1 //===-- tsan_mman.cc ------------------------------------------------------===//
2 //
3 // This file is distributed under the University of Illinois Open Source
4 // License. See LICENSE.TXT for details.
5 //
6 //===----------------------------------------------------------------------===//
7 //
8 // This file is a part of ThreadSanitizer (TSan), a race detector.
9 //
10 //===----------------------------------------------------------------------===//
11 #include "sanitizer_common/sanitizer_allocator_checks.h"
12 #include "sanitizer_common/sanitizer_allocator_interface.h"
13 #include "sanitizer_common/sanitizer_allocator_report.h"
14 #include "sanitizer_common/sanitizer_common.h"
15 #include "sanitizer_common/sanitizer_errno.h"
16 #include "sanitizer_common/sanitizer_placement_new.h"
17 #include "tsan_mman.h"
18 #include "tsan_rtl.h"
19 #include "tsan_report.h"
20 #include "tsan_flags.h"
21 
22 // May be overriden by front-end.
23 SANITIZER_WEAK_DEFAULT_IMPL
__sanitizer_malloc_hook(void * ptr,uptr size)24 void __sanitizer_malloc_hook(void *ptr, uptr size) {
25   (void)ptr;
26   (void)size;
27 }
28 
29 SANITIZER_WEAK_DEFAULT_IMPL
__sanitizer_free_hook(void * ptr)30 void __sanitizer_free_hook(void *ptr) {
31   (void)ptr;
32 }
33 
34 namespace __tsan {
35 
36 struct MapUnmapCallback {
OnMap__tsan::MapUnmapCallback37   void OnMap(uptr p, uptr size) const { }
OnUnmap__tsan::MapUnmapCallback38   void OnUnmap(uptr p, uptr size) const {
39     // We are about to unmap a chunk of user memory.
40     // Mark the corresponding shadow memory as not needed.
41     DontNeedShadowFor(p, size);
42     // Mark the corresponding meta shadow memory as not needed.
43     // Note the block does not contain any meta info at this point
44     // (this happens after free).
45     const uptr kMetaRatio = kMetaShadowCell / kMetaShadowSize;
46     const uptr kPageSize = GetPageSizeCached() * kMetaRatio;
47     // Block came from LargeMmapAllocator, so must be large.
48     // We rely on this in the calculations below.
49     CHECK_GE(size, 2 * kPageSize);
50     uptr diff = RoundUp(p, kPageSize) - p;
51     if (diff != 0) {
52       p += diff;
53       size -= diff;
54     }
55     diff = p + size - RoundDown(p + size, kPageSize);
56     if (diff != 0)
57       size -= diff;
58     uptr p_meta = (uptr)MemToMeta(p);
59     ReleaseMemoryPagesToOS(p_meta, p_meta + size / kMetaRatio);
60   }
61 };
62 
63 static char allocator_placeholder[sizeof(Allocator)] ALIGNED(64);
allocator()64 Allocator *allocator() {
65   return reinterpret_cast<Allocator*>(&allocator_placeholder);
66 }
67 
68 struct GlobalProc {
69   Mutex mtx;
70   Processor *proc;
71 
GlobalProc__tsan::GlobalProc72   GlobalProc()
73       : mtx(MutexTypeGlobalProc, StatMtxGlobalProc)
74       , proc(ProcCreate()) {
75   }
76 };
77 
78 static char global_proc_placeholder[sizeof(GlobalProc)] ALIGNED(64);
global_proc()79 GlobalProc *global_proc() {
80   return reinterpret_cast<GlobalProc*>(&global_proc_placeholder);
81 }
82 
ScopedGlobalProcessor()83 ScopedGlobalProcessor::ScopedGlobalProcessor() {
84   GlobalProc *gp = global_proc();
85   ThreadState *thr = cur_thread();
86   if (thr->proc())
87     return;
88   // If we don't have a proc, use the global one.
89   // There are currently only two known case where this path is triggered:
90   //   __interceptor_free
91   //   __nptl_deallocate_tsd
92   //   start_thread
93   //   clone
94   // and:
95   //   ResetRange
96   //   __interceptor_munmap
97   //   __deallocate_stack
98   //   start_thread
99   //   clone
100   // Ideally, we destroy thread state (and unwire proc) when a thread actually
101   // exits (i.e. when we join/wait it). Then we would not need the global proc
102   gp->mtx.Lock();
103   ProcWire(gp->proc, thr);
104 }
105 
~ScopedGlobalProcessor()106 ScopedGlobalProcessor::~ScopedGlobalProcessor() {
107   GlobalProc *gp = global_proc();
108   ThreadState *thr = cur_thread();
109   if (thr->proc() != gp->proc)
110     return;
111   ProcUnwire(gp->proc, thr);
112   gp->mtx.Unlock();
113 }
114 
InitializeAllocator()115 void InitializeAllocator() {
116   SetAllocatorMayReturnNull(common_flags()->allocator_may_return_null);
117   allocator()->Init(common_flags()->allocator_release_to_os_interval_ms);
118 }
119 
InitializeAllocatorLate()120 void InitializeAllocatorLate() {
121   new(global_proc()) GlobalProc();
122 }
123 
AllocatorProcStart(Processor * proc)124 void AllocatorProcStart(Processor *proc) {
125   allocator()->InitCache(&proc->alloc_cache);
126   internal_allocator()->InitCache(&proc->internal_alloc_cache);
127 }
128 
AllocatorProcFinish(Processor * proc)129 void AllocatorProcFinish(Processor *proc) {
130   allocator()->DestroyCache(&proc->alloc_cache);
131   internal_allocator()->DestroyCache(&proc->internal_alloc_cache);
132 }
133 
AllocatorPrintStats()134 void AllocatorPrintStats() {
135   allocator()->PrintStats();
136 }
137 
SignalUnsafeCall(ThreadState * thr,uptr pc)138 static void SignalUnsafeCall(ThreadState *thr, uptr pc) {
139   if (atomic_load_relaxed(&thr->in_signal_handler) == 0 ||
140       !flags()->report_signal_unsafe)
141     return;
142   VarSizeStackTrace stack;
143   ObtainCurrentStack(thr, pc, &stack);
144   if (IsFiredSuppression(ctx, ReportTypeSignalUnsafe, stack))
145     return;
146   ThreadRegistryLock l(ctx->thread_registry);
147   ScopedReport rep(ReportTypeSignalUnsafe);
148   rep.AddStack(stack, true);
149   OutputReport(thr, rep);
150 }
151 
152 static constexpr uptr kMaxAllowedMallocSize = 1ull << 40;
153 
user_alloc_internal(ThreadState * thr,uptr pc,uptr sz,uptr align,bool signal)154 void *user_alloc_internal(ThreadState *thr, uptr pc, uptr sz, uptr align,
155                           bool signal) {
156   if (sz >= kMaxAllowedMallocSize || align >= kMaxAllowedMallocSize) {
157     if (AllocatorMayReturnNull())
158       return nullptr;
159     GET_STACK_TRACE_FATAL(thr, pc);
160     ReportAllocationSizeTooBig(sz, kMaxAllowedMallocSize, &stack);
161   }
162   void *p = allocator()->Allocate(&thr->proc()->alloc_cache, sz, align);
163   if (UNLIKELY(!p)) {
164     SetAllocatorOutOfMemory();
165     if (AllocatorMayReturnNull())
166       return nullptr;
167     GET_STACK_TRACE_FATAL(thr, pc);
168     ReportOutOfMemory(sz, &stack);
169   }
170   if (ctx && ctx->initialized)
171     OnUserAlloc(thr, pc, (uptr)p, sz, true);
172   if (signal)
173     SignalUnsafeCall(thr, pc);
174   return p;
175 }
176 
user_free(ThreadState * thr,uptr pc,void * p,bool signal)177 void user_free(ThreadState *thr, uptr pc, void *p, bool signal) {
178   ScopedGlobalProcessor sgp;
179   if (ctx && ctx->initialized)
180     OnUserFree(thr, pc, (uptr)p, true);
181   allocator()->Deallocate(&thr->proc()->alloc_cache, p);
182   if (signal)
183     SignalUnsafeCall(thr, pc);
184 }
185 
user_alloc(ThreadState * thr,uptr pc,uptr sz)186 void *user_alloc(ThreadState *thr, uptr pc, uptr sz) {
187   return SetErrnoOnNull(user_alloc_internal(thr, pc, sz, kDefaultAlignment));
188 }
189 
user_calloc(ThreadState * thr,uptr pc,uptr size,uptr n)190 void *user_calloc(ThreadState *thr, uptr pc, uptr size, uptr n) {
191   if (UNLIKELY(CheckForCallocOverflow(size, n))) {
192     if (AllocatorMayReturnNull())
193       return SetErrnoOnNull(nullptr);
194     GET_STACK_TRACE_FATAL(thr, pc);
195     ReportCallocOverflow(n, size, &stack);
196   }
197   void *p = user_alloc_internal(thr, pc, n * size);
198   if (p)
199     internal_memset(p, 0, n * size);
200   return SetErrnoOnNull(p);
201 }
202 
OnUserAlloc(ThreadState * thr,uptr pc,uptr p,uptr sz,bool write)203 void OnUserAlloc(ThreadState *thr, uptr pc, uptr p, uptr sz, bool write) {
204   DPrintf("#%d: alloc(%zu) = %p\n", thr->tid, sz, p);
205   ctx->metamap.AllocBlock(thr, pc, p, sz);
206   if (write && thr->ignore_reads_and_writes == 0)
207     MemoryRangeImitateWrite(thr, pc, (uptr)p, sz);
208   else
209     MemoryResetRange(thr, pc, (uptr)p, sz);
210 }
211 
OnUserFree(ThreadState * thr,uptr pc,uptr p,bool write)212 void OnUserFree(ThreadState *thr, uptr pc, uptr p, bool write) {
213   CHECK_NE(p, (void*)0);
214   uptr sz = ctx->metamap.FreeBlock(thr->proc(), p);
215   DPrintf("#%d: free(%p, %zu)\n", thr->tid, p, sz);
216   if (write && thr->ignore_reads_and_writes == 0)
217     MemoryRangeFreed(thr, pc, (uptr)p, sz);
218 }
219 
user_realloc(ThreadState * thr,uptr pc,void * p,uptr sz)220 void *user_realloc(ThreadState *thr, uptr pc, void *p, uptr sz) {
221   // FIXME: Handle "shrinking" more efficiently,
222   // it seems that some software actually does this.
223   if (!p)
224     return SetErrnoOnNull(user_alloc_internal(thr, pc, sz));
225   if (!sz) {
226     user_free(thr, pc, p);
227     return nullptr;
228   }
229   void *new_p = user_alloc_internal(thr, pc, sz);
230   if (new_p) {
231     uptr old_sz = user_alloc_usable_size(p);
232     internal_memcpy(new_p, p, min(old_sz, sz));
233     user_free(thr, pc, p);
234   }
235   return SetErrnoOnNull(new_p);
236 }
237 
user_memalign(ThreadState * thr,uptr pc,uptr align,uptr sz)238 void *user_memalign(ThreadState *thr, uptr pc, uptr align, uptr sz) {
239   if (UNLIKELY(!IsPowerOfTwo(align))) {
240     errno = errno_EINVAL;
241     if (AllocatorMayReturnNull())
242       return nullptr;
243     GET_STACK_TRACE_FATAL(thr, pc);
244     ReportInvalidAllocationAlignment(align, &stack);
245   }
246   return SetErrnoOnNull(user_alloc_internal(thr, pc, sz, align));
247 }
248 
user_posix_memalign(ThreadState * thr,uptr pc,void ** memptr,uptr align,uptr sz)249 int user_posix_memalign(ThreadState *thr, uptr pc, void **memptr, uptr align,
250                         uptr sz) {
251   if (UNLIKELY(!CheckPosixMemalignAlignment(align))) {
252     if (AllocatorMayReturnNull())
253       return errno_EINVAL;
254     GET_STACK_TRACE_FATAL(thr, pc);
255     ReportInvalidPosixMemalignAlignment(align, &stack);
256   }
257   void *ptr = user_alloc_internal(thr, pc, sz, align);
258   if (UNLIKELY(!ptr))
259     // OOM error is already taken care of by user_alloc_internal.
260     return errno_ENOMEM;
261   CHECK(IsAligned((uptr)ptr, align));
262   *memptr = ptr;
263   return 0;
264 }
265 
user_aligned_alloc(ThreadState * thr,uptr pc,uptr align,uptr sz)266 void *user_aligned_alloc(ThreadState *thr, uptr pc, uptr align, uptr sz) {
267   if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(align, sz))) {
268     errno = errno_EINVAL;
269     if (AllocatorMayReturnNull())
270       return nullptr;
271     GET_STACK_TRACE_FATAL(thr, pc);
272     ReportInvalidAlignedAllocAlignment(sz, align, &stack);
273   }
274   return SetErrnoOnNull(user_alloc_internal(thr, pc, sz, align));
275 }
276 
user_valloc(ThreadState * thr,uptr pc,uptr sz)277 void *user_valloc(ThreadState *thr, uptr pc, uptr sz) {
278   return SetErrnoOnNull(user_alloc_internal(thr, pc, sz, GetPageSizeCached()));
279 }
280 
user_pvalloc(ThreadState * thr,uptr pc,uptr sz)281 void *user_pvalloc(ThreadState *thr, uptr pc, uptr sz) {
282   uptr PageSize = GetPageSizeCached();
283   if (UNLIKELY(CheckForPvallocOverflow(sz, PageSize))) {
284     errno = errno_ENOMEM;
285     if (AllocatorMayReturnNull())
286       return nullptr;
287     GET_STACK_TRACE_FATAL(thr, pc);
288     ReportPvallocOverflow(sz, &stack);
289   }
290   // pvalloc(0) should allocate one page.
291   sz = sz ? RoundUpTo(sz, PageSize) : PageSize;
292   return SetErrnoOnNull(user_alloc_internal(thr, pc, sz, PageSize));
293 }
294 
user_alloc_usable_size(const void * p)295 uptr user_alloc_usable_size(const void *p) {
296   if (p == 0)
297     return 0;
298   MBlock *b = ctx->metamap.GetBlock((uptr)p);
299   if (!b)
300     return 0;  // Not a valid pointer.
301   if (b->siz == 0)
302     return 1;  // Zero-sized allocations are actually 1 byte.
303   return b->siz;
304 }
305 
invoke_malloc_hook(void * ptr,uptr size)306 void invoke_malloc_hook(void *ptr, uptr size) {
307   ThreadState *thr = cur_thread();
308   if (ctx == 0 || !ctx->initialized || thr->ignore_interceptors)
309     return;
310   __sanitizer_malloc_hook(ptr, size);
311   RunMallocHooks(ptr, size);
312 }
313 
invoke_free_hook(void * ptr)314 void invoke_free_hook(void *ptr) {
315   ThreadState *thr = cur_thread();
316   if (ctx == 0 || !ctx->initialized || thr->ignore_interceptors)
317     return;
318   __sanitizer_free_hook(ptr);
319   RunFreeHooks(ptr);
320 }
321 
internal_alloc(MBlockType typ,uptr sz)322 void *internal_alloc(MBlockType typ, uptr sz) {
323   ThreadState *thr = cur_thread();
324   if (thr->nomalloc) {
325     thr->nomalloc = 0;  // CHECK calls internal_malloc().
326     CHECK(0);
327   }
328   return InternalAlloc(sz, &thr->proc()->internal_alloc_cache);
329 }
330 
internal_free(void * p)331 void internal_free(void *p) {
332   ThreadState *thr = cur_thread();
333   if (thr->nomalloc) {
334     thr->nomalloc = 0;  // CHECK calls internal_malloc().
335     CHECK(0);
336   }
337   InternalFree(p, &thr->proc()->internal_alloc_cache);
338 }
339 
340 }  // namespace __tsan
341 
342 using namespace __tsan;
343 
344 extern "C" {
__sanitizer_get_current_allocated_bytes()345 uptr __sanitizer_get_current_allocated_bytes() {
346   uptr stats[AllocatorStatCount];
347   allocator()->GetStats(stats);
348   return stats[AllocatorStatAllocated];
349 }
350 
__sanitizer_get_heap_size()351 uptr __sanitizer_get_heap_size() {
352   uptr stats[AllocatorStatCount];
353   allocator()->GetStats(stats);
354   return stats[AllocatorStatMapped];
355 }
356 
__sanitizer_get_free_bytes()357 uptr __sanitizer_get_free_bytes() {
358   return 1;
359 }
360 
__sanitizer_get_unmapped_bytes()361 uptr __sanitizer_get_unmapped_bytes() {
362   return 1;
363 }
364 
__sanitizer_get_estimated_allocated_size(uptr size)365 uptr __sanitizer_get_estimated_allocated_size(uptr size) {
366   return size;
367 }
368 
__sanitizer_get_ownership(const void * p)369 int __sanitizer_get_ownership(const void *p) {
370   return allocator()->GetBlockBegin(p) != 0;
371 }
372 
__sanitizer_get_allocated_size(const void * p)373 uptr __sanitizer_get_allocated_size(const void *p) {
374   return user_alloc_usable_size(p);
375 }
376 
__tsan_on_thread_idle()377 void __tsan_on_thread_idle() {
378   ThreadState *thr = cur_thread();
379   thr->clock.ResetCached(&thr->proc()->clock_cache);
380   thr->last_sleep_clock.ResetCached(&thr->proc()->clock_cache);
381   allocator()->SwallowCache(&thr->proc()->alloc_cache);
382   internal_allocator()->SwallowCache(&thr->proc()->internal_alloc_cache);
383   ctx->metamap.OnProcIdle(thr->proc());
384 }
385 }  // extern "C"
386