1;; Predicate definitions for SPARC.
2;; Copyright (C) 2005-2019 Free Software Foundation, Inc.
3;;
4;; This file is part of GCC.
5;;
6;; GCC is free software; you can redistribute it and/or modify
7;; it under the terms of the GNU General Public License as published by
8;; the Free Software Foundation; either version 3, or (at your option)
9;; any later version.
10;;
11;; GCC is distributed in the hope that it will be useful,
12;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14;; GNU General Public License for more details.
15;;
16;; You should have received a copy of the GNU General Public License
17;; along with GCC; see the file COPYING3.  If not see
18;; <http://www.gnu.org/licenses/>.
19
20;; Predicates for numerical constants.
21
22;; Return true if OP is the zero constant for MODE.
23(define_predicate "const_zero_operand"
24  (and (match_code "const_int,const_wide_int,const_double,const_vector")
25       (match_test "op == CONST0_RTX (mode)")))
26
27;; Return true if the integer representation of OP is all ones.
28(define_predicate "const_all_ones_operand"
29  (and (match_code "const_int,const_wide_int,const_double,const_vector")
30       (match_test "INTEGRAL_MODE_P (GET_MODE (op))")
31       (match_test "op == CONSTM1_RTX (GET_MODE (op))")))
32
33;; Return true if OP is the integer constant 4096.
34(define_predicate "const_4096_operand"
35  (and (match_code "const_int")
36       (match_test "INTVAL (op) == 4096")))
37
38;; Return true if OP is a constant that is representable by a 13-bit
39;; signed field.  This is an acceptable immediate operand for most
40;; 3-address instructions.
41(define_predicate "small_int_operand"
42  (and (match_code "const_int")
43       (match_test "SPARC_SIMM13_P (INTVAL (op))")))
44
45;; Return true if OP is a constant operand for the umul instruction.  That
46;; instruction sign-extends immediate values just like all other SPARC
47;; instructions, but interprets the extended result as an unsigned number.
48(define_predicate "uns_small_int_operand"
49  (and (match_code "const_int")
50       (match_test "((INTVAL (op) >= 0 && INTVAL (op) < 0x1000)
51		    || (INTVAL (op) >= 0xFFFFF000
52			&& INTVAL (op) <= 0xFFFFFFFF))")))
53
54;; Return true if OP is a constant that can be loaded by the sethi instruction.
55;; The first test avoids emitting sethi to load zero for example.
56(define_predicate "const_high_operand"
57  (and (match_code "const_int")
58       (and (not (match_operand 0 "small_int_operand"))
59            (match_test "SPARC_SETHI_P (INTVAL (op) & GET_MODE_MASK (mode))"))))
60
61;; Return true if OP is a constant whose 1's complement can be loaded by the
62;; sethi instruction.
63(define_predicate "const_compl_high_operand"
64  (and (match_code "const_int")
65       (and (not (match_operand 0 "small_int_operand"))
66            (match_test "SPARC_SETHI_P (~INTVAL (op) & GET_MODE_MASK (mode))"))))
67
68;; Return true if OP is a FP constant that needs to be loaded by the sethi/losum
69;; pair of instructions.
70(define_predicate "fp_const_high_losum_operand"
71  (match_operand 0 "const_double_operand")
72{
73  gcc_assert (mode == SFmode);
74  return fp_high_losum_p (op);
75})
76
77;; Return true if OP is a const_double or const_vector.
78(define_predicate "const_double_or_vector_operand"
79  (match_code "const_double,const_vector"))
80
81;; Return true if OP is Zero, or if the target is V7.
82(define_predicate "zero_or_v7_operand"
83  (and (match_code "const_int")
84       (ior (match_test "INTVAL (op) == 0")
85	    (match_test "!TARGET_V8 && !TARGET_V9"))))
86
87;; Predicates for symbolic constants.
88
89;; Return true if OP is either a symbol reference or a sum of a symbol
90;; reference and a constant.
91(define_predicate "symbolic_operand"
92  (match_code "symbol_ref,label_ref,const")
93{
94  machine_mode omode = GET_MODE (op);
95
96  if (omode != mode && omode != VOIDmode && mode != VOIDmode)
97    return false;
98
99  switch (GET_CODE (op))
100    {
101    case SYMBOL_REF:
102      return !SYMBOL_REF_TLS_MODEL (op);
103
104    case LABEL_REF:
105      return true;
106
107    case CONST:
108      op = XEXP (op, 0);
109      return (((GET_CODE (XEXP (op, 0)) == SYMBOL_REF
110		&& !SYMBOL_REF_TLS_MODEL (XEXP (op, 0)))
111	       || GET_CODE (XEXP (op, 0)) == LABEL_REF)
112	      && GET_CODE (XEXP (op, 1)) == CONST_INT);
113
114    default:
115      gcc_unreachable ();
116    }
117})
118
119;; Return true if OP is a symbolic operand for the TLS Global Dynamic model.
120(define_predicate "tgd_symbolic_operand"
121  (and (match_code "symbol_ref")
122       (match_test "SYMBOL_REF_TLS_MODEL (op) == TLS_MODEL_GLOBAL_DYNAMIC")))
123
124;; Return true if OP is a symbolic operand for the TLS Local Dynamic model.
125(define_predicate "tld_symbolic_operand"
126  (and (match_code "symbol_ref")
127       (match_test "SYMBOL_REF_TLS_MODEL (op) == TLS_MODEL_LOCAL_DYNAMIC")))
128
129;; Return true if OP is a symbolic operand for the TLS Initial Exec model.
130(define_predicate "tie_symbolic_operand"
131  (and (match_code "symbol_ref")
132       (match_test "SYMBOL_REF_TLS_MODEL (op) == TLS_MODEL_INITIAL_EXEC")))
133
134;; Return true if OP is a symbolic operand for the TLS Local Exec model.
135(define_predicate "tle_symbolic_operand"
136  (and (match_code "symbol_ref")
137       (match_test "SYMBOL_REF_TLS_MODEL (op) == TLS_MODEL_LOCAL_EXEC")))
138
139;; Return true if the operand is an argument used in generating PIC references
140;; in either the medium/low or embedded medium/anywhere code models on V9.
141;; Check for (const (minus (symbol_ref:GOT)
142;;                         (const (minus (label) (pc)))))
143(define_predicate "medium_pic_operand"
144  (match_code "const")
145{
146  /* Check for (const (minus (symbol_ref:GOT)
147                             (const (minus (label) (pc))))).  */
148  op = XEXP (op, 0);
149  return GET_CODE (op) == MINUS
150         && GET_CODE (XEXP (op, 0)) == SYMBOL_REF
151         && GET_CODE (XEXP (op, 1)) == CONST
152         && GET_CODE (XEXP (XEXP (op, 1), 0)) == MINUS;
153})
154
155;; Return true if OP is a LABEL_REF of mode MODE.
156(define_predicate "label_ref_operand"
157  (and (match_code "label_ref")
158       (match_test "GET_MODE (op) == mode")))
159
160;; Return true if OP is a data segment reference.  This includes the readonly
161;; data segment or, in other words, anything but the text segment.
162;; This is needed in the embedded medium/anywhere code model on V9.  These
163;; values are accessed with EMBMEDANY_BASE_REG.  */
164(define_predicate "data_segment_operand"
165  (match_code "symbol_ref,plus,const")
166{
167  switch (GET_CODE (op))
168    {
169    case SYMBOL_REF :
170      return ! SYMBOL_REF_FUNCTION_P (op);
171    case PLUS :
172      /* Assume canonical format of symbol + constant.
173	 Fall through.  */
174    case CONST :
175      return data_segment_operand (XEXP (op, 0), VOIDmode);
176    default :
177      gcc_unreachable ();
178    }
179})
180
181;; Return true if OP is a text segment reference.
182;; This is needed in the embedded medium/anywhere code model on V9.
183(define_predicate "text_segment_operand"
184  (match_code "label_ref,symbol_ref,plus,const")
185{
186  switch (GET_CODE (op))
187    {
188    case LABEL_REF :
189      return true;
190    case SYMBOL_REF :
191      return SYMBOL_REF_FUNCTION_P (op);
192    case PLUS :
193      /* Assume canonical format of symbol + constant.
194	 Fall through.  */
195    case CONST :
196      return text_segment_operand (XEXP (op, 0), VOIDmode);
197    default :
198      gcc_unreachable ();
199    }
200})
201
202
203;; Predicates for registers.
204
205;; Return true if OP is either the zero constant or a register.
206(define_predicate "register_or_zero_operand"
207  (ior (match_operand 0 "register_operand")
208       (match_operand 0 "const_zero_operand")))
209
210(define_predicate "register_or_v9_zero_operand"
211  (ior (match_operand 0 "register_operand")
212       (and (match_test "TARGET_V9")
213	    (match_operand 0 "const_zero_operand"))))
214
215;; Return true if OP is either the zero constant, the all-ones
216;; constant, or a register.
217(define_predicate "register_or_zero_or_all_ones_operand"
218  (ior (match_operand 0 "register_or_zero_operand")
219       (match_operand 0 "const_all_ones_operand")))
220
221;; Return true if OP is a register operand in a floating point register.
222(define_predicate "fp_register_operand"
223  (match_operand 0 "register_operand")
224{
225  if (GET_CODE (op) == SUBREG)
226    op = SUBREG_REG (op); /* Possibly a MEM */
227  return REG_P (op) && SPARC_FP_REG_P (REGNO (op));
228})
229
230;; Return true if OP is an integer register of the appropriate mode
231;; for a cstore result.
232(define_special_predicate "cstore_result_operand"
233  (match_test "register_operand (op, TARGET_ARCH64 ? DImode : SImode)"))
234
235;; Return true if OP is a floating point condition code register.
236(define_predicate "fcc_register_operand"
237  (and (match_code "reg")
238       (match_test "((unsigned) REGNO (op) - SPARC_FIRST_V9_FCC_REG) < 4")))
239
240;; Return true if OP is the floating point condition code register fcc0.
241(define_predicate "fcc0_register_operand"
242  (and (match_code "reg")
243       (match_test "REGNO (op) == SPARC_FCC_REG")))
244
245;; Return true if OP is an integer condition code register.
246(define_predicate "icc_register_operand"
247  (and (match_code "reg")
248       (match_test "REGNO (op) == SPARC_ICC_REG")))
249
250;; Return true if OP is an integer or floating point condition code register.
251(define_predicate "icc_or_fcc_register_operand"
252  (ior (match_operand 0 "icc_register_operand")
253       (match_operand 0 "fcc_register_operand")))
254
255
256;; Predicates for arithmetic instructions.
257
258;; Return true if OP is a register, or is a constant that is representable
259;; by a 13-bit signed field.  This is an acceptable operand for most
260;; 3-address instructions.
261(define_predicate "arith_operand"
262  (ior (match_operand 0 "register_operand")
263       (match_operand 0 "small_int_operand")))
264
265;; 64-bit: Same as above.
266;; 32-bit: Return true if OP is a register, or is a constant that is
267;; representable by a couple of 13-bit signed fields.  This is an
268;; acceptable operand for most 3-address splitters.
269(define_predicate "arith_double_operand"
270  (match_code "const_int,reg,subreg")
271{
272  bool arith_simple_operand = arith_operand (op, mode);
273  HOST_WIDE_INT m1, m2;
274
275  if (TARGET_ARCH64 || arith_simple_operand)
276    return arith_simple_operand;
277
278  if (GET_CODE (op) != CONST_INT)
279    return false;
280
281  m1 = trunc_int_for_mode (INTVAL (op), SImode);
282  m2 = trunc_int_for_mode (INTVAL (op) >> 32, SImode);
283
284  return SPARC_SIMM13_P (m1) && SPARC_SIMM13_P (m2);
285})
286
287;; Return true if OP is suitable as second operand for add/sub.
288(define_predicate "arith_add_operand"
289  (ior (match_operand 0 "arith_operand")
290       (match_operand 0 "const_4096_operand")))
291
292;; Return true if OP is suitable as second double operand for add/sub.
293(define_predicate "arith_double_add_operand"
294  (match_code "const_int,reg,subreg")
295{
296  if (arith_double_operand (op, mode))
297    return true;
298
299  /* Turning an add/sub instruction into the other changes the Carry flag
300     so the 4096 trick cannot be used for double operations in 32-bit mode.  */
301  return TARGET_ARCH64 && const_4096_operand (op, mode);
302})
303
304;; Return true if OP is a register, or is a CONST_INT that can fit in a
305;; signed 10-bit immediate field.  This is an acceptable SImode operand for
306;; the movrcc instructions.
307(define_predicate "arith10_operand"
308  (ior (match_operand 0 "register_operand")
309       (and (match_code "const_int")
310            (match_test "SPARC_SIMM10_P (INTVAL (op))"))))
311
312;; Return true if OP is a register, or is a CONST_INT that can fit in a
313;; signed 11-bit immediate field.  This is an acceptable SImode operand for
314;; the movcc instructions.
315(define_predicate "arith11_operand"
316  (ior (match_operand 0 "register_operand")
317       (and (match_code "const_int")
318            (match_test "SPARC_SIMM11_P (INTVAL (op))"))))
319
320;; Return true if OP is a register or a constant for the umul instruction.
321(define_predicate "uns_arith_operand"
322  (ior (match_operand 0 "register_operand")
323       (match_operand 0 "uns_small_int_operand")))
324
325;; Return true if OP is a register, or is a CONST_INT that can fit in a
326;; signed 5-bit immediate field.  This is an acceptable second operand for
327;; the cbcond instructions.
328(define_predicate "arith5_operand"
329  (ior (match_operand 0 "register_operand")
330       (and (match_code "const_int")
331            (match_test "SPARC_SIMM5_P (INTVAL (op))"))))
332
333;; Return true if OP is a constant in the range 0..7.  This is an
334;; acceptable second operand for dictunpack instructions setting a
335;; V8QI mode in the destination register.
336(define_predicate "imm5_operand_dictunpack8"
337  (and (match_code "const_int")
338       (match_test "(INTVAL (op) >= 0 && INTVAL (op) < 8)")))
339
340;; Return true if OP is a constant in the range 7..15.  This is an
341;; acceptable second operand for dictunpack instructions setting a
342;; V4HI mode in the destination register.
343(define_predicate "imm5_operand_dictunpack16"
344  (and (match_code "const_int")
345       (match_test "(INTVAL (op) >= 8 && INTVAL (op) < 16)")))
346
347;; Return true if OP is a constant in the range 15..31.  This is an
348;; acceptable second operand for dictunpack instructions setting a
349;; V2SI mode in the destination register.
350(define_predicate "imm5_operand_dictunpack32"
351  (and (match_code "const_int")
352       (match_test "(INTVAL (op) >= 16 && INTVAL (op) < 32)")))
353
354;; Return true if OP is a constant that is representable by a 2-bit
355;; unsigned field.  This is an acceptable third operand for
356;; fpcmp*shl instructions.
357(define_predicate "imm2_operand"
358  (and (match_code "const_int")
359       (match_test "SPARC_IMM2_P (INTVAL (op))")))
360
361;; Predicates for miscellaneous instructions.
362
363;; Return true if OP is valid for the lhs of a comparison insn.
364(define_predicate "compare_operand"
365  (match_code "reg,subreg,zero_extract")
366{
367  if (GET_CODE (op) == ZERO_EXTRACT)
368    return (register_operand (XEXP (op, 0), mode)
369	    && small_int_operand (XEXP (op, 1), mode)
370	    && small_int_operand (XEXP (op, 2), mode)
371	    /* This matches cmp_zero_extract.  */
372	    && ((mode == SImode
373		 && INTVAL (XEXP (op, 2)) > 19)
374		/* This matches cmp_zero_extract_sp64.  */
375		|| (TARGET_ARCH64
376		    && mode == DImode
377		    && INTVAL (XEXP (op, 2)) > 51)));
378
379  return register_operand (op, mode);
380})
381
382;; Return true if OP is a valid operand for the source of a move insn.
383(define_predicate "input_operand"
384  (match_code "const_int,const_double,const_vector,reg,subreg,mem")
385{
386  enum mode_class mclass;
387
388  /* If both modes are non-void they must be the same.  */
389  if (mode != VOIDmode && GET_MODE (op) != VOIDmode && mode != GET_MODE (op))
390    return false;
391
392  mclass = GET_MODE_CLASS (mode);
393
394  /* Allow any 1-instruction integer constant.  */
395  if (mclass == MODE_INT
396      && mode != TImode
397      && (small_int_operand (op, mode) || const_high_operand (op, mode)))
398    return true;
399
400  /* If 32-bit mode and this is a DImode constant, allow it
401     so that the splits can be generated.  */
402  if (TARGET_ARCH32 && mode == DImode && GET_CODE (op) == CONST_INT)
403    return true;
404
405  /* Allow FP constants to be built in integer registers.  */
406  if (mclass == MODE_FLOAT && GET_CODE (op) == CONST_DOUBLE)
407    return true;
408
409  if (mclass == MODE_VECTOR_INT && const_all_ones_operand (op, mode))
410    return true;
411
412  if (register_or_zero_operand (op, mode))
413    return true;
414
415  /* If this is a SUBREG, look inside so that we handle paradoxical ones.  */
416  if (GET_CODE (op) == SUBREG)
417    op = SUBREG_REG (op);
418
419  /* Check for valid MEM forms.  */
420  if (GET_CODE (op) == MEM)
421    {
422      /* Except when LRA is precisely working hard to make them valid
423	 and relying entirely on the constraints.  */
424      if (lra_in_progress)
425	return true;
426
427      return memory_address_p (mode, XEXP (op, 0));
428    }
429
430  return false;
431})
432
433;; Return true if OP is an address suitable for a call insn.
434;; Call insn on SPARC can take a PC-relative constant address
435;; or any regular memory address.
436(define_predicate "call_address_operand"
437  (ior (match_operand 0 "symbolic_operand")
438       (match_test "memory_address_p (Pmode, op)")))
439
440;; Return true if OP is an operand suitable for a call insn.
441(define_predicate "call_operand"
442  (and (match_code "mem")
443       (match_test "call_address_operand (XEXP (op, 0), mode)")))
444
445
446(define_predicate "mem_noofs_operand"
447  (and (match_code "mem")
448       (match_code "reg" "0")))
449
450;; Predicates for operators.
451
452;; Return true if OP is a valid comparison operator for CCNZmode.
453(define_predicate "nz_comparison_operator"
454  (match_code "eq,ne,lt,ge"))
455
456;; Return true if OP is a valid comparison operator for CCCmode.
457(define_predicate "c_comparison_operator"
458  (match_code "ltu,geu"))
459
460;; Return true if OP is a valid comparison operator for CCVmode.
461(define_predicate "v_comparison_operator"
462  (match_code "eq,ne"))
463
464;; Return true if OP is an integer comparison operator.  This allows
465;; the use of MATCH_OPERATOR to recognize all the branch insns.
466(define_predicate "icc_comparison_operator"
467  (match_operand 0 "ordered_comparison_operator")
468{
469  switch (GET_MODE (XEXP (op, 0)))
470    {
471    case E_CCmode:
472    case E_CCXmode:
473      return true;
474    case E_CCNZmode:
475    case E_CCXNZmode:
476      return nz_comparison_operator (op, mode);
477    case E_CCCmode:
478    case E_CCXCmode:
479      return c_comparison_operator (op, mode);
480    case E_CCVmode:
481    case E_CCXVmode:
482      return v_comparison_operator (op, mode);
483    default:
484      return false;
485    }
486})
487
488;; Return true if OP is a FP comparison operator.
489(define_predicate "fcc_comparison_operator"
490  (match_operand 0 "comparison_operator")
491{
492  switch (GET_MODE (XEXP (op, 0)))
493    {
494    case E_CCFPmode:
495    case E_CCFPEmode:
496      return true;
497    default:
498      return false;
499    }
500})
501
502;; Return true if OP is an integer or FP comparison operator.  This allows
503;; the use of MATCH_OPERATOR to recognize all the conditional move insns.
504(define_predicate "icc_or_fcc_comparison_operator"
505  (ior (match_operand 0 "icc_comparison_operator")
506       (match_operand 0 "fcc_comparison_operator")))
507
508;; Return true if OP is an integer comparison operator for V9.
509(define_predicate "v9_comparison_operator"
510  (and (match_operand 0 "ordered_comparison_operator")
511       (match_test "TARGET_V9")))
512
513;; Return true if OP is a comparison operator suitable for use in V9
514;; conditional move or branch on register contents instructions.
515(define_predicate "v9_register_comparison_operator"
516  (match_code "eq,ne,ge,lt,le,gt"))
517
518;; Return true if OP is an operator which can set the condition codes
519;; explicitly.  We do not include PLUS/MINUS/NEG/ASHIFT because these
520;; require CCNZmode, which we handle explicitly.
521(define_predicate "cc_arith_operator"
522  (match_code "and,ior,xor"))
523
524;; Return true if OP is an operator which can bitwise complement its
525;; second operand and set the condition codes explicitly.
526;; XOR is not here because combine canonicalizes (xor (not ...) ...)
527;; and (xor ... (not ...)) to (not (xor ...)).
528(define_predicate "cc_arith_not_operator"
529  (match_code "and,ior"))
530