1 /* Machine mode definitions for GCC; included by rtl.h and tree.h.
2    Copyright (C) 1991-2019 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 #ifndef HAVE_MACHINE_MODES
21 #define HAVE_MACHINE_MODES
22 
23 typedef opt_mode<machine_mode> opt_machine_mode;
24 
25 extern CONST_MODE_SIZE poly_uint16_pod mode_size[NUM_MACHINE_MODES];
26 extern CONST_MODE_PRECISION poly_uint16_pod mode_precision[NUM_MACHINE_MODES];
27 extern const unsigned char mode_inner[NUM_MACHINE_MODES];
28 extern CONST_MODE_NUNITS poly_uint16_pod mode_nunits[NUM_MACHINE_MODES];
29 extern CONST_MODE_UNIT_SIZE unsigned char mode_unit_size[NUM_MACHINE_MODES];
30 extern const unsigned short mode_unit_precision[NUM_MACHINE_MODES];
31 extern const unsigned char mode_wider[NUM_MACHINE_MODES];
32 extern const unsigned char mode_2xwider[NUM_MACHINE_MODES];
33 
34 template<typename T>
35 struct mode_traits
36 {
37   /* For use by the machmode support code only.
38 
39      There are cases in which the machmode support code needs to forcibly
40      convert a machine_mode to a specific mode class T, and in which the
41      context guarantees that this is valid without the need for an assert.
42      This can be done using:
43 
44        return typename mode_traits<T>::from_int (mode);
45 
46      when returning a T and:
47 
48        res = T (typename mode_traits<T>::from_int (mode));
49 
50      when assigning to a value RES that must be assignment-compatible
51      with (but possibly not the same as) T.  */
52 #ifdef USE_ENUM_MODES
53   /* Allow direct conversion of enums to specific mode classes only
54      when USE_ENUM_MODES is defined.  This is only intended for use
55      by gencondmd, so that it can tell more easily when .md conditions
56      are always false.  */
57   typedef machine_mode from_int;
58 #else
59   /* Here we use an enum type distinct from machine_mode but with the
60      same range as machine_mode.  T should have a constructor that
61      accepts this enum type; it should not have a constructor that
62      accepts machine_mode.
63 
64      We use this somewhat indirect approach to avoid too many constructor
65      calls when the compiler is built with -O0.  For example, even in
66      unoptimized code, the return statement above would construct the
67      returned T directly from the numerical value of MODE.  */
68   enum from_int { dummy = MAX_MACHINE_MODE };
69 #endif
70 };
71 
72 template<>
73 struct mode_traits<machine_mode>
74 {
75   /* machine_mode itself needs no conversion.  */
76   typedef machine_mode from_int;
77 };
78 
79 /* Always treat machine modes as fixed-size while compiling code specific
80    to targets that have no variable-size modes.  */
81 #if defined (IN_TARGET_CODE) && NUM_POLY_INT_COEFFS == 1
82 #define ONLY_FIXED_SIZE_MODES 1
83 #else
84 #define ONLY_FIXED_SIZE_MODES 0
85 #endif
86 
87 /* Get the name of mode MODE as a string.  */
88 
89 extern const char * const mode_name[NUM_MACHINE_MODES];
90 #define GET_MODE_NAME(MODE)  mode_name[MODE]
91 
92 /* Mode classes.  */
93 
94 #include "mode-classes.def"
95 #define DEF_MODE_CLASS(M) M
96 enum mode_class { MODE_CLASSES, MAX_MODE_CLASS };
97 #undef DEF_MODE_CLASS
98 #undef MODE_CLASSES
99 
100 /* Get the general kind of object that mode MODE represents
101    (integer, floating, complex, etc.)  */
102 
103 extern const unsigned char mode_class[NUM_MACHINE_MODES];
104 #define GET_MODE_CLASS(MODE)  ((enum mode_class) mode_class[MODE])
105 
106 /* Nonzero if MODE is an integral mode.  */
107 #define INTEGRAL_MODE_P(MODE)			\
108   (GET_MODE_CLASS (MODE) == MODE_INT		\
109    || GET_MODE_CLASS (MODE) == MODE_PARTIAL_INT \
110    || GET_MODE_CLASS (MODE) == MODE_COMPLEX_INT \
111    || GET_MODE_CLASS (MODE) == MODE_VECTOR_BOOL \
112    || GET_MODE_CLASS (MODE) == MODE_VECTOR_INT)
113 
114 /* Nonzero if MODE is a floating-point mode.  */
115 #define FLOAT_MODE_P(MODE)		\
116   (GET_MODE_CLASS (MODE) == MODE_FLOAT	\
117    || GET_MODE_CLASS (MODE) == MODE_DECIMAL_FLOAT \
118    || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT \
119    || GET_MODE_CLASS (MODE) == MODE_VECTOR_FLOAT)
120 
121 /* Nonzero if MODE is a complex mode.  */
122 #define COMPLEX_MODE_P(MODE)			\
123   (GET_MODE_CLASS (MODE) == MODE_COMPLEX_INT	\
124    || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT)
125 
126 /* Nonzero if MODE is a vector mode.  */
127 #define VECTOR_MODE_P(MODE)				\
128   (GET_MODE_CLASS (MODE) == MODE_VECTOR_BOOL		\
129    || GET_MODE_CLASS (MODE) == MODE_VECTOR_INT		\
130    || GET_MODE_CLASS (MODE) == MODE_VECTOR_FLOAT	\
131    || GET_MODE_CLASS (MODE) == MODE_VECTOR_FRACT	\
132    || GET_MODE_CLASS (MODE) == MODE_VECTOR_UFRACT	\
133    || GET_MODE_CLASS (MODE) == MODE_VECTOR_ACCUM	\
134    || GET_MODE_CLASS (MODE) == MODE_VECTOR_UACCUM)
135 
136 /* Nonzero if MODE is a scalar integral mode.  */
137 #define SCALAR_INT_MODE_P(MODE)			\
138   (GET_MODE_CLASS (MODE) == MODE_INT		\
139    || GET_MODE_CLASS (MODE) == MODE_PARTIAL_INT)
140 
141 /* Nonzero if MODE is a scalar floating point mode.  */
142 #define SCALAR_FLOAT_MODE_P(MODE)		\
143   (GET_MODE_CLASS (MODE) == MODE_FLOAT		\
144    || GET_MODE_CLASS (MODE) == MODE_DECIMAL_FLOAT)
145 
146 /* Nonzero if MODE is a decimal floating point mode.  */
147 #define DECIMAL_FLOAT_MODE_P(MODE)		\
148   (GET_MODE_CLASS (MODE) == MODE_DECIMAL_FLOAT)
149 
150 /* Nonzero if MODE is a scalar fract mode.  */
151 #define SCALAR_FRACT_MODE_P(MODE)	\
152   (GET_MODE_CLASS (MODE) == MODE_FRACT)
153 
154 /* Nonzero if MODE is a scalar ufract mode.  */
155 #define SCALAR_UFRACT_MODE_P(MODE)	\
156   (GET_MODE_CLASS (MODE) == MODE_UFRACT)
157 
158 /* Nonzero if MODE is a scalar fract or ufract mode.  */
159 #define ALL_SCALAR_FRACT_MODE_P(MODE)	\
160   (SCALAR_FRACT_MODE_P (MODE) || SCALAR_UFRACT_MODE_P (MODE))
161 
162 /* Nonzero if MODE is a scalar accum mode.  */
163 #define SCALAR_ACCUM_MODE_P(MODE)	\
164   (GET_MODE_CLASS (MODE) == MODE_ACCUM)
165 
166 /* Nonzero if MODE is a scalar uaccum mode.  */
167 #define SCALAR_UACCUM_MODE_P(MODE)	\
168   (GET_MODE_CLASS (MODE) == MODE_UACCUM)
169 
170 /* Nonzero if MODE is a scalar accum or uaccum mode.  */
171 #define ALL_SCALAR_ACCUM_MODE_P(MODE)	\
172   (SCALAR_ACCUM_MODE_P (MODE) || SCALAR_UACCUM_MODE_P (MODE))
173 
174 /* Nonzero if MODE is a scalar fract or accum mode.  */
175 #define SIGNED_SCALAR_FIXED_POINT_MODE_P(MODE)	\
176   (SCALAR_FRACT_MODE_P (MODE) || SCALAR_ACCUM_MODE_P (MODE))
177 
178 /* Nonzero if MODE is a scalar ufract or uaccum mode.  */
179 #define UNSIGNED_SCALAR_FIXED_POINT_MODE_P(MODE)	\
180   (SCALAR_UFRACT_MODE_P (MODE) || SCALAR_UACCUM_MODE_P (MODE))
181 
182 /* Nonzero if MODE is a scalar fract, ufract, accum or uaccum mode.  */
183 #define ALL_SCALAR_FIXED_POINT_MODE_P(MODE)	\
184   (SIGNED_SCALAR_FIXED_POINT_MODE_P (MODE)	\
185    || UNSIGNED_SCALAR_FIXED_POINT_MODE_P (MODE))
186 
187 /* Nonzero if MODE is a scalar/vector fract mode.  */
188 #define FRACT_MODE_P(MODE)		\
189   (GET_MODE_CLASS (MODE) == MODE_FRACT	\
190    || GET_MODE_CLASS (MODE) == MODE_VECTOR_FRACT)
191 
192 /* Nonzero if MODE is a scalar/vector ufract mode.  */
193 #define UFRACT_MODE_P(MODE)		\
194   (GET_MODE_CLASS (MODE) == MODE_UFRACT	\
195    || GET_MODE_CLASS (MODE) == MODE_VECTOR_UFRACT)
196 
197 /* Nonzero if MODE is a scalar/vector fract or ufract mode.  */
198 #define ALL_FRACT_MODE_P(MODE)		\
199   (FRACT_MODE_P (MODE) || UFRACT_MODE_P (MODE))
200 
201 /* Nonzero if MODE is a scalar/vector accum mode.  */
202 #define ACCUM_MODE_P(MODE)		\
203   (GET_MODE_CLASS (MODE) == MODE_ACCUM	\
204    || GET_MODE_CLASS (MODE) == MODE_VECTOR_ACCUM)
205 
206 /* Nonzero if MODE is a scalar/vector uaccum mode.  */
207 #define UACCUM_MODE_P(MODE)		\
208   (GET_MODE_CLASS (MODE) == MODE_UACCUM	\
209    || GET_MODE_CLASS (MODE) == MODE_VECTOR_UACCUM)
210 
211 /* Nonzero if MODE is a scalar/vector accum or uaccum mode.  */
212 #define ALL_ACCUM_MODE_P(MODE)		\
213   (ACCUM_MODE_P (MODE) || UACCUM_MODE_P (MODE))
214 
215 /* Nonzero if MODE is a scalar/vector fract or accum mode.  */
216 #define SIGNED_FIXED_POINT_MODE_P(MODE)		\
217   (FRACT_MODE_P (MODE) || ACCUM_MODE_P (MODE))
218 
219 /* Nonzero if MODE is a scalar/vector ufract or uaccum mode.  */
220 #define UNSIGNED_FIXED_POINT_MODE_P(MODE)	\
221   (UFRACT_MODE_P (MODE) || UACCUM_MODE_P (MODE))
222 
223 /* Nonzero if MODE is a scalar/vector fract, ufract, accum or uaccum mode.  */
224 #define ALL_FIXED_POINT_MODE_P(MODE)		\
225   (SIGNED_FIXED_POINT_MODE_P (MODE)		\
226    || UNSIGNED_FIXED_POINT_MODE_P (MODE))
227 
228 /* Nonzero if CLASS modes can be widened.  */
229 #define CLASS_HAS_WIDER_MODES_P(CLASS)         \
230   (CLASS == MODE_INT                           \
231    || CLASS == MODE_PARTIAL_INT                \
232    || CLASS == MODE_FLOAT                      \
233    || CLASS == MODE_DECIMAL_FLOAT              \
234    || CLASS == MODE_COMPLEX_FLOAT              \
235    || CLASS == MODE_FRACT                      \
236    || CLASS == MODE_UFRACT                     \
237    || CLASS == MODE_ACCUM                      \
238    || CLASS == MODE_UACCUM)
239 
240 /* An optional T (i.e. a T or nothing), where T is some form of mode class.  */
241 template<typename T>
242 class opt_mode
243 {
244 public:
245   enum from_int { dummy = MAX_MACHINE_MODE };
246 
247   ALWAYS_INLINE opt_mode () : m_mode (E_VOIDmode) {}
248   ALWAYS_INLINE opt_mode (const T &m) : m_mode (m) {}
249   template<typename U>
250   ALWAYS_INLINE opt_mode (const U &m) : m_mode (T (m)) {}
251   ALWAYS_INLINE opt_mode (from_int m) : m_mode (machine_mode (m)) {}
252 
253   machine_mode else_void () const;
254   machine_mode else_blk () const;
255   T require () const;
256 
257   bool exists () const;
258   template<typename U> bool exists (U *) const;
259 
260 private:
261   machine_mode m_mode;
262 };
263 
264 /* If the object contains a T, return its enum value, otherwise return
265    E_VOIDmode.  */
266 
267 template<typename T>
268 ALWAYS_INLINE machine_mode
269 opt_mode<T>::else_void () const
270 {
271   return m_mode;
272 }
273 
274 /* If the T exists, return its enum value, otherwise return E_BLKmode.  */
275 
276 template<typename T>
277 inline machine_mode
278 opt_mode<T>::else_blk () const
279 {
280   return m_mode == E_VOIDmode ? E_BLKmode : m_mode;
281 }
282 
283 /* Assert that the object contains a T and return it.  */
284 
285 template<typename T>
286 inline T
287 opt_mode<T>::require () const
288 {
289   gcc_checking_assert (m_mode != E_VOIDmode);
290   return typename mode_traits<T>::from_int (m_mode);
291 }
292 
293 /* Return true if the object contains a T rather than nothing.  */
294 
295 template<typename T>
296 ALWAYS_INLINE bool
297 opt_mode<T>::exists () const
298 {
299   return m_mode != E_VOIDmode;
300 }
301 
302 /* Return true if the object contains a T, storing it in *MODE if so.  */
303 
304 template<typename T>
305 template<typename U>
306 inline bool
307 opt_mode<T>::exists (U *mode) const
308 {
309   if (m_mode != E_VOIDmode)
310     {
311       *mode = T (typename mode_traits<T>::from_int (m_mode));
312       return true;
313     }
314   return false;
315 }
316 
317 /* A POD version of mode class T.  */
318 
319 template<typename T>
320 struct pod_mode
321 {
322   typedef typename mode_traits<T>::from_int from_int;
323   typedef typename T::measurement_type measurement_type;
324 
325   machine_mode m_mode;
326   ALWAYS_INLINE operator machine_mode () const { return m_mode; }
327   ALWAYS_INLINE operator T () const { return from_int (m_mode); }
328   ALWAYS_INLINE pod_mode &operator = (const T &m) { m_mode = m; return *this; }
329 };
330 
331 /* Return true if mode M has type T.  */
332 
333 template<typename T>
334 inline bool
335 is_a (machine_mode m)
336 {
337   return T::includes_p (m);
338 }
339 
340 template<typename T, typename U>
341 inline bool
342 is_a (const opt_mode<U> &m)
343 {
344   return T::includes_p (m.else_void ());
345 }
346 
347 /* Assert that mode M has type T, and return it in that form.  */
348 
349 template<typename T>
350 inline T
351 as_a (machine_mode m)
352 {
353   gcc_checking_assert (T::includes_p (m));
354   return typename mode_traits<T>::from_int (m);
355 }
356 
357 template<typename T, typename U>
358 inline T
359 as_a (const opt_mode<U> &m)
360 {
361   return as_a <T> (m.else_void ());
362 }
363 
364 /* Convert M to an opt_mode<T>.  */
365 
366 template<typename T>
367 inline opt_mode<T>
368 dyn_cast (machine_mode m)
369 {
370   if (T::includes_p (m))
371     return T (typename mode_traits<T>::from_int (m));
372   return opt_mode<T> ();
373 }
374 
375 template<typename T, typename U>
376 inline opt_mode<T>
377 dyn_cast (const opt_mode<U> &m)
378 {
379   return dyn_cast <T> (m.else_void ());
380 }
381 
382 /* Return true if mode M has type T, storing it as a T in *RESULT
383    if so.  */
384 
385 template<typename T, typename U>
386 inline bool
387 is_a (machine_mode m, U *result)
388 {
389   if (T::includes_p (m))
390     {
391       *result = T (typename mode_traits<T>::from_int (m));
392       return true;
393     }
394   return false;
395 }
396 
397 /* Represents a machine mode that is known to be a SCALAR_INT_MODE_P.  */
398 class scalar_int_mode
399 {
400 public:
401   typedef mode_traits<scalar_int_mode>::from_int from_int;
402   typedef unsigned short measurement_type;
403 
404   ALWAYS_INLINE scalar_int_mode () {}
405   ALWAYS_INLINE scalar_int_mode (from_int m) : m_mode (machine_mode (m)) {}
406   ALWAYS_INLINE operator machine_mode () const { return m_mode; }
407 
408   static bool includes_p (machine_mode);
409 
410 protected:
411   machine_mode m_mode;
412 };
413 
414 /* Return true if M is a scalar_int_mode.  */
415 
416 inline bool
417 scalar_int_mode::includes_p (machine_mode m)
418 {
419   return SCALAR_INT_MODE_P (m);
420 }
421 
422 /* Represents a machine mode that is known to be a SCALAR_FLOAT_MODE_P.  */
423 class scalar_float_mode
424 {
425 public:
426   typedef mode_traits<scalar_float_mode>::from_int from_int;
427   typedef unsigned short measurement_type;
428 
429   ALWAYS_INLINE scalar_float_mode () {}
430   ALWAYS_INLINE scalar_float_mode (from_int m) : m_mode (machine_mode (m)) {}
431   ALWAYS_INLINE operator machine_mode () const { return m_mode; }
432 
433   static bool includes_p (machine_mode);
434 
435 protected:
436   machine_mode m_mode;
437 };
438 
439 /* Return true if M is a scalar_float_mode.  */
440 
441 inline bool
442 scalar_float_mode::includes_p (machine_mode m)
443 {
444   return SCALAR_FLOAT_MODE_P (m);
445 }
446 
447 /* Represents a machine mode that is known to be scalar.  */
448 class scalar_mode
449 {
450 public:
451   typedef mode_traits<scalar_mode>::from_int from_int;
452   typedef unsigned short measurement_type;
453 
454   ALWAYS_INLINE scalar_mode () {}
455   ALWAYS_INLINE scalar_mode (from_int m) : m_mode (machine_mode (m)) {}
456   ALWAYS_INLINE scalar_mode (const scalar_int_mode &m) : m_mode (m) {}
457   ALWAYS_INLINE scalar_mode (const scalar_float_mode &m) : m_mode (m) {}
458   ALWAYS_INLINE scalar_mode (const scalar_int_mode_pod &m) : m_mode (m) {}
459   ALWAYS_INLINE operator machine_mode () const { return m_mode; }
460 
461   static bool includes_p (machine_mode);
462 
463 protected:
464   machine_mode m_mode;
465 };
466 
467 /* Return true if M represents some kind of scalar value.  */
468 
469 inline bool
470 scalar_mode::includes_p (machine_mode m)
471 {
472   switch (GET_MODE_CLASS (m))
473     {
474     case MODE_INT:
475     case MODE_PARTIAL_INT:
476     case MODE_FRACT:
477     case MODE_UFRACT:
478     case MODE_ACCUM:
479     case MODE_UACCUM:
480     case MODE_FLOAT:
481     case MODE_DECIMAL_FLOAT:
482       return true;
483     default:
484       return false;
485     }
486 }
487 
488 /* Represents a machine mode that is known to be a COMPLEX_MODE_P.  */
489 class complex_mode
490 {
491 public:
492   typedef mode_traits<complex_mode>::from_int from_int;
493   typedef unsigned short measurement_type;
494 
495   ALWAYS_INLINE complex_mode () {}
496   ALWAYS_INLINE complex_mode (from_int m) : m_mode (machine_mode (m)) {}
497   ALWAYS_INLINE operator machine_mode () const { return m_mode; }
498 
499   static bool includes_p (machine_mode);
500 
501 protected:
502   machine_mode m_mode;
503 };
504 
505 /* Return true if M is a complex_mode.  */
506 
507 inline bool
508 complex_mode::includes_p (machine_mode m)
509 {
510   return COMPLEX_MODE_P (m);
511 }
512 
513 /* Return the base GET_MODE_SIZE value for MODE.  */
514 
515 ALWAYS_INLINE poly_uint16
516 mode_to_bytes (machine_mode mode)
517 {
518 #if GCC_VERSION >= 4001
519   return (__builtin_constant_p (mode)
520 	  ? mode_size_inline (mode) : mode_size[mode]);
521 #else
522   return mode_size[mode];
523 #endif
524 }
525 
526 /* Return the base GET_MODE_BITSIZE value for MODE.  */
527 
528 ALWAYS_INLINE poly_uint16
529 mode_to_bits (machine_mode mode)
530 {
531   return mode_to_bytes (mode) * BITS_PER_UNIT;
532 }
533 
534 /* Return the base GET_MODE_PRECISION value for MODE.  */
535 
536 ALWAYS_INLINE poly_uint16
537 mode_to_precision (machine_mode mode)
538 {
539   return mode_precision[mode];
540 }
541 
542 /* Return the base GET_MODE_INNER value for MODE.  */
543 
544 ALWAYS_INLINE scalar_mode
545 mode_to_inner (machine_mode mode)
546 {
547 #if GCC_VERSION >= 4001
548   return scalar_mode::from_int (__builtin_constant_p (mode)
549 				? mode_inner_inline (mode)
550 				: mode_inner[mode]);
551 #else
552   return scalar_mode::from_int (mode_inner[mode]);
553 #endif
554 }
555 
556 /* Return the base GET_MODE_UNIT_SIZE value for MODE.  */
557 
558 ALWAYS_INLINE unsigned char
559 mode_to_unit_size (machine_mode mode)
560 {
561 #if GCC_VERSION >= 4001
562   return (__builtin_constant_p (mode)
563 	  ? mode_unit_size_inline (mode) : mode_unit_size[mode]);
564 #else
565   return mode_unit_size[mode];
566 #endif
567 }
568 
569 /* Return the base GET_MODE_UNIT_PRECISION value for MODE.  */
570 
571 ALWAYS_INLINE unsigned short
572 mode_to_unit_precision (machine_mode mode)
573 {
574 #if GCC_VERSION >= 4001
575   return (__builtin_constant_p (mode)
576 	  ? mode_unit_precision_inline (mode) : mode_unit_precision[mode]);
577 #else
578   return mode_unit_precision[mode];
579 #endif
580 }
581 
582 /* Return the base GET_MODE_NUNITS value for MODE.  */
583 
584 ALWAYS_INLINE poly_uint16
585 mode_to_nunits (machine_mode mode)
586 {
587 #if GCC_VERSION >= 4001
588   return (__builtin_constant_p (mode)
589 	  ? mode_nunits_inline (mode) : mode_nunits[mode]);
590 #else
591   return mode_nunits[mode];
592 #endif
593 }
594 
595 /* Get the size in bytes of an object of mode MODE.  */
596 
597 #if ONLY_FIXED_SIZE_MODES
598 #define GET_MODE_SIZE(MODE) ((unsigned short) mode_to_bytes (MODE).coeffs[0])
599 #else
600 ALWAYS_INLINE poly_uint16
601 GET_MODE_SIZE (machine_mode mode)
602 {
603   return mode_to_bytes (mode);
604 }
605 
606 template<typename T>
607 ALWAYS_INLINE typename if_poly<typename T::measurement_type>::type
608 GET_MODE_SIZE (const T &mode)
609 {
610   return mode_to_bytes (mode);
611 }
612 
613 template<typename T>
614 ALWAYS_INLINE typename if_nonpoly<typename T::measurement_type>::type
615 GET_MODE_SIZE (const T &mode)
616 {
617   return mode_to_bytes (mode).coeffs[0];
618 }
619 #endif
620 
621 /* Get the size in bits of an object of mode MODE.  */
622 
623 #if ONLY_FIXED_SIZE_MODES
624 #define GET_MODE_BITSIZE(MODE) ((unsigned short) mode_to_bits (MODE).coeffs[0])
625 #else
626 ALWAYS_INLINE poly_uint16
627 GET_MODE_BITSIZE (machine_mode mode)
628 {
629   return mode_to_bits (mode);
630 }
631 
632 template<typename T>
633 ALWAYS_INLINE typename if_poly<typename T::measurement_type>::type
634 GET_MODE_BITSIZE (const T &mode)
635 {
636   return mode_to_bits (mode);
637 }
638 
639 template<typename T>
640 ALWAYS_INLINE typename if_nonpoly<typename T::measurement_type>::type
641 GET_MODE_BITSIZE (const T &mode)
642 {
643   return mode_to_bits (mode).coeffs[0];
644 }
645 #endif
646 
647 /* Get the number of value bits of an object of mode MODE.  */
648 
649 #if ONLY_FIXED_SIZE_MODES
650 #define GET_MODE_PRECISION(MODE) \
651   ((unsigned short) mode_to_precision (MODE).coeffs[0])
652 #else
653 ALWAYS_INLINE poly_uint16
654 GET_MODE_PRECISION (machine_mode mode)
655 {
656   return mode_to_precision (mode);
657 }
658 
659 template<typename T>
660 ALWAYS_INLINE typename if_poly<typename T::measurement_type>::type
661 GET_MODE_PRECISION (const T &mode)
662 {
663   return mode_to_precision (mode);
664 }
665 
666 template<typename T>
667 ALWAYS_INLINE typename if_nonpoly<typename T::measurement_type>::type
668 GET_MODE_PRECISION (const T &mode)
669 {
670   return mode_to_precision (mode).coeffs[0];
671 }
672 #endif
673 
674 /* Get the number of integral bits of an object of mode MODE.  */
675 extern CONST_MODE_IBIT unsigned char mode_ibit[NUM_MACHINE_MODES];
676 #define GET_MODE_IBIT(MODE) mode_ibit[MODE]
677 
678 /* Get the number of fractional bits of an object of mode MODE.  */
679 extern CONST_MODE_FBIT unsigned char mode_fbit[NUM_MACHINE_MODES];
680 #define GET_MODE_FBIT(MODE) mode_fbit[MODE]
681 
682 /* Get a bitmask containing 1 for all bits in a word
683    that fit within mode MODE.  */
684 
685 extern const unsigned HOST_WIDE_INT mode_mask_array[NUM_MACHINE_MODES];
686 
687 #define GET_MODE_MASK(MODE) mode_mask_array[MODE]
688 
689 /* Return the mode of the basic parts of MODE.  For vector modes this is the
690    mode of the vector elements.  For complex modes it is the mode of the real
691    and imaginary parts.  For other modes it is MODE itself.  */
692 
693 #define GET_MODE_INNER(MODE) (mode_to_inner (MODE))
694 
695 /* Get the size in bytes or bits of the basic parts of an
696    object of mode MODE.  */
697 
698 #define GET_MODE_UNIT_SIZE(MODE) mode_to_unit_size (MODE)
699 
700 #define GET_MODE_UNIT_BITSIZE(MODE) \
701   ((unsigned short) (GET_MODE_UNIT_SIZE (MODE) * BITS_PER_UNIT))
702 
703 #define GET_MODE_UNIT_PRECISION(MODE) (mode_to_unit_precision (MODE))
704 
705 /* Get the number of units in an object of mode MODE.  This is 2 for
706    complex modes and the number of elements for vector modes.  */
707 
708 #if ONLY_FIXED_SIZE_MODES
709 #define GET_MODE_NUNITS(MODE) (mode_to_nunits (MODE).coeffs[0])
710 #else
711 ALWAYS_INLINE poly_uint16
712 GET_MODE_NUNITS (machine_mode mode)
713 {
714   return mode_to_nunits (mode);
715 }
716 
717 template<typename T>
718 ALWAYS_INLINE typename if_poly<typename T::measurement_type>::type
719 GET_MODE_NUNITS (const T &mode)
720 {
721   return mode_to_nunits (mode);
722 }
723 
724 template<typename T>
725 ALWAYS_INLINE typename if_nonpoly<typename T::measurement_type>::type
726 GET_MODE_NUNITS (const T &mode)
727 {
728   return mode_to_nunits (mode).coeffs[0];
729 }
730 #endif
731 
732 /* Get the next wider natural mode (eg, QI -> HI -> SI -> DI -> TI).  */
733 
734 template<typename T>
735 ALWAYS_INLINE opt_mode<T>
736 GET_MODE_WIDER_MODE (const T &m)
737 {
738   return typename opt_mode<T>::from_int (mode_wider[m]);
739 }
740 
741 /* For scalars, this is a mode with twice the precision.  For vectors,
742    this is a mode with the same inner mode but with twice the elements.  */
743 
744 template<typename T>
745 ALWAYS_INLINE opt_mode<T>
746 GET_MODE_2XWIDER_MODE (const T &m)
747 {
748   return typename opt_mode<T>::from_int (mode_2xwider[m]);
749 }
750 
751 /* Get the complex mode from the component mode.  */
752 extern const unsigned char mode_complex[NUM_MACHINE_MODES];
753 #define GET_MODE_COMPLEX_MODE(MODE) ((machine_mode) mode_complex[MODE])
754 
755 /* Represents a machine mode that must have a fixed size.  The main
756    use of this class is to represent the modes of objects that always
757    have static storage duration, such as constant pool entries.
758    (No current target supports the concept of variable-size static data.)  */
759 class fixed_size_mode
760 {
761 public:
762   typedef mode_traits<fixed_size_mode>::from_int from_int;
763   typedef unsigned short measurement_type;
764 
765   ALWAYS_INLINE fixed_size_mode () {}
766   ALWAYS_INLINE fixed_size_mode (from_int m) : m_mode (machine_mode (m)) {}
767   ALWAYS_INLINE fixed_size_mode (const scalar_mode &m) : m_mode (m) {}
768   ALWAYS_INLINE fixed_size_mode (const scalar_int_mode &m) : m_mode (m) {}
769   ALWAYS_INLINE fixed_size_mode (const scalar_float_mode &m) : m_mode (m) {}
770   ALWAYS_INLINE fixed_size_mode (const scalar_mode_pod &m) : m_mode (m) {}
771   ALWAYS_INLINE fixed_size_mode (const scalar_int_mode_pod &m) : m_mode (m) {}
772   ALWAYS_INLINE fixed_size_mode (const complex_mode &m) : m_mode (m) {}
773   ALWAYS_INLINE operator machine_mode () const { return m_mode; }
774 
775   static bool includes_p (machine_mode);
776 
777 protected:
778   machine_mode m_mode;
779 };
780 
781 /* Return true if MODE has a fixed size.  */
782 
783 inline bool
784 fixed_size_mode::includes_p (machine_mode mode)
785 {
786   return mode_to_bytes (mode).is_constant ();
787 }
788 
789 /* Wrapper for mode arguments to target macros, so that if a target
790    doesn't need polynomial-sized modes, its header file can continue
791    to treat everything as fixed_size_mode.  This should go away once
792    macros are moved to target hooks.  It shouldn't be used in other
793    contexts.  */
794 #if NUM_POLY_INT_COEFFS == 1
795 #define MACRO_MODE(MODE) (as_a <fixed_size_mode> (MODE))
796 #else
797 #define MACRO_MODE(MODE) (MODE)
798 #endif
799 
800 extern opt_machine_mode mode_for_size (poly_uint64, enum mode_class, int);
801 
802 /* Return the machine mode to use for a MODE_INT of SIZE bits, if one
803    exists.  If LIMIT is nonzero, modes wider than MAX_FIXED_MODE_SIZE
804    will not be used.  */
805 
806 inline opt_scalar_int_mode
807 int_mode_for_size (poly_uint64 size, int limit)
808 {
809   return dyn_cast <scalar_int_mode> (mode_for_size (size, MODE_INT, limit));
810 }
811 
812 /* Return the machine mode to use for a MODE_FLOAT of SIZE bits, if one
813    exists.  */
814 
815 inline opt_scalar_float_mode
816 float_mode_for_size (poly_uint64 size)
817 {
818   return dyn_cast <scalar_float_mode> (mode_for_size (size, MODE_FLOAT, 0));
819 }
820 
821 /* Likewise for MODE_DECIMAL_FLOAT.  */
822 
823 inline opt_scalar_float_mode
824 decimal_float_mode_for_size (unsigned int size)
825 {
826   return dyn_cast <scalar_float_mode>
827     (mode_for_size (size, MODE_DECIMAL_FLOAT, 0));
828 }
829 
830 extern machine_mode smallest_mode_for_size (poly_uint64, enum mode_class);
831 
832 /* Find the narrowest integer mode that contains at least SIZE bits.
833    Such a mode must exist.  */
834 
835 inline scalar_int_mode
836 smallest_int_mode_for_size (poly_uint64 size)
837 {
838   return as_a <scalar_int_mode> (smallest_mode_for_size (size, MODE_INT));
839 }
840 
841 extern opt_scalar_int_mode int_mode_for_mode (machine_mode);
842 extern opt_machine_mode bitwise_mode_for_mode (machine_mode);
843 extern opt_machine_mode mode_for_vector (scalar_mode, poly_uint64);
844 extern opt_machine_mode mode_for_int_vector (unsigned int, poly_uint64);
845 
846 /* Return the integer vector equivalent of MODE, if one exists.  In other
847    words, return the mode for an integer vector that has the same number
848    of bits as MODE and the same number of elements as MODE, with the
849    latter being 1 if MODE is scalar.  The returned mode can be either
850    an integer mode or a vector mode.  */
851 
852 inline opt_machine_mode
853 mode_for_int_vector (machine_mode mode)
854 {
855   return mode_for_int_vector (GET_MODE_UNIT_BITSIZE (mode),
856 			      GET_MODE_NUNITS (mode));
857 }
858 
859 /* A class for iterating through possible bitfield modes.  */
860 class bit_field_mode_iterator
861 {
862 public:
863   bit_field_mode_iterator (HOST_WIDE_INT, HOST_WIDE_INT,
864 			   poly_int64, poly_int64,
865 			   unsigned int, bool);
866   bool next_mode (scalar_int_mode *);
867   bool prefer_smaller_modes ();
868 
869 private:
870   opt_scalar_int_mode m_mode;
871   /* We use signed values here because the bit position can be negative
872      for invalid input such as gcc.dg/pr48335-8.c.  */
873   HOST_WIDE_INT m_bitsize;
874   HOST_WIDE_INT m_bitpos;
875   poly_int64 m_bitregion_start;
876   poly_int64 m_bitregion_end;
877   unsigned int m_align;
878   bool m_volatilep;
879   int m_count;
880 };
881 
882 /* Find the best mode to use to access a bit field.  */
883 
884 extern bool get_best_mode (int, int, poly_uint64, poly_uint64, unsigned int,
885 			   unsigned HOST_WIDE_INT, bool, scalar_int_mode *);
886 
887 /* Determine alignment, 1<=result<=BIGGEST_ALIGNMENT.  */
888 
889 extern CONST_MODE_BASE_ALIGN unsigned short mode_base_align[NUM_MACHINE_MODES];
890 
891 extern unsigned get_mode_alignment (machine_mode);
892 
893 #define GET_MODE_ALIGNMENT(MODE) get_mode_alignment (MODE)
894 
895 /* For each class, get the narrowest mode in that class.  */
896 
897 extern const unsigned char class_narrowest_mode[MAX_MODE_CLASS];
898 #define GET_CLASS_NARROWEST_MODE(CLASS) \
899   ((machine_mode) class_narrowest_mode[CLASS])
900 
901 /* The narrowest full integer mode available on the target.  */
902 
903 #define NARROWEST_INT_MODE \
904   (scalar_int_mode \
905    (scalar_int_mode::from_int (class_narrowest_mode[MODE_INT])))
906 
907 /* Return the narrowest mode in T's class.  */
908 
909 template<typename T>
910 inline T
911 get_narrowest_mode (T mode)
912 {
913   return typename mode_traits<T>::from_int
914     (class_narrowest_mode[GET_MODE_CLASS (mode)]);
915 }
916 
917 /* Define the integer modes whose sizes are BITS_PER_UNIT and BITS_PER_WORD
918    and the mode whose class is Pmode and whose size is POINTER_SIZE.  */
919 
920 extern scalar_int_mode byte_mode;
921 extern scalar_int_mode word_mode;
922 extern scalar_int_mode ptr_mode;
923 
924 /* Target-dependent machine mode initialization - in insn-modes.c.  */
925 extern void init_adjust_machine_modes (void);
926 
927 #define TRULY_NOOP_TRUNCATION_MODES_P(MODE1, MODE2) \
928   (targetm.truly_noop_truncation (GET_MODE_PRECISION (MODE1), \
929 				  GET_MODE_PRECISION (MODE2)))
930 
931 /* Return true if MODE is a scalar integer mode that fits in a
932    HOST_WIDE_INT.  */
933 
934 inline bool
935 HWI_COMPUTABLE_MODE_P (machine_mode mode)
936 {
937   machine_mode mme = mode;
938   return (SCALAR_INT_MODE_P (mme)
939 	  && mode_to_precision (mme).coeffs[0] <= HOST_BITS_PER_WIDE_INT);
940 }
941 
942 inline bool
943 HWI_COMPUTABLE_MODE_P (scalar_int_mode mode)
944 {
945   return GET_MODE_PRECISION (mode) <= HOST_BITS_PER_WIDE_INT;
946 }
947 
948 struct int_n_data_t {
949   /* These parts are initailized by genmodes output */
950   unsigned int bitsize;
951   scalar_int_mode_pod m;
952   /* RID_* is RID_INTN_BASE + index into this array */
953 };
954 
955 /* This is also in tree.h.  genmodes.c guarantees the're sorted from
956    smallest bitsize to largest bitsize. */
957 extern bool int_n_enabled_p[NUM_INT_N_ENTS];
958 extern const int_n_data_t int_n_data[NUM_INT_N_ENTS];
959 
960 /* Return true if MODE has class MODE_INT, storing it as a scalar_int_mode
961    in *INT_MODE if so.  */
962 
963 template<typename T>
964 inline bool
965 is_int_mode (machine_mode mode, T *int_mode)
966 {
967   if (GET_MODE_CLASS (mode) == MODE_INT)
968     {
969       *int_mode = scalar_int_mode (scalar_int_mode::from_int (mode));
970       return true;
971     }
972   return false;
973 }
974 
975 /* Return true if MODE has class MODE_FLOAT, storing it as a
976    scalar_float_mode in *FLOAT_MODE if so.  */
977 
978 template<typename T>
979 inline bool
980 is_float_mode (machine_mode mode, T *float_mode)
981 {
982   if (GET_MODE_CLASS (mode) == MODE_FLOAT)
983     {
984       *float_mode = scalar_float_mode (scalar_float_mode::from_int (mode));
985       return true;
986     }
987   return false;
988 }
989 
990 /* Return true if MODE has class MODE_COMPLEX_INT, storing it as
991    a complex_mode in *CMODE if so.  */
992 
993 template<typename T>
994 inline bool
995 is_complex_int_mode (machine_mode mode, T *cmode)
996 {
997   if (GET_MODE_CLASS (mode) == MODE_COMPLEX_INT)
998     {
999       *cmode = complex_mode (complex_mode::from_int (mode));
1000       return true;
1001     }
1002   return false;
1003 }
1004 
1005 /* Return true if MODE has class MODE_COMPLEX_FLOAT, storing it as
1006    a complex_mode in *CMODE if so.  */
1007 
1008 template<typename T>
1009 inline bool
1010 is_complex_float_mode (machine_mode mode, T *cmode)
1011 {
1012   if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
1013     {
1014       *cmode = complex_mode (complex_mode::from_int (mode));
1015       return true;
1016     }
1017   return false;
1018 }
1019 
1020 /* Return true if MODE is a scalar integer mode with a precision
1021    smaller than LIMIT's precision.  */
1022 
1023 inline bool
1024 is_narrower_int_mode (machine_mode mode, scalar_int_mode limit)
1025 {
1026   scalar_int_mode int_mode;
1027   return (is_a <scalar_int_mode> (mode, &int_mode)
1028 	  && GET_MODE_PRECISION (int_mode) < GET_MODE_PRECISION (limit));
1029 }
1030 
1031 namespace mode_iterator
1032 {
1033   /* Start mode iterator *ITER at the first mode in class MCLASS, if any.  */
1034 
1035   template<typename T>
1036   inline void
1037   start (opt_mode<T> *iter, enum mode_class mclass)
1038   {
1039     if (GET_CLASS_NARROWEST_MODE (mclass) == E_VOIDmode)
1040       *iter = opt_mode<T> ();
1041     else
1042       *iter = as_a<T> (GET_CLASS_NARROWEST_MODE (mclass));
1043   }
1044 
1045   inline void
1046   start (machine_mode *iter, enum mode_class mclass)
1047   {
1048     *iter = GET_CLASS_NARROWEST_MODE (mclass);
1049   }
1050 
1051   /* Return true if mode iterator *ITER has not reached the end.  */
1052 
1053   template<typename T>
1054   inline bool
1055   iterate_p (opt_mode<T> *iter)
1056   {
1057     return iter->exists ();
1058   }
1059 
1060   inline bool
1061   iterate_p (machine_mode *iter)
1062   {
1063     return *iter != E_VOIDmode;
1064   }
1065 
1066   /* Set mode iterator *ITER to the next widest mode in the same class,
1067      if any.  */
1068 
1069   template<typename T>
1070   inline void
1071   get_wider (opt_mode<T> *iter)
1072   {
1073     *iter = GET_MODE_WIDER_MODE (iter->require ());
1074   }
1075 
1076   inline void
1077   get_wider (machine_mode *iter)
1078   {
1079     *iter = GET_MODE_WIDER_MODE (*iter).else_void ();
1080   }
1081 
1082   /* Set mode iterator *ITER to the next widest mode in the same class.
1083      Such a mode is known to exist.  */
1084 
1085   template<typename T>
1086   inline void
1087   get_known_wider (T *iter)
1088   {
1089     *iter = GET_MODE_WIDER_MODE (*iter).require ();
1090   }
1091 
1092   /* Set mode iterator *ITER to the mode that is two times wider than the
1093      current one, if such a mode exists.  */
1094 
1095   template<typename T>
1096   inline void
1097   get_2xwider (opt_mode<T> *iter)
1098   {
1099     *iter = GET_MODE_2XWIDER_MODE (iter->require ());
1100   }
1101 
1102   inline void
1103   get_2xwider (machine_mode *iter)
1104   {
1105     *iter = GET_MODE_2XWIDER_MODE (*iter).else_void ();
1106   }
1107 }
1108 
1109 /* Make ITERATOR iterate over all the modes in mode class CLASS,
1110    from narrowest to widest.  */
1111 #define FOR_EACH_MODE_IN_CLASS(ITERATOR, CLASS)  \
1112   for (mode_iterator::start (&(ITERATOR), CLASS); \
1113        mode_iterator::iterate_p (&(ITERATOR)); \
1114        mode_iterator::get_wider (&(ITERATOR)))
1115 
1116 /* Make ITERATOR iterate over all the modes in the range [START, END),
1117    in order of increasing width.  */
1118 #define FOR_EACH_MODE(ITERATOR, START, END) \
1119   for ((ITERATOR) = (START); \
1120        (ITERATOR) != (END); \
1121        mode_iterator::get_known_wider (&(ITERATOR)))
1122 
1123 /* Make ITERATOR iterate over START and all wider modes in the same
1124    class, in order of increasing width.  */
1125 #define FOR_EACH_MODE_FROM(ITERATOR, START) \
1126   for ((ITERATOR) = (START); \
1127        mode_iterator::iterate_p (&(ITERATOR)); \
1128        mode_iterator::get_wider (&(ITERATOR)))
1129 
1130 /* Make ITERATOR iterate over modes in the range [NARROWEST, END)
1131    in order of increasing width, where NARROWEST is the narrowest mode
1132    in END's class.  */
1133 #define FOR_EACH_MODE_UNTIL(ITERATOR, END) \
1134   FOR_EACH_MODE (ITERATOR, get_narrowest_mode (END), END)
1135 
1136 /* Make ITERATOR iterate over modes in the same class as MODE, in order
1137    of increasing width.  Start at the first mode wider than START,
1138    or don't iterate at all if there is no wider mode.  */
1139 #define FOR_EACH_WIDER_MODE(ITERATOR, START) \
1140   for ((ITERATOR) = (START), mode_iterator::get_wider (&(ITERATOR)); \
1141        mode_iterator::iterate_p (&(ITERATOR)); \
1142        mode_iterator::get_wider (&(ITERATOR)))
1143 
1144 /* Make ITERATOR iterate over modes in the same class as MODE, in order
1145    of increasing width, and with each mode being twice the width of the
1146    previous mode.  Start at the mode that is two times wider than START,
1147    or don't iterate at all if there is no such mode.  */
1148 #define FOR_EACH_2XWIDER_MODE(ITERATOR, START) \
1149   for ((ITERATOR) = (START), mode_iterator::get_2xwider (&(ITERATOR)); \
1150        mode_iterator::iterate_p (&(ITERATOR)); \
1151        mode_iterator::get_2xwider (&(ITERATOR)))
1152 
1153 template<typename T>
1154 void
1155 gt_ggc_mx (pod_mode<T> *)
1156 {
1157 }
1158 
1159 template<typename T>
1160 void
1161 gt_pch_nx (pod_mode<T> *)
1162 {
1163 }
1164 
1165 template<typename T>
1166 void
1167 gt_pch_nx (pod_mode<T> *, void (*) (void *, void *), void *)
1168 {
1169 }
1170 
1171 #endif /* not HAVE_MACHINE_MODES */
1172