1 /* Integrated Register Allocator (IRA) entry point.
2    Copyright (C) 2006-2019 Free Software Foundation, Inc.
3    Contributed by Vladimir Makarov <vmakarov@redhat.com>.
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11 
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.  */
20 
21 /* The integrated register allocator (IRA) is a
22    regional register allocator performing graph coloring on a top-down
23    traversal of nested regions.  Graph coloring in a region is based
24    on Chaitin-Briggs algorithm.  It is called integrated because
25    register coalescing, register live range splitting, and choosing a
26    better hard register are done on-the-fly during coloring.  Register
27    coalescing and choosing a cheaper hard register is done by hard
28    register preferencing during hard register assigning.  The live
29    range splitting is a byproduct of the regional register allocation.
30 
31    Major IRA notions are:
32 
33      o *Region* is a part of CFG where graph coloring based on
34        Chaitin-Briggs algorithm is done.  IRA can work on any set of
35        nested CFG regions forming a tree.  Currently the regions are
36        the entire function for the root region and natural loops for
37        the other regions.  Therefore data structure representing a
38        region is called loop_tree_node.
39 
40      o *Allocno class* is a register class used for allocation of
41        given allocno.  It means that only hard register of given
42        register class can be assigned to given allocno.  In reality,
43        even smaller subset of (*profitable*) hard registers can be
44        assigned.  In rare cases, the subset can be even smaller
45        because our modification of Chaitin-Briggs algorithm requires
46        that sets of hard registers can be assigned to allocnos forms a
47        forest, i.e. the sets can be ordered in a way where any
48        previous set is not intersected with given set or is a superset
49        of given set.
50 
51      o *Pressure class* is a register class belonging to a set of
52        register classes containing all of the hard-registers available
53        for register allocation.  The set of all pressure classes for a
54        target is defined in the corresponding machine-description file
55        according some criteria.  Register pressure is calculated only
56        for pressure classes and it affects some IRA decisions as
57        forming allocation regions.
58 
59      o *Allocno* represents the live range of a pseudo-register in a
60        region.  Besides the obvious attributes like the corresponding
61        pseudo-register number, allocno class, conflicting allocnos and
62        conflicting hard-registers, there are a few allocno attributes
63        which are important for understanding the allocation algorithm:
64 
65        - *Live ranges*.  This is a list of ranges of *program points*
66          where the allocno lives.  Program points represent places
67          where a pseudo can be born or become dead (there are
68          approximately two times more program points than the insns)
69          and they are represented by integers starting with 0.  The
70          live ranges are used to find conflicts between allocnos.
71          They also play very important role for the transformation of
72          the IRA internal representation of several regions into a one
73          region representation.  The later is used during the reload
74          pass work because each allocno represents all of the
75          corresponding pseudo-registers.
76 
77        - *Hard-register costs*.  This is a vector of size equal to the
78          number of available hard-registers of the allocno class.  The
79          cost of a callee-clobbered hard-register for an allocno is
80          increased by the cost of save/restore code around the calls
81          through the given allocno's life.  If the allocno is a move
82          instruction operand and another operand is a hard-register of
83          the allocno class, the cost of the hard-register is decreased
84          by the move cost.
85 
86          When an allocno is assigned, the hard-register with minimal
87          full cost is used.  Initially, a hard-register's full cost is
88          the corresponding value from the hard-register's cost vector.
89          If the allocno is connected by a *copy* (see below) to
90          another allocno which has just received a hard-register, the
91          cost of the hard-register is decreased.  Before choosing a
92          hard-register for an allocno, the allocno's current costs of
93          the hard-registers are modified by the conflict hard-register
94          costs of all of the conflicting allocnos which are not
95          assigned yet.
96 
97        - *Conflict hard-register costs*.  This is a vector of the same
98          size as the hard-register costs vector.  To permit an
99          unassigned allocno to get a better hard-register, IRA uses
100          this vector to calculate the final full cost of the
101          available hard-registers.  Conflict hard-register costs of an
102          unassigned allocno are also changed with a change of the
103          hard-register cost of the allocno when a copy involving the
104          allocno is processed as described above.  This is done to
105          show other unassigned allocnos that a given allocno prefers
106          some hard-registers in order to remove the move instruction
107          corresponding to the copy.
108 
109      o *Cap*.  If a pseudo-register does not live in a region but
110        lives in a nested region, IRA creates a special allocno called
111        a cap in the outer region.  A region cap is also created for a
112        subregion cap.
113 
114      o *Copy*.  Allocnos can be connected by copies.  Copies are used
115        to modify hard-register costs for allocnos during coloring.
116        Such modifications reflects a preference to use the same
117        hard-register for the allocnos connected by copies.  Usually
118        copies are created for move insns (in this case it results in
119        register coalescing).  But IRA also creates copies for operands
120        of an insn which should be assigned to the same hard-register
121        due to constraints in the machine description (it usually
122        results in removing a move generated in reload to satisfy
123        the constraints) and copies referring to the allocno which is
124        the output operand of an instruction and the allocno which is
125        an input operand dying in the instruction (creation of such
126        copies results in less register shuffling).  IRA *does not*
127        create copies between the same register allocnos from different
128        regions because we use another technique for propagating
129        hard-register preference on the borders of regions.
130 
131    Allocnos (including caps) for the upper region in the region tree
132    *accumulate* information important for coloring from allocnos with
133    the same pseudo-register from nested regions.  This includes
134    hard-register and memory costs, conflicts with hard-registers,
135    allocno conflicts, allocno copies and more.  *Thus, attributes for
136    allocnos in a region have the same values as if the region had no
137    subregions*.  It means that attributes for allocnos in the
138    outermost region corresponding to the function have the same values
139    as though the allocation used only one region which is the entire
140    function.  It also means that we can look at IRA work as if the
141    first IRA did allocation for all function then it improved the
142    allocation for loops then their subloops and so on.
143 
144    IRA major passes are:
145 
146      o Building IRA internal representation which consists of the
147        following subpasses:
148 
149        * First, IRA builds regions and creates allocnos (file
150          ira-build.c) and initializes most of their attributes.
151 
152        * Then IRA finds an allocno class for each allocno and
153          calculates its initial (non-accumulated) cost of memory and
154          each hard-register of its allocno class (file ira-cost.c).
155 
156        * IRA creates live ranges of each allocno, calculates register
157          pressure for each pressure class in each region, sets up
158          conflict hard registers for each allocno and info about calls
159          the allocno lives through (file ira-lives.c).
160 
161        * IRA removes low register pressure loops from the regions
162          mostly to speed IRA up (file ira-build.c).
163 
164        * IRA propagates accumulated allocno info from lower region
165          allocnos to corresponding upper region allocnos (file
166          ira-build.c).
167 
168        * IRA creates all caps (file ira-build.c).
169 
170        * Having live-ranges of allocnos and their classes, IRA creates
171          conflicting allocnos for each allocno.  Conflicting allocnos
172          are stored as a bit vector or array of pointers to the
173          conflicting allocnos whatever is more profitable (file
174          ira-conflicts.c).  At this point IRA creates allocno copies.
175 
176      o Coloring.  Now IRA has all necessary info to start graph coloring
177        process.  It is done in each region on top-down traverse of the
178        region tree (file ira-color.c).  There are following subpasses:
179 
180        * Finding profitable hard registers of corresponding allocno
181          class for each allocno.  For example, only callee-saved hard
182          registers are frequently profitable for allocnos living
183          through colors.  If the profitable hard register set of
184          allocno does not form a tree based on subset relation, we use
185          some approximation to form the tree.  This approximation is
186          used to figure out trivial colorability of allocnos.  The
187          approximation is a pretty rare case.
188 
189        * Putting allocnos onto the coloring stack.  IRA uses Briggs
190          optimistic coloring which is a major improvement over
191          Chaitin's coloring.  Therefore IRA does not spill allocnos at
192          this point.  There is some freedom in the order of putting
193          allocnos on the stack which can affect the final result of
194          the allocation.  IRA uses some heuristics to improve the
195          order.  The major one is to form *threads* from colorable
196          allocnos and push them on the stack by threads.  Thread is a
197          set of non-conflicting colorable allocnos connected by
198          copies.  The thread contains allocnos from the colorable
199          bucket or colorable allocnos already pushed onto the coloring
200          stack.  Pushing thread allocnos one after another onto the
201          stack increases chances of removing copies when the allocnos
202          get the same hard reg.
203 
204 	 We also use a modification of Chaitin-Briggs algorithm which
205          works for intersected register classes of allocnos.  To
206          figure out trivial colorability of allocnos, the mentioned
207          above tree of hard register sets is used.  To get an idea how
208          the algorithm works in i386 example, let us consider an
209          allocno to which any general hard register can be assigned.
210          If the allocno conflicts with eight allocnos to which only
211          EAX register can be assigned, given allocno is still
212          trivially colorable because all conflicting allocnos might be
213          assigned only to EAX and all other general hard registers are
214          still free.
215 
216 	 To get an idea of the used trivial colorability criterion, it
217 	 is also useful to read article "Graph-Coloring Register
218 	 Allocation for Irregular Architectures" by Michael D. Smith
219 	 and Glen Holloway.  Major difference between the article
220 	 approach and approach used in IRA is that Smith's approach
221 	 takes register classes only from machine description and IRA
222 	 calculate register classes from intermediate code too
223 	 (e.g. an explicit usage of hard registers in RTL code for
224 	 parameter passing can result in creation of additional
225 	 register classes which contain or exclude the hard
226 	 registers).  That makes IRA approach useful for improving
227 	 coloring even for architectures with regular register files
228 	 and in fact some benchmarking shows the improvement for
229 	 regular class architectures is even bigger than for irregular
230 	 ones.  Another difference is that Smith's approach chooses
231 	 intersection of classes of all insn operands in which a given
232 	 pseudo occurs.  IRA can use bigger classes if it is still
233 	 more profitable than memory usage.
234 
235        * Popping the allocnos from the stack and assigning them hard
236          registers.  If IRA cannot assign a hard register to an
237          allocno and the allocno is coalesced, IRA undoes the
238          coalescing and puts the uncoalesced allocnos onto the stack in
239          the hope that some such allocnos will get a hard register
240          separately.  If IRA fails to assign hard register or memory
241          is more profitable for it, IRA spills the allocno.  IRA
242          assigns the allocno the hard-register with minimal full
243          allocation cost which reflects the cost of usage of the
244          hard-register for the allocno and cost of usage of the
245          hard-register for allocnos conflicting with given allocno.
246 
247        * Chaitin-Briggs coloring assigns as many pseudos as possible
248          to hard registers.  After coloring we try to improve
249          allocation with cost point of view.  We improve the
250          allocation by spilling some allocnos and assigning the freed
251          hard registers to other allocnos if it decreases the overall
252          allocation cost.
253 
254        * After allocno assigning in the region, IRA modifies the hard
255          register and memory costs for the corresponding allocnos in
256          the subregions to reflect the cost of possible loads, stores,
257          or moves on the border of the region and its subregions.
258          When default regional allocation algorithm is used
259          (-fira-algorithm=mixed), IRA just propagates the assignment
260          for allocnos if the register pressure in the region for the
261          corresponding pressure class is less than number of available
262          hard registers for given pressure class.
263 
264      o Spill/restore code moving.  When IRA performs an allocation
265        by traversing regions in top-down order, it does not know what
266        happens below in the region tree.  Therefore, sometimes IRA
267        misses opportunities to perform a better allocation.  A simple
268        optimization tries to improve allocation in a region having
269        subregions and containing in another region.  If the
270        corresponding allocnos in the subregion are spilled, it spills
271        the region allocno if it is profitable.  The optimization
272        implements a simple iterative algorithm performing profitable
273        transformations while they are still possible.  It is fast in
274        practice, so there is no real need for a better time complexity
275        algorithm.
276 
277      o Code change.  After coloring, two allocnos representing the
278        same pseudo-register outside and inside a region respectively
279        may be assigned to different locations (hard-registers or
280        memory).  In this case IRA creates and uses a new
281        pseudo-register inside the region and adds code to move allocno
282        values on the region's borders.  This is done during top-down
283        traversal of the regions (file ira-emit.c).  In some
284        complicated cases IRA can create a new allocno to move allocno
285        values (e.g. when a swap of values stored in two hard-registers
286        is needed).  At this stage, the new allocno is marked as
287        spilled.  IRA still creates the pseudo-register and the moves
288        on the region borders even when both allocnos were assigned to
289        the same hard-register.  If the reload pass spills a
290        pseudo-register for some reason, the effect will be smaller
291        because another allocno will still be in the hard-register.  In
292        most cases, this is better then spilling both allocnos.  If
293        reload does not change the allocation for the two
294        pseudo-registers, the trivial move will be removed by
295        post-reload optimizations.  IRA does not generate moves for
296        allocnos assigned to the same hard register when the default
297        regional allocation algorithm is used and the register pressure
298        in the region for the corresponding pressure class is less than
299        number of available hard registers for given pressure class.
300        IRA also does some optimizations to remove redundant stores and
301        to reduce code duplication on the region borders.
302 
303      o Flattening internal representation.  After changing code, IRA
304        transforms its internal representation for several regions into
305        one region representation (file ira-build.c).  This process is
306        called IR flattening.  Such process is more complicated than IR
307        rebuilding would be, but is much faster.
308 
309      o After IR flattening, IRA tries to assign hard registers to all
310        spilled allocnos.  This is implemented by a simple and fast
311        priority coloring algorithm (see function
312        ira_reassign_conflict_allocnos::ira-color.c).  Here new allocnos
313        created during the code change pass can be assigned to hard
314        registers.
315 
316      o At the end IRA calls the reload pass.  The reload pass
317        communicates with IRA through several functions in file
318        ira-color.c to improve its decisions in
319 
320        * sharing stack slots for the spilled pseudos based on IRA info
321          about pseudo-register conflicts.
322 
323        * reassigning hard-registers to all spilled pseudos at the end
324          of each reload iteration.
325 
326        * choosing a better hard-register to spill based on IRA info
327          about pseudo-register live ranges and the register pressure
328          in places where the pseudo-register lives.
329 
330    IRA uses a lot of data representing the target processors.  These
331    data are initialized in file ira.c.
332 
333    If function has no loops (or the loops are ignored when
334    -fira-algorithm=CB is used), we have classic Chaitin-Briggs
335    coloring (only instead of separate pass of coalescing, we use hard
336    register preferencing).  In such case, IRA works much faster
337    because many things are not made (like IR flattening, the
338    spill/restore optimization, and the code change).
339 
340    Literature is worth to read for better understanding the code:
341 
342    o Preston Briggs, Keith D. Cooper, Linda Torczon.  Improvements to
343      Graph Coloring Register Allocation.
344 
345    o David Callahan, Brian Koblenz.  Register allocation via
346      hierarchical graph coloring.
347 
348    o Keith Cooper, Anshuman Dasgupta, Jason Eckhardt. Revisiting Graph
349      Coloring Register Allocation: A Study of the Chaitin-Briggs and
350      Callahan-Koblenz Algorithms.
351 
352    o Guei-Yuan Lueh, Thomas Gross, and Ali-Reza Adl-Tabatabai. Global
353      Register Allocation Based on Graph Fusion.
354 
355    o Michael D. Smith and Glenn Holloway.  Graph-Coloring Register
356      Allocation for Irregular Architectures
357 
358    o Vladimir Makarov. The Integrated Register Allocator for GCC.
359 
360    o Vladimir Makarov.  The top-down register allocator for irregular
361      register file architectures.
362 
363 */
364 
365 
366 #include "config.h"
367 #include "system.h"
368 #include "coretypes.h"
369 #include "backend.h"
370 #include "target.h"
371 #include "rtl.h"
372 #include "tree.h"
373 #include "df.h"
374 #include "memmodel.h"
375 #include "tm_p.h"
376 #include "insn-config.h"
377 #include "regs.h"
378 #include "ira.h"
379 #include "ira-int.h"
380 #include "diagnostic-core.h"
381 #include "cfgrtl.h"
382 #include "cfgbuild.h"
383 #include "cfgcleanup.h"
384 #include "expr.h"
385 #include "tree-pass.h"
386 #include "output.h"
387 #include "reload.h"
388 #include "cfgloop.h"
389 #include "lra.h"
390 #include "dce.h"
391 #include "dbgcnt.h"
392 #include "rtl-iter.h"
393 #include "shrink-wrap.h"
394 #include "print-rtl.h"
395 
396 struct target_ira default_target_ira;
397 struct target_ira_int default_target_ira_int;
398 #if SWITCHABLE_TARGET
399 struct target_ira *this_target_ira = &default_target_ira;
400 struct target_ira_int *this_target_ira_int = &default_target_ira_int;
401 #endif
402 
403 /* A modified value of flag `-fira-verbose' used internally.  */
404 int internal_flag_ira_verbose;
405 
406 /* Dump file of the allocator if it is not NULL.  */
407 FILE *ira_dump_file;
408 
409 /* The number of elements in the following array.  */
410 int ira_spilled_reg_stack_slots_num;
411 
412 /* The following array contains info about spilled pseudo-registers
413    stack slots used in current function so far.  */
414 struct ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots;
415 
416 /* Correspondingly overall cost of the allocation, overall cost before
417    reload, cost of the allocnos assigned to hard-registers, cost of
418    the allocnos assigned to memory, cost of loads, stores and register
419    move insns generated for pseudo-register live range splitting (see
420    ira-emit.c).  */
421 int64_t ira_overall_cost, overall_cost_before;
422 int64_t ira_reg_cost, ira_mem_cost;
423 int64_t ira_load_cost, ira_store_cost, ira_shuffle_cost;
424 int ira_move_loops_num, ira_additional_jumps_num;
425 
426 /* All registers that can be eliminated.  */
427 
428 HARD_REG_SET eliminable_regset;
429 
430 /* Value of max_reg_num () before IRA work start.  This value helps
431    us to recognize a situation when new pseudos were created during
432    IRA work.  */
433 static int max_regno_before_ira;
434 
435 /* Temporary hard reg set used for a different calculation.  */
436 static HARD_REG_SET temp_hard_regset;
437 
438 #define last_mode_for_init_move_cost \
439   (this_target_ira_int->x_last_mode_for_init_move_cost)
440 
441 
442 /* The function sets up the map IRA_REG_MODE_HARD_REGSET.  */
443 static void
setup_reg_mode_hard_regset(void)444 setup_reg_mode_hard_regset (void)
445 {
446   int i, m, hard_regno;
447 
448   for (m = 0; m < NUM_MACHINE_MODES; m++)
449     for (hard_regno = 0; hard_regno < FIRST_PSEUDO_REGISTER; hard_regno++)
450       {
451 	CLEAR_HARD_REG_SET (ira_reg_mode_hard_regset[hard_regno][m]);
452 	for (i = hard_regno_nregs (hard_regno, (machine_mode) m) - 1;
453 	     i >= 0; i--)
454 	  if (hard_regno + i < FIRST_PSEUDO_REGISTER)
455 	    SET_HARD_REG_BIT (ira_reg_mode_hard_regset[hard_regno][m],
456 			      hard_regno + i);
457       }
458 }
459 
460 
461 #define no_unit_alloc_regs \
462   (this_target_ira_int->x_no_unit_alloc_regs)
463 
464 /* The function sets up the three arrays declared above.  */
465 static void
setup_class_hard_regs(void)466 setup_class_hard_regs (void)
467 {
468   int cl, i, hard_regno, n;
469   HARD_REG_SET processed_hard_reg_set;
470 
471   ira_assert (SHRT_MAX >= FIRST_PSEUDO_REGISTER);
472   for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
473     {
474       COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
475       AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
476       CLEAR_HARD_REG_SET (processed_hard_reg_set);
477       for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
478 	{
479 	  ira_non_ordered_class_hard_regs[cl][i] = -1;
480 	  ira_class_hard_reg_index[cl][i] = -1;
481 	}
482       for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
483 	{
484 #ifdef REG_ALLOC_ORDER
485 	  hard_regno = reg_alloc_order[i];
486 #else
487 	  hard_regno = i;
488 #endif
489 	  if (TEST_HARD_REG_BIT (processed_hard_reg_set, hard_regno))
490 	    continue;
491 	  SET_HARD_REG_BIT (processed_hard_reg_set, hard_regno);
492       	  if (! TEST_HARD_REG_BIT (temp_hard_regset, hard_regno))
493 	    ira_class_hard_reg_index[cl][hard_regno] = -1;
494 	  else
495 	    {
496 	      ira_class_hard_reg_index[cl][hard_regno] = n;
497 	      ira_class_hard_regs[cl][n++] = hard_regno;
498 	    }
499 	}
500       ira_class_hard_regs_num[cl] = n;
501       for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
502 	if (TEST_HARD_REG_BIT (temp_hard_regset, i))
503 	  ira_non_ordered_class_hard_regs[cl][n++] = i;
504       ira_assert (ira_class_hard_regs_num[cl] == n);
505     }
506 }
507 
508 /* Set up global variables defining info about hard registers for the
509    allocation.  These depend on USE_HARD_FRAME_P whose TRUE value means
510    that we can use the hard frame pointer for the allocation.  */
511 static void
setup_alloc_regs(bool use_hard_frame_p)512 setup_alloc_regs (bool use_hard_frame_p)
513 {
514 #ifdef ADJUST_REG_ALLOC_ORDER
515   ADJUST_REG_ALLOC_ORDER;
516 #endif
517   COPY_HARD_REG_SET (no_unit_alloc_regs, fixed_nonglobal_reg_set);
518   if (! use_hard_frame_p)
519     SET_HARD_REG_BIT (no_unit_alloc_regs, HARD_FRAME_POINTER_REGNUM);
520   setup_class_hard_regs ();
521 }
522 
523 
524 
525 #define alloc_reg_class_subclasses \
526   (this_target_ira_int->x_alloc_reg_class_subclasses)
527 
528 /* Initialize the table of subclasses of each reg class.  */
529 static void
setup_reg_subclasses(void)530 setup_reg_subclasses (void)
531 {
532   int i, j;
533   HARD_REG_SET temp_hard_regset2;
534 
535   for (i = 0; i < N_REG_CLASSES; i++)
536     for (j = 0; j < N_REG_CLASSES; j++)
537       alloc_reg_class_subclasses[i][j] = LIM_REG_CLASSES;
538 
539   for (i = 0; i < N_REG_CLASSES; i++)
540     {
541       if (i == (int) NO_REGS)
542 	continue;
543 
544       COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
545       AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
546       if (hard_reg_set_empty_p (temp_hard_regset))
547 	continue;
548       for (j = 0; j < N_REG_CLASSES; j++)
549 	if (i != j)
550 	  {
551 	    enum reg_class *p;
552 
553 	    COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[j]);
554 	    AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
555 	    if (! hard_reg_set_subset_p (temp_hard_regset,
556 					 temp_hard_regset2))
557 	      continue;
558 	    p = &alloc_reg_class_subclasses[j][0];
559 	    while (*p != LIM_REG_CLASSES) p++;
560 	    *p = (enum reg_class) i;
561 	  }
562     }
563 }
564 
565 
566 
567 /* Set up IRA_MEMORY_MOVE_COST and IRA_MAX_MEMORY_MOVE_COST.  */
568 static void
setup_class_subset_and_memory_move_costs(void)569 setup_class_subset_and_memory_move_costs (void)
570 {
571   int cl, cl2, mode, cost;
572   HARD_REG_SET temp_hard_regset2;
573 
574   for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
575     ira_memory_move_cost[mode][NO_REGS][0]
576       = ira_memory_move_cost[mode][NO_REGS][1] = SHRT_MAX;
577   for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
578     {
579       if (cl != (int) NO_REGS)
580 	for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
581 	  {
582 	    ira_max_memory_move_cost[mode][cl][0]
583 	      = ira_memory_move_cost[mode][cl][0]
584 	      = memory_move_cost ((machine_mode) mode,
585 				  (reg_class_t) cl, false);
586 	    ira_max_memory_move_cost[mode][cl][1]
587 	      = ira_memory_move_cost[mode][cl][1]
588 	      = memory_move_cost ((machine_mode) mode,
589 				  (reg_class_t) cl, true);
590 	    /* Costs for NO_REGS are used in cost calculation on the
591 	       1st pass when the preferred register classes are not
592 	       known yet.  In this case we take the best scenario.  */
593 	    if (ira_memory_move_cost[mode][NO_REGS][0]
594 		> ira_memory_move_cost[mode][cl][0])
595 	      ira_max_memory_move_cost[mode][NO_REGS][0]
596 		= ira_memory_move_cost[mode][NO_REGS][0]
597 		= ira_memory_move_cost[mode][cl][0];
598 	    if (ira_memory_move_cost[mode][NO_REGS][1]
599 		> ira_memory_move_cost[mode][cl][1])
600 	      ira_max_memory_move_cost[mode][NO_REGS][1]
601 		= ira_memory_move_cost[mode][NO_REGS][1]
602 		= ira_memory_move_cost[mode][cl][1];
603 	  }
604     }
605   for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
606     for (cl2 = (int) N_REG_CLASSES - 1; cl2 >= 0; cl2--)
607       {
608 	COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
609 	AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
610 	COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
611 	AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
612 	ira_class_subset_p[cl][cl2]
613 	  = hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2);
614 	if (! hard_reg_set_empty_p (temp_hard_regset2)
615 	    && hard_reg_set_subset_p (reg_class_contents[cl2],
616 				      reg_class_contents[cl]))
617 	  for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
618 	    {
619 	      cost = ira_memory_move_cost[mode][cl2][0];
620 	      if (cost > ira_max_memory_move_cost[mode][cl][0])
621 		ira_max_memory_move_cost[mode][cl][0] = cost;
622 	      cost = ira_memory_move_cost[mode][cl2][1];
623 	      if (cost > ira_max_memory_move_cost[mode][cl][1])
624 		ira_max_memory_move_cost[mode][cl][1] = cost;
625 	    }
626       }
627   for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
628     for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
629       {
630 	ira_memory_move_cost[mode][cl][0]
631 	  = ira_max_memory_move_cost[mode][cl][0];
632 	ira_memory_move_cost[mode][cl][1]
633 	  = ira_max_memory_move_cost[mode][cl][1];
634       }
635   setup_reg_subclasses ();
636 }
637 
638 
639 
640 /* Define the following macro if allocation through malloc if
641    preferable.  */
642 #define IRA_NO_OBSTACK
643 
644 #ifndef IRA_NO_OBSTACK
645 /* Obstack used for storing all dynamic data (except bitmaps) of the
646    IRA.  */
647 static struct obstack ira_obstack;
648 #endif
649 
650 /* Obstack used for storing all bitmaps of the IRA.  */
651 static struct bitmap_obstack ira_bitmap_obstack;
652 
653 /* Allocate memory of size LEN for IRA data.  */
654 void *
ira_allocate(size_t len)655 ira_allocate (size_t len)
656 {
657   void *res;
658 
659 #ifndef IRA_NO_OBSTACK
660   res = obstack_alloc (&ira_obstack, len);
661 #else
662   res = xmalloc (len);
663 #endif
664   return res;
665 }
666 
667 /* Free memory ADDR allocated for IRA data.  */
668 void
ira_free(void * addr ATTRIBUTE_UNUSED)669 ira_free (void *addr ATTRIBUTE_UNUSED)
670 {
671 #ifndef IRA_NO_OBSTACK
672   /* do nothing */
673 #else
674   free (addr);
675 #endif
676 }
677 
678 
679 /* Allocate and returns bitmap for IRA.  */
680 bitmap
ira_allocate_bitmap(void)681 ira_allocate_bitmap (void)
682 {
683   return BITMAP_ALLOC (&ira_bitmap_obstack);
684 }
685 
686 /* Free bitmap B allocated for IRA.  */
687 void
ira_free_bitmap(bitmap b ATTRIBUTE_UNUSED)688 ira_free_bitmap (bitmap b ATTRIBUTE_UNUSED)
689 {
690   /* do nothing */
691 }
692 
693 
694 
695 /* Output information about allocation of all allocnos (except for
696    caps) into file F.  */
697 void
ira_print_disposition(FILE * f)698 ira_print_disposition (FILE *f)
699 {
700   int i, n, max_regno;
701   ira_allocno_t a;
702   basic_block bb;
703 
704   fprintf (f, "Disposition:");
705   max_regno = max_reg_num ();
706   for (n = 0, i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
707     for (a = ira_regno_allocno_map[i];
708 	 a != NULL;
709 	 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
710       {
711 	if (n % 4 == 0)
712 	  fprintf (f, "\n");
713 	n++;
714 	fprintf (f, " %4d:r%-4d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
715 	if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
716 	  fprintf (f, "b%-3d", bb->index);
717 	else
718 	  fprintf (f, "l%-3d", ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
719 	if (ALLOCNO_HARD_REGNO (a) >= 0)
720 	  fprintf (f, " %3d", ALLOCNO_HARD_REGNO (a));
721 	else
722 	  fprintf (f, " mem");
723       }
724   fprintf (f, "\n");
725 }
726 
727 /* Outputs information about allocation of all allocnos into
728    stderr.  */
729 void
ira_debug_disposition(void)730 ira_debug_disposition (void)
731 {
732   ira_print_disposition (stderr);
733 }
734 
735 
736 
737 /* Set up ira_stack_reg_pressure_class which is the biggest pressure
738    register class containing stack registers or NO_REGS if there are
739    no stack registers.  To find this class, we iterate through all
740    register pressure classes and choose the first register pressure
741    class containing all the stack registers and having the biggest
742    size.  */
743 static void
setup_stack_reg_pressure_class(void)744 setup_stack_reg_pressure_class (void)
745 {
746   ira_stack_reg_pressure_class = NO_REGS;
747 #ifdef STACK_REGS
748   {
749     int i, best, size;
750     enum reg_class cl;
751     HARD_REG_SET temp_hard_regset2;
752 
753     CLEAR_HARD_REG_SET (temp_hard_regset);
754     for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
755       SET_HARD_REG_BIT (temp_hard_regset, i);
756     best = 0;
757     for (i = 0; i < ira_pressure_classes_num; i++)
758       {
759 	cl = ira_pressure_classes[i];
760 	COPY_HARD_REG_SET (temp_hard_regset2, temp_hard_regset);
761 	AND_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
762 	size = hard_reg_set_size (temp_hard_regset2);
763 	if (best < size)
764 	  {
765 	    best = size;
766 	    ira_stack_reg_pressure_class = cl;
767 	  }
768       }
769   }
770 #endif
771 }
772 
773 /* Find pressure classes which are register classes for which we
774    calculate register pressure in IRA, register pressure sensitive
775    insn scheduling, and register pressure sensitive loop invariant
776    motion.
777 
778    To make register pressure calculation easy, we always use
779    non-intersected register pressure classes.  A move of hard
780    registers from one register pressure class is not more expensive
781    than load and store of the hard registers.  Most likely an allocno
782    class will be a subset of a register pressure class and in many
783    cases a register pressure class.  That makes usage of register
784    pressure classes a good approximation to find a high register
785    pressure.  */
786 static void
setup_pressure_classes(void)787 setup_pressure_classes (void)
788 {
789   int cost, i, n, curr;
790   int cl, cl2;
791   enum reg_class pressure_classes[N_REG_CLASSES];
792   int m;
793   HARD_REG_SET temp_hard_regset2;
794   bool insert_p;
795 
796   if (targetm.compute_pressure_classes)
797     n = targetm.compute_pressure_classes (pressure_classes);
798   else
799     {
800       n = 0;
801       for (cl = 0; cl < N_REG_CLASSES; cl++)
802 	{
803 	  if (ira_class_hard_regs_num[cl] == 0)
804 	    continue;
805 	  if (ira_class_hard_regs_num[cl] != 1
806 	      /* A register class without subclasses may contain a few
807 		 hard registers and movement between them is costly
808 		 (e.g. SPARC FPCC registers).  We still should consider it
809 		 as a candidate for a pressure class.  */
810 	      && alloc_reg_class_subclasses[cl][0] < cl)
811 	    {
812 	      /* Check that the moves between any hard registers of the
813 		 current class are not more expensive for a legal mode
814 		 than load/store of the hard registers of the current
815 		 class.  Such class is a potential candidate to be a
816 		 register pressure class.  */
817 	      for (m = 0; m < NUM_MACHINE_MODES; m++)
818 		{
819 		  COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
820 		  AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
821 		  AND_COMPL_HARD_REG_SET (temp_hard_regset,
822 					  ira_prohibited_class_mode_regs[cl][m]);
823 		  if (hard_reg_set_empty_p (temp_hard_regset))
824 		    continue;
825 		  ira_init_register_move_cost_if_necessary ((machine_mode) m);
826 		  cost = ira_register_move_cost[m][cl][cl];
827 		  if (cost <= ira_max_memory_move_cost[m][cl][1]
828 		      || cost <= ira_max_memory_move_cost[m][cl][0])
829 		    break;
830 		}
831 	      if (m >= NUM_MACHINE_MODES)
832 		continue;
833 	    }
834 	  curr = 0;
835 	  insert_p = true;
836 	  COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
837 	  AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
838 	  /* Remove so far added pressure classes which are subset of the
839 	     current candidate class.  Prefer GENERAL_REGS as a pressure
840 	     register class to another class containing the same
841 	     allocatable hard registers.  We do this because machine
842 	     dependent cost hooks might give wrong costs for the latter
843 	     class but always give the right cost for the former class
844 	     (GENERAL_REGS).  */
845 	  for (i = 0; i < n; i++)
846 	    {
847 	      cl2 = pressure_classes[i];
848 	      COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
849 	      AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
850 	      if (hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2)
851 		  && (! hard_reg_set_equal_p (temp_hard_regset,
852 					      temp_hard_regset2)
853 		      || cl2 == (int) GENERAL_REGS))
854 		{
855 		  pressure_classes[curr++] = (enum reg_class) cl2;
856 		  insert_p = false;
857 		  continue;
858 		}
859 	      if (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset)
860 		  && (! hard_reg_set_equal_p (temp_hard_regset2,
861 					      temp_hard_regset)
862 		      || cl == (int) GENERAL_REGS))
863 		continue;
864 	      if (hard_reg_set_equal_p (temp_hard_regset2, temp_hard_regset))
865 		insert_p = false;
866 	      pressure_classes[curr++] = (enum reg_class) cl2;
867 	    }
868 	  /* If the current candidate is a subset of a so far added
869 	     pressure class, don't add it to the list of the pressure
870 	     classes.  */
871 	  if (insert_p)
872 	    pressure_classes[curr++] = (enum reg_class) cl;
873 	  n = curr;
874 	}
875     }
876 #ifdef ENABLE_IRA_CHECKING
877   {
878     HARD_REG_SET ignore_hard_regs;
879 
880     /* Check pressure classes correctness: here we check that hard
881        registers from all register pressure classes contains all hard
882        registers available for the allocation.  */
883     CLEAR_HARD_REG_SET (temp_hard_regset);
884     CLEAR_HARD_REG_SET (temp_hard_regset2);
885     COPY_HARD_REG_SET (ignore_hard_regs, no_unit_alloc_regs);
886     for (cl = 0; cl < LIM_REG_CLASSES; cl++)
887       {
888 	/* For some targets (like MIPS with MD_REGS), there are some
889 	   classes with hard registers available for allocation but
890 	   not able to hold value of any mode.  */
891 	for (m = 0; m < NUM_MACHINE_MODES; m++)
892 	  if (contains_reg_of_mode[cl][m])
893 	    break;
894 	if (m >= NUM_MACHINE_MODES)
895 	  {
896 	    IOR_HARD_REG_SET (ignore_hard_regs, reg_class_contents[cl]);
897 	    continue;
898 	  }
899 	for (i = 0; i < n; i++)
900 	  if ((int) pressure_classes[i] == cl)
901 	    break;
902 	IOR_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
903 	if (i < n)
904 	  IOR_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
905       }
906     for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
907       /* Some targets (like SPARC with ICC reg) have allocatable regs
908 	 for which no reg class is defined.  */
909       if (REGNO_REG_CLASS (i) == NO_REGS)
910 	SET_HARD_REG_BIT (ignore_hard_regs, i);
911     AND_COMPL_HARD_REG_SET (temp_hard_regset, ignore_hard_regs);
912     AND_COMPL_HARD_REG_SET (temp_hard_regset2, ignore_hard_regs);
913     ira_assert (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset));
914   }
915 #endif
916   ira_pressure_classes_num = 0;
917   for (i = 0; i < n; i++)
918     {
919       cl = (int) pressure_classes[i];
920       ira_reg_pressure_class_p[cl] = true;
921       ira_pressure_classes[ira_pressure_classes_num++] = (enum reg_class) cl;
922     }
923   setup_stack_reg_pressure_class ();
924 }
925 
926 /* Set up IRA_UNIFORM_CLASS_P.  Uniform class is a register class
927    whose register move cost between any registers of the class is the
928    same as for all its subclasses.  We use the data to speed up the
929    2nd pass of calculations of allocno costs.  */
930 static void
setup_uniform_class_p(void)931 setup_uniform_class_p (void)
932 {
933   int i, cl, cl2, m;
934 
935   for (cl = 0; cl < N_REG_CLASSES; cl++)
936     {
937       ira_uniform_class_p[cl] = false;
938       if (ira_class_hard_regs_num[cl] == 0)
939 	continue;
940       /* We cannot use alloc_reg_class_subclasses here because move
941 	 cost hooks does not take into account that some registers are
942 	 unavailable for the subtarget.  E.g. for i686, INT_SSE_REGS
943 	 is element of alloc_reg_class_subclasses for GENERAL_REGS
944 	 because SSE regs are unavailable.  */
945       for (i = 0; (cl2 = reg_class_subclasses[cl][i]) != LIM_REG_CLASSES; i++)
946 	{
947 	  if (ira_class_hard_regs_num[cl2] == 0)
948 	    continue;
949       	  for (m = 0; m < NUM_MACHINE_MODES; m++)
950 	    if (contains_reg_of_mode[cl][m] && contains_reg_of_mode[cl2][m])
951 	      {
952 		ira_init_register_move_cost_if_necessary ((machine_mode) m);
953 		if (ira_register_move_cost[m][cl][cl]
954 		    != ira_register_move_cost[m][cl2][cl2])
955 		  break;
956 	      }
957 	  if (m < NUM_MACHINE_MODES)
958 	    break;
959 	}
960       if (cl2 == LIM_REG_CLASSES)
961 	ira_uniform_class_p[cl] = true;
962     }
963 }
964 
965 /* Set up IRA_ALLOCNO_CLASSES, IRA_ALLOCNO_CLASSES_NUM,
966    IRA_IMPORTANT_CLASSES, and IRA_IMPORTANT_CLASSES_NUM.
967 
968    Target may have many subtargets and not all target hard registers can
969    be used for allocation, e.g. x86 port in 32-bit mode cannot use
970    hard registers introduced in x86-64 like r8-r15).  Some classes
971    might have the same allocatable hard registers, e.g.  INDEX_REGS
972    and GENERAL_REGS in x86 port in 32-bit mode.  To decrease different
973    calculations efforts we introduce allocno classes which contain
974    unique non-empty sets of allocatable hard-registers.
975 
976    Pseudo class cost calculation in ira-costs.c is very expensive.
977    Therefore we are trying to decrease number of classes involved in
978    such calculation.  Register classes used in the cost calculation
979    are called important classes.  They are allocno classes and other
980    non-empty classes whose allocatable hard register sets are inside
981    of an allocno class hard register set.  From the first sight, it
982    looks like that they are just allocno classes.  It is not true.  In
983    example of x86-port in 32-bit mode, allocno classes will contain
984    GENERAL_REGS but not LEGACY_REGS (because allocatable hard
985    registers are the same for the both classes).  The important
986    classes will contain GENERAL_REGS and LEGACY_REGS.  It is done
987    because a machine description insn constraint may refers for
988    LEGACY_REGS and code in ira-costs.c is mostly base on investigation
989    of the insn constraints.  */
990 static void
setup_allocno_and_important_classes(void)991 setup_allocno_and_important_classes (void)
992 {
993   int i, j, n, cl;
994   bool set_p;
995   HARD_REG_SET temp_hard_regset2;
996   static enum reg_class classes[LIM_REG_CLASSES + 1];
997 
998   n = 0;
999   /* Collect classes which contain unique sets of allocatable hard
1000      registers.  Prefer GENERAL_REGS to other classes containing the
1001      same set of hard registers.  */
1002   for (i = 0; i < LIM_REG_CLASSES; i++)
1003     {
1004       COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
1005       AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1006       for (j = 0; j < n; j++)
1007 	{
1008 	  cl = classes[j];
1009 	  COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
1010 	  AND_COMPL_HARD_REG_SET (temp_hard_regset2,
1011 				  no_unit_alloc_regs);
1012 	  if (hard_reg_set_equal_p (temp_hard_regset,
1013 				    temp_hard_regset2))
1014 	    break;
1015 	}
1016       if (j >= n || targetm.additional_allocno_class_p (i))
1017 	classes[n++] = (enum reg_class) i;
1018       else if (i == GENERAL_REGS)
1019 	/* Prefer general regs.  For i386 example, it means that
1020 	   we prefer GENERAL_REGS over INDEX_REGS or LEGACY_REGS
1021 	   (all of them consists of the same available hard
1022 	   registers).  */
1023 	classes[j] = (enum reg_class) i;
1024     }
1025   classes[n] = LIM_REG_CLASSES;
1026 
1027   /* Set up classes which can be used for allocnos as classes
1028      containing non-empty unique sets of allocatable hard
1029      registers.  */
1030   ira_allocno_classes_num = 0;
1031   for (i = 0; (cl = classes[i]) != LIM_REG_CLASSES; i++)
1032     if (ira_class_hard_regs_num[cl] > 0)
1033       ira_allocno_classes[ira_allocno_classes_num++] = (enum reg_class) cl;
1034   ira_important_classes_num = 0;
1035   /* Add non-allocno classes containing to non-empty set of
1036      allocatable hard regs.  */
1037   for (cl = 0; cl < N_REG_CLASSES; cl++)
1038     if (ira_class_hard_regs_num[cl] > 0)
1039       {
1040 	COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1041 	AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1042 	set_p = false;
1043 	for (j = 0; j < ira_allocno_classes_num; j++)
1044 	  {
1045 	    COPY_HARD_REG_SET (temp_hard_regset2,
1046 			       reg_class_contents[ira_allocno_classes[j]]);
1047 	    AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
1048 	    if ((enum reg_class) cl == ira_allocno_classes[j])
1049 	      break;
1050 	    else if (hard_reg_set_subset_p (temp_hard_regset,
1051 					    temp_hard_regset2))
1052 	      set_p = true;
1053 	  }
1054 	if (set_p && j >= ira_allocno_classes_num)
1055 	  ira_important_classes[ira_important_classes_num++]
1056 	    = (enum reg_class) cl;
1057       }
1058   /* Now add allocno classes to the important classes.  */
1059   for (j = 0; j < ira_allocno_classes_num; j++)
1060     ira_important_classes[ira_important_classes_num++]
1061       = ira_allocno_classes[j];
1062   for (cl = 0; cl < N_REG_CLASSES; cl++)
1063     {
1064       ira_reg_allocno_class_p[cl] = false;
1065       ira_reg_pressure_class_p[cl] = false;
1066     }
1067   for (j = 0; j < ira_allocno_classes_num; j++)
1068     ira_reg_allocno_class_p[ira_allocno_classes[j]] = true;
1069   setup_pressure_classes ();
1070   setup_uniform_class_p ();
1071 }
1072 
1073 /* Setup translation in CLASS_TRANSLATE of all classes into a class
1074    given by array CLASSES of length CLASSES_NUM.  The function is used
1075    make translation any reg class to an allocno class or to an
1076    pressure class.  This translation is necessary for some
1077    calculations when we can use only allocno or pressure classes and
1078    such translation represents an approximate representation of all
1079    classes.
1080 
1081    The translation in case when allocatable hard register set of a
1082    given class is subset of allocatable hard register set of a class
1083    in CLASSES is pretty simple.  We use smallest classes from CLASSES
1084    containing a given class.  If allocatable hard register set of a
1085    given class is not a subset of any corresponding set of a class
1086    from CLASSES, we use the cheapest (with load/store point of view)
1087    class from CLASSES whose set intersects with given class set.  */
1088 static void
setup_class_translate_array(enum reg_class * class_translate,int classes_num,enum reg_class * classes)1089 setup_class_translate_array (enum reg_class *class_translate,
1090 			     int classes_num, enum reg_class *classes)
1091 {
1092   int cl, mode;
1093   enum reg_class aclass, best_class, *cl_ptr;
1094   int i, cost, min_cost, best_cost;
1095 
1096   for (cl = 0; cl < N_REG_CLASSES; cl++)
1097     class_translate[cl] = NO_REGS;
1098 
1099   for (i = 0; i < classes_num; i++)
1100     {
1101       aclass = classes[i];
1102       for (cl_ptr = &alloc_reg_class_subclasses[aclass][0];
1103 	   (cl = *cl_ptr) != LIM_REG_CLASSES;
1104 	   cl_ptr++)
1105 	if (class_translate[cl] == NO_REGS)
1106 	  class_translate[cl] = aclass;
1107       class_translate[aclass] = aclass;
1108     }
1109   /* For classes which are not fully covered by one of given classes
1110      (in other words covered by more one given class), use the
1111      cheapest class.  */
1112   for (cl = 0; cl < N_REG_CLASSES; cl++)
1113     {
1114       if (cl == NO_REGS || class_translate[cl] != NO_REGS)
1115 	continue;
1116       best_class = NO_REGS;
1117       best_cost = INT_MAX;
1118       for (i = 0; i < classes_num; i++)
1119 	{
1120 	  aclass = classes[i];
1121 	  COPY_HARD_REG_SET (temp_hard_regset,
1122 			     reg_class_contents[aclass]);
1123 	  AND_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1124 	  AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1125 	  if (! hard_reg_set_empty_p (temp_hard_regset))
1126 	    {
1127 	      min_cost = INT_MAX;
1128 	      for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1129 		{
1130 		  cost = (ira_memory_move_cost[mode][aclass][0]
1131 			  + ira_memory_move_cost[mode][aclass][1]);
1132 		  if (min_cost > cost)
1133 		    min_cost = cost;
1134 		}
1135 	      if (best_class == NO_REGS || best_cost > min_cost)
1136 		{
1137 		  best_class = aclass;
1138 		  best_cost = min_cost;
1139 		}
1140 	    }
1141 	}
1142       class_translate[cl] = best_class;
1143     }
1144 }
1145 
1146 /* Set up array IRA_ALLOCNO_CLASS_TRANSLATE and
1147    IRA_PRESSURE_CLASS_TRANSLATE.  */
1148 static void
setup_class_translate(void)1149 setup_class_translate (void)
1150 {
1151   setup_class_translate_array (ira_allocno_class_translate,
1152 			       ira_allocno_classes_num, ira_allocno_classes);
1153   setup_class_translate_array (ira_pressure_class_translate,
1154 			       ira_pressure_classes_num, ira_pressure_classes);
1155 }
1156 
1157 /* Order numbers of allocno classes in original target allocno class
1158    array, -1 for non-allocno classes.  */
1159 static int allocno_class_order[N_REG_CLASSES];
1160 
1161 /* The function used to sort the important classes.  */
1162 static int
comp_reg_classes_func(const void * v1p,const void * v2p)1163 comp_reg_classes_func (const void *v1p, const void *v2p)
1164 {
1165   enum reg_class cl1 = *(const enum reg_class *) v1p;
1166   enum reg_class cl2 = *(const enum reg_class *) v2p;
1167   enum reg_class tcl1, tcl2;
1168   int diff;
1169 
1170   tcl1 = ira_allocno_class_translate[cl1];
1171   tcl2 = ira_allocno_class_translate[cl2];
1172   if (tcl1 != NO_REGS && tcl2 != NO_REGS
1173       && (diff = allocno_class_order[tcl1] - allocno_class_order[tcl2]) != 0)
1174     return diff;
1175   return (int) cl1 - (int) cl2;
1176 }
1177 
1178 /* For correct work of function setup_reg_class_relation we need to
1179    reorder important classes according to the order of their allocno
1180    classes.  It places important classes containing the same
1181    allocatable hard register set adjacent to each other and allocno
1182    class with the allocatable hard register set right after the other
1183    important classes with the same set.
1184 
1185    In example from comments of function
1186    setup_allocno_and_important_classes, it places LEGACY_REGS and
1187    GENERAL_REGS close to each other and GENERAL_REGS is after
1188    LEGACY_REGS.  */
1189 static void
reorder_important_classes(void)1190 reorder_important_classes (void)
1191 {
1192   int i;
1193 
1194   for (i = 0; i < N_REG_CLASSES; i++)
1195     allocno_class_order[i] = -1;
1196   for (i = 0; i < ira_allocno_classes_num; i++)
1197     allocno_class_order[ira_allocno_classes[i]] = i;
1198   qsort (ira_important_classes, ira_important_classes_num,
1199 	 sizeof (enum reg_class), comp_reg_classes_func);
1200   for (i = 0; i < ira_important_classes_num; i++)
1201     ira_important_class_nums[ira_important_classes[i]] = i;
1202 }
1203 
1204 /* Set up IRA_REG_CLASS_SUBUNION, IRA_REG_CLASS_SUPERUNION,
1205    IRA_REG_CLASS_SUPER_CLASSES, IRA_REG_CLASSES_INTERSECT, and
1206    IRA_REG_CLASSES_INTERSECT_P.  For the meaning of the relations,
1207    please see corresponding comments in ira-int.h.  */
1208 static void
setup_reg_class_relations(void)1209 setup_reg_class_relations (void)
1210 {
1211   int i, cl1, cl2, cl3;
1212   HARD_REG_SET intersection_set, union_set, temp_set2;
1213   bool important_class_p[N_REG_CLASSES];
1214 
1215   memset (important_class_p, 0, sizeof (important_class_p));
1216   for (i = 0; i < ira_important_classes_num; i++)
1217     important_class_p[ira_important_classes[i]] = true;
1218   for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1219     {
1220       ira_reg_class_super_classes[cl1][0] = LIM_REG_CLASSES;
1221       for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1222 	{
1223 	  ira_reg_classes_intersect_p[cl1][cl2] = false;
1224 	  ira_reg_class_intersect[cl1][cl2] = NO_REGS;
1225 	  ira_reg_class_subset[cl1][cl2] = NO_REGS;
1226 	  COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl1]);
1227 	  AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1228 	  COPY_HARD_REG_SET (temp_set2, reg_class_contents[cl2]);
1229 	  AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1230 	  if (hard_reg_set_empty_p (temp_hard_regset)
1231 	      && hard_reg_set_empty_p (temp_set2))
1232 	    {
1233 	      /* The both classes have no allocatable hard registers
1234 		 -- take all class hard registers into account and use
1235 		 reg_class_subunion and reg_class_superunion.  */
1236 	      for (i = 0;; i++)
1237 		{
1238 		  cl3 = reg_class_subclasses[cl1][i];
1239 		  if (cl3 == LIM_REG_CLASSES)
1240 		    break;
1241 		  if (reg_class_subset_p (ira_reg_class_intersect[cl1][cl2],
1242 					  (enum reg_class) cl3))
1243 		    ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1244 		}
1245 	      ira_reg_class_subunion[cl1][cl2] = reg_class_subunion[cl1][cl2];
1246 	      ira_reg_class_superunion[cl1][cl2] = reg_class_superunion[cl1][cl2];
1247 	      continue;
1248 	    }
1249 	  ira_reg_classes_intersect_p[cl1][cl2]
1250 	    = hard_reg_set_intersect_p (temp_hard_regset, temp_set2);
1251 	  if (important_class_p[cl1] && important_class_p[cl2]
1252 	      && hard_reg_set_subset_p (temp_hard_regset, temp_set2))
1253 	    {
1254 	      /* CL1 and CL2 are important classes and CL1 allocatable
1255 		 hard register set is inside of CL2 allocatable hard
1256 		 registers -- make CL1 a superset of CL2.  */
1257 	      enum reg_class *p;
1258 
1259 	      p = &ira_reg_class_super_classes[cl1][0];
1260 	      while (*p != LIM_REG_CLASSES)
1261 		p++;
1262 	      *p++ = (enum reg_class) cl2;
1263 	      *p = LIM_REG_CLASSES;
1264 	    }
1265 	  ira_reg_class_subunion[cl1][cl2] = NO_REGS;
1266 	  ira_reg_class_superunion[cl1][cl2] = NO_REGS;
1267 	  COPY_HARD_REG_SET (intersection_set, reg_class_contents[cl1]);
1268 	  AND_HARD_REG_SET (intersection_set, reg_class_contents[cl2]);
1269 	  AND_COMPL_HARD_REG_SET (intersection_set, no_unit_alloc_regs);
1270 	  COPY_HARD_REG_SET (union_set, reg_class_contents[cl1]);
1271 	  IOR_HARD_REG_SET (union_set, reg_class_contents[cl2]);
1272 	  AND_COMPL_HARD_REG_SET (union_set, no_unit_alloc_regs);
1273 	  for (cl3 = 0; cl3 < N_REG_CLASSES; cl3++)
1274 	    {
1275 	      COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl3]);
1276 	      AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1277 	      if (hard_reg_set_subset_p (temp_hard_regset, intersection_set))
1278 		{
1279 		  /* CL3 allocatable hard register set is inside of
1280 		     intersection of allocatable hard register sets
1281 		     of CL1 and CL2.  */
1282 		  if (important_class_p[cl3])
1283 		    {
1284 		      COPY_HARD_REG_SET
1285 			(temp_set2,
1286 			 reg_class_contents
1287 			 [(int) ira_reg_class_intersect[cl1][cl2]]);
1288 		      AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1289 		      if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1290 			  /* If the allocatable hard register sets are
1291 			     the same, prefer GENERAL_REGS or the
1292 			     smallest class for debugging
1293 			     purposes.  */
1294 			  || (hard_reg_set_equal_p (temp_hard_regset, temp_set2)
1295 			      && (cl3 == GENERAL_REGS
1296 				  || ((ira_reg_class_intersect[cl1][cl2]
1297 				       != GENERAL_REGS)
1298 				      && hard_reg_set_subset_p
1299 				         (reg_class_contents[cl3],
1300 					  reg_class_contents
1301 					  [(int)
1302 					   ira_reg_class_intersect[cl1][cl2]])))))
1303 			ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1304 		    }
1305 		  COPY_HARD_REG_SET
1306 		    (temp_set2,
1307 		     reg_class_contents[(int) ira_reg_class_subset[cl1][cl2]]);
1308 		  AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1309 		  if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1310 		      /* Ignore unavailable hard registers and prefer
1311 			 smallest class for debugging purposes.  */
1312 		      || (hard_reg_set_equal_p (temp_hard_regset, temp_set2)
1313 			  && hard_reg_set_subset_p
1314 			     (reg_class_contents[cl3],
1315 			      reg_class_contents
1316 			      [(int) ira_reg_class_subset[cl1][cl2]])))
1317 		    ira_reg_class_subset[cl1][cl2] = (enum reg_class) cl3;
1318 		}
1319 	      if (important_class_p[cl3]
1320 		  && hard_reg_set_subset_p (temp_hard_regset, union_set))
1321 		{
1322 		  /* CL3 allocatable hard register set is inside of
1323 		     union of allocatable hard register sets of CL1
1324 		     and CL2.  */
1325 		  COPY_HARD_REG_SET
1326 		    (temp_set2,
1327 		     reg_class_contents[(int) ira_reg_class_subunion[cl1][cl2]]);
1328 		  AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1329 	 	  if (ira_reg_class_subunion[cl1][cl2] == NO_REGS
1330 		      || (hard_reg_set_subset_p (temp_set2, temp_hard_regset)
1331 
1332 			  && (! hard_reg_set_equal_p (temp_set2,
1333 						      temp_hard_regset)
1334 			      || cl3 == GENERAL_REGS
1335 			      /* If the allocatable hard register sets are the
1336 				 same, prefer GENERAL_REGS or the smallest
1337 				 class for debugging purposes.  */
1338 			      || (ira_reg_class_subunion[cl1][cl2] != GENERAL_REGS
1339 				  && hard_reg_set_subset_p
1340 				     (reg_class_contents[cl3],
1341 				      reg_class_contents
1342 				      [(int) ira_reg_class_subunion[cl1][cl2]])))))
1343 		    ira_reg_class_subunion[cl1][cl2] = (enum reg_class) cl3;
1344 		}
1345 	      if (hard_reg_set_subset_p (union_set, temp_hard_regset))
1346 		{
1347 		  /* CL3 allocatable hard register set contains union
1348 		     of allocatable hard register sets of CL1 and
1349 		     CL2.  */
1350 		  COPY_HARD_REG_SET
1351 		    (temp_set2,
1352 		     reg_class_contents[(int) ira_reg_class_superunion[cl1][cl2]]);
1353 		  AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1354 	 	  if (ira_reg_class_superunion[cl1][cl2] == NO_REGS
1355 		      || (hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1356 
1357 			  && (! hard_reg_set_equal_p (temp_set2,
1358 						      temp_hard_regset)
1359 			      || cl3 == GENERAL_REGS
1360 			      /* If the allocatable hard register sets are the
1361 				 same, prefer GENERAL_REGS or the smallest
1362 				 class for debugging purposes.  */
1363 			      || (ira_reg_class_superunion[cl1][cl2] != GENERAL_REGS
1364 				  && hard_reg_set_subset_p
1365 				     (reg_class_contents[cl3],
1366 				      reg_class_contents
1367 				      [(int) ira_reg_class_superunion[cl1][cl2]])))))
1368 		    ira_reg_class_superunion[cl1][cl2] = (enum reg_class) cl3;
1369 		}
1370 	    }
1371 	}
1372     }
1373 }
1374 
1375 /* Output all uniform and important classes into file F.  */
1376 static void
print_uniform_and_important_classes(FILE * f)1377 print_uniform_and_important_classes (FILE *f)
1378 {
1379   int i, cl;
1380 
1381   fprintf (f, "Uniform classes:\n");
1382   for (cl = 0; cl < N_REG_CLASSES; cl++)
1383     if (ira_uniform_class_p[cl])
1384       fprintf (f, " %s", reg_class_names[cl]);
1385   fprintf (f, "\nImportant classes:\n");
1386   for (i = 0; i < ira_important_classes_num; i++)
1387     fprintf (f, " %s", reg_class_names[ira_important_classes[i]]);
1388   fprintf (f, "\n");
1389 }
1390 
1391 /* Output all possible allocno or pressure classes and their
1392    translation map into file F.  */
1393 static void
print_translated_classes(FILE * f,bool pressure_p)1394 print_translated_classes (FILE *f, bool pressure_p)
1395 {
1396   int classes_num = (pressure_p
1397 		     ? ira_pressure_classes_num : ira_allocno_classes_num);
1398   enum reg_class *classes = (pressure_p
1399 			     ? ira_pressure_classes : ira_allocno_classes);
1400   enum reg_class *class_translate = (pressure_p
1401 				     ? ira_pressure_class_translate
1402 				     : ira_allocno_class_translate);
1403   int i;
1404 
1405   fprintf (f, "%s classes:\n", pressure_p ? "Pressure" : "Allocno");
1406   for (i = 0; i < classes_num; i++)
1407     fprintf (f, " %s", reg_class_names[classes[i]]);
1408   fprintf (f, "\nClass translation:\n");
1409   for (i = 0; i < N_REG_CLASSES; i++)
1410     fprintf (f, " %s -> %s\n", reg_class_names[i],
1411 	     reg_class_names[class_translate[i]]);
1412 }
1413 
1414 /* Output all possible allocno and translation classes and the
1415    translation maps into stderr.  */
1416 void
ira_debug_allocno_classes(void)1417 ira_debug_allocno_classes (void)
1418 {
1419   print_uniform_and_important_classes (stderr);
1420   print_translated_classes (stderr, false);
1421   print_translated_classes (stderr, true);
1422 }
1423 
1424 /* Set up different arrays concerning class subsets, allocno and
1425    important classes.  */
1426 static void
find_reg_classes(void)1427 find_reg_classes (void)
1428 {
1429   setup_allocno_and_important_classes ();
1430   setup_class_translate ();
1431   reorder_important_classes ();
1432   setup_reg_class_relations ();
1433 }
1434 
1435 
1436 
1437 /* Set up the array above.  */
1438 static void
setup_hard_regno_aclass(void)1439 setup_hard_regno_aclass (void)
1440 {
1441   int i;
1442 
1443   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1444     {
1445 #if 1
1446       ira_hard_regno_allocno_class[i]
1447 	= (TEST_HARD_REG_BIT (no_unit_alloc_regs, i)
1448 	   ? NO_REGS
1449 	   : ira_allocno_class_translate[REGNO_REG_CLASS (i)]);
1450 #else
1451       int j;
1452       enum reg_class cl;
1453       ira_hard_regno_allocno_class[i] = NO_REGS;
1454       for (j = 0; j < ira_allocno_classes_num; j++)
1455  	{
1456 	  cl = ira_allocno_classes[j];
1457  	  if (ira_class_hard_reg_index[cl][i] >= 0)
1458  	    {
1459 	      ira_hard_regno_allocno_class[i] = cl;
1460  	      break;
1461  	    }
1462  	}
1463 #endif
1464     }
1465 }
1466 
1467 
1468 
1469 /* Form IRA_REG_CLASS_MAX_NREGS and IRA_REG_CLASS_MIN_NREGS maps.  */
1470 static void
setup_reg_class_nregs(void)1471 setup_reg_class_nregs (void)
1472 {
1473   int i, cl, cl2, m;
1474 
1475   for (m = 0; m < MAX_MACHINE_MODE; m++)
1476     {
1477       for (cl = 0; cl < N_REG_CLASSES; cl++)
1478 	ira_reg_class_max_nregs[cl][m]
1479 	  = ira_reg_class_min_nregs[cl][m]
1480 	  = targetm.class_max_nregs ((reg_class_t) cl, (machine_mode) m);
1481       for (cl = 0; cl < N_REG_CLASSES; cl++)
1482 	for (i = 0;
1483 	     (cl2 = alloc_reg_class_subclasses[cl][i]) != LIM_REG_CLASSES;
1484 	     i++)
1485 	  if (ira_reg_class_min_nregs[cl2][m]
1486 	      < ira_reg_class_min_nregs[cl][m])
1487 	    ira_reg_class_min_nregs[cl][m] = ira_reg_class_min_nregs[cl2][m];
1488     }
1489 }
1490 
1491 
1492 
1493 /* Set up IRA_PROHIBITED_CLASS_MODE_REGS and IRA_CLASS_SINGLETON.
1494    This function is called once IRA_CLASS_HARD_REGS has been initialized.  */
1495 static void
setup_prohibited_class_mode_regs(void)1496 setup_prohibited_class_mode_regs (void)
1497 {
1498   int j, k, hard_regno, cl, last_hard_regno, count;
1499 
1500   for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1501     {
1502       COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1503       AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1504       for (j = 0; j < NUM_MACHINE_MODES; j++)
1505 	{
1506 	  count = 0;
1507 	  last_hard_regno = -1;
1508 	  CLEAR_HARD_REG_SET (ira_prohibited_class_mode_regs[cl][j]);
1509 	  for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1510 	    {
1511 	      hard_regno = ira_class_hard_regs[cl][k];
1512 	      if (!targetm.hard_regno_mode_ok (hard_regno, (machine_mode) j))
1513 		SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1514 				  hard_regno);
1515 	      else if (in_hard_reg_set_p (temp_hard_regset,
1516 					  (machine_mode) j, hard_regno))
1517 		{
1518 		  last_hard_regno = hard_regno;
1519 		  count++;
1520 		}
1521 	    }
1522 	  ira_class_singleton[cl][j] = (count == 1 ? last_hard_regno : -1);
1523 	}
1524     }
1525 }
1526 
1527 /* Clarify IRA_PROHIBITED_CLASS_MODE_REGS by excluding hard registers
1528    spanning from one register pressure class to another one.  It is
1529    called after defining the pressure classes.  */
1530 static void
clarify_prohibited_class_mode_regs(void)1531 clarify_prohibited_class_mode_regs (void)
1532 {
1533   int j, k, hard_regno, cl, pclass, nregs;
1534 
1535   for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1536     for (j = 0; j < NUM_MACHINE_MODES; j++)
1537       {
1538 	CLEAR_HARD_REG_SET (ira_useful_class_mode_regs[cl][j]);
1539 	for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1540 	  {
1541 	    hard_regno = ira_class_hard_regs[cl][k];
1542 	    if (TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j], hard_regno))
1543 	      continue;
1544 	    nregs = hard_regno_nregs (hard_regno, (machine_mode) j);
1545 	    if (hard_regno + nregs > FIRST_PSEUDO_REGISTER)
1546 	      {
1547 		SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1548 				  hard_regno);
1549 		 continue;
1550 	      }
1551 	    pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
1552 	    for (nregs-- ;nregs >= 0; nregs--)
1553 	      if (((enum reg_class) pclass
1554 		   != ira_pressure_class_translate[REGNO_REG_CLASS
1555 						   (hard_regno + nregs)]))
1556 		{
1557 		  SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1558 				    hard_regno);
1559 		  break;
1560 		}
1561 	    if (!TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1562 				    hard_regno))
1563 	      add_to_hard_reg_set (&ira_useful_class_mode_regs[cl][j],
1564 				   (machine_mode) j, hard_regno);
1565 	  }
1566       }
1567 }
1568 
1569 /* Allocate and initialize IRA_REGISTER_MOVE_COST, IRA_MAY_MOVE_IN_COST
1570    and IRA_MAY_MOVE_OUT_COST for MODE.  */
1571 void
ira_init_register_move_cost(machine_mode mode)1572 ira_init_register_move_cost (machine_mode mode)
1573 {
1574   static unsigned short last_move_cost[N_REG_CLASSES][N_REG_CLASSES];
1575   bool all_match = true;
1576   unsigned int i, cl1, cl2;
1577   HARD_REG_SET ok_regs;
1578 
1579   ira_assert (ira_register_move_cost[mode] == NULL
1580 	      && ira_may_move_in_cost[mode] == NULL
1581 	      && ira_may_move_out_cost[mode] == NULL);
1582   CLEAR_HARD_REG_SET (ok_regs);
1583   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1584     if (targetm.hard_regno_mode_ok (i, mode))
1585       SET_HARD_REG_BIT (ok_regs, i);
1586 
1587   /* Note that we might be asked about the move costs of modes that
1588      cannot be stored in any hard register, for example if an inline
1589      asm tries to create a register operand with an impossible mode.
1590      We therefore can't assert have_regs_of_mode[mode] here.  */
1591   for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1592     for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1593       {
1594 	int cost;
1595 	if (!hard_reg_set_intersect_p (ok_regs, reg_class_contents[cl1])
1596 	    || !hard_reg_set_intersect_p (ok_regs, reg_class_contents[cl2]))
1597 	  {
1598 	    if ((ira_reg_class_max_nregs[cl1][mode]
1599 		 > ira_class_hard_regs_num[cl1])
1600 		|| (ira_reg_class_max_nregs[cl2][mode]
1601 		    > ira_class_hard_regs_num[cl2]))
1602 	      cost = 65535;
1603 	    else
1604 	      cost = (ira_memory_move_cost[mode][cl1][0]
1605 		      + ira_memory_move_cost[mode][cl2][1]) * 2;
1606 	  }
1607 	else
1608 	  {
1609 	    cost = register_move_cost (mode, (enum reg_class) cl1,
1610 				       (enum reg_class) cl2);
1611 	    ira_assert (cost < 65535);
1612 	  }
1613 	all_match &= (last_move_cost[cl1][cl2] == cost);
1614 	last_move_cost[cl1][cl2] = cost;
1615       }
1616   if (all_match && last_mode_for_init_move_cost != -1)
1617     {
1618       ira_register_move_cost[mode]
1619 	= ira_register_move_cost[last_mode_for_init_move_cost];
1620       ira_may_move_in_cost[mode]
1621 	= ira_may_move_in_cost[last_mode_for_init_move_cost];
1622       ira_may_move_out_cost[mode]
1623 	= ira_may_move_out_cost[last_mode_for_init_move_cost];
1624       return;
1625     }
1626   last_mode_for_init_move_cost = mode;
1627   ira_register_move_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1628   ira_may_move_in_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1629   ira_may_move_out_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1630   for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1631     for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1632       {
1633 	int cost;
1634 	enum reg_class *p1, *p2;
1635 
1636 	if (last_move_cost[cl1][cl2] == 65535)
1637 	  {
1638 	    ira_register_move_cost[mode][cl1][cl2] = 65535;
1639 	    ira_may_move_in_cost[mode][cl1][cl2] = 65535;
1640 	    ira_may_move_out_cost[mode][cl1][cl2] = 65535;
1641 	  }
1642 	else
1643 	  {
1644 	    cost = last_move_cost[cl1][cl2];
1645 
1646 	    for (p2 = &reg_class_subclasses[cl2][0];
1647 		 *p2 != LIM_REG_CLASSES; p2++)
1648 	      if (ira_class_hard_regs_num[*p2] > 0
1649 		  && (ira_reg_class_max_nregs[*p2][mode]
1650 		      <= ira_class_hard_regs_num[*p2]))
1651 		cost = MAX (cost, ira_register_move_cost[mode][cl1][*p2]);
1652 
1653 	    for (p1 = &reg_class_subclasses[cl1][0];
1654 		 *p1 != LIM_REG_CLASSES; p1++)
1655 	      if (ira_class_hard_regs_num[*p1] > 0
1656 		  && (ira_reg_class_max_nregs[*p1][mode]
1657 		      <= ira_class_hard_regs_num[*p1]))
1658 		cost = MAX (cost, ira_register_move_cost[mode][*p1][cl2]);
1659 
1660 	    ira_assert (cost <= 65535);
1661 	    ira_register_move_cost[mode][cl1][cl2] = cost;
1662 
1663 	    if (ira_class_subset_p[cl1][cl2])
1664 	      ira_may_move_in_cost[mode][cl1][cl2] = 0;
1665 	    else
1666 	      ira_may_move_in_cost[mode][cl1][cl2] = cost;
1667 
1668 	    if (ira_class_subset_p[cl2][cl1])
1669 	      ira_may_move_out_cost[mode][cl1][cl2] = 0;
1670 	    else
1671 	      ira_may_move_out_cost[mode][cl1][cl2] = cost;
1672 	  }
1673       }
1674 }
1675 
1676 
1677 
1678 /* This is called once during compiler work.  It sets up
1679    different arrays whose values don't depend on the compiled
1680    function.  */
1681 void
ira_init_once(void)1682 ira_init_once (void)
1683 {
1684   ira_init_costs_once ();
1685   lra_init_once ();
1686 
1687   ira_use_lra_p = targetm.lra_p ();
1688 }
1689 
1690 /* Free ira_max_register_move_cost, ira_may_move_in_cost and
1691    ira_may_move_out_cost for each mode.  */
1692 void
free_register_move_costs(void)1693 target_ira_int::free_register_move_costs (void)
1694 {
1695   int mode, i;
1696 
1697   /* Reset move_cost and friends, making sure we only free shared
1698      table entries once.  */
1699   for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1700     if (x_ira_register_move_cost[mode])
1701       {
1702 	for (i = 0;
1703 	     i < mode && (x_ira_register_move_cost[i]
1704 			  != x_ira_register_move_cost[mode]);
1705 	     i++)
1706 	  ;
1707 	if (i == mode)
1708 	  {
1709 	    free (x_ira_register_move_cost[mode]);
1710 	    free (x_ira_may_move_in_cost[mode]);
1711 	    free (x_ira_may_move_out_cost[mode]);
1712 	  }
1713       }
1714   memset (x_ira_register_move_cost, 0, sizeof x_ira_register_move_cost);
1715   memset (x_ira_may_move_in_cost, 0, sizeof x_ira_may_move_in_cost);
1716   memset (x_ira_may_move_out_cost, 0, sizeof x_ira_may_move_out_cost);
1717   last_mode_for_init_move_cost = -1;
1718 }
1719 
~target_ira_int()1720 target_ira_int::~target_ira_int ()
1721 {
1722   free_ira_costs ();
1723   free_register_move_costs ();
1724 }
1725 
1726 /* This is called every time when register related information is
1727    changed.  */
1728 void
ira_init(void)1729 ira_init (void)
1730 {
1731   this_target_ira_int->free_register_move_costs ();
1732   setup_reg_mode_hard_regset ();
1733   setup_alloc_regs (flag_omit_frame_pointer != 0);
1734   setup_class_subset_and_memory_move_costs ();
1735   setup_reg_class_nregs ();
1736   setup_prohibited_class_mode_regs ();
1737   find_reg_classes ();
1738   clarify_prohibited_class_mode_regs ();
1739   setup_hard_regno_aclass ();
1740   ira_init_costs ();
1741 }
1742 
1743 
1744 #define ira_prohibited_mode_move_regs_initialized_p \
1745   (this_target_ira_int->x_ira_prohibited_mode_move_regs_initialized_p)
1746 
1747 /* Set up IRA_PROHIBITED_MODE_MOVE_REGS.  */
1748 static void
setup_prohibited_mode_move_regs(void)1749 setup_prohibited_mode_move_regs (void)
1750 {
1751   int i, j;
1752   rtx test_reg1, test_reg2, move_pat;
1753   rtx_insn *move_insn;
1754 
1755   if (ira_prohibited_mode_move_regs_initialized_p)
1756     return;
1757   ira_prohibited_mode_move_regs_initialized_p = true;
1758   test_reg1 = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
1759   test_reg2 = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 2);
1760   move_pat = gen_rtx_SET (test_reg1, test_reg2);
1761   move_insn = gen_rtx_INSN (VOIDmode, 0, 0, 0, move_pat, 0, -1, 0);
1762   for (i = 0; i < NUM_MACHINE_MODES; i++)
1763     {
1764       SET_HARD_REG_SET (ira_prohibited_mode_move_regs[i]);
1765       for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1766 	{
1767 	  if (!targetm.hard_regno_mode_ok (j, (machine_mode) i))
1768 	    continue;
1769 	  set_mode_and_regno (test_reg1, (machine_mode) i, j);
1770 	  set_mode_and_regno (test_reg2, (machine_mode) i, j);
1771 	  INSN_CODE (move_insn) = -1;
1772 	  recog_memoized (move_insn);
1773 	  if (INSN_CODE (move_insn) < 0)
1774 	    continue;
1775 	  extract_insn (move_insn);
1776 	  /* We don't know whether the move will be in code that is optimized
1777 	     for size or speed, so consider all enabled alternatives.  */
1778 	  if (! constrain_operands (1, get_enabled_alternatives (move_insn)))
1779 	    continue;
1780 	  CLEAR_HARD_REG_BIT (ira_prohibited_mode_move_regs[i], j);
1781 	}
1782     }
1783 }
1784 
1785 
1786 
1787 /* Setup possible alternatives in ALTS for INSN.  */
1788 void
ira_setup_alts(rtx_insn * insn,HARD_REG_SET & alts)1789 ira_setup_alts (rtx_insn *insn, HARD_REG_SET &alts)
1790 {
1791   /* MAP nalt * nop -> start of constraints for given operand and
1792      alternative.  */
1793   static vec<const char *> insn_constraints;
1794   int nop, nalt;
1795   bool curr_swapped;
1796   const char *p;
1797   int commutative = -1;
1798 
1799   extract_insn (insn);
1800   alternative_mask preferred = get_preferred_alternatives (insn);
1801   CLEAR_HARD_REG_SET (alts);
1802   insn_constraints.release ();
1803   insn_constraints.safe_grow_cleared (recog_data.n_operands
1804 				      * recog_data.n_alternatives + 1);
1805   /* Check that the hard reg set is enough for holding all
1806      alternatives.  It is hard to imagine the situation when the
1807      assertion is wrong.  */
1808   ira_assert (recog_data.n_alternatives
1809 	      <= (int) MAX (sizeof (HARD_REG_ELT_TYPE) * CHAR_BIT,
1810 			    FIRST_PSEUDO_REGISTER));
1811   for (curr_swapped = false;; curr_swapped = true)
1812     {
1813       /* Calculate some data common for all alternatives to speed up the
1814 	 function.  */
1815       for (nop = 0; nop < recog_data.n_operands; nop++)
1816 	{
1817 	  for (nalt = 0, p = recog_data.constraints[nop];
1818 	       nalt < recog_data.n_alternatives;
1819 	       nalt++)
1820 	    {
1821 	      insn_constraints[nop * recog_data.n_alternatives + nalt] = p;
1822 	      while (*p && *p != ',')
1823 		{
1824 		  /* We only support one commutative marker, the first
1825 		     one.  We already set commutative above.  */
1826 		  if (*p == '%' && commutative < 0)
1827 		    commutative = nop;
1828 		  p++;
1829 		}
1830 	      if (*p)
1831 		p++;
1832 	    }
1833 	}
1834       for (nalt = 0; nalt < recog_data.n_alternatives; nalt++)
1835 	{
1836 	  if (!TEST_BIT (preferred, nalt)
1837 	      || TEST_HARD_REG_BIT (alts, nalt))
1838 	    continue;
1839 
1840 	  for (nop = 0; nop < recog_data.n_operands; nop++)
1841 	    {
1842 	      int c, len;
1843 
1844 	      rtx op = recog_data.operand[nop];
1845 	      p = insn_constraints[nop * recog_data.n_alternatives + nalt];
1846 	      if (*p == 0 || *p == ',')
1847 		continue;
1848 
1849 	      do
1850 		switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
1851 		  {
1852 		  case '#':
1853 		  case ',':
1854 		    c = '\0';
1855 		    /* FALLTHRU */
1856 		  case '\0':
1857 		    len = 0;
1858 		    break;
1859 
1860 		  case '%':
1861 		    /* The commutative modifier is handled above.  */
1862 		    break;
1863 
1864 		  case '0':  case '1':  case '2':  case '3':  case '4':
1865 		  case '5':  case '6':  case '7':  case '8':  case '9':
1866 		    goto op_success;
1867 		    break;
1868 
1869 		  case 'g':
1870 		    goto op_success;
1871 		    break;
1872 
1873 		  default:
1874 		    {
1875 		      enum constraint_num cn = lookup_constraint (p);
1876 		      switch (get_constraint_type (cn))
1877 			{
1878 			case CT_REGISTER:
1879 			  if (reg_class_for_constraint (cn) != NO_REGS)
1880 			    goto op_success;
1881 			  break;
1882 
1883 			case CT_CONST_INT:
1884 			  if (CONST_INT_P (op)
1885 			      && (insn_const_int_ok_for_constraint
1886 				  (INTVAL (op), cn)))
1887 			    goto op_success;
1888 			  break;
1889 
1890 			case CT_ADDRESS:
1891 			case CT_MEMORY:
1892 			case CT_SPECIAL_MEMORY:
1893 			  goto op_success;
1894 
1895 			case CT_FIXED_FORM:
1896 			  if (constraint_satisfied_p (op, cn))
1897 			    goto op_success;
1898 			  break;
1899 			}
1900 		      break;
1901 		    }
1902 		  }
1903 	      while (p += len, c);
1904 	      break;
1905 	    op_success:
1906 	      ;
1907 	    }
1908 	  if (nop >= recog_data.n_operands)
1909 	    SET_HARD_REG_BIT (alts, nalt);
1910 	}
1911       if (commutative < 0)
1912 	break;
1913       /* Swap forth and back to avoid changing recog_data.  */
1914       std::swap (recog_data.operand[commutative],
1915 		 recog_data.operand[commutative + 1]);
1916       if (curr_swapped)
1917 	break;
1918     }
1919 }
1920 
1921 /* Return the number of the output non-early clobber operand which
1922    should be the same in any case as operand with number OP_NUM (or
1923    negative value if there is no such operand).  The function takes
1924    only really possible alternatives into consideration.  */
1925 int
ira_get_dup_out_num(int op_num,HARD_REG_SET & alts)1926 ira_get_dup_out_num (int op_num, HARD_REG_SET &alts)
1927 {
1928   int curr_alt, c, original, dup;
1929   bool ignore_p, use_commut_op_p;
1930   const char *str;
1931 
1932   if (op_num < 0 || recog_data.n_alternatives == 0)
1933     return -1;
1934   /* We should find duplications only for input operands.  */
1935   if (recog_data.operand_type[op_num] != OP_IN)
1936     return -1;
1937   str = recog_data.constraints[op_num];
1938   use_commut_op_p = false;
1939   for (;;)
1940     {
1941       rtx op = recog_data.operand[op_num];
1942 
1943       for (curr_alt = 0, ignore_p = !TEST_HARD_REG_BIT (alts, curr_alt),
1944 	   original = -1;;)
1945 	{
1946 	  c = *str;
1947 	  if (c == '\0')
1948 	    break;
1949 	  if (c == '#')
1950 	    ignore_p = true;
1951 	  else if (c == ',')
1952 	    {
1953 	      curr_alt++;
1954 	      ignore_p = !TEST_HARD_REG_BIT (alts, curr_alt);
1955 	    }
1956 	  else if (! ignore_p)
1957 	    switch (c)
1958 	      {
1959 	      case 'g':
1960 		goto fail;
1961 	      default:
1962 		{
1963 		  enum constraint_num cn = lookup_constraint (str);
1964 		  enum reg_class cl = reg_class_for_constraint (cn);
1965 		  if (cl != NO_REGS
1966 		      && !targetm.class_likely_spilled_p (cl))
1967 		    goto fail;
1968 		  if (constraint_satisfied_p (op, cn))
1969 		    goto fail;
1970 		  break;
1971 		}
1972 
1973 	      case '0': case '1': case '2': case '3': case '4':
1974 	      case '5': case '6': case '7': case '8': case '9':
1975 		if (original != -1 && original != c)
1976 		  goto fail;
1977 		original = c;
1978 		break;
1979 	      }
1980 	  str += CONSTRAINT_LEN (c, str);
1981 	}
1982       if (original == -1)
1983 	goto fail;
1984       dup = -1;
1985       for (ignore_p = false, str = recog_data.constraints[original - '0'];
1986 	   *str != 0;
1987 	   str++)
1988 	if (ignore_p)
1989 	  {
1990 	    if (*str == ',')
1991 	      ignore_p = false;
1992 	  }
1993 	else if (*str == '#')
1994 	  ignore_p = true;
1995 	else if (! ignore_p)
1996 	  {
1997 	    if (*str == '=')
1998 	      dup = original - '0';
1999 	    /* It is better ignore an alternative with early clobber.  */
2000 	    else if (*str == '&')
2001 	      goto fail;
2002 	  }
2003       if (dup >= 0)
2004 	return dup;
2005     fail:
2006       if (use_commut_op_p)
2007 	break;
2008       use_commut_op_p = true;
2009       if (recog_data.constraints[op_num][0] == '%')
2010 	str = recog_data.constraints[op_num + 1];
2011       else if (op_num > 0 && recog_data.constraints[op_num - 1][0] == '%')
2012 	str = recog_data.constraints[op_num - 1];
2013       else
2014 	break;
2015     }
2016   return -1;
2017 }
2018 
2019 
2020 
2021 /* Search forward to see if the source register of a copy insn dies
2022    before either it or the destination register is modified, but don't
2023    scan past the end of the basic block.  If so, we can replace the
2024    source with the destination and let the source die in the copy
2025    insn.
2026 
2027    This will reduce the number of registers live in that range and may
2028    enable the destination and the source coalescing, thus often saving
2029    one register in addition to a register-register copy.  */
2030 
2031 static void
decrease_live_ranges_number(void)2032 decrease_live_ranges_number (void)
2033 {
2034   basic_block bb;
2035   rtx_insn *insn;
2036   rtx set, src, dest, dest_death, note;
2037   rtx_insn *p, *q;
2038   int sregno, dregno;
2039 
2040   if (! flag_expensive_optimizations)
2041     return;
2042 
2043   if (ira_dump_file)
2044     fprintf (ira_dump_file, "Starting decreasing number of live ranges...\n");
2045 
2046   FOR_EACH_BB_FN (bb, cfun)
2047     FOR_BB_INSNS (bb, insn)
2048       {
2049 	set = single_set (insn);
2050 	if (! set)
2051 	  continue;
2052 	src = SET_SRC (set);
2053 	dest = SET_DEST (set);
2054 	if (! REG_P (src) || ! REG_P (dest)
2055 	    || find_reg_note (insn, REG_DEAD, src))
2056 	  continue;
2057 	sregno = REGNO (src);
2058 	dregno = REGNO (dest);
2059 
2060 	/* We don't want to mess with hard regs if register classes
2061 	   are small.  */
2062 	if (sregno == dregno
2063 	    || (targetm.small_register_classes_for_mode_p (GET_MODE (src))
2064 		&& (sregno < FIRST_PSEUDO_REGISTER
2065 		    || dregno < FIRST_PSEUDO_REGISTER))
2066 	    /* We don't see all updates to SP if they are in an
2067 	       auto-inc memory reference, so we must disallow this
2068 	       optimization on them.  */
2069 	    || sregno == STACK_POINTER_REGNUM
2070 	    || dregno == STACK_POINTER_REGNUM)
2071 	  continue;
2072 
2073 	dest_death = NULL_RTX;
2074 
2075 	for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
2076 	  {
2077 	    if (! INSN_P (p))
2078 	      continue;
2079 	    if (BLOCK_FOR_INSN (p) != bb)
2080 	      break;
2081 
2082 	    if (reg_set_p (src, p) || reg_set_p (dest, p)
2083 		/* If SRC is an asm-declared register, it must not be
2084 		   replaced in any asm.  Unfortunately, the REG_EXPR
2085 		   tree for the asm variable may be absent in the SRC
2086 		   rtx, so we can't check the actual register
2087 		   declaration easily (the asm operand will have it,
2088 		   though).  To avoid complicating the test for a rare
2089 		   case, we just don't perform register replacement
2090 		   for a hard reg mentioned in an asm.  */
2091 		|| (sregno < FIRST_PSEUDO_REGISTER
2092 		    && asm_noperands (PATTERN (p)) >= 0
2093 		    && reg_overlap_mentioned_p (src, PATTERN (p)))
2094 		/* Don't change hard registers used by a call.  */
2095 		|| (CALL_P (p) && sregno < FIRST_PSEUDO_REGISTER
2096 		    && find_reg_fusage (p, USE, src))
2097 		/* Don't change a USE of a register.  */
2098 		|| (GET_CODE (PATTERN (p)) == USE
2099 		    && reg_overlap_mentioned_p (src, XEXP (PATTERN (p), 0))))
2100 	      break;
2101 
2102 	    /* See if all of SRC dies in P.  This test is slightly
2103 	       more conservative than it needs to be.  */
2104 	    if ((note = find_regno_note (p, REG_DEAD, sregno))
2105 		&& GET_MODE (XEXP (note, 0)) == GET_MODE (src))
2106 	      {
2107 		int failed = 0;
2108 
2109 		/* We can do the optimization.  Scan forward from INSN
2110 		   again, replacing regs as we go.  Set FAILED if a
2111 		   replacement can't be done.  In that case, we can't
2112 		   move the death note for SRC.  This should be
2113 		   rare.  */
2114 
2115 		/* Set to stop at next insn.  */
2116 		for (q = next_real_insn (insn);
2117 		     q != next_real_insn (p);
2118 		     q = next_real_insn (q))
2119 		  {
2120 		    if (reg_overlap_mentioned_p (src, PATTERN (q)))
2121 		      {
2122 			/* If SRC is a hard register, we might miss
2123 			   some overlapping registers with
2124 			   validate_replace_rtx, so we would have to
2125 			   undo it.  We can't if DEST is present in
2126 			   the insn, so fail in that combination of
2127 			   cases.  */
2128 			if (sregno < FIRST_PSEUDO_REGISTER
2129 			    && reg_mentioned_p (dest, PATTERN (q)))
2130 			  failed = 1;
2131 
2132 			/* Attempt to replace all uses.  */
2133 			else if (!validate_replace_rtx (src, dest, q))
2134 			  failed = 1;
2135 
2136 			/* If this succeeded, but some part of the
2137 			   register is still present, undo the
2138 			   replacement.  */
2139 			else if (sregno < FIRST_PSEUDO_REGISTER
2140 				 && reg_overlap_mentioned_p (src, PATTERN (q)))
2141 			  {
2142 			    validate_replace_rtx (dest, src, q);
2143 			    failed = 1;
2144 			  }
2145 		      }
2146 
2147 		    /* If DEST dies here, remove the death note and
2148 		       save it for later.  Make sure ALL of DEST dies
2149 		       here; again, this is overly conservative.  */
2150 		    if (! dest_death
2151 			&& (dest_death = find_regno_note (q, REG_DEAD, dregno)))
2152 		      {
2153 			if (GET_MODE (XEXP (dest_death, 0)) == GET_MODE (dest))
2154 			  remove_note (q, dest_death);
2155 			else
2156 			  {
2157 			    failed = 1;
2158 			    dest_death = 0;
2159 			  }
2160 		      }
2161 		  }
2162 
2163 		if (! failed)
2164 		  {
2165 		    /* Move death note of SRC from P to INSN.  */
2166 		    remove_note (p, note);
2167 		    XEXP (note, 1) = REG_NOTES (insn);
2168 		    REG_NOTES (insn) = note;
2169 		  }
2170 
2171 		/* DEST is also dead if INSN has a REG_UNUSED note for
2172 		   DEST.  */
2173 		if (! dest_death
2174 		    && (dest_death
2175 			= find_regno_note (insn, REG_UNUSED, dregno)))
2176 		  {
2177 		    PUT_REG_NOTE_KIND (dest_death, REG_DEAD);
2178 		    remove_note (insn, dest_death);
2179 		  }
2180 
2181 		/* Put death note of DEST on P if we saw it die.  */
2182 		if (dest_death)
2183 		  {
2184 		    XEXP (dest_death, 1) = REG_NOTES (p);
2185 		    REG_NOTES (p) = dest_death;
2186 		  }
2187 		break;
2188 	      }
2189 
2190 	    /* If SRC is a hard register which is set or killed in
2191 	       some other way, we can't do this optimization.  */
2192 	    else if (sregno < FIRST_PSEUDO_REGISTER && dead_or_set_p (p, src))
2193 	      break;
2194 	  }
2195       }
2196 }
2197 
2198 
2199 
2200 /* Return nonzero if REGNO is a particularly bad choice for reloading X.  */
2201 static bool
ira_bad_reload_regno_1(int regno,rtx x)2202 ira_bad_reload_regno_1 (int regno, rtx x)
2203 {
2204   int x_regno, n, i;
2205   ira_allocno_t a;
2206   enum reg_class pref;
2207 
2208   /* We only deal with pseudo regs.  */
2209   if (! x || GET_CODE (x) != REG)
2210     return false;
2211 
2212   x_regno = REGNO (x);
2213   if (x_regno < FIRST_PSEUDO_REGISTER)
2214     return false;
2215 
2216   /* If the pseudo prefers REGNO explicitly, then do not consider
2217      REGNO a bad spill choice.  */
2218   pref = reg_preferred_class (x_regno);
2219   if (reg_class_size[pref] == 1)
2220     return !TEST_HARD_REG_BIT (reg_class_contents[pref], regno);
2221 
2222   /* If the pseudo conflicts with REGNO, then we consider REGNO a
2223      poor choice for a reload regno.  */
2224   a = ira_regno_allocno_map[x_regno];
2225   n = ALLOCNO_NUM_OBJECTS (a);
2226   for (i = 0; i < n; i++)
2227     {
2228       ira_object_t obj = ALLOCNO_OBJECT (a, i);
2229       if (TEST_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), regno))
2230 	return true;
2231     }
2232   return false;
2233 }
2234 
2235 /* Return nonzero if REGNO is a particularly bad choice for reloading
2236    IN or OUT.  */
2237 bool
ira_bad_reload_regno(int regno,rtx in,rtx out)2238 ira_bad_reload_regno (int regno, rtx in, rtx out)
2239 {
2240   return (ira_bad_reload_regno_1 (regno, in)
2241 	  || ira_bad_reload_regno_1 (regno, out));
2242 }
2243 
2244 /* Add register clobbers from asm statements.  */
2245 static void
compute_regs_asm_clobbered(void)2246 compute_regs_asm_clobbered (void)
2247 {
2248   basic_block bb;
2249 
2250   FOR_EACH_BB_FN (bb, cfun)
2251     {
2252       rtx_insn *insn;
2253       FOR_BB_INSNS_REVERSE (bb, insn)
2254 	{
2255 	  df_ref def;
2256 
2257 	  if (NONDEBUG_INSN_P (insn) && asm_noperands (PATTERN (insn)) >= 0)
2258 	    FOR_EACH_INSN_DEF (def, insn)
2259 	      {
2260 		unsigned int dregno = DF_REF_REGNO (def);
2261 		if (HARD_REGISTER_NUM_P (dregno))
2262 		  add_to_hard_reg_set (&crtl->asm_clobbers,
2263 				       GET_MODE (DF_REF_REAL_REG (def)),
2264 				       dregno);
2265 	      }
2266 	}
2267     }
2268 }
2269 
2270 
2271 /* Set up ELIMINABLE_REGSET, IRA_NO_ALLOC_REGS, and
2272    REGS_EVER_LIVE.  */
2273 void
ira_setup_eliminable_regset(void)2274 ira_setup_eliminable_regset (void)
2275 {
2276   int i;
2277   static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
2278 
2279   /* Setup is_leaf as frame_pointer_required may use it.  This function
2280      is called by sched_init before ira if scheduling is enabled.  */
2281   crtl->is_leaf = leaf_function_p ();
2282 
2283   /* FIXME: If EXIT_IGNORE_STACK is set, we will not save and restore
2284      sp for alloca.  So we can't eliminate the frame pointer in that
2285      case.  At some point, we should improve this by emitting the
2286      sp-adjusting insns for this case.  */
2287   frame_pointer_needed
2288     = (! flag_omit_frame_pointer
2289        || (cfun->calls_alloca && EXIT_IGNORE_STACK)
2290        /* We need the frame pointer to catch stack overflow exceptions if
2291 	  the stack pointer is moving (as for the alloca case just above).  */
2292        || (STACK_CHECK_MOVING_SP
2293 	   && flag_stack_check
2294 	   && flag_exceptions
2295 	   && cfun->can_throw_non_call_exceptions)
2296        || crtl->accesses_prior_frames
2297        || (SUPPORTS_STACK_ALIGNMENT && crtl->stack_realign_needed)
2298        || targetm.frame_pointer_required ());
2299 
2300     /* The chance that FRAME_POINTER_NEEDED is changed from inspecting
2301        RTL is very small.  So if we use frame pointer for RA and RTL
2302        actually prevents this, we will spill pseudos assigned to the
2303        frame pointer in LRA.  */
2304 
2305   if (frame_pointer_needed)
2306     df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
2307 
2308   COPY_HARD_REG_SET (ira_no_alloc_regs, no_unit_alloc_regs);
2309   CLEAR_HARD_REG_SET (eliminable_regset);
2310 
2311   compute_regs_asm_clobbered ();
2312 
2313   /* Build the regset of all eliminable registers and show we can't
2314      use those that we already know won't be eliminated.  */
2315   for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
2316     {
2317       bool cannot_elim
2318 	= (! targetm.can_eliminate (eliminables[i].from, eliminables[i].to)
2319 	   || (eliminables[i].to == STACK_POINTER_REGNUM && frame_pointer_needed));
2320 
2321       if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, eliminables[i].from))
2322 	{
2323 	    SET_HARD_REG_BIT (eliminable_regset, eliminables[i].from);
2324 
2325 	    if (cannot_elim)
2326 	      SET_HARD_REG_BIT (ira_no_alloc_regs, eliminables[i].from);
2327 	}
2328       else if (cannot_elim)
2329 	error ("%s cannot be used in asm here",
2330 	       reg_names[eliminables[i].from]);
2331       else
2332 	df_set_regs_ever_live (eliminables[i].from, true);
2333     }
2334   if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
2335     {
2336       if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, HARD_FRAME_POINTER_REGNUM))
2337 	{
2338 	  SET_HARD_REG_BIT (eliminable_regset, HARD_FRAME_POINTER_REGNUM);
2339 	  if (frame_pointer_needed)
2340 	    SET_HARD_REG_BIT (ira_no_alloc_regs, HARD_FRAME_POINTER_REGNUM);
2341 	}
2342       else if (frame_pointer_needed)
2343 	error ("%s cannot be used in asm here",
2344 	       reg_names[HARD_FRAME_POINTER_REGNUM]);
2345       else
2346 	df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
2347     }
2348 }
2349 
2350 
2351 
2352 /* Vector of substitutions of register numbers,
2353    used to map pseudo regs into hardware regs.
2354    This is set up as a result of register allocation.
2355    Element N is the hard reg assigned to pseudo reg N,
2356    or is -1 if no hard reg was assigned.
2357    If N is a hard reg number, element N is N.  */
2358 short *reg_renumber;
2359 
2360 /* Set up REG_RENUMBER and CALLER_SAVE_NEEDED (used by reload) from
2361    the allocation found by IRA.  */
2362 static void
setup_reg_renumber(void)2363 setup_reg_renumber (void)
2364 {
2365   int regno, hard_regno;
2366   ira_allocno_t a;
2367   ira_allocno_iterator ai;
2368 
2369   caller_save_needed = 0;
2370   FOR_EACH_ALLOCNO (a, ai)
2371     {
2372       if (ira_use_lra_p && ALLOCNO_CAP_MEMBER (a) != NULL)
2373 	continue;
2374       /* There are no caps at this point.  */
2375       ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
2376       if (! ALLOCNO_ASSIGNED_P (a))
2377 	/* It can happen if A is not referenced but partially anticipated
2378 	   somewhere in a region.  */
2379 	ALLOCNO_ASSIGNED_P (a) = true;
2380       ira_free_allocno_updated_costs (a);
2381       hard_regno = ALLOCNO_HARD_REGNO (a);
2382       regno = ALLOCNO_REGNO (a);
2383       reg_renumber[regno] = (hard_regno < 0 ? -1 : hard_regno);
2384       if (hard_regno >= 0)
2385 	{
2386 	  int i, nwords;
2387 	  enum reg_class pclass;
2388 	  ira_object_t obj;
2389 
2390 	  pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
2391 	  nwords = ALLOCNO_NUM_OBJECTS (a);
2392 	  for (i = 0; i < nwords; i++)
2393 	    {
2394 	      obj = ALLOCNO_OBJECT (a, i);
2395 	      IOR_COMPL_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
2396 				      reg_class_contents[pclass]);
2397 	    }
2398 	  if (ALLOCNO_CALLS_CROSSED_NUM (a) != 0
2399 	      && ira_hard_reg_set_intersection_p (hard_regno, ALLOCNO_MODE (a),
2400 						  call_used_reg_set))
2401 	    {
2402 	      ira_assert (!optimize || flag_caller_saves
2403 			  || (ALLOCNO_CALLS_CROSSED_NUM (a)
2404 			      == ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a))
2405 			  || regno >= ira_reg_equiv_len
2406 			  || ira_equiv_no_lvalue_p (regno));
2407 	      caller_save_needed = 1;
2408 	    }
2409 	}
2410     }
2411 }
2412 
2413 /* Set up allocno assignment flags for further allocation
2414    improvements.  */
2415 static void
setup_allocno_assignment_flags(void)2416 setup_allocno_assignment_flags (void)
2417 {
2418   int hard_regno;
2419   ira_allocno_t a;
2420   ira_allocno_iterator ai;
2421 
2422   FOR_EACH_ALLOCNO (a, ai)
2423     {
2424       if (! ALLOCNO_ASSIGNED_P (a))
2425 	/* It can happen if A is not referenced but partially anticipated
2426 	   somewhere in a region.  */
2427 	ira_free_allocno_updated_costs (a);
2428       hard_regno = ALLOCNO_HARD_REGNO (a);
2429       /* Don't assign hard registers to allocnos which are destination
2430 	 of removed store at the end of loop.  It has no sense to keep
2431 	 the same value in different hard registers.  It is also
2432 	 impossible to assign hard registers correctly to such
2433 	 allocnos because the cost info and info about intersected
2434 	 calls are incorrect for them.  */
2435       ALLOCNO_ASSIGNED_P (a) = (hard_regno >= 0
2436 				|| ALLOCNO_EMIT_DATA (a)->mem_optimized_dest_p
2437 				|| (ALLOCNO_MEMORY_COST (a)
2438 				    - ALLOCNO_CLASS_COST (a)) < 0);
2439       ira_assert
2440 	(hard_regno < 0
2441 	 || ira_hard_reg_in_set_p (hard_regno, ALLOCNO_MODE (a),
2442 				   reg_class_contents[ALLOCNO_CLASS (a)]));
2443     }
2444 }
2445 
2446 /* Evaluate overall allocation cost and the costs for using hard
2447    registers and memory for allocnos.  */
2448 static void
calculate_allocation_cost(void)2449 calculate_allocation_cost (void)
2450 {
2451   int hard_regno, cost;
2452   ira_allocno_t a;
2453   ira_allocno_iterator ai;
2454 
2455   ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
2456   FOR_EACH_ALLOCNO (a, ai)
2457     {
2458       hard_regno = ALLOCNO_HARD_REGNO (a);
2459       ira_assert (hard_regno < 0
2460 		  || (ira_hard_reg_in_set_p
2461 		      (hard_regno, ALLOCNO_MODE (a),
2462 		       reg_class_contents[ALLOCNO_CLASS (a)])));
2463       if (hard_regno < 0)
2464 	{
2465 	  cost = ALLOCNO_MEMORY_COST (a);
2466 	  ira_mem_cost += cost;
2467 	}
2468       else if (ALLOCNO_HARD_REG_COSTS (a) != NULL)
2469 	{
2470 	  cost = (ALLOCNO_HARD_REG_COSTS (a)
2471 		  [ira_class_hard_reg_index
2472 		   [ALLOCNO_CLASS (a)][hard_regno]]);
2473 	  ira_reg_cost += cost;
2474 	}
2475       else
2476 	{
2477 	  cost = ALLOCNO_CLASS_COST (a);
2478 	  ira_reg_cost += cost;
2479 	}
2480       ira_overall_cost += cost;
2481     }
2482 
2483   if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
2484     {
2485       fprintf (ira_dump_file,
2486 	       "+++Costs: overall %" PRId64
2487 	       ", reg %" PRId64
2488 	       ", mem %" PRId64
2489 	       ", ld %" PRId64
2490 	       ", st %" PRId64
2491 	       ", move %" PRId64,
2492 	       ira_overall_cost, ira_reg_cost, ira_mem_cost,
2493 	       ira_load_cost, ira_store_cost, ira_shuffle_cost);
2494       fprintf (ira_dump_file, "\n+++       move loops %d, new jumps %d\n",
2495 	       ira_move_loops_num, ira_additional_jumps_num);
2496     }
2497 
2498 }
2499 
2500 #ifdef ENABLE_IRA_CHECKING
2501 /* Check the correctness of the allocation.  We do need this because
2502    of complicated code to transform more one region internal
2503    representation into one region representation.  */
2504 static void
check_allocation(void)2505 check_allocation (void)
2506 {
2507   ira_allocno_t a;
2508   int hard_regno, nregs, conflict_nregs;
2509   ira_allocno_iterator ai;
2510 
2511   FOR_EACH_ALLOCNO (a, ai)
2512     {
2513       int n = ALLOCNO_NUM_OBJECTS (a);
2514       int i;
2515 
2516       if (ALLOCNO_CAP_MEMBER (a) != NULL
2517 	  || (hard_regno = ALLOCNO_HARD_REGNO (a)) < 0)
2518 	continue;
2519       nregs = hard_regno_nregs (hard_regno, ALLOCNO_MODE (a));
2520       if (nregs == 1)
2521 	/* We allocated a single hard register.  */
2522 	n = 1;
2523       else if (n > 1)
2524 	/* We allocated multiple hard registers, and we will test
2525 	   conflicts in a granularity of single hard regs.  */
2526 	nregs = 1;
2527 
2528       for (i = 0; i < n; i++)
2529 	{
2530 	  ira_object_t obj = ALLOCNO_OBJECT (a, i);
2531 	  ira_object_t conflict_obj;
2532 	  ira_object_conflict_iterator oci;
2533 	  int this_regno = hard_regno;
2534 	  if (n > 1)
2535 	    {
2536 	      if (REG_WORDS_BIG_ENDIAN)
2537 		this_regno += n - i - 1;
2538 	      else
2539 		this_regno += i;
2540 	    }
2541 	  FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
2542 	    {
2543 	      ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
2544 	      int conflict_hard_regno = ALLOCNO_HARD_REGNO (conflict_a);
2545 	      if (conflict_hard_regno < 0)
2546 		continue;
2547 
2548 	      conflict_nregs = hard_regno_nregs (conflict_hard_regno,
2549 						 ALLOCNO_MODE (conflict_a));
2550 
2551 	      if (ALLOCNO_NUM_OBJECTS (conflict_a) > 1
2552 		  && conflict_nregs == ALLOCNO_NUM_OBJECTS (conflict_a))
2553 		{
2554 		  if (REG_WORDS_BIG_ENDIAN)
2555 		    conflict_hard_regno += (ALLOCNO_NUM_OBJECTS (conflict_a)
2556 					    - OBJECT_SUBWORD (conflict_obj) - 1);
2557 		  else
2558 		    conflict_hard_regno += OBJECT_SUBWORD (conflict_obj);
2559 		  conflict_nregs = 1;
2560 		}
2561 
2562 	      if ((conflict_hard_regno <= this_regno
2563 		 && this_regno < conflict_hard_regno + conflict_nregs)
2564 		|| (this_regno <= conflict_hard_regno
2565 		    && conflict_hard_regno < this_regno + nregs))
2566 		{
2567 		  fprintf (stderr, "bad allocation for %d and %d\n",
2568 			   ALLOCNO_REGNO (a), ALLOCNO_REGNO (conflict_a));
2569 		  gcc_unreachable ();
2570 		}
2571 	    }
2572 	}
2573     }
2574 }
2575 #endif
2576 
2577 /* Allocate REG_EQUIV_INIT.  Set up it from IRA_REG_EQUIV which should
2578    be already calculated.  */
2579 static void
setup_reg_equiv_init(void)2580 setup_reg_equiv_init (void)
2581 {
2582   int i;
2583   int max_regno = max_reg_num ();
2584 
2585   for (i = 0; i < max_regno; i++)
2586     reg_equiv_init (i) = ira_reg_equiv[i].init_insns;
2587 }
2588 
2589 /* Update equiv regno from movement of FROM_REGNO to TO_REGNO.  INSNS
2590    are insns which were generated for such movement.  It is assumed
2591    that FROM_REGNO and TO_REGNO always have the same value at the
2592    point of any move containing such registers. This function is used
2593    to update equiv info for register shuffles on the region borders
2594    and for caller save/restore insns.  */
2595 void
ira_update_equiv_info_by_shuffle_insn(int to_regno,int from_regno,rtx_insn * insns)2596 ira_update_equiv_info_by_shuffle_insn (int to_regno, int from_regno, rtx_insn *insns)
2597 {
2598   rtx_insn *insn;
2599   rtx x, note;
2600 
2601   if (! ira_reg_equiv[from_regno].defined_p
2602       && (! ira_reg_equiv[to_regno].defined_p
2603 	  || ((x = ira_reg_equiv[to_regno].memory) != NULL_RTX
2604 	      && ! MEM_READONLY_P (x))))
2605     return;
2606   insn = insns;
2607   if (NEXT_INSN (insn) != NULL_RTX)
2608     {
2609       if (! ira_reg_equiv[to_regno].defined_p)
2610 	{
2611 	  ira_assert (ira_reg_equiv[to_regno].init_insns == NULL_RTX);
2612 	  return;
2613 	}
2614       ira_reg_equiv[to_regno].defined_p = false;
2615       ira_reg_equiv[to_regno].memory
2616 	= ira_reg_equiv[to_regno].constant
2617 	= ira_reg_equiv[to_regno].invariant
2618 	= ira_reg_equiv[to_regno].init_insns = NULL;
2619       if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2620 	fprintf (ira_dump_file,
2621 		 "      Invalidating equiv info for reg %d\n", to_regno);
2622       return;
2623     }
2624   /* It is possible that FROM_REGNO still has no equivalence because
2625      in shuffles to_regno<-from_regno and from_regno<-to_regno the 2nd
2626      insn was not processed yet.  */
2627   if (ira_reg_equiv[from_regno].defined_p)
2628     {
2629       ira_reg_equiv[to_regno].defined_p = true;
2630       if ((x = ira_reg_equiv[from_regno].memory) != NULL_RTX)
2631 	{
2632 	  ira_assert (ira_reg_equiv[from_regno].invariant == NULL_RTX
2633 		      && ira_reg_equiv[from_regno].constant == NULL_RTX);
2634 	  ira_assert (ira_reg_equiv[to_regno].memory == NULL_RTX
2635 		      || rtx_equal_p (ira_reg_equiv[to_regno].memory, x));
2636 	  ira_reg_equiv[to_regno].memory = x;
2637 	  if (! MEM_READONLY_P (x))
2638 	    /* We don't add the insn to insn init list because memory
2639 	       equivalence is just to say what memory is better to use
2640 	       when the pseudo is spilled.  */
2641 	    return;
2642 	}
2643       else if ((x = ira_reg_equiv[from_regno].constant) != NULL_RTX)
2644 	{
2645 	  ira_assert (ira_reg_equiv[from_regno].invariant == NULL_RTX);
2646 	  ira_assert (ira_reg_equiv[to_regno].constant == NULL_RTX
2647 		      || rtx_equal_p (ira_reg_equiv[to_regno].constant, x));
2648 	  ira_reg_equiv[to_regno].constant = x;
2649 	}
2650       else
2651 	{
2652 	  x = ira_reg_equiv[from_regno].invariant;
2653 	  ira_assert (x != NULL_RTX);
2654 	  ira_assert (ira_reg_equiv[to_regno].invariant == NULL_RTX
2655 		      || rtx_equal_p (ira_reg_equiv[to_regno].invariant, x));
2656 	  ira_reg_equiv[to_regno].invariant = x;
2657 	}
2658       if (find_reg_note (insn, REG_EQUIV, x) == NULL_RTX)
2659 	{
2660 	  note = set_unique_reg_note (insn, REG_EQUIV, copy_rtx (x));
2661 	  gcc_assert (note != NULL_RTX);
2662 	  if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2663 	    {
2664 	      fprintf (ira_dump_file,
2665 		       "      Adding equiv note to insn %u for reg %d ",
2666 		       INSN_UID (insn), to_regno);
2667 	      dump_value_slim (ira_dump_file, x, 1);
2668 	      fprintf (ira_dump_file, "\n");
2669 	    }
2670 	}
2671     }
2672   ira_reg_equiv[to_regno].init_insns
2673     = gen_rtx_INSN_LIST (VOIDmode, insn,
2674 			 ira_reg_equiv[to_regno].init_insns);
2675   if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2676     fprintf (ira_dump_file,
2677 	     "      Adding equiv init move insn %u to reg %d\n",
2678 	     INSN_UID (insn), to_regno);
2679 }
2680 
2681 /* Fix values of array REG_EQUIV_INIT after live range splitting done
2682    by IRA.  */
2683 static void
fix_reg_equiv_init(void)2684 fix_reg_equiv_init (void)
2685 {
2686   int max_regno = max_reg_num ();
2687   int i, new_regno, max;
2688   rtx set;
2689   rtx_insn_list *x, *next, *prev;
2690   rtx_insn *insn;
2691 
2692   if (max_regno_before_ira < max_regno)
2693     {
2694       max = vec_safe_length (reg_equivs);
2695       grow_reg_equivs ();
2696       for (i = FIRST_PSEUDO_REGISTER; i < max; i++)
2697 	for (prev = NULL, x = reg_equiv_init (i);
2698 	     x != NULL_RTX;
2699 	     x = next)
2700 	  {
2701 	    next = x->next ();
2702 	    insn = x->insn ();
2703 	    set = single_set (insn);
2704 	    ira_assert (set != NULL_RTX
2705 			&& (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))));
2706 	    if (REG_P (SET_DEST (set))
2707 		&& ((int) REGNO (SET_DEST (set)) == i
2708 		    || (int) ORIGINAL_REGNO (SET_DEST (set)) == i))
2709 	      new_regno = REGNO (SET_DEST (set));
2710 	    else if (REG_P (SET_SRC (set))
2711 		     && ((int) REGNO (SET_SRC (set)) == i
2712 			 || (int) ORIGINAL_REGNO (SET_SRC (set)) == i))
2713 	      new_regno = REGNO (SET_SRC (set));
2714 	    else
2715  	      gcc_unreachable ();
2716 	    if (new_regno == i)
2717 	      prev = x;
2718 	    else
2719 	      {
2720 		/* Remove the wrong list element.  */
2721 		if (prev == NULL_RTX)
2722 		  reg_equiv_init (i) = next;
2723 		else
2724 		  XEXP (prev, 1) = next;
2725 		XEXP (x, 1) = reg_equiv_init (new_regno);
2726 		reg_equiv_init (new_regno) = x;
2727 	      }
2728 	  }
2729     }
2730 }
2731 
2732 #ifdef ENABLE_IRA_CHECKING
2733 /* Print redundant memory-memory copies.  */
2734 static void
print_redundant_copies(void)2735 print_redundant_copies (void)
2736 {
2737   int hard_regno;
2738   ira_allocno_t a;
2739   ira_copy_t cp, next_cp;
2740   ira_allocno_iterator ai;
2741 
2742   FOR_EACH_ALLOCNO (a, ai)
2743     {
2744       if (ALLOCNO_CAP_MEMBER (a) != NULL)
2745 	/* It is a cap.  */
2746 	continue;
2747       hard_regno = ALLOCNO_HARD_REGNO (a);
2748       if (hard_regno >= 0)
2749 	continue;
2750       for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp)
2751 	if (cp->first == a)
2752 	  next_cp = cp->next_first_allocno_copy;
2753 	else
2754 	  {
2755 	    next_cp = cp->next_second_allocno_copy;
2756 	    if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL
2757 		&& cp->insn != NULL_RTX
2758 		&& ALLOCNO_HARD_REGNO (cp->first) == hard_regno)
2759 	      fprintf (ira_dump_file,
2760 		       "        Redundant move from %d(freq %d):%d\n",
2761 		       INSN_UID (cp->insn), cp->freq, hard_regno);
2762 	  }
2763     }
2764 }
2765 #endif
2766 
2767 /* Setup preferred and alternative classes for new pseudo-registers
2768    created by IRA starting with START.  */
2769 static void
setup_preferred_alternate_classes_for_new_pseudos(int start)2770 setup_preferred_alternate_classes_for_new_pseudos (int start)
2771 {
2772   int i, old_regno;
2773   int max_regno = max_reg_num ();
2774 
2775   for (i = start; i < max_regno; i++)
2776     {
2777       old_regno = ORIGINAL_REGNO (regno_reg_rtx[i]);
2778       ira_assert (i != old_regno);
2779       setup_reg_classes (i, reg_preferred_class (old_regno),
2780 			 reg_alternate_class (old_regno),
2781 			 reg_allocno_class (old_regno));
2782       if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
2783 	fprintf (ira_dump_file,
2784 		 "    New r%d: setting preferred %s, alternative %s\n",
2785 		 i, reg_class_names[reg_preferred_class (old_regno)],
2786 		 reg_class_names[reg_alternate_class (old_regno)]);
2787     }
2788 }
2789 
2790 
2791 /* The number of entries allocated in reg_info.  */
2792 static int allocated_reg_info_size;
2793 
2794 /* Regional allocation can create new pseudo-registers.  This function
2795    expands some arrays for pseudo-registers.  */
2796 static void
expand_reg_info(void)2797 expand_reg_info (void)
2798 {
2799   int i;
2800   int size = max_reg_num ();
2801 
2802   resize_reg_info ();
2803   for (i = allocated_reg_info_size; i < size; i++)
2804     setup_reg_classes (i, GENERAL_REGS, ALL_REGS, GENERAL_REGS);
2805   setup_preferred_alternate_classes_for_new_pseudos (allocated_reg_info_size);
2806   allocated_reg_info_size = size;
2807 }
2808 
2809 /* Return TRUE if there is too high register pressure in the function.
2810    It is used to decide when stack slot sharing is worth to do.  */
2811 static bool
too_high_register_pressure_p(void)2812 too_high_register_pressure_p (void)
2813 {
2814   int i;
2815   enum reg_class pclass;
2816 
2817   for (i = 0; i < ira_pressure_classes_num; i++)
2818     {
2819       pclass = ira_pressure_classes[i];
2820       if (ira_loop_tree_root->reg_pressure[pclass] > 10000)
2821 	return true;
2822     }
2823   return false;
2824 }
2825 
2826 
2827 
2828 /* Indicate that hard register number FROM was eliminated and replaced with
2829    an offset from hard register number TO.  The status of hard registers live
2830    at the start of a basic block is updated by replacing a use of FROM with
2831    a use of TO.  */
2832 
2833 void
mark_elimination(int from,int to)2834 mark_elimination (int from, int to)
2835 {
2836   basic_block bb;
2837   bitmap r;
2838 
2839   FOR_EACH_BB_FN (bb, cfun)
2840     {
2841       r = DF_LR_IN (bb);
2842       if (bitmap_bit_p (r, from))
2843 	{
2844 	  bitmap_clear_bit (r, from);
2845 	  bitmap_set_bit (r, to);
2846 	}
2847       if (! df_live)
2848         continue;
2849       r = DF_LIVE_IN (bb);
2850       if (bitmap_bit_p (r, from))
2851 	{
2852 	  bitmap_clear_bit (r, from);
2853 	  bitmap_set_bit (r, to);
2854 	}
2855     }
2856 }
2857 
2858 
2859 
2860 /* The length of the following array.  */
2861 int ira_reg_equiv_len;
2862 
2863 /* Info about equiv. info for each register.  */
2864 struct ira_reg_equiv_s *ira_reg_equiv;
2865 
2866 /* Expand ira_reg_equiv if necessary.  */
2867 void
ira_expand_reg_equiv(void)2868 ira_expand_reg_equiv (void)
2869 {
2870   int old = ira_reg_equiv_len;
2871 
2872   if (ira_reg_equiv_len > max_reg_num ())
2873     return;
2874   ira_reg_equiv_len = max_reg_num () * 3 / 2 + 1;
2875   ira_reg_equiv
2876     = (struct ira_reg_equiv_s *) xrealloc (ira_reg_equiv,
2877 					 ira_reg_equiv_len
2878 					 * sizeof (struct ira_reg_equiv_s));
2879   gcc_assert (old < ira_reg_equiv_len);
2880   memset (ira_reg_equiv + old, 0,
2881 	  sizeof (struct ira_reg_equiv_s) * (ira_reg_equiv_len - old));
2882 }
2883 
2884 static void
init_reg_equiv(void)2885 init_reg_equiv (void)
2886 {
2887   ira_reg_equiv_len = 0;
2888   ira_reg_equiv = NULL;
2889   ira_expand_reg_equiv ();
2890 }
2891 
2892 static void
finish_reg_equiv(void)2893 finish_reg_equiv (void)
2894 {
2895   free (ira_reg_equiv);
2896 }
2897 
2898 
2899 
2900 struct equivalence
2901 {
2902   /* Set when a REG_EQUIV note is found or created.  Use to
2903      keep track of what memory accesses might be created later,
2904      e.g. by reload.  */
2905   rtx replacement;
2906   rtx *src_p;
2907 
2908   /* The list of each instruction which initializes this register.
2909 
2910      NULL indicates we know nothing about this register's equivalence
2911      properties.
2912 
2913      An INSN_LIST with a NULL insn indicates this pseudo is already
2914      known to not have a valid equivalence.  */
2915   rtx_insn_list *init_insns;
2916 
2917   /* Loop depth is used to recognize equivalences which appear
2918      to be present within the same loop (or in an inner loop).  */
2919   short loop_depth;
2920   /* Nonzero if this had a preexisting REG_EQUIV note.  */
2921   unsigned char is_arg_equivalence : 1;
2922   /* Set when an attempt should be made to replace a register
2923      with the associated src_p entry.  */
2924   unsigned char replace : 1;
2925   /* Set if this register has no known equivalence.  */
2926   unsigned char no_equiv : 1;
2927   /* Set if this register is mentioned in a paradoxical subreg.  */
2928   unsigned char pdx_subregs : 1;
2929 };
2930 
2931 /* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
2932    structure for that register.  */
2933 static struct equivalence *reg_equiv;
2934 
2935 /* Used for communication between the following two functions.  */
2936 struct equiv_mem_data
2937 {
2938   /* A MEM that we wish to ensure remains unchanged.  */
2939   rtx equiv_mem;
2940 
2941   /* Set true if EQUIV_MEM is modified.  */
2942   bool equiv_mem_modified;
2943 };
2944 
2945 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
2946    Called via note_stores.  */
2947 static void
validate_equiv_mem_from_store(rtx dest,const_rtx set ATTRIBUTE_UNUSED,void * data)2948 validate_equiv_mem_from_store (rtx dest, const_rtx set ATTRIBUTE_UNUSED,
2949 			       void *data)
2950 {
2951   struct equiv_mem_data *info = (struct equiv_mem_data *) data;
2952 
2953   if ((REG_P (dest)
2954        && reg_overlap_mentioned_p (dest, info->equiv_mem))
2955       || (MEM_P (dest)
2956 	  && anti_dependence (info->equiv_mem, dest)))
2957     info->equiv_mem_modified = true;
2958 }
2959 
2960 enum valid_equiv { valid_none, valid_combine, valid_reload };
2961 
2962 /* Verify that no store between START and the death of REG invalidates
2963    MEMREF.  MEMREF is invalidated by modifying a register used in MEMREF,
2964    by storing into an overlapping memory location, or with a non-const
2965    CALL_INSN.
2966 
2967    Return VALID_RELOAD if MEMREF remains valid for both reload and
2968    combine_and_move insns, VALID_COMBINE if only valid for
2969    combine_and_move_insns, and VALID_NONE otherwise.  */
2970 static enum valid_equiv
validate_equiv_mem(rtx_insn * start,rtx reg,rtx memref)2971 validate_equiv_mem (rtx_insn *start, rtx reg, rtx memref)
2972 {
2973   rtx_insn *insn;
2974   rtx note;
2975   struct equiv_mem_data info = { memref, false };
2976   enum valid_equiv ret = valid_reload;
2977 
2978   /* If the memory reference has side effects or is volatile, it isn't a
2979      valid equivalence.  */
2980   if (side_effects_p (memref))
2981     return valid_none;
2982 
2983   for (insn = start; insn; insn = NEXT_INSN (insn))
2984     {
2985       if (!INSN_P (insn))
2986 	continue;
2987 
2988       if (find_reg_note (insn, REG_DEAD, reg))
2989 	return ret;
2990 
2991       if (CALL_P (insn))
2992 	{
2993 	  /* We can combine a reg def from one insn into a reg use in
2994 	     another over a call if the memory is readonly or the call
2995 	     const/pure.  However, we can't set reg_equiv notes up for
2996 	     reload over any call.  The problem is the equivalent form
2997 	     may reference a pseudo which gets assigned a call
2998 	     clobbered hard reg.  When we later replace REG with its
2999 	     equivalent form, the value in the call-clobbered reg has
3000 	     been changed and all hell breaks loose.  */
3001 	  ret = valid_combine;
3002 	  if (!MEM_READONLY_P (memref)
3003 	      && !RTL_CONST_OR_PURE_CALL_P (insn))
3004 	    return valid_none;
3005 	}
3006 
3007       note_stores (PATTERN (insn), validate_equiv_mem_from_store, &info);
3008       if (info.equiv_mem_modified)
3009 	return valid_none;
3010 
3011       /* If a register mentioned in MEMREF is modified via an
3012 	 auto-increment, we lose the equivalence.  Do the same if one
3013 	 dies; although we could extend the life, it doesn't seem worth
3014 	 the trouble.  */
3015 
3016       for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3017 	if ((REG_NOTE_KIND (note) == REG_INC
3018 	     || REG_NOTE_KIND (note) == REG_DEAD)
3019 	    && REG_P (XEXP (note, 0))
3020 	    && reg_overlap_mentioned_p (XEXP (note, 0), memref))
3021 	  return valid_none;
3022     }
3023 
3024   return valid_none;
3025 }
3026 
3027 /* Returns zero if X is known to be invariant.  */
3028 static int
equiv_init_varies_p(rtx x)3029 equiv_init_varies_p (rtx x)
3030 {
3031   RTX_CODE code = GET_CODE (x);
3032   int i;
3033   const char *fmt;
3034 
3035   switch (code)
3036     {
3037     case MEM:
3038       return !MEM_READONLY_P (x) || equiv_init_varies_p (XEXP (x, 0));
3039 
3040     case CONST:
3041     CASE_CONST_ANY:
3042     case SYMBOL_REF:
3043     case LABEL_REF:
3044       return 0;
3045 
3046     case REG:
3047       return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0);
3048 
3049     case ASM_OPERANDS:
3050       if (MEM_VOLATILE_P (x))
3051 	return 1;
3052 
3053       /* Fall through.  */
3054 
3055     default:
3056       break;
3057     }
3058 
3059   fmt = GET_RTX_FORMAT (code);
3060   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3061     if (fmt[i] == 'e')
3062       {
3063 	if (equiv_init_varies_p (XEXP (x, i)))
3064 	  return 1;
3065       }
3066     else if (fmt[i] == 'E')
3067       {
3068 	int j;
3069 	for (j = 0; j < XVECLEN (x, i); j++)
3070 	  if (equiv_init_varies_p (XVECEXP (x, i, j)))
3071 	    return 1;
3072       }
3073 
3074   return 0;
3075 }
3076 
3077 /* Returns nonzero if X (used to initialize register REGNO) is movable.
3078    X is only movable if the registers it uses have equivalent initializations
3079    which appear to be within the same loop (or in an inner loop) and movable
3080    or if they are not candidates for local_alloc and don't vary.  */
3081 static int
equiv_init_movable_p(rtx x,int regno)3082 equiv_init_movable_p (rtx x, int regno)
3083 {
3084   int i, j;
3085   const char *fmt;
3086   enum rtx_code code = GET_CODE (x);
3087 
3088   switch (code)
3089     {
3090     case SET:
3091       return equiv_init_movable_p (SET_SRC (x), regno);
3092 
3093     case CC0:
3094     case CLOBBER:
3095     case CLOBBER_HIGH:
3096       return 0;
3097 
3098     case PRE_INC:
3099     case PRE_DEC:
3100     case POST_INC:
3101     case POST_DEC:
3102     case PRE_MODIFY:
3103     case POST_MODIFY:
3104       return 0;
3105 
3106     case REG:
3107       return ((reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
3108 	       && reg_equiv[REGNO (x)].replace)
3109 	      || (REG_BASIC_BLOCK (REGNO (x)) < NUM_FIXED_BLOCKS
3110 		  && ! rtx_varies_p (x, 0)));
3111 
3112     case UNSPEC_VOLATILE:
3113       return 0;
3114 
3115     case ASM_OPERANDS:
3116       if (MEM_VOLATILE_P (x))
3117 	return 0;
3118 
3119       /* Fall through.  */
3120 
3121     default:
3122       break;
3123     }
3124 
3125   fmt = GET_RTX_FORMAT (code);
3126   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3127     switch (fmt[i])
3128       {
3129       case 'e':
3130 	if (! equiv_init_movable_p (XEXP (x, i), regno))
3131 	  return 0;
3132 	break;
3133       case 'E':
3134 	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3135 	  if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
3136 	    return 0;
3137 	break;
3138       }
3139 
3140   return 1;
3141 }
3142 
3143 static bool memref_referenced_p (rtx memref, rtx x, bool read_p);
3144 
3145 /* Auxiliary function for memref_referenced_p.  Process setting X for
3146    MEMREF store.  */
3147 static bool
process_set_for_memref_referenced_p(rtx memref,rtx x)3148 process_set_for_memref_referenced_p (rtx memref, rtx x)
3149 {
3150   /* If we are setting a MEM, it doesn't count (its address does), but any
3151      other SET_DEST that has a MEM in it is referencing the MEM.  */
3152   if (MEM_P (x))
3153     {
3154       if (memref_referenced_p (memref, XEXP (x, 0), true))
3155 	return true;
3156     }
3157   else if (memref_referenced_p (memref, x, false))
3158     return true;
3159 
3160   return false;
3161 }
3162 
3163 /* TRUE if X references a memory location (as a read if READ_P) that
3164    would be affected by a store to MEMREF.  */
3165 static bool
memref_referenced_p(rtx memref,rtx x,bool read_p)3166 memref_referenced_p (rtx memref, rtx x, bool read_p)
3167 {
3168   int i, j;
3169   const char *fmt;
3170   enum rtx_code code = GET_CODE (x);
3171 
3172   switch (code)
3173     {
3174     case CONST:
3175     case LABEL_REF:
3176     case SYMBOL_REF:
3177     CASE_CONST_ANY:
3178     case PC:
3179     case CC0:
3180     case HIGH:
3181     case LO_SUM:
3182       return false;
3183 
3184     case REG:
3185       return (reg_equiv[REGNO (x)].replacement
3186 	      && memref_referenced_p (memref,
3187 				      reg_equiv[REGNO (x)].replacement, read_p));
3188 
3189     case MEM:
3190       /* Memory X might have another effective type than MEMREF.  */
3191       if (read_p || true_dependence (memref, VOIDmode, x))
3192 	return true;
3193       break;
3194 
3195     case SET:
3196       if (process_set_for_memref_referenced_p (memref, SET_DEST (x)))
3197 	return true;
3198 
3199       return memref_referenced_p (memref, SET_SRC (x), true);
3200 
3201     case CLOBBER:
3202     case CLOBBER_HIGH:
3203       if (process_set_for_memref_referenced_p (memref, XEXP (x, 0)))
3204 	return true;
3205 
3206       return false;
3207 
3208     case PRE_DEC:
3209     case POST_DEC:
3210     case PRE_INC:
3211     case POST_INC:
3212       if (process_set_for_memref_referenced_p (memref, XEXP (x, 0)))
3213 	return true;
3214 
3215       return memref_referenced_p (memref, XEXP (x, 0), true);
3216 
3217     case POST_MODIFY:
3218     case PRE_MODIFY:
3219       /* op0 = op0 + op1 */
3220       if (process_set_for_memref_referenced_p (memref, XEXP (x, 0)))
3221 	return true;
3222 
3223       if (memref_referenced_p (memref, XEXP (x, 0), true))
3224 	return true;
3225 
3226       return memref_referenced_p (memref, XEXP (x, 1), true);
3227 
3228     default:
3229       break;
3230     }
3231 
3232   fmt = GET_RTX_FORMAT (code);
3233   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3234     switch (fmt[i])
3235       {
3236       case 'e':
3237 	if (memref_referenced_p (memref, XEXP (x, i), read_p))
3238 	  return true;
3239 	break;
3240       case 'E':
3241 	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3242 	  if (memref_referenced_p (memref, XVECEXP (x, i, j), read_p))
3243 	    return true;
3244 	break;
3245       }
3246 
3247   return false;
3248 }
3249 
3250 /* TRUE if some insn in the range (START, END] references a memory location
3251    that would be affected by a store to MEMREF.
3252 
3253    Callers should not call this routine if START is after END in the
3254    RTL chain.  */
3255 
3256 static int
memref_used_between_p(rtx memref,rtx_insn * start,rtx_insn * end)3257 memref_used_between_p (rtx memref, rtx_insn *start, rtx_insn *end)
3258 {
3259   rtx_insn *insn;
3260 
3261   for (insn = NEXT_INSN (start);
3262        insn && insn != NEXT_INSN (end);
3263        insn = NEXT_INSN (insn))
3264     {
3265       if (!NONDEBUG_INSN_P (insn))
3266 	continue;
3267 
3268       if (memref_referenced_p (memref, PATTERN (insn), false))
3269 	return 1;
3270 
3271       /* Nonconst functions may access memory.  */
3272       if (CALL_P (insn) && (! RTL_CONST_CALL_P (insn)))
3273 	return 1;
3274     }
3275 
3276   gcc_assert (insn == NEXT_INSN (end));
3277   return 0;
3278 }
3279 
3280 /* Mark REG as having no known equivalence.
3281    Some instructions might have been processed before and furnished
3282    with REG_EQUIV notes for this register; these notes will have to be
3283    removed.
3284    STORE is the piece of RTL that does the non-constant / conflicting
3285    assignment - a SET, CLOBBER or REG_INC note.  It is currently not used,
3286    but needs to be there because this function is called from note_stores.  */
3287 static void
no_equiv(rtx reg,const_rtx store ATTRIBUTE_UNUSED,void * data ATTRIBUTE_UNUSED)3288 no_equiv (rtx reg, const_rtx store ATTRIBUTE_UNUSED,
3289 	  void *data ATTRIBUTE_UNUSED)
3290 {
3291   int regno;
3292   rtx_insn_list *list;
3293 
3294   if (!REG_P (reg))
3295     return;
3296   regno = REGNO (reg);
3297   reg_equiv[regno].no_equiv = 1;
3298   list = reg_equiv[regno].init_insns;
3299   if (list && list->insn () == NULL)
3300     return;
3301   reg_equiv[regno].init_insns = gen_rtx_INSN_LIST (VOIDmode, NULL_RTX, NULL);
3302   reg_equiv[regno].replacement = NULL_RTX;
3303   /* This doesn't matter for equivalences made for argument registers, we
3304      should keep their initialization insns.  */
3305   if (reg_equiv[regno].is_arg_equivalence)
3306     return;
3307   ira_reg_equiv[regno].defined_p = false;
3308   ira_reg_equiv[regno].init_insns = NULL;
3309   for (; list; list = list->next ())
3310     {
3311       rtx_insn *insn = list->insn ();
3312       remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
3313     }
3314 }
3315 
3316 /* Check whether the SUBREG is a paradoxical subreg and set the result
3317    in PDX_SUBREGS.  */
3318 
3319 static void
set_paradoxical_subreg(rtx_insn * insn)3320 set_paradoxical_subreg (rtx_insn *insn)
3321 {
3322   subrtx_iterator::array_type array;
3323   FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
3324     {
3325       const_rtx subreg = *iter;
3326       if (GET_CODE (subreg) == SUBREG)
3327 	{
3328 	  const_rtx reg = SUBREG_REG (subreg);
3329 	  if (REG_P (reg) && paradoxical_subreg_p (subreg))
3330 	    reg_equiv[REGNO (reg)].pdx_subregs = true;
3331 	}
3332     }
3333 }
3334 
3335 /* In DEBUG_INSN location adjust REGs from CLEARED_REGS bitmap to the
3336    equivalent replacement.  */
3337 
3338 static rtx
adjust_cleared_regs(rtx loc,const_rtx old_rtx ATTRIBUTE_UNUSED,void * data)3339 adjust_cleared_regs (rtx loc, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data)
3340 {
3341   if (REG_P (loc))
3342     {
3343       bitmap cleared_regs = (bitmap) data;
3344       if (bitmap_bit_p (cleared_regs, REGNO (loc)))
3345 	return simplify_replace_fn_rtx (copy_rtx (*reg_equiv[REGNO (loc)].src_p),
3346 					NULL_RTX, adjust_cleared_regs, data);
3347     }
3348   return NULL_RTX;
3349 }
3350 
3351 /* Given register REGNO is set only once, return true if the defining
3352    insn dominates all uses.  */
3353 
3354 static bool
def_dominates_uses(int regno)3355 def_dominates_uses (int regno)
3356 {
3357   df_ref def = DF_REG_DEF_CHAIN (regno);
3358 
3359   struct df_insn_info *def_info = DF_REF_INSN_INFO (def);
3360   /* If this is an artificial def (eh handler regs, hard frame pointer
3361      for non-local goto, regs defined on function entry) then def_info
3362      is NULL and the reg is always live before any use.  We might
3363      reasonably return true in that case, but since the only call
3364      of this function is currently here in ira.c when we are looking
3365      at a defining insn we can't have an artificial def as that would
3366      bump DF_REG_DEF_COUNT.  */
3367   gcc_assert (DF_REG_DEF_COUNT (regno) == 1 && def_info != NULL);
3368 
3369   rtx_insn *def_insn = DF_REF_INSN (def);
3370   basic_block def_bb = BLOCK_FOR_INSN (def_insn);
3371 
3372   for (df_ref use = DF_REG_USE_CHAIN (regno);
3373        use;
3374        use = DF_REF_NEXT_REG (use))
3375     {
3376       struct df_insn_info *use_info = DF_REF_INSN_INFO (use);
3377       /* Only check real uses, not artificial ones.  */
3378       if (use_info)
3379 	{
3380 	  rtx_insn *use_insn = DF_REF_INSN (use);
3381 	  if (!DEBUG_INSN_P (use_insn))
3382 	    {
3383 	      basic_block use_bb = BLOCK_FOR_INSN (use_insn);
3384 	      if (use_bb != def_bb
3385 		  ? !dominated_by_p (CDI_DOMINATORS, use_bb, def_bb)
3386 		  : DF_INSN_INFO_LUID (use_info) < DF_INSN_INFO_LUID (def_info))
3387 		return false;
3388 	    }
3389 	}
3390     }
3391   return true;
3392 }
3393 
3394 /* Find registers that are equivalent to a single value throughout the
3395    compilation (either because they can be referenced in memory or are
3396    set once from a single constant).  Lower their priority for a
3397    register.
3398 
3399    If such a register is only referenced once, try substituting its
3400    value into the using insn.  If it succeeds, we can eliminate the
3401    register completely.
3402 
3403    Initialize init_insns in ira_reg_equiv array.  */
3404 static void
update_equiv_regs(void)3405 update_equiv_regs (void)
3406 {
3407   rtx_insn *insn;
3408   basic_block bb;
3409 
3410   /* Scan insns and set pdx_subregs if the reg is used in a
3411      paradoxical subreg.  Don't set such reg equivalent to a mem,
3412      because lra will not substitute such equiv memory in order to
3413      prevent access beyond allocated memory for paradoxical memory subreg.  */
3414   FOR_EACH_BB_FN (bb, cfun)
3415     FOR_BB_INSNS (bb, insn)
3416       if (NONDEBUG_INSN_P (insn))
3417 	set_paradoxical_subreg (insn);
3418 
3419   /* Scan the insns and find which registers have equivalences.  Do this
3420      in a separate scan of the insns because (due to -fcse-follow-jumps)
3421      a register can be set below its use.  */
3422   bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
3423   FOR_EACH_BB_FN (bb, cfun)
3424     {
3425       int loop_depth = bb_loop_depth (bb);
3426 
3427       for (insn = BB_HEAD (bb);
3428 	   insn != NEXT_INSN (BB_END (bb));
3429 	   insn = NEXT_INSN (insn))
3430 	{
3431 	  rtx note;
3432 	  rtx set;
3433 	  rtx dest, src;
3434 	  int regno;
3435 
3436 	  if (! INSN_P (insn))
3437 	    continue;
3438 
3439 	  for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3440 	    if (REG_NOTE_KIND (note) == REG_INC)
3441 	      no_equiv (XEXP (note, 0), note, NULL);
3442 
3443 	  set = single_set (insn);
3444 
3445 	  /* If this insn contains more (or less) than a single SET,
3446 	     only mark all destinations as having no known equivalence.  */
3447 	  if (set == NULL_RTX
3448 	      || side_effects_p (SET_SRC (set)))
3449 	    {
3450 	      note_stores (PATTERN (insn), no_equiv, NULL);
3451 	      continue;
3452 	    }
3453 	  else if (GET_CODE (PATTERN (insn)) == PARALLEL)
3454 	    {
3455 	      int i;
3456 
3457 	      for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
3458 		{
3459 		  rtx part = XVECEXP (PATTERN (insn), 0, i);
3460 		  if (part != set)
3461 		    note_stores (part, no_equiv, NULL);
3462 		}
3463 	    }
3464 
3465 	  dest = SET_DEST (set);
3466 	  src = SET_SRC (set);
3467 
3468 	  /* See if this is setting up the equivalence between an argument
3469 	     register and its stack slot.  */
3470 	  note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
3471 	  if (note)
3472 	    {
3473 	      gcc_assert (REG_P (dest));
3474 	      regno = REGNO (dest);
3475 
3476 	      /* Note that we don't want to clear init_insns in
3477 		 ira_reg_equiv even if there are multiple sets of this
3478 		 register.  */
3479 	      reg_equiv[regno].is_arg_equivalence = 1;
3480 
3481 	      /* The insn result can have equivalence memory although
3482 		 the equivalence is not set up by the insn.  We add
3483 		 this insn to init insns as it is a flag for now that
3484 		 regno has an equivalence.  We will remove the insn
3485 		 from init insn list later.  */
3486 	      if (rtx_equal_p (src, XEXP (note, 0)) || MEM_P (XEXP (note, 0)))
3487 		ira_reg_equiv[regno].init_insns
3488 		  = gen_rtx_INSN_LIST (VOIDmode, insn,
3489 				       ira_reg_equiv[regno].init_insns);
3490 
3491 	      /* Continue normally in case this is a candidate for
3492 		 replacements.  */
3493 	    }
3494 
3495 	  if (!optimize)
3496 	    continue;
3497 
3498 	  /* We only handle the case of a pseudo register being set
3499 	     once, or always to the same value.  */
3500 	  /* ??? The mn10200 port breaks if we add equivalences for
3501 	     values that need an ADDRESS_REGS register and set them equivalent
3502 	     to a MEM of a pseudo.  The actual problem is in the over-conservative
3503 	     handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
3504 	     calculate_needs, but we traditionally work around this problem
3505 	     here by rejecting equivalences when the destination is in a register
3506 	     that's likely spilled.  This is fragile, of course, since the
3507 	     preferred class of a pseudo depends on all instructions that set
3508 	     or use it.  */
3509 
3510 	  if (!REG_P (dest)
3511 	      || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
3512 	      || (reg_equiv[regno].init_insns
3513 		  && reg_equiv[regno].init_insns->insn () == NULL)
3514 	      || (targetm.class_likely_spilled_p (reg_preferred_class (regno))
3515 		  && MEM_P (src) && ! reg_equiv[regno].is_arg_equivalence))
3516 	    {
3517 	      /* This might be setting a SUBREG of a pseudo, a pseudo that is
3518 		 also set somewhere else to a constant.  */
3519 	      note_stores (set, no_equiv, NULL);
3520 	      continue;
3521 	    }
3522 
3523 	  /* Don't set reg mentioned in a paradoxical subreg
3524 	     equivalent to a mem.  */
3525 	  if (MEM_P (src) && reg_equiv[regno].pdx_subregs)
3526 	    {
3527 	      note_stores (set, no_equiv, NULL);
3528 	      continue;
3529 	    }
3530 
3531 	  note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3532 
3533 	  /* cse sometimes generates function invariants, but doesn't put a
3534 	     REG_EQUAL note on the insn.  Since this note would be redundant,
3535 	     there's no point creating it earlier than here.  */
3536 	  if (! note && ! rtx_varies_p (src, 0))
3537 	    note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
3538 
3539 	  /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
3540 	     since it represents a function call.  */
3541 	  if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
3542 	    note = NULL_RTX;
3543 
3544 	  if (DF_REG_DEF_COUNT (regno) != 1)
3545 	    {
3546 	      bool equal_p = true;
3547 	      rtx_insn_list *list;
3548 
3549 	      /* If we have already processed this pseudo and determined it
3550 		 cannot have an equivalence, then honor that decision.  */
3551 	      if (reg_equiv[regno].no_equiv)
3552 		continue;
3553 
3554 	      if (! note
3555 		  || rtx_varies_p (XEXP (note, 0), 0)
3556 		  || (reg_equiv[regno].replacement
3557 		      && ! rtx_equal_p (XEXP (note, 0),
3558 					reg_equiv[regno].replacement)))
3559 		{
3560 		  no_equiv (dest, set, NULL);
3561 		  continue;
3562 		}
3563 
3564 	      list = reg_equiv[regno].init_insns;
3565 	      for (; list; list = list->next ())
3566 		{
3567 		  rtx note_tmp;
3568 		  rtx_insn *insn_tmp;
3569 
3570 		  insn_tmp = list->insn ();
3571 		  note_tmp = find_reg_note (insn_tmp, REG_EQUAL, NULL_RTX);
3572 		  gcc_assert (note_tmp);
3573 		  if (! rtx_equal_p (XEXP (note, 0), XEXP (note_tmp, 0)))
3574 		    {
3575 		      equal_p = false;
3576 		      break;
3577 		    }
3578 		}
3579 
3580 	      if (! equal_p)
3581 		{
3582 		  no_equiv (dest, set, NULL);
3583 		  continue;
3584 		}
3585 	    }
3586 
3587 	  /* Record this insn as initializing this register.  */
3588 	  reg_equiv[regno].init_insns
3589 	    = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
3590 
3591 	  /* If this register is known to be equal to a constant, record that
3592 	     it is always equivalent to the constant.
3593 	     Note that it is possible to have a register use before
3594 	     the def in loops (see gcc.c-torture/execute/pr79286.c)
3595 	     where the reg is undefined on first use.  If the def insn
3596 	     won't trap we can use it as an equivalence, effectively
3597 	     choosing the "undefined" value for the reg to be the
3598 	     same as the value set by the def.  */
3599 	  if (DF_REG_DEF_COUNT (regno) == 1
3600 	      && note
3601 	      && !rtx_varies_p (XEXP (note, 0), 0)
3602 	      && (!may_trap_or_fault_p (XEXP (note, 0))
3603 		  || def_dominates_uses (regno)))
3604 	    {
3605 	      rtx note_value = XEXP (note, 0);
3606 	      remove_note (insn, note);
3607 	      set_unique_reg_note (insn, REG_EQUIV, note_value);
3608 	    }
3609 
3610 	  /* If this insn introduces a "constant" register, decrease the priority
3611 	     of that register.  Record this insn if the register is only used once
3612 	     more and the equivalence value is the same as our source.
3613 
3614 	     The latter condition is checked for two reasons:  First, it is an
3615 	     indication that it may be more efficient to actually emit the insn
3616 	     as written (if no registers are available, reload will substitute
3617 	     the equivalence).  Secondly, it avoids problems with any registers
3618 	     dying in this insn whose death notes would be missed.
3619 
3620 	     If we don't have a REG_EQUIV note, see if this insn is loading
3621 	     a register used only in one basic block from a MEM.  If so, and the
3622 	     MEM remains unchanged for the life of the register, add a REG_EQUIV
3623 	     note.  */
3624 	  note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
3625 
3626 	  rtx replacement = NULL_RTX;
3627 	  if (note)
3628 	    replacement = XEXP (note, 0);
3629 	  else if (REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
3630 		   && MEM_P (SET_SRC (set)))
3631 	    {
3632 	      enum valid_equiv validity;
3633 	      validity = validate_equiv_mem (insn, dest, SET_SRC (set));
3634 	      if (validity != valid_none)
3635 		{
3636 		  replacement = copy_rtx (SET_SRC (set));
3637 		  if (validity == valid_reload)
3638 		    note = set_unique_reg_note (insn, REG_EQUIV, replacement);
3639 		}
3640 	    }
3641 
3642 	  /* If we haven't done so, record for reload that this is an
3643 	     equivalencing insn.  */
3644 	  if (note && !reg_equiv[regno].is_arg_equivalence)
3645 	    ira_reg_equiv[regno].init_insns
3646 	      = gen_rtx_INSN_LIST (VOIDmode, insn,
3647 				   ira_reg_equiv[regno].init_insns);
3648 
3649 	  if (replacement)
3650 	    {
3651 	      reg_equiv[regno].replacement = replacement;
3652 	      reg_equiv[regno].src_p = &SET_SRC (set);
3653 	      reg_equiv[regno].loop_depth = (short) loop_depth;
3654 
3655 	      /* Don't mess with things live during setjmp.  */
3656 	      if (optimize && !bitmap_bit_p (setjmp_crosses, regno))
3657 		{
3658 		  /* If the register is referenced exactly twice, meaning it is
3659 		     set once and used once, indicate that the reference may be
3660 		     replaced by the equivalence we computed above.  Do this
3661 		     even if the register is only used in one block so that
3662 		     dependencies can be handled where the last register is
3663 		     used in a different block (i.e. HIGH / LO_SUM sequences)
3664 		     and to reduce the number of registers alive across
3665 		     calls.  */
3666 
3667 		  if (REG_N_REFS (regno) == 2
3668 		      && (rtx_equal_p (replacement, src)
3669 			  || ! equiv_init_varies_p (src))
3670 		      && NONJUMP_INSN_P (insn)
3671 		      && equiv_init_movable_p (PATTERN (insn), regno))
3672 		    reg_equiv[regno].replace = 1;
3673 		}
3674 	    }
3675 	}
3676     }
3677 }
3678 
3679 /* For insns that set a MEM to the contents of a REG that is only used
3680    in a single basic block, see if the register is always equivalent
3681    to that memory location and if moving the store from INSN to the
3682    insn that sets REG is safe.  If so, put a REG_EQUIV note on the
3683    initializing insn.  */
3684 static void
add_store_equivs(void)3685 add_store_equivs (void)
3686 {
3687   auto_bitmap seen_insns;
3688 
3689   for (rtx_insn *insn = get_insns (); insn; insn = NEXT_INSN (insn))
3690     {
3691       rtx set, src, dest;
3692       unsigned regno;
3693       rtx_insn *init_insn;
3694 
3695       bitmap_set_bit (seen_insns, INSN_UID (insn));
3696 
3697       if (! INSN_P (insn))
3698 	continue;
3699 
3700       set = single_set (insn);
3701       if (! set)
3702 	continue;
3703 
3704       dest = SET_DEST (set);
3705       src = SET_SRC (set);
3706 
3707       /* Don't add a REG_EQUIV note if the insn already has one.  The existing
3708 	 REG_EQUIV is likely more useful than the one we are adding.  */
3709       if (MEM_P (dest) && REG_P (src)
3710 	  && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
3711 	  && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
3712 	  && DF_REG_DEF_COUNT (regno) == 1
3713 	  && ! reg_equiv[regno].pdx_subregs
3714 	  && reg_equiv[regno].init_insns != NULL
3715 	  && (init_insn = reg_equiv[regno].init_insns->insn ()) != 0
3716 	  && bitmap_bit_p (seen_insns, INSN_UID (init_insn))
3717 	  && ! find_reg_note (init_insn, REG_EQUIV, NULL_RTX)
3718 	  && validate_equiv_mem (init_insn, src, dest) == valid_reload
3719 	  && ! memref_used_between_p (dest, init_insn, insn)
3720 	  /* Attaching a REG_EQUIV note will fail if INIT_INSN has
3721 	     multiple sets.  */
3722 	  && set_unique_reg_note (init_insn, REG_EQUIV, copy_rtx (dest)))
3723 	{
3724 	  /* This insn makes the equivalence, not the one initializing
3725 	     the register.  */
3726 	  ira_reg_equiv[regno].init_insns
3727 	    = gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX);
3728 	  df_notes_rescan (init_insn);
3729 	  if (dump_file)
3730 	    fprintf (dump_file,
3731 		     "Adding REG_EQUIV to insn %d for source of insn %d\n",
3732 		     INSN_UID (init_insn),
3733 		     INSN_UID (insn));
3734 	}
3735     }
3736 }
3737 
3738 /* Scan all regs killed in an insn to see if any of them are registers
3739    only used that once.  If so, see if we can replace the reference
3740    with the equivalent form.  If we can, delete the initializing
3741    reference and this register will go away.  If we can't replace the
3742    reference, and the initializing reference is within the same loop
3743    (or in an inner loop), then move the register initialization just
3744    before the use, so that they are in the same basic block.  */
3745 static void
combine_and_move_insns(void)3746 combine_and_move_insns (void)
3747 {
3748   auto_bitmap cleared_regs;
3749   int max = max_reg_num ();
3750 
3751   for (int regno = FIRST_PSEUDO_REGISTER; regno < max; regno++)
3752     {
3753       if (!reg_equiv[regno].replace)
3754 	continue;
3755 
3756       rtx_insn *use_insn = 0;
3757       for (df_ref use = DF_REG_USE_CHAIN (regno);
3758 	   use;
3759 	   use = DF_REF_NEXT_REG (use))
3760 	if (DF_REF_INSN_INFO (use))
3761 	  {
3762 	    if (DEBUG_INSN_P (DF_REF_INSN (use)))
3763 	      continue;
3764 	    gcc_assert (!use_insn);
3765 	    use_insn = DF_REF_INSN (use);
3766 	  }
3767       gcc_assert (use_insn);
3768 
3769       /* Don't substitute into jumps.  indirect_jump_optimize does
3770 	 this for anything we are prepared to handle.  */
3771       if (JUMP_P (use_insn))
3772 	continue;
3773 
3774       /* Also don't substitute into a conditional trap insn -- it can become
3775 	 an unconditional trap, and that is a flow control insn.  */
3776       if (GET_CODE (PATTERN (use_insn)) == TRAP_IF)
3777 	continue;
3778 
3779       df_ref def = DF_REG_DEF_CHAIN (regno);
3780       gcc_assert (DF_REG_DEF_COUNT (regno) == 1 && DF_REF_INSN_INFO (def));
3781       rtx_insn *def_insn = DF_REF_INSN (def);
3782 
3783       /* We may not move instructions that can throw, since that
3784 	 changes basic block boundaries and we are not prepared to
3785 	 adjust the CFG to match.  */
3786       if (can_throw_internal (def_insn))
3787 	continue;
3788 
3789       basic_block use_bb = BLOCK_FOR_INSN (use_insn);
3790       basic_block def_bb = BLOCK_FOR_INSN (def_insn);
3791       if (bb_loop_depth (use_bb) > bb_loop_depth (def_bb))
3792 	continue;
3793 
3794       if (asm_noperands (PATTERN (def_insn)) < 0
3795 	  && validate_replace_rtx (regno_reg_rtx[regno],
3796 				   *reg_equiv[regno].src_p, use_insn))
3797 	{
3798 	  rtx link;
3799 	  /* Append the REG_DEAD notes from def_insn.  */
3800 	  for (rtx *p = &REG_NOTES (def_insn); (link = *p) != 0; )
3801 	    {
3802 	      if (REG_NOTE_KIND (XEXP (link, 0)) == REG_DEAD)
3803 		{
3804 		  *p = XEXP (link, 1);
3805 		  XEXP (link, 1) = REG_NOTES (use_insn);
3806 		  REG_NOTES (use_insn) = link;
3807 		}
3808 	      else
3809 		p = &XEXP (link, 1);
3810 	    }
3811 
3812 	  remove_death (regno, use_insn);
3813 	  SET_REG_N_REFS (regno, 0);
3814 	  REG_FREQ (regno) = 0;
3815 	  df_ref use;
3816 	  FOR_EACH_INSN_USE (use, def_insn)
3817 	    {
3818 	      unsigned int use_regno = DF_REF_REGNO (use);
3819 	      if (!HARD_REGISTER_NUM_P (use_regno))
3820 		reg_equiv[use_regno].replace = 0;
3821 	    }
3822 
3823 	  delete_insn (def_insn);
3824 
3825 	  reg_equiv[regno].init_insns = NULL;
3826 	  ira_reg_equiv[regno].init_insns = NULL;
3827 	  bitmap_set_bit (cleared_regs, regno);
3828 	}
3829 
3830       /* Move the initialization of the register to just before
3831 	 USE_INSN.  Update the flow information.  */
3832       else if (prev_nondebug_insn (use_insn) != def_insn)
3833 	{
3834 	  rtx_insn *new_insn;
3835 
3836 	  new_insn = emit_insn_before (PATTERN (def_insn), use_insn);
3837 	  REG_NOTES (new_insn) = REG_NOTES (def_insn);
3838 	  REG_NOTES (def_insn) = 0;
3839 	  /* Rescan it to process the notes.  */
3840 	  df_insn_rescan (new_insn);
3841 
3842 	  /* Make sure this insn is recognized before reload begins,
3843 	     otherwise eliminate_regs_in_insn will die.  */
3844 	  INSN_CODE (new_insn) = INSN_CODE (def_insn);
3845 
3846 	  delete_insn (def_insn);
3847 
3848 	  XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
3849 
3850 	  REG_BASIC_BLOCK (regno) = use_bb->index;
3851 	  REG_N_CALLS_CROSSED (regno) = 0;
3852 
3853 	  if (use_insn == BB_HEAD (use_bb))
3854 	    BB_HEAD (use_bb) = new_insn;
3855 
3856 	  /* We know regno dies in use_insn, but inside a loop
3857 	     REG_DEAD notes might be missing when def_insn was in
3858 	     another basic block.  However, when we move def_insn into
3859 	     this bb we'll definitely get a REG_DEAD note and reload
3860 	     will see the death.  It's possible that update_equiv_regs
3861 	     set up an equivalence referencing regno for a reg set by
3862 	     use_insn, when regno was seen as non-local.  Now that
3863 	     regno is local to this block, and dies, such an
3864 	     equivalence is invalid.  */
3865 	  if (find_reg_note (use_insn, REG_EQUIV, regno_reg_rtx[regno]))
3866 	    {
3867 	      rtx set = single_set (use_insn);
3868 	      if (set && REG_P (SET_DEST (set)))
3869 		no_equiv (SET_DEST (set), set, NULL);
3870 	    }
3871 
3872 	  ira_reg_equiv[regno].init_insns
3873 	    = gen_rtx_INSN_LIST (VOIDmode, new_insn, NULL_RTX);
3874 	  bitmap_set_bit (cleared_regs, regno);
3875 	}
3876     }
3877 
3878   if (!bitmap_empty_p (cleared_regs))
3879     {
3880       basic_block bb;
3881 
3882       FOR_EACH_BB_FN (bb, cfun)
3883 	{
3884 	  bitmap_and_compl_into (DF_LR_IN (bb), cleared_regs);
3885 	  bitmap_and_compl_into (DF_LR_OUT (bb), cleared_regs);
3886 	  if (!df_live)
3887 	    continue;
3888 	  bitmap_and_compl_into (DF_LIVE_IN (bb), cleared_regs);
3889 	  bitmap_and_compl_into (DF_LIVE_OUT (bb), cleared_regs);
3890 	}
3891 
3892       /* Last pass - adjust debug insns referencing cleared regs.  */
3893       if (MAY_HAVE_DEBUG_BIND_INSNS)
3894 	for (rtx_insn *insn = get_insns (); insn; insn = NEXT_INSN (insn))
3895 	  if (DEBUG_BIND_INSN_P (insn))
3896 	    {
3897 	      rtx old_loc = INSN_VAR_LOCATION_LOC (insn);
3898 	      INSN_VAR_LOCATION_LOC (insn)
3899 		= simplify_replace_fn_rtx (old_loc, NULL_RTX,
3900 					   adjust_cleared_regs,
3901 					   (void *) cleared_regs);
3902 	      if (old_loc != INSN_VAR_LOCATION_LOC (insn))
3903 		df_insn_rescan (insn);
3904 	    }
3905     }
3906 }
3907 
3908 /* A pass over indirect jumps, converting simple cases to direct jumps.
3909    Combine does this optimization too, but only within a basic block.  */
3910 static void
indirect_jump_optimize(void)3911 indirect_jump_optimize (void)
3912 {
3913   basic_block bb;
3914   bool rebuild_p = false;
3915 
3916   FOR_EACH_BB_REVERSE_FN (bb, cfun)
3917     {
3918       rtx_insn *insn = BB_END (bb);
3919       if (!JUMP_P (insn)
3920 	  || find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
3921 	continue;
3922 
3923       rtx x = pc_set (insn);
3924       if (!x || !REG_P (SET_SRC (x)))
3925 	continue;
3926 
3927       int regno = REGNO (SET_SRC (x));
3928       if (DF_REG_DEF_COUNT (regno) == 1)
3929 	{
3930 	  df_ref def = DF_REG_DEF_CHAIN (regno);
3931 	  if (!DF_REF_IS_ARTIFICIAL (def))
3932 	    {
3933 	      rtx_insn *def_insn = DF_REF_INSN (def);
3934 	      rtx lab = NULL_RTX;
3935 	      rtx set = single_set (def_insn);
3936 	      if (set && GET_CODE (SET_SRC (set)) == LABEL_REF)
3937 		lab = SET_SRC (set);
3938 	      else
3939 		{
3940 		  rtx eqnote = find_reg_note (def_insn, REG_EQUAL, NULL_RTX);
3941 		  if (eqnote && GET_CODE (XEXP (eqnote, 0)) == LABEL_REF)
3942 		    lab = XEXP (eqnote, 0);
3943 		}
3944 	      if (lab && validate_replace_rtx (SET_SRC (x), lab, insn))
3945 		rebuild_p = true;
3946 	    }
3947 	}
3948     }
3949 
3950   if (rebuild_p)
3951     {
3952       timevar_push (TV_JUMP);
3953       rebuild_jump_labels (get_insns ());
3954       if (purge_all_dead_edges ())
3955 	delete_unreachable_blocks ();
3956       timevar_pop (TV_JUMP);
3957     }
3958 }
3959 
3960 /* Set up fields memory, constant, and invariant from init_insns in
3961    the structures of array ira_reg_equiv.  */
3962 static void
setup_reg_equiv(void)3963 setup_reg_equiv (void)
3964 {
3965   int i;
3966   rtx_insn_list *elem, *prev_elem, *next_elem;
3967   rtx_insn *insn;
3968   rtx set, x;
3969 
3970   for (i = FIRST_PSEUDO_REGISTER; i < ira_reg_equiv_len; i++)
3971     for (prev_elem = NULL, elem = ira_reg_equiv[i].init_insns;
3972 	 elem;
3973 	 prev_elem = elem, elem = next_elem)
3974       {
3975 	next_elem = elem->next ();
3976 	insn = elem->insn ();
3977 	set = single_set (insn);
3978 
3979 	/* Init insns can set up equivalence when the reg is a destination or
3980 	   a source (in this case the destination is memory).  */
3981 	if (set != 0 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))))
3982 	  {
3983 	    if ((x = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != NULL)
3984 	      {
3985 		x = XEXP (x, 0);
3986 		if (REG_P (SET_DEST (set))
3987 		    && REGNO (SET_DEST (set)) == (unsigned int) i
3988 		    && ! rtx_equal_p (SET_SRC (set), x) && MEM_P (x))
3989 		  {
3990 		    /* This insn reporting the equivalence but
3991 		       actually not setting it.  Remove it from the
3992 		       list.  */
3993 		    if (prev_elem == NULL)
3994 		      ira_reg_equiv[i].init_insns = next_elem;
3995 		    else
3996 		      XEXP (prev_elem, 1) = next_elem;
3997 		    elem = prev_elem;
3998 		  }
3999 	      }
4000 	    else if (REG_P (SET_DEST (set))
4001 		     && REGNO (SET_DEST (set)) == (unsigned int) i)
4002 	      x = SET_SRC (set);
4003 	    else
4004 	      {
4005 		gcc_assert (REG_P (SET_SRC (set))
4006 			    && REGNO (SET_SRC (set)) == (unsigned int) i);
4007 		x = SET_DEST (set);
4008 	      }
4009 	    if (! function_invariant_p (x)
4010 		|| ! flag_pic
4011 		/* A function invariant is often CONSTANT_P but may
4012 		   include a register.  We promise to only pass
4013 		   CONSTANT_P objects to LEGITIMATE_PIC_OPERAND_P.  */
4014 		|| (CONSTANT_P (x) && LEGITIMATE_PIC_OPERAND_P (x)))
4015 	      {
4016 		/* It can happen that a REG_EQUIV note contains a MEM
4017 		   that is not a legitimate memory operand.  As later
4018 		   stages of reload assume that all addresses found in
4019 		   the lra_regno_equiv_* arrays were originally
4020 		   legitimate, we ignore such REG_EQUIV notes.  */
4021 		if (memory_operand (x, VOIDmode))
4022 		  {
4023 		    ira_reg_equiv[i].defined_p = true;
4024 		    ira_reg_equiv[i].memory = x;
4025 		    continue;
4026 		  }
4027 		else if (function_invariant_p (x))
4028 		  {
4029 		    machine_mode mode;
4030 
4031 		    mode = GET_MODE (SET_DEST (set));
4032 		    if (GET_CODE (x) == PLUS
4033 			|| x == frame_pointer_rtx || x == arg_pointer_rtx)
4034 		      /* This is PLUS of frame pointer and a constant,
4035 			 or fp, or argp.  */
4036 		      ira_reg_equiv[i].invariant = x;
4037 		    else if (targetm.legitimate_constant_p (mode, x))
4038 		      ira_reg_equiv[i].constant = x;
4039 		    else
4040 		      {
4041 			ira_reg_equiv[i].memory = force_const_mem (mode, x);
4042 			if (ira_reg_equiv[i].memory == NULL_RTX)
4043 			  {
4044 			    ira_reg_equiv[i].defined_p = false;
4045 			    ira_reg_equiv[i].init_insns = NULL;
4046 			    break;
4047 			  }
4048 		      }
4049 		    ira_reg_equiv[i].defined_p = true;
4050 		    continue;
4051 		  }
4052 	      }
4053 	  }
4054 	ira_reg_equiv[i].defined_p = false;
4055 	ira_reg_equiv[i].init_insns = NULL;
4056 	break;
4057       }
4058 }
4059 
4060 
4061 
4062 /* Print chain C to FILE.  */
4063 static void
print_insn_chain(FILE * file,struct insn_chain * c)4064 print_insn_chain (FILE *file, struct insn_chain *c)
4065 {
4066   fprintf (file, "insn=%d, ", INSN_UID (c->insn));
4067   bitmap_print (file, &c->live_throughout, "live_throughout: ", ", ");
4068   bitmap_print (file, &c->dead_or_set, "dead_or_set: ", "\n");
4069 }
4070 
4071 
4072 /* Print all reload_insn_chains to FILE.  */
4073 static void
print_insn_chains(FILE * file)4074 print_insn_chains (FILE *file)
4075 {
4076   struct insn_chain *c;
4077   for (c = reload_insn_chain; c ; c = c->next)
4078     print_insn_chain (file, c);
4079 }
4080 
4081 /* Return true if pseudo REGNO should be added to set live_throughout
4082    or dead_or_set of the insn chains for reload consideration.  */
4083 static bool
pseudo_for_reload_consideration_p(int regno)4084 pseudo_for_reload_consideration_p (int regno)
4085 {
4086   /* Consider spilled pseudos too for IRA because they still have a
4087      chance to get hard-registers in the reload when IRA is used.  */
4088   return (reg_renumber[regno] >= 0 || ira_conflicts_p);
4089 }
4090 
4091 /* Return true if we can track the individual bytes of subreg X.
4092    When returning true, set *OUTER_SIZE to the number of bytes in
4093    X itself, *INNER_SIZE to the number of bytes in the inner register
4094    and *START to the offset of the first byte.  */
4095 static bool
get_subreg_tracking_sizes(rtx x,HOST_WIDE_INT * outer_size,HOST_WIDE_INT * inner_size,HOST_WIDE_INT * start)4096 get_subreg_tracking_sizes (rtx x, HOST_WIDE_INT *outer_size,
4097 			   HOST_WIDE_INT *inner_size, HOST_WIDE_INT *start)
4098 {
4099   rtx reg = regno_reg_rtx[REGNO (SUBREG_REG (x))];
4100   return (GET_MODE_SIZE (GET_MODE (x)).is_constant (outer_size)
4101 	  && GET_MODE_SIZE (GET_MODE (reg)).is_constant (inner_size)
4102 	  && SUBREG_BYTE (x).is_constant (start));
4103 }
4104 
4105 /* Init LIVE_SUBREGS[ALLOCNUM] and LIVE_SUBREGS_USED[ALLOCNUM] for
4106    a register with SIZE bytes, making the register live if INIT_VALUE.  */
4107 static void
init_live_subregs(bool init_value,sbitmap * live_subregs,bitmap live_subregs_used,int allocnum,int size)4108 init_live_subregs (bool init_value, sbitmap *live_subregs,
4109 		   bitmap live_subregs_used, int allocnum, int size)
4110 {
4111   gcc_assert (size > 0);
4112 
4113   /* Been there, done that.  */
4114   if (bitmap_bit_p (live_subregs_used, allocnum))
4115     return;
4116 
4117   /* Create a new one.  */
4118   if (live_subregs[allocnum] == NULL)
4119     live_subregs[allocnum] = sbitmap_alloc (size);
4120 
4121   /* If the entire reg was live before blasting into subregs, we need
4122      to init all of the subregs to ones else init to 0.  */
4123   if (init_value)
4124     bitmap_ones (live_subregs[allocnum]);
4125   else
4126     bitmap_clear (live_subregs[allocnum]);
4127 
4128   bitmap_set_bit (live_subregs_used, allocnum);
4129 }
4130 
4131 /* Walk the insns of the current function and build reload_insn_chain,
4132    and record register life information.  */
4133 static void
build_insn_chain(void)4134 build_insn_chain (void)
4135 {
4136   unsigned int i;
4137   struct insn_chain **p = &reload_insn_chain;
4138   basic_block bb;
4139   struct insn_chain *c = NULL;
4140   struct insn_chain *next = NULL;
4141   auto_bitmap live_relevant_regs;
4142   auto_bitmap elim_regset;
4143   /* live_subregs is a vector used to keep accurate information about
4144      which hardregs are live in multiword pseudos.  live_subregs and
4145      live_subregs_used are indexed by pseudo number.  The live_subreg
4146      entry for a particular pseudo is only used if the corresponding
4147      element is non zero in live_subregs_used.  The sbitmap size of
4148      live_subreg[allocno] is number of bytes that the pseudo can
4149      occupy.  */
4150   sbitmap *live_subregs = XCNEWVEC (sbitmap, max_regno);
4151   auto_bitmap live_subregs_used;
4152 
4153   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4154     if (TEST_HARD_REG_BIT (eliminable_regset, i))
4155       bitmap_set_bit (elim_regset, i);
4156   FOR_EACH_BB_REVERSE_FN (bb, cfun)
4157     {
4158       bitmap_iterator bi;
4159       rtx_insn *insn;
4160 
4161       CLEAR_REG_SET (live_relevant_regs);
4162       bitmap_clear (live_subregs_used);
4163 
4164       EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb), 0, i, bi)
4165 	{
4166 	  if (i >= FIRST_PSEUDO_REGISTER)
4167 	    break;
4168 	  bitmap_set_bit (live_relevant_regs, i);
4169 	}
4170 
4171       EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb),
4172 				FIRST_PSEUDO_REGISTER, i, bi)
4173 	{
4174 	  if (pseudo_for_reload_consideration_p (i))
4175 	    bitmap_set_bit (live_relevant_regs, i);
4176 	}
4177 
4178       FOR_BB_INSNS_REVERSE (bb, insn)
4179 	{
4180 	  if (!NOTE_P (insn) && !BARRIER_P (insn))
4181 	    {
4182 	      struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4183 	      df_ref def, use;
4184 
4185 	      c = new_insn_chain ();
4186 	      c->next = next;
4187 	      next = c;
4188 	      *p = c;
4189 	      p = &c->prev;
4190 
4191 	      c->insn = insn;
4192 	      c->block = bb->index;
4193 
4194 	      if (NONDEBUG_INSN_P (insn))
4195 		FOR_EACH_INSN_INFO_DEF (def, insn_info)
4196 		  {
4197 		    unsigned int regno = DF_REF_REGNO (def);
4198 
4199 		    /* Ignore may clobbers because these are generated
4200 		       from calls. However, every other kind of def is
4201 		       added to dead_or_set.  */
4202 		    if (!DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
4203 		      {
4204 			if (regno < FIRST_PSEUDO_REGISTER)
4205 			  {
4206 			    if (!fixed_regs[regno])
4207 			      bitmap_set_bit (&c->dead_or_set, regno);
4208 			  }
4209 			else if (pseudo_for_reload_consideration_p (regno))
4210 			  bitmap_set_bit (&c->dead_or_set, regno);
4211 		      }
4212 
4213 		    if ((regno < FIRST_PSEUDO_REGISTER
4214 			 || reg_renumber[regno] >= 0
4215 			 || ira_conflicts_p)
4216 			&& (!DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)))
4217 		      {
4218 			rtx reg = DF_REF_REG (def);
4219 			HOST_WIDE_INT outer_size, inner_size, start;
4220 
4221 			/* We can usually track the liveness of individual
4222 			   bytes within a subreg.  The only exceptions are
4223 			   subregs wrapped in ZERO_EXTRACTs and subregs whose
4224 			   size is not known; in those cases we need to be
4225 			   conservative and treat the definition as a partial
4226 			   definition of the full register rather than a full
4227 			   definition of a specific part of the register.  */
4228 			if (GET_CODE (reg) == SUBREG
4229 			    && !DF_REF_FLAGS_IS_SET (def, DF_REF_ZERO_EXTRACT)
4230 			    && get_subreg_tracking_sizes (reg, &outer_size,
4231 							  &inner_size, &start))
4232 			  {
4233 			    HOST_WIDE_INT last = start + outer_size;
4234 
4235 			    init_live_subregs
4236 			      (bitmap_bit_p (live_relevant_regs, regno),
4237 			       live_subregs, live_subregs_used, regno,
4238 			       inner_size);
4239 
4240 			    if (!DF_REF_FLAGS_IS_SET
4241 				(def, DF_REF_STRICT_LOW_PART))
4242 			      {
4243 				/* Expand the range to cover entire words.
4244 				   Bytes added here are "don't care".  */
4245 				start
4246 				  = start / UNITS_PER_WORD * UNITS_PER_WORD;
4247 				last = ((last + UNITS_PER_WORD - 1)
4248 					/ UNITS_PER_WORD * UNITS_PER_WORD);
4249 			      }
4250 
4251 			    /* Ignore the paradoxical bits.  */
4252 			    if (last > SBITMAP_SIZE (live_subregs[regno]))
4253 			      last = SBITMAP_SIZE (live_subregs[regno]);
4254 
4255 			    while (start < last)
4256 			      {
4257 				bitmap_clear_bit (live_subregs[regno], start);
4258 				start++;
4259 			      }
4260 
4261 			    if (bitmap_empty_p (live_subregs[regno]))
4262 			      {
4263 				bitmap_clear_bit (live_subregs_used, regno);
4264 				bitmap_clear_bit (live_relevant_regs, regno);
4265 			      }
4266 			    else
4267 			      /* Set live_relevant_regs here because
4268 				 that bit has to be true to get us to
4269 				 look at the live_subregs fields.  */
4270 			      bitmap_set_bit (live_relevant_regs, regno);
4271 			  }
4272 			else
4273 			  {
4274 			    /* DF_REF_PARTIAL is generated for
4275 			       subregs, STRICT_LOW_PART, and
4276 			       ZERO_EXTRACT.  We handle the subreg
4277 			       case above so here we have to keep from
4278 			       modeling the def as a killing def.  */
4279 			    if (!DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL))
4280 			      {
4281 				bitmap_clear_bit (live_subregs_used, regno);
4282 				bitmap_clear_bit (live_relevant_regs, regno);
4283 			      }
4284 			  }
4285 		      }
4286 		  }
4287 
4288 	      bitmap_and_compl_into (live_relevant_regs, elim_regset);
4289 	      bitmap_copy (&c->live_throughout, live_relevant_regs);
4290 
4291 	      if (NONDEBUG_INSN_P (insn))
4292 		FOR_EACH_INSN_INFO_USE (use, insn_info)
4293 		  {
4294 		    unsigned int regno = DF_REF_REGNO (use);
4295 		    rtx reg = DF_REF_REG (use);
4296 
4297 		    /* DF_REF_READ_WRITE on a use means that this use
4298 		       is fabricated from a def that is a partial set
4299 		       to a multiword reg.  Here, we only model the
4300 		       subreg case that is not wrapped in ZERO_EXTRACT
4301 		       precisely so we do not need to look at the
4302 		       fabricated use.  */
4303 		    if (DF_REF_FLAGS_IS_SET (use, DF_REF_READ_WRITE)
4304 			&& !DF_REF_FLAGS_IS_SET (use, DF_REF_ZERO_EXTRACT)
4305 			&& DF_REF_FLAGS_IS_SET (use, DF_REF_SUBREG))
4306 		      continue;
4307 
4308 		    /* Add the last use of each var to dead_or_set.  */
4309 		    if (!bitmap_bit_p (live_relevant_regs, regno))
4310 		      {
4311 			if (regno < FIRST_PSEUDO_REGISTER)
4312 			  {
4313 			    if (!fixed_regs[regno])
4314 			      bitmap_set_bit (&c->dead_or_set, regno);
4315 			  }
4316 			else if (pseudo_for_reload_consideration_p (regno))
4317 			  bitmap_set_bit (&c->dead_or_set, regno);
4318 		      }
4319 
4320 		    if (regno < FIRST_PSEUDO_REGISTER
4321 			|| pseudo_for_reload_consideration_p (regno))
4322 		      {
4323 			HOST_WIDE_INT outer_size, inner_size, start;
4324 			if (GET_CODE (reg) == SUBREG
4325 			    && !DF_REF_FLAGS_IS_SET (use,
4326 						     DF_REF_SIGN_EXTRACT
4327 						     | DF_REF_ZERO_EXTRACT)
4328 			    && get_subreg_tracking_sizes (reg, &outer_size,
4329 							  &inner_size, &start))
4330 			  {
4331 			    HOST_WIDE_INT last = start + outer_size;
4332 
4333 			    init_live_subregs
4334 			      (bitmap_bit_p (live_relevant_regs, regno),
4335 			       live_subregs, live_subregs_used, regno,
4336 			       inner_size);
4337 
4338 			    /* Ignore the paradoxical bits.  */
4339 			    if (last > SBITMAP_SIZE (live_subregs[regno]))
4340 			      last = SBITMAP_SIZE (live_subregs[regno]);
4341 
4342 			    while (start < last)
4343 			      {
4344 				bitmap_set_bit (live_subregs[regno], start);
4345 				start++;
4346 			      }
4347 			  }
4348 			else
4349 			  /* Resetting the live_subregs_used is
4350 			     effectively saying do not use the subregs
4351 			     because we are reading the whole
4352 			     pseudo.  */
4353 			  bitmap_clear_bit (live_subregs_used, regno);
4354 			bitmap_set_bit (live_relevant_regs, regno);
4355 		      }
4356 		  }
4357 	    }
4358 	}
4359 
4360       /* FIXME!! The following code is a disaster.  Reload needs to see the
4361 	 labels and jump tables that are just hanging out in between
4362 	 the basic blocks.  See pr33676.  */
4363       insn = BB_HEAD (bb);
4364 
4365       /* Skip over the barriers and cruft.  */
4366       while (insn && (BARRIER_P (insn) || NOTE_P (insn)
4367 		      || BLOCK_FOR_INSN (insn) == bb))
4368 	insn = PREV_INSN (insn);
4369 
4370       /* While we add anything except barriers and notes, the focus is
4371 	 to get the labels and jump tables into the
4372 	 reload_insn_chain.  */
4373       while (insn)
4374 	{
4375 	  if (!NOTE_P (insn) && !BARRIER_P (insn))
4376 	    {
4377 	      if (BLOCK_FOR_INSN (insn))
4378 		break;
4379 
4380 	      c = new_insn_chain ();
4381 	      c->next = next;
4382 	      next = c;
4383 	      *p = c;
4384 	      p = &c->prev;
4385 
4386 	      /* The block makes no sense here, but it is what the old
4387 		 code did.  */
4388 	      c->block = bb->index;
4389 	      c->insn = insn;
4390 	      bitmap_copy (&c->live_throughout, live_relevant_regs);
4391 	    }
4392 	  insn = PREV_INSN (insn);
4393 	}
4394     }
4395 
4396   reload_insn_chain = c;
4397   *p = NULL;
4398 
4399   for (i = 0; i < (unsigned int) max_regno; i++)
4400     if (live_subregs[i] != NULL)
4401       sbitmap_free (live_subregs[i]);
4402   free (live_subregs);
4403 
4404   if (dump_file)
4405     print_insn_chains (dump_file);
4406 }
4407 
4408 /* Examine the rtx found in *LOC, which is read or written to as determined
4409    by TYPE.  Return false if we find a reason why an insn containing this
4410    rtx should not be moved (such as accesses to non-constant memory), true
4411    otherwise.  */
4412 static bool
rtx_moveable_p(rtx * loc,enum op_type type)4413 rtx_moveable_p (rtx *loc, enum op_type type)
4414 {
4415   const char *fmt;
4416   rtx x = *loc;
4417   enum rtx_code code = GET_CODE (x);
4418   int i, j;
4419 
4420   code = GET_CODE (x);
4421   switch (code)
4422     {
4423     case CONST:
4424     CASE_CONST_ANY:
4425     case SYMBOL_REF:
4426     case LABEL_REF:
4427       return true;
4428 
4429     case PC:
4430       return type == OP_IN;
4431 
4432     case CC0:
4433       return false;
4434 
4435     case REG:
4436       if (x == frame_pointer_rtx)
4437 	return true;
4438       if (HARD_REGISTER_P (x))
4439 	return false;
4440 
4441       return true;
4442 
4443     case MEM:
4444       if (type == OP_IN && MEM_READONLY_P (x))
4445 	return rtx_moveable_p (&XEXP (x, 0), OP_IN);
4446       return false;
4447 
4448     case SET:
4449       return (rtx_moveable_p (&SET_SRC (x), OP_IN)
4450 	      && rtx_moveable_p (&SET_DEST (x), OP_OUT));
4451 
4452     case STRICT_LOW_PART:
4453       return rtx_moveable_p (&XEXP (x, 0), OP_OUT);
4454 
4455     case ZERO_EXTRACT:
4456     case SIGN_EXTRACT:
4457       return (rtx_moveable_p (&XEXP (x, 0), type)
4458 	      && rtx_moveable_p (&XEXP (x, 1), OP_IN)
4459 	      && rtx_moveable_p (&XEXP (x, 2), OP_IN));
4460 
4461     case CLOBBER:
4462     case CLOBBER_HIGH:
4463       return rtx_moveable_p (&SET_DEST (x), OP_OUT);
4464 
4465     case UNSPEC_VOLATILE:
4466       /* It is a bad idea to consider insns with such rtl
4467 	 as moveable ones.  The insn scheduler also considers them as barrier
4468 	 for a reason.  */
4469       return false;
4470 
4471     case ASM_OPERANDS:
4472       /* The same is true for volatile asm: it has unknown side effects, it
4473          cannot be moved at will.  */
4474       if (MEM_VOLATILE_P (x))
4475 	return false;
4476 
4477     default:
4478       break;
4479     }
4480 
4481   fmt = GET_RTX_FORMAT (code);
4482   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4483     {
4484       if (fmt[i] == 'e')
4485 	{
4486 	  if (!rtx_moveable_p (&XEXP (x, i), type))
4487 	    return false;
4488 	}
4489       else if (fmt[i] == 'E')
4490 	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4491 	  {
4492 	    if (!rtx_moveable_p (&XVECEXP (x, i, j), type))
4493 	      return false;
4494 	  }
4495     }
4496   return true;
4497 }
4498 
4499 /* A wrapper around dominated_by_p, which uses the information in UID_LUID
4500    to give dominance relationships between two insns I1 and I2.  */
4501 static bool
insn_dominated_by_p(rtx i1,rtx i2,int * uid_luid)4502 insn_dominated_by_p (rtx i1, rtx i2, int *uid_luid)
4503 {
4504   basic_block bb1 = BLOCK_FOR_INSN (i1);
4505   basic_block bb2 = BLOCK_FOR_INSN (i2);
4506 
4507   if (bb1 == bb2)
4508     return uid_luid[INSN_UID (i2)] < uid_luid[INSN_UID (i1)];
4509   return dominated_by_p (CDI_DOMINATORS, bb1, bb2);
4510 }
4511 
4512 /* Record the range of register numbers added by find_moveable_pseudos.  */
4513 int first_moveable_pseudo, last_moveable_pseudo;
4514 
4515 /* These two vectors hold data for every register added by
4516    find_movable_pseudos, with index 0 holding data for the
4517    first_moveable_pseudo.  */
4518 /* The original home register.  */
4519 static vec<rtx> pseudo_replaced_reg;
4520 
4521 /* Look for instances where we have an instruction that is known to increase
4522    register pressure, and whose result is not used immediately.  If it is
4523    possible to move the instruction downwards to just before its first use,
4524    split its lifetime into two ranges.  We create a new pseudo to compute the
4525    value, and emit a move instruction just before the first use.  If, after
4526    register allocation, the new pseudo remains unallocated, the function
4527    move_unallocated_pseudos then deletes the move instruction and places
4528    the computation just before the first use.
4529 
4530    Such a move is safe and profitable if all the input registers remain live
4531    and unchanged between the original computation and its first use.  In such
4532    a situation, the computation is known to increase register pressure, and
4533    moving it is known to at least not worsen it.
4534 
4535    We restrict moves to only those cases where a register remains unallocated,
4536    in order to avoid interfering too much with the instruction schedule.  As
4537    an exception, we may move insns which only modify their input register
4538    (typically induction variables), as this increases the freedom for our
4539    intended transformation, and does not limit the second instruction
4540    scheduler pass.  */
4541 
4542 static void
find_moveable_pseudos(void)4543 find_moveable_pseudos (void)
4544 {
4545   unsigned i;
4546   int max_regs = max_reg_num ();
4547   int max_uid = get_max_uid ();
4548   basic_block bb;
4549   int *uid_luid = XNEWVEC (int, max_uid);
4550   rtx_insn **closest_uses = XNEWVEC (rtx_insn *, max_regs);
4551   /* A set of registers which are live but not modified throughout a block.  */
4552   bitmap_head *bb_transp_live = XNEWVEC (bitmap_head,
4553 					 last_basic_block_for_fn (cfun));
4554   /* A set of registers which only exist in a given basic block.  */
4555   bitmap_head *bb_local = XNEWVEC (bitmap_head,
4556 				   last_basic_block_for_fn (cfun));
4557   /* A set of registers which are set once, in an instruction that can be
4558      moved freely downwards, but are otherwise transparent to a block.  */
4559   bitmap_head *bb_moveable_reg_sets = XNEWVEC (bitmap_head,
4560 					       last_basic_block_for_fn (cfun));
4561   auto_bitmap live, used, set, interesting, unusable_as_input;
4562   bitmap_iterator bi;
4563 
4564   first_moveable_pseudo = max_regs;
4565   pseudo_replaced_reg.release ();
4566   pseudo_replaced_reg.safe_grow_cleared (max_regs);
4567 
4568   df_analyze ();
4569   calculate_dominance_info (CDI_DOMINATORS);
4570 
4571   i = 0;
4572   FOR_EACH_BB_FN (bb, cfun)
4573     {
4574       rtx_insn *insn;
4575       bitmap transp = bb_transp_live + bb->index;
4576       bitmap moveable = bb_moveable_reg_sets + bb->index;
4577       bitmap local = bb_local + bb->index;
4578 
4579       bitmap_initialize (local, 0);
4580       bitmap_initialize (transp, 0);
4581       bitmap_initialize (moveable, 0);
4582       bitmap_copy (live, df_get_live_out (bb));
4583       bitmap_and_into (live, df_get_live_in (bb));
4584       bitmap_copy (transp, live);
4585       bitmap_clear (moveable);
4586       bitmap_clear (live);
4587       bitmap_clear (used);
4588       bitmap_clear (set);
4589       FOR_BB_INSNS (bb, insn)
4590 	if (NONDEBUG_INSN_P (insn))
4591 	  {
4592 	    df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4593 	    df_ref def, use;
4594 
4595 	    uid_luid[INSN_UID (insn)] = i++;
4596 
4597 	    def = df_single_def (insn_info);
4598 	    use = df_single_use (insn_info);
4599 	    if (use
4600 		&& def
4601 		&& DF_REF_REGNO (use) == DF_REF_REGNO (def)
4602 		&& !bitmap_bit_p (set, DF_REF_REGNO (use))
4603 		&& rtx_moveable_p (&PATTERN (insn), OP_IN))
4604 	      {
4605 		unsigned regno = DF_REF_REGNO (use);
4606 		bitmap_set_bit (moveable, regno);
4607 		bitmap_set_bit (set, regno);
4608 		bitmap_set_bit (used, regno);
4609 		bitmap_clear_bit (transp, regno);
4610 		continue;
4611 	      }
4612 	    FOR_EACH_INSN_INFO_USE (use, insn_info)
4613 	      {
4614 		unsigned regno = DF_REF_REGNO (use);
4615 		bitmap_set_bit (used, regno);
4616 		if (bitmap_clear_bit (moveable, regno))
4617 		  bitmap_clear_bit (transp, regno);
4618 	      }
4619 
4620 	    FOR_EACH_INSN_INFO_DEF (def, insn_info)
4621 	      {
4622 		unsigned regno = DF_REF_REGNO (def);
4623 		bitmap_set_bit (set, regno);
4624 		bitmap_clear_bit (transp, regno);
4625 		bitmap_clear_bit (moveable, regno);
4626 	      }
4627 	  }
4628     }
4629 
4630   FOR_EACH_BB_FN (bb, cfun)
4631     {
4632       bitmap local = bb_local + bb->index;
4633       rtx_insn *insn;
4634 
4635       FOR_BB_INSNS (bb, insn)
4636 	if (NONDEBUG_INSN_P (insn))
4637 	  {
4638 	    df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4639 	    rtx_insn *def_insn;
4640 	    rtx closest_use, note;
4641 	    df_ref def, use;
4642 	    unsigned regno;
4643 	    bool all_dominated, all_local;
4644 	    machine_mode mode;
4645 
4646 	    def = df_single_def (insn_info);
4647 	    /* There must be exactly one def in this insn.  */
4648 	    if (!def || !single_set (insn))
4649 	      continue;
4650 	    /* This must be the only definition of the reg.  We also limit
4651 	       which modes we deal with so that we can assume we can generate
4652 	       move instructions.  */
4653 	    regno = DF_REF_REGNO (def);
4654 	    mode = GET_MODE (DF_REF_REG (def));
4655 	    if (DF_REG_DEF_COUNT (regno) != 1
4656 		|| !DF_REF_INSN_INFO (def)
4657 		|| HARD_REGISTER_NUM_P (regno)
4658 		|| DF_REG_EQ_USE_COUNT (regno) > 0
4659 		|| (!INTEGRAL_MODE_P (mode) && !FLOAT_MODE_P (mode)))
4660 	      continue;
4661 	    def_insn = DF_REF_INSN (def);
4662 
4663 	    for (note = REG_NOTES (def_insn); note; note = XEXP (note, 1))
4664 	      if (REG_NOTE_KIND (note) == REG_EQUIV && MEM_P (XEXP (note, 0)))
4665 		break;
4666 
4667 	    if (note)
4668 	      {
4669 		if (dump_file)
4670 		  fprintf (dump_file, "Ignoring reg %d, has equiv memory\n",
4671 			   regno);
4672 		bitmap_set_bit (unusable_as_input, regno);
4673 		continue;
4674 	      }
4675 
4676 	    use = DF_REG_USE_CHAIN (regno);
4677 	    all_dominated = true;
4678 	    all_local = true;
4679 	    closest_use = NULL_RTX;
4680 	    for (; use; use = DF_REF_NEXT_REG (use))
4681 	      {
4682 		rtx_insn *insn;
4683 		if (!DF_REF_INSN_INFO (use))
4684 		  {
4685 		    all_dominated = false;
4686 		    all_local = false;
4687 		    break;
4688 		  }
4689 		insn = DF_REF_INSN (use);
4690 		if (DEBUG_INSN_P (insn))
4691 		  continue;
4692 		if (BLOCK_FOR_INSN (insn) != BLOCK_FOR_INSN (def_insn))
4693 		  all_local = false;
4694 		if (!insn_dominated_by_p (insn, def_insn, uid_luid))
4695 		  all_dominated = false;
4696 		if (closest_use != insn && closest_use != const0_rtx)
4697 		  {
4698 		    if (closest_use == NULL_RTX)
4699 		      closest_use = insn;
4700 		    else if (insn_dominated_by_p (closest_use, insn, uid_luid))
4701 		      closest_use = insn;
4702 		    else if (!insn_dominated_by_p (insn, closest_use, uid_luid))
4703 		      closest_use = const0_rtx;
4704 		  }
4705 	      }
4706 	    if (!all_dominated)
4707 	      {
4708 		if (dump_file)
4709 		  fprintf (dump_file, "Reg %d not all uses dominated by set\n",
4710 			   regno);
4711 		continue;
4712 	      }
4713 	    if (all_local)
4714 	      bitmap_set_bit (local, regno);
4715 	    if (closest_use == const0_rtx || closest_use == NULL
4716 		|| next_nonnote_nondebug_insn (def_insn) == closest_use)
4717 	      {
4718 		if (dump_file)
4719 		  fprintf (dump_file, "Reg %d uninteresting%s\n", regno,
4720 			   closest_use == const0_rtx || closest_use == NULL
4721 			   ? " (no unique first use)" : "");
4722 		continue;
4723 	      }
4724 	    if (HAVE_cc0 && reg_referenced_p (cc0_rtx, PATTERN (closest_use)))
4725 	      {
4726 		if (dump_file)
4727 		  fprintf (dump_file, "Reg %d: closest user uses cc0\n",
4728 			   regno);
4729 		continue;
4730 	      }
4731 
4732 	    bitmap_set_bit (interesting, regno);
4733 	    /* If we get here, we know closest_use is a non-NULL insn
4734 	       (as opposed to const_0_rtx).  */
4735 	    closest_uses[regno] = as_a <rtx_insn *> (closest_use);
4736 
4737 	    if (dump_file && (all_local || all_dominated))
4738 	      {
4739 		fprintf (dump_file, "Reg %u:", regno);
4740 		if (all_local)
4741 		  fprintf (dump_file, " local to bb %d", bb->index);
4742 		if (all_dominated)
4743 		  fprintf (dump_file, " def dominates all uses");
4744 		if (closest_use != const0_rtx)
4745 		  fprintf (dump_file, " has unique first use");
4746 		fputs ("\n", dump_file);
4747 	      }
4748 	  }
4749     }
4750 
4751   EXECUTE_IF_SET_IN_BITMAP (interesting, 0, i, bi)
4752     {
4753       df_ref def = DF_REG_DEF_CHAIN (i);
4754       rtx_insn *def_insn = DF_REF_INSN (def);
4755       basic_block def_block = BLOCK_FOR_INSN (def_insn);
4756       bitmap def_bb_local = bb_local + def_block->index;
4757       bitmap def_bb_moveable = bb_moveable_reg_sets + def_block->index;
4758       bitmap def_bb_transp = bb_transp_live + def_block->index;
4759       bool local_to_bb_p = bitmap_bit_p (def_bb_local, i);
4760       rtx_insn *use_insn = closest_uses[i];
4761       df_ref use;
4762       bool all_ok = true;
4763       bool all_transp = true;
4764 
4765       if (!REG_P (DF_REF_REG (def)))
4766 	continue;
4767 
4768       if (!local_to_bb_p)
4769 	{
4770 	  if (dump_file)
4771 	    fprintf (dump_file, "Reg %u not local to one basic block\n",
4772 		     i);
4773 	  continue;
4774 	}
4775       if (reg_equiv_init (i) != NULL_RTX)
4776 	{
4777 	  if (dump_file)
4778 	    fprintf (dump_file, "Ignoring reg %u with equiv init insn\n",
4779 		     i);
4780 	  continue;
4781 	}
4782       if (!rtx_moveable_p (&PATTERN (def_insn), OP_IN))
4783 	{
4784 	  if (dump_file)
4785 	    fprintf (dump_file, "Found def insn %d for %d to be not moveable\n",
4786 		     INSN_UID (def_insn), i);
4787 	  continue;
4788 	}
4789       if (dump_file)
4790 	fprintf (dump_file, "Examining insn %d, def for %d\n",
4791 		 INSN_UID (def_insn), i);
4792       FOR_EACH_INSN_USE (use, def_insn)
4793 	{
4794 	  unsigned regno = DF_REF_REGNO (use);
4795 	  if (bitmap_bit_p (unusable_as_input, regno))
4796 	    {
4797 	      all_ok = false;
4798 	      if (dump_file)
4799 		fprintf (dump_file, "  found unusable input reg %u.\n", regno);
4800 	      break;
4801 	    }
4802 	  if (!bitmap_bit_p (def_bb_transp, regno))
4803 	    {
4804 	      if (bitmap_bit_p (def_bb_moveable, regno)
4805 		  && !control_flow_insn_p (use_insn)
4806 		  && (!HAVE_cc0 || !sets_cc0_p (use_insn)))
4807 		{
4808 		  if (modified_between_p (DF_REF_REG (use), def_insn, use_insn))
4809 		    {
4810 		      rtx_insn *x = NEXT_INSN (def_insn);
4811 		      while (!modified_in_p (DF_REF_REG (use), x))
4812 			{
4813 			  gcc_assert (x != use_insn);
4814 			  x = NEXT_INSN (x);
4815 			}
4816 		      if (dump_file)
4817 			fprintf (dump_file, "  input reg %u modified but insn %d moveable\n",
4818 				 regno, INSN_UID (x));
4819 		      emit_insn_after (PATTERN (x), use_insn);
4820 		      set_insn_deleted (x);
4821 		    }
4822 		  else
4823 		    {
4824 		      if (dump_file)
4825 			fprintf (dump_file, "  input reg %u modified between def and use\n",
4826 				 regno);
4827 		      all_transp = false;
4828 		    }
4829 		}
4830 	      else
4831 		all_transp = false;
4832 	    }
4833 	}
4834       if (!all_ok)
4835 	continue;
4836       if (!dbg_cnt (ira_move))
4837 	break;
4838       if (dump_file)
4839 	fprintf (dump_file, "  all ok%s\n", all_transp ? " and transp" : "");
4840 
4841       if (all_transp)
4842 	{
4843 	  rtx def_reg = DF_REF_REG (def);
4844 	  rtx newreg = ira_create_new_reg (def_reg);
4845 	  if (validate_change (def_insn, DF_REF_REAL_LOC (def), newreg, 0))
4846 	    {
4847 	      unsigned nregno = REGNO (newreg);
4848 	      emit_insn_before (gen_move_insn (def_reg, newreg), use_insn);
4849 	      nregno -= max_regs;
4850 	      pseudo_replaced_reg[nregno] = def_reg;
4851 	    }
4852 	}
4853     }
4854 
4855   FOR_EACH_BB_FN (bb, cfun)
4856     {
4857       bitmap_clear (bb_local + bb->index);
4858       bitmap_clear (bb_transp_live + bb->index);
4859       bitmap_clear (bb_moveable_reg_sets + bb->index);
4860     }
4861   free (uid_luid);
4862   free (closest_uses);
4863   free (bb_local);
4864   free (bb_transp_live);
4865   free (bb_moveable_reg_sets);
4866 
4867   last_moveable_pseudo = max_reg_num ();
4868 
4869   fix_reg_equiv_init ();
4870   expand_reg_info ();
4871   regstat_free_n_sets_and_refs ();
4872   regstat_free_ri ();
4873   regstat_init_n_sets_and_refs ();
4874   regstat_compute_ri ();
4875   free_dominance_info (CDI_DOMINATORS);
4876 }
4877 
4878 /* If SET pattern SET is an assignment from a hard register to a pseudo which
4879    is live at CALL_DOM (if non-NULL, otherwise this check is omitted), return
4880    the destination.  Otherwise return NULL.  */
4881 
4882 static rtx
interesting_dest_for_shprep_1(rtx set,basic_block call_dom)4883 interesting_dest_for_shprep_1 (rtx set, basic_block call_dom)
4884 {
4885   rtx src = SET_SRC (set);
4886   rtx dest = SET_DEST (set);
4887   if (!REG_P (src) || !HARD_REGISTER_P (src)
4888       || !REG_P (dest) || HARD_REGISTER_P (dest)
4889       || (call_dom && !bitmap_bit_p (df_get_live_in (call_dom), REGNO (dest))))
4890     return NULL;
4891   return dest;
4892 }
4893 
4894 /* If insn is interesting for parameter range-splitting shrink-wrapping
4895    preparation, i.e. it is a single set from a hard register to a pseudo, which
4896    is live at CALL_DOM (if non-NULL, otherwise this check is omitted), or a
4897    parallel statement with only one such statement, return the destination.
4898    Otherwise return NULL.  */
4899 
4900 static rtx
interesting_dest_for_shprep(rtx_insn * insn,basic_block call_dom)4901 interesting_dest_for_shprep (rtx_insn *insn, basic_block call_dom)
4902 {
4903   if (!INSN_P (insn))
4904     return NULL;
4905   rtx pat = PATTERN (insn);
4906   if (GET_CODE (pat) == SET)
4907     return interesting_dest_for_shprep_1 (pat, call_dom);
4908 
4909   if (GET_CODE (pat) != PARALLEL)
4910     return NULL;
4911   rtx ret = NULL;
4912   for (int i = 0; i < XVECLEN (pat, 0); i++)
4913     {
4914       rtx sub = XVECEXP (pat, 0, i);
4915       if (GET_CODE (sub) == USE
4916 	  || GET_CODE (sub) == CLOBBER
4917 	  || GET_CODE (sub) == CLOBBER_HIGH)
4918 	continue;
4919       if (GET_CODE (sub) != SET
4920 	  || side_effects_p (sub))
4921 	return NULL;
4922       rtx dest = interesting_dest_for_shprep_1 (sub, call_dom);
4923       if (dest && ret)
4924 	return NULL;
4925       if (dest)
4926 	ret = dest;
4927     }
4928   return ret;
4929 }
4930 
4931 /* Split live ranges of pseudos that are loaded from hard registers in the
4932    first BB in a BB that dominates all non-sibling call if such a BB can be
4933    found and is not in a loop.  Return true if the function has made any
4934    changes.  */
4935 
4936 static bool
split_live_ranges_for_shrink_wrap(void)4937 split_live_ranges_for_shrink_wrap (void)
4938 {
4939   basic_block bb, call_dom = NULL;
4940   basic_block first = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
4941   rtx_insn *insn, *last_interesting_insn = NULL;
4942   auto_bitmap need_new, reachable;
4943   vec<basic_block> queue;
4944 
4945   if (!SHRINK_WRAPPING_ENABLED)
4946     return false;
4947 
4948   queue.create (n_basic_blocks_for_fn (cfun));
4949 
4950   FOR_EACH_BB_FN (bb, cfun)
4951     FOR_BB_INSNS (bb, insn)
4952       if (CALL_P (insn) && !SIBLING_CALL_P (insn))
4953 	{
4954 	  if (bb == first)
4955 	    {
4956 	      queue.release ();
4957 	      return false;
4958 	    }
4959 
4960 	  bitmap_set_bit (need_new, bb->index);
4961 	  bitmap_set_bit (reachable, bb->index);
4962 	  queue.quick_push (bb);
4963 	  break;
4964 	}
4965 
4966   if (queue.is_empty ())
4967     {
4968       queue.release ();
4969       return false;
4970     }
4971 
4972   while (!queue.is_empty ())
4973     {
4974       edge e;
4975       edge_iterator ei;
4976 
4977       bb = queue.pop ();
4978       FOR_EACH_EDGE (e, ei, bb->succs)
4979 	if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
4980 	    && bitmap_set_bit (reachable, e->dest->index))
4981 	  queue.quick_push (e->dest);
4982     }
4983   queue.release ();
4984 
4985   FOR_BB_INSNS (first, insn)
4986     {
4987       rtx dest = interesting_dest_for_shprep (insn, NULL);
4988       if (!dest)
4989 	continue;
4990 
4991       if (DF_REG_DEF_COUNT (REGNO (dest)) > 1)
4992 	return false;
4993 
4994       for (df_ref use = DF_REG_USE_CHAIN (REGNO(dest));
4995 	   use;
4996 	   use = DF_REF_NEXT_REG (use))
4997 	{
4998 	  int ubbi = DF_REF_BB (use)->index;
4999 	  if (bitmap_bit_p (reachable, ubbi))
5000 	    bitmap_set_bit (need_new, ubbi);
5001 	}
5002       last_interesting_insn = insn;
5003     }
5004 
5005   if (!last_interesting_insn)
5006     return false;
5007 
5008   call_dom = nearest_common_dominator_for_set (CDI_DOMINATORS, need_new);
5009   if (call_dom == first)
5010     return false;
5011 
5012   loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
5013   while (bb_loop_depth (call_dom) > 0)
5014     call_dom = get_immediate_dominator (CDI_DOMINATORS, call_dom);
5015   loop_optimizer_finalize ();
5016 
5017   if (call_dom == first)
5018     return false;
5019 
5020   calculate_dominance_info (CDI_POST_DOMINATORS);
5021   if (dominated_by_p (CDI_POST_DOMINATORS, first, call_dom))
5022     {
5023       free_dominance_info (CDI_POST_DOMINATORS);
5024       return false;
5025     }
5026   free_dominance_info (CDI_POST_DOMINATORS);
5027 
5028   if (dump_file)
5029     fprintf (dump_file, "Will split live ranges of parameters at BB %i\n",
5030 	     call_dom->index);
5031 
5032   bool ret = false;
5033   FOR_BB_INSNS (first, insn)
5034     {
5035       rtx dest = interesting_dest_for_shprep (insn, call_dom);
5036       if (!dest || dest == pic_offset_table_rtx)
5037 	continue;
5038 
5039       bool need_newreg = false;
5040       df_ref use, next;
5041       for (use = DF_REG_USE_CHAIN (REGNO (dest)); use; use = next)
5042 	{
5043 	  rtx_insn *uin = DF_REF_INSN (use);
5044 	  next = DF_REF_NEXT_REG (use);
5045 
5046 	  if (DEBUG_INSN_P (uin))
5047 	    continue;
5048 
5049 	  basic_block ubb = BLOCK_FOR_INSN (uin);
5050 	  if (ubb == call_dom
5051 	      || dominated_by_p (CDI_DOMINATORS, ubb, call_dom))
5052 	    {
5053 	      need_newreg = true;
5054 	      break;
5055 	    }
5056 	}
5057 
5058       if (need_newreg)
5059 	{
5060 	  rtx newreg = ira_create_new_reg (dest);
5061 
5062 	  for (use = DF_REG_USE_CHAIN (REGNO (dest)); use; use = next)
5063 	    {
5064 	      rtx_insn *uin = DF_REF_INSN (use);
5065 	      next = DF_REF_NEXT_REG (use);
5066 
5067 	      basic_block ubb = BLOCK_FOR_INSN (uin);
5068 	      if (ubb == call_dom
5069 		  || dominated_by_p (CDI_DOMINATORS, ubb, call_dom))
5070 		validate_change (uin, DF_REF_REAL_LOC (use), newreg, true);
5071 	    }
5072 
5073 	  rtx_insn *new_move = gen_move_insn (newreg, dest);
5074 	  emit_insn_after (new_move, bb_note (call_dom));
5075 	  if (dump_file)
5076 	    {
5077 	      fprintf (dump_file, "Split live-range of register ");
5078 	      print_rtl_single (dump_file, dest);
5079 	    }
5080 	  ret = true;
5081 	}
5082 
5083       if (insn == last_interesting_insn)
5084 	break;
5085     }
5086   apply_change_group ();
5087   return ret;
5088 }
5089 
5090 /* Perform the second half of the transformation started in
5091    find_moveable_pseudos.  We look for instances where the newly introduced
5092    pseudo remains unallocated, and remove it by moving the definition to
5093    just before its use, replacing the move instruction generated by
5094    find_moveable_pseudos.  */
5095 static void
move_unallocated_pseudos(void)5096 move_unallocated_pseudos (void)
5097 {
5098   int i;
5099   for (i = first_moveable_pseudo; i < last_moveable_pseudo; i++)
5100     if (reg_renumber[i] < 0)
5101       {
5102 	int idx = i - first_moveable_pseudo;
5103 	rtx other_reg = pseudo_replaced_reg[idx];
5104 	rtx_insn *def_insn = DF_REF_INSN (DF_REG_DEF_CHAIN (i));
5105 	/* The use must follow all definitions of OTHER_REG, so we can
5106 	   insert the new definition immediately after any of them.  */
5107 	df_ref other_def = DF_REG_DEF_CHAIN (REGNO (other_reg));
5108 	rtx_insn *move_insn = DF_REF_INSN (other_def);
5109 	rtx_insn *newinsn = emit_insn_after (PATTERN (def_insn), move_insn);
5110 	rtx set;
5111 	int success;
5112 
5113 	if (dump_file)
5114 	  fprintf (dump_file, "moving def of %d (insn %d now) ",
5115 		   REGNO (other_reg), INSN_UID (def_insn));
5116 
5117 	delete_insn (move_insn);
5118 	while ((other_def = DF_REG_DEF_CHAIN (REGNO (other_reg))))
5119 	  delete_insn (DF_REF_INSN (other_def));
5120 	delete_insn (def_insn);
5121 
5122 	set = single_set (newinsn);
5123 	success = validate_change (newinsn, &SET_DEST (set), other_reg, 0);
5124 	gcc_assert (success);
5125 	if (dump_file)
5126 	  fprintf (dump_file, " %d) rather than keep unallocated replacement %d\n",
5127 		   INSN_UID (newinsn), i);
5128 	SET_REG_N_REFS (i, 0);
5129       }
5130 }
5131 
5132 /* If the backend knows where to allocate pseudos for hard
5133    register initial values, register these allocations now.  */
5134 static void
allocate_initial_values(void)5135 allocate_initial_values (void)
5136 {
5137   if (targetm.allocate_initial_value)
5138     {
5139       rtx hreg, preg, x;
5140       int i, regno;
5141 
5142       for (i = 0; HARD_REGISTER_NUM_P (i); i++)
5143 	{
5144 	  if (! initial_value_entry (i, &hreg, &preg))
5145 	    break;
5146 
5147 	  x = targetm.allocate_initial_value (hreg);
5148 	  regno = REGNO (preg);
5149 	  if (x && REG_N_SETS (regno) <= 1)
5150 	    {
5151 	      if (MEM_P (x))
5152 		reg_equiv_memory_loc (regno) = x;
5153 	      else
5154 		{
5155 		  basic_block bb;
5156 		  int new_regno;
5157 
5158 		  gcc_assert (REG_P (x));
5159 		  new_regno = REGNO (x);
5160 		  reg_renumber[regno] = new_regno;
5161 		  /* Poke the regno right into regno_reg_rtx so that even
5162 		     fixed regs are accepted.  */
5163 		  SET_REGNO (preg, new_regno);
5164 		  /* Update global register liveness information.  */
5165 		  FOR_EACH_BB_FN (bb, cfun)
5166 		    {
5167 		      if (REGNO_REG_SET_P (df_get_live_in (bb), regno))
5168 			SET_REGNO_REG_SET (df_get_live_in (bb), new_regno);
5169 		      if (REGNO_REG_SET_P (df_get_live_out (bb), regno))
5170 			SET_REGNO_REG_SET (df_get_live_out (bb), new_regno);
5171 		    }
5172 		}
5173 	    }
5174 	}
5175 
5176       gcc_checking_assert (! initial_value_entry (FIRST_PSEUDO_REGISTER,
5177 						  &hreg, &preg));
5178     }
5179 }
5180 
5181 
5182 /* True when we use LRA instead of reload pass for the current
5183    function.  */
5184 bool ira_use_lra_p;
5185 
5186 /* True if we have allocno conflicts.  It is false for non-optimized
5187    mode or when the conflict table is too big.  */
5188 bool ira_conflicts_p;
5189 
5190 /* Saved between IRA and reload.  */
5191 static int saved_flag_ira_share_spill_slots;
5192 
5193 /* This is the main entry of IRA.  */
5194 static void
ira(FILE * f)5195 ira (FILE *f)
5196 {
5197   bool loops_p;
5198   int ira_max_point_before_emit;
5199   bool saved_flag_caller_saves = flag_caller_saves;
5200   enum ira_region saved_flag_ira_region = flag_ira_region;
5201   unsigned int i;
5202   int num_used_regs = 0;
5203 
5204   clear_bb_flags ();
5205 
5206   /* Determine if the current function is a leaf before running IRA
5207      since this can impact optimizations done by the prologue and
5208      epilogue thus changing register elimination offsets.
5209      Other target callbacks may use crtl->is_leaf too, including
5210      SHRINK_WRAPPING_ENABLED, so initialize as early as possible.  */
5211   crtl->is_leaf = leaf_function_p ();
5212 
5213   /* Perform target specific PIC register initialization.  */
5214   targetm.init_pic_reg ();
5215 
5216   ira_conflicts_p = optimize > 0;
5217 
5218   /* Determine the number of pseudos actually requiring coloring.  */
5219   for (i = FIRST_PSEUDO_REGISTER; i < DF_REG_SIZE (df); i++)
5220     num_used_regs += !!(DF_REG_USE_COUNT (i) + DF_REG_DEF_COUNT (i));
5221 
5222   /* If there are too many pseudos and/or basic blocks (e.g. 10K
5223      pseudos and 10K blocks or 100K pseudos and 1K blocks), we will
5224      use simplified and faster algorithms in LRA.  */
5225   lra_simple_p
5226     = (ira_use_lra_p
5227        && num_used_regs >= (1 << 26) / last_basic_block_for_fn (cfun));
5228 
5229   if (lra_simple_p)
5230     {
5231       /* It permits to skip live range splitting in LRA.  */
5232       flag_caller_saves = false;
5233       /* There is no sense to do regional allocation when we use
5234 	 simplified LRA.  */
5235       flag_ira_region = IRA_REGION_ONE;
5236       ira_conflicts_p = false;
5237     }
5238 
5239 #ifndef IRA_NO_OBSTACK
5240   gcc_obstack_init (&ira_obstack);
5241 #endif
5242   bitmap_obstack_initialize (&ira_bitmap_obstack);
5243 
5244   /* LRA uses its own infrastructure to handle caller save registers.  */
5245   if (flag_caller_saves && !ira_use_lra_p)
5246     init_caller_save ();
5247 
5248   if (flag_ira_verbose < 10)
5249     {
5250       internal_flag_ira_verbose = flag_ira_verbose;
5251       ira_dump_file = f;
5252     }
5253   else
5254     {
5255       internal_flag_ira_verbose = flag_ira_verbose - 10;
5256       ira_dump_file = stderr;
5257     }
5258 
5259   setup_prohibited_mode_move_regs ();
5260   decrease_live_ranges_number ();
5261   df_note_add_problem ();
5262 
5263   /* DF_LIVE can't be used in the register allocator, too many other
5264      parts of the compiler depend on using the "classic" liveness
5265      interpretation of the DF_LR problem.  See PR38711.
5266      Remove the problem, so that we don't spend time updating it in
5267      any of the df_analyze() calls during IRA/LRA.  */
5268   if (optimize > 1)
5269     df_remove_problem (df_live);
5270   gcc_checking_assert (df_live == NULL);
5271 
5272   if (flag_checking)
5273     df->changeable_flags |= DF_VERIFY_SCHEDULED;
5274 
5275   df_analyze ();
5276 
5277   init_reg_equiv ();
5278   if (ira_conflicts_p)
5279     {
5280       calculate_dominance_info (CDI_DOMINATORS);
5281 
5282       if (split_live_ranges_for_shrink_wrap ())
5283 	df_analyze ();
5284 
5285       free_dominance_info (CDI_DOMINATORS);
5286     }
5287 
5288   df_clear_flags (DF_NO_INSN_RESCAN);
5289 
5290   indirect_jump_optimize ();
5291   if (delete_trivially_dead_insns (get_insns (), max_reg_num ()))
5292     df_analyze ();
5293 
5294   regstat_init_n_sets_and_refs ();
5295   regstat_compute_ri ();
5296 
5297   /* If we are not optimizing, then this is the only place before
5298      register allocation where dataflow is done.  And that is needed
5299      to generate these warnings.  */
5300   if (warn_clobbered)
5301     generate_setjmp_warnings ();
5302 
5303   if (resize_reg_info () && flag_ira_loop_pressure)
5304     ira_set_pseudo_classes (true, ira_dump_file);
5305 
5306   init_alias_analysis ();
5307   loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
5308   reg_equiv = XCNEWVEC (struct equivalence, max_reg_num ());
5309   update_equiv_regs ();
5310 
5311   /* Don't move insns if live range shrinkage or register
5312      pressure-sensitive scheduling were done because it will not
5313      improve allocation but likely worsen insn scheduling.  */
5314   if (optimize
5315       && !flag_live_range_shrinkage
5316       && !(flag_sched_pressure && flag_schedule_insns))
5317     combine_and_move_insns ();
5318 
5319   /* Gather additional equivalences with memory.  */
5320   if (optimize)
5321     add_store_equivs ();
5322 
5323   loop_optimizer_finalize ();
5324   free_dominance_info (CDI_DOMINATORS);
5325   end_alias_analysis ();
5326   free (reg_equiv);
5327 
5328   setup_reg_equiv ();
5329   grow_reg_equivs ();
5330   setup_reg_equiv_init ();
5331 
5332   allocated_reg_info_size = max_reg_num ();
5333 
5334   /* It is not worth to do such improvement when we use a simple
5335      allocation because of -O0 usage or because the function is too
5336      big.  */
5337   if (ira_conflicts_p)
5338     find_moveable_pseudos ();
5339 
5340   max_regno_before_ira = max_reg_num ();
5341   ira_setup_eliminable_regset ();
5342 
5343   ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
5344   ira_load_cost = ira_store_cost = ira_shuffle_cost = 0;
5345   ira_move_loops_num = ira_additional_jumps_num = 0;
5346 
5347   ira_assert (current_loops == NULL);
5348   if (flag_ira_region == IRA_REGION_ALL || flag_ira_region == IRA_REGION_MIXED)
5349     loop_optimizer_init (AVOID_CFG_MODIFICATIONS | LOOPS_HAVE_RECORDED_EXITS);
5350 
5351   if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
5352     fprintf (ira_dump_file, "Building IRA IR\n");
5353   loops_p = ira_build ();
5354 
5355   ira_assert (ira_conflicts_p || !loops_p);
5356 
5357   saved_flag_ira_share_spill_slots = flag_ira_share_spill_slots;
5358   if (too_high_register_pressure_p () || cfun->calls_setjmp)
5359     /* It is just wasting compiler's time to pack spilled pseudos into
5360        stack slots in this case -- prohibit it.  We also do this if
5361        there is setjmp call because a variable not modified between
5362        setjmp and longjmp the compiler is required to preserve its
5363        value and sharing slots does not guarantee it.  */
5364     flag_ira_share_spill_slots = FALSE;
5365 
5366   ira_color ();
5367 
5368   ira_max_point_before_emit = ira_max_point;
5369 
5370   ira_initiate_emit_data ();
5371 
5372   ira_emit (loops_p);
5373 
5374   max_regno = max_reg_num ();
5375   if (ira_conflicts_p)
5376     {
5377       if (! loops_p)
5378 	{
5379 	  if (! ira_use_lra_p)
5380 	    ira_initiate_assign ();
5381 	}
5382       else
5383 	{
5384 	  expand_reg_info ();
5385 
5386 	  if (ira_use_lra_p)
5387 	    {
5388 	      ira_allocno_t a;
5389 	      ira_allocno_iterator ai;
5390 
5391 	      FOR_EACH_ALLOCNO (a, ai)
5392                 {
5393                   int old_regno = ALLOCNO_REGNO (a);
5394                   int new_regno = REGNO (ALLOCNO_EMIT_DATA (a)->reg);
5395 
5396                   ALLOCNO_REGNO (a) = new_regno;
5397 
5398                   if (old_regno != new_regno)
5399                     setup_reg_classes (new_regno, reg_preferred_class (old_regno),
5400                                        reg_alternate_class (old_regno),
5401                                        reg_allocno_class (old_regno));
5402                 }
5403 	    }
5404 	  else
5405 	    {
5406 	      if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
5407 		fprintf (ira_dump_file, "Flattening IR\n");
5408 	      ira_flattening (max_regno_before_ira, ira_max_point_before_emit);
5409 	    }
5410 	  /* New insns were generated: add notes and recalculate live
5411 	     info.  */
5412 	  df_analyze ();
5413 
5414 	  /* ??? Rebuild the loop tree, but why?  Does the loop tree
5415 	     change if new insns were generated?  Can that be handled
5416 	     by updating the loop tree incrementally?  */
5417 	  loop_optimizer_finalize ();
5418 	  free_dominance_info (CDI_DOMINATORS);
5419 	  loop_optimizer_init (AVOID_CFG_MODIFICATIONS
5420 			       | LOOPS_HAVE_RECORDED_EXITS);
5421 
5422 	  if (! ira_use_lra_p)
5423 	    {
5424 	      setup_allocno_assignment_flags ();
5425 	      ira_initiate_assign ();
5426 	      ira_reassign_conflict_allocnos (max_regno);
5427 	    }
5428 	}
5429     }
5430 
5431   ira_finish_emit_data ();
5432 
5433   setup_reg_renumber ();
5434 
5435   calculate_allocation_cost ();
5436 
5437 #ifdef ENABLE_IRA_CHECKING
5438   if (ira_conflicts_p && ! ira_use_lra_p)
5439     /* Opposite to reload pass, LRA does not use any conflict info
5440        from IRA.  We don't rebuild conflict info for LRA (through
5441        ira_flattening call) and cannot use the check here.  We could
5442        rebuild this info for LRA in the check mode but there is a risk
5443        that code generated with the check and without it will be a bit
5444        different.  Calling ira_flattening in any mode would be a
5445        wasting CPU time.  So do not check the allocation for LRA.  */
5446     check_allocation ();
5447 #endif
5448 
5449   if (max_regno != max_regno_before_ira)
5450     {
5451       regstat_free_n_sets_and_refs ();
5452       regstat_free_ri ();
5453       regstat_init_n_sets_and_refs ();
5454       regstat_compute_ri ();
5455     }
5456 
5457   overall_cost_before = ira_overall_cost;
5458   if (! ira_conflicts_p)
5459     grow_reg_equivs ();
5460   else
5461     {
5462       fix_reg_equiv_init ();
5463 
5464 #ifdef ENABLE_IRA_CHECKING
5465       print_redundant_copies ();
5466 #endif
5467       if (! ira_use_lra_p)
5468 	{
5469 	  ira_spilled_reg_stack_slots_num = 0;
5470 	  ira_spilled_reg_stack_slots
5471 	    = ((struct ira_spilled_reg_stack_slot *)
5472 	       ira_allocate (max_regno
5473 			     * sizeof (struct ira_spilled_reg_stack_slot)));
5474 	  memset ((void *)ira_spilled_reg_stack_slots, 0,
5475 		  max_regno * sizeof (struct ira_spilled_reg_stack_slot));
5476 	}
5477     }
5478   allocate_initial_values ();
5479 
5480   /* See comment for find_moveable_pseudos call.  */
5481   if (ira_conflicts_p)
5482     move_unallocated_pseudos ();
5483 
5484   /* Restore original values.  */
5485   if (lra_simple_p)
5486     {
5487       flag_caller_saves = saved_flag_caller_saves;
5488       flag_ira_region = saved_flag_ira_region;
5489     }
5490 }
5491 
5492 static void
do_reload(void)5493 do_reload (void)
5494 {
5495   basic_block bb;
5496   bool need_dce;
5497   unsigned pic_offset_table_regno = INVALID_REGNUM;
5498 
5499   if (flag_ira_verbose < 10)
5500     ira_dump_file = dump_file;
5501 
5502   /* If pic_offset_table_rtx is a pseudo register, then keep it so
5503      after reload to avoid possible wrong usages of hard reg assigned
5504      to it.  */
5505   if (pic_offset_table_rtx
5506       && REGNO (pic_offset_table_rtx) >= FIRST_PSEUDO_REGISTER)
5507     pic_offset_table_regno = REGNO (pic_offset_table_rtx);
5508 
5509   timevar_push (TV_RELOAD);
5510   if (ira_use_lra_p)
5511     {
5512       if (current_loops != NULL)
5513 	{
5514 	  loop_optimizer_finalize ();
5515 	  free_dominance_info (CDI_DOMINATORS);
5516 	}
5517       FOR_ALL_BB_FN (bb, cfun)
5518 	bb->loop_father = NULL;
5519       current_loops = NULL;
5520 
5521       ira_destroy ();
5522 
5523       lra (ira_dump_file);
5524       /* ???!!! Move it before lra () when we use ira_reg_equiv in
5525 	 LRA.  */
5526       vec_free (reg_equivs);
5527       reg_equivs = NULL;
5528       need_dce = false;
5529     }
5530   else
5531     {
5532       df_set_flags (DF_NO_INSN_RESCAN);
5533       build_insn_chain ();
5534 
5535       need_dce = reload (get_insns (), ira_conflicts_p);
5536     }
5537 
5538   timevar_pop (TV_RELOAD);
5539 
5540   timevar_push (TV_IRA);
5541 
5542   if (ira_conflicts_p && ! ira_use_lra_p)
5543     {
5544       ira_free (ira_spilled_reg_stack_slots);
5545       ira_finish_assign ();
5546     }
5547 
5548   if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL
5549       && overall_cost_before != ira_overall_cost)
5550     fprintf (ira_dump_file, "+++Overall after reload %" PRId64 "\n",
5551 	     ira_overall_cost);
5552 
5553   flag_ira_share_spill_slots = saved_flag_ira_share_spill_slots;
5554 
5555   if (! ira_use_lra_p)
5556     {
5557       ira_destroy ();
5558       if (current_loops != NULL)
5559 	{
5560 	  loop_optimizer_finalize ();
5561 	  free_dominance_info (CDI_DOMINATORS);
5562 	}
5563       FOR_ALL_BB_FN (bb, cfun)
5564 	bb->loop_father = NULL;
5565       current_loops = NULL;
5566 
5567       regstat_free_ri ();
5568       regstat_free_n_sets_and_refs ();
5569     }
5570 
5571   if (optimize)
5572     cleanup_cfg (CLEANUP_EXPENSIVE);
5573 
5574   finish_reg_equiv ();
5575 
5576   bitmap_obstack_release (&ira_bitmap_obstack);
5577 #ifndef IRA_NO_OBSTACK
5578   obstack_free (&ira_obstack, NULL);
5579 #endif
5580 
5581   /* The code after the reload has changed so much that at this point
5582      we might as well just rescan everything.  Note that
5583      df_rescan_all_insns is not going to help here because it does not
5584      touch the artificial uses and defs.  */
5585   df_finish_pass (true);
5586   df_scan_alloc (NULL);
5587   df_scan_blocks ();
5588 
5589   if (optimize > 1)
5590     {
5591       df_live_add_problem ();
5592       df_live_set_all_dirty ();
5593     }
5594 
5595   if (optimize)
5596     df_analyze ();
5597 
5598   if (need_dce && optimize)
5599     run_fast_dce ();
5600 
5601   /* Diagnose uses of the hard frame pointer when it is used as a global
5602      register.  Often we can get away with letting the user appropriate
5603      the frame pointer, but we should let them know when code generation
5604      makes that impossible.  */
5605   if (global_regs[HARD_FRAME_POINTER_REGNUM] && frame_pointer_needed)
5606     {
5607       tree decl = global_regs_decl[HARD_FRAME_POINTER_REGNUM];
5608       error_at (DECL_SOURCE_LOCATION (current_function_decl),
5609                 "frame pointer required, but reserved");
5610       inform (DECL_SOURCE_LOCATION (decl), "for %qD", decl);
5611     }
5612 
5613   /* If we are doing generic stack checking, give a warning if this
5614      function's frame size is larger than we expect.  */
5615   if (flag_stack_check == GENERIC_STACK_CHECK)
5616     {
5617       poly_int64 size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
5618 
5619       for (int i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5620 	if (df_regs_ever_live_p (i) && !fixed_regs[i] && call_used_regs[i])
5621 	  size += UNITS_PER_WORD;
5622 
5623       if (constant_lower_bound (size) > STACK_CHECK_MAX_FRAME_SIZE)
5624 	warning (0, "frame size too large for reliable stack checking");
5625     }
5626 
5627   if (pic_offset_table_regno != INVALID_REGNUM)
5628     pic_offset_table_rtx = gen_rtx_REG (Pmode, pic_offset_table_regno);
5629 
5630   timevar_pop (TV_IRA);
5631 }
5632 
5633 /* Run the integrated register allocator.  */
5634 
5635 namespace {
5636 
5637 const pass_data pass_data_ira =
5638 {
5639   RTL_PASS, /* type */
5640   "ira", /* name */
5641   OPTGROUP_NONE, /* optinfo_flags */
5642   TV_IRA, /* tv_id */
5643   0, /* properties_required */
5644   0, /* properties_provided */
5645   0, /* properties_destroyed */
5646   0, /* todo_flags_start */
5647   TODO_do_not_ggc_collect, /* todo_flags_finish */
5648 };
5649 
5650 class pass_ira : public rtl_opt_pass
5651 {
5652 public:
pass_ira(gcc::context * ctxt)5653   pass_ira (gcc::context *ctxt)
5654     : rtl_opt_pass (pass_data_ira, ctxt)
5655   {}
5656 
5657   /* opt_pass methods: */
gate(function *)5658   virtual bool gate (function *)
5659     {
5660       return !targetm.no_register_allocation;
5661     }
execute(function *)5662   virtual unsigned int execute (function *)
5663     {
5664       ira (dump_file);
5665       return 0;
5666     }
5667 
5668 }; // class pass_ira
5669 
5670 } // anon namespace
5671 
5672 rtl_opt_pass *
make_pass_ira(gcc::context * ctxt)5673 make_pass_ira (gcc::context *ctxt)
5674 {
5675   return new pass_ira (ctxt);
5676 }
5677 
5678 namespace {
5679 
5680 const pass_data pass_data_reload =
5681 {
5682   RTL_PASS, /* type */
5683   "reload", /* name */
5684   OPTGROUP_NONE, /* optinfo_flags */
5685   TV_RELOAD, /* tv_id */
5686   0, /* properties_required */
5687   0, /* properties_provided */
5688   0, /* properties_destroyed */
5689   0, /* todo_flags_start */
5690   0, /* todo_flags_finish */
5691 };
5692 
5693 class pass_reload : public rtl_opt_pass
5694 {
5695 public:
pass_reload(gcc::context * ctxt)5696   pass_reload (gcc::context *ctxt)
5697     : rtl_opt_pass (pass_data_reload, ctxt)
5698   {}
5699 
5700   /* opt_pass methods: */
gate(function *)5701   virtual bool gate (function *)
5702     {
5703       return !targetm.no_register_allocation;
5704     }
execute(function *)5705   virtual unsigned int execute (function *)
5706     {
5707       do_reload ();
5708       return 0;
5709     }
5710 
5711 }; // class pass_reload
5712 
5713 } // anon namespace
5714 
5715 rtl_opt_pass *
make_pass_reload(gcc::context * ctxt)5716 make_pass_reload (gcc::context *ctxt)
5717 {
5718   return new pass_reload (ctxt);
5719 }
5720