1 /* Compute complex base 10 logarithm.
2    Copyright (C) 1997-2018 Free Software Foundation, Inc.
3    This file is part of the GNU C Library.
4    Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
5 
6    The GNU C Library is free software; you can redistribute it and/or
7    modify it under the terms of the GNU Lesser General Public
8    License as published by the Free Software Foundation; either
9    version 2.1 of the License, or (at your option) any later version.
10 
11    The GNU C Library is distributed in the hope that it will be useful,
12    but WITHOUT ANY WARRANTY; without even the implied warranty of
13    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14    Lesser General Public License for more details.
15 
16    You should have received a copy of the GNU Lesser General Public
17    License along with the GNU C Library; if not, see
18    <http://www.gnu.org/licenses/>.  */
19 
20 #include "quadmath-imp.h"
21 
22 /* log_10 (2).  */
23 #define LOG10_2 0.3010299956639811952137388947244930267682Q
24 
25 /* pi * log10 (e).  */
26 #define PI_LOG10E 1.364376353841841347485783625431355770210Q
27 
28 __complex128
clog10q(__complex128 x)29 clog10q (__complex128 x)
30 {
31   __complex128 result;
32   int rcls = fpclassifyq (__real__ x);
33   int icls = fpclassifyq (__imag__ x);
34 
35   if (__glibc_unlikely (rcls == QUADFP_ZERO && icls == QUADFP_ZERO))
36     {
37       /* Real and imaginary part are 0.0.  */
38       __imag__ result = signbitq (__real__ x) ? PI_LOG10E : 0;
39       __imag__ result = copysignq (__imag__ result, __imag__ x);
40       /* Yes, the following line raises an exception.  */
41       __real__ result = -1 / fabsq (__real__ x);
42     }
43   else if (__glibc_likely (rcls != QUADFP_NAN && icls != QUADFP_NAN))
44     {
45       /* Neither real nor imaginary part is NaN.  */
46       __float128 absx = fabsq (__real__ x), absy = fabsq (__imag__ x);
47       int scale = 0;
48 
49       if (absx < absy)
50 	{
51 	  __float128 t = absx;
52 	  absx = absy;
53 	  absy = t;
54 	}
55 
56       if (absx > FLT128_MAX / 2)
57 	{
58 	  scale = -1;
59 	  absx = scalbnq (absx, scale);
60 	  absy = (absy >= FLT128_MIN * 2 ? scalbnq (absy, scale) : 0);
61 	}
62       else if (absx < FLT128_MIN && absy < FLT128_MIN)
63 	{
64 	  scale = FLT128_MANT_DIG;
65 	  absx = scalbnq (absx, scale);
66 	  absy = scalbnq (absy, scale);
67 	}
68 
69       if (absx == 1 && scale == 0)
70 	{
71 	  __real__ result = (log1pq (absy * absy)
72 			     * ((__float128) M_LOG10Eq / 2));
73 	  math_check_force_underflow_nonneg (__real__ result);
74 	}
75       else if (absx > 1 && absx < 2 && absy < 1 && scale == 0)
76 	{
77 	  __float128 d2m1 = (absx - 1) * (absx + 1);
78 	  if (absy >= FLT128_EPSILON)
79 	    d2m1 += absy * absy;
80 	  __real__ result = log1pq (d2m1) * ((__float128) M_LOG10Eq / 2);
81 	}
82       else if (absx < 1
83 	       && absx >= 0.5Q
84 	       && absy < FLT128_EPSILON / 2
85 	       && scale == 0)
86 	{
87 	  __float128 d2m1 = (absx - 1) * (absx + 1);
88 	  __real__ result = log1pq (d2m1) * ((__float128) M_LOG10Eq / 2);
89 	}
90       else if (absx < 1
91 	       && absx >= 0.5Q
92 	       && scale == 0
93 	       && absx * absx + absy * absy >= 0.5Q)
94 	{
95 	  __float128 d2m1 = __quadmath_x2y2m1q (absx, absy);
96 	  __real__ result = log1pq (d2m1) * ((__float128) M_LOG10Eq / 2);
97 	}
98       else
99 	{
100 	  __float128 d = hypotq (absx, absy);
101 	  __real__ result = log10q (d) - scale * LOG10_2;
102 	}
103 
104       __imag__ result = M_LOG10Eq * atan2q (__imag__ x, __real__ x);
105     }
106   else
107     {
108       __imag__ result = nanq ("");
109       if (rcls == QUADFP_INFINITE || icls == QUADFP_INFINITE)
110 	/* Real or imaginary part is infinite.  */
111 	__real__ result = HUGE_VALQ;
112       else
113 	__real__ result = nanq ("");
114     }
115 
116   return result;
117 }
118