recursive_error = false;
8680   while (!inherit.empty())
8681     {
8682       Type* t = inherit.back().type();
8683       Location tl = inherit.back().location();
8684       inherit.pop_back();
8685 
8686       Interface_type* it = t->interface_type();
8687       if (it == NULL)
8688 	{
8689 	  if (!t->is_error())
8690 	    go_error_at(tl, "interface contains embedded non-interface");
8691 	  continue;
8692 	}
8693       if (it == this)
8694 	{
8695 	  if (!issued_recursive_error)
8696 	    {
8697 	      go_error_at(tl, "invalid recursive interface");
8698 	      issued_recursive_error = true;
8699 	    }
8700 	  continue;
8701 	}
8702 
8703       Named_type* nt = t->named_type();
8704       if (nt != NULL && it->parse_methods_ != NULL)
8705 	{
8706 	  std::vector<Named_type*>::const_iterator q;
8707 	  for (q = seen.begin(); q != seen.end(); ++q)
8708 	    {
8709 	      if (*q == nt)
8710 		{
8711 		  go_error_at(tl, "inherited interface loop");
8712 		  break;
8713 		}
8714 	    }
8715 	  if (q != seen.end())
8716 	    continue;
8717 	  seen.push_back(nt);
8718 	}
8719 
8720       const Typed_identifier_list* imethods = it->parse_methods_;
8721       if (imethods == NULL)
8722 	continue;
8723       for (Typed_identifier_list::const_iterator q = imethods->begin();
8724 	   q != imethods->end();
8725 	   ++q)
8726 	{
8727 	  if (q->name().empty())
8728 	    inherit.push_back(*q);
8729 	  else if (this->find_method(q->name()) == NULL)
8730 	    this->all_methods_->push_back(Typed_identifier(q->name(),
8731 							   q->type(), tl));
8732 	  else
8733 	    go_error_at(tl, "inherited method %qs is ambiguous",
8734 		     Gogo::message_name(q->name()).c_str());
8735 	}
8736     }
8737 
8738   if (!this->all_methods_->empty())
8739     this->all_methods_->sort_by_name();
8740   else
8741     {
8742       delete this->all_methods_;
8743       this->all_methods_ = NULL;
8744     }
8745 }
8746 
8747 // Return the method NAME, or NULL.
8748 
8749 const Typed_identifier*
find_method(const std::string & name) const8750 Interface_type::find_method(const std::string& name) const
8751 {
8752   go_assert(this->methods_are_finalized_);
8753   if (this->all_methods_ == NULL)
8754     return NULL;
8755   for (Typed_identifier_list::const_iterator p = this->all_methods_->begin();
8756        p != this->all_methods_->end();
8757        ++p)
8758     if (p->name() == name)
8759       return &*p;
8760   return NULL;
8761 }
8762 
8763 // Return the method index.
8764 
8765 size_t
method_index(const std::string & name) const8766 Interface_type::method_index(const std::string& name) const
8767 {
8768   go_assert(this->methods_are_finalized_ && this->all_methods_ != NULL);
8769   size_t ret = 0;
8770   for (Typed_identifier_list::const_iterator p = this->all_methods_->begin();
8771        p != this->all_methods_->end();
8772        ++p, ++ret)
8773     if (p->name() == name)
8774       return ret;
8775   go_unreachable();
8776 }
8777 
8778 // Return whether NAME is an unexported method, for better error
8779 // reporting.
8780 
8781 bool
is_unexported_method(Gogo * gogo,const std::string & name) const8782 Interface_type::is_unexported_method(Gogo* gogo, const std::string& name) const
8783 {
8784   go_assert(this->methods_are_finalized_);
8785   if (this->all_methods_ == NULL)
8786     return false;
8787   for (Typed_identifier_list::const_iterator p = this->all_methods_->begin();
8788        p != this->all_methods_->end();
8789        ++p)
8790     {
8791       const std::string& method_name(p->name());
8792       if (Gogo::is_hidden_name(method_name)
8793 	  && name == Gogo::unpack_hidden_name(method_name)
8794 	  && gogo->pack_hidden_name(name, false) != method_name)
8795 	return true;
8796     }
8797   return false;
8798 }
8799 
8800 // Whether this type is identical with T.
8801 
8802 bool
is_identical(const Interface_type * t,int flags) const8803 Interface_type::is_identical(const Interface_type* t, int flags) const
8804 {
8805   // If methods have not been finalized, then we are asking whether
8806   // func redeclarations are the same.  This is an error, so for
8807   // simplicity we say they are never the same.
8808   if (!this->methods_are_finalized_ || !t->methods_are_finalized_)
8809     return false;
8810 
8811   // Consult a flag to see whether we need to compare based on
8812   // parse methods or all methods.
8813   Typed_identifier_list* methods = (((flags & COMPARE_EMBEDDED_INTERFACES) != 0)
8814 				      ? this->parse_methods_
8815                                       : this->all_methods_);
8816   Typed_identifier_list* tmethods = (((flags & COMPARE_EMBEDDED_INTERFACES) != 0)
8817 				       ? t->parse_methods_
8818 				       : t->all_methods_);
8819 
8820   // We require the same methods with the same types.  The methods
8821   // have already been sorted.
8822   if (methods == NULL || tmethods == NULL)
8823     return methods == tmethods;
8824 
8825   if (this->assume_identical(this, t) || t->assume_identical(t, this))
8826     return true;
8827 
8828   Assume_identical* hold_ai = this->assume_identical_;
8829   Assume_identical ai;
8830   ai.t1 = this;
8831   ai.t2 = t;
8832   ai.next = hold_ai;
8833   this->assume_identical_ = &ai;
8834 
8835   Typed_identifier_list::const_iterator p1 = methods->begin();
8836   Typed_identifier_list::const_iterator p2;
8837   for (p2 = tmethods->begin(); p2 != tmethods->end(); ++p1, ++p2)
8838     {
8839       if (p1 == methods->end())
8840 	break;
8841       if (p1->name() != p2->name()
8842 	  || !Type::are_identical(p1->type(), p2->type(), flags, NULL))
8843 	break;
8844     }
8845 
8846   this->assume_identical_ = hold_ai;
8847 
8848   return p1 == methods->end() && p2 == tmethods->end();
8849 }
8850 
8851 // Return true if T1 and T2 are assumed to be identical during a type
8852 // comparison.
8853 
8854 bool
assume_identical(const Interface_type * t1,const Interface_type * t2) const8855 Interface_type::assume_identical(const Interface_type* t1,
8856 				 const Interface_type* t2) const
8857 {
8858   for (Assume_identical* p = this->assume_identical_;
8859        p != NULL;
8860        p = p->next)
8861     if ((p->t1 == t1 && p->t2 == t2) || (p->t1 == t2 && p->t2 == t1))
8862       return true;
8863   return false;
8864 }
8865 
8866 // Whether we can assign the interface type T to this type.  The types
8867 // are known to not be identical.  An interface assignment is only
8868 // permitted if T is known to implement all methods in THIS.
8869 // Otherwise a type guard is required.
8870 
8871 bool
is_compatible_for_assign(const Interface_type * t,std::string * reason) const8872 Interface_type::is_compatible_for_assign(const Interface_type* t,
8873 					 std::string* reason) const
8874 {
8875   go_assert(this->methods_are_finalized_ && t->methods_are_finalized_);
8876   if (this->all_methods_ == NULL)
8877     return true;
8878   for (Typed_identifier_list::const_iterator p = this->all_methods_->begin();
8879        p != this->all_methods_->end();
8880        ++p)
8881     {
8882       const Typed_identifier* m = t->find_method(p->name());
8883       if (m == NULL)
8884 	{
8885 	  if (reason != NULL)
8886 	    {
8887 	      char buf[200];
8888 	      snprintf(buf, sizeof buf,
8889 		       _("need explicit conversion; missing method %s%s%s"),
8890 		       go_open_quote(), Gogo::message_name(p->name()).c_str(),
8891 		       go_close_quote());
8892 	      reason->assign(buf);
8893 	    }
8894 	  return false;
8895 	}
8896 
8897       std::string subreason;
8898       if (!Type::are_identical(p->type(), m->type(), Type::COMPARE_TAGS,
8899 			       &subreason))
8900 	{
8901 	  if (reason != NULL)
8902 	    {
8903 	      std::string n = Gogo::message_name(p->name());
8904 	      size_t len = 100 + n.length() + subreason.length();
8905 	      char* buf = new char[len];
8906 	      if (subreason.empty())
8907 		snprintf(buf, len, _("incompatible type for method %s%s%s"),
8908 			 go_open_quote(), n.c_str(), go_close_quote());
8909 	      else
8910 		snprintf(buf, len,
8911 			 _("incompatible type for method %s%s%s (%s)"),
8912 			 go_open_quote(), n.c_str(), go_close_quote(),
8913 			 subreason.c_str());
8914 	      reason->assign(buf);
8915 	      delete[] buf;
8916 	    }
8917 	  return false;
8918 	}
8919     }
8920 
8921   return true;
8922 }
8923 
8924 // Hash code.
8925 
8926 unsigned int
do_hash_for_method(Gogo *,int) const8927 Interface_type::do_hash_for_method(Gogo*, int) const
8928 {
8929   go_assert(this->methods_are_finalized_);
8930   unsigned int ret = 0;
8931   if (this->all_methods_ != NULL)
8932     {
8933       for (Typed_identifier_list::const_iterator p =
8934 	     this->all_methods_->begin();
8935 	   p != this->all_methods_->end();
8936 	   ++p)
8937 	{
8938 	  ret = Gogo::hash_string(p->name(), ret);
8939 	  // We don't use the method type in the hash, to avoid
8940 	  // infinite recursion if an interface method uses a type
8941 	  // which is an interface which inherits from the interface
8942 	  // itself.
8943 	  // type T interface { F() interface {T}}
8944 	  ret <<= 1;
8945 	}
8946     }
8947   return ret;
8948 }
8949 
8950 // Return true if T implements the interface.  If it does not, and
8951 // REASON is not NULL, set *REASON to a useful error message.
8952 
8953 bool
implements_interface(const Type * t,std::string * reason) const8954 Interface_type::implements_interface(const Type* t, std::string* reason) const
8955 {
8956   go_assert(this->methods_are_finalized_);
8957   if (this->all_methods_ == NULL)
8958     return true;
8959 
8960   bool is_pointer = false;
8961   const Named_type* nt = t->named_type();
8962   const Struct_type* st = t->struct_type();
8963   // If we start with a named type, we don't dereference it to find
8964   // methods.
8965   if (nt == NULL)
8966     {
8967       const Type* pt = t->points_to();
8968       if (pt != NULL)
8969 	{
8970 	  // If T is a pointer to a named type, then we need to look at
8971 	  // the type to which it points.
8972 	  is_pointer = true;
8973 	  nt = pt->named_type();
8974 	  st = pt->struct_type();
8975 	}
8976     }
8977 
8978   // If we have a named type, get the methods from it rather than from
8979   // any struct type.
8980   if (nt != NULL)
8981     st = NULL;
8982 
8983   // Only named and struct types have methods.
8984   if (nt == NULL && st == NULL)
8985     {
8986       if (reason != NULL)
8987 	{
8988 	  if (t->points_to() != NULL
8989 	      && t->points_to()->interface_type() != NULL)
8990 	    reason->assign(_("pointer to interface type has no methods"));
8991 	  else
8992 	    reason->assign(_("type has no methods"));
8993 	}
8994       return false;
8995     }
8996 
8997   if (nt != NULL ? !nt->has_any_methods() : !st->has_any_methods())
8998     {
8999       if (reason != NULL)
9000 	{
9001 	  if (t->points_to() != NULL
9002 	      && t->points_to()->interface_type() != NULL)
9003 	    reason->assign(_("pointer to interface type has no methods"));
9004 	  else
9005 	    reason->assign(_("type has no methods"));
9006 	}
9007       return false;
9008     }
9009 
9010   for (Typed_identifier_list::const_iterator p = this->all_methods_->begin();
9011        p != this->all_methods_->end();
9012        ++p)
9013     {
9014       bool is_ambiguous = false;
9015       Method* m = (nt != NULL
9016 		   ? nt->method_function(p->name(), &is_ambiguous)
9017 		   : st->method_function(p->name(), &is_ambiguous));
9018       if (m == NULL)
9019 	{
9020 	  if (reason != NULL)
9021 	    {
9022 	      std::string n = Gogo::message_name(p->name());
9023 	      size_t len = n.length() + 100;
9024 	      char* buf = new char[len];
9025 	      if (is_ambiguous)
9026 		snprintf(buf, len, _("ambiguous method %s%s%s"),
9027 			 go_open_quote(), n.c_str(), go_close_quote());
9028 	      else
9029 		snprintf(buf, len, _("missing method %s%s%s"),
9030 			 go_open_quote(), n.c_str(), go_close_quote());
9031 	      reason->assign(buf);
9032 	      delete[] buf;
9033 	    }
9034 	  return false;
9035 	}
9036 
9037       Function_type *p_fn_type = p->type()->function_type();
9038       Function_type* m_fn_type = m->type()->function_type();
9039       go_assert(p_fn_type != NULL && m_fn_type != NULL);
9040       std::string subreason;
9041       if (!p_fn_type->is_identical(m_fn_type, true, Type::COMPARE_TAGS,
9042 				   &subreason))
9043 	{
9044 	  if (reason != NULL)
9045 	    {
9046 	      std::string n = Gogo::message_name(p->name());
9047 	      size_t len = 100 + n.length() + subreason.length();
9048 	      char* buf = new char[len];
9049 	      if (subreason.empty())
9050 		snprintf(buf, len, _("incompatible type for method %s%s%s"),
9051 			 go_open_quote(), n.c_str(), go_close_quote());
9052 	      else
9053 		snprintf(buf, len,
9054 			 _("incompatible type for method %s%s%s (%s)"),
9055 			 go_open_quote(), n.c_str(), go_close_quote(),
9056 			 subreason.c_str());
9057 	      reason->assign(buf);
9058 	      delete[] buf;
9059 	    }
9060 	  return false;
9061 	}
9062 
9063       if (!is_pointer && !m->is_value_method())
9064 	{
9065 	  if (reason != NULL)
9066 	    {
9067 	      std::string n = Gogo::message_name(p->name());
9068 	      size_t len = 100 + n.length();
9069 	      char* buf = new char[len];
9070 	      snprintf(buf, len,
9071 		       _("method %s%s%s requires a pointer receiver"),
9072 		       go_open_quote(), n.c_str(), go_close_quote());
9073 	      reason->assign(buf);
9074 	      delete[] buf;
9075 	    }
9076 	  return false;
9077 	}
9078 
9079       // If the magic //go:nointerface comment was used, the method
9080       // may not be used to implement interfaces.
9081       if (m->nointerface())
9082 	{
9083 	  if (reason != NULL)
9084 	    {
9085 	      std::string n = Gogo::message_name(p->name());
9086 	      size_t len = 100 + n.length();
9087 	      char* buf = new char[len];
9088 	      snprintf(buf, len,
9089 		       _("method %s%s%s is marked go:nointerface"),
9090 		       go_open_quote(), n.c_str(), go_close_quote());
9091 	      reason->assign(buf);
9092 	      delete[] buf;
9093 	    }
9094 	  return false;
9095 	}
9096     }
9097 
9098   return true;
9099 }
9100 
9101 // Return the backend representation of the empty interface type.  We
9102 // use the same struct for all empty interfaces.
9103 
9104 Btype*
get_backend_empty_interface_type(Gogo * gogo)9105 Interface_type::get_backend_empty_interface_type(Gogo* gogo)
9106 {
9107   static Btype* empty_interface_type;
9108   if (empty_interface_type == NULL)
9109     {
9110       std::vector<Backend::Btyped_identifier> bfields(2);
9111 
9112       Location bloc = Linemap::predeclared_location();
9113 
9114       Type* pdt = Type::make_type_descriptor_ptr_type();
9115       bfields[0].name = "__type_descriptor";
9116       bfields[0].btype = pdt->get_backend(gogo);
9117       bfields[0].location = bloc;
9118 
9119       Type* vt = Type::make_pointer_type(Type::make_void_type());
9120       bfields[1].name = "__object";
9121       bfields[1].btype = vt->get_backend(gogo);
9122       bfields[1].location = bloc;
9123 
9124       empty_interface_type = gogo->backend()->struct_type(bfields);
9125     }
9126   return empty_interface_type;
9127 }
9128 
9129 Interface_type::Bmethods_map Interface_type::bmethods_map;
9130 
9131 // Return a pointer to the backend representation of the method table.
9132 
9133 Btype*
get_backend_methods(Gogo * gogo)9134 Interface_type::get_backend_methods(Gogo* gogo)
9135 {
9136   if (this->bmethods_ != NULL && !this->bmethods_is_placeholder_)
9137     return this->bmethods_;
9138 
9139   std::pair<Interface_type*, Bmethods_map_entry> val;
9140   val.first = this;
9141   val.second.btype = NULL;
9142   val.second.is_placeholder = false;
9143   std::pair<Bmethods_map::iterator, bool> ins =
9144     Interface_type::bmethods_map.insert(val);
9145   if (!ins.second
9146       && ins.first->second.btype != NULL
9147       && !ins.first->second.is_placeholder)
9148     {
9149       this->bmethods_ = ins.first->second.btype;
9150       this->bmethods_is_placeholder_ = false;
9151       return this->bmethods_;
9152     }
9153 
9154   Location loc = this->location();
9155 
9156   std::vector<Backend::Btyped_identifier>
9157     mfields(this->all_methods_->size() + 1);
9158 
9159   Type* pdt = Type::make_type_descriptor_ptr_type();
9160   mfields[0].name = "__type_descriptor";
9161   mfields[0].btype = pdt->get_backend(gogo);
9162   mfields[0].location = loc;
9163 
9164   std::string last_name = "";
9165   size_t i = 1;
9166   for (Typed_identifier_list::const_iterator p = this->all_methods_->begin();
9167        p != this->all_methods_->end();
9168        ++p, ++i)
9169     {
9170       // The type of the method in Go only includes the parameters.
9171       // The actual method also has a receiver, which is always a
9172       // pointer.  We need to add that pointer type here in order to
9173       // generate the correct type for the backend.
9174       Function_type* ft = p->type()->function_type();
9175       go_assert(ft->receiver() == NULL);
9176 
9177       const Typed_identifier_list* params = ft->parameters();
9178       Typed_identifier_list* mparams = new Typed_identifier_list();
9179       if (params != NULL)
9180 	mparams->reserve(params->size() + 1);
9181       Type* vt = Type::make_pointer_type(Type::make_void_type());
9182       mparams->push_back(Typed_identifier("", vt, ft->location()));
9183       if (params != NULL)
9184 	{
9185 	  for (Typed_identifier_list::const_iterator pp = params->begin();
9186 	       pp != params->end();
9187 	       ++pp)
9188 	    mparams->push_back(*pp);
9189 	}
9190 
9191       Typed_identifier_list* mresults = (ft->results() == NULL
9192 					 ? NULL
9193 					 : ft->results()->copy());
9194       Function_type* mft = Type::make_function_type(NULL, mparams, mresults,
9195 						    ft->location());
9196 
9197       mfields[i].name = Gogo::unpack_hidden_name(p->name());
9198       mfields[i].btype = mft->get_backend_fntype(gogo);
9199       mfields[i].location = loc;
9200 
9201       // Sanity check: the names should be sorted.
9202       go_assert(Gogo::unpack_hidden_name(p->name())
9203 		> Gogo::unpack_hidden_name(last_name));
9204       last_name = p->name();
9205     }
9206 
9207   Btype* st = gogo->backend()->struct_type(mfields);
9208   Btype* ret = gogo->backend()->pointer_type(st);
9209 
9210   if (ins.first->second.btype != NULL
9211       && ins.first->second.is_placeholder)
9212     gogo->backend()->set_placeholder_pointer_type(ins.first->second.btype,
9213                                                   ret);
9214   this->bmethods_ = ret;
9215   ins.first->second.btype = ret;
9216   this->bmethods_is_placeholder_ = false;
9217   ins.first->second.is_placeholder = false;
9218   return ret;
9219 }
9220 
9221 // Return a placeholder for the pointer to the backend methods table.
9222 
9223 Btype*
get_backend_methods_placeholder(Gogo * gogo)9224 Interface_type::get_backend_methods_placeholder(Gogo* gogo)
9225 {
9226   if (this->bmethods_ == NULL)
9227     {
9228       std::pair<Interface_type*, Bmethods_map_entry> val;
9229       val.first = this;
9230       val.second.btype = NULL;
9231       val.second.is_placeholder = false;
9232       std::pair<Bmethods_map::iterator, bool> ins =
9233         Interface_type::bmethods_map.insert(val);
9234       if (!ins.second && ins.first->second.btype != NULL)
9235         {
9236           this->bmethods_ = ins.first->second.btype;
9237           this->bmethods_is_placeholder_ = ins.first->second.is_placeholder;
9238           return this->bmethods_;
9239         }
9240 
9241       Location loc = this->location();
9242       Btype* bt = gogo->backend()->placeholder_pointer_type("", loc, false);
9243       this->bmethods_ = bt;
9244       ins.first->second.btype = bt;
9245       this->bmethods_is_placeholder_ = true;
9246       ins.first->second.is_placeholder = true;
9247     }
9248   return this->bmethods_;
9249 }
9250 
9251 // Return the fields of a non-empty interface type.  This is not
9252 // declared in types.h so that types.h doesn't have to #include
9253 // backend.h.
9254 
9255 static void
get_backend_interface_fields(Gogo * gogo,Interface_type * type,bool use_placeholder,std::vector<Backend::Btyped_identifier> * bfields)9256 get_backend_interface_fields(Gogo* gogo, Interface_type* type,
9257 			     bool use_placeholder,
9258 			     std::vector<Backend::Btyped_identifier>* bfields)
9259 {
9260   Location loc = type->location();
9261 
9262   bfields->resize(2);
9263 
9264   (*bfields)[0].name = "__methods";
9265   (*bfields)[0].btype = (use_placeholder
9266 			 ? type->get_backend_methods_placeholder(gogo)
9267 			 : type->get_backend_methods(gogo));
9268   (*bfields)[0].location = loc;
9269 
9270   Type* vt = Type::make_pointer_type(Type::make_void_type());
9271   (*bfields)[1].name = "__object";
9272   (*bfields)[1].btype = vt->get_backend(gogo);
9273   (*bfields)[1].location = Linemap::predeclared_location();
9274 }
9275 
9276 // Return the backend representation for an interface type.  An interface is a
9277 // pointer to a struct.  The struct has three fields.  The first field is a
9278 // pointer to the type descriptor for the dynamic type of the object.
9279 // The second field is a pointer to a table of methods for the
9280 // interface to be used with the object.  The third field is the value
9281 // of the object itself.
9282 
9283 Btype*
do_get_backend(Gogo * gogo)9284 Interface_type::do_get_backend(Gogo* gogo)
9285 {
9286   if (this->is_empty())
9287     return Interface_type::get_backend_empty_interface_type(gogo);
9288   else
9289     {
9290       if (this->interface_btype_ != NULL)
9291 	return this->interface_btype_;
9292       this->interface_btype_ =
9293 	gogo->backend()->placeholder_struct_type("", this->location_);
9294       std::vector<Backend::Btyped_identifier> bfields;
9295       get_backend_interface_fields(gogo, this, false, &bfields);
9296       if (!gogo->backend()->set_placeholder_struct_type(this->interface_btype_,
9297 							bfields))
9298 	this->interface_btype_ = gogo->backend()->error_type();
9299       return this->interface_btype_;
9300     }
9301 }
9302 
9303 // Finish the backend representation of the methods.
9304 
9305 void
finish_backend_methods(Gogo * gogo)9306 Interface_type::finish_backend_methods(Gogo* gogo)
9307 {
9308   if (!this->is_empty())
9309     {
9310       const Typed_identifier_list* methods = this->methods();
9311       if (methods != NULL)
9312 	{
9313 	  for (Typed_identifier_list::const_iterator p = methods->begin();
9314 	       p != methods->end();
9315 	       ++p)
9316 	    p->type()->get_backend(gogo);
9317 	}
9318 
9319       // Getting the backend methods now will set the placeholder
9320       // pointer.
9321       this->get_backend_methods(gogo);
9322     }
9323 }
9324 
9325 // The type of an interface type descriptor.
9326 
9327 Type*
make_interface_type_descriptor_type()9328 Interface_type::make_interface_type_descriptor_type()
9329 {
9330   static Type* ret;
9331   if (ret == NULL)
9332     {
9333       Type* tdt = Type::make_type_descriptor_type();
9334       Type* ptdt = Type::make_type_descriptor_ptr_type();
9335 
9336       Type* string_type = Type::lookup_string_type();
9337       Type* pointer_string_type = Type::make_pointer_type(string_type);
9338 
9339       Struct_type* sm =
9340 	Type::make_builtin_struct_type(3,
9341 				       "name", pointer_string_type,
9342 				       "pkgPath", pointer_string_type,
9343 				       "typ", ptdt);
9344 
9345       Type* nsm = Type::make_builtin_named_type("imethod", sm);
9346 
9347       Type* slice_nsm = Type::make_array_type(nsm, NULL);
9348 
9349       Struct_type* s = Type::make_builtin_struct_type(2,
9350 						      "", tdt,
9351 						      "methods", slice_nsm);
9352 
9353       ret = Type::make_builtin_named_type("InterfaceType", s);
9354     }
9355 
9356   return ret;
9357 }
9358 
9359 // Build a type descriptor for an interface type.
9360 
9361 Expression*
do_type_descriptor(Gogo * gogo,Named_type * name)9362 Interface_type::do_type_descriptor(Gogo* gogo, Named_type* name)
9363 {
9364   Location bloc = Linemap::predeclared_location();
9365 
9366   Type* itdt = Interface_type::make_interface_type_descriptor_type();
9367 
9368   const Struct_field_list* ifields = itdt->struct_type()->fields();
9369 
9370   Expression_list* ivals = new Expression_list();
9371   ivals->reserve(2);
9372 
9373   Struct_field_list::const_iterator pif = ifields->begin();
9374   go_assert(pif->is_field_name("_type"));
9375   const int rt = RUNTIME_TYPE_KIND_INTERFACE;
9376   ivals->push_back(this->type_descriptor_constructor(gogo, rt, name, NULL,
9377 						     true));
9378 
9379   ++pif;
9380   go_assert(pif->is_field_name("methods"));
9381 
9382   Expression_list* methods = new Expression_list();
9383   if (this->all_methods_ != NULL)
9384     {
9385       Type* elemtype = pif->type()->array_type()->element_type();
9386 
9387       methods->reserve(this->all_methods_->size());
9388       for (Typed_identifier_list::const_iterator pm =
9389 	     this->all_methods_->begin();
9390 	   pm != this->all_methods_->end();
9391 	   ++pm)
9392 	{
9393 	  const Struct_field_list* mfields = elemtype->struct_type()->fields();
9394 
9395 	  Expression_list* mvals = new Expression_list();
9396 	  mvals->reserve(3);
9397 
9398 	  Struct_field_list::const_iterator pmf = mfields->begin();
9399 	  go_assert(pmf->is_field_name("name"));
9400 	  std::string s = Gogo::unpack_hidden_name(pm->name());
9401 	  Expression* e = Expression::make_string(s, bloc);
9402 	  mvals->push_back(Expression::make_unary(OPERATOR_AND, e, bloc));
9403 
9404 	  ++pmf;
9405 	  go_assert(pmf->is_field_name("pkgPath"));
9406 	  if (!Gogo::is_hidden_name(pm->name()))
9407 	    mvals->push_back(Expression::make_nil(bloc));
9408 	  else
9409 	    {
9410 	      s = Gogo::hidden_name_pkgpath(pm->name());
9411 	      e = Expression::make_string(s, bloc);
9412 	      mvals->push_back(Expression::make_unary(OPERATOR_AND, e, bloc));
9413 	    }
9414 
9415 	  ++pmf;
9416 	  go_assert(pmf->is_field_name("typ"));
9417 	  mvals->push_back(Expression::make_type_descriptor(pm->type(), bloc));
9418 
9419 	  ++pmf;
9420 	  go_assert(pmf == mfields->end());
9421 
9422 	  e = Expression::make_struct_composite_literal(elemtype, mvals,
9423 							bloc);
9424 	  methods->push_back(e);
9425 	}
9426     }
9427 
9428   ivals->push_back(Expression::make_slice_composite_literal(pif->type(),
9429 							    methods, bloc));
9430 
9431   ++pif;
9432   go_assert(pif == ifields->end());
9433 
9434   return Expression::make_struct_composite_literal(itdt, ivals, bloc);
9435 }
9436 
9437 // Reflection string.
9438 
9439 void
do_reflection(Gogo * gogo,std::string * ret) const9440 Interface_type::do_reflection(Gogo* gogo, std::string* ret) const
9441 {
9442   ret->append("interface {");
9443   const Typed_identifier_list* methods = this->parse_methods_;
9444   if (methods != NULL)
9445     {
9446       ret->push_back(' ');
9447       for (Typed_identifier_list::const_iterator p = methods->begin();
9448 	   p != methods->end();
9449 	   ++p)
9450 	{
9451 	  if (p != methods->begin())
9452 	    ret->append("; ");
9453 	  if (p->name().empty())
9454 	    this->append_reflection(p->type(), gogo, ret);
9455 	  else
9456 	    {
9457 	      if (!Gogo::is_hidden_name(p->name()))
9458 		ret->append(p->name());
9459 	      else if (gogo->pkgpath_from_option())
9460 		ret->append(p->name().substr(1));
9461 	      else
9462 		{
9463 		  // If no -fgo-pkgpath option, backward compatibility
9464 		  // for how this used to work before -fgo-pkgpath was
9465 		  // introduced.
9466 		  std::string pkgpath = Gogo::hidden_name_pkgpath(p->name());
9467 		  ret->append(pkgpath.substr(pkgpath.find('.') + 1));
9468 		  ret->push_back('.');
9469 		  ret->append(Gogo::unpack_hidden_name(p->name()));
9470 		}
9471 	      std::string sub = p->type()->reflection(gogo);
9472 	      go_assert(sub.compare(0, 4, "func") == 0);
9473 	      sub = sub.substr(4);
9474 	      ret->append(sub);
9475 	    }
9476 	}
9477       ret->push_back(' ');
9478     }
9479   ret->append("}");
9480 }
9481 
9482 // Export.
9483 
9484 void
do_export(Export * exp) const9485 Interface_type::do_export(Export* exp) const
9486 {
9487   exp->write_c_string("interface { ");
9488 
9489   const Typed_identifier_list* methods = this->parse_methods_;
9490   if (methods != NULL)
9491     {
9492       for (Typed_identifier_list::const_iterator pm = methods->begin();
9493 	   pm != methods->end();
9494 	   ++pm)
9495 	{
9496 	  if (pm->name().empty())
9497 	    {
9498 	      exp->write_c_string("? ");
9499 	      exp->write_type(pm->type());
9500 	    }
9501 	  else
9502 	    {
9503 	      exp->write_string(pm->name());
9504 	      exp->write_c_string(" (");
9505 
9506 	      const Function_type* fntype = pm->type()->function_type();
9507 
9508 	      bool first = true;
9509 	      const Typed_identifier_list* parameters = fntype->parameters();
9510 	      if (parameters != NULL)
9511 		{
9512 		  bool is_varargs = fntype->is_varargs();
9513 		  for (Typed_identifier_list::const_iterator pp =
9514 			 parameters->begin();
9515 		       pp != parameters->end();
9516 		       ++pp)
9517 		    {
9518 		      if (first)
9519 			first = false;
9520 		      else
9521 			exp->write_c_string(", ");
9522 		      exp->write_name(pp->name());
9523 		      exp->write_c_string(" ");
9524 		      if (!is_varargs || pp + 1 != parameters->end())
9525 			exp->write_type(pp->type());
9526 		      else
9527 			{
9528 			  exp->write_c_string("...");
9529 			  Type *pptype = pp->type();
9530 			  exp->write_type(pptype->array_type()->element_type());
9531 			}
9532 		    }
9533 		}
9534 
9535 	      exp->write_c_string(")");
9536 
9537 	      const Typed_identifier_list* results = fntype->results();
9538 	      if (results != NULL)
9539 		{
9540 		  exp->write_c_string(" ");
9541 		  if (results->size() == 1 && results->begin()->name().empty())
9542 		    exp->write_type(results->begin()->type());
9543 		  else
9544 		    {
9545 		      first = true;
9546 		      exp->write_c_string("(");
9547 		      for (Typed_identifier_list::const_iterator p =
9548 			     results->begin();
9549 			   p != results->end();
9550 			   ++p)
9551 			{
9552 			  if (first)
9553 			    first = false;
9554 			  else
9555 			    exp->write_c_string(", ");
9556 			  exp->write_name(p->name());
9557 			  exp->write_c_string(" ");
9558 			  exp->write_type(p->type());
9559 			}
9560 		      exp->write_c_string(")");
9561 		    }
9562 		}
9563 	    }
9564 
9565 	  exp->write_c_string("; ");
9566 	}
9567     }
9568 
9569   exp->write_c_string("}");
9570 }
9571 
9572 // Import an interface type.
9573 
9574 Interface_type*
do_import(Import * imp)9575 Interface_type::do_import(Import* imp)
9576 {
9577   imp->require_c_string("interface { ");
9578 
9579   Typed_identifier_list* methods = new Typed_identifier_list;
9580   while (imp->peek_char() != '}')
9581     {
9582       std::string name = imp->read_identifier();
9583 
9584       if (name == "?")
9585 	{
9586 	  imp->require_c_string(" ");
9587 	  Type* t = imp->read_type();
9588 	  methods->push_back(Typed_identifier("", t, imp->location()));
9589 	  imp->require_c_string("; ");
9590 	  continue;
9591 	}
9592 
9593       imp->require_c_string(" (");
9594 
9595       Typed_identifier_list* parameters;
9596       bool is_varargs = false;
9597       if (imp->peek_char() == ')')
9598 	parameters = NULL;
9599       else
9600 	{
9601 	  parameters = new Typed_identifier_list;
9602 	  while (true)
9603 	    {
9604 	      std::string name = imp->read_name();
9605 	      imp->require_c_string(" ");
9606 
9607 	      if (imp->match_c_string("..."))
9608 		{
9609 		  imp->advance(3);
9610 		  is_varargs = true;
9611 		}
9612 
9613 	      Type* ptype = imp->read_type();
9614 	      if (is_varargs)
9615 		ptype = Type::make_array_type(ptype, NULL);
9616 	      parameters->push_back(Typed_identifier(name, ptype,
9617 						     imp->location()));
9618 	      if (imp->peek_char() != ',')
9619 		break;
9620 	      go_assert(!is_varargs);
9621 	      imp->require_c_string(", ");
9622 	    }
9623 	}
9624       imp->require_c_string(")");
9625 
9626       Typed_identifier_list* results;
9627       if (imp->peek_char() != ' ')
9628 	results = NULL;
9629       else
9630 	{
9631 	  results = new Typed_identifier_list;
9632 	  imp->advance(1);
9633 	  if (imp->peek_char() != '(')
9634 	    {
9635 	      Type* rtype = imp->read_type();
9636 	      results->push_back(Typed_identifier("", rtype, imp->location()));
9637 	    }
9638 	  else
9639 	    {
9640 	      imp->advance(1);
9641 	      while (true)
9642 		{
9643 		  std::string name = imp->read_name();
9644 		  imp->require_c_string(" ");
9645 		  Type* rtype = imp->read_type();
9646 		  results->push_back(Typed_identifier(name, rtype,
9647 						      imp->location()));
9648 		  if (imp->peek_char() != ',')
9649 		    break;
9650 		  imp->require_c_string(", ");
9651 		}
9652 	      imp->require_c_string(")");
9653 	    }
9654 	}
9655 
9656       Function_type* fntype = Type::make_function_type(NULL, parameters,
9657 						       results,
9658 						       imp->location());
9659       if (is_varargs)
9660 	fntype->set_is_varargs();
9661       methods->push_back(Typed_identifier(name, fntype, imp->location()));
9662 
9663       imp->require_c_string("; ");
9664     }
9665 
9666   imp->require_c_string("}");
9667 
9668   if (methods->empty())
9669     {
9670       delete methods;
9671       methods = NULL;
9672     }
9673 
9674   Interface_type* ret = Type::make_interface_type(methods, imp->location());
9675   ret->package_ = imp->package();
9676   return ret;
9677 }
9678 
9679 // Make an interface type.
9680 
9681 Interface_type*
make_interface_type(Typed_identifier_list * methods,Location location)9682 Type::make_interface_type(Typed_identifier_list* methods,
9683 			  Location location)
9684 {
9685   return new Interface_type(methods, location);
9686 }
9687 
9688 // Make an empty interface type.
9689 
9690 Interface_type*
make_empty_interface_type(Location location)9691 Type::make_empty_interface_type(Location location)
9692 {
9693   Interface_type* ret = new Interface_type(NULL, location);
9694   ret->finalize_methods();
9695   return ret;
9696 }
9697 
9698 // Class Method.
9699 
9700 // Bind a method to an object.
9701 
9702 Expression*
bind_method(Expression * expr,Location location) const9703 Method::bind_method(Expression* expr, Location location) const
9704 {
9705   if (this->stub_ == NULL)
9706     {
9707       // When there is no stub object, the binding is determined by
9708       // the child class.
9709       return this->do_bind_method(expr, location);
9710     }
9711   return Expression::make_bound_method(expr, this, this->stub_, location);
9712 }
9713 
9714 // Return the named object associated with a method.  This may only be
9715 // called after methods are finalized.
9716 
9717 Named_object*
named_object() const9718 Method::named_object() const
9719 {
9720   if (this->stub_ != NULL)
9721     return this->stub_;
9722   return this->do_named_object();
9723 }
9724 
9725 // Class Named_method.
9726 
9727 // The type of the method.
9728 
9729 Function_type*
do_type() const9730 Named_method::do_type() const
9731 {
9732   if (this->named_object_->is_function())
9733     return this->named_object_->func_value()->type();
9734   else if (this->named_object_->is_function_declaration())
9735     return this->named_object_->func_declaration_value()->type();
9736   else
9737     go_unreachable();
9738 }
9739 
9740 // Return the location of the method receiver.
9741 
9742 Location
do_receiver_location() const9743 Named_method::do_receiver_location() const
9744 {
9745   return this->do_type()->receiver()->location();
9746 }
9747 
9748 // Bind a method to an object.
9749 
9750 Expression*
do_bind_method(Expression * expr,Location location) const9751 Named_method::do_bind_method(Expression* expr, Location location) const
9752 {
9753   Named_object* no = this->named_object_;
9754   Bound_method_expression* bme = Expression::make_bound_method(expr, this,
9755 							       no, location);
9756   // If this is not a local method, and it does not use a stub, then
9757   // the real method expects a different type.  We need to cast the
9758   // first argument.
9759   if (this->depth() > 0 && !this->needs_stub_method())
9760     {
9761       Function_type* ftype = this->do_type();
9762       go_assert(ftype->is_method());
9763       Type* frtype = ftype->receiver()->type();
9764       bme->set_first_argument_type(frtype);
9765     }
9766   return bme;
9767 }
9768 
9769 // Return whether this method should not participate in interfaces.
9770 
9771 bool
do_nointerface() const9772 Named_method::do_nointerface() const
9773 {
9774   Named_object* no = this->named_object_;
9775   if (no->is_function())
9776     return no->func_value()->nointerface();
9777   else if (no->is_function_declaration())
9778     return no->func_declaration_value()->nointerface();
9779   else
9780     go_unreachable();
9781 }
9782 
9783 // Class Interface_method.
9784 
9785 // Bind a method to an object.
9786 
9787 Expression*
do_bind_method(Expression * expr,Location location) const9788 Interface_method::do_bind_method(Expression* expr,
9789 				 Location location) const
9790 {
9791   return Expression::make_interface_field_reference(expr, this->name_,
9792 						    location);
9793 }
9794 
9795 // Class Methods.
9796 
9797 // Insert a new method.  Return true if it was inserted, false
9798 // otherwise.
9799 
9800 bool
insert(const std::string & name,Method * m)9801 Methods::insert(const std::string& name, Method* m)
9802 {
9803   std::pair<Method_map::iterator, bool> ins =
9804     this->methods_.insert(std::make_pair(name, m));
9805   if (ins.second)
9806     return true;
9807   else
9808     {
9809       Method* old_method = ins.first->second;
9810       if (m->depth() < old_method->depth())
9811 	{
9812 	  delete old_method;
9813 	  ins.first->second = m;
9814 	  return true;
9815 	}
9816       else
9817 	{
9818 	  if (m->depth() == old_method->depth())
9819 	    old_method->set_is_ambiguous();
9820 	  return false;
9821 	}
9822     }
9823 }
9824 
9825 // Return the number of unambiguous methods.
9826 
9827 size_t
count() const9828 Methods::count() const
9829 {
9830   size_t ret = 0;
9831   for (Method_map::const_iterator p = this->methods_.begin();
9832        p != this->methods_.end();
9833        ++p)
9834     if (!p->second->is_ambiguous())
9835       ++ret;
9836   return ret;
9837 }
9838 
9839 // Class Named_type.
9840 
9841 // Return the name of the type.
9842 
9843 const std::string&
name() const9844 Named_type::name() const
9845 {
9846   return this->named_object_->name();
9847 }
9848 
9849 // Return the name of the type to use in an error message.
9850 
9851 std::string
message_name() const9852 Named_type::message_name() const
9853 {
9854   return this->named_object_->message_name();
9855 }
9856 
9857 // Return the base type for this type.  We have to be careful about
9858 // circular type definitions, which are invalid but may be seen here.
9859 
9860 Type*
named_base()9861 Named_type::named_base()
9862 {
9863   if (this->seen_)
9864     return this;
9865   this->seen_ = true;
9866   Type* ret = this->type_->base();
9867   this->seen_ = false;
9868   return ret;
9869 }
9870 
9871 const Type*
named_base() const9872 Named_type::named_base() const
9873 {
9874   if (this->seen_)
9875     return this;
9876   this->seen_ = true;
9877   const Type* ret = this->type_->base();
9878   this->seen_ = false;
9879   return ret;
9880 }
9881 
9882 // Return whether this is an error type.  We have to be careful about
9883 // circular type definitions, which are invalid but may be seen here.
9884 
9885 bool
is_named_error_type() const9886 Named_type::is_named_error_type() const
9887 {
9888   if (this->seen_)
9889     return false;
9890   this->seen_ = true;
9891   bool ret = this->type_->is_error_type();
9892   this->seen_ = false;
9893   return ret;
9894 }
9895 
9896 // Whether this type is comparable.  We have to be careful about
9897 // circular type definitions.
9898 
9899 bool
named_type_is_comparable(std::string * reason) const9900 Named_type::named_type_is_comparable(std::string* reason) const
9901 {
9902   if (this->seen_)
9903     return false;
9904   this->seen_ = true;
9905   bool ret = Type::are_compatible_for_comparison(true, this->type_,
9906 						 this->type_, reason);
9907   this->seen_ = false;
9908   return ret;
9909 }
9910 
9911 // Add a method to this type.
9912 
9913 Named_object*
add_method(const std::string & name,Function * function)9914 Named_type::add_method(const std::string& name, Function* function)
9915 {
9916   go_assert(!this->is_alias_);
9917   if (this->local_methods_ == NULL)
9918     this->local_methods_ = new Bindings(NULL);
9919   return this->local_methods_->add_function(name,
9920 					    this->named_object_->package(),
9921 					    function);
9922 }
9923 
9924 // Add a method declaration to this type.
9925 
9926 Named_object*
add_method_declaration(const std::string & name,Package * package,Function_type * type,Location location)9927 Named_type::add_method_declaration(const std::string& name, Package* package,
9928 				   Function_type* type,
9929 				   Location location)
9930 {
9931   go_assert(!this->is_alias_);
9932   if (this->local_methods_ == NULL)
9933     this->local_methods_ = new Bindings(NULL);
9934   return this->local_methods_->add_function_declaration(name, package, type,
9935 							location);
9936 }
9937 
9938 // Add an existing method to this type.
9939 
9940 void
add_existing_method(Named_object * no)9941 Named_type::add_existing_method(Named_object* no)
9942 {
9943   go_assert(!this->is_alias_);
9944   if (this->local_methods_ == NULL)
9945     this->local_methods_ = new Bindings(NULL);
9946   this->local_methods_->add_named_object(no);
9947 }
9948 
9949 // Look for a local method NAME, and returns its named object, or NULL
9950 // if not there.
9951 
9952 Named_object*
find_local_method(const std::string & name) const9953 Named_type::find_local_method(const std::string& name) const
9954 {
9955   if (this->is_error_)
9956     return NULL;
9957   if (this->is_alias_)
9958     {
9959       Named_type* nt = this->type_->named_type();
9960       if (nt != NULL)
9961 	{
9962 	  if (this->seen_alias_)
9963 	    return NULL;
9964 	  this->seen_alias_ = true;
9965 	  Named_object* ret = nt->find_local_method(name);
9966 	  this->seen_alias_ = false;
9967 	  return ret;
9968 	}
9969       return NULL;
9970     }
9971   if (this->local_methods_ == NULL)
9972     return NULL;
9973   return this->local_methods_->lookup(name);
9974 }
9975 
9976 // Return the list of local methods.
9977 
9978 const Bindings*
local_methods() const9979 Named_type::local_methods() const
9980 {
9981   if (this->is_error_)
9982     return NULL;
9983   if (this->is_alias_)
9984     {
9985       Named_type* nt = this->type_->named_type();
9986       if (nt != NULL)
9987 	{
9988 	  if (this->seen_alias_)
9989 	    return NULL;
9990 	  this->seen_alias_ = true;
9991 	  const Bindings* ret = nt->local_methods();
9992 	  this->seen_alias_ = false;
9993 	  return ret;
9994 	}
9995       return NULL;
9996     }
9997   return this->local_methods_;
9998 }
9999 
10000 // Return whether NAME is an unexported field or method, for better
10001 // error reporting.
10002 
10003 bool
is_unexported_local_method(Gogo * gogo,const std::string & name) const10004 Named_type::is_unexported_local_method(Gogo* gogo,
10005 				       const std::string& name) const
10006 {
10007   if (this->is_error_)
10008     return false;
10009   if (this->is_alias_)
10010     {
10011       Named_type* nt = this->type_->named_type();
10012       if (nt != NULL)
10013 	{
10014 	  if (this->seen_alias_)
10015 	    return false;
10016 	  this->seen_alias_ = true;
10017 	  bool ret = nt->is_unexported_local_method(gogo, name);
10018 	  this->seen_alias_ = false;
10019 	  return ret;
10020 	}
10021       return false;
10022     }
10023   Bindings* methods = this->local_methods_;
10024   if (methods != NULL)
10025     {
10026       for (Bindings::const_declarations_iterator p =
10027 	     methods->begin_declarations();
10028 	   p != methods->end_declarations();
10029 	   ++p)
10030 	{
10031 	  if (Gogo::is_hidden_name(p->first)
10032 	      && name == Gogo::unpack_hidden_name(p->first)
10033 	      && gogo->pack_hidden_name(name, false) != p->first)
10034 	    return true;
10035 	}
10036     }
10037   return false;
10038 }
10039 
10040 // Build the complete list of methods for this type, which means
10041 // recursively including all methods for anonymous fields.  Create all
10042 // stub methods.
10043 
10044 void
finalize_methods(Gogo * gogo)10045 Named_type::finalize_methods(Gogo* gogo)
10046 {
10047   if (this->is_alias_)
10048     return;
10049   if (this->all_methods_ != NULL)
10050     return;
10051 
10052   if (this->local_methods_ != NULL
10053       && (this->points_to() != NULL || this->interface_type() != NULL))
10054     {
10055       const Bindings* lm = this->local_methods_;
10056       for (Bindings::const_declarations_iterator p = lm->begin_declarations();
10057 	   p != lm->end_declarations();
10058 	   ++p)
10059 	go_error_at(p->second->location(),
10060 		    "invalid pointer or interface receiver type");
10061       delete this->local_methods_;
10062       this->local_methods_ = NULL;
10063       return;
10064     }
10065 
10066   Type::finalize_methods(gogo, this, this->location_, &this->all_methods_);
10067 }
10068 
10069 // Return whether this type has any methods.
10070 
10071 bool
has_any_methods() const10072 Named_type::has_any_methods() const
10073 {
10074   if (this->is_error_)
10075     return false;
10076   if (this->is_alias_)
10077     {
10078       if (this->type_->named_type() != NULL)
10079 	{
10080 	  if (this->seen_alias_)
10081 	    return false;
10082 	  this->seen_alias_ = true;
10083 	  bool ret = this->type_->named_type()->has_any_methods();
10084 	  this->seen_alias_ = false;
10085 	  return ret;
10086 	}
10087       if (this->type_->struct_type() != NULL)
10088 	return this->type_->struct_type()->has_any_methods();
10089       return false;
10090     }
10091   return this->all_methods_ != NULL;
10092 }
10093 
10094 // Return the methods for this type.
10095 
10096 const Methods*
methods() const10097 Named_type::methods() const
10098 {
10099   if (this->is_error_)
10100     return NULL;
10101   if (this->is_alias_)
10102     {
10103       if (this->type_->named_type() != NULL)
10104 	{
10105 	  if (this->seen_alias_)
10106 	    return NULL;
10107 	  this->seen_alias_ = true;
10108 	  const Methods* ret = this->type_->named_type()->methods();
10109 	  this->seen_alias_ = false;
10110 	  return ret;
10111 	}
10112       if (this->type_->struct_type() != NULL)
10113 	return this->type_->struct_type()->methods();
10114       return NULL;
10115     }
10116   return this->all_methods_;
10117 }
10118 
10119 // Return the method NAME, or NULL if there isn't one or if it is
10120 // ambiguous.  Set *IS_AMBIGUOUS if the method exists but is
10121 // ambiguous.
10122 
10123 Method*
method_function(const std::string & name,bool * is_ambiguous) const10124 Named_type::method_function(const std::string& name, bool* is_ambiguous) const
10125 {
10126   if (this->is_error_)
10127     return NULL;
10128   if (this->is_alias_)
10129     {
10130       if (is_ambiguous != NULL)
10131 	*is_ambiguous = false;
10132       if (this->type_->named_type() != NULL)
10133 	{
10134 	  if (this->seen_alias_)
10135 	    return NULL;
10136 	  this->seen_alias_ = true;
10137 	  Named_type* nt = this->type_->named_type();
10138 	  Method* ret = nt->method_function(name, is_ambiguous);
10139 	  this->seen_alias_ = false;
10140 	  return ret;
10141 	}
10142       if (this->type_->struct_type() != NULL)
10143 	return this->type_->struct_type()->method_function(name, is_ambiguous);
10144       return NULL;
10145     }
10146   return Type::method_function(this->all_methods_, name, is_ambiguous);
10147 }
10148 
10149 // Return a pointer to the interface method table for this type for
10150 // the interface INTERFACE.  IS_POINTER is true if this is for a
10151 // pointer to THIS.
10152 
10153 Expression*
interface_method_table(Interface_type * interface,bool is_pointer)10154 Named_type::interface_method_table(Interface_type* interface, bool is_pointer)
10155 {
10156   if (this->is_error_)
10157     return Expression::make_error(this->location_);
10158   if (this->is_alias_)
10159     {
10160       if (this->type_->named_type() != NULL)
10161 	{
10162 	  if (this->seen_alias_)
10163 	    return Expression::make_error(this->location_);
10164 	  this->seen_alias_ = true;
10165 	  Named_type* nt = this->type_->named_type();
10166 	  Expression* ret = nt->interface_method_table(interface, is_pointer);
10167 	  this->seen_alias_ = false;
10168 	  return ret;
10169 	}
10170       if (this->type_->struct_type() != NULL)
10171 	return this->type_->struct_type()->interface_method_table(interface,
10172 								  is_pointer);
10173       go_unreachable();
10174     }
10175   return Type::interface_method_table(this, interface, is_pointer,
10176                                       &this->interface_method_tables_,
10177                                       &this->pointer_interface_method_tables_);
10178 }
10179 
10180 // Look for a use of a complete type within another type.  This is
10181 // used to check that we don't try to use a type within itself.
10182 
10183 class Find_type_use : public Traverse
10184 {
10185  public:
Find_type_use(Named_type * find_type)10186   Find_type_use(Named_type* find_type)
10187     : Traverse(traverse_types),
10188       find_type_(find_type), found_(false)
10189   { }
10190 
10191   // Whether we found the type.
10192   bool
found() const10193   found() const
10194   { return this->found_; }
10195 
10196  protected:
10197   int
10198   type(Type*);
10199 
10200  private:
10201   // The type we are looking for.
10202   Named_type* find_type_;
10203   // Whether we found the type.
10204   bool found_;
10205 };
10206 
10207 // Check for FIND_TYPE in TYPE.
10208 
10209 int
type(Type * type)10210 Find_type_use::type(Type* type)
10211 {
10212   if (type->named_type() != NULL && this->find_type_ == type->named_type())
10213     {
10214       this->found_ = true;
10215       return TRAVERSE_EXIT;
10216     }
10217 
10218   // It's OK if we see a reference to the type in any type which is
10219   // essentially a pointer: a pointer, a slice, a function, a map, or
10220   // a channel.
10221   if (type->points_to() != NULL
10222       || type->is_slice_type()
10223       || type->function_type() != NULL
10224       || type->map_type() != NULL
10225       || type->channel_type() != NULL)
10226     return TRAVERSE_SKIP_COMPONENTS;
10227 
10228   // For an interface, a reference to the type in a method type should
10229   // be ignored, but we have to consider direct inheritance.  When
10230   // this is called, there may be cases of direct inheritance
10231   // represented as a method with no name.
10232   if (type->interface_type() != NULL)
10233     {
10234       const Typed_identifier_list* methods = type->interface_type()->methods();
10235       if (methods != NULL)
10236 	{
10237 	  for (Typed_identifier_list::const_iterator p = methods->begin();
10238 	       p != methods->end();
10239 	       ++p)
10240 	    {
10241 	      if (p->name().empty())
10242 		{
10243 		  if (Type::traverse(p->type(), this) == TRAVERSE_EXIT)
10244 		    return TRAVERSE_EXIT;
10245 		}
10246 	    }
10247 	}
10248       return TRAVERSE_SKIP_COMPONENTS;
10249     }
10250 
10251   // Otherwise, FIND_TYPE_ depends on TYPE, in the sense that we need
10252   // to convert TYPE to the backend representation before we convert
10253   // FIND_TYPE_.
10254   if (type->named_type() != NULL)
10255     {
10256       switch (type->base()->classification())
10257 	{
10258 	case Type::TYPE_ERROR:
10259 	case Type::TYPE_BOOLEAN:
10260 	case Type::TYPE_INTEGER:
10261 	case Type::TYPE_FLOAT:
10262 	case Type::TYPE_COMPLEX:
10263 	case Type::TYPE_STRING:
10264 	case Type::TYPE_NIL:
10265 	  break;
10266 
10267 	case Type::TYPE_ARRAY:
10268 	case Type::TYPE_STRUCT:
10269 	  this->find_type_->add_dependency(type->named_type());
10270 	  break;
10271 
10272 	case Type::TYPE_NAMED:
10273           if (type->named_type() == type->base()->named_type())
10274             {
10275               this->found_ = true;
10276               return TRAVERSE_EXIT;
10277             }
10278           else
10279 	    go_assert(saw_errors());
10280 	break;
10281 
10282 	case Type::TYPE_FORWARD:
10283 	  go_assert(saw_errors());
10284 	  break;
10285 
10286 	case Type::TYPE_VOID:
10287 	case Type::TYPE_SINK:
10288 	case Type::TYPE_FUNCTION:
10289 	case Type::TYPE_POINTER:
10290 	case Type::TYPE_CALL_MULTIPLE_RESULT:
10291 	case Type::TYPE_MAP:
10292 	case Type::TYPE_CHANNEL:
10293 	case Type::TYPE_INTERFACE:
10294 	default:
10295 	  go_unreachable();
10296 	}
10297     }
10298 
10299   return TRAVERSE_CONTINUE;
10300 }
10301 
10302 // Look for a circular reference of an alias.
10303 
10304 class Find_alias : public Traverse
10305 {
10306  public:
Find_alias(Named_type * find_type)10307   Find_alias(Named_type* find_type)
10308     : Traverse(traverse_types),
10309       find_type_(find_type), found_(false)
10310   { }
10311 
10312   // Whether we found the type.
10313   bool
found() const10314   found() const
10315   { return this->found_; }
10316 
10317  protected:
10318   int
10319   type(Type*);
10320 
10321  private:
10322   // The type we are looking for.
10323   Named_type* find_type_;
10324   // Whether we found the type.
10325   bool found_;
10326 };
10327 
10328 int
type(Type * type)10329 Find_alias::type(Type* type)
10330 {
10331   Named_type* nt = type->named_type();
10332   if (nt != NULL)
10333     {
10334       if (nt == this->find_type_)
10335 	{
10336 	  this->found_ = true;
10337 	  return TRAVERSE_EXIT;
10338 	}
10339 
10340       // We started from `type T1 = T2`, where T1 is find_type_ and T2
10341       // is, perhaps indirectly, the parameter TYPE.  If TYPE is not
10342       // an alias itself, it's OK if whatever T2 is defined as refers
10343       // to T1.
10344       if (!nt->is_alias())
10345 	return TRAVERSE_SKIP_COMPONENTS;
10346     }
10347 
10348   // Check if there are recursive inherited interface aliases.
10349   Interface_type* ift = type->interface_type();
10350   if (ift != NULL)
10351     {
10352       const Typed_identifier_list* methods = ift->local_methods();
10353       if (methods == NULL)
10354 	return TRAVERSE_CONTINUE;
10355       for (Typed_identifier_list::const_iterator p = methods->begin();
10356 	   p != methods->end();
10357 	   ++p)
10358 	if (p->name().empty() && p->type()->named_type() == this->find_type_)
10359 	  {
10360 	    this->found_ = true;
10361 	    return TRAVERSE_EXIT;
10362 	  }
10363     }
10364 
10365   return TRAVERSE_CONTINUE;
10366 }
10367 
10368 // Verify that a named type does not refer to itself.
10369 
10370 bool
do_verify()10371 Named_type::do_verify()
10372 {
10373   if (this->is_verified_)
10374     return true;
10375   this->is_verified_ = true;
10376 
10377   if (this->is_error_)
10378     return false;
10379 
10380   if (this->is_alias_)
10381     {
10382       Find_alias find(this);
10383       Type::traverse(this->type_, &find);
10384       if (find.found())
10385 	{
10386 	  go_error_at(this->location_, "invalid recursive alias %qs",
10387 		      this->message_name().c_str());
10388 	  this->is_error_ = true;
10389 	  return false;
10390 	}
10391     }
10392 
10393   Find_type_use find(this);
10394   Type::traverse(this->type_, &find);
10395   if (find.found())
10396     {
10397       go_error_at(this->location_, "invalid recursive type %qs",
10398 		  this->message_name().c_str());
10399       this->is_error_ = true;
10400       return false;
10401     }
10402 
10403   // Check whether any of the local methods overloads an existing
10404   // struct field or interface method.  We don't need to check the
10405   // list of methods against itself: that is handled by the Bindings
10406   // code.
10407   if (this->local_methods_ != NULL)
10408     {
10409       Struct_type* st = this->type_->struct_type();
10410       if (st != NULL)
10411 	{
10412 	  for (Bindings::const_declarations_iterator p =
10413 		 this->local_methods_->begin_declarations();
10414 	       p != this->local_methods_->end_declarations();
10415 	       ++p)
10416 	    {
10417 	      const std::string& name(p->first);
10418 	      if (st != NULL && st->find_local_field(name, NULL) != NULL)
10419 		{
10420 		  go_error_at(p->second->location(),
10421 			      "method %qs redeclares struct field name",
10422 			      Gogo::message_name(name).c_str());
10423 		}
10424 	    }
10425 	}
10426     }
10427 
10428   return true;
10429 }
10430 
10431 // Return whether this type is or contains a pointer.
10432 
10433 bool
do_has_pointer() const10434 Named_type::do_has_pointer() const
10435 {
10436   if (this->seen_)
10437     return false;
10438   this->seen_ = true;
10439   bool ret = this->type_->has_pointer();
10440   this->seen_ = false;
10441   return ret;
10442 }
10443 
10444 // Return whether comparisons for this type can use the identity
10445 // function.
10446 
10447 bool
do_compare_is_identity(Gogo * gogo)10448 Named_type::do_compare_is_identity(Gogo* gogo)
10449 {
10450   // We don't use this->seen_ here because compare_is_identity may
10451   // call base() later, and that will mess up if seen_ is set here.
10452   if (this->seen_in_compare_is_identity_)
10453     return false;
10454   this->seen_in_compare_is_identity_ = true;
10455   bool ret = this->type_->compare_is_identity(gogo);
10456   this->seen_in_compare_is_identity_ = false;
10457   return ret;
10458 }
10459 
10460 // Return whether this type is reflexive--whether it is always equal
10461 // to itself.
10462 
10463 bool
do_is_reflexive()10464 Named_type::do_is_reflexive()
10465 {
10466   if (this->seen_in_compare_is_identity_)
10467     return false;
10468   this->seen_in_compare_is_identity_ = true;
10469   bool ret = this->type_->is_reflexive();
10470   this->seen_in_compare_is_identity_ = false;
10471   return ret;
10472 }
10473 
10474 // Return whether this type needs a key update when used as a map key.
10475 
10476 bool
do_needs_key_update()10477 Named_type::do_needs_key_update()
10478 {
10479   if (this->seen_in_compare_is_identity_)
10480     return true;
10481   this->seen_in_compare_is_identity_ = true;
10482   bool ret = this->type_->needs_key_update();
10483   this->seen_in_compare_is_identity_ = false;
10484   return ret;
10485 }
10486 
10487 // Return a hash code.  This is used for method lookup.  We simply
10488 // hash on the name itself.
10489 
10490 unsigned int
do_hash_for_method(Gogo * gogo,int) const10491 Named_type::do_hash_for_method(Gogo* gogo, int) const
10492 {
10493   if (this->is_error_)
10494     return 0;
10495 
10496   // Aliases are handled in Type::hash_for_method.
10497   go_assert(!this->is_alias_);
10498 
10499   const std::string& name(this->named_object()->name());
10500   unsigned int ret = Gogo::hash_string(name, 0);
10501 
10502   // GOGO will be NULL here when called from Type_hash_identical.
10503   // That is OK because that is only used for internal hash tables
10504   // where we are going to be comparing named types for equality.  In
10505   // other cases, which are cases where the runtime is going to
10506   // compare hash codes to see if the types are the same, we need to
10507   // include the pkgpath in the hash.
10508   if (gogo != NULL && !Gogo::is_hidden_name(name) && !this->is_builtin())
10509     {
10510       const Package* package = this->named_object()->package();
10511       if (package == NULL)
10512 	ret = Gogo::hash_string(gogo->pkgpath(), ret);
10513       else
10514 	ret = Gogo::hash_string(package->pkgpath(), ret);
10515     }
10516 
10517   return ret;
10518 }
10519 
10520 // Convert a named type to the backend representation.  In order to
10521 // get dependencies right, we fill in a dummy structure for this type,
10522 // then convert all the dependencies, then complete this type.  When
10523 // this function is complete, the size of the type is known.
10524 
10525 void
convert(Gogo * gogo)10526 Named_type::convert(Gogo* gogo)
10527 {
10528   if (this->is_error_ || this->is_converted_)
10529     return;
10530 
10531   this->create_placeholder(gogo);
10532 
10533   // If we are called to turn unsafe.Sizeof into a constant, we may
10534   // not have verified the type yet.  We have to make sure it is
10535   // verified, since that sets the list of dependencies.
10536   this->verify();
10537 
10538   // Convert all the dependencies.  If they refer indirectly back to
10539   // this type, they will pick up the intermediate representation we just
10540   // created.
10541   for (std::vector<Named_type*>::const_iterator p = this->dependencies_.begin();
10542        p != this->dependencies_.end();
10543        ++p)
10544     (*p)->convert(gogo);
10545 
10546   // Complete this type.
10547   Btype* bt = this->named_btype_;
10548   Type* base = this->type_->base();
10549   switch (base->classification())
10550     {
10551     case TYPE_VOID:
10552     case TYPE_BOOLEAN:
10553     case TYPE_INTEGER:
10554     case TYPE_FLOAT:
10555     case TYPE_COMPLEX:
10556     case TYPE_STRING:
10557     case TYPE_NIL:
10558       break;
10559 
10560     case TYPE_MAP:
10561     case TYPE_CHANNEL:
10562       break;
10563 
10564     case TYPE_FUNCTION:
10565     case TYPE_POINTER:
10566       // The size of these types is already correct.  We don't worry
10567       // about filling them in until later, when we also track
10568       // circular references.
10569       break;
10570 
10571     case TYPE_STRUCT:
10572       {
10573 	std::vector<Backend::Btyped_identifier> bfields;
10574 	get_backend_struct_fields(gogo, base->struct_type(), true, &bfields);
10575 	if (!gogo->backend()->set_placeholder_struct_type(bt, bfields))
10576 	  bt = gogo->backend()->error_type();
10577       }
10578       break;
10579 
10580     case TYPE_ARRAY:
10581       // Slice types were completed in create_placeholder.
10582       if (!base->is_slice_type())
10583 	{
10584 	  Btype* bet = base->array_type()->get_backend_element(gogo, true);
10585 	  Bexpression* blen = base->array_type()->get_backend_length(gogo);
10586 	  if (!gogo->backend()->set_placeholder_array_type(bt, bet, blen))
10587 	    bt = gogo->backend()->error_type();
10588 	}
10589       break;
10590 
10591     case TYPE_INTERFACE:
10592       // Interface types were completed in create_placeholder.
10593       break;
10594 
10595     case TYPE_ERROR:
10596       return;
10597 
10598     default:
10599     case TYPE_SINK:
10600     case TYPE_CALL_MULTIPLE_RESULT:
10601     case TYPE_NAMED:
10602     case TYPE_FORWARD:
10603       go_unreachable();
10604     }
10605 
10606   this->named_btype_ = bt;
10607   this->is_converted_ = true;
10608   this->is_placeholder_ = false;
10609 }
10610 
10611 // Create the placeholder for a named type.  This is the first step in
10612 // converting to the backend representation.
10613 
10614 void
create_placeholder(Gogo * gogo)10615 Named_type::create_placeholder(Gogo* gogo)
10616 {
10617   if (this->is_error_)
10618     this->named_btype_ = gogo->backend()->error_type();
10619 
10620   if (this->named_btype_ != NULL)
10621     return;
10622 
10623   // Create the structure for this type.  Note that because we call
10624   // base() here, we don't attempt to represent a named type defined
10625   // as another named type.  Instead both named types will point to
10626   // different base representations.
10627   Type* base = this->type_->base();
10628   Btype* bt;
10629   bool set_name = true;
10630   switch (base->classification())
10631     {
10632     case TYPE_ERROR:
10633       this->is_error_ = true;
10634       this->named_btype_ = gogo->backend()->error_type();
10635       return;
10636 
10637     case TYPE_VOID:
10638     case TYPE_BOOLEAN:
10639     case TYPE_INTEGER:
10640     case TYPE_FLOAT:
10641     case TYPE_COMPLEX:
10642     case TYPE_STRING:
10643     case TYPE_NIL:
10644       // These are simple basic types, we can just create them
10645       // directly.
10646       bt = Type::get_named_base_btype(gogo, base);
10647       break;
10648 
10649     case TYPE_MAP:
10650     case TYPE_CHANNEL:
10651       // All maps and channels have the same backend representation.
10652       bt = Type::get_named_base_btype(gogo, base);
10653       break;
10654 
10655     case TYPE_FUNCTION:
10656     case TYPE_POINTER:
10657       {
10658 	bool for_function = base->classification() == TYPE_FUNCTION;
10659 	bt = gogo->backend()->placeholder_pointer_type(this->name(),
10660 						       this->location_,
10661 						       for_function);
10662 	set_name = false;
10663       }
10664       break;
10665 
10666     case TYPE_STRUCT:
10667       bt = gogo->backend()->placeholder_struct_type(this->name(),
10668 						    this->location_);
10669       this->is_placeholder_ = true;
10670       set_name = false;
10671       break;
10672 
10673     case TYPE_ARRAY:
10674       if (base->is_slice_type())
10675 	bt = gogo->backend()->placeholder_struct_type(this->name(),
10676 						      this->location_);
10677       else
10678 	{
10679 	  bt = gogo->backend()->placeholder_array_type(this->name(),
10680 						       this->location_);
10681 	  this->is_placeholder_ = true;
10682 	}
10683       set_name = false;
10684       break;
10685 
10686     case TYPE_INTERFACE:
10687       if (base->interface_type()->is_empty())
10688 	bt = Interface_type::get_backend_empty_interface_type(gogo);
10689       else
10690 	{
10691 	  bt = gogo->backend()->placeholder_struct_type(this->name(),
10692 							this->location_);
10693 	  set_name = false;
10694 	}
10695       break;
10696 
10697     default:
10698     case TYPE_SINK:
10699     case TYPE_CALL_MULTIPLE_RESULT:
10700     case TYPE_NAMED:
10701     case TYPE_FORWARD:
10702       go_unreachable();
10703     }
10704 
10705   if (set_name)
10706     bt = gogo->backend()->named_type(this->name(), bt, this->location_);
10707 
10708   this->named_btype_ = bt;
10709 
10710   if (base->is_slice_type())
10711     {
10712       // We do not record slices as dependencies of other types,
10713       // because we can fill them in completely here with the final
10714       // size.
10715       std::vector<Backend::Btyped_identifier> bfields;
10716       get_backend_slice_fields(gogo, base->array_type(), true, &bfields);
10717       if (!gogo->backend()->set_placeholder_struct_type(bt, bfields))
10718 	this->named_btype_ = gogo->backend()->error_type();
10719     }
10720   else if (base->interface_type() != NULL
10721 	   && !base->interface_type()->is_empty())
10722     {
10723       // We do not record interfaces as dependencies of other types,
10724       // because we can fill them in completely here with the final
10725       // size.
10726       std::vector<Backend::Btyped_identifier> bfields;
10727       get_backend_interface_fields(gogo, base->interface_type(), true,
10728 				   &bfields);
10729       if (!gogo->backend()->set_placeholder_struct_type(bt, bfields))
10730 	this->named_btype_ = gogo->backend()->error_type();
10731     }
10732 }
10733 
10734 // Get the backend representation for a named type.
10735 
10736 Btype*
do_get_backend(Gogo * gogo)10737 Named_type::do_get_backend(Gogo* gogo)
10738 {
10739   if (this->is_error_)
10740     return gogo->backend()->error_type();
10741 
10742   Btype* bt = this->named_btype_;
10743 
10744   if (!gogo->named_types_are_converted())
10745     {
10746       // We have not completed converting named types.  NAMED_BTYPE_
10747       // is a placeholder and we shouldn't do anything further.
10748       if (bt != NULL)
10749 	return bt;
10750 
10751       // We don't build dependencies for types whose sizes do not
10752       // change or are not relevant, so we may see them here while
10753       // converting types.
10754       this->create_placeholder(gogo);
10755       bt = this->named_btype_;
10756       go_assert(bt != NULL);
10757       return bt;
10758     }
10759 
10760   // We are not converting types.  This should only be called if the
10761   // type has already been converted.
10762   if (!this->is_converted_)
10763     {
10764       go_assert(saw_errors());
10765       return gogo->backend()->error_type();
10766     }
10767 
10768   go_assert(bt != NULL);
10769 
10770   // Complete the backend representation.
10771   Type* base = this->type_->base();
10772   Btype* bt1;
10773   switch (base->classification())
10774     {
10775     case TYPE_ERROR:
10776       return gogo->backend()->error_type();
10777 
10778     case TYPE_VOID:
10779     case TYPE_BOOLEAN:
10780     case TYPE_INTEGER:
10781     case TYPE_FLOAT:
10782     case TYPE_COMPLEX:
10783     case TYPE_STRING:
10784     case TYPE_NIL:
10785     case TYPE_MAP:
10786     case TYPE_CHANNEL:
10787       return bt;
10788 
10789     case TYPE_STRUCT:
10790       if (!this->seen_in_get_backend_)
10791 	{
10792 	  this->seen_in_get_backend_ = true;
10793 	  base->struct_type()->finish_backend_fields(gogo);
10794 	  this->seen_in_get_backend_ = false;
10795 	}
10796       return bt;
10797 
10798     case TYPE_ARRAY:
10799       if (!this->seen_in_get_backend_)
10800 	{
10801 	  this->seen_in_get_backend_ = true;
10802 	  base->array_type()->finish_backend_element(gogo);
10803 	  this->seen_in_get_backend_ = false;
10804 	}
10805       return bt;
10806 
10807     case TYPE_INTERFACE:
10808       if (!this->seen_in_get_backend_)
10809 	{
10810 	  this->seen_in_get_backend_ = true;
10811 	  base->interface_type()->finish_backend_methods(gogo);
10812 	  this->seen_in_get_backend_ = false;
10813 	}
10814       return bt;
10815 
10816     case TYPE_FUNCTION:
10817       // Don't build a circular data structure.  GENERIC can't handle
10818       // it.
10819       if (this->seen_in_get_backend_)
10820         return gogo->backend()->circular_pointer_type(bt, true);
10821       this->seen_in_get_backend_ = true;
10822       bt1 = Type::get_named_base_btype(gogo, base);
10823       this->seen_in_get_backend_ = false;
10824       if (!gogo->backend()->set_placeholder_pointer_type(bt, bt1))
10825 	bt = gogo->backend()->error_type();
10826       return bt;
10827 
10828     case TYPE_POINTER:
10829       // Don't build a circular data structure. GENERIC can't handle
10830       // it.
10831       if (this->seen_in_get_backend_)
10832         return gogo->backend()->circular_pointer_type(bt, false);
10833       this->seen_in_get_backend_ = true;
10834       bt1 = Type::get_named_base_btype(gogo, base);
10835       this->seen_in_get_backend_ = false;
10836       if (!gogo->backend()->set_placeholder_pointer_type(bt, bt1))
10837 	bt = gogo->backend()->error_type();
10838       return bt;
10839 
10840     default:
10841     case TYPE_SINK:
10842     case TYPE_CALL_MULTIPLE_RESULT:
10843     case TYPE_NAMED:
10844     case TYPE_FORWARD:
10845       go_unreachable();
10846     }
10847 
10848   go_unreachable();
10849 }
10850 
10851 // Build a type descriptor for a named type.
10852 
10853 Expression*
do_type_descriptor(Gogo * gogo,Named_type * name)10854 Named_type::do_type_descriptor(Gogo* gogo, Named_type* name)
10855 {
10856   if (this->is_error_)
10857     return Expression::make_error(this->location_);
10858   if (name == NULL && this->is_alias_)
10859     {
10860       if (this->seen_alias_)
10861 	return Expression::make_error(this->location_);
10862       this->seen_alias_ = true;
10863       Expression* ret = this->type_->type_descriptor(gogo, NULL);
10864       this->seen_alias_ = false;
10865       return ret;
10866     }
10867 
10868   // If NAME is not NULL, then we don't really want the type
10869   // descriptor for this type; we want the descriptor for the
10870   // underlying type, giving it the name NAME.
10871   return this->named_type_descriptor(gogo, this->type_,
10872 				     name == NULL ? this : name);
10873 }
10874 
10875 // Add to the reflection string.  This is used mostly for the name of
10876 // the type used in a type descriptor, not for actual reflection
10877 // strings.
10878 
10879 void
do_reflection(Gogo * gogo,std::string * ret) const10880 Named_type::do_reflection(Gogo* gogo, std::string* ret) const
10881 {
10882   this->append_reflection_type_name(gogo, false, ret);
10883 }
10884 
10885 // Add to the reflection string.  For an alias we normally use the
10886 // real name, but if USE_ALIAS is true we use the alias name itself.
10887 
10888 void
append_reflection_type_name(Gogo * gogo,bool use_alias,std::string * ret) const10889 Named_type::append_reflection_type_name(Gogo* gogo, bool use_alias,
10890 					std::string* ret) const
10891 {
10892   if (this->is_error_)
10893     return;
10894   if (this->is_alias_ && !use_alias)
10895     {
10896       if (this->seen_alias_)
10897 	return;
10898       this->seen_alias_ = true;
10899       this->append_reflection(this->type_, gogo, ret);
10900       this->seen_alias_ = false;
10901       return;
10902     }
10903   if (!this->is_builtin())
10904     {
10905       // When -fgo-pkgpath or -fgo-prefix is specified, we use it to
10906       // make a unique reflection string, so that the type
10907       // canonicalization in the reflect package will work.  In order
10908       // to be compatible with the gc compiler, we put tabs into the
10909       // package path, so that the reflect methods can discard it.
10910       const Package* package = this->named_object_->package();
10911       ret->push_back('\t');
10912       ret->append(package != NULL
10913 		  ? package->pkgpath_symbol()
10914 		  : gogo->pkgpath_symbol());
10915       ret->push_back('\t');
10916       ret->append(package != NULL
10917 		  ? package->package_name()
10918 		  : gogo->package_name());
10919       ret->push_back('.');
10920     }
10921   if (this->in_function_ != NULL)
10922     {
10923       ret->push_back('\t');
10924       const Typed_identifier* rcvr =
10925 	this->in_function_->func_value()->type()->receiver();
10926       if (rcvr != NULL)
10927 	{
10928 	  Named_type* rcvr_type = rcvr->type()->deref()->named_type();
10929 	  ret->append(Gogo::unpack_hidden_name(rcvr_type->name()));
10930 	  ret->push_back('.');
10931 	}
10932       ret->append(Gogo::unpack_hidden_name(this->in_function_->name()));
10933       ret->push_back('$');
10934       if (this->in_function_index_ > 0)
10935 	{
10936 	  char buf[30];
10937 	  snprintf(buf, sizeof buf, "%u", this->in_function_index_);
10938 	  ret->append(buf);
10939 	  ret->push_back('$');
10940 	}
10941       ret->push_back('\t');
10942     }
10943   ret->append(Gogo::unpack_hidden_name(this->named_object_->name()));
10944 }
10945 
10946 // Import a named type.  This is only used for export format versions
10947 // before version 3.
10948 
10949 void
import_named_type(Import * imp,Named_type ** ptype)10950 Named_type::import_named_type(Import* imp, Named_type** ptype)
10951 {
10952   imp->require_c_string("type ");
10953   Type *type = imp->read_type();
10954   *ptype = type->named_type();
10955   go_assert(*ptype != NULL);
10956   imp->require_semicolon_if_old_version();
10957   imp->require_c_string("\n");
10958 }
10959 
10960 // Export the type when it is referenced by another type.  In this
10961 // case Export::export_type will already have issued the name.  The
10962 // output always ends with a newline, since that is convenient if
10963 // there are methods.
10964 
10965 void
do_export(Export * exp) const10966 Named_type::do_export(Export* exp) const
10967 {
10968   exp->write_type(this->type_);
10969   exp->write_c_string("\n");
10970 
10971   // To save space, we only export the methods directly attached to
10972   // this type.
10973   Bindings* methods = this->local_methods_;
10974   if (methods == NULL)
10975     return;
10976 
10977   for (Bindings::const_definitions_iterator p = methods->begin_definitions();
10978        p != methods->end_definitions();
10979        ++p)
10980     {
10981       exp->write_c_string(" ");
10982       (*p)->export_named_object(exp);
10983     }
10984 
10985   for (Bindings::const_declarations_iterator p = methods->begin_declarations();
10986        p != methods->end_declarations();
10987        ++p)
10988     {
10989       if (p->second->is_function_declaration())
10990 	{
10991 	  exp->write_c_string(" ");
10992 	  p->second->export_named_object(exp);
10993 	}
10994     }
10995 }
10996 
10997 // Make a named type.
10998 
10999 Named_type*
make_named_type(Named_object * named_object,Type * type,Location location)11000 Type::make_named_type(Named_object* named_object, Type* type,
11001 		      Location location)
11002 {
11003   return new Named_type(named_object, type, location);
11004 }
11005 
11006 // Finalize the methods for TYPE.  It will be a named type or a struct
11007 // type.  This sets *ALL_METHODS to the list of methods, and builds
11008 // all required stubs.
11009 
11010 void
finalize_methods(Gogo * gogo,const Type * type,Location location,Methods ** all_methods)11011 Type::finalize_methods(Gogo* gogo, const Type* type, Location location,
11012 		       Methods** all_methods)
11013 {
11014   *all_methods = new Methods();
11015   std::vector<const Named_type*> seen;
11016   Type::add_methods_for_type(type, NULL, 0, false, false, &seen, *all_methods);
11017   if ((*all_methods)->empty())
11018     {
11019       delete *all_methods;
11020       *all_methods = NULL;
11021     }
11022   Type::build_stub_methods(gogo, type, *all_methods, location);
11023 }
11024 
11025 // Add the methods for TYPE to *METHODS.  FIELD_INDEXES is used to
11026 // build up the struct field indexes as we go.  DEPTH is the depth of
11027 // the field within TYPE.  IS_EMBEDDED_POINTER is true if we are
11028 // adding these methods for an anonymous field with pointer type.
11029 // NEEDS_STUB_METHOD is true if we need to use a stub method which
11030 // calls the real method.  TYPES_SEEN is used to avoid infinite
11031 // recursion.
11032 
11033 void
add_methods_for_type(const Type * type,const Method::Field_indexes * field_indexes,unsigned int depth,bool is_embedded_pointer,bool needs_stub_method,std::vector<const Named_type * > * seen,Methods * methods)11034 Type::add_methods_for_type(const Type* type,
11035 			   const Method::Field_indexes* field_indexes,
11036 			   unsigned int depth,
11037 			   bool is_embedded_pointer,
11038 			   bool needs_stub_method,
11039 			   std::vector<const Named_type*>* seen,
11040 			   Methods* methods)
11041 {
11042   // Pointer types may not have methods.
11043   if (type->points_to() != NULL)
11044     return;
11045 
11046   const Named_type* nt = type->named_type();
11047   if (nt != NULL)
11048     {
11049       for (std::vector<const Named_type*>::const_iterator p = seen->begin();
11050 	   p != seen->end();
11051 	   ++p)
11052 	{
11053 	  if (*p == nt)
11054 	    return;
11055 	}
11056 
11057       seen->push_back(nt);
11058 
11059       Type::add_local_methods_for_type(nt, field_indexes, depth,
11060 				       is_embedded_pointer, needs_stub_method,
11061 				       methods);
11062     }
11063 
11064   Type::add_embedded_methods_for_type(type, field_indexes, depth,
11065 				      is_embedded_pointer, needs_stub_method,
11066 				      seen, methods);
11067 
11068   // If we are called with depth > 0, then we are looking at an
11069   // anonymous field of a struct.  If such a field has interface type,
11070   // then we need to add the interface methods.  We don't want to add
11071   // them when depth == 0, because we will already handle them
11072   // following the usual rules for an interface type.
11073   if (depth > 0)
11074     Type::add_interface_methods_for_type(type, field_indexes, depth, methods);
11075 
11076   if (nt != NULL)
11077       seen->pop_back();
11078 }
11079 
11080 // Add the local methods for the named type NT to *METHODS.  The
11081 // parameters are as for add_methods_to_type.
11082 
11083 void
add_local_methods_for_type(const Named_type * nt,const Method::Field_indexes * field_indexes,unsigned int depth,bool is_embedded_pointer,bool needs_stub_method,Methods * methods)11084 Type::add_local_methods_for_type(const Named_type* nt,
11085 				 const Method::Field_indexes* field_indexes,
11086 				 unsigned int depth,
11087 				 bool is_embedded_pointer,
11088 				 bool needs_stub_method,
11089 				 Methods* methods)
11090 {
11091   const Bindings* local_methods = nt->local_methods();
11092   if (local_methods == NULL)
11093     return;
11094 
11095   for (Bindings::const_declarations_iterator p =
11096 	 local_methods->begin_declarations();
11097        p != local_methods->end_declarations();
11098        ++p)
11099     {
11100       Named_object* no = p->second;
11101       bool is_value_method = (is_embedded_pointer
11102 			      || !Type::method_expects_pointer(no));
11103       Method* m = new Named_method(no, field_indexes, depth, is_value_method,
11104 				   (needs_stub_method || depth > 0));
11105       if (!methods->insert(no->name(), m))
11106 	delete m;
11107     }
11108 }
11109 
11110 // Add the embedded methods for TYPE to *METHODS.  These are the
11111 // methods attached to anonymous fields.  The parameters are as for
11112 // add_methods_to_type.
11113 
11114 void
add_embedded_methods_for_type(const Type * type,const Method::Field_indexes * field_indexes,unsigned int depth,bool is_embedded_pointer,bool needs_stub_method,std::vector<const Named_type * > * seen,Methods * methods)11115 Type::add_embedded_methods_for_type(const Type* type,
11116 				    const Method::Field_indexes* field_indexes,
11117 				    unsigned int depth,
11118 				    bool is_embedded_pointer,
11119 				    bool needs_stub_method,
11120 				    std::vector<const Named_type*>* seen,
11121 				    Methods* methods)
11122 {
11123   // Look for anonymous fields in TYPE.  TYPE has fields if it is a
11124   // struct.
11125   const Struct_type* st = type->struct_type();
11126   if (st == NULL)
11127     return;
11128 
11129   const Struct_field_list* fields = st->fields();
11130   if (fields == NULL)
11131     return;
11132 
11133   unsigned int i = 0;
11134   for (Struct_field_list::const_iterator pf = fields->begin();
11135        pf != fields->end();
11136        ++pf, ++i)
11137     {
11138       if (!pf->is_anonymous())
11139 	continue;
11140 
11141       Type* ftype = pf->type();
11142       bool is_pointer = false;
11143       if (ftype->points_to() != NULL)
11144 	{
11145 	  ftype = ftype->points_to();
11146 	  is_pointer = true;
11147 	}
11148       Named_type* fnt = ftype->named_type();
11149       if (fnt == NULL)
11150 	{
11151 	  // This is an error, but it will be diagnosed elsewhere.
11152 	  continue;
11153 	}
11154 
11155       Method::Field_indexes* sub_field_indexes = new Method::Field_indexes();
11156       sub_field_indexes->next = field_indexes;
11157       sub_field_indexes->field_index = i;
11158 
11159       Methods tmp_methods;
11160       Type::add_methods_for_type(fnt, sub_field_indexes, depth + 1,
11161 				 (is_embedded_pointer || is_pointer),
11162 				 (needs_stub_method
11163 				  || is_pointer
11164 				  || i > 0),
11165 				 seen,
11166 				 &tmp_methods);
11167       // Check if there are promoted methods that conflict with field names and
11168       // don't add them to the method map.
11169       for (Methods::const_iterator p = tmp_methods.begin();
11170 	   p != tmp_methods.end();
11171 	   ++p)
11172 	{
11173 	  bool found = false;
11174 	  for (Struct_field_list::const_iterator fp = fields->begin();
11175 	       fp != fields->end();
11176 	       ++fp)
11177 	    {
11178 	      if (fp->field_name() == p->first)
11179 		{
11180 		  found = true;
11181 		  break;
11182 		}
11183 	    }
11184 	  if (!found &&
11185 	      !methods->insert(p->first, p->second))
11186 	    delete p->second;
11187 	}
11188     }
11189 }
11190 
11191 // If TYPE is an interface type, then add its method to *METHODS.
11192 // This is for interface methods attached to an anonymous field.  The
11193 // parameters are as for add_methods_for_type.
11194 
11195 void
add_interface_methods_for_type(const Type * type,const Method::Field_indexes * field_indexes,unsigned int depth,Methods * methods)11196 Type::add_interface_methods_for_type(const Type* type,
11197 				     const Method::Field_indexes* field_indexes,
11198 				     unsigned int depth,
11199 				     Methods* methods)
11200 {
11201   const Interface_type* it = type->interface_type();
11202   if (it == NULL)
11203     return;
11204 
11205   const Typed_identifier_list* imethods = it->methods();
11206   if (imethods == NULL)
11207     return;
11208 
11209   for (Typed_identifier_list::const_iterator pm = imethods->begin();
11210        pm != imethods->end();
11211        ++pm)
11212     {
11213       Function_type* fntype = pm->type()->function_type();
11214       if (fntype == NULL)
11215 	{
11216 	  // This is an error, but it should be reported elsewhere
11217 	  // when we look at the methods for IT.
11218 	  continue;
11219 	}
11220       go_assert(!fntype->is_method());
11221       fntype = fntype->copy_with_receiver(const_cast<Type*>(type));
11222       Method* m = new Interface_method(pm->name(), pm->location(), fntype,
11223 				       field_indexes, depth);
11224       if (!methods->insert(pm->name(), m))
11225 	delete m;
11226     }
11227 }
11228 
11229 // Build stub methods for TYPE as needed.  METHODS is the set of
11230 // methods for the type.  A stub method may be needed when a type
11231 // inherits a method from an anonymous field.  When we need the
11232 // address of the method, as in a type descriptor, we need to build a
11233 // little stub which does the required field dereferences and jumps to
11234 // the real method.  LOCATION is the location of the type definition.
11235 
11236 void
build_stub_methods(Gogo * gogo,const Type * type,const Methods * methods,Location location)11237 Type::build_stub_methods(Gogo* gogo, const Type* type, const Methods* methods,
11238 			 Location location)
11239 {
11240   if (methods == NULL)
11241     return;
11242   for (Methods::const_iterator p = methods->begin();
11243        p != methods->end();
11244        ++p)
11245     {
11246       Method* m = p->second;
11247       if (m->is_ambiguous() || !m->needs_stub_method())
11248 	continue;
11249 
11250       const std::string& name(p->first);
11251 
11252       // Build a stub method.
11253 
11254       const Function_type* fntype = m->type();
11255 
11256       static unsigned int counter;
11257       char buf[100];
11258       snprintf(buf, sizeof buf, "$this%u", counter);
11259       ++counter;
11260 
11261       Type* receiver_type = const_cast<Type*>(type);
11262       if (!m->is_value_method())
11263 	receiver_type = Type::make_pointer_type(receiver_type);
11264       Location receiver_location = m->receiver_location();
11265       Typed_identifier* receiver = new Typed_identifier(buf, receiver_type,
11266 							receiver_location);
11267 
11268       const Typed_identifier_list* fnparams = fntype->parameters();
11269       Typed_identifier_list* stub_params;
11270       if (fnparams == NULL || fnparams->empty())
11271 	stub_params = NULL;
11272       else
11273 	{
11274 	  // We give each stub parameter a unique name.
11275 	  stub_params = new Typed_identifier_list();
11276 	  for (Typed_identifier_list::const_iterator pp = fnparams->begin();
11277 	       pp != fnparams->end();
11278 	       ++pp)
11279 	    {
11280 	      char pbuf[100];
11281 	      snprintf(pbuf, sizeof pbuf, "$p%u", counter);
11282 	      stub_params->push_back(Typed_identifier(pbuf, pp->type(),
11283 						      pp->location()));
11284 	      ++counter;
11285 	    }
11286 	}
11287 
11288       const Typed_identifier_list* fnresults = fntype->results();
11289       Typed_identifier_list* stub_results;
11290       if (fnresults == NULL || fnresults->empty())
11291 	stub_results = NULL;
11292       else
11293 	{
11294 	  // We create the result parameters without any names, since
11295 	  // we won't refer to them.
11296 	  stub_results = new Typed_identifier_list();
11297 	  for (Typed_identifier_list::const_iterator pr = fnresults->begin();
11298 	       pr != fnresults->end();
11299 	       ++pr)
11300 	    stub_results->push_back(Typed_identifier("", pr->type(),
11301 						     pr->location()));
11302 	}
11303 
11304       Function_type* stub_type = Type::make_function_type(receiver,
11305 							  stub_params,
11306 							  stub_results,
11307 							  fntype->location());
11308       if (fntype->is_varargs())
11309 	stub_type->set_is_varargs();
11310 
11311       // We only create the function in the package which creates the
11312       // type.
11313       const Package* package;
11314       if (type->named_type() == NULL)
11315 	package = NULL;
11316       else
11317 	package = type->named_type()->named_object()->package();
11318       std::string stub_name = gogo->stub_method_name(package, name);
11319       Named_object* stub;
11320       if (package != NULL)
11321 	stub = Named_object::make_function_declaration(stub_name, package,
11322 						       stub_type, location);
11323       else
11324 	{
11325 	  stub = gogo->start_function(stub_name, stub_type, false,
11326 				      fntype->location());
11327 	  Type::build_one_stub_method(gogo, m, buf, stub_params,
11328 				      fntype->is_varargs(), location);
11329 	  gogo->finish_function(fntype->location());
11330 
11331 	  if (type->named_type() == NULL && stub->is_function())
11332 	    stub->func_value()->set_is_unnamed_type_stub_method();
11333 	  if (m->nointerface() && stub->is_function())
11334 	    stub->func_value()->set_nointerface();
11335 	}
11336 
11337       m->set_stub_object(stub);
11338     }
11339 }
11340 
11341 // Build a stub method which adjusts the receiver as required to call
11342 // METHOD.  RECEIVER_NAME is the name we used for the receiver.
11343 // PARAMS is the list of function parameters.
11344 
11345 void
build_one_stub_method(Gogo * gogo,Method * method,const char * receiver_name,const Typed_identifier_list * params,bool is_varargs,Location location)11346 Type::build_one_stub_method(Gogo* gogo, Method* method,
11347 			    const char* receiver_name,
11348 			    const Typed_identifier_list* params,
11349 			    bool is_varargs,
11350 			    Location location)
11351 {
11352   Named_object* receiver_object = gogo->lookup(receiver_name, NULL);
11353   go_assert(receiver_object != NULL);
11354 
11355   Expression* expr = Expression::make_var_reference(receiver_object, location);
11356   expr = Type::apply_field_indexes(expr, method->field_indexes(), location);
11357   if (expr->type()->points_to() == NULL)
11358     expr = Expression::make_unary(OPERATOR_AND, expr, location);
11359 
11360   Expression_list* arguments;
11361   if (params == NULL || params->empty())
11362     arguments = NULL;
11363   else
11364     {
11365       arguments = new Expression_list();
11366       for (Typed_identifier_list::const_iterator p = params->begin();
11367 	   p != params->end();
11368 	   ++p)
11369 	{
11370 	  Named_object* param = gogo->lookup(p->name(), NULL);
11371 	  go_assert(param != NULL);
11372 	  Expression* param_ref = Expression::make_var_reference(param,
11373 								 location);
11374 	  arguments->push_back(param_ref);
11375 	}
11376     }
11377 
11378   Expression* func = method->bind_method(expr, location);
11379   go_assert(func != NULL);
11380   Call_expression* call = Expression::make_call(func, arguments, is_varargs,
11381 						location);
11382 
11383   gogo->add_statement(Statement::make_return_from_call(call, location));
11384 }
11385 
11386 // Apply FIELD_INDEXES to EXPR.  The field indexes have to be applied
11387 // in reverse order.
11388 
11389 Expression*
apply_field_indexes(Expression * expr,const Method::Field_indexes * field_indexes,Location location)11390 Type::apply_field_indexes(Expression* expr,
11391 			  const Method::Field_indexes* field_indexes,
11392 			  Location location)
11393 {
11394   if (field_indexes == NULL)
11395     return expr;
11396   expr = Type::apply_field_indexes(expr, field_indexes->next, location);
11397   Struct_type* stype = expr->type()->deref()->struct_type();
11398   go_assert(stype != NULL
11399 	     && field_indexes->field_index < stype->field_count());
11400   if (expr->type()->struct_type() == NULL)
11401     {
11402       go_assert(expr->type()->points_to() != NULL);
11403       expr = Expression::make_dereference(expr, Expression::NIL_CHECK_DEFAULT,
11404                                           location);
11405       go_assert(expr->type()->struct_type() == stype);
11406     }
11407   return Expression::make_field_reference(expr, field_indexes->field_index,
11408 					  location);
11409 }
11410 
11411 // Return whether NO is a method for which the receiver is a pointer.
11412 
11413 bool
method_expects_pointer(const Named_object * no)11414 Type::method_expects_pointer(const Named_object* no)
11415 {
11416   const Function_type *fntype;
11417   if (no->is_function())
11418     fntype = no->func_value()->type();
11419   else if (no->is_function_declaration())
11420     fntype = no->func_declaration_value()->type();
11421   else
11422     go_unreachable();
11423   return fntype->receiver()->type()->points_to() != NULL;
11424 }
11425 
11426 // Given a set of methods for a type, METHODS, return the method NAME,
11427 // or NULL if there isn't one or if it is ambiguous.  If IS_AMBIGUOUS
11428 // is not NULL, then set *IS_AMBIGUOUS to true if the method exists
11429 // but is ambiguous (and return NULL).
11430 
11431 Method*
method_function(const Methods * methods,const std::string & name,bool * is_ambiguous)11432 Type::method_function(const Methods* methods, const std::string& name,
11433 		      bool* is_ambiguous)
11434 {
11435   if (is_ambiguous != NULL)
11436     *is_ambiguous = false;
11437   if (methods == NULL)
11438     return NULL;
11439   Methods::const_iterator p = methods->find(name);
11440   if (p == methods->end())
11441     return NULL;
11442   Method* m = p->second;
11443   if (m->is_ambiguous())
11444     {
11445       if (is_ambiguous != NULL)
11446 	*is_ambiguous = true;
11447       return NULL;
11448     }
11449   return m;
11450 }
11451 
11452 // Return a pointer to the interface method table for TYPE for the
11453 // interface INTERFACE.
11454 
11455 Expression*
interface_method_table(Type * type,Interface_type * interface,bool is_pointer,Interface_method_tables ** method_tables,Interface_method_tables ** pointer_tables)11456 Type::interface_method_table(Type* type,
11457 			     Interface_type *interface,
11458 			     bool is_pointer,
11459 			     Interface_method_tables** method_tables,
11460 			     Interface_method_tables** pointer_tables)
11461 {
11462   go_assert(!interface->is_empty());
11463 
11464   Interface_method_tables** pimt = is_pointer ? method_tables : pointer_tables;
11465 
11466   if (*pimt == NULL)
11467     *pimt = new Interface_method_tables(5);
11468 
11469   std::pair<Interface_type*, Expression*> val(interface, NULL);
11470   std::pair<Interface_method_tables::iterator, bool> ins = (*pimt)->insert(val);
11471 
11472   Location loc = Linemap::predeclared_location();
11473   if (ins.second)
11474     {
11475       // This is a new entry in the hash table.
11476       go_assert(ins.first->second == NULL);
11477       ins.first->second =
11478 	Expression::make_interface_mtable_ref(interface, type, is_pointer, loc);
11479     }
11480   return Expression::make_unary(OPERATOR_AND, ins.first->second, loc);
11481 }
11482 
11483 // Look for field or method NAME for TYPE.  Return an Expression for
11484 // the field or method bound to EXPR.  If there is no such field or
11485 // method, give an appropriate error and return an error expression.
11486 
11487 Expression*
bind_field_or_method(Gogo * gogo,const Type * type,Expression * expr,const std::string & name,Location location)11488 Type::bind_field_or_method(Gogo* gogo, const Type* type, Expression* expr,
11489 			   const std::string& name,
11490 			   Location location)
11491 {
11492   if (type->deref()->is_error_type())
11493     return Expression::make_error(location);
11494 
11495   const Named_type* nt = type->deref()->named_type();
11496   const Struct_type* st = type->deref()->struct_type();
11497   const Interface_type* it = type->interface_type();
11498 
11499   // If this is a pointer to a pointer, then it is possible that the
11500   // pointed-to type has methods.
11501   bool dereferenced = false;
11502   if (nt == NULL
11503       && st == NULL
11504       && it == NULL
11505       && type->points_to() != NULL
11506       && type->points_to()->points_to() != NULL)
11507     {
11508       expr = Expression::make_dereference(expr, Expression::NIL_CHECK_DEFAULT,
11509                                           location);
11510       type = type->points_to();
11511       if (type->deref()->is_error_type())
11512 	return Expression::make_error(location);
11513       nt = type->points_to()->named_type();
11514       st = type->points_to()->struct_type();
11515       dereferenced = true;
11516     }
11517 
11518   bool receiver_can_be_pointer = (expr->type()->points_to() != NULL
11519 				  || expr->is_addressable());
11520   std::vector<const Named_type*> seen;
11521   bool is_method = false;
11522   bool found_pointer_method = false;
11523   std::string ambig1;
11524   std::string ambig2;
11525   if (Type::find_field_or_method(type, name, receiver_can_be_pointer,
11526 				 &seen, NULL, &is_method,
11527 				 &found_pointer_method, &ambig1, &ambig2))
11528     {
11529       Expression* ret;
11530       if (!is_method)
11531 	{
11532 	  go_assert(st != NULL);
11533 	  if (type->struct_type() == NULL)
11534 	    {
11535               if (dereferenced)
11536                 {
11537                   go_error_at(location, "pointer type has no field %qs",
11538                               Gogo::message_name(name).c_str());
11539                   return Expression::make_error(location);
11540                 }
11541 	      go_assert(type->points_to() != NULL);
11542               expr = Expression::make_dereference(expr,
11543                                                   Expression::NIL_CHECK_DEFAULT,
11544                                                   location);
11545 	      go_assert(expr->type()->struct_type() == st);
11546 	    }
11547 	  ret = st->field_reference(expr, name, location);
11548           if (ret == NULL)
11549             {
11550               go_error_at(location, "type has no field %qs",
11551                           Gogo::message_name(name).c_str());
11552               return Expression::make_error(location);
11553             }
11554 	}
11555       else if (it != NULL && it->find_method(name) != NULL)
11556 	ret = Expression::make_interface_field_reference(expr, name,
11557 							 location);
11558       else
11559 	{
11560 	  Method* m;
11561 	  if (nt != NULL)
11562 	    m = nt->method_function(name, NULL);
11563 	  else if (st != NULL)
11564 	    m = st->method_function(name, NULL);
11565 	  else
11566 	    go_unreachable();
11567 	  go_assert(m != NULL);
11568 	  if (dereferenced)
11569 	    {
11570 	      go_error_at(location,
11571 			  "calling method %qs requires explicit dereference",
11572 			  Gogo::message_name(name).c_str());
11573 	      return Expression::make_error(location);
11574 	    }
11575 	  if (!m->is_value_method() && expr->type()->points_to() == NULL)
11576 	    expr = Expression::make_unary(OPERATOR_AND, expr, location);
11577 	  ret = m->bind_method(expr, location);
11578 	}
11579       go_assert(ret != NULL);
11580       return ret;
11581     }
11582   else
11583     {
11584       if (Gogo::is_erroneous_name(name))
11585 	{
11586 	  // An error was already reported.
11587 	}
11588       else if (!ambig1.empty())
11589 	go_error_at(location, "%qs is ambiguous via %qs and %qs",
11590 		    Gogo::message_name(name).c_str(), ambig1.c_str(),
11591 		    ambig2.c_str());
11592       else if (found_pointer_method)
11593 	go_error_at(location, "method requires a pointer receiver");
11594       else if (nt == NULL && st == NULL && it == NULL)
11595 	go_error_at(location,
11596 		    ("reference to field %qs in object which "
11597 		     "has no fields or methods"),
11598 		    Gogo::message_name(name).c_str());
11599       else
11600 	{
11601 	  bool is_unexported;
11602 	  // The test for 'a' and 'z' is to handle builtin names,
11603 	  // which are not hidden.
11604 	  if (!Gogo::is_hidden_name(name) && (name[0] < 'a' || name[0] > 'z'))
11605 	    is_unexported = false;
11606 	  else
11607 	    {
11608 	      std::string unpacked = Gogo::unpack_hidden_name(name);
11609 	      seen.clear();
11610 	      is_unexported = Type::is_unexported_field_or_method(gogo, type,
11611 								  unpacked,
11612 								  &seen);
11613 	    }
11614 	  if (is_unexported)
11615 	    go_error_at(location, "reference to unexported field or method %qs",
11616 			Gogo::message_name(name).c_str());
11617 	  else
11618 	    go_error_at(location, "reference to undefined field or method %qs",
11619 			Gogo::message_name(name).c_str());
11620 	}
11621       return Expression::make_error(location);
11622     }
11623 }
11624 
11625 // Look in TYPE for a field or method named NAME, return true if one
11626 // is found.  This looks through embedded anonymous fields and handles
11627 // ambiguity.  If a method is found, sets *IS_METHOD to true;
11628 // otherwise, if a field is found, set it to false.  If
11629 // RECEIVER_CAN_BE_POINTER is false, then the receiver is a value
11630 // whose address can not be taken.  SEEN is used to avoid infinite
11631 // recursion on invalid types.
11632 
11633 // When returning false, this sets *FOUND_POINTER_METHOD if we found a
11634 // method we couldn't use because it requires a pointer.  LEVEL is
11635 // used for recursive calls, and can be NULL for a non-recursive call.
11636 // When this function returns false because it finds that the name is
11637 // ambiguous, it will store a path to the ambiguous names in *AMBIG1
11638 // and *AMBIG2.  If the name is not found at all, *AMBIG1 and *AMBIG2
11639 // will be unchanged.
11640 
11641 // This function just returns whether or not there is a field or
11642 // method, and whether it is a field or method.  It doesn't build an
11643 // expression to refer to it.  If it is a method, we then look in the
11644 // list of all methods for the type.  If it is a field, the search has
11645 // to be done again, looking only for fields, and building up the
11646 // expression as we go.
11647 
11648 bool
find_field_or_method(const Type * type,const std::string & name,bool receiver_can_be_pointer,std::vector<const Named_type * > * seen,int * level,bool * is_method,bool * found_pointer_method,std::string * ambig1,std::string * ambig2)11649 Type::find_field_or_method(const Type* type,
11650 			   const std::string& name,
11651 			   bool receiver_can_be_pointer,
11652 			   std::vector<const Named_type*>* seen,
11653 			   int* level,
11654 			   bool* is_method,
11655 			   bool* found_pointer_method,
11656 			   std::string* ambig1,
11657 			   std::string* ambig2)
11658 {
11659   // Named types can have locally defined methods.
11660   const Named_type* nt = type->unalias()->named_type();
11661   if (nt == NULL && type->points_to() != NULL)
11662     nt = type->points_to()->unalias()->named_type();
11663   if (nt != NULL)
11664     {
11665       Named_object* no = nt->find_local_method(name);
11666       if (no != NULL)
11667 	{
11668 	  if (receiver_can_be_pointer || !Type::method_expects_pointer(no))
11669 	    {
11670 	      *is_method = true;
11671 	      return true;
11672 	    }
11673 
11674 	  // Record that we have found a pointer method in order to
11675 	  // give a better error message if we don't find anything
11676 	  // else.
11677 	  *found_pointer_method = true;
11678 	}
11679 
11680       for (std::vector<const Named_type*>::const_iterator p = seen->begin();
11681 	   p != seen->end();
11682 	   ++p)
11683 	{
11684 	  if (*p == nt)
11685 	    {
11686 	      // We've already seen this type when searching for methods.
11687 	      return false;
11688 	    }
11689 	}
11690     }
11691 
11692   // Interface types can have methods.
11693   const Interface_type* it = type->interface_type();
11694   if (it != NULL && it->find_method(name) != NULL)
11695     {
11696       *is_method = true;
11697       return true;
11698     }
11699 
11700   // Struct types can have fields.  They can also inherit fields and
11701   // methods from anonymous fields.
11702   const Struct_type* st = type->deref()->struct_type();
11703   if (st == NULL)
11704     return false;
11705   const Struct_field_list* fields = st->fields();
11706   if (fields == NULL)
11707     return false;
11708 
11709   if (nt != NULL)
11710     seen->push_back(nt);
11711 
11712   int found_level = 0;
11713   bool found_is_method = false;
11714   std::string found_ambig1;
11715   std::string found_ambig2;
11716   const Struct_field* found_parent = NULL;
11717   for (Struct_field_list::const_iterator pf = fields->begin();
11718        pf != fields->end();
11719        ++pf)
11720     {
11721       if (pf->is_field_name(name))
11722 	{
11723 	  *is_method = false;
11724 	  if (nt != NULL)
11725 	    seen->pop_back();
11726 	  return true;
11727 	}
11728 
11729       if (!pf->is_anonymous())
11730 	continue;
11731 
11732       if (pf->type()->deref()->is_error_type()
11733 	  || pf->type()->deref()->is_undefined())
11734 	continue;
11735 
11736       Named_type* fnt = pf->type()->named_type();
11737       if (fnt == NULL)
11738 	fnt = pf->type()->deref()->named_type();
11739       go_assert(fnt != NULL);
11740 
11741       // Methods with pointer receivers on embedded field are
11742       // inherited by the pointer to struct, and also by the struct
11743       // type if the field itself is a pointer.
11744       bool can_be_pointer = (receiver_can_be_pointer
11745 			     || pf->type()->points_to() != NULL);
11746       int sublevel = level == NULL ? 1 : *level + 1;
11747       bool sub_is_method;
11748       std::string subambig1;
11749       std::string subambig2;
11750       bool subfound = Type::find_field_or_method(fnt,
11751 						 name,
11752 						 can_be_pointer,
11753 						 seen,
11754 						 &sublevel,
11755 						 &sub_is_method,
11756 						 found_pointer_method,
11757 						 &subambig1,
11758 						 &subambig2);
11759       if (!subfound)
11760 	{
11761 	  if (!subambig1.empty())
11762 	    {
11763 	      // The name was found via this field, but is ambiguous.
11764 	      // if the ambiguity is lower or at the same level as
11765 	      // anything else we have already found, then we want to
11766 	      // pass the ambiguity back to the caller.
11767 	      if (found_level == 0 || sublevel <= found_level)
11768 		{
11769 		  found_ambig1 = (Gogo::message_name(pf->field_name())
11770 				  + '.' + subambig1);
11771 		  found_ambig2 = (Gogo::message_name(pf->field_name())
11772 				  + '.' + subambig2);
11773 		  found_level = sublevel;
11774 		}
11775 	    }
11776 	}
11777       else
11778 	{
11779 	  // The name was found via this field.  Use the level to see
11780 	  // if we want to use this one, or whether it introduces an
11781 	  // ambiguity.
11782 	  if (found_level == 0 || sublevel < found_level)
11783 	    {
11784 	      found_level = sublevel;
11785 	      found_is_method = sub_is_method;
11786 	      found_ambig1.clear();
11787 	      found_ambig2.clear();
11788 	      found_parent = &*pf;
11789 	    }
11790 	  else if (sublevel > found_level)
11791 	    ;
11792 	  else if (found_ambig1.empty())
11793 	    {
11794 	      // We found an ambiguity.
11795 	      go_assert(found_parent != NULL);
11796 	      found_ambig1 = Gogo::message_name(found_parent->field_name());
11797 	      found_ambig2 = Gogo::message_name(pf->field_name());
11798 	    }
11799 	  else
11800 	    {
11801 	      // We found an ambiguity, but we already know of one.
11802 	      // Just report the earlier one.
11803 	    }
11804 	}
11805     }
11806 
11807   // Here if we didn't find anything FOUND_LEVEL is 0.  If we found
11808   // something ambiguous, FOUND_LEVEL is not 0 and FOUND_AMBIG1 and
11809   // FOUND_AMBIG2 are not empty.  If we found the field, FOUND_LEVEL
11810   // is not 0 and FOUND_AMBIG1 and FOUND_AMBIG2 are empty.
11811 
11812   if (nt != NULL)
11813     seen->pop_back();
11814 
11815   if (found_level == 0)
11816     return false;
11817   else if (found_is_method
11818 	   && type->named_type() != NULL
11819 	   && type->points_to() != NULL)
11820     {
11821       // If this is a method inherited from a struct field in a named pointer
11822       // type, it is invalid to automatically dereference the pointer to the
11823       // struct to find this method.
11824       if (level != NULL)
11825 	*level = found_level;
11826       *is_method = true;
11827       return false;
11828     }
11829   else if (!found_ambig1.empty())
11830     {
11831       go_assert(!found_ambig1.empty());
11832       ambig1->assign(found_ambig1);
11833       ambig2->assign(found_ambig2);
11834       if (level != NULL)
11835 	*level = found_level;
11836       return false;
11837     }
11838   else
11839     {
11840       if (level != NULL)
11841 	*level = found_level;
11842       *is_method = found_is_method;
11843       return true;
11844     }
11845 }
11846 
11847 // Return whether NAME is an unexported field or method for TYPE.
11848 
11849 bool
is_unexported_field_or_method(Gogo * gogo,const Type * type,const std::string & name,std::vector<const Named_type * > * seen)11850 Type::is_unexported_field_or_method(Gogo* gogo, const Type* type,
11851 				    const std::string& name,
11852 				    std::vector<const Named_type*>* seen)
11853 {
11854   const Named_type* nt = type->named_type();
11855   if (nt == NULL)
11856     nt = type->deref()->named_type();
11857   if (nt != NULL)
11858     {
11859       if (nt->is_unexported_local_method(gogo, name))
11860 	return true;
11861 
11862       for (std::vector<const Named_type*>::const_iterator p = seen->begin();
11863 	   p != seen->end();
11864 	   ++p)
11865 	{
11866 	  if (*p == nt)
11867 	    {
11868 	      // We've already seen this type.
11869 	      return false;
11870 	    }
11871 	}
11872     }
11873 
11874   const Interface_type* it = type->interface_type();
11875   if (it != NULL && it->is_unexported_method(gogo, name))
11876     return true;
11877 
11878   type = type->deref();
11879 
11880   const Struct_type* st = type->struct_type();
11881   if (st != NULL && st->is_unexported_local_field(gogo, name))
11882     return true;
11883 
11884   if (st == NULL)
11885     return false;
11886 
11887   const Struct_field_list* fields = st->fields();
11888   if (fields == NULL)
11889     return false;
11890 
11891   if (nt != NULL)
11892     seen->push_back(nt);
11893 
11894   for (Struct_field_list::const_iterator pf = fields->begin();
11895        pf != fields->end();
11896        ++pf)
11897     {
11898       if (pf->is_anonymous()
11899 	  && !pf->type()->deref()->is_error_type()
11900 	  && !pf->type()->deref()->is_undefined())
11901 	{
11902 	  Named_type* subtype = pf->type()->named_type();
11903 	  if (subtype == NULL)
11904 	    subtype = pf->type()->deref()->named_type();
11905 	  if (subtype == NULL)
11906 	    {
11907 	      // This is an error, but it will be diagnosed elsewhere.
11908 	      continue;
11909 	    }
11910 	  if (Type::is_unexported_field_or_method(gogo, subtype, name, seen))
11911 	    {
11912 	      if (nt != NULL)
11913 		seen->pop_back();
11914 	      return true;
11915 	    }
11916 	}
11917     }
11918 
11919   if (nt != NULL)
11920     seen->pop_back();
11921 
11922   return false;
11923 }
11924 
11925 // Class Forward_declaration.
11926 
Forward_declaration_type(Named_object * named_object)11927 Forward_declaration_type::Forward_declaration_type(Named_object* named_object)
11928   : Type(TYPE_FORWARD),
11929     named_object_(named_object->resolve()), warned_(false)
11930 {
11931   go_assert(this->named_object_->is_unknown()
11932 	     || this->named_object_->is_type_declaration());
11933 }
11934 
11935 // Return the named object.
11936 
11937 Named_object*
named_object()11938 Forward_declaration_type::named_object()
11939 {
11940   return this->named_object_->resolve();
11941 }
11942 
11943 const Named_object*
named_object() const11944 Forward_declaration_type::named_object() const
11945 {
11946   return this->named_object_->resolve();
11947 }
11948 
11949 // Return the name of the forward declared type.
11950 
11951 const std::string&
name() const11952 Forward_declaration_type::name() const
11953 {
11954   return this->named_object()->name();
11955 }
11956 
11957 // Warn about a use of a type which has been declared but not defined.
11958 
11959 void
warn() const11960 Forward_declaration_type::warn() const
11961 {
11962   Named_object* no = this->named_object_->resolve();
11963   if (no->is_unknown())
11964     {
11965       // The name was not defined anywhere.
11966       if (!this->warned_)
11967 	{
11968 	  go_error_at(this->named_object_->location(),
11969 		      "use of undefined type %qs",
11970 		      no->message_name().c_str());
11971 	  this->warned_ = true;
11972 	}
11973     }
11974   else if (no->is_type_declaration())
11975     {
11976       // The name was seen as a type, but the type was never defined.
11977       if (no->type_declaration_value()->using_type())
11978 	{
11979 	  go_error_at(this->named_object_->location(),
11980 		      "use of undefined type %qs",
11981 		      no->message_name().c_str());
11982 	  this->warned_ = true;
11983 	}
11984     }
11985   else
11986     {
11987       // The name was defined, but not as a type.
11988       if (!this->warned_)
11989 	{
11990 	  go_error_at(this->named_object_->location(), "expected type");
11991 	  this->warned_ = true;
11992 	}
11993     }
11994 }
11995 
11996 // Get the base type of a declaration.  This gives an error if the
11997 // type has not yet been defined.
11998 
11999 Type*
real_type()12000 Forward_declaration_type::real_type()
12001 {
12002   if (this->is_defined())
12003     {
12004       Named_type* nt = this->named_object()->type_value();
12005       if (!nt->is_valid())
12006 	return Type::make_error_type();
12007       return this->named_object()->type_value();
12008     }
12009   else
12010     {
12011       this->warn();
12012       return Type::make_error_type();
12013     }
12014 }
12015 
12016 const Type*
real_type() const12017 Forward_declaration_type::real_type() const
12018 {
12019   if (this->is_defined())
12020     {
12021       const Named_type* nt = this->named_object()->type_value();
12022       if (!nt->is_valid())
12023 	return Type::make_error_type();
12024       return this->named_object()->type_value();
12025     }
12026   else
12027     {
12028       this->warn();
12029       return Type::make_error_type();
12030     }
12031 }
12032 
12033 // Return whether the base type is defined.
12034 
12035 bool
is_defined() const12036 Forward_declaration_type::is_defined() const
12037 {
12038   return this->named_object()->is_type();
12039 }
12040 
12041 // Add a method.  This is used when methods are defined before the
12042 // type.
12043 
12044 Named_object*
add_method(const std::string & name,Function * function)12045 Forward_declaration_type::add_method(const std::string& name,
12046 				     Function* function)
12047 {
12048   Named_object* no = this->named_object();
12049   if (no->is_unknown())
12050     no->declare_as_type();
12051   return no->type_declaration_value()->add_method(name, function);
12052 }
12053 
12054 // Add a method declaration.  This is used when methods are declared
12055 // before the type.
12056 
12057 Named_object*
add_method_declaration(const std::string & name,Package * package,Function_type * type,Location location)12058 Forward_declaration_type::add_method_declaration(const std::string& name,
12059 						 Package* package,
12060 						 Function_type* type,
12061 						 Location location)
12062 {
12063   Named_object* no = this->named_object();
12064   if (no->is_unknown())
12065     no->declare_as_type();
12066   Type_declaration* td = no->type_declaration_value();
12067   return td->add_method_declaration(name, package, type, location);
12068 }
12069 
12070 // Add an already created object as a method.
12071 
12072 void
add_existing_method(Named_object * nom)12073 Forward_declaration_type::add_existing_method(Named_object* nom)
12074 {
12075   Named_object* no = this->named_object();
12076   if (no->is_unknown())
12077     no->declare_as_type();
12078   no->type_declaration_value()->add_existing_method(nom);
12079 }
12080 
12081 // Traversal.
12082 
12083 int
do_traverse(Traverse * traverse)12084 Forward_declaration_type::do_traverse(Traverse* traverse)
12085 {
12086   if (this->is_defined()
12087       && Type::traverse(this->real_type(), traverse) == TRAVERSE_EXIT)
12088     return TRAVERSE_EXIT;
12089   return TRAVERSE_CONTINUE;
12090 }
12091 
12092 // Verify the type.
12093 
12094 bool
do_verify()12095 Forward_declaration_type::do_verify()
12096 {
12097   if (!this->is_defined() && !this->is_nil_constant_as_type())
12098     {
12099       this->warn();
12100       return false;
12101     }
12102   return true;
12103 }
12104 
12105 // Get the backend representation for the type.
12106 
12107 Btype*
do_get_backend(Gogo * gogo)12108 Forward_declaration_type::do_get_backend(Gogo* gogo)
12109 {
12110   if (this->is_defined())
12111     return Type::get_named_base_btype(gogo, this->real_type());
12112 
12113   if (this->warned_)
12114     return gogo->backend()->error_type();
12115 
12116   // We represent an undefined type as a struct with no fields.  That
12117   // should work fine for the backend, since the same case can arise
12118   // in C.
12119   std::vector<Backend::Btyped_identifier> fields;
12120   Btype* bt = gogo->backend()->struct_type(fields);
12121   return gogo->backend()->named_type(this->name(), bt,
12122 				     this->named_object()->location());
12123 }
12124 
12125 // Build a type descriptor for a forwarded type.
12126 
12127 Expression*
do_type_descriptor(Gogo * gogo,Named_type * name)12128 Forward_declaration_type::do_type_descriptor(Gogo* gogo, Named_type* name)
12129 {
12130   Location ploc = Linemap::predeclared_location();
12131   if (!this->is_defined())
12132     return Expression::make_error(ploc);
12133   else
12134     {
12135       Type* t = this->real_type();
12136       if (name != NULL)
12137 	return this->named_type_descriptor(gogo, t, name);
12138       else
12139 	return Expression::make_error(this->named_object_->location());
12140     }
12141 }
12142 
12143 // The reflection string.
12144 
12145 void
do_reflection(Gogo * gogo,std::string * ret) const12146 Forward_declaration_type::do_reflection(Gogo* gogo, std::string* ret) const
12147 {
12148   this->append_reflection(this->real_type(), gogo, ret);
12149 }
12150 
12151 // Export a forward declaration.  This can happen when a defined type
12152 // refers to a type which is only declared (and is presumably defined
12153 // in some other file in the same package).
12154 
12155 void
do_export(Export *) const12156 Forward_declaration_type::do_export(Export*) const
12157 {
12158   // If there is a base type, that should be exported instead of this.
12159   go_assert(!this->is_defined());
12160 
12161   // We don't output anything.
12162 }
12163 
12164 // Make a forward declaration.
12165 
12166 Type*
make_forward_declaration(Named_object * named_object)12167 Type::make_forward_declaration(Named_object* named_object)
12168 {
12169   return new Forward_declaration_type(named_object);
12170 }
12171 
12172 // Class Typed_identifier_list.
12173 
12174 // Sort the entries by name.
12175 
12176 struct Typed_identifier_list_sort
12177 {
12178  public:
12179   bool
operator ()Typed_identifier_list_sort12180   operator()(const Typed_identifier& t1, const Typed_identifier& t2) const
12181   {
12182     return (Gogo::unpack_hidden_name(t1.name())
12183 	    < Gogo::unpack_hidden_name(t2.name()));
12184   }
12185 };
12186 
12187 void
sort_by_name()12188 Typed_identifier_list::sort_by_name()
12189 {
12190   std::sort(this->entries_.begin(), this->entries_.end(),
12191 	    Typed_identifier_list_sort());
12192 }
12193 
12194 // Traverse types.
12195 
12196 int
traverse(Traverse * traverse) const12197 Typed_identifier_list::traverse(Traverse* traverse) const
12198 {
12199   for (Typed_identifier_list::const_iterator p = this->begin();
12200        p != this->end();
12201        ++p)
12202     {
12203       if (Type::traverse(p->type(), traverse) == TRAVERSE_EXIT)
12204 	return TRAVERSE_EXIT;
12205     }
12206   return TRAVERSE_CONTINUE;
12207 }
12208 
12209 // Copy the list.
12210 
12211 Typed_identifier_list*
copy() const12212 Typed_identifier_list::copy() const
12213 {
12214   Typed_identifier_list* ret = new Typed_identifier_list();
12215   for (Typed_identifier_list::const_iterator p = this->begin();
12216        p != this->end();
12217        ++p)
12218     ret->push_back(Typed_identifier(p->name(), p->type(), p->location()));
12219   return ret;
12220 }
12221