1------------------------------------------------------------------------------
2--                                                                          --
3--                         GNAT LIBRARY COMPONENTS                          --
4--                                                                          --
5--    A D A . C O N T A I N E R S . B O U N D E D _ H A S H E D _ S E T S   --
6--                                                                          --
7--                                 S p e c                                  --
8--                                                                          --
9--          Copyright (C) 2004-2015, Free Software Foundation, Inc.         --
10--                                                                          --
11-- This specification is derived from the Ada Reference Manual for use with --
12-- GNAT. The copyright notice above, and the license provisions that follow --
13-- apply solely to the  contents of the part following the private keyword. --
14--                                                                          --
15-- GNAT is free software;  you can  redistribute it  and/or modify it under --
16-- terms of the  GNU General Public License as published  by the Free Soft- --
17-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
18-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
19-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
20-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
21--                                                                          --
22-- As a special exception under Section 7 of GPL version 3, you are granted --
23-- additional permissions described in the GCC Runtime Library Exception,   --
24-- version 3.1, as published by the Free Software Foundation.               --
25--                                                                          --
26-- You should have received a copy of the GNU General Public License and    --
27-- a copy of the GCC Runtime Library Exception along with this program;     --
28-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
29-- <http://www.gnu.org/licenses/>.                                          --
30--                                                                          --
31-- This unit was originally developed by Matthew J Heaney.                  --
32------------------------------------------------------------------------------
33
34with Ada.Iterator_Interfaces;
35
36private with Ada.Containers.Hash_Tables;
37with Ada.Containers.Helpers;
38private with Ada.Streams;
39private with Ada.Finalization; use Ada.Finalization;
40
41generic
42   type Element_Type is private;
43
44   with function Hash (Element : Element_Type) return Hash_Type;
45
46   with function Equivalent_Elements
47          (Left, Right : Element_Type) return Boolean;
48
49   with function "=" (Left, Right : Element_Type) return Boolean is <>;
50
51package Ada.Containers.Bounded_Hashed_Sets is
52   pragma Annotate (CodePeer, Skip_Analysis);
53   pragma Pure;
54   pragma Remote_Types;
55
56   type Set (Capacity : Count_Type; Modulus : Hash_Type) is tagged private
57     with Constant_Indexing => Constant_Reference,
58          Default_Iterator  => Iterate,
59          Iterator_Element  => Element_Type;
60
61   pragma Preelaborable_Initialization (Set);
62
63   type Cursor is private;
64   pragma Preelaborable_Initialization (Cursor);
65
66   Empty_Set : constant Set;
67   --  Set objects declared without an initialization expression are
68   --  initialized to the value Empty_Set.
69
70   No_Element : constant Cursor;
71   --  Cursor objects declared without an initialization expression are
72   --  initialized to the value No_Element.
73
74   function Has_Element (Position : Cursor) return Boolean;
75   --  Equivalent to Position /= No_Element
76
77   package Set_Iterator_Interfaces is new
78     Ada.Iterator_Interfaces (Cursor, Has_Element);
79
80   function "=" (Left, Right : Set) return Boolean;
81   --  For each element in Left, set equality attempts to find the equal
82   --  element in Right; if a search fails, then set equality immediately
83   --  returns False. The search works by calling Hash to find the bucket in
84   --  the Right set that corresponds to the Left element. If the bucket is
85   --  non-empty, the search calls the generic formal element equality operator
86   --  to compare the element (in Left) to the element of each node in the
87   --  bucket (in Right); the search terminates when a matching node in the
88   --  bucket is found, or the nodes in the bucket are exhausted. (Note that
89   --  element equality is called here, not Equivalent_Elements. Set equality
90   --  is the only operation in which element equality is used. Compare set
91   --  equality to Equivalent_Sets, which does call Equivalent_Elements.)
92
93   function Equivalent_Sets (Left, Right : Set) return Boolean;
94   --  Similar to set equality, with the difference that the element in Left is
95   --  compared to the elements in Right using the generic formal
96   --  Equivalent_Elements operation instead of element equality.
97
98   function To_Set (New_Item : Element_Type) return Set;
99   --  Constructs a singleton set comprising New_Element. To_Set calls Hash to
100   --  determine the bucket for New_Item.
101
102   function Capacity (Container : Set) return Count_Type;
103   --  Returns the current capacity of the set. Capacity is the maximum length
104   --  before which rehashing in guaranteed not to occur.
105
106   procedure Reserve_Capacity (Container : in out Set; Capacity : Count_Type);
107   --  If the value of the Capacity actual parameter is less or equal to
108   --  Container.Capacity, then the operation has no effect.  Otherwise it
109   --  raises Capacity_Error (as no expansion of capacity is possible for a
110   --  bounded form).
111
112   function Default_Modulus (Capacity : Count_Type) return Hash_Type;
113   --  Returns a modulus value (hash table size) which is optimal for the
114   --  specified capacity (which corresponds to the maximum number of items).
115
116   function Length (Container : Set) return Count_Type;
117   --  Returns the number of items in the set
118
119   function Is_Empty (Container : Set) return Boolean;
120   --  Equivalent to Length (Container) = 0
121
122   procedure Clear (Container : in out Set);
123   --  Removes all of the items from the set
124
125   function Element (Position : Cursor) return Element_Type;
126   --  Returns the element of the node designated by the cursor
127
128   procedure Replace_Element
129     (Container : in out Set;
130      Position  : Cursor;
131      New_Item  : Element_Type);
132   --  If New_Item is equivalent (as determined by calling Equivalent_Elements)
133   --  to the element of the node designated by Position, then New_Element is
134   --  assigned to that element. Otherwise, it calls Hash to determine the
135   --  bucket for New_Item. If the bucket is not empty, then it calls
136   --  Equivalent_Elements for each node in that bucket to determine whether
137   --  New_Item is equivalent to an element in that bucket. If
138   --  Equivalent_Elements returns True then Program_Error is raised (because
139   --  an element may appear only once in the set); otherwise, New_Item is
140   --  assigned to the node designated by Position, and the node is moved to
141   --  its new bucket.
142
143   procedure Query_Element
144     (Position : Cursor;
145      Process  : not null access procedure (Element : Element_Type));
146   --  Calls Process with the element (having only a constant view) of the node
147   --  designated by the cursor.
148
149   type Constant_Reference_Type
150     (Element : not null access constant Element_Type) is private
151        with Implicit_Dereference => Element;
152
153   function Constant_Reference
154     (Container : aliased Set;
155      Position  : Cursor) return Constant_Reference_Type;
156
157   procedure Assign (Target : in out Set; Source : Set);
158   --  If Target denotes the same object as Source, then the operation has no
159   --  effect. If the Target capacity is less than the Source length, then
160   --  Assign raises Capacity_Error.  Otherwise, Assign clears Target and then
161   --  copies the (active) elements from Source to Target.
162
163   function Copy
164     (Source   : Set;
165      Capacity : Count_Type := 0;
166      Modulus  : Hash_Type := 0) return Set;
167   --  Constructs a new set object whose elements correspond to Source.  If the
168   --  Capacity parameter is 0, then the capacity of the result is the same as
169   --  the length of Source. If the Capacity parameter is equal or greater than
170   --  the length of Source, then the capacity of the result is the specified
171   --  value. Otherwise, Copy raises Capacity_Error. If the Modulus parameter
172   --  is 0, then the modulus of the result is the value returned by a call to
173   --  Default_Modulus with the capacity parameter determined as above;
174   --  otherwise the modulus of the result is the specified value.
175
176   procedure Move (Target : in out Set; Source : in out Set);
177   --  Clears Target (if it's not empty), and then moves (not copies) the
178   --  buckets array and nodes from Source to Target.
179
180   procedure Insert
181     (Container : in out Set;
182      New_Item  : Element_Type;
183      Position  : out Cursor;
184      Inserted  : out Boolean);
185   --  Conditionally inserts New_Item into the set. If New_Item is already in
186   --  the set, then Inserted returns False and Position designates the node
187   --  containing the existing element (which is not modified). If New_Item is
188   --  not already in the set, then Inserted returns True and Position
189   --  designates the newly-inserted node containing New_Item. The search for
190   --  an existing element works as follows. Hash is called to determine
191   --  New_Item's bucket; if the bucket is non-empty, then Equivalent_Elements
192   --  is called to compare New_Item to the element of each node in that
193   --  bucket. If the bucket is empty, or there were no equivalent elements in
194   --  the bucket, the search "fails" and the New_Item is inserted in the set
195   --  (and Inserted returns True); otherwise, the search "succeeds" (and
196   --  Inserted returns False).
197
198   procedure Insert  (Container : in out Set; New_Item : Element_Type);
199   --  Attempts to insert New_Item into the set, performing the usual insertion
200   --  search (which involves calling both Hash and Equivalent_Elements); if
201   --  the search succeeds (New_Item is equivalent to an element already in the
202   --  set, and so was not inserted), then this operation raises
203   --  Constraint_Error. (This version of Insert is similar to Replace, but
204   --  having the opposite exception behavior. It is intended for use when you
205   --  want to assert that the item is not already in the set.)
206
207   procedure Include (Container : in out Set; New_Item : Element_Type);
208   --  Attempts to insert New_Item into the set. If an element equivalent to
209   --  New_Item is already in the set (the insertion search succeeded, and
210   --  hence New_Item was not inserted), then the value of New_Item is assigned
211   --  to the existing element. (This insertion operation only raises an
212   --  exception if cursor tampering occurs. It is intended for use when you
213   --  want to insert the item in the set, and you don't care whether an
214   --  equivalent element is already present.)
215
216   procedure Replace (Container : in out Set; New_Item : Element_Type);
217   --  Searches for New_Item in the set; if the search fails (because an
218   --  equivalent element was not in the set), then it raises
219   --  Constraint_Error. Otherwise, the existing element is assigned the value
220   --  New_Item. (This is similar to Insert, but with the opposite exception
221   --  behavior. It is intended for use when you want to assert that the item
222   --  is already in the set.)
223
224   procedure Exclude (Container : in out Set; Item : Element_Type);
225   --  Searches for Item in the set, and if found, removes its node from the
226   --  set and then deallocates it. The search works as follows. The operation
227   --  calls Hash to determine the item's bucket; if the bucket is not empty,
228   --  it calls Equivalent_Elements to compare Item to the element of each node
229   --  in the bucket. (This is the deletion analog of Include. It is intended
230   --  for use when you want to remove the item from the set, but don't care
231   --  whether the item is already in the set.)
232
233   procedure Delete  (Container : in out Set; Item : Element_Type);
234   --  Searches for Item in the set (which involves calling both Hash and
235   --  Equivalent_Elements). If the search fails, then the operation raises
236   --  Constraint_Error. Otherwise it removes the node from the set and then
237   --  deallocates it. (This is the deletion analog of non-conditional
238   --  Insert. It is intended for use when you want to assert that the item is
239   --  already in the set.)
240
241   procedure Delete (Container : in out Set; Position : in out Cursor);
242   --  Removes the node designated by Position from the set, and then
243   --  deallocates the node. The operation calls Hash to determine the bucket,
244   --  and then compares Position to each node in the bucket until there's a
245   --  match (it does not call Equivalent_Elements).
246
247   procedure Union (Target : in out Set; Source : Set);
248   --  Iterates over the Source set, and conditionally inserts each element
249   --  into Target.
250
251   function Union (Left, Right : Set) return Set;
252   --  The operation first copies the Left set to the result, and then iterates
253   --  over the Right set to conditionally insert each element into the result.
254
255   function "or" (Left, Right : Set) return Set renames Union;
256
257   procedure Intersection (Target : in out Set; Source : Set);
258   --  Iterates over the Target set (calling First and Next), calling Find to
259   --  determine whether the element is in Source. If an equivalent element is
260   --  not found in Source, the element is deleted from Target.
261
262   function Intersection (Left, Right : Set) return Set;
263   --  Iterates over the Left set, calling Find to determine whether the
264   --  element is in Right. If an equivalent element is found, it is inserted
265   --  into the result set.
266
267   function "and" (Left, Right : Set) return Set renames Intersection;
268
269   procedure Difference (Target : in out Set; Source : Set);
270   --  Iterates over the Source (calling First and Next), calling Find to
271   --  determine whether the element is in Target. If an equivalent element is
272   --  found, it is deleted from Target.
273
274   function Difference (Left, Right : Set) return Set;
275   --  Iterates over the Left set, calling Find to determine whether the
276   --  element is in the Right set. If an equivalent element is not found, the
277   --  element is inserted into the result set.
278
279   function "-" (Left, Right : Set) return Set renames Difference;
280
281   procedure Symmetric_Difference (Target : in out Set; Source : Set);
282   --  The operation iterates over the Source set, searching for the element
283   --  in Target (calling Hash and Equivalent_Elements). If an equivalent
284   --  element is found, it is removed from Target; otherwise it is inserted
285   --  into Target.
286
287   function Symmetric_Difference (Left, Right : Set) return Set;
288   --  The operation first iterates over the Left set. It calls Find to
289   --  determine whether the element is in the Right set. If no equivalent
290   --  element is found, the element from Left is inserted into the result. The
291   --  operation then iterates over the Right set, to determine whether the
292   --  element is in the Left set. If no equivalent element is found, the Right
293   --  element is inserted into the result.
294
295   function "xor" (Left, Right : Set) return Set
296     renames Symmetric_Difference;
297
298   function Overlap (Left, Right : Set) return Boolean;
299   --  Iterates over the Left set (calling First and Next), calling Find to
300   --  determine whether the element is in the Right set. If an equivalent
301   --  element is found, the operation immediately returns True. The operation
302   --  returns False if the iteration over Left terminates without finding any
303   --  equivalent element in Right.
304
305   function Is_Subset (Subset : Set; Of_Set : Set) return Boolean;
306   --  Iterates over Subset (calling First and Next), calling Find to determine
307   --  whether the element is in Of_Set. If no equivalent element is found in
308   --  Of_Set, the operation immediately returns False. The operation returns
309   --  True if the iteration over Subset terminates without finding an element
310   --  not in Of_Set (that is, every element in Subset is equivalent to an
311   --  element in Of_Set).
312
313   function First (Container : Set) return Cursor;
314   --  Returns a cursor that designates the first non-empty bucket, by
315   --  searching from the beginning of the buckets array.
316
317   function Next (Position : Cursor) return Cursor;
318   --  Returns a cursor that designates the node that follows the current one
319   --  designated by Position. If Position designates the last node in its
320   --  bucket, the operation calls Hash to compute the index of this bucket,
321   --  and searches the buckets array for the first non-empty bucket, starting
322   --  from that index; otherwise, it simply follows the link to the next node
323   --  in the same bucket.
324
325   procedure Next (Position : in out Cursor);
326   --  Equivalent to Position := Next (Position)
327
328   function Find
329     (Container : Set;
330      Item      : Element_Type) return Cursor;
331   --  Searches for Item in the set. Find calls Hash to determine the item's
332   --  bucket; if the bucket is not empty, it calls Equivalent_Elements to
333   --  compare Item to each element in the bucket. If the search succeeds, Find
334   --  returns a cursor designating the node containing the equivalent element;
335   --  otherwise, it returns No_Element.
336
337   function Contains (Container : Set; Item : Element_Type) return Boolean;
338   --  Equivalent to Find (Container, Item) /= No_Element
339
340   function Equivalent_Elements (Left, Right : Cursor) return Boolean;
341   --  Returns the result of calling Equivalent_Elements with the elements of
342   --  the nodes designated by cursors Left and Right.
343
344   function Equivalent_Elements
345     (Left  : Cursor;
346      Right : Element_Type) return Boolean;
347   --  Returns the result of calling Equivalent_Elements with element of the
348   --  node designated by Left and element Right.
349
350   function Equivalent_Elements
351     (Left  : Element_Type;
352      Right : Cursor) return Boolean;
353   --  Returns the result of calling Equivalent_Elements with element Left and
354   --  the element of the node designated by Right.
355
356   procedure Iterate
357     (Container : Set;
358      Process   : not null access procedure (Position : Cursor));
359   --  Calls Process for each node in the set
360
361   function Iterate
362     (Container : Set)
363      return Set_Iterator_Interfaces.Forward_Iterator'Class;
364
365   generic
366      type Key_Type (<>) is private;
367
368      with function Key (Element : Element_Type) return Key_Type;
369
370      with function Hash (Key : Key_Type) return Hash_Type;
371
372      with function Equivalent_Keys (Left, Right : Key_Type) return Boolean;
373
374   package Generic_Keys is
375
376      function Key (Position : Cursor) return Key_Type;
377      --  Applies generic formal operation Key to the element of the node
378      --  designated by Position.
379
380      function Element (Container : Set; Key : Key_Type) return Element_Type;
381      --  Searches (as per the key-based Find) for the node containing Key, and
382      --  returns the associated element.
383
384      procedure Replace
385        (Container : in out Set;
386         Key       : Key_Type;
387         New_Item  : Element_Type);
388      --  Searches (as per the key-based Find) for the node containing Key, and
389      --  then replaces the element of that node (as per the element-based
390      --  Replace_Element).
391
392      procedure Exclude (Container : in out Set; Key : Key_Type);
393      --  Searches for Key in the set, and if found, removes its node from the
394      --  set and then deallocates it. The search works by first calling Hash
395      --  (on Key) to determine the bucket; if the bucket is not empty, it
396      --  calls Equivalent_Keys to compare parameter Key to the value of
397      --  generic formal operation Key applied to element of each node in the
398      --  bucket.
399
400      procedure Delete (Container : in out Set; Key : Key_Type);
401      --  Deletes the node containing Key as per Exclude, with the difference
402      --  that Constraint_Error is raised if Key is not found.
403
404      function Find (Container : Set; Key : Key_Type) return Cursor;
405      --  Searches for the node containing Key, and returns a cursor
406      --  designating the node. The search works by first calling Hash (on Key)
407      --  to determine the bucket. If the bucket is not empty, the search
408      --  compares Key to the element of each node in the bucket, and returns
409      --  the matching node. The comparison itself works by applying the
410      --  generic formal Key operation to the element of the node, and then
411      --  calling generic formal operation Equivalent_Keys.
412
413      function Contains (Container : Set; Key : Key_Type) return Boolean;
414      --  Equivalent to Find (Container, Key) /= No_Element
415
416      procedure Update_Element_Preserving_Key
417        (Container : in out Set;
418         Position  : Cursor;
419         Process   : not null access
420                       procedure (Element : in out Element_Type));
421      --  Calls Process with the element of the node designated by Position,
422      --  but with the restriction that the key-value of the element is not
423      --  modified. The operation first makes a copy of the value returned by
424      --  applying generic formal operation Key on the element of the node, and
425      --  then calls Process with the element. The operation verifies that the
426      --  key-part has not been modified by calling generic formal operation
427      --  Equivalent_Keys to compare the saved key-value to the value returned
428      --  by applying generic formal operation Key to the post-Process value of
429      --  element. If the key values compare equal then the operation
430      --  completes. Otherwise, the node is removed from the map and
431      --  Program_Error is raised.
432
433      type Reference_Type (Element : not null access Element_Type) is private
434        with Implicit_Dereference => Element;
435
436      function Reference_Preserving_Key
437        (Container : aliased in out Set;
438         Position  : Cursor) return Reference_Type;
439
440      function Constant_Reference
441        (Container : aliased Set;
442         Key       : Key_Type) return Constant_Reference_Type;
443
444      function Reference_Preserving_Key
445        (Container : aliased in out Set;
446         Key       : Key_Type) return Reference_Type;
447
448   private
449      type Set_Access is access all Set;
450      for Set_Access'Storage_Size use 0;
451
452      package Impl is new Helpers.Generic_Implementation;
453
454      type Reference_Control_Type is
455         new Impl.Reference_Control_Type with
456      record
457         Container : Set_Access;
458         Index     : Hash_Type;
459         Old_Pos   : Cursor;
460         Old_Hash  : Hash_Type;
461      end record;
462
463      overriding procedure Finalize (Control : in out Reference_Control_Type);
464      pragma Inline (Finalize);
465
466      type Reference_Type (Element : not null access Element_Type) is record
467         Control  : Reference_Control_Type;
468      end record;
469
470      use Ada.Streams;
471
472      procedure Read
473        (Stream : not null access Root_Stream_Type'Class;
474         Item   : out Reference_Type);
475
476      for Reference_Type'Read use Read;
477
478      procedure Write
479        (Stream : not null access Root_Stream_Type'Class;
480         Item   : Reference_Type);
481
482      for Reference_Type'Write use Write;
483
484   end Generic_Keys;
485
486private
487   pragma Inline (Next);
488
489   type Node_Type is record
490      Element : aliased Element_Type;
491      Next    : Count_Type;
492   end record;
493
494   package HT_Types is
495     new Hash_Tables.Generic_Bounded_Hash_Table_Types (Node_Type);
496
497   type Set (Capacity : Count_Type; Modulus : Hash_Type) is
498     new HT_Types.Hash_Table_Type (Capacity, Modulus) with null record;
499
500   use HT_Types, HT_Types.Implementation;
501   use Ada.Streams;
502
503   procedure Write
504     (Stream    : not null access Root_Stream_Type'Class;
505      Container : Set);
506
507   for Set'Write use Write;
508
509   procedure Read
510     (Stream    : not null access Root_Stream_Type'Class;
511      Container : out Set);
512
513   for Set'Read use Read;
514
515   type Set_Access is access all Set;
516   for Set_Access'Storage_Size use 0;
517
518   --  Note: If a Cursor object has no explicit initialization expression,
519   --  it must default initialize to the same value as constant No_Element.
520   --  The Node component of type Cursor has scalar type Count_Type, so it
521   --  requires an explicit initialization expression of its own declaration,
522   --  in order for objects of record type Cursor to properly initialize.
523
524   type Cursor is record
525      Container : Set_Access;
526      Node      : Count_Type := 0;
527   end record;
528
529   procedure Write
530     (Stream : not null access Root_Stream_Type'Class;
531      Item   : Cursor);
532
533   for Cursor'Write use Write;
534
535   procedure Read
536     (Stream : not null access Root_Stream_Type'Class;
537      Item   : out Cursor);
538
539   for Cursor'Read use Read;
540
541   subtype Reference_Control_Type is Implementation.Reference_Control_Type;
542   --  It is necessary to rename this here, so that the compiler can find it
543
544   type Constant_Reference_Type
545     (Element : not null access constant Element_Type) is
546      record
547         Control : Reference_Control_Type :=
548           raise Program_Error with "uninitialized reference";
549         --  The RM says, "The default initialization of an object of
550         --  type Constant_Reference_Type or Reference_Type propagates
551         --  Program_Error."
552      end record;
553
554   procedure Read
555     (Stream : not null access Root_Stream_Type'Class;
556      Item   : out Constant_Reference_Type);
557
558   for Constant_Reference_Type'Read use Read;
559
560   procedure Write
561     (Stream : not null access Root_Stream_Type'Class;
562      Item   : Constant_Reference_Type);
563
564   for Constant_Reference_Type'Write use Write;
565
566   --  Three operations are used to optimize in the expansion of "for ... of"
567   --  loops: the Next(Cursor) procedure in the visible part, and the following
568   --  Pseudo_Reference and Get_Element_Access functions. See Sem_Ch5 for
569   --  details.
570
571   function Pseudo_Reference
572     (Container : aliased Set'Class) return Reference_Control_Type;
573   pragma Inline (Pseudo_Reference);
574   --  Creates an object of type Reference_Control_Type pointing to the
575   --  container, and increments the Lock. Finalization of this object will
576   --  decrement the Lock.
577
578   type Element_Access is access all Element_Type with
579     Storage_Size => 0;
580
581   function Get_Element_Access
582     (Position : Cursor) return not null Element_Access;
583   --  Returns a pointer to the element designated by Position.
584
585   Empty_Set : constant Set :=
586                 (Hash_Table_Type with Capacity => 0, Modulus => 0);
587
588   No_Element : constant Cursor := (Container => null, Node => 0);
589
590   type Iterator is new Limited_Controlled and
591     Set_Iterator_Interfaces.Forward_Iterator with
592   record
593      Container : Set_Access;
594   end record
595     with Disable_Controlled => not T_Check;
596
597   overriding procedure Finalize (Object : in out Iterator);
598
599   overriding function First (Object : Iterator) return Cursor;
600
601   overriding function Next
602     (Object   : Iterator;
603      Position : Cursor) return Cursor;
604
605end Ada.Containers.Bounded_Hashed_Sets;
606