1// Copyright 2009 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5// Package strings implements simple functions to manipulate UTF-8 encoded strings.
6//
7// For information about UTF-8 strings in Go, see https://blog.golang.org/strings.
8package strings
9
10import (
11	"internal/bytealg"
12	"unicode"
13	"unicode/utf8"
14)
15
16// explode splits s into a slice of UTF-8 strings,
17// one string per Unicode character up to a maximum of n (n < 0 means no limit).
18// Invalid UTF-8 sequences become correct encodings of U+FFFD.
19func explode(s string, n int) []string {
20	l := utf8.RuneCountInString(s)
21	if n < 0 || n > l {
22		n = l
23	}
24	a := make([]string, n)
25	for i := 0; i < n-1; i++ {
26		ch, size := utf8.DecodeRuneInString(s)
27		a[i] = s[:size]
28		s = s[size:]
29		if ch == utf8.RuneError {
30			a[i] = string(utf8.RuneError)
31		}
32	}
33	if n > 0 {
34		a[n-1] = s
35	}
36	return a
37}
38
39// primeRK is the prime base used in Rabin-Karp algorithm.
40const primeRK = 16777619
41
42// hashStr returns the hash and the appropriate multiplicative
43// factor for use in Rabin-Karp algorithm.
44func hashStr(sep string) (uint32, uint32) {
45	hash := uint32(0)
46	for i := 0; i < len(sep); i++ {
47		hash = hash*primeRK + uint32(sep[i])
48	}
49	var pow, sq uint32 = 1, primeRK
50	for i := len(sep); i > 0; i >>= 1 {
51		if i&1 != 0 {
52			pow *= sq
53		}
54		sq *= sq
55	}
56	return hash, pow
57}
58
59// hashStrRev returns the hash of the reverse of sep and the
60// appropriate multiplicative factor for use in Rabin-Karp algorithm.
61func hashStrRev(sep string) (uint32, uint32) {
62	hash := uint32(0)
63	for i := len(sep) - 1; i >= 0; i-- {
64		hash = hash*primeRK + uint32(sep[i])
65	}
66	var pow, sq uint32 = 1, primeRK
67	for i := len(sep); i > 0; i >>= 1 {
68		if i&1 != 0 {
69			pow *= sq
70		}
71		sq *= sq
72	}
73	return hash, pow
74}
75
76// Count counts the number of non-overlapping instances of substr in s.
77// If substr is an empty string, Count returns 1 + the number of Unicode code points in s.
78func Count(s, substr string) int {
79	// special case
80	if len(substr) == 0 {
81		return utf8.RuneCountInString(s) + 1
82	}
83	if len(substr) == 1 {
84		return bytealg.CountString(s, substr[0])
85	}
86	n := 0
87	for {
88		i := Index(s, substr)
89		if i == -1 {
90			return n
91		}
92		n++
93		s = s[i+len(substr):]
94	}
95}
96
97// Contains reports whether substr is within s.
98func Contains(s, substr string) bool {
99	return Index(s, substr) >= 0
100}
101
102// ContainsAny reports whether any Unicode code points in chars are within s.
103func ContainsAny(s, chars string) bool {
104	return IndexAny(s, chars) >= 0
105}
106
107// ContainsRune reports whether the Unicode code point r is within s.
108func ContainsRune(s string, r rune) bool {
109	return IndexRune(s, r) >= 0
110}
111
112// LastIndex returns the index of the last instance of substr in s, or -1 if substr is not present in s.
113func LastIndex(s, substr string) int {
114	n := len(substr)
115	switch {
116	case n == 0:
117		return len(s)
118	case n == 1:
119		return LastIndexByte(s, substr[0])
120	case n == len(s):
121		if substr == s {
122			return 0
123		}
124		return -1
125	case n > len(s):
126		return -1
127	}
128	// Rabin-Karp search from the end of the string
129	hashss, pow := hashStrRev(substr)
130	last := len(s) - n
131	var h uint32
132	for i := len(s) - 1; i >= last; i-- {
133		h = h*primeRK + uint32(s[i])
134	}
135	if h == hashss && s[last:] == substr {
136		return last
137	}
138	for i := last - 1; i >= 0; i-- {
139		h *= primeRK
140		h += uint32(s[i])
141		h -= pow * uint32(s[i+n])
142		if h == hashss && s[i:i+n] == substr {
143			return i
144		}
145	}
146	return -1
147}
148
149// IndexByte returns the index of the first instance of c in s, or -1 if c is not present in s.
150func IndexByte(s string, c byte) int {
151	return bytealg.IndexByteString(s, c)
152}
153
154// IndexRune returns the index of the first instance of the Unicode code point
155// r, or -1 if rune is not present in s.
156// If r is utf8.RuneError, it returns the first instance of any
157// invalid UTF-8 byte sequence.
158func IndexRune(s string, r rune) int {
159	switch {
160	case 0 <= r && r < utf8.RuneSelf:
161		return IndexByte(s, byte(r))
162	case r == utf8.RuneError:
163		for i, r := range s {
164			if r == utf8.RuneError {
165				return i
166			}
167		}
168		return -1
169	case !utf8.ValidRune(r):
170		return -1
171	default:
172		return Index(s, string(r))
173	}
174}
175
176// IndexAny returns the index of the first instance of any Unicode code point
177// from chars in s, or -1 if no Unicode code point from chars is present in s.
178func IndexAny(s, chars string) int {
179	if chars == "" {
180		// Avoid scanning all of s.
181		return -1
182	}
183	if len(s) > 8 {
184		if as, isASCII := makeASCIISet(chars); isASCII {
185			for i := 0; i < len(s); i++ {
186				if as.contains(s[i]) {
187					return i
188				}
189			}
190			return -1
191		}
192	}
193	for i, c := range s {
194		for _, m := range chars {
195			if c == m {
196				return i
197			}
198		}
199	}
200	return -1
201}
202
203// LastIndexAny returns the index of the last instance of any Unicode code
204// point from chars in s, or -1 if no Unicode code point from chars is
205// present in s.
206func LastIndexAny(s, chars string) int {
207	if chars == "" {
208		// Avoid scanning all of s.
209		return -1
210	}
211	if len(s) > 8 {
212		if as, isASCII := makeASCIISet(chars); isASCII {
213			for i := len(s) - 1; i >= 0; i-- {
214				if as.contains(s[i]) {
215					return i
216				}
217			}
218			return -1
219		}
220	}
221	for i := len(s); i > 0; {
222		r, size := utf8.DecodeLastRuneInString(s[:i])
223		i -= size
224		for _, c := range chars {
225			if r == c {
226				return i
227			}
228		}
229	}
230	return -1
231}
232
233// LastIndexByte returns the index of the last instance of c in s, or -1 if c is not present in s.
234func LastIndexByte(s string, c byte) int {
235	for i := len(s) - 1; i >= 0; i-- {
236		if s[i] == c {
237			return i
238		}
239	}
240	return -1
241}
242
243// Generic split: splits after each instance of sep,
244// including sepSave bytes of sep in the subarrays.
245func genSplit(s, sep string, sepSave, n int) []string {
246	if n == 0 {
247		return nil
248	}
249	if sep == "" {
250		return explode(s, n)
251	}
252	if n < 0 {
253		n = Count(s, sep) + 1
254	}
255
256	a := make([]string, n)
257	n--
258	i := 0
259	for i < n {
260		m := Index(s, sep)
261		if m < 0 {
262			break
263		}
264		a[i] = s[:m+sepSave]
265		s = s[m+len(sep):]
266		i++
267	}
268	a[i] = s
269	return a[:i+1]
270}
271
272// SplitN slices s into substrings separated by sep and returns a slice of
273// the substrings between those separators.
274//
275// The count determines the number of substrings to return:
276//   n > 0: at most n substrings; the last substring will be the unsplit remainder.
277//   n == 0: the result is nil (zero substrings)
278//   n < 0: all substrings
279//
280// Edge cases for s and sep (for example, empty strings) are handled
281// as described in the documentation for Split.
282func SplitN(s, sep string, n int) []string { return genSplit(s, sep, 0, n) }
283
284// SplitAfterN slices s into substrings after each instance of sep and
285// returns a slice of those substrings.
286//
287// The count determines the number of substrings to return:
288//   n > 0: at most n substrings; the last substring will be the unsplit remainder.
289//   n == 0: the result is nil (zero substrings)
290//   n < 0: all substrings
291//
292// Edge cases for s and sep (for example, empty strings) are handled
293// as described in the documentation for SplitAfter.
294func SplitAfterN(s, sep string, n int) []string {
295	return genSplit(s, sep, len(sep), n)
296}
297
298// Split slices s into all substrings separated by sep and returns a slice of
299// the substrings between those separators.
300//
301// If s does not contain sep and sep is not empty, Split returns a
302// slice of length 1 whose only element is s.
303//
304// If sep is empty, Split splits after each UTF-8 sequence. If both s
305// and sep are empty, Split returns an empty slice.
306//
307// It is equivalent to SplitN with a count of -1.
308func Split(s, sep string) []string { return genSplit(s, sep, 0, -1) }
309
310// SplitAfter slices s into all substrings after each instance of sep and
311// returns a slice of those substrings.
312//
313// If s does not contain sep and sep is not empty, SplitAfter returns
314// a slice of length 1 whose only element is s.
315//
316// If sep is empty, SplitAfter splits after each UTF-8 sequence. If
317// both s and sep are empty, SplitAfter returns an empty slice.
318//
319// It is equivalent to SplitAfterN with a count of -1.
320func SplitAfter(s, sep string) []string {
321	return genSplit(s, sep, len(sep), -1)
322}
323
324var asciiSpace = [256]uint8{'\t': 1, '\n': 1, '\v': 1, '\f': 1, '\r': 1, ' ': 1}
325
326// Fields splits the string s around each instance of one or more consecutive white space
327// characters, as defined by unicode.IsSpace, returning a slice of substrings of s or an
328// empty slice if s contains only white space.
329func Fields(s string) []string {
330	// First count the fields.
331	// This is an exact count if s is ASCII, otherwise it is an approximation.
332	n := 0
333	wasSpace := 1
334	// setBits is used to track which bits are set in the bytes of s.
335	setBits := uint8(0)
336	for i := 0; i < len(s); i++ {
337		r := s[i]
338		setBits |= r
339		isSpace := int(asciiSpace[r])
340		n += wasSpace & ^isSpace
341		wasSpace = isSpace
342	}
343
344	if setBits < utf8.RuneSelf { // ASCII fast path
345		a := make([]string, n)
346		na := 0
347		fieldStart := 0
348		i := 0
349		// Skip spaces in the front of the input.
350		for i < len(s) && asciiSpace[s[i]] != 0 {
351			i++
352		}
353		fieldStart = i
354		for i < len(s) {
355			if asciiSpace[s[i]] == 0 {
356				i++
357				continue
358			}
359			a[na] = s[fieldStart:i]
360			na++
361			i++
362			// Skip spaces in between fields.
363			for i < len(s) && asciiSpace[s[i]] != 0 {
364				i++
365			}
366			fieldStart = i
367		}
368		if fieldStart < len(s) { // Last field might end at EOF.
369			a[na] = s[fieldStart:]
370		}
371		return a
372	}
373
374	// Some runes in the input string are not ASCII.
375	return FieldsFunc(s, unicode.IsSpace)
376}
377
378// FieldsFunc splits the string s at each run of Unicode code points c satisfying f(c)
379// and returns an array of slices of s. If all code points in s satisfy f(c) or the
380// string is empty, an empty slice is returned.
381// FieldsFunc makes no guarantees about the order in which it calls f(c).
382// If f does not return consistent results for a given c, FieldsFunc may crash.
383func FieldsFunc(s string, f func(rune) bool) []string {
384	// A span is used to record a slice of s of the form s[start:end].
385	// The start index is inclusive and the end index is exclusive.
386	type span struct {
387		start int
388		end   int
389	}
390	spans := make([]span, 0, 32)
391
392	// Find the field start and end indices.
393	wasField := false
394	fromIndex := 0
395	for i, rune := range s {
396		if f(rune) {
397			if wasField {
398				spans = append(spans, span{start: fromIndex, end: i})
399				wasField = false
400			}
401		} else {
402			if !wasField {
403				fromIndex = i
404				wasField = true
405			}
406		}
407	}
408
409	// Last field might end at EOF.
410	if wasField {
411		spans = append(spans, span{fromIndex, len(s)})
412	}
413
414	// Create strings from recorded field indices.
415	a := make([]string, len(spans))
416	for i, span := range spans {
417		a[i] = s[span.start:span.end]
418	}
419
420	return a
421}
422
423// Join concatenates the elements of a to create a single string. The separator string
424// sep is placed between elements in the resulting string.
425func Join(a []string, sep string) string {
426	switch len(a) {
427	case 0:
428		return ""
429	case 1:
430		return a[0]
431	}
432	n := len(sep) * (len(a) - 1)
433	for i := 0; i < len(a); i++ {
434		n += len(a[i])
435	}
436
437	var b Builder
438	b.Grow(n)
439	b.WriteString(a[0])
440	for _, s := range a[1:] {
441		b.WriteString(sep)
442		b.WriteString(s)
443	}
444	return b.String()
445}
446
447// HasPrefix tests whether the string s begins with prefix.
448func HasPrefix(s, prefix string) bool {
449	return len(s) >= len(prefix) && s[0:len(prefix)] == prefix
450}
451
452// HasSuffix tests whether the string s ends with suffix.
453func HasSuffix(s, suffix string) bool {
454	return len(s) >= len(suffix) && s[len(s)-len(suffix):] == suffix
455}
456
457// Map returns a copy of the string s with all its characters modified
458// according to the mapping function. If mapping returns a negative value, the character is
459// dropped from the string with no replacement.
460func Map(mapping func(rune) rune, s string) string {
461	// In the worst case, the string can grow when mapped, making
462	// things unpleasant. But it's so rare we barge in assuming it's
463	// fine. It could also shrink but that falls out naturally.
464
465	// The output buffer b is initialized on demand, the first
466	// time a character differs.
467	var b Builder
468
469	for i, c := range s {
470		r := mapping(c)
471		if r == c && c != utf8.RuneError {
472			continue
473		}
474
475		var width int
476		if c == utf8.RuneError {
477			c, width = utf8.DecodeRuneInString(s[i:])
478			if width != 1 && r == c {
479				continue
480			}
481		} else {
482			width = utf8.RuneLen(c)
483		}
484
485		b.Grow(len(s) + utf8.UTFMax)
486		b.WriteString(s[:i])
487		if r >= 0 {
488			b.WriteRune(r)
489		}
490
491		s = s[i+width:]
492		break
493	}
494
495	// Fast path for unchanged input
496	if b.Cap() == 0 { // didn't call b.Grow above
497		return s
498	}
499
500	for _, c := range s {
501		r := mapping(c)
502
503		if r >= 0 {
504			// common case
505			// Due to inlining, it is more performant to determine if WriteByte should be
506			// invoked rather than always call WriteRune
507			if r < utf8.RuneSelf {
508				b.WriteByte(byte(r))
509			} else {
510				// r is not a ASCII rune.
511				b.WriteRune(r)
512			}
513		}
514	}
515
516	return b.String()
517}
518
519// Repeat returns a new string consisting of count copies of the string s.
520//
521// It panics if count is negative or if
522// the result of (len(s) * count) overflows.
523func Repeat(s string, count int) string {
524	if count == 0 {
525		return ""
526	}
527
528	// Since we cannot return an error on overflow,
529	// we should panic if the repeat will generate
530	// an overflow.
531	// See Issue golang.org/issue/16237
532	if count < 0 {
533		panic("strings: negative Repeat count")
534	} else if len(s)*count/count != len(s) {
535		panic("strings: Repeat count causes overflow")
536	}
537
538	n := len(s) * count
539	var b Builder
540	b.Grow(n)
541	b.WriteString(s)
542	for b.Len() < n {
543		if b.Len() <= n/2 {
544			b.WriteString(b.String())
545		} else {
546			b.WriteString(b.String()[:n-b.Len()])
547			break
548		}
549	}
550	return b.String()
551}
552
553// ToUpper returns a copy of the string s with all Unicode letters mapped to their upper case.
554func ToUpper(s string) string {
555	isASCII, hasLower := true, false
556	for i := 0; i < len(s); i++ {
557		c := s[i]
558		if c >= utf8.RuneSelf {
559			isASCII = false
560			break
561		}
562		hasLower = hasLower || (c >= 'a' && c <= 'z')
563	}
564
565	if isASCII { // optimize for ASCII-only strings.
566		if !hasLower {
567			return s
568		}
569		var b Builder
570		b.Grow(len(s))
571		for i := 0; i < len(s); i++ {
572			c := s[i]
573			if c >= 'a' && c <= 'z' {
574				c -= 'a' - 'A'
575			}
576			b.WriteByte(c)
577		}
578		return b.String()
579	}
580	return Map(unicode.ToUpper, s)
581}
582
583// ToLower returns a copy of the string s with all Unicode letters mapped to their lower case.
584func ToLower(s string) string {
585	isASCII, hasUpper := true, false
586	for i := 0; i < len(s); i++ {
587		c := s[i]
588		if c >= utf8.RuneSelf {
589			isASCII = false
590			break
591		}
592		hasUpper = hasUpper || (c >= 'A' && c <= 'Z')
593	}
594
595	if isASCII { // optimize for ASCII-only strings.
596		if !hasUpper {
597			return s
598		}
599		var b Builder
600		b.Grow(len(s))
601		for i := 0; i < len(s); i++ {
602			c := s[i]
603			if c >= 'A' && c <= 'Z' {
604				c += 'a' - 'A'
605			}
606			b.WriteByte(c)
607		}
608		return b.String()
609	}
610	return Map(unicode.ToLower, s)
611}
612
613// ToTitle returns a copy of the string s with all Unicode letters mapped to their title case.
614func ToTitle(s string) string { return Map(unicode.ToTitle, s) }
615
616// ToUpperSpecial returns a copy of the string s with all Unicode letters mapped to their
617// upper case using the case mapping specified by c.
618func ToUpperSpecial(c unicode.SpecialCase, s string) string {
619	return Map(c.ToUpper, s)
620}
621
622// ToLowerSpecial returns a copy of the string s with all Unicode letters mapped to their
623// lower case using the case mapping specified by c.
624func ToLowerSpecial(c unicode.SpecialCase, s string) string {
625	return Map(c.ToLower, s)
626}
627
628// ToTitleSpecial returns a copy of the string s with all Unicode letters mapped to their
629// title case, giving priority to the special casing rules.
630func ToTitleSpecial(c unicode.SpecialCase, s string) string {
631	return Map(c.ToTitle, s)
632}
633
634// isSeparator reports whether the rune could mark a word boundary.
635// TODO: update when package unicode captures more of the properties.
636func isSeparator(r rune) bool {
637	// ASCII alphanumerics and underscore are not separators
638	if r <= 0x7F {
639		switch {
640		case '0' <= r && r <= '9':
641			return false
642		case 'a' <= r && r <= 'z':
643			return false
644		case 'A' <= r && r <= 'Z':
645			return false
646		case r == '_':
647			return false
648		}
649		return true
650	}
651	// Letters and digits are not separators
652	if unicode.IsLetter(r) || unicode.IsDigit(r) {
653		return false
654	}
655	// Otherwise, all we can do for now is treat spaces as separators.
656	return unicode.IsSpace(r)
657}
658
659// Title returns a copy of the string s with all Unicode letters that begin words
660// mapped to their title case.
661//
662// BUG(rsc): The rule Title uses for word boundaries does not handle Unicode punctuation properly.
663func Title(s string) string {
664	// Use a closure here to remember state.
665	// Hackish but effective. Depends on Map scanning in order and calling
666	// the closure once per rune.
667	prev := ' '
668	return Map(
669		func(r rune) rune {
670			if isSeparator(prev) {
671				prev = r
672				return unicode.ToTitle(r)
673			}
674			prev = r
675			return r
676		},
677		s)
678}
679
680// TrimLeftFunc returns a slice of the string s with all leading
681// Unicode code points c satisfying f(c) removed.
682func TrimLeftFunc(s string, f func(rune) bool) string {
683	i := indexFunc(s, f, false)
684	if i == -1 {
685		return ""
686	}
687	return s[i:]
688}
689
690// TrimRightFunc returns a slice of the string s with all trailing
691// Unicode code points c satisfying f(c) removed.
692func TrimRightFunc(s string, f func(rune) bool) string {
693	i := lastIndexFunc(s, f, false)
694	if i >= 0 && s[i] >= utf8.RuneSelf {
695		_, wid := utf8.DecodeRuneInString(s[i:])
696		i += wid
697	} else {
698		i++
699	}
700	return s[0:i]
701}
702
703// TrimFunc returns a slice of the string s with all leading
704// and trailing Unicode code points c satisfying f(c) removed.
705func TrimFunc(s string, f func(rune) bool) string {
706	return TrimRightFunc(TrimLeftFunc(s, f), f)
707}
708
709// IndexFunc returns the index into s of the first Unicode
710// code point satisfying f(c), or -1 if none do.
711func IndexFunc(s string, f func(rune) bool) int {
712	return indexFunc(s, f, true)
713}
714
715// LastIndexFunc returns the index into s of the last
716// Unicode code point satisfying f(c), or -1 if none do.
717func LastIndexFunc(s string, f func(rune) bool) int {
718	return lastIndexFunc(s, f, true)
719}
720
721// indexFunc is the same as IndexFunc except that if
722// truth==false, the sense of the predicate function is
723// inverted.
724func indexFunc(s string, f func(rune) bool, truth bool) int {
725	for i, r := range s {
726		if f(r) == truth {
727			return i
728		}
729	}
730	return -1
731}
732
733// lastIndexFunc is the same as LastIndexFunc except that if
734// truth==false, the sense of the predicate function is
735// inverted.
736func lastIndexFunc(s string, f func(rune) bool, truth bool) int {
737	for i := len(s); i > 0; {
738		r, size := utf8.DecodeLastRuneInString(s[0:i])
739		i -= size
740		if f(r) == truth {
741			return i
742		}
743	}
744	return -1
745}
746
747// asciiSet is a 32-byte value, where each bit represents the presence of a
748// given ASCII character in the set. The 128-bits of the lower 16 bytes,
749// starting with the least-significant bit of the lowest word to the
750// most-significant bit of the highest word, map to the full range of all
751// 128 ASCII characters. The 128-bits of the upper 16 bytes will be zeroed,
752// ensuring that any non-ASCII character will be reported as not in the set.
753type asciiSet [8]uint32
754
755// makeASCIISet creates a set of ASCII characters and reports whether all
756// characters in chars are ASCII.
757func makeASCIISet(chars string) (as asciiSet, ok bool) {
758	for i := 0; i < len(chars); i++ {
759		c := chars[i]
760		if c >= utf8.RuneSelf {
761			return as, false
762		}
763		as[c>>5] |= 1 << uint(c&31)
764	}
765	return as, true
766}
767
768// contains reports whether c is inside the set.
769func (as *asciiSet) contains(c byte) bool {
770	return (as[c>>5] & (1 << uint(c&31))) != 0
771}
772
773func makeCutsetFunc(cutset string) func(rune) bool {
774	if len(cutset) == 1 && cutset[0] < utf8.RuneSelf {
775		return func(r rune) bool {
776			return r == rune(cutset[0])
777		}
778	}
779	if as, isASCII := makeASCIISet(cutset); isASCII {
780		return func(r rune) bool {
781			return r < utf8.RuneSelf && as.contains(byte(r))
782		}
783	}
784	return func(r rune) bool { return IndexRune(cutset, r) >= 0 }
785}
786
787// Trim returns a slice of the string s with all leading and
788// trailing Unicode code points contained in cutset removed.
789func Trim(s string, cutset string) string {
790	if s == "" || cutset == "" {
791		return s
792	}
793	return TrimFunc(s, makeCutsetFunc(cutset))
794}
795
796// TrimLeft returns a slice of the string s with all leading
797// Unicode code points contained in cutset removed.
798//
799// To remove a prefix, use TrimPrefix instead.
800func TrimLeft(s string, cutset string) string {
801	if s == "" || cutset == "" {
802		return s
803	}
804	return TrimLeftFunc(s, makeCutsetFunc(cutset))
805}
806
807// TrimRight returns a slice of the string s, with all trailing
808// Unicode code points contained in cutset removed.
809//
810// To remove a suffix, use TrimSuffix instead.
811func TrimRight(s string, cutset string) string {
812	if s == "" || cutset == "" {
813		return s
814	}
815	return TrimRightFunc(s, makeCutsetFunc(cutset))
816}
817
818// TrimSpace returns a slice of the string s, with all leading
819// and trailing white space removed, as defined by Unicode.
820func TrimSpace(s string) string {
821	return TrimFunc(s, unicode.IsSpace)
822}
823
824// TrimPrefix returns s without the provided leading prefix string.
825// If s doesn't start with prefix, s is returned unchanged.
826func TrimPrefix(s, prefix string) string {
827	if HasPrefix(s, prefix) {
828		return s[len(prefix):]
829	}
830	return s
831}
832
833// TrimSuffix returns s without the provided trailing suffix string.
834// If s doesn't end with suffix, s is returned unchanged.
835func TrimSuffix(s, suffix string) string {
836	if HasSuffix(s, suffix) {
837		return s[:len(s)-len(suffix)]
838	}
839	return s
840}
841
842// Replace returns a copy of the string s with the first n
843// non-overlapping instances of old replaced by new.
844// If old is empty, it matches at the beginning of the string
845// and after each UTF-8 sequence, yielding up to k+1 replacements
846// for a k-rune string.
847// If n < 0, there is no limit on the number of replacements.
848func Replace(s, old, new string, n int) string {
849	if old == new || n == 0 {
850		return s // avoid allocation
851	}
852
853	// Compute number of replacements.
854	if m := Count(s, old); m == 0 {
855		return s // avoid allocation
856	} else if n < 0 || m < n {
857		n = m
858	}
859
860	// Apply replacements to buffer.
861	t := make([]byte, len(s)+n*(len(new)-len(old)))
862	w := 0
863	start := 0
864	for i := 0; i < n; i++ {
865		j := start
866		if len(old) == 0 {
867			if i > 0 {
868				_, wid := utf8.DecodeRuneInString(s[start:])
869				j += wid
870			}
871		} else {
872			j += Index(s[start:], old)
873		}
874		w += copy(t[w:], s[start:j])
875		w += copy(t[w:], new)
876		start = j + len(old)
877	}
878	w += copy(t[w:], s[start:])
879	return string(t[0:w])
880}
881
882// ReplaceAll returns a copy of the string s with all
883// non-overlapping instances of old replaced by new.
884// If old is empty, it matches at the beginning of the string
885// and after each UTF-8 sequence, yielding up to k+1 replacements
886// for a k-rune string.
887func ReplaceAll(s, old, new string) string {
888	return Replace(s, old, new, -1)
889}
890
891// EqualFold reports whether s and t, interpreted as UTF-8 strings,
892// are equal under Unicode case-folding.
893func EqualFold(s, t string) bool {
894	for s != "" && t != "" {
895		// Extract first rune from each string.
896		var sr, tr rune
897		if s[0] < utf8.RuneSelf {
898			sr, s = rune(s[0]), s[1:]
899		} else {
900			r, size := utf8.DecodeRuneInString(s)
901			sr, s = r, s[size:]
902		}
903		if t[0] < utf8.RuneSelf {
904			tr, t = rune(t[0]), t[1:]
905		} else {
906			r, size := utf8.DecodeRuneInString(t)
907			tr, t = r, t[size:]
908		}
909
910		// If they match, keep going; if not, return false.
911
912		// Easy case.
913		if tr == sr {
914			continue
915		}
916
917		// Make sr < tr to simplify what follows.
918		if tr < sr {
919			tr, sr = sr, tr
920		}
921		// Fast check for ASCII.
922		if tr < utf8.RuneSelf {
923			// ASCII only, sr/tr must be upper/lower case
924			if 'A' <= sr && sr <= 'Z' && tr == sr+'a'-'A' {
925				continue
926			}
927			return false
928		}
929
930		// General case. SimpleFold(x) returns the next equivalent rune > x
931		// or wraps around to smaller values.
932		r := unicode.SimpleFold(sr)
933		for r != sr && r < tr {
934			r = unicode.SimpleFold(r)
935		}
936		if r == tr {
937			continue
938		}
939		return false
940	}
941
942	// One string is empty. Are both?
943	return s == t
944}
945
946// Index returns the index of the first instance of substr in s, or -1 if substr is not present in s.
947func Index(s, substr string) int {
948	n := len(substr)
949	switch {
950	case n == 0:
951		return 0
952	case n == 1:
953		return IndexByte(s, substr[0])
954	case n == len(s):
955		if substr == s {
956			return 0
957		}
958		return -1
959	case n > len(s):
960		return -1
961	case n <= bytealg.MaxLen:
962		// Use brute force when s and substr both are small
963		if len(s) <= bytealg.MaxBruteForce {
964			return bytealg.IndexString(s, substr)
965		}
966		c0 := substr[0]
967		c1 := substr[1]
968		i := 0
969		t := len(s) - n + 1
970		fails := 0
971		for i < t {
972			if s[i] != c0 {
973				// IndexByte is faster than bytealg.IndexString, so use it as long as
974				// we're not getting lots of false positives.
975				o := IndexByte(s[i:t], c0)
976				if o < 0 {
977					return -1
978				}
979				i += o
980			}
981			if s[i+1] == c1 && s[i:i+n] == substr {
982				return i
983			}
984			fails++
985			i++
986			// Switch to bytealg.IndexString when IndexByte produces too many false positives.
987			if fails > bytealg.Cutover(i) {
988				r := bytealg.IndexString(s[i:], substr)
989				if r >= 0 {
990					return r + i
991				}
992				return -1
993			}
994		}
995		return -1
996	}
997	c0 := substr[0]
998	c1 := substr[1]
999	i := 0
1000	t := len(s) - n + 1
1001	fails := 0
1002	for i < t {
1003		if s[i] != c0 {
1004			o := IndexByte(s[i:t], c0)
1005			if o < 0 {
1006				return -1
1007			}
1008			i += o
1009		}
1010		if s[i+1] == c1 && s[i:i+n] == substr {
1011			return i
1012		}
1013		i++
1014		fails++
1015		if fails >= 4+i>>4 && i < t {
1016			// See comment in ../bytes/bytes_generic.go.
1017			j := indexRabinKarp(s[i:], substr)
1018			if j < 0 {
1019				return -1
1020			}
1021			return i + j
1022		}
1023	}
1024	return -1
1025}
1026
1027func indexRabinKarp(s, substr string) int {
1028	// Rabin-Karp search
1029	hashss, pow := hashStr(substr)
1030	n := len(substr)
1031	var h uint32
1032	for i := 0; i < n; i++ {
1033		h = h*primeRK + uint32(s[i])
1034	}
1035	if h == hashss && s[:n] == substr {
1036		return 0
1037	}
1038	for i := n; i < len(s); {
1039		h *= primeRK
1040		h += uint32(s[i])
1041		h -= pow * uint32(s[i-n])
1042		i++
1043		if h == hashss && s[i-n:i] == substr {
1044			return i - n
1045		}
1046	}
1047	return -1
1048}
1049