1 /* Array prefetching.
2    Copyright (C) 2005-2019 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "predict.h"
29 #include "tree-pass.h"
30 #include "gimple-ssa.h"
31 #include "optabs-query.h"
32 #include "tree-pretty-print.h"
33 #include "fold-const.h"
34 #include "stor-layout.h"
35 #include "gimplify.h"
36 #include "gimple-iterator.h"
37 #include "gimplify-me.h"
38 #include "tree-ssa-loop-ivopts.h"
39 #include "tree-ssa-loop-manip.h"
40 #include "tree-ssa-loop-niter.h"
41 #include "tree-ssa-loop.h"
42 #include "ssa.h"
43 #include "tree-into-ssa.h"
44 #include "cfgloop.h"
45 #include "tree-scalar-evolution.h"
46 #include "params.h"
47 #include "langhooks.h"
48 #include "tree-inline.h"
49 #include "tree-data-ref.h"
50 #include "diagnostic-core.h"
51 #include "dbgcnt.h"
52 
53 /* This pass inserts prefetch instructions to optimize cache usage during
54    accesses to arrays in loops.  It processes loops sequentially and:
55 
56    1) Gathers all memory references in the single loop.
57    2) For each of the references it decides when it is profitable to prefetch
58       it.  To do it, we evaluate the reuse among the accesses, and determines
59       two values: PREFETCH_BEFORE (meaning that it only makes sense to do
60       prefetching in the first PREFETCH_BEFORE iterations of the loop) and
61       PREFETCH_MOD (meaning that it only makes sense to prefetch in the
62       iterations of the loop that are zero modulo PREFETCH_MOD).  For example
63       (assuming cache line size is 64 bytes, char has size 1 byte and there
64       is no hardware sequential prefetch):
65 
66       char *a;
67       for (i = 0; i < max; i++)
68 	{
69 	  a[255] = ...;		(0)
70 	  a[i] = ...;		(1)
71 	  a[i + 64] = ...;	(2)
72 	  a[16*i] = ...;	(3)
73 	  a[187*i] = ...;	(4)
74 	  a[187*i + 50] = ...;	(5)
75 	}
76 
77        (0) obviously has PREFETCH_BEFORE 1
78        (1) has PREFETCH_BEFORE 64, since (2) accesses the same memory
79            location 64 iterations before it, and PREFETCH_MOD 64 (since
80 	   it hits the same cache line otherwise).
81        (2) has PREFETCH_MOD 64
82        (3) has PREFETCH_MOD 4
83        (4) has PREFETCH_MOD 1.  We do not set PREFETCH_BEFORE here, since
84            the cache line accessed by (5) is the same with probability only
85 	   7/32.
86        (5) has PREFETCH_MOD 1 as well.
87 
88       Additionally, we use data dependence analysis to determine for each
89       reference the distance till the first reuse; this information is used
90       to determine the temporality of the issued prefetch instruction.
91 
92    3) We determine how much ahead we need to prefetch.  The number of
93       iterations needed is time to fetch / time spent in one iteration of
94       the loop.  The problem is that we do not know either of these values,
95       so we just make a heuristic guess based on a magic (possibly)
96       target-specific constant and size of the loop.
97 
98    4) Determine which of the references we prefetch.  We take into account
99       that there is a maximum number of simultaneous prefetches (provided
100       by machine description).  We prefetch as many prefetches as possible
101       while still within this bound (starting with those with lowest
102       prefetch_mod, since they are responsible for most of the cache
103       misses).
104 
105    5) We unroll and peel loops so that we are able to satisfy PREFETCH_MOD
106       and PREFETCH_BEFORE requirements (within some bounds), and to avoid
107       prefetching nonaccessed memory.
108       TODO -- actually implement peeling.
109 
110    6) We actually emit the prefetch instructions.  ??? Perhaps emit the
111       prefetch instructions with guards in cases where 5) was not sufficient
112       to satisfy the constraints?
113 
114    A cost model is implemented to determine whether or not prefetching is
115    profitable for a given loop.  The cost model has three heuristics:
116 
117    1. Function trip_count_to_ahead_ratio_too_small_p implements a
118       heuristic that determines whether or not the loop has too few
119       iterations (compared to ahead).  Prefetching is not likely to be
120       beneficial if the trip count to ahead ratio is below a certain
121       minimum.
122 
123    2. Function mem_ref_count_reasonable_p implements a heuristic that
124       determines whether the given loop has enough CPU ops that can be
125       overlapped with cache missing memory ops.  If not, the loop
126       won't benefit from prefetching.  In the implementation,
127       prefetching is not considered beneficial if the ratio between
128       the instruction count and the mem ref count is below a certain
129       minimum.
130 
131    3. Function insn_to_prefetch_ratio_too_small_p implements a
132       heuristic that disables prefetching in a loop if the prefetching
133       cost is above a certain limit.  The relative prefetching cost is
134       estimated by taking the ratio between the prefetch count and the
135       total intruction count (this models the I-cache cost).
136 
137    The limits used in these heuristics are defined as parameters with
138    reasonable default values. Machine-specific default values will be
139    added later.
140 
141    Some other TODO:
142       -- write and use more general reuse analysis (that could be also used
143 	 in other cache aimed loop optimizations)
144       -- make it behave sanely together with the prefetches given by user
145 	 (now we just ignore them; at the very least we should avoid
146 	 optimizing loops in that user put his own prefetches)
147       -- we assume cache line size alignment of arrays; this could be
148 	 improved.  */
149 
150 /* Magic constants follow.  These should be replaced by machine specific
151    numbers.  */
152 
153 /* True if write can be prefetched by a read prefetch.  */
154 
155 #ifndef WRITE_CAN_USE_READ_PREFETCH
156 #define WRITE_CAN_USE_READ_PREFETCH 1
157 #endif
158 
159 /* True if read can be prefetched by a write prefetch. */
160 
161 #ifndef READ_CAN_USE_WRITE_PREFETCH
162 #define READ_CAN_USE_WRITE_PREFETCH 0
163 #endif
164 
165 /* The size of the block loaded by a single prefetch.  Usually, this is
166    the same as cache line size (at the moment, we only consider one level
167    of cache hierarchy).  */
168 
169 #ifndef PREFETCH_BLOCK
170 #define PREFETCH_BLOCK L1_CACHE_LINE_SIZE
171 #endif
172 
173 /* Do we have a forward hardware sequential prefetching?  */
174 
175 #ifndef HAVE_FORWARD_PREFETCH
176 #define HAVE_FORWARD_PREFETCH 0
177 #endif
178 
179 /* Do we have a backward hardware sequential prefetching?  */
180 
181 #ifndef HAVE_BACKWARD_PREFETCH
182 #define HAVE_BACKWARD_PREFETCH 0
183 #endif
184 
185 /* In some cases we are only able to determine that there is a certain
186    probability that the two accesses hit the same cache line.  In this
187    case, we issue the prefetches for both of them if this probability
188    is less then (1000 - ACCEPTABLE_MISS_RATE) per thousand.  */
189 
190 #ifndef ACCEPTABLE_MISS_RATE
191 #define ACCEPTABLE_MISS_RATE 50
192 #endif
193 
194 #define L1_CACHE_SIZE_BYTES ((unsigned) (L1_CACHE_SIZE * 1024))
195 #define L2_CACHE_SIZE_BYTES ((unsigned) (L2_CACHE_SIZE * 1024))
196 
197 /* We consider a memory access nontemporal if it is not reused sooner than
198    after L2_CACHE_SIZE_BYTES of memory are accessed.  However, we ignore
199    accesses closer than L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION,
200    so that we use nontemporal prefetches e.g. if single memory location
201    is accessed several times in a single iteration of the loop.  */
202 #define NONTEMPORAL_FRACTION 16
203 
204 /* In case we have to emit a memory fence instruction after the loop that
205    uses nontemporal stores, this defines the builtin to use.  */
206 
207 #ifndef FENCE_FOLLOWING_MOVNT
208 #define FENCE_FOLLOWING_MOVNT NULL_TREE
209 #endif
210 
211 /* It is not profitable to prefetch when the trip count is not at
212    least TRIP_COUNT_TO_AHEAD_RATIO times the prefetch ahead distance.
213    For example, in a loop with a prefetch ahead distance of 10,
214    supposing that TRIP_COUNT_TO_AHEAD_RATIO is equal to 4, it is
215    profitable to prefetch when the trip count is greater or equal to
216    40.  In that case, 30 out of the 40 iterations will benefit from
217    prefetching.  */
218 
219 #ifndef TRIP_COUNT_TO_AHEAD_RATIO
220 #define TRIP_COUNT_TO_AHEAD_RATIO 4
221 #endif
222 
223 /* The group of references between that reuse may occur.  */
224 
225 struct mem_ref_group
226 {
227   tree base;			/* Base of the reference.  */
228   tree step;			/* Step of the reference.  */
229   struct mem_ref *refs;		/* References in the group.  */
230   struct mem_ref_group *next;	/* Next group of references.  */
231   unsigned int uid;		/* Group UID, used only for debugging.  */
232 };
233 
234 /* Assigned to PREFETCH_BEFORE when all iterations are to be prefetched.  */
235 
236 #define PREFETCH_ALL		HOST_WIDE_INT_M1U
237 
238 /* Do not generate a prefetch if the unroll factor is significantly less
239    than what is required by the prefetch.  This is to avoid redundant
240    prefetches.  For example, when prefetch_mod is 16 and unroll_factor is
241    2, prefetching requires unrolling the loop 16 times, but
242    the loop is actually unrolled twice.  In this case (ratio = 8),
243    prefetching is not likely to be beneficial.  */
244 
245 #ifndef PREFETCH_MOD_TO_UNROLL_FACTOR_RATIO
246 #define PREFETCH_MOD_TO_UNROLL_FACTOR_RATIO 4
247 #endif
248 
249 /* Some of the prefetch computations have quadratic complexity.  We want to
250    avoid huge compile times and, therefore, want to limit the amount of
251    memory references per loop where we consider prefetching.  */
252 
253 #ifndef PREFETCH_MAX_MEM_REFS_PER_LOOP
254 #define PREFETCH_MAX_MEM_REFS_PER_LOOP 200
255 #endif
256 
257 /* The memory reference.  */
258 
259 struct mem_ref
260 {
261   gimple *stmt;			/* Statement in that the reference appears.  */
262   tree mem;			/* The reference.  */
263   HOST_WIDE_INT delta;		/* Constant offset of the reference.  */
264   struct mem_ref_group *group;	/* The group of references it belongs to.  */
265   unsigned HOST_WIDE_INT prefetch_mod;
266 				/* Prefetch only each PREFETCH_MOD-th
267 				   iteration.  */
268   unsigned HOST_WIDE_INT prefetch_before;
269 				/* Prefetch only first PREFETCH_BEFORE
270 				   iterations.  */
271   unsigned reuse_distance;	/* The amount of data accessed before the first
272 				   reuse of this value.  */
273   struct mem_ref *next;		/* The next reference in the group.  */
274   unsigned int uid;		/* Ref UID, used only for debugging.  */
275   unsigned write_p : 1;		/* Is it a write?  */
276   unsigned independent_p : 1;	/* True if the reference is independent on
277 				   all other references inside the loop.  */
278   unsigned issue_prefetch_p : 1;	/* Should we really issue the prefetch?  */
279   unsigned storent_p : 1;	/* True if we changed the store to a
280 				   nontemporal one.  */
281 };
282 
283 /* Dumps information about memory reference */
284 static void
dump_mem_details(FILE * file,tree base,tree step,HOST_WIDE_INT delta,bool write_p)285 dump_mem_details (FILE *file, tree base, tree step,
286 	    HOST_WIDE_INT delta, bool write_p)
287 {
288   fprintf (file, "(base ");
289   print_generic_expr (file, base, TDF_SLIM);
290   fprintf (file, ", step ");
291   if (cst_and_fits_in_hwi (step))
292     fprintf (file, HOST_WIDE_INT_PRINT_DEC, int_cst_value (step));
293   else
294     print_generic_expr (file, step, TDF_SLIM);
295   fprintf (file, ")\n");
296   fprintf (file, "  delta " HOST_WIDE_INT_PRINT_DEC "\n", delta);
297   fprintf (file, "  %s\n\n", write_p ? "write" : "read");
298 }
299 
300 /* Dumps information about reference REF to FILE.  */
301 
302 static void
dump_mem_ref(FILE * file,struct mem_ref * ref)303 dump_mem_ref (FILE *file, struct mem_ref *ref)
304 {
305   fprintf (file, "reference %u:%u (", ref->group->uid, ref->uid);
306   print_generic_expr (file, ref->mem, TDF_SLIM);
307   fprintf (file, ")\n");
308 }
309 
310 /* Finds a group with BASE and STEP in GROUPS, or creates one if it does not
311    exist.  */
312 
313 static struct mem_ref_group *
find_or_create_group(struct mem_ref_group ** groups,tree base,tree step)314 find_or_create_group (struct mem_ref_group **groups, tree base, tree step)
315 {
316   /* Global count for setting struct mem_ref_group->uid.  */
317   static unsigned int last_mem_ref_group_uid = 0;
318 
319   struct mem_ref_group *group;
320 
321   for (; *groups; groups = &(*groups)->next)
322     {
323       if (operand_equal_p ((*groups)->step, step, 0)
324 	  && operand_equal_p ((*groups)->base, base, 0))
325 	return *groups;
326 
327       /* If step is an integer constant, keep the list of groups sorted
328          by decreasing step.  */
329       if (cst_and_fits_in_hwi ((*groups)->step) && cst_and_fits_in_hwi (step)
330 	  && int_cst_value ((*groups)->step) < int_cst_value (step))
331 	break;
332     }
333 
334   group = XNEW (struct mem_ref_group);
335   group->base = base;
336   group->step = step;
337   group->refs = NULL;
338   group->uid = ++last_mem_ref_group_uid;
339   group->next = *groups;
340   *groups = group;
341 
342   return group;
343 }
344 
345 /* Records a memory reference MEM in GROUP with offset DELTA and write status
346    WRITE_P.  The reference occurs in statement STMT.  */
347 
348 static void
record_ref(struct mem_ref_group * group,gimple * stmt,tree mem,HOST_WIDE_INT delta,bool write_p)349 record_ref (struct mem_ref_group *group, gimple *stmt, tree mem,
350 	    HOST_WIDE_INT delta, bool write_p)
351 {
352   unsigned int last_mem_ref_uid = 0;
353   struct mem_ref **aref;
354 
355   /* Do not record the same address twice.  */
356   for (aref = &group->refs; *aref; aref = &(*aref)->next)
357     {
358       last_mem_ref_uid = (*aref)->uid;
359 
360       /* It does not have to be possible for write reference to reuse the read
361 	 prefetch, or vice versa.  */
362       if (!WRITE_CAN_USE_READ_PREFETCH
363 	  && write_p
364 	  && !(*aref)->write_p)
365 	continue;
366       if (!READ_CAN_USE_WRITE_PREFETCH
367 	  && !write_p
368 	  && (*aref)->write_p)
369 	continue;
370 
371       if ((*aref)->delta == delta)
372 	return;
373     }
374 
375   (*aref) = XNEW (struct mem_ref);
376   (*aref)->stmt = stmt;
377   (*aref)->mem = mem;
378   (*aref)->delta = delta;
379   (*aref)->write_p = write_p;
380   (*aref)->prefetch_before = PREFETCH_ALL;
381   (*aref)->prefetch_mod = 1;
382   (*aref)->reuse_distance = 0;
383   (*aref)->issue_prefetch_p = false;
384   (*aref)->group = group;
385   (*aref)->next = NULL;
386   (*aref)->independent_p = false;
387   (*aref)->storent_p = false;
388   (*aref)->uid = last_mem_ref_uid + 1;
389 
390   if (dump_file && (dump_flags & TDF_DETAILS))
391     {
392       dump_mem_ref (dump_file, *aref);
393 
394       fprintf (dump_file, "  group %u ", group->uid);
395       dump_mem_details (dump_file, group->base, group->step, delta,
396 			write_p);
397     }
398 }
399 
400 /* Release memory references in GROUPS.  */
401 
402 static void
release_mem_refs(struct mem_ref_group * groups)403 release_mem_refs (struct mem_ref_group *groups)
404 {
405   struct mem_ref_group *next_g;
406   struct mem_ref *ref, *next_r;
407 
408   for (; groups; groups = next_g)
409     {
410       next_g = groups->next;
411       for (ref = groups->refs; ref; ref = next_r)
412 	{
413 	  next_r = ref->next;
414 	  free (ref);
415 	}
416       free (groups);
417     }
418 }
419 
420 /* A structure used to pass arguments to idx_analyze_ref.  */
421 
422 struct ar_data
423 {
424   struct loop *loop;			/* Loop of the reference.  */
425   gimple *stmt;				/* Statement of the reference.  */
426   tree *step;				/* Step of the memory reference.  */
427   HOST_WIDE_INT *delta;			/* Offset of the memory reference.  */
428 };
429 
430 /* Analyzes a single INDEX of a memory reference to obtain information
431    described at analyze_ref.  Callback for for_each_index.  */
432 
433 static bool
idx_analyze_ref(tree base,tree * index,void * data)434 idx_analyze_ref (tree base, tree *index, void *data)
435 {
436   struct ar_data *ar_data = (struct ar_data *) data;
437   tree ibase, step, stepsize;
438   HOST_WIDE_INT idelta = 0, imult = 1;
439   affine_iv iv;
440 
441   if (!simple_iv (ar_data->loop, loop_containing_stmt (ar_data->stmt),
442 		  *index, &iv, true))
443     return false;
444   ibase = iv.base;
445   step = iv.step;
446 
447   if (TREE_CODE (ibase) == POINTER_PLUS_EXPR
448       && cst_and_fits_in_hwi (TREE_OPERAND (ibase, 1)))
449     {
450       idelta = int_cst_value (TREE_OPERAND (ibase, 1));
451       ibase = TREE_OPERAND (ibase, 0);
452     }
453   if (cst_and_fits_in_hwi (ibase))
454     {
455       idelta += int_cst_value (ibase);
456       ibase = build_int_cst (TREE_TYPE (ibase), 0);
457     }
458 
459   if (TREE_CODE (base) == ARRAY_REF)
460     {
461       stepsize = array_ref_element_size (base);
462       if (!cst_and_fits_in_hwi (stepsize))
463 	return false;
464       imult = int_cst_value (stepsize);
465       step = fold_build2 (MULT_EXPR, sizetype,
466 			  fold_convert (sizetype, step),
467 			  fold_convert (sizetype, stepsize));
468       idelta *= imult;
469     }
470 
471   if (*ar_data->step == NULL_TREE)
472     *ar_data->step = step;
473   else
474     *ar_data->step = fold_build2 (PLUS_EXPR, sizetype,
475 				  fold_convert (sizetype, *ar_data->step),
476 				  fold_convert (sizetype, step));
477   *ar_data->delta += idelta;
478   *index = ibase;
479 
480   return true;
481 }
482 
483 /* Tries to express REF_P in shape &BASE + STEP * iter + DELTA, where DELTA and
484    STEP are integer constants and iter is number of iterations of LOOP.  The
485    reference occurs in statement STMT.  Strips nonaddressable component
486    references from REF_P.  */
487 
488 static bool
analyze_ref(struct loop * loop,tree * ref_p,tree * base,tree * step,HOST_WIDE_INT * delta,gimple * stmt)489 analyze_ref (struct loop *loop, tree *ref_p, tree *base,
490 	     tree *step, HOST_WIDE_INT *delta,
491 	     gimple *stmt)
492 {
493   struct ar_data ar_data;
494   tree off;
495   HOST_WIDE_INT bit_offset;
496   tree ref = *ref_p;
497 
498   *step = NULL_TREE;
499   *delta = 0;
500 
501   /* First strip off the component references.  Ignore bitfields.
502      Also strip off the real and imagine parts of a complex, so that
503      they can have the same base.  */
504   if (TREE_CODE (ref) == REALPART_EXPR
505       || TREE_CODE (ref) == IMAGPART_EXPR
506       || (TREE_CODE (ref) == COMPONENT_REF
507           && DECL_NONADDRESSABLE_P (TREE_OPERAND (ref, 1))))
508     {
509       if (TREE_CODE (ref) == IMAGPART_EXPR)
510         *delta += int_size_in_bytes (TREE_TYPE (ref));
511       ref = TREE_OPERAND (ref, 0);
512     }
513 
514   *ref_p = ref;
515 
516   for (; TREE_CODE (ref) == COMPONENT_REF; ref = TREE_OPERAND (ref, 0))
517     {
518       off = DECL_FIELD_BIT_OFFSET (TREE_OPERAND (ref, 1));
519       bit_offset = TREE_INT_CST_LOW (off);
520       gcc_assert (bit_offset % BITS_PER_UNIT == 0);
521 
522       *delta += bit_offset / BITS_PER_UNIT;
523     }
524 
525   *base = unshare_expr (ref);
526   ar_data.loop = loop;
527   ar_data.stmt = stmt;
528   ar_data.step = step;
529   ar_data.delta = delta;
530   return for_each_index (base, idx_analyze_ref, &ar_data);
531 }
532 
533 /* Record a memory reference REF to the list REFS.  The reference occurs in
534    LOOP in statement STMT and it is write if WRITE_P.  Returns true if the
535    reference was recorded, false otherwise.  */
536 
537 static bool
gather_memory_references_ref(struct loop * loop,struct mem_ref_group ** refs,tree ref,bool write_p,gimple * stmt)538 gather_memory_references_ref (struct loop *loop, struct mem_ref_group **refs,
539 			      tree ref, bool write_p, gimple *stmt)
540 {
541   tree base, step;
542   HOST_WIDE_INT delta;
543   struct mem_ref_group *agrp;
544 
545   if (get_base_address (ref) == NULL)
546     return false;
547 
548   if (!analyze_ref (loop, &ref, &base, &step, &delta, stmt))
549     return false;
550   /* If analyze_ref fails the default is a NULL_TREE.  We can stop here.  */
551   if (step == NULL_TREE)
552     return false;
553 
554   /* Stop if the address of BASE could not be taken.  */
555   if (may_be_nonaddressable_p (base))
556     return false;
557 
558   /* Limit non-constant step prefetching only to the innermost loops and
559      only when the step is loop invariant in the entire loop nest. */
560   if (!cst_and_fits_in_hwi (step))
561     {
562       if (loop->inner != NULL)
563         {
564           if (dump_file && (dump_flags & TDF_DETAILS))
565             {
566               fprintf (dump_file, "Memory expression %p\n",(void *) ref );
567 	      print_generic_expr (dump_file, ref, TDF_SLIM);
568 	      fprintf (dump_file,":");
569               dump_mem_details (dump_file, base, step, delta, write_p);
570               fprintf (dump_file,
571                        "Ignoring %p, non-constant step prefetching is "
572                        "limited to inner most loops \n",
573                        (void *) ref);
574             }
575             return false;
576          }
577       else
578         {
579           if (!expr_invariant_in_loop_p (loop_outermost (loop), step))
580           {
581             if (dump_file && (dump_flags & TDF_DETAILS))
582               {
583                 fprintf (dump_file, "Memory expression %p\n",(void *) ref );
584 		print_generic_expr (dump_file, ref, TDF_SLIM);
585                 fprintf (dump_file,":");
586                 dump_mem_details (dump_file, base, step, delta, write_p);
587                 fprintf (dump_file,
588                          "Not prefetching, ignoring %p due to "
589                          "loop variant step\n",
590                          (void *) ref);
591               }
592               return false;
593             }
594         }
595     }
596 
597   /* Now we know that REF = &BASE + STEP * iter + DELTA, where DELTA and STEP
598      are integer constants.  */
599   agrp = find_or_create_group (refs, base, step);
600   record_ref (agrp, stmt, ref, delta, write_p);
601 
602   return true;
603 }
604 
605 /* Record the suitable memory references in LOOP.  NO_OTHER_REFS is set to
606    true if there are no other memory references inside the loop.  */
607 
608 static struct mem_ref_group *
gather_memory_references(struct loop * loop,bool * no_other_refs,unsigned * ref_count)609 gather_memory_references (struct loop *loop, bool *no_other_refs, unsigned *ref_count)
610 {
611   basic_block *body = get_loop_body_in_dom_order (loop);
612   basic_block bb;
613   unsigned i;
614   gimple_stmt_iterator bsi;
615   gimple *stmt;
616   tree lhs, rhs;
617   struct mem_ref_group *refs = NULL;
618 
619   *no_other_refs = true;
620   *ref_count = 0;
621 
622   /* Scan the loop body in order, so that the former references precede the
623      later ones.  */
624   for (i = 0; i < loop->num_nodes; i++)
625     {
626       bb = body[i];
627       if (bb->loop_father != loop)
628 	continue;
629 
630       for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
631 	{
632 	  stmt = gsi_stmt (bsi);
633 
634 	  if (gimple_code (stmt) != GIMPLE_ASSIGN)
635 	    {
636 	      if (gimple_vuse (stmt)
637 		  || (is_gimple_call (stmt)
638 		      && !(gimple_call_flags (stmt) & ECF_CONST)))
639 		*no_other_refs = false;
640 	      continue;
641 	    }
642 
643 	  if (! gimple_vuse (stmt))
644 	    continue;
645 
646 	  lhs = gimple_assign_lhs (stmt);
647 	  rhs = gimple_assign_rhs1 (stmt);
648 
649 	  if (REFERENCE_CLASS_P (rhs))
650 	    {
651 	    *no_other_refs &= gather_memory_references_ref (loop, &refs,
652 							    rhs, false, stmt);
653 	    *ref_count += 1;
654 	    }
655 	  if (REFERENCE_CLASS_P (lhs))
656 	    {
657 	    *no_other_refs &= gather_memory_references_ref (loop, &refs,
658 							    lhs, true, stmt);
659 	    *ref_count += 1;
660 	    }
661 	}
662     }
663   free (body);
664 
665   return refs;
666 }
667 
668 /* Prune the prefetch candidate REF using the self-reuse.  */
669 
670 static void
prune_ref_by_self_reuse(struct mem_ref * ref)671 prune_ref_by_self_reuse (struct mem_ref *ref)
672 {
673   HOST_WIDE_INT step;
674   bool backward;
675 
676   /* If the step size is non constant, we cannot calculate prefetch_mod.  */
677   if (!cst_and_fits_in_hwi (ref->group->step))
678     return;
679 
680   step = int_cst_value (ref->group->step);
681 
682   backward = step < 0;
683 
684   if (step == 0)
685     {
686       /* Prefetch references to invariant address just once.  */
687       ref->prefetch_before = 1;
688       return;
689     }
690 
691   if (backward)
692     step = -step;
693 
694   if (step > PREFETCH_BLOCK)
695     return;
696 
697   if ((backward && HAVE_BACKWARD_PREFETCH)
698       || (!backward && HAVE_FORWARD_PREFETCH))
699     {
700       ref->prefetch_before = 1;
701       return;
702     }
703 
704   ref->prefetch_mod = PREFETCH_BLOCK / step;
705 }
706 
707 /* Divides X by BY, rounding down.  */
708 
709 static HOST_WIDE_INT
ddown(HOST_WIDE_INT x,unsigned HOST_WIDE_INT by)710 ddown (HOST_WIDE_INT x, unsigned HOST_WIDE_INT by)
711 {
712   gcc_assert (by > 0);
713 
714   if (x >= 0)
715     return x / (HOST_WIDE_INT) by;
716   else
717     return (x + (HOST_WIDE_INT) by - 1) / (HOST_WIDE_INT) by;
718 }
719 
720 /* Given a CACHE_LINE_SIZE and two inductive memory references
721    with a common STEP greater than CACHE_LINE_SIZE and an address
722    difference DELTA, compute the probability that they will fall
723    in different cache lines.  Return true if the computed miss rate
724    is not greater than the ACCEPTABLE_MISS_RATE.  DISTINCT_ITERS is the
725    number of distinct iterations after which the pattern repeats itself.
726    ALIGN_UNIT is the unit of alignment in bytes.  */
727 
728 static bool
is_miss_rate_acceptable(unsigned HOST_WIDE_INT cache_line_size,HOST_WIDE_INT step,HOST_WIDE_INT delta,unsigned HOST_WIDE_INT distinct_iters,int align_unit)729 is_miss_rate_acceptable (unsigned HOST_WIDE_INT cache_line_size,
730 		   HOST_WIDE_INT step, HOST_WIDE_INT delta,
731 		   unsigned HOST_WIDE_INT distinct_iters,
732 		   int align_unit)
733 {
734   unsigned align, iter;
735   int total_positions, miss_positions, max_allowed_miss_positions;
736   int address1, address2, cache_line1, cache_line2;
737 
738   /* It always misses if delta is greater than or equal to the cache
739      line size.  */
740   if (delta >= (HOST_WIDE_INT) cache_line_size)
741     return false;
742 
743   miss_positions = 0;
744   total_positions = (cache_line_size / align_unit) * distinct_iters;
745   max_allowed_miss_positions = (ACCEPTABLE_MISS_RATE * total_positions) / 1000;
746 
747   /* Iterate through all possible alignments of the first
748      memory reference within its cache line.  */
749   for (align = 0; align < cache_line_size; align += align_unit)
750 
751     /* Iterate through all distinct iterations.  */
752     for (iter = 0; iter < distinct_iters; iter++)
753       {
754 	address1 = align + step * iter;
755 	address2 = address1 + delta;
756 	cache_line1 = address1 / cache_line_size;
757 	cache_line2 = address2 / cache_line_size;
758 	if (cache_line1 != cache_line2)
759 	  {
760 	    miss_positions += 1;
761             if (miss_positions > max_allowed_miss_positions)
762 	      return false;
763           }
764       }
765   return true;
766 }
767 
768 /* Prune the prefetch candidate REF using the reuse with BY.
769    If BY_IS_BEFORE is true, BY is before REF in the loop.  */
770 
771 static void
prune_ref_by_group_reuse(struct mem_ref * ref,struct mem_ref * by,bool by_is_before)772 prune_ref_by_group_reuse (struct mem_ref *ref, struct mem_ref *by,
773 			  bool by_is_before)
774 {
775   HOST_WIDE_INT step;
776   bool backward;
777   HOST_WIDE_INT delta_r = ref->delta, delta_b = by->delta;
778   HOST_WIDE_INT delta = delta_b - delta_r;
779   HOST_WIDE_INT hit_from;
780   unsigned HOST_WIDE_INT prefetch_before, prefetch_block;
781   HOST_WIDE_INT reduced_step;
782   unsigned HOST_WIDE_INT reduced_prefetch_block;
783   tree ref_type;
784   int align_unit;
785 
786   /* If the step is non constant we cannot calculate prefetch_before.  */
787   if (!cst_and_fits_in_hwi (ref->group->step)) {
788     return;
789   }
790 
791   step = int_cst_value (ref->group->step);
792 
793   backward = step < 0;
794 
795 
796   if (delta == 0)
797     {
798       /* If the references has the same address, only prefetch the
799 	 former.  */
800       if (by_is_before)
801 	ref->prefetch_before = 0;
802 
803       return;
804     }
805 
806   if (!step)
807     {
808       /* If the reference addresses are invariant and fall into the
809 	 same cache line, prefetch just the first one.  */
810       if (!by_is_before)
811 	return;
812 
813       if (ddown (ref->delta, PREFETCH_BLOCK)
814 	  != ddown (by->delta, PREFETCH_BLOCK))
815 	return;
816 
817       ref->prefetch_before = 0;
818       return;
819     }
820 
821   /* Only prune the reference that is behind in the array.  */
822   if (backward)
823     {
824       if (delta > 0)
825 	return;
826 
827       /* Transform the data so that we may assume that the accesses
828 	 are forward.  */
829       delta = - delta;
830       step = -step;
831       delta_r = PREFETCH_BLOCK - 1 - delta_r;
832       delta_b = PREFETCH_BLOCK - 1 - delta_b;
833     }
834   else
835     {
836       if (delta < 0)
837 	return;
838     }
839 
840   /* Check whether the two references are likely to hit the same cache
841      line, and how distant the iterations in that it occurs are from
842      each other.  */
843 
844   if (step <= PREFETCH_BLOCK)
845     {
846       /* The accesses are sure to meet.  Let us check when.  */
847       hit_from = ddown (delta_b, PREFETCH_BLOCK) * PREFETCH_BLOCK;
848       prefetch_before = (hit_from - delta_r + step - 1) / step;
849 
850       /* Do not reduce prefetch_before if we meet beyond cache size.  */
851       if (prefetch_before > absu_hwi (L2_CACHE_SIZE_BYTES / step))
852         prefetch_before = PREFETCH_ALL;
853       if (prefetch_before < ref->prefetch_before)
854 	ref->prefetch_before = prefetch_before;
855 
856       return;
857     }
858 
859   /* A more complicated case with step > prefetch_block.  First reduce
860      the ratio between the step and the cache line size to its simplest
861      terms.  The resulting denominator will then represent the number of
862      distinct iterations after which each address will go back to its
863      initial location within the cache line.  This computation assumes
864      that PREFETCH_BLOCK is a power of two.  */
865   prefetch_block = PREFETCH_BLOCK;
866   reduced_prefetch_block = prefetch_block;
867   reduced_step = step;
868   while ((reduced_step & 1) == 0
869 	 && reduced_prefetch_block > 1)
870     {
871       reduced_step >>= 1;
872       reduced_prefetch_block >>= 1;
873     }
874 
875   prefetch_before = delta / step;
876   delta %= step;
877   ref_type = TREE_TYPE (ref->mem);
878   align_unit = TYPE_ALIGN (ref_type) / 8;
879   if (is_miss_rate_acceptable (prefetch_block, step, delta,
880 			       reduced_prefetch_block, align_unit))
881     {
882       /* Do not reduce prefetch_before if we meet beyond cache size.  */
883       if (prefetch_before > L2_CACHE_SIZE_BYTES / PREFETCH_BLOCK)
884         prefetch_before = PREFETCH_ALL;
885       if (prefetch_before < ref->prefetch_before)
886 	ref->prefetch_before = prefetch_before;
887 
888       return;
889     }
890 
891   /* Try also the following iteration.  */
892   prefetch_before++;
893   delta = step - delta;
894   if (is_miss_rate_acceptable (prefetch_block, step, delta,
895 			       reduced_prefetch_block, align_unit))
896     {
897       if (prefetch_before < ref->prefetch_before)
898 	ref->prefetch_before = prefetch_before;
899 
900       return;
901     }
902 
903   /* The ref probably does not reuse by.  */
904   return;
905 }
906 
907 /* Prune the prefetch candidate REF using the reuses with other references
908    in REFS.  */
909 
910 static void
prune_ref_by_reuse(struct mem_ref * ref,struct mem_ref * refs)911 prune_ref_by_reuse (struct mem_ref *ref, struct mem_ref *refs)
912 {
913   struct mem_ref *prune_by;
914   bool before = true;
915 
916   prune_ref_by_self_reuse (ref);
917 
918   for (prune_by = refs; prune_by; prune_by = prune_by->next)
919     {
920       if (prune_by == ref)
921 	{
922 	  before = false;
923 	  continue;
924 	}
925 
926       if (!WRITE_CAN_USE_READ_PREFETCH
927 	  && ref->write_p
928 	  && !prune_by->write_p)
929 	continue;
930       if (!READ_CAN_USE_WRITE_PREFETCH
931 	  && !ref->write_p
932 	  && prune_by->write_p)
933 	continue;
934 
935       prune_ref_by_group_reuse (ref, prune_by, before);
936     }
937 }
938 
939 /* Prune the prefetch candidates in GROUP using the reuse analysis.  */
940 
941 static void
prune_group_by_reuse(struct mem_ref_group * group)942 prune_group_by_reuse (struct mem_ref_group *group)
943 {
944   struct mem_ref *ref_pruned;
945 
946   for (ref_pruned = group->refs; ref_pruned; ref_pruned = ref_pruned->next)
947     {
948       prune_ref_by_reuse (ref_pruned, group->refs);
949 
950       if (dump_file && (dump_flags & TDF_DETAILS))
951 	{
952 	  dump_mem_ref (dump_file, ref_pruned);
953 
954 	  if (ref_pruned->prefetch_before == PREFETCH_ALL
955 	      && ref_pruned->prefetch_mod == 1)
956 	    fprintf (dump_file, " no restrictions");
957 	  else if (ref_pruned->prefetch_before == 0)
958 	    fprintf (dump_file, " do not prefetch");
959 	  else if (ref_pruned->prefetch_before <= ref_pruned->prefetch_mod)
960 	    fprintf (dump_file, " prefetch once");
961 	  else
962 	    {
963 	      if (ref_pruned->prefetch_before != PREFETCH_ALL)
964 		{
965 		  fprintf (dump_file, " prefetch before ");
966 		  fprintf (dump_file, HOST_WIDE_INT_PRINT_DEC,
967 			   ref_pruned->prefetch_before);
968 		}
969 	      if (ref_pruned->prefetch_mod != 1)
970 		{
971 		  fprintf (dump_file, " prefetch mod ");
972 		  fprintf (dump_file, HOST_WIDE_INT_PRINT_DEC,
973 			   ref_pruned->prefetch_mod);
974 		}
975 	    }
976 	  fprintf (dump_file, "\n");
977 	}
978     }
979 }
980 
981 /* Prune the list of prefetch candidates GROUPS using the reuse analysis.  */
982 
983 static void
prune_by_reuse(struct mem_ref_group * groups)984 prune_by_reuse (struct mem_ref_group *groups)
985 {
986   for (; groups; groups = groups->next)
987     prune_group_by_reuse (groups);
988 }
989 
990 /* Returns true if we should issue prefetch for REF.  */
991 
992 static bool
should_issue_prefetch_p(struct mem_ref * ref)993 should_issue_prefetch_p (struct mem_ref *ref)
994 {
995   /* Do we want to issue prefetches for non-constant strides?  */
996   if (!cst_and_fits_in_hwi (ref->group->step) && PREFETCH_DYNAMIC_STRIDES == 0)
997     {
998       if (dump_file && (dump_flags & TDF_DETAILS))
999 	fprintf (dump_file,
1000 		 "Skipping non-constant step for reference %u:%u\n",
1001 		 ref->group->uid, ref->uid);
1002       return false;
1003     }
1004 
1005   /* Some processors may have a hardware prefetcher that may conflict with
1006      prefetch hints for a range of strides.  Make sure we don't issue
1007      prefetches for such cases if the stride is within this particular
1008      range.  */
1009   if (cst_and_fits_in_hwi (ref->group->step)
1010       && abs_hwi (int_cst_value (ref->group->step))
1011 	  < (HOST_WIDE_INT) PREFETCH_MINIMUM_STRIDE)
1012     {
1013       if (dump_file && (dump_flags & TDF_DETAILS))
1014 	fprintf (dump_file,
1015 		 "Step for reference %u:%u (" HOST_WIDE_INT_PRINT_DEC
1016 		 ") is less than the mininum required stride of %d\n",
1017 		 ref->group->uid, ref->uid, int_cst_value (ref->group->step),
1018 		 PREFETCH_MINIMUM_STRIDE);
1019       return false;
1020     }
1021 
1022   /* For now do not issue prefetches for only first few of the
1023      iterations.  */
1024   if (ref->prefetch_before != PREFETCH_ALL)
1025     {
1026       if (dump_file && (dump_flags & TDF_DETAILS))
1027         fprintf (dump_file, "Ignoring reference %u:%u due to prefetch_before\n",
1028 		 ref->group->uid, ref->uid);
1029       return false;
1030     }
1031 
1032   /* Do not prefetch nontemporal stores.  */
1033   if (ref->storent_p)
1034     {
1035       if (dump_file && (dump_flags & TDF_DETAILS))
1036         fprintf (dump_file, "Ignoring nontemporal store reference %u:%u\n", ref->group->uid, ref->uid);
1037       return false;
1038     }
1039 
1040   return true;
1041 }
1042 
1043 /* Decide which of the prefetch candidates in GROUPS to prefetch.
1044    AHEAD is the number of iterations to prefetch ahead (which corresponds
1045    to the number of simultaneous instances of one prefetch running at a
1046    time).  UNROLL_FACTOR is the factor by that the loop is going to be
1047    unrolled.  Returns true if there is anything to prefetch.  */
1048 
1049 static bool
schedule_prefetches(struct mem_ref_group * groups,unsigned unroll_factor,unsigned ahead)1050 schedule_prefetches (struct mem_ref_group *groups, unsigned unroll_factor,
1051 		     unsigned ahead)
1052 {
1053   unsigned remaining_prefetch_slots, n_prefetches, prefetch_slots;
1054   unsigned slots_per_prefetch;
1055   struct mem_ref *ref;
1056   bool any = false;
1057 
1058   /* At most SIMULTANEOUS_PREFETCHES should be running at the same time.  */
1059   remaining_prefetch_slots = SIMULTANEOUS_PREFETCHES;
1060 
1061   /* The prefetch will run for AHEAD iterations of the original loop, i.e.,
1062      AHEAD / UNROLL_FACTOR iterations of the unrolled loop.  In each iteration,
1063      it will need a prefetch slot.  */
1064   slots_per_prefetch = (ahead + unroll_factor / 2) / unroll_factor;
1065   if (dump_file && (dump_flags & TDF_DETAILS))
1066     fprintf (dump_file, "Each prefetch instruction takes %u prefetch slots.\n",
1067 	     slots_per_prefetch);
1068 
1069   /* For now we just take memory references one by one and issue
1070      prefetches for as many as possible.  The groups are sorted
1071      starting with the largest step, since the references with
1072      large step are more likely to cause many cache misses.  */
1073 
1074   for (; groups; groups = groups->next)
1075     for (ref = groups->refs; ref; ref = ref->next)
1076       {
1077 	if (!should_issue_prefetch_p (ref))
1078 	  continue;
1079 
1080         /* The loop is far from being sufficiently unrolled for this
1081            prefetch.  Do not generate prefetch to avoid many redudant
1082            prefetches.  */
1083         if (ref->prefetch_mod / unroll_factor > PREFETCH_MOD_TO_UNROLL_FACTOR_RATIO)
1084           continue;
1085 
1086 	/* If we need to prefetch the reference each PREFETCH_MOD iterations,
1087 	   and we unroll the loop UNROLL_FACTOR times, we need to insert
1088 	   ceil (UNROLL_FACTOR / PREFETCH_MOD) instructions in each
1089 	   iteration.  */
1090 	n_prefetches = ((unroll_factor + ref->prefetch_mod - 1)
1091 			/ ref->prefetch_mod);
1092 	prefetch_slots = n_prefetches * slots_per_prefetch;
1093 
1094 	/* If more than half of the prefetches would be lost anyway, do not
1095 	   issue the prefetch.  */
1096 	if (2 * remaining_prefetch_slots < prefetch_slots)
1097 	  continue;
1098 
1099 	/* Stop prefetching if debug counter is activated.  */
1100 	if (!dbg_cnt (prefetch))
1101 	  continue;
1102 
1103 	ref->issue_prefetch_p = true;
1104 	if (dump_file && (dump_flags & TDF_DETAILS))
1105 	  fprintf (dump_file, "Decided to issue prefetch for reference %u:%u\n",
1106 		   ref->group->uid, ref->uid);
1107 
1108 	if (remaining_prefetch_slots <= prefetch_slots)
1109 	  return true;
1110 	remaining_prefetch_slots -= prefetch_slots;
1111 	any = true;
1112       }
1113 
1114   return any;
1115 }
1116 
1117 /* Return TRUE if no prefetch is going to be generated in the given
1118    GROUPS.  */
1119 
1120 static bool
nothing_to_prefetch_p(struct mem_ref_group * groups)1121 nothing_to_prefetch_p (struct mem_ref_group *groups)
1122 {
1123   struct mem_ref *ref;
1124 
1125   for (; groups; groups = groups->next)
1126     for (ref = groups->refs; ref; ref = ref->next)
1127       if (should_issue_prefetch_p (ref))
1128 	return false;
1129 
1130   return true;
1131 }
1132 
1133 /* Estimate the number of prefetches in the given GROUPS.
1134    UNROLL_FACTOR is the factor by which LOOP was unrolled.  */
1135 
1136 static int
estimate_prefetch_count(struct mem_ref_group * groups,unsigned unroll_factor)1137 estimate_prefetch_count (struct mem_ref_group *groups, unsigned unroll_factor)
1138 {
1139   struct mem_ref *ref;
1140   unsigned n_prefetches;
1141   int prefetch_count = 0;
1142 
1143   for (; groups; groups = groups->next)
1144     for (ref = groups->refs; ref; ref = ref->next)
1145       if (should_issue_prefetch_p (ref))
1146 	{
1147 	  n_prefetches = ((unroll_factor + ref->prefetch_mod - 1)
1148 			  / ref->prefetch_mod);
1149 	  prefetch_count += n_prefetches;
1150 	}
1151 
1152   return prefetch_count;
1153 }
1154 
1155 /* Issue prefetches for the reference REF into loop as decided before.
1156    HEAD is the number of iterations to prefetch ahead.  UNROLL_FACTOR
1157    is the factor by which LOOP was unrolled.  */
1158 
1159 static void
issue_prefetch_ref(struct mem_ref * ref,unsigned unroll_factor,unsigned ahead)1160 issue_prefetch_ref (struct mem_ref *ref, unsigned unroll_factor, unsigned ahead)
1161 {
1162   HOST_WIDE_INT delta;
1163   tree addr, addr_base, write_p, local, forward;
1164   gcall *prefetch;
1165   gimple_stmt_iterator bsi;
1166   unsigned n_prefetches, ap;
1167   bool nontemporal = ref->reuse_distance >= L2_CACHE_SIZE_BYTES;
1168 
1169   if (dump_file && (dump_flags & TDF_DETAILS))
1170     fprintf (dump_file, "Issued%s prefetch for reference %u:%u.\n",
1171 	     nontemporal ? " nontemporal" : "",
1172 	     ref->group->uid, ref->uid);
1173 
1174   bsi = gsi_for_stmt (ref->stmt);
1175 
1176   n_prefetches = ((unroll_factor + ref->prefetch_mod - 1)
1177 		  / ref->prefetch_mod);
1178   addr_base = build_fold_addr_expr_with_type (ref->mem, ptr_type_node);
1179   addr_base = force_gimple_operand_gsi (&bsi, unshare_expr (addr_base),
1180 					true, NULL, true, GSI_SAME_STMT);
1181   write_p = ref->write_p ? integer_one_node : integer_zero_node;
1182   local = nontemporal ? integer_zero_node : integer_three_node;
1183 
1184   for (ap = 0; ap < n_prefetches; ap++)
1185     {
1186       if (cst_and_fits_in_hwi (ref->group->step))
1187         {
1188           /* Determine the address to prefetch.  */
1189           delta = (ahead + ap * ref->prefetch_mod) *
1190 		   int_cst_value (ref->group->step);
1191           addr = fold_build_pointer_plus_hwi (addr_base, delta);
1192           addr = force_gimple_operand_gsi (&bsi, unshare_expr (addr), true,
1193 					   NULL, true, GSI_SAME_STMT);
1194         }
1195       else
1196         {
1197           /* The step size is non-constant but loop-invariant.  We use the
1198              heuristic to simply prefetch ahead iterations ahead.  */
1199           forward = fold_build2 (MULT_EXPR, sizetype,
1200                                  fold_convert (sizetype, ref->group->step),
1201                                  fold_convert (sizetype, size_int (ahead)));
1202           addr = fold_build_pointer_plus (addr_base, forward);
1203           addr = force_gimple_operand_gsi (&bsi, unshare_expr (addr), true,
1204 					   NULL, true, GSI_SAME_STMT);
1205       }
1206 
1207       if (addr_base != addr
1208 	  && TREE_CODE (addr_base) == SSA_NAME
1209 	  && TREE_CODE (addr) == SSA_NAME)
1210 	{
1211 	  duplicate_ssa_name_ptr_info (addr, SSA_NAME_PTR_INFO (addr_base));
1212 	  /* As this isn't a plain copy we have to reset alignment
1213 	     information.  */
1214 	  if (SSA_NAME_PTR_INFO (addr))
1215 	    mark_ptr_info_alignment_unknown (SSA_NAME_PTR_INFO (addr));
1216 	}
1217 
1218       /* Create the prefetch instruction.  */
1219       prefetch = gimple_build_call (builtin_decl_explicit (BUILT_IN_PREFETCH),
1220 				    3, addr, write_p, local);
1221       gsi_insert_before (&bsi, prefetch, GSI_SAME_STMT);
1222     }
1223 }
1224 
1225 /* Issue prefetches for the references in GROUPS into loop as decided before.
1226    HEAD is the number of iterations to prefetch ahead.  UNROLL_FACTOR is the
1227    factor by that LOOP was unrolled.  */
1228 
1229 static void
issue_prefetches(struct mem_ref_group * groups,unsigned unroll_factor,unsigned ahead)1230 issue_prefetches (struct mem_ref_group *groups,
1231 		  unsigned unroll_factor, unsigned ahead)
1232 {
1233   struct mem_ref *ref;
1234 
1235   for (; groups; groups = groups->next)
1236     for (ref = groups->refs; ref; ref = ref->next)
1237       if (ref->issue_prefetch_p)
1238 	issue_prefetch_ref (ref, unroll_factor, ahead);
1239 }
1240 
1241 /* Returns true if REF is a memory write for that a nontemporal store insn
1242    can be used.  */
1243 
1244 static bool
nontemporal_store_p(struct mem_ref * ref)1245 nontemporal_store_p (struct mem_ref *ref)
1246 {
1247   machine_mode mode;
1248   enum insn_code code;
1249 
1250   /* REF must be a write that is not reused.  We require it to be independent
1251      on all other memory references in the loop, as the nontemporal stores may
1252      be reordered with respect to other memory references.  */
1253   if (!ref->write_p
1254       || !ref->independent_p
1255       || ref->reuse_distance < L2_CACHE_SIZE_BYTES)
1256     return false;
1257 
1258   /* Check that we have the storent instruction for the mode.  */
1259   mode = TYPE_MODE (TREE_TYPE (ref->mem));
1260   if (mode == BLKmode)
1261     return false;
1262 
1263   code = optab_handler (storent_optab, mode);
1264   return code != CODE_FOR_nothing;
1265 }
1266 
1267 /* If REF is a nontemporal store, we mark the corresponding modify statement
1268    and return true.  Otherwise, we return false.  */
1269 
1270 static bool
mark_nontemporal_store(struct mem_ref * ref)1271 mark_nontemporal_store (struct mem_ref *ref)
1272 {
1273   if (!nontemporal_store_p (ref))
1274     return false;
1275 
1276   if (dump_file && (dump_flags & TDF_DETAILS))
1277     fprintf (dump_file, "Marked reference %u:%u as a nontemporal store.\n",
1278 	     ref->group->uid, ref->uid);
1279 
1280   gimple_assign_set_nontemporal_move (ref->stmt, true);
1281   ref->storent_p = true;
1282 
1283   return true;
1284 }
1285 
1286 /* Issue a memory fence instruction after LOOP.  */
1287 
1288 static void
emit_mfence_after_loop(struct loop * loop)1289 emit_mfence_after_loop (struct loop *loop)
1290 {
1291   vec<edge> exits = get_loop_exit_edges (loop);
1292   edge exit;
1293   gcall *call;
1294   gimple_stmt_iterator bsi;
1295   unsigned i;
1296 
1297   FOR_EACH_VEC_ELT (exits, i, exit)
1298     {
1299       call = gimple_build_call (FENCE_FOLLOWING_MOVNT, 0);
1300 
1301       if (!single_pred_p (exit->dest)
1302 	  /* If possible, we prefer not to insert the fence on other paths
1303 	     in cfg.  */
1304 	  && !(exit->flags & EDGE_ABNORMAL))
1305 	split_loop_exit_edge (exit);
1306       bsi = gsi_after_labels (exit->dest);
1307 
1308       gsi_insert_before (&bsi, call, GSI_NEW_STMT);
1309     }
1310 
1311   exits.release ();
1312   update_ssa (TODO_update_ssa_only_virtuals);
1313 }
1314 
1315 /* Returns true if we can use storent in loop, false otherwise.  */
1316 
1317 static bool
may_use_storent_in_loop_p(struct loop * loop)1318 may_use_storent_in_loop_p (struct loop *loop)
1319 {
1320   bool ret = true;
1321 
1322   if (loop->inner != NULL)
1323     return false;
1324 
1325   /* If we must issue a mfence insn after using storent, check that there
1326      is a suitable place for it at each of the loop exits.  */
1327   if (FENCE_FOLLOWING_MOVNT != NULL_TREE)
1328     {
1329       vec<edge> exits = get_loop_exit_edges (loop);
1330       unsigned i;
1331       edge exit;
1332 
1333       FOR_EACH_VEC_ELT (exits, i, exit)
1334 	if ((exit->flags & EDGE_ABNORMAL)
1335 	    && exit->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
1336 	  ret = false;
1337 
1338       exits.release ();
1339     }
1340 
1341   return ret;
1342 }
1343 
1344 /* Marks nontemporal stores in LOOP.  GROUPS contains the description of memory
1345    references in the loop.  */
1346 
1347 static void
mark_nontemporal_stores(struct loop * loop,struct mem_ref_group * groups)1348 mark_nontemporal_stores (struct loop *loop, struct mem_ref_group *groups)
1349 {
1350   struct mem_ref *ref;
1351   bool any = false;
1352 
1353   if (!may_use_storent_in_loop_p (loop))
1354     return;
1355 
1356   for (; groups; groups = groups->next)
1357     for (ref = groups->refs; ref; ref = ref->next)
1358       any |= mark_nontemporal_store (ref);
1359 
1360   if (any && FENCE_FOLLOWING_MOVNT != NULL_TREE)
1361     emit_mfence_after_loop (loop);
1362 }
1363 
1364 /* Determines whether we can profitably unroll LOOP FACTOR times, and if
1365    this is the case, fill in DESC by the description of number of
1366    iterations.  */
1367 
1368 static bool
should_unroll_loop_p(struct loop * loop,struct tree_niter_desc * desc,unsigned factor)1369 should_unroll_loop_p (struct loop *loop, struct tree_niter_desc *desc,
1370 		      unsigned factor)
1371 {
1372   if (!can_unroll_loop_p (loop, factor, desc))
1373     return false;
1374 
1375   /* We only consider loops without control flow for unrolling.  This is not
1376      a hard restriction -- tree_unroll_loop works with arbitrary loops
1377      as well; but the unrolling/prefetching is usually more profitable for
1378      loops consisting of a single basic block, and we want to limit the
1379      code growth.  */
1380   if (loop->num_nodes > 2)
1381     return false;
1382 
1383   return true;
1384 }
1385 
1386 /* Determine the coefficient by that unroll LOOP, from the information
1387    contained in the list of memory references REFS.  Description of
1388    number of iterations of LOOP is stored to DESC.  NINSNS is the number of
1389    insns of the LOOP.  EST_NITER is the estimated number of iterations of
1390    the loop, or -1 if no estimate is available.  */
1391 
1392 static unsigned
determine_unroll_factor(struct loop * loop,struct mem_ref_group * refs,unsigned ninsns,struct tree_niter_desc * desc,HOST_WIDE_INT est_niter)1393 determine_unroll_factor (struct loop *loop, struct mem_ref_group *refs,
1394 			 unsigned ninsns, struct tree_niter_desc *desc,
1395 			 HOST_WIDE_INT est_niter)
1396 {
1397   unsigned upper_bound;
1398   unsigned nfactor, factor, mod_constraint;
1399   struct mem_ref_group *agp;
1400   struct mem_ref *ref;
1401 
1402   /* First check whether the loop is not too large to unroll.  We ignore
1403      PARAM_MAX_UNROLL_TIMES, because for small loops, it prevented us
1404      from unrolling them enough to make exactly one cache line covered by each
1405      iteration.  Also, the goal of PARAM_MAX_UNROLL_TIMES is to prevent
1406      us from unrolling the loops too many times in cases where we only expect
1407      gains from better scheduling and decreasing loop overhead, which is not
1408      the case here.  */
1409   upper_bound = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / ninsns;
1410 
1411   /* If we unrolled the loop more times than it iterates, the unrolled version
1412      of the loop would be never entered.  */
1413   if (est_niter >= 0 && est_niter < (HOST_WIDE_INT) upper_bound)
1414     upper_bound = est_niter;
1415 
1416   if (upper_bound <= 1)
1417     return 1;
1418 
1419   /* Choose the factor so that we may prefetch each cache just once,
1420      but bound the unrolling by UPPER_BOUND.  */
1421   factor = 1;
1422   for (agp = refs; agp; agp = agp->next)
1423     for (ref = agp->refs; ref; ref = ref->next)
1424       if (should_issue_prefetch_p (ref))
1425 	{
1426 	  mod_constraint = ref->prefetch_mod;
1427 	  nfactor = least_common_multiple (mod_constraint, factor);
1428 	  if (nfactor <= upper_bound)
1429 	    factor = nfactor;
1430 	}
1431 
1432   if (!should_unroll_loop_p (loop, desc, factor))
1433     return 1;
1434 
1435   return factor;
1436 }
1437 
1438 /* Returns the total volume of the memory references REFS, taking into account
1439    reuses in the innermost loop and cache line size.  TODO -- we should also
1440    take into account reuses across the iterations of the loops in the loop
1441    nest.  */
1442 
1443 static unsigned
volume_of_references(struct mem_ref_group * refs)1444 volume_of_references (struct mem_ref_group *refs)
1445 {
1446   unsigned volume = 0;
1447   struct mem_ref_group *gr;
1448   struct mem_ref *ref;
1449 
1450   for (gr = refs; gr; gr = gr->next)
1451     for (ref = gr->refs; ref; ref = ref->next)
1452       {
1453 	/* Almost always reuses another value?  */
1454 	if (ref->prefetch_before != PREFETCH_ALL)
1455 	  continue;
1456 
1457 	/* If several iterations access the same cache line, use the size of
1458 	   the line divided by this number.  Otherwise, a cache line is
1459 	   accessed in each iteration.  TODO -- in the latter case, we should
1460 	   take the size of the reference into account, rounding it up on cache
1461 	   line size multiple.  */
1462 	volume += L1_CACHE_LINE_SIZE / ref->prefetch_mod;
1463       }
1464   return volume;
1465 }
1466 
1467 /* Returns the volume of memory references accessed across VEC iterations of
1468    loops, whose sizes are described in the LOOP_SIZES array.  N is the number
1469    of the loops in the nest (length of VEC and LOOP_SIZES vectors).  */
1470 
1471 static unsigned
volume_of_dist_vector(lambda_vector vec,unsigned * loop_sizes,unsigned n)1472 volume_of_dist_vector (lambda_vector vec, unsigned *loop_sizes, unsigned n)
1473 {
1474   unsigned i;
1475 
1476   for (i = 0; i < n; i++)
1477     if (vec[i] != 0)
1478       break;
1479 
1480   if (i == n)
1481     return 0;
1482 
1483   gcc_assert (vec[i] > 0);
1484 
1485   /* We ignore the parts of the distance vector in subloops, since usually
1486      the numbers of iterations are much smaller.  */
1487   return loop_sizes[i] * vec[i];
1488 }
1489 
1490 /* Add the steps of ACCESS_FN multiplied by STRIDE to the array STRIDE
1491    at the position corresponding to the loop of the step.  N is the depth
1492    of the considered loop nest, and, LOOP is its innermost loop.  */
1493 
1494 static void
add_subscript_strides(tree access_fn,unsigned stride,HOST_WIDE_INT * strides,unsigned n,struct loop * loop)1495 add_subscript_strides (tree access_fn, unsigned stride,
1496 		       HOST_WIDE_INT *strides, unsigned n, struct loop *loop)
1497 {
1498   struct loop *aloop;
1499   tree step;
1500   HOST_WIDE_INT astep;
1501   unsigned min_depth = loop_depth (loop) - n;
1502 
1503   while (TREE_CODE (access_fn) == POLYNOMIAL_CHREC)
1504     {
1505       aloop = get_chrec_loop (access_fn);
1506       step = CHREC_RIGHT (access_fn);
1507       access_fn = CHREC_LEFT (access_fn);
1508 
1509       if ((unsigned) loop_depth (aloop) <= min_depth)
1510 	continue;
1511 
1512       if (tree_fits_shwi_p (step))
1513 	astep = tree_to_shwi (step);
1514       else
1515 	astep = L1_CACHE_LINE_SIZE;
1516 
1517       strides[n - 1 - loop_depth (loop) + loop_depth (aloop)] += astep * stride;
1518 
1519     }
1520 }
1521 
1522 /* Returns the volume of memory references accessed between two consecutive
1523    self-reuses of the reference DR.  We consider the subscripts of DR in N
1524    loops, and LOOP_SIZES contains the volumes of accesses in each of the
1525    loops.  LOOP is the innermost loop of the current loop nest.  */
1526 
1527 static unsigned
self_reuse_distance(data_reference_p dr,unsigned * loop_sizes,unsigned n,struct loop * loop)1528 self_reuse_distance (data_reference_p dr, unsigned *loop_sizes, unsigned n,
1529 		     struct loop *loop)
1530 {
1531   tree stride, access_fn;
1532   HOST_WIDE_INT *strides, astride;
1533   vec<tree> access_fns;
1534   tree ref = DR_REF (dr);
1535   unsigned i, ret = ~0u;
1536 
1537   /* In the following example:
1538 
1539      for (i = 0; i < N; i++)
1540        for (j = 0; j < N; j++)
1541          use (a[j][i]);
1542      the same cache line is accessed each N steps (except if the change from
1543      i to i + 1 crosses the boundary of the cache line).  Thus, for self-reuse,
1544      we cannot rely purely on the results of the data dependence analysis.
1545 
1546      Instead, we compute the stride of the reference in each loop, and consider
1547      the innermost loop in that the stride is less than cache size.  */
1548 
1549   strides = XCNEWVEC (HOST_WIDE_INT, n);
1550   access_fns = DR_ACCESS_FNS (dr);
1551 
1552   FOR_EACH_VEC_ELT (access_fns, i, access_fn)
1553     {
1554       /* Keep track of the reference corresponding to the subscript, so that we
1555 	 know its stride.  */
1556       while (handled_component_p (ref) && TREE_CODE (ref) != ARRAY_REF)
1557 	ref = TREE_OPERAND (ref, 0);
1558 
1559       if (TREE_CODE (ref) == ARRAY_REF)
1560 	{
1561 	  stride = TYPE_SIZE_UNIT (TREE_TYPE (ref));
1562 	  if (tree_fits_uhwi_p (stride))
1563 	    astride = tree_to_uhwi (stride);
1564 	  else
1565 	    astride = L1_CACHE_LINE_SIZE;
1566 
1567 	  ref = TREE_OPERAND (ref, 0);
1568 	}
1569       else
1570 	astride = 1;
1571 
1572       add_subscript_strides (access_fn, astride, strides, n, loop);
1573     }
1574 
1575   for (i = n; i-- > 0; )
1576     {
1577       unsigned HOST_WIDE_INT s;
1578 
1579       s = strides[i] < 0 ?  -strides[i] : strides[i];
1580 
1581       if (s < (unsigned) L1_CACHE_LINE_SIZE
1582 	  && (loop_sizes[i]
1583 	      > (unsigned) (L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION)))
1584 	{
1585 	  ret = loop_sizes[i];
1586 	  break;
1587 	}
1588     }
1589 
1590   free (strides);
1591   return ret;
1592 }
1593 
1594 /* Determines the distance till the first reuse of each reference in REFS
1595    in the loop nest of LOOP.  NO_OTHER_REFS is true if there are no other
1596    memory references in the loop.  Return false if the analysis fails.  */
1597 
1598 static bool
determine_loop_nest_reuse(struct loop * loop,struct mem_ref_group * refs,bool no_other_refs)1599 determine_loop_nest_reuse (struct loop *loop, struct mem_ref_group *refs,
1600 			   bool no_other_refs)
1601 {
1602   struct loop *nest, *aloop;
1603   vec<data_reference_p> datarefs = vNULL;
1604   vec<ddr_p> dependences = vNULL;
1605   struct mem_ref_group *gr;
1606   struct mem_ref *ref, *refb;
1607   auto_vec<loop_p> vloops;
1608   unsigned *loop_data_size;
1609   unsigned i, j, n;
1610   unsigned volume, dist, adist;
1611   HOST_WIDE_INT vol;
1612   data_reference_p dr;
1613   ddr_p dep;
1614 
1615   if (loop->inner)
1616     return true;
1617 
1618   /* Find the outermost loop of the loop nest of loop (we require that
1619      there are no sibling loops inside the nest).  */
1620   nest = loop;
1621   while (1)
1622     {
1623       aloop = loop_outer (nest);
1624 
1625       if (aloop == current_loops->tree_root
1626 	  || aloop->inner->next)
1627 	break;
1628 
1629       nest = aloop;
1630     }
1631 
1632   /* For each loop, determine the amount of data accessed in each iteration.
1633      We use this to estimate whether the reference is evicted from the
1634      cache before its reuse.  */
1635   find_loop_nest (nest, &vloops);
1636   n = vloops.length ();
1637   loop_data_size = XNEWVEC (unsigned, n);
1638   volume = volume_of_references (refs);
1639   i = n;
1640   while (i-- != 0)
1641     {
1642       loop_data_size[i] = volume;
1643       /* Bound the volume by the L2 cache size, since above this bound,
1644 	 all dependence distances are equivalent.  */
1645       if (volume > L2_CACHE_SIZE_BYTES)
1646 	continue;
1647 
1648       aloop = vloops[i];
1649       vol = estimated_stmt_executions_int (aloop);
1650       if (vol == -1)
1651 	vol = expected_loop_iterations (aloop);
1652       volume *= vol;
1653     }
1654 
1655   /* Prepare the references in the form suitable for data dependence
1656      analysis.  We ignore unanalyzable data references (the results
1657      are used just as a heuristics to estimate temporality of the
1658      references, hence we do not need to worry about correctness).  */
1659   for (gr = refs; gr; gr = gr->next)
1660     for (ref = gr->refs; ref; ref = ref->next)
1661       {
1662 	dr = create_data_ref (loop_preheader_edge (nest),
1663 			      loop_containing_stmt (ref->stmt),
1664 			      ref->mem, ref->stmt, !ref->write_p, false);
1665 
1666 	if (dr)
1667 	  {
1668 	    ref->reuse_distance = volume;
1669 	    dr->aux = ref;
1670 	    datarefs.safe_push (dr);
1671 	  }
1672 	else
1673 	  no_other_refs = false;
1674       }
1675 
1676   FOR_EACH_VEC_ELT (datarefs, i, dr)
1677     {
1678       dist = self_reuse_distance (dr, loop_data_size, n, loop);
1679       ref = (struct mem_ref *) dr->aux;
1680       if (ref->reuse_distance > dist)
1681 	ref->reuse_distance = dist;
1682 
1683       if (no_other_refs)
1684 	ref->independent_p = true;
1685     }
1686 
1687   if (!compute_all_dependences (datarefs, &dependences, vloops, true))
1688     return false;
1689 
1690   FOR_EACH_VEC_ELT (dependences, i, dep)
1691     {
1692       if (DDR_ARE_DEPENDENT (dep) == chrec_known)
1693 	continue;
1694 
1695       ref = (struct mem_ref *) DDR_A (dep)->aux;
1696       refb = (struct mem_ref *) DDR_B (dep)->aux;
1697 
1698       if (DDR_ARE_DEPENDENT (dep) == chrec_dont_know
1699 	  || DDR_COULD_BE_INDEPENDENT_P (dep)
1700 	  || DDR_NUM_DIST_VECTS (dep) == 0)
1701 	{
1702 	  /* If the dependence cannot be analyzed, assume that there might be
1703 	     a reuse.  */
1704 	  dist = 0;
1705 
1706 	  ref->independent_p = false;
1707 	  refb->independent_p = false;
1708 	}
1709       else
1710 	{
1711 	  /* The distance vectors are normalized to be always lexicographically
1712 	     positive, hence we cannot tell just from them whether DDR_A comes
1713 	     before DDR_B or vice versa.  However, it is not important,
1714 	     anyway -- if DDR_A is close to DDR_B, then it is either reused in
1715 	     DDR_B (and it is not nontemporal), or it reuses the value of DDR_B
1716 	     in cache (and marking it as nontemporal would not affect
1717 	     anything).  */
1718 
1719 	  dist = volume;
1720 	  for (j = 0; j < DDR_NUM_DIST_VECTS (dep); j++)
1721 	    {
1722 	      adist = volume_of_dist_vector (DDR_DIST_VECT (dep, j),
1723 					     loop_data_size, n);
1724 
1725 	      /* If this is a dependence in the innermost loop (i.e., the
1726 		 distances in all superloops are zero) and it is not
1727 		 the trivial self-dependence with distance zero, record that
1728 		 the references are not completely independent.  */
1729 	      if (lambda_vector_zerop (DDR_DIST_VECT (dep, j), n - 1)
1730 		  && (ref != refb
1731 		      || DDR_DIST_VECT (dep, j)[n-1] != 0))
1732 		{
1733 		  ref->independent_p = false;
1734 		  refb->independent_p = false;
1735 		}
1736 
1737 	      /* Ignore accesses closer than
1738 		 L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION,
1739 	      	 so that we use nontemporal prefetches e.g. if single memory
1740 		 location is accessed several times in a single iteration of
1741 		 the loop.  */
1742 	      if (adist < L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION)
1743 		continue;
1744 
1745 	      if (adist < dist)
1746 		dist = adist;
1747 	    }
1748 	}
1749 
1750       if (ref->reuse_distance > dist)
1751 	ref->reuse_distance = dist;
1752       if (refb->reuse_distance > dist)
1753 	refb->reuse_distance = dist;
1754     }
1755 
1756   free_dependence_relations (dependences);
1757   free_data_refs (datarefs);
1758   free (loop_data_size);
1759 
1760   if (dump_file && (dump_flags & TDF_DETAILS))
1761     {
1762       fprintf (dump_file, "Reuse distances:\n");
1763       for (gr = refs; gr; gr = gr->next)
1764 	for (ref = gr->refs; ref; ref = ref->next)
1765 	  fprintf (dump_file, " reference %u:%u distance %u\n",
1766 		   ref->group->uid, ref->uid, ref->reuse_distance);
1767     }
1768 
1769   return true;
1770 }
1771 
1772 /* Determine whether or not the trip count to ahead ratio is too small based
1773    on prefitablility consideration.
1774    AHEAD: the iteration ahead distance,
1775    EST_NITER: the estimated trip count.  */
1776 
1777 static bool
trip_count_to_ahead_ratio_too_small_p(unsigned ahead,HOST_WIDE_INT est_niter)1778 trip_count_to_ahead_ratio_too_small_p (unsigned ahead, HOST_WIDE_INT est_niter)
1779 {
1780   /* Assume trip count to ahead ratio is big enough if the trip count could not
1781      be estimated at compile time.  */
1782   if (est_niter < 0)
1783     return false;
1784 
1785   if (est_niter < (HOST_WIDE_INT) (TRIP_COUNT_TO_AHEAD_RATIO * ahead))
1786     {
1787       if (dump_file && (dump_flags & TDF_DETAILS))
1788 	fprintf (dump_file,
1789 		 "Not prefetching -- loop estimated to roll only %d times\n",
1790 		 (int) est_niter);
1791       return true;
1792     }
1793 
1794   return false;
1795 }
1796 
1797 /* Determine whether or not the number of memory references in the loop is
1798    reasonable based on the profitablity and compilation time considerations.
1799    NINSNS: estimated number of instructions in the loop,
1800    MEM_REF_COUNT: total number of memory references in the loop.  */
1801 
1802 static bool
mem_ref_count_reasonable_p(unsigned ninsns,unsigned mem_ref_count)1803 mem_ref_count_reasonable_p (unsigned ninsns, unsigned mem_ref_count)
1804 {
1805   int insn_to_mem_ratio;
1806 
1807   if (mem_ref_count == 0)
1808     return false;
1809 
1810   /* Miss rate computation (is_miss_rate_acceptable) and dependence analysis
1811      (compute_all_dependences) have high costs based on quadratic complexity.
1812      To avoid huge compilation time, we give up prefetching if mem_ref_count
1813      is too large.  */
1814   if (mem_ref_count > PREFETCH_MAX_MEM_REFS_PER_LOOP)
1815     return false;
1816 
1817   /* Prefetching improves performance by overlapping cache missing
1818      memory accesses with CPU operations.  If the loop does not have
1819      enough CPU operations to overlap with memory operations, prefetching
1820      won't give a significant benefit.  One approximate way of checking
1821      this is to require the ratio of instructions to memory references to
1822      be above a certain limit.  This approximation works well in practice.
1823      TODO: Implement a more precise computation by estimating the time
1824      for each CPU or memory op in the loop. Time estimates for memory ops
1825      should account for cache misses.  */
1826   insn_to_mem_ratio = ninsns / mem_ref_count;
1827 
1828   if (insn_to_mem_ratio < PREFETCH_MIN_INSN_TO_MEM_RATIO)
1829     {
1830       if (dump_file && (dump_flags & TDF_DETAILS))
1831         fprintf (dump_file,
1832 		 "Not prefetching -- instruction to memory reference ratio (%d) too small\n",
1833 		 insn_to_mem_ratio);
1834       return false;
1835     }
1836 
1837   return true;
1838 }
1839 
1840 /* Determine whether or not the instruction to prefetch ratio in the loop is
1841    too small based on the profitablity consideration.
1842    NINSNS: estimated number of instructions in the loop,
1843    PREFETCH_COUNT: an estimate of the number of prefetches,
1844    UNROLL_FACTOR:  the factor to unroll the loop if prefetching.  */
1845 
1846 static bool
insn_to_prefetch_ratio_too_small_p(unsigned ninsns,unsigned prefetch_count,unsigned unroll_factor)1847 insn_to_prefetch_ratio_too_small_p (unsigned ninsns, unsigned prefetch_count,
1848                                      unsigned unroll_factor)
1849 {
1850   int insn_to_prefetch_ratio;
1851 
1852   /* Prefetching most likely causes performance degradation when the instruction
1853      to prefetch ratio is too small.  Too many prefetch instructions in a loop
1854      may reduce the I-cache performance.
1855      (unroll_factor * ninsns) is used to estimate the number of instructions in
1856      the unrolled loop.  This implementation is a bit simplistic -- the number
1857      of issued prefetch instructions is also affected by unrolling.  So,
1858      prefetch_mod and the unroll factor should be taken into account when
1859      determining prefetch_count.  Also, the number of insns of the unrolled
1860      loop will usually be significantly smaller than the number of insns of the
1861      original loop * unroll_factor (at least the induction variable increases
1862      and the exit branches will get eliminated), so it might be better to use
1863      tree_estimate_loop_size + estimated_unrolled_size.  */
1864   insn_to_prefetch_ratio = (unroll_factor * ninsns) / prefetch_count;
1865   if (insn_to_prefetch_ratio < MIN_INSN_TO_PREFETCH_RATIO)
1866     {
1867       if (dump_file && (dump_flags & TDF_DETAILS))
1868         fprintf (dump_file,
1869 		 "Not prefetching -- instruction to prefetch ratio (%d) too small\n",
1870 		 insn_to_prefetch_ratio);
1871       return true;
1872     }
1873 
1874   return false;
1875 }
1876 
1877 
1878 /* Issue prefetch instructions for array references in LOOP.  Returns
1879    true if the LOOP was unrolled.  */
1880 
1881 static bool
loop_prefetch_arrays(struct loop * loop)1882 loop_prefetch_arrays (struct loop *loop)
1883 {
1884   struct mem_ref_group *refs;
1885   unsigned ahead, ninsns, time, unroll_factor;
1886   HOST_WIDE_INT est_niter;
1887   struct tree_niter_desc desc;
1888   bool unrolled = false, no_other_refs;
1889   unsigned prefetch_count;
1890   unsigned mem_ref_count;
1891 
1892   if (optimize_loop_nest_for_size_p (loop))
1893     {
1894       if (dump_file && (dump_flags & TDF_DETAILS))
1895 	fprintf (dump_file, "  ignored (cold area)\n");
1896       return false;
1897     }
1898 
1899   /* FIXME: the time should be weighted by the probabilities of the blocks in
1900      the loop body.  */
1901   time = tree_num_loop_insns (loop, &eni_time_weights);
1902   if (time == 0)
1903     return false;
1904 
1905   ahead = (PREFETCH_LATENCY + time - 1) / time;
1906   est_niter = estimated_stmt_executions_int (loop);
1907   if (est_niter == -1)
1908     est_niter = likely_max_stmt_executions_int (loop);
1909 
1910   /* Prefetching is not likely to be profitable if the trip count to ahead
1911      ratio is too small.  */
1912   if (trip_count_to_ahead_ratio_too_small_p (ahead, est_niter))
1913     return false;
1914 
1915   ninsns = tree_num_loop_insns (loop, &eni_size_weights);
1916 
1917   /* Step 1: gather the memory references.  */
1918   refs = gather_memory_references (loop, &no_other_refs, &mem_ref_count);
1919 
1920   /* Give up prefetching if the number of memory references in the
1921      loop is not reasonable based on profitablity and compilation time
1922      considerations.  */
1923   if (!mem_ref_count_reasonable_p (ninsns, mem_ref_count))
1924     goto fail;
1925 
1926   /* Step 2: estimate the reuse effects.  */
1927   prune_by_reuse (refs);
1928 
1929   if (nothing_to_prefetch_p (refs))
1930     goto fail;
1931 
1932   if (!determine_loop_nest_reuse (loop, refs, no_other_refs))
1933     goto fail;
1934 
1935   /* Step 3: determine unroll factor.  */
1936   unroll_factor = determine_unroll_factor (loop, refs, ninsns, &desc,
1937 					   est_niter);
1938 
1939   /* Estimate prefetch count for the unrolled loop.  */
1940   prefetch_count = estimate_prefetch_count (refs, unroll_factor);
1941   if (prefetch_count == 0)
1942     goto fail;
1943 
1944   if (dump_file && (dump_flags & TDF_DETAILS))
1945     fprintf (dump_file, "Ahead %d, unroll factor %d, trip count "
1946 	     HOST_WIDE_INT_PRINT_DEC "\n"
1947 	     "insn count %d, mem ref count %d, prefetch count %d\n",
1948 	     ahead, unroll_factor, est_niter,
1949 	     ninsns, mem_ref_count, prefetch_count);
1950 
1951   /* Prefetching is not likely to be profitable if the instruction to prefetch
1952      ratio is too small.  */
1953   if (insn_to_prefetch_ratio_too_small_p (ninsns, prefetch_count,
1954 					  unroll_factor))
1955     goto fail;
1956 
1957   mark_nontemporal_stores (loop, refs);
1958 
1959   /* Step 4: what to prefetch?  */
1960   if (!schedule_prefetches (refs, unroll_factor, ahead))
1961     goto fail;
1962 
1963   /* Step 5: unroll the loop.  TODO -- peeling of first and last few
1964      iterations so that we do not issue superfluous prefetches.  */
1965   if (unroll_factor != 1)
1966     {
1967       tree_unroll_loop (loop, unroll_factor,
1968 			single_dom_exit (loop), &desc);
1969       unrolled = true;
1970     }
1971 
1972   /* Step 6: issue the prefetches.  */
1973   issue_prefetches (refs, unroll_factor, ahead);
1974 
1975 fail:
1976   release_mem_refs (refs);
1977   return unrolled;
1978 }
1979 
1980 /* Issue prefetch instructions for array references in loops.  */
1981 
1982 unsigned int
tree_ssa_prefetch_arrays(void)1983 tree_ssa_prefetch_arrays (void)
1984 {
1985   struct loop *loop;
1986   bool unrolled = false;
1987   int todo_flags = 0;
1988 
1989   if (!targetm.have_prefetch ()
1990       /* It is possible to ask compiler for say -mtune=i486 -march=pentium4.
1991 	 -mtune=i486 causes us having PREFETCH_BLOCK 0, since this is part
1992 	 of processor costs and i486 does not have prefetch, but
1993 	 -march=pentium4 causes targetm.have_prefetch to be true.  Ugh.  */
1994       || PREFETCH_BLOCK == 0)
1995     return 0;
1996 
1997   if (dump_file && (dump_flags & TDF_DETAILS))
1998     {
1999       fprintf (dump_file, "Prefetching parameters:\n");
2000       fprintf (dump_file, "    simultaneous prefetches: %d\n",
2001 	       SIMULTANEOUS_PREFETCHES);
2002       fprintf (dump_file, "    prefetch latency: %d\n", PREFETCH_LATENCY);
2003       fprintf (dump_file, "    prefetch block size: %d\n", PREFETCH_BLOCK);
2004       fprintf (dump_file, "    L1 cache size: %d lines, %d kB\n",
2005 	       L1_CACHE_SIZE_BYTES / L1_CACHE_LINE_SIZE, L1_CACHE_SIZE);
2006       fprintf (dump_file, "    L1 cache line size: %d\n", L1_CACHE_LINE_SIZE);
2007       fprintf (dump_file, "    L2 cache size: %d kB\n", L2_CACHE_SIZE);
2008       fprintf (dump_file, "    min insn-to-prefetch ratio: %d \n",
2009 	       MIN_INSN_TO_PREFETCH_RATIO);
2010       fprintf (dump_file, "    min insn-to-mem ratio: %d \n",
2011 	       PREFETCH_MIN_INSN_TO_MEM_RATIO);
2012       fprintf (dump_file, "\n");
2013     }
2014 
2015   initialize_original_copy_tables ();
2016 
2017   if (!builtin_decl_explicit_p (BUILT_IN_PREFETCH))
2018     {
2019       tree type = build_function_type_list (void_type_node,
2020 					    const_ptr_type_node, NULL_TREE);
2021       tree decl = add_builtin_function ("__builtin_prefetch", type,
2022 					BUILT_IN_PREFETCH, BUILT_IN_NORMAL,
2023 					NULL, NULL_TREE);
2024       DECL_IS_NOVOPS (decl) = true;
2025       set_builtin_decl (BUILT_IN_PREFETCH, decl, false);
2026     }
2027 
2028   FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
2029     {
2030       if (dump_file && (dump_flags & TDF_DETAILS))
2031 	fprintf (dump_file, "Processing loop %d:\n", loop->num);
2032 
2033       unrolled |= loop_prefetch_arrays (loop);
2034 
2035       if (dump_file && (dump_flags & TDF_DETAILS))
2036 	fprintf (dump_file, "\n\n");
2037     }
2038 
2039   if (unrolled)
2040     {
2041       scev_reset ();
2042       todo_flags |= TODO_cleanup_cfg;
2043     }
2044 
2045   free_original_copy_tables ();
2046   return todo_flags;
2047 }
2048 
2049 /* Prefetching.  */
2050 
2051 namespace {
2052 
2053 const pass_data pass_data_loop_prefetch =
2054 {
2055   GIMPLE_PASS, /* type */
2056   "aprefetch", /* name */
2057   OPTGROUP_LOOP, /* optinfo_flags */
2058   TV_TREE_PREFETCH, /* tv_id */
2059   ( PROP_cfg | PROP_ssa ), /* properties_required */
2060   0, /* properties_provided */
2061   0, /* properties_destroyed */
2062   0, /* todo_flags_start */
2063   0, /* todo_flags_finish */
2064 };
2065 
2066 class pass_loop_prefetch : public gimple_opt_pass
2067 {
2068 public:
pass_loop_prefetch(gcc::context * ctxt)2069   pass_loop_prefetch (gcc::context *ctxt)
2070     : gimple_opt_pass (pass_data_loop_prefetch, ctxt)
2071   {}
2072 
2073   /* opt_pass methods: */
gate(function *)2074   virtual bool gate (function *) { return flag_prefetch_loop_arrays > 0; }
2075   virtual unsigned int execute (function *);
2076 
2077 }; // class pass_loop_prefetch
2078 
2079 unsigned int
execute(function * fun)2080 pass_loop_prefetch::execute (function *fun)
2081 {
2082   if (number_of_loops (fun) <= 1)
2083     return 0;
2084 
2085   if ((PREFETCH_BLOCK & (PREFETCH_BLOCK - 1)) != 0)
2086     {
2087       static bool warned = false;
2088 
2089       if (!warned)
2090 	{
2091 	  warning (OPT_Wdisabled_optimization,
2092 		   "%<l1-cache-size%> parameter is not a power of two %d",
2093 		   PREFETCH_BLOCK);
2094 	  warned = true;
2095 	}
2096       return 0;
2097     }
2098 
2099   return tree_ssa_prefetch_arrays ();
2100 }
2101 
2102 } // anon namespace
2103 
2104 gimple_opt_pass *
make_pass_loop_prefetch(gcc::context * ctxt)2105 make_pass_loop_prefetch (gcc::context *ctxt)
2106 {
2107   return new pass_loop_prefetch (ctxt);
2108 }
2109 
2110 
2111