1 /* Setting LOGICAL_OP_NON_SHORT_CIRCUIT to 0 inhibits the setcc
2    optimizations that expose the VRP opportunity.  */
3 /* { dg-do compile } */
4 /* { dg-options "-O2 -fdump-tree-vrp1 -fdump-tree-dom2 -fdump-tree-vrp2 --param logical-op-non-short-circuit=1" } */
5 /* { dg-additional-options "-march=i586" { target { { i?86-*-* x86_64-*-* } && ia32 } } } */
6 
h(int x,int y)7 int h(int x, int y)
8 {
9   if ((x >= 0 && x <= 1) && (y >= 0 && y <= 1))
10     return x && y;
11   else
12     return -1;
13 }
14 
g(int x,int y)15 int g(int x, int y)
16 {
17   if ((x >= 0 && x <= 1) && (y >= 0 && y <= 1))
18     return x || y;
19   else
20     return -1;
21 }
22 
f(int x)23 int f(int x)
24 {
25   if (x != 0 && x != 1)
26     return -2;
27 
28   else
29     return !x;
30 }
31 
32 /* Test that x and y are never compared to 0 -- they're always known to be
33    0 or 1.  */
34 /* { dg-final { scan-tree-dump-times "\[xy\]\[^ \]* !=" 0 "vrp1" } } */
35 
36 /* These two are fully simplified by VRP1.  */
37 /* { dg-final { scan-tree-dump-times "x\[^ \]* \[|\] y" 1 "vrp1" } } */
38 /* { dg-final { scan-tree-dump-times "x\[^ \]* \\^ 1" 1 "vrp1" } } */
39 
40 /* VRP2 gets rid of the remaining & 1 operations, x and y are always
41    either 0 or 1.  */
42 /* { dg-final { scan-tree-dump-times " & 1;" 0 "vrp2" } } */
43 
44