1------------------------------------------------------------------------------
2--                                                                          --
3--                         GNAT COMPILER COMPONENTS                         --
4--                                                                          --
5--                             E X P _ A G G R                              --
6--                                                                          --
7--                                 B o d y                                  --
8--                                                                          --
9--          Copyright (C) 1992-2015, Free Software Foundation, Inc.         --
10--                                                                          --
11-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12-- terms of the  GNU General Public License as published  by the Free Soft- --
13-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
17-- for  more details.  You should have  received  a copy of the GNU General --
18-- Public License  distributed with GNAT; see file COPYING3.  If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license.          --
20--                                                                          --
21-- GNAT was originally developed  by the GNAT team at  New York University. --
22-- Extensive contributions were provided by Ada Core Technologies Inc.      --
23--                                                                          --
24------------------------------------------------------------------------------
25
26with Atree;    use Atree;
27with Checks;   use Checks;
28with Debug;    use Debug;
29with Einfo;    use Einfo;
30with Elists;   use Elists;
31with Errout;   use Errout;
32with Expander; use Expander;
33with Exp_Util; use Exp_Util;
34with Exp_Ch3;  use Exp_Ch3;
35with Exp_Ch6;  use Exp_Ch6;
36with Exp_Ch7;  use Exp_Ch7;
37with Exp_Ch9;  use Exp_Ch9;
38with Exp_Disp; use Exp_Disp;
39with Exp_Tss;  use Exp_Tss;
40with Fname;    use Fname;
41with Freeze;   use Freeze;
42with Itypes;   use Itypes;
43with Lib;      use Lib;
44with Namet;    use Namet;
45with Nmake;    use Nmake;
46with Nlists;   use Nlists;
47with Opt;      use Opt;
48with Restrict; use Restrict;
49with Rident;   use Rident;
50with Rtsfind;  use Rtsfind;
51with Ttypes;   use Ttypes;
52with Sem;      use Sem;
53with Sem_Aggr; use Sem_Aggr;
54with Sem_Aux;  use Sem_Aux;
55with Sem_Ch3;  use Sem_Ch3;
56with Sem_Eval; use Sem_Eval;
57with Sem_Res;  use Sem_Res;
58with Sem_Util; use Sem_Util;
59with Sinfo;    use Sinfo;
60with Snames;   use Snames;
61with Stand;    use Stand;
62with Stringt;  use Stringt;
63with Targparm; use Targparm;
64with Tbuild;   use Tbuild;
65with Uintp;    use Uintp;
66
67package body Exp_Aggr is
68
69   type Case_Bounds is record
70     Choice_Lo   : Node_Id;
71     Choice_Hi   : Node_Id;
72     Choice_Node : Node_Id;
73   end record;
74
75   type Case_Table_Type is array (Nat range <>) of Case_Bounds;
76   --  Table type used by Check_Case_Choices procedure
77
78   procedure Collect_Initialization_Statements
79     (Obj        : Entity_Id;
80      N          : Node_Id;
81      Node_After : Node_Id);
82   --  If Obj is not frozen, collect actions inserted after N until, but not
83   --  including, Node_After, for initialization of Obj, and move them to an
84   --  expression with actions, which becomes the Initialization_Statements for
85   --  Obj.
86
87   function Has_Default_Init_Comps (N : Node_Id) return Boolean;
88   --  N is an aggregate (record or array). Checks the presence of default
89   --  initialization (<>) in any component (Ada 2005: AI-287).
90
91   function In_Object_Declaration (N : Node_Id) return Boolean;
92   --  Return True if N is part of an object declaration, False otherwise
93
94   function Is_Static_Dispatch_Table_Aggregate (N : Node_Id) return Boolean;
95   --  Returns true if N is an aggregate used to initialize the components
96   --  of a statically allocated dispatch table.
97
98   function Must_Slide
99     (Obj_Type : Entity_Id;
100      Typ      : Entity_Id) return Boolean;
101   --  A static array aggregate in an object declaration can in most cases be
102   --  expanded in place. The one exception is when the aggregate is given
103   --  with component associations that specify different bounds from those of
104   --  the type definition in the object declaration. In this pathological
105   --  case the aggregate must slide, and we must introduce an intermediate
106   --  temporary to hold it.
107   --
108   --  The same holds in an assignment to one-dimensional array of arrays,
109   --  when a component may be given with bounds that differ from those of the
110   --  component type.
111
112   procedure Sort_Case_Table (Case_Table : in out Case_Table_Type);
113   --  Sort the Case Table using the Lower Bound of each Choice as the key.
114   --  A simple insertion sort is used since the number of choices in a case
115   --  statement of variant part will usually be small and probably in near
116   --  sorted order.
117
118   ------------------------------------------------------
119   -- Local subprograms for Record Aggregate Expansion --
120   ------------------------------------------------------
121
122   function Build_Record_Aggr_Code
123     (N   : Node_Id;
124      Typ : Entity_Id;
125      Lhs : Node_Id) return List_Id;
126   --  N is an N_Aggregate or an N_Extension_Aggregate. Typ is the type of the
127   --  aggregate. Target is an expression containing the location on which the
128   --  component by component assignments will take place. Returns the list of
129   --  assignments plus all other adjustments needed for tagged and controlled
130   --  types.
131
132   procedure Convert_To_Assignments (N : Node_Id; Typ : Entity_Id);
133   --  N is an N_Aggregate or an N_Extension_Aggregate. Typ is the type of the
134   --  aggregate (which can only be a record type, this procedure is only used
135   --  for record types). Transform the given aggregate into a sequence of
136   --  assignments performed component by component.
137
138   procedure Expand_Record_Aggregate
139     (N           : Node_Id;
140      Orig_Tag    : Node_Id := Empty;
141      Parent_Expr : Node_Id := Empty);
142   --  This is the top level procedure for record aggregate expansion.
143   --  Expansion for record aggregates needs expand aggregates for tagged
144   --  record types. Specifically Expand_Record_Aggregate adds the Tag
145   --  field in front of the Component_Association list that was created
146   --  during resolution by Resolve_Record_Aggregate.
147   --
148   --    N is the record aggregate node.
149   --    Orig_Tag is the value of the Tag that has to be provided for this
150   --      specific aggregate. It carries the tag corresponding to the type
151   --      of the outermost aggregate during the recursive expansion
152   --    Parent_Expr is the ancestor part of the original extension
153   --      aggregate
154
155   function Has_Mutable_Components (Typ : Entity_Id) return Boolean;
156   --  Return true if one of the components is of a discriminated type with
157   --  defaults. An aggregate for a type with mutable components must be
158   --  expanded into individual assignments.
159
160   procedure Initialize_Discriminants (N : Node_Id; Typ : Entity_Id);
161   --  If the type of the aggregate is a type extension with renamed discrimi-
162   --  nants, we must initialize the hidden discriminants of the parent.
163   --  Otherwise, the target object must not be initialized. The discriminants
164   --  are initialized by calling the initialization procedure for the type.
165   --  This is incorrect if the initialization of other components has any
166   --  side effects. We restrict this call to the case where the parent type
167   --  has a variant part, because this is the only case where the hidden
168   --  discriminants are accessed, namely when calling discriminant checking
169   --  functions of the parent type, and when applying a stream attribute to
170   --  an object of the derived type.
171
172   -----------------------------------------------------
173   -- Local Subprograms for Array Aggregate Expansion --
174   -----------------------------------------------------
175
176   function Aggr_Size_OK (N : Node_Id; Typ : Entity_Id) return Boolean;
177   --  Very large static aggregates present problems to the back-end, and are
178   --  transformed into assignments and loops. This function verifies that the
179   --  total number of components of an aggregate is acceptable for rewriting
180   --  into a purely positional static form. Aggr_Size_OK must be called before
181   --  calling Flatten.
182   --
183   --  This function also detects and warns about one-component aggregates that
184   --  appear in a non-static context. Even if the component value is static,
185   --  such an aggregate must be expanded into an assignment.
186
187   function Backend_Processing_Possible (N : Node_Id) return Boolean;
188   --  This function checks if array aggregate N can be processed directly
189   --  by the backend. If this is the case, True is returned.
190
191   function Build_Array_Aggr_Code
192     (N           : Node_Id;
193      Ctype       : Entity_Id;
194      Index       : Node_Id;
195      Into        : Node_Id;
196      Scalar_Comp : Boolean;
197      Indexes     : List_Id := No_List) return List_Id;
198   --  This recursive routine returns a list of statements containing the
199   --  loops and assignments that are needed for the expansion of the array
200   --  aggregate N.
201   --
202   --    N is the (sub-)aggregate node to be expanded into code. This node has
203   --    been fully analyzed, and its Etype is properly set.
204   --
205   --    Index is the index node corresponding to the array sub-aggregate N
206   --
207   --    Into is the target expression into which we are copying the aggregate.
208   --    Note that this node may not have been analyzed yet, and so the Etype
209   --    field may not be set.
210   --
211   --    Scalar_Comp is True if the component type of the aggregate is scalar
212   --
213   --    Indexes is the current list of expressions used to index the object we
214   --    are writing into.
215
216   procedure Convert_Array_Aggr_In_Allocator
217     (Decl   : Node_Id;
218      Aggr   : Node_Id;
219      Target : Node_Id);
220   --  If the aggregate appears within an allocator and can be expanded in
221   --  place, this routine generates the individual assignments to components
222   --  of the designated object. This is an optimization over the general
223   --  case, where a temporary is first created on the stack and then used to
224   --  construct the allocated object on the heap.
225
226   procedure Convert_To_Positional
227     (N                    : Node_Id;
228      Max_Others_Replicate : Nat     := 5;
229      Handle_Bit_Packed    : Boolean := False);
230   --  If possible, convert named notation to positional notation. This
231   --  conversion is possible only in some static cases. If the conversion is
232   --  possible, then N is rewritten with the analyzed converted aggregate.
233   --  The parameter Max_Others_Replicate controls the maximum number of
234   --  values corresponding to an others choice that will be converted to
235   --  positional notation (the default of 5 is the normal limit, and reflects
236   --  the fact that normally the loop is better than a lot of separate
237   --  assignments). Note that this limit gets overridden in any case if
238   --  either of the restrictions No_Elaboration_Code or No_Implicit_Loops is
239   --  set. The parameter Handle_Bit_Packed is usually set False (since we do
240   --  not expect the back end to handle bit packed arrays, so the normal case
241   --  of conversion is pointless), but in the special case of a call from
242   --  Packed_Array_Aggregate_Handled, we set this parameter to True, since
243   --  these are cases we handle in there.
244
245   --  It would seem useful to have a higher default for Max_Others_Replicate,
246   --  but aggregates in the compiler make this impossible: the compiler
247   --  bootstrap fails if Max_Others_Replicate is greater than 25. This
248   --  is unexpected ???
249
250   procedure Expand_Array_Aggregate (N : Node_Id);
251   --  This is the top-level routine to perform array aggregate expansion.
252   --  N is the N_Aggregate node to be expanded.
253
254   function Is_Two_Dim_Packed_Array (Typ : Entity_Id) return Boolean;
255   --  For two-dimensional packed aggregates with constant bounds and constant
256   --  components, it is preferable to pack the inner aggregates because the
257   --  whole matrix can then be presented to the back-end as a one-dimensional
258   --  list of literals. This is much more efficient than expanding into single
259   --  component assignments. This function determines if the type Typ is for
260   --  an array that is suitable for this optimization: it returns True if Typ
261   --  is a two dimensional bit packed array with component size 1, 2, or 4.
262
263   function Late_Expansion
264     (N      : Node_Id;
265      Typ    : Entity_Id;
266      Target : Node_Id) return List_Id;
267   --  This routine implements top-down expansion of nested aggregates. In
268   --  doing so, it avoids the generation of temporaries at each level. N is
269   --  a nested record or array aggregate with the Expansion_Delayed flag.
270   --  Typ is the expected type of the aggregate. Target is a (duplicatable)
271   --  expression that will hold the result of the aggregate expansion.
272
273   function Make_OK_Assignment_Statement
274     (Sloc       : Source_Ptr;
275      Name       : Node_Id;
276      Expression : Node_Id) return Node_Id;
277   --  This is like Make_Assignment_Statement, except that Assignment_OK
278   --  is set in the left operand. All assignments built by this unit use
279   --  this routine. This is needed to deal with assignments to initialized
280   --  constants that are done in place.
281
282   function Number_Of_Choices (N : Node_Id) return Nat;
283   --  Returns the number of discrete choices (not including the others choice
284   --  if present) contained in (sub-)aggregate N.
285
286   function Packed_Array_Aggregate_Handled (N : Node_Id) return Boolean;
287   --  Given an array aggregate, this function handles the case of a packed
288   --  array aggregate with all constant values, where the aggregate can be
289   --  evaluated at compile time. If this is possible, then N is rewritten
290   --  to be its proper compile time value with all the components properly
291   --  assembled. The expression is analyzed and resolved and True is returned.
292   --  If this transformation is not possible, N is unchanged and False is
293   --  returned.
294
295   function Two_Dim_Packed_Array_Handled (N : Node_Id) return Boolean;
296   --  If the type of the aggregate is a two-dimensional bit_packed array
297   --  it may be transformed into an array of bytes with constant values,
298   --  and presented to the back-end as a static value. The function returns
299   --  false if this transformation cannot be performed. THis is similar to,
300   --  and reuses part of the machinery in Packed_Array_Aggregate_Handled.
301
302   ------------------
303   -- Aggr_Size_OK --
304   ------------------
305
306   function Aggr_Size_OK (N : Node_Id; Typ : Entity_Id) return Boolean is
307      Lo   : Node_Id;
308      Hi   : Node_Id;
309      Indx : Node_Id;
310      Siz  : Int;
311      Lov  : Uint;
312      Hiv  : Uint;
313
314      Max_Aggr_Size : Nat;
315      --  Determines the maximum size of an array aggregate produced by
316      --  converting named to positional notation (e.g. from others clauses).
317      --  This avoids running away with attempts to convert huge aggregates,
318      --  which hit memory limits in the backend.
319
320      function Component_Count (T : Entity_Id) return Int;
321      --  The limit is applied to the total number of components that the
322      --  aggregate will have, which is the number of static expressions
323      --  that will appear in the flattened array. This requires a recursive
324      --  computation of the number of scalar components of the structure.
325
326      ---------------------
327      -- Component_Count --
328      ---------------------
329
330      function Component_Count (T : Entity_Id) return Int is
331         Res  : Int := 0;
332         Comp : Entity_Id;
333
334      begin
335         if Is_Scalar_Type (T) then
336            return 1;
337
338         elsif Is_Record_Type (T) then
339            Comp := First_Component (T);
340            while Present (Comp) loop
341               Res := Res + Component_Count (Etype (Comp));
342               Next_Component (Comp);
343            end loop;
344
345            return Res;
346
347         elsif Is_Array_Type (T) then
348            declare
349               Lo : constant Node_Id :=
350                 Type_Low_Bound (Etype (First_Index (T)));
351               Hi : constant Node_Id :=
352                 Type_High_Bound (Etype (First_Index (T)));
353
354               Siz : constant Int := Component_Count (Component_Type (T));
355
356            begin
357               if not Compile_Time_Known_Value (Lo)
358                 or else not Compile_Time_Known_Value (Hi)
359               then
360                  return 0;
361               else
362                  return
363                    Siz * UI_To_Int (Expr_Value (Hi) - Expr_Value (Lo) + 1);
364               end if;
365            end;
366
367         else
368            --  Can only be a null for an access type
369
370            return 1;
371         end if;
372      end Component_Count;
373
374   --  Start of processing for Aggr_Size_OK
375
376   begin
377      --  The normal aggregate limit is 50000, but we increase this limit to
378      --  2**24 (about 16 million) if Restrictions (No_Elaboration_Code) or
379      --  Restrictions (No_Implicit_Loops) is specified, since in either case
380      --  we are at risk of declaring the program illegal because of this
381      --  limit. We also increase the limit when Static_Elaboration_Desired,
382      --  given that this means that objects are intended to be placed in data
383      --  memory.
384
385      --  We also increase the limit if the aggregate is for a packed two-
386      --  dimensional array, because if components are static it is much more
387      --  efficient to construct a one-dimensional equivalent array with static
388      --  components.
389
390      --  Conversely, we decrease the maximum size if none of the above
391      --  requirements apply, and if the aggregate has a single component
392      --  association, which will be more efficient if implemented with a loop.
393
394      --  Finally, we use a small limit in CodePeer mode where we favor loops
395      --  instead of thousands of single assignments (from large aggregates).
396
397      Max_Aggr_Size := 50000;
398
399      if CodePeer_Mode then
400         Max_Aggr_Size := 100;
401
402      elsif Restriction_Active (No_Elaboration_Code)
403        or else Restriction_Active (No_Implicit_Loops)
404        or else Is_Two_Dim_Packed_Array (Typ)
405        or else (Ekind (Current_Scope) = E_Package
406                   and then Static_Elaboration_Desired (Current_Scope))
407      then
408         Max_Aggr_Size := 2 ** 24;
409
410      elsif No (Expressions (N))
411        and then No (Next (First (Component_Associations (N))))
412      then
413         Max_Aggr_Size := 5000;
414      end if;
415
416      Siz  := Component_Count (Component_Type (Typ));
417
418      Indx := First_Index (Typ);
419      while Present (Indx) loop
420         Lo  := Type_Low_Bound (Etype (Indx));
421         Hi  := Type_High_Bound (Etype (Indx));
422
423         --  Bounds need to be known at compile time
424
425         if not Compile_Time_Known_Value (Lo)
426           or else not Compile_Time_Known_Value (Hi)
427         then
428            return False;
429         end if;
430
431         Lov := Expr_Value (Lo);
432         Hiv := Expr_Value (Hi);
433
434         --  A flat array is always safe
435
436         if Hiv < Lov then
437            return True;
438         end if;
439
440         --  One-component aggregates are suspicious, and if the context type
441         --  is an object declaration with non-static bounds it will trip gcc;
442         --  such an aggregate must be expanded into a single assignment.
443
444         if Hiv = Lov and then Nkind (Parent (N)) = N_Object_Declaration then
445            declare
446               Index_Type : constant Entity_Id :=
447                 Etype
448                   (First_Index (Etype (Defining_Identifier (Parent (N)))));
449               Indx       : Node_Id;
450
451            begin
452               if not Compile_Time_Known_Value (Type_Low_Bound (Index_Type))
453                 or else not Compile_Time_Known_Value
454                               (Type_High_Bound (Index_Type))
455               then
456                  if Present (Component_Associations (N)) then
457                     Indx :=
458                       First (Choices (First (Component_Associations (N))));
459
460                     if Is_Entity_Name (Indx)
461                       and then not Is_Type (Entity (Indx))
462                     then
463                        Error_Msg_N
464                          ("single component aggregate in "
465                           &  "non-static context??", Indx);
466                        Error_Msg_N ("\maybe subtype name was meant??", Indx);
467                     end if;
468                  end if;
469
470                  return False;
471               end if;
472            end;
473         end if;
474
475         declare
476            Rng : constant Uint := Hiv - Lov + 1;
477
478         begin
479            --  Check if size is too large
480
481            if not UI_Is_In_Int_Range (Rng) then
482               return False;
483            end if;
484
485            Siz := Siz * UI_To_Int (Rng);
486         end;
487
488         if Siz <= 0
489           or else Siz > Max_Aggr_Size
490         then
491            return False;
492         end if;
493
494         --  Bounds must be in integer range, for later array construction
495
496         if not UI_Is_In_Int_Range (Lov)
497             or else
498            not UI_Is_In_Int_Range (Hiv)
499         then
500            return False;
501         end if;
502
503         Next_Index (Indx);
504      end loop;
505
506      return True;
507   end Aggr_Size_OK;
508
509   ---------------------------------
510   -- Backend_Processing_Possible --
511   ---------------------------------
512
513   --  Backend processing by Gigi/gcc is possible only if all the following
514   --  conditions are met:
515
516   --    1. N is fully positional
517
518   --    2. N is not a bit-packed array aggregate;
519
520   --    3. The size of N's array type must be known at compile time. Note
521   --       that this implies that the component size is also known
522
523   --    4. The array type of N does not follow the Fortran layout convention
524   --       or if it does it must be 1 dimensional.
525
526   --    5. The array component type may not be tagged (which could necessitate
527   --       reassignment of proper tags).
528
529   --    6. The array component type must not have unaligned bit components
530
531   --    7. None of the components of the aggregate may be bit unaligned
532   --       components.
533
534   --    8. There cannot be delayed components, since we do not know enough
535   --       at this stage to know if back end processing is possible.
536
537   --    9. There cannot be any discriminated record components, since the
538   --       back end cannot handle this complex case.
539
540   --   10. No controlled actions need to be generated for components
541
542   function Backend_Processing_Possible (N : Node_Id) return Boolean is
543      Typ : constant Entity_Id := Etype (N);
544      --  Typ is the correct constrained array subtype of the aggregate
545
546      function Component_Check (N : Node_Id; Index : Node_Id) return Boolean;
547      --  This routine checks components of aggregate N, enforcing checks
548      --  1, 7, 8, and 9. In the multi-dimensional case, these checks are
549      --  performed on subaggregates. The Index value is the current index
550      --  being checked in the multi-dimensional case.
551
552      ---------------------
553      -- Component_Check --
554      ---------------------
555
556      function Component_Check (N : Node_Id; Index : Node_Id) return Boolean is
557         Expr : Node_Id;
558
559      begin
560         --  Checks 1: (no component associations)
561
562         if Present (Component_Associations (N)) then
563            return False;
564         end if;
565
566         --  Checks on components
567
568         --  Recurse to check subaggregates, which may appear in qualified
569         --  expressions. If delayed, the front-end will have to expand.
570         --  If the component is a discriminated record, treat as non-static,
571         --  as the back-end cannot handle this properly.
572
573         Expr := First (Expressions (N));
574         while Present (Expr) loop
575
576            --  Checks 8: (no delayed components)
577
578            if Is_Delayed_Aggregate (Expr) then
579               return False;
580            end if;
581
582            --  Checks 9: (no discriminated records)
583
584            if Present (Etype (Expr))
585              and then Is_Record_Type (Etype (Expr))
586              and then Has_Discriminants (Etype (Expr))
587            then
588               return False;
589            end if;
590
591            --  Checks 7. Component must not be bit aligned component
592
593            if Possible_Bit_Aligned_Component (Expr) then
594               return False;
595            end if;
596
597            --  Recursion to following indexes for multiple dimension case
598
599            if Present (Next_Index (Index))
600              and then not Component_Check (Expr, Next_Index (Index))
601            then
602               return False;
603            end if;
604
605            --  All checks for that component finished, on to next
606
607            Next (Expr);
608         end loop;
609
610         return True;
611      end Component_Check;
612
613   --  Start of processing for Backend_Processing_Possible
614
615   begin
616      --  Checks 2 (array not bit packed) and 10 (no controlled actions)
617
618      if Is_Bit_Packed_Array (Typ) or else Needs_Finalization (Typ) then
619         return False;
620      end if;
621
622      --  If component is limited, aggregate must be expanded because each
623      --  component assignment must be built in place.
624
625      if Is_Limited_View (Component_Type (Typ)) then
626         return False;
627      end if;
628
629      --  Checks 4 (array must not be multi-dimensional Fortran case)
630
631      if Convention (Typ) = Convention_Fortran
632        and then Number_Dimensions (Typ) > 1
633      then
634         return False;
635      end if;
636
637      --  Checks 3 (size of array must be known at compile time)
638
639      if not Size_Known_At_Compile_Time (Typ) then
640         return False;
641      end if;
642
643      --  Checks on components
644
645      if not Component_Check (N, First_Index (Typ)) then
646         return False;
647      end if;
648
649      --  Checks 5 (if the component type is tagged, then we may need to do
650      --  tag adjustments. Perhaps this should be refined to check for any
651      --  component associations that actually need tag adjustment, similar
652      --  to the test in Component_Not_OK_For_Backend for record aggregates
653      --  with tagged components, but not clear whether it's worthwhile ???;
654      --  in the case of virtual machines (no Tagged_Type_Expansion), object
655      --  tags are handled implicitly).
656
657      if Is_Tagged_Type (Component_Type (Typ))
658        and then Tagged_Type_Expansion
659      then
660         return False;
661      end if;
662
663      --  Checks 6 (component type must not have bit aligned components)
664
665      if Type_May_Have_Bit_Aligned_Components (Component_Type (Typ)) then
666         return False;
667      end if;
668
669      --  Backend processing is possible
670
671      Set_Size_Known_At_Compile_Time (Etype (N), True);
672      return True;
673   end Backend_Processing_Possible;
674
675   ---------------------------
676   -- Build_Array_Aggr_Code --
677   ---------------------------
678
679   --  The code that we generate from a one dimensional aggregate is
680
681   --  1. If the sub-aggregate contains discrete choices we
682
683   --     (a) Sort the discrete choices
684
685   --     (b) Otherwise for each discrete choice that specifies a range we
686   --         emit a loop. If a range specifies a maximum of three values, or
687   --         we are dealing with an expression we emit a sequence of
688   --         assignments instead of a loop.
689
690   --     (c) Generate the remaining loops to cover the others choice if any
691
692   --  2. If the aggregate contains positional elements we
693
694   --     (a) translate the positional elements in a series of assignments
695
696   --     (b) Generate a final loop to cover the others choice if any.
697   --         Note that this final loop has to be a while loop since the case
698
699   --             L : Integer := Integer'Last;
700   --             H : Integer := Integer'Last;
701   --             A : array (L .. H) := (1, others =>0);
702
703   --         cannot be handled by a for loop. Thus for the following
704
705   --             array (L .. H) := (.. positional elements.., others =>E);
706
707   --         we always generate something like:
708
709   --             J : Index_Type := Index_Of_Last_Positional_Element;
710   --             while J < H loop
711   --                J := Index_Base'Succ (J)
712   --                Tmp (J) := E;
713   --             end loop;
714
715   function Build_Array_Aggr_Code
716     (N           : Node_Id;
717      Ctype       : Entity_Id;
718      Index       : Node_Id;
719      Into        : Node_Id;
720      Scalar_Comp : Boolean;
721      Indexes     : List_Id := No_List) return List_Id
722   is
723      Loc          : constant Source_Ptr := Sloc (N);
724      Index_Base   : constant Entity_Id  := Base_Type (Etype (Index));
725      Index_Base_L : constant Node_Id := Type_Low_Bound (Index_Base);
726      Index_Base_H : constant Node_Id := Type_High_Bound (Index_Base);
727
728      function Add (Val : Int; To : Node_Id) return Node_Id;
729      --  Returns an expression where Val is added to expression To, unless
730      --  To+Val is provably out of To's base type range. To must be an
731      --  already analyzed expression.
732
733      function Empty_Range (L, H : Node_Id) return Boolean;
734      --  Returns True if the range defined by L .. H is certainly empty
735
736      function Equal (L, H : Node_Id) return Boolean;
737      --  Returns True if L = H for sure
738
739      function Index_Base_Name return Node_Id;
740      --  Returns a new reference to the index type name
741
742      function Gen_Assign (Ind : Node_Id; Expr : Node_Id) return List_Id;
743      --  Ind must be a side-effect free expression. If the input aggregate
744      --  N to Build_Loop contains no sub-aggregates, then this function
745      --  returns the assignment statement:
746      --
747      --     Into (Indexes, Ind) := Expr;
748      --
749      --  Otherwise we call Build_Code recursively
750      --
751      --  Ada 2005 (AI-287): In case of default initialized component, Expr
752      --  is empty and we generate a call to the corresponding IP subprogram.
753
754      function Gen_Loop (L, H : Node_Id; Expr : Node_Id) return List_Id;
755      --  Nodes L and H must be side-effect free expressions.
756      --  If the input aggregate N to Build_Loop contains no sub-aggregates,
757      --  This routine returns the for loop statement
758      --
759      --     for J in Index_Base'(L) .. Index_Base'(H) loop
760      --        Into (Indexes, J) := Expr;
761      --     end loop;
762      --
763      --  Otherwise we call Build_Code recursively.
764      --  As an optimization if the loop covers 3 or less scalar elements we
765      --  generate a sequence of assignments.
766
767      function Gen_While (L, H : Node_Id; Expr : Node_Id) return List_Id;
768      --  Nodes L and H must be side-effect free expressions.
769      --  If the input aggregate N to Build_Loop contains no sub-aggregates,
770      --  This routine returns the while loop statement
771      --
772      --     J : Index_Base := L;
773      --     while J < H loop
774      --        J := Index_Base'Succ (J);
775      --        Into (Indexes, J) := Expr;
776      --     end loop;
777      --
778      --  Otherwise we call Build_Code recursively
779
780      function Get_Assoc_Expr (Assoc : Node_Id) return Node_Id;
781      --  For an association with a box, use value given by aspect
782     --   Default_Component_Value of array type if specified, else use
783     --   value given by aspect Default_Value for component type itself
784     --   if specified, else return Empty.
785
786      function Local_Compile_Time_Known_Value (E : Node_Id) return Boolean;
787      function Local_Expr_Value               (E : Node_Id) return Uint;
788      --  These two Local routines are used to replace the corresponding ones
789      --  in sem_eval because while processing the bounds of an aggregate with
790      --  discrete choices whose index type is an enumeration, we build static
791      --  expressions not recognized by Compile_Time_Known_Value as such since
792      --  they have not yet been analyzed and resolved. All the expressions in
793      --  question are things like Index_Base_Name'Val (Const) which we can
794      --  easily recognize as being constant.
795
796      ---------
797      -- Add --
798      ---------
799
800      function Add (Val : Int; To : Node_Id) return Node_Id is
801         Expr_Pos : Node_Id;
802         Expr     : Node_Id;
803         To_Pos   : Node_Id;
804         U_To     : Uint;
805         U_Val    : constant Uint := UI_From_Int (Val);
806
807      begin
808         --  Note: do not try to optimize the case of Val = 0, because
809         --  we need to build a new node with the proper Sloc value anyway.
810
811         --  First test if we can do constant folding
812
813         if Local_Compile_Time_Known_Value (To) then
814            U_To := Local_Expr_Value (To) + Val;
815
816            --  Determine if our constant is outside the range of the index.
817            --  If so return an Empty node. This empty node will be caught
818            --  by Empty_Range below.
819
820            if Compile_Time_Known_Value (Index_Base_L)
821              and then U_To < Expr_Value (Index_Base_L)
822            then
823               return Empty;
824
825            elsif Compile_Time_Known_Value (Index_Base_H)
826              and then U_To > Expr_Value (Index_Base_H)
827            then
828               return Empty;
829            end if;
830
831            Expr_Pos := Make_Integer_Literal (Loc, U_To);
832            Set_Is_Static_Expression (Expr_Pos);
833
834            if not Is_Enumeration_Type (Index_Base) then
835               Expr := Expr_Pos;
836
837            --  If we are dealing with enumeration return
838            --     Index_Base'Val (Expr_Pos)
839
840            else
841               Expr :=
842                 Make_Attribute_Reference
843                   (Loc,
844                    Prefix         => Index_Base_Name,
845                    Attribute_Name => Name_Val,
846                    Expressions    => New_List (Expr_Pos));
847            end if;
848
849            return Expr;
850         end if;
851
852         --  If we are here no constant folding possible
853
854         if not Is_Enumeration_Type (Index_Base) then
855            Expr :=
856              Make_Op_Add (Loc,
857                Left_Opnd  => Duplicate_Subexpr (To),
858                Right_Opnd => Make_Integer_Literal (Loc, U_Val));
859
860         --  If we are dealing with enumeration return
861         --    Index_Base'Val (Index_Base'Pos (To) + Val)
862
863         else
864            To_Pos :=
865              Make_Attribute_Reference
866                (Loc,
867                 Prefix         => Index_Base_Name,
868                 Attribute_Name => Name_Pos,
869                 Expressions    => New_List (Duplicate_Subexpr (To)));
870
871            Expr_Pos :=
872              Make_Op_Add (Loc,
873                Left_Opnd  => To_Pos,
874                Right_Opnd => Make_Integer_Literal (Loc, U_Val));
875
876            Expr :=
877              Make_Attribute_Reference
878                (Loc,
879                 Prefix         => Index_Base_Name,
880                 Attribute_Name => Name_Val,
881                 Expressions    => New_List (Expr_Pos));
882         end if;
883
884         return Expr;
885      end Add;
886
887      -----------------
888      -- Empty_Range --
889      -----------------
890
891      function Empty_Range (L, H : Node_Id) return Boolean is
892         Is_Empty : Boolean := False;
893         Low      : Node_Id;
894         High     : Node_Id;
895
896      begin
897         --  First check if L or H were already detected as overflowing the
898         --  index base range type by function Add above. If this is so Add
899         --  returns the empty node.
900
901         if No (L) or else No (H) then
902            return True;
903         end if;
904
905         for J in 1 .. 3 loop
906            case J is
907
908               --  L > H    range is empty
909
910               when 1 =>
911                  Low  := L;
912                  High := H;
913
914               --  B_L > H  range must be empty
915
916               when 2 =>
917                  Low  := Index_Base_L;
918                  High := H;
919
920               --  L > B_H  range must be empty
921
922               when 3 =>
923                  Low  := L;
924                  High := Index_Base_H;
925            end case;
926
927            if Local_Compile_Time_Known_Value (Low)
928                 and then
929               Local_Compile_Time_Known_Value (High)
930            then
931               Is_Empty :=
932                 UI_Gt (Local_Expr_Value (Low), Local_Expr_Value (High));
933            end if;
934
935            exit when Is_Empty;
936         end loop;
937
938         return Is_Empty;
939      end Empty_Range;
940
941      -----------
942      -- Equal --
943      -----------
944
945      function Equal (L, H : Node_Id) return Boolean is
946      begin
947         if L = H then
948            return True;
949
950         elsif Local_Compile_Time_Known_Value (L)
951                 and then
952               Local_Compile_Time_Known_Value (H)
953         then
954            return UI_Eq (Local_Expr_Value (L), Local_Expr_Value (H));
955         end if;
956
957         return False;
958      end Equal;
959
960      ----------------
961      -- Gen_Assign --
962      ----------------
963
964      function Gen_Assign (Ind : Node_Id; Expr : Node_Id) return List_Id is
965         L : constant List_Id := New_List;
966         A : Node_Id;
967
968         New_Indexes  : List_Id;
969         Indexed_Comp : Node_Id;
970         Expr_Q       : Node_Id;
971         Comp_Type    : Entity_Id := Empty;
972
973         function Add_Loop_Actions (Lis : List_Id) return List_Id;
974         --  Collect insert_actions generated in the construction of a
975         --  loop, and prepend them to the sequence of assignments to
976         --  complete the eventual body of the loop.
977
978         ----------------------
979         -- Add_Loop_Actions --
980         ----------------------
981
982         function Add_Loop_Actions (Lis : List_Id) return List_Id is
983            Res : List_Id;
984
985         begin
986            --  Ada 2005 (AI-287): Do nothing else in case of default
987            --  initialized component.
988
989            if No (Expr) then
990               return Lis;
991
992            elsif Nkind (Parent (Expr)) = N_Component_Association
993              and then Present (Loop_Actions (Parent (Expr)))
994            then
995               Append_List (Lis, Loop_Actions (Parent (Expr)));
996               Res := Loop_Actions (Parent (Expr));
997               Set_Loop_Actions (Parent (Expr), No_List);
998               return Res;
999
1000            else
1001               return Lis;
1002            end if;
1003         end Add_Loop_Actions;
1004
1005      --  Start of processing for Gen_Assign
1006
1007      begin
1008         if No (Indexes) then
1009            New_Indexes := New_List;
1010         else
1011            New_Indexes := New_Copy_List_Tree (Indexes);
1012         end if;
1013
1014         Append_To (New_Indexes, Ind);
1015
1016         if Present (Next_Index (Index)) then
1017            return
1018              Add_Loop_Actions (
1019                Build_Array_Aggr_Code
1020                  (N           => Expr,
1021                   Ctype       => Ctype,
1022                   Index       => Next_Index (Index),
1023                   Into        => Into,
1024                   Scalar_Comp => Scalar_Comp,
1025                   Indexes     => New_Indexes));
1026         end if;
1027
1028         --  If we get here then we are at a bottom-level (sub-)aggregate
1029
1030         Indexed_Comp :=
1031           Checks_Off
1032             (Make_Indexed_Component (Loc,
1033                Prefix      => New_Copy_Tree (Into),
1034                Expressions => New_Indexes));
1035
1036         Set_Assignment_OK (Indexed_Comp);
1037
1038         --  Ada 2005 (AI-287): In case of default initialized component, Expr
1039         --  is not present (and therefore we also initialize Expr_Q to empty).
1040
1041         if No (Expr) then
1042            Expr_Q := Empty;
1043         elsif Nkind (Expr) = N_Qualified_Expression then
1044            Expr_Q := Expression (Expr);
1045         else
1046            Expr_Q := Expr;
1047         end if;
1048
1049         if Present (Etype (N)) and then Etype (N) /= Any_Composite then
1050            Comp_Type := Component_Type (Etype (N));
1051            pragma Assert (Comp_Type = Ctype); --  AI-287
1052
1053         elsif Present (Next (First (New_Indexes))) then
1054
1055            --  Ada 2005 (AI-287): Do nothing in case of default initialized
1056            --  component because we have received the component type in
1057            --  the formal parameter Ctype.
1058
1059            --  ??? Some assert pragmas have been added to check if this new
1060            --  formal can be used to replace this code in all cases.
1061
1062            if Present (Expr) then
1063
1064               --  This is a multidimensional array. Recover the component type
1065               --  from the outermost aggregate, because subaggregates do not
1066               --  have an assigned type.
1067
1068               declare
1069                  P : Node_Id;
1070
1071               begin
1072                  P := Parent (Expr);
1073                  while Present (P) loop
1074                     if Nkind (P) = N_Aggregate
1075                       and then Present (Etype (P))
1076                     then
1077                        Comp_Type := Component_Type (Etype (P));
1078                        exit;
1079
1080                     else
1081                        P := Parent (P);
1082                     end if;
1083                  end loop;
1084
1085                  pragma Assert (Comp_Type = Ctype); --  AI-287
1086               end;
1087            end if;
1088         end if;
1089
1090         --  Ada 2005 (AI-287): We only analyze the expression in case of non-
1091         --  default initialized components (otherwise Expr_Q is not present).
1092
1093         if Present (Expr_Q)
1094           and then Nkind_In (Expr_Q, N_Aggregate, N_Extension_Aggregate)
1095         then
1096            --  At this stage the Expression may not have been analyzed yet
1097            --  because the array aggregate code has not been updated to use
1098            --  the Expansion_Delayed flag and avoid analysis altogether to
1099            --  solve the same problem (see Resolve_Aggr_Expr). So let us do
1100            --  the analysis of non-array aggregates now in order to get the
1101            --  value of Expansion_Delayed flag for the inner aggregate ???
1102
1103            if Present (Comp_Type) and then not Is_Array_Type (Comp_Type) then
1104               Analyze_And_Resolve (Expr_Q, Comp_Type);
1105            end if;
1106
1107            if Is_Delayed_Aggregate (Expr_Q) then
1108
1109               --  This is either a subaggregate of a multidimensional array,
1110               --  or a component of an array type whose component type is
1111               --  also an array. In the latter case, the expression may have
1112               --  component associations that provide different bounds from
1113               --  those of the component type, and sliding must occur. Instead
1114               --  of decomposing the current aggregate assignment, force the
1115               --  re-analysis of the assignment, so that a temporary will be
1116               --  generated in the usual fashion, and sliding will take place.
1117
1118               if Nkind (Parent (N)) = N_Assignment_Statement
1119                 and then Is_Array_Type (Comp_Type)
1120                 and then Present (Component_Associations (Expr_Q))
1121                 and then Must_Slide (Comp_Type, Etype (Expr_Q))
1122               then
1123                  Set_Expansion_Delayed (Expr_Q, False);
1124                  Set_Analyzed (Expr_Q, False);
1125
1126               else
1127                  return
1128                    Add_Loop_Actions (
1129                      Late_Expansion (Expr_Q, Etype (Expr_Q), Indexed_Comp));
1130               end if;
1131            end if;
1132         end if;
1133
1134         --  Ada 2005 (AI-287): In case of default initialized component, call
1135         --  the initialization subprogram associated with the component type.
1136         --  If the component type is an access type, add an explicit null
1137         --  assignment, because for the back-end there is an initialization
1138         --  present for the whole aggregate, and no default initialization
1139         --  will take place.
1140
1141         --  In addition, if the component type is controlled, we must call
1142         --  its Initialize procedure explicitly, because there is no explicit
1143         --  object creation that will invoke it otherwise.
1144
1145         if No (Expr) then
1146            if Present (Base_Init_Proc (Base_Type (Ctype)))
1147              or else Has_Task (Base_Type (Ctype))
1148            then
1149               Append_List_To (L,
1150                 Build_Initialization_Call (Loc,
1151                   Id_Ref            => Indexed_Comp,
1152                   Typ               => Ctype,
1153                   With_Default_Init => True));
1154
1155               --  If the component type has invariants, add an invariant
1156               --  check after the component is default-initialized. It will
1157               --  be analyzed and resolved before the code for initialization
1158               --  of other components.
1159
1160               if Has_Invariants (Ctype) then
1161                  Set_Etype (Indexed_Comp, Ctype);
1162                  Append_To (L, Make_Invariant_Call (Indexed_Comp));
1163               end if;
1164
1165            elsif Is_Access_Type (Ctype) then
1166               Append_To (L,
1167                 Make_Assignment_Statement (Loc,
1168                   Name       => Indexed_Comp,
1169                   Expression => Make_Null (Loc)));
1170            end if;
1171
1172            if Needs_Finalization (Ctype) then
1173               Append_To (L,
1174                 Make_Init_Call
1175                   (Obj_Ref => New_Copy_Tree (Indexed_Comp),
1176                    Typ     => Ctype));
1177            end if;
1178
1179         else
1180            A :=
1181              Make_OK_Assignment_Statement (Loc,
1182                Name       => Indexed_Comp,
1183                Expression => New_Copy_Tree (Expr));
1184
1185            --  The target of the assignment may not have been initialized,
1186            --  so it is not possible to call Finalize as expected in normal
1187            --  controlled assignments. We must also avoid using the primitive
1188            --  _assign (which depends on a valid target, and may for example
1189            --  perform discriminant checks on it).
1190
1191            --  Both Finalize and usage of _assign are disabled by setting
1192            --  No_Ctrl_Actions on the assignment. The rest of the controlled
1193            --  actions are done manually with the proper finalization list
1194            --  coming from the context.
1195
1196            Set_No_Ctrl_Actions (A);
1197
1198            --  If this is an aggregate for an array of arrays, each
1199            --  sub-aggregate will be expanded as well, and even with
1200            --  No_Ctrl_Actions the assignments of inner components will
1201            --  require attachment in their assignments to temporaries. These
1202            --  temporaries must be finalized for each subaggregate, to prevent
1203            --  multiple attachments of the same temporary location to same
1204            --  finalization chain (and consequently circular lists). To ensure
1205            --  that finalization takes place for each subaggregate we wrap the
1206            --  assignment in a block.
1207
1208            if Present (Comp_Type)
1209              and then Needs_Finalization (Comp_Type)
1210              and then Is_Array_Type (Comp_Type)
1211              and then Present (Expr)
1212            then
1213               A :=
1214                 Make_Block_Statement (Loc,
1215                   Handled_Statement_Sequence =>
1216                     Make_Handled_Sequence_Of_Statements (Loc,
1217                       Statements => New_List (A)));
1218            end if;
1219
1220            Append_To (L, A);
1221
1222            --  Adjust the tag if tagged (because of possible view
1223            --  conversions), unless compiling for a VM where tags
1224            --  are implicit.
1225
1226            if Present (Comp_Type)
1227              and then Is_Tagged_Type (Comp_Type)
1228              and then Tagged_Type_Expansion
1229            then
1230               declare
1231                  Full_Typ : constant Entity_Id := Underlying_Type (Comp_Type);
1232
1233               begin
1234                  A :=
1235                    Make_OK_Assignment_Statement (Loc,
1236                      Name       =>
1237                        Make_Selected_Component (Loc,
1238                          Prefix        =>  New_Copy_Tree (Indexed_Comp),
1239                          Selector_Name =>
1240                            New_Occurrence_Of
1241                              (First_Tag_Component (Full_Typ), Loc)),
1242
1243                      Expression =>
1244                        Unchecked_Convert_To (RTE (RE_Tag),
1245                          New_Occurrence_Of
1246                            (Node (First_Elmt (Access_Disp_Table (Full_Typ))),
1247                             Loc)));
1248
1249                  Append_To (L, A);
1250               end;
1251            end if;
1252
1253            --  Adjust and attach the component to the proper final list, which
1254            --  can be the controller of the outer record object or the final
1255            --  list associated with the scope.
1256
1257            --  If the component is itself an array of controlled types, whose
1258            --  value is given by a sub-aggregate, then the attach calls have
1259            --  been generated when individual subcomponent are assigned, and
1260            --  must not be done again to prevent malformed finalization chains
1261            --  (see comments above, concerning the creation of a block to hold
1262            --  inner finalization actions).
1263
1264            if Present (Comp_Type)
1265              and then Needs_Finalization (Comp_Type)
1266              and then not Is_Limited_Type (Comp_Type)
1267              and then not
1268                (Is_Array_Type (Comp_Type)
1269                  and then Is_Controlled (Component_Type (Comp_Type))
1270                  and then Nkind (Expr) = N_Aggregate)
1271            then
1272               Append_To (L,
1273                 Make_Adjust_Call
1274                   (Obj_Ref => New_Copy_Tree (Indexed_Comp),
1275                    Typ     => Comp_Type));
1276            end if;
1277         end if;
1278
1279         return Add_Loop_Actions (L);
1280      end Gen_Assign;
1281
1282      --------------
1283      -- Gen_Loop --
1284      --------------
1285
1286      function Gen_Loop (L, H : Node_Id; Expr : Node_Id) return List_Id is
1287         L_J : Node_Id;
1288
1289         L_L : Node_Id;
1290         --  Index_Base'(L)
1291
1292         L_H : Node_Id;
1293         --  Index_Base'(H)
1294
1295         L_Range : Node_Id;
1296         --  Index_Base'(L) .. Index_Base'(H)
1297
1298         L_Iteration_Scheme : Node_Id;
1299         --  L_J in Index_Base'(L) .. Index_Base'(H)
1300
1301         L_Body : List_Id;
1302         --  The statements to execute in the loop
1303
1304         S : constant List_Id := New_List;
1305         --  List of statements
1306
1307         Tcopy : Node_Id;
1308         --  Copy of expression tree, used for checking purposes
1309
1310      begin
1311         --  If loop bounds define an empty range return the null statement
1312
1313         if Empty_Range (L, H) then
1314            Append_To (S, Make_Null_Statement (Loc));
1315
1316            --  Ada 2005 (AI-287): Nothing else need to be done in case of
1317            --  default initialized component.
1318
1319            if No (Expr) then
1320               null;
1321
1322            else
1323               --  The expression must be type-checked even though no component
1324               --  of the aggregate will have this value. This is done only for
1325               --  actual components of the array, not for subaggregates. Do
1326               --  the check on a copy, because the expression may be shared
1327               --  among several choices, some of which might be non-null.
1328
1329               if Present (Etype (N))
1330                 and then Is_Array_Type (Etype (N))
1331                 and then No (Next_Index (Index))
1332               then
1333                  Expander_Mode_Save_And_Set (False);
1334                  Tcopy := New_Copy_Tree (Expr);
1335                  Set_Parent (Tcopy, N);
1336                  Analyze_And_Resolve (Tcopy, Component_Type (Etype (N)));
1337                  Expander_Mode_Restore;
1338               end if;
1339            end if;
1340
1341            return S;
1342
1343         --  If loop bounds are the same then generate an assignment
1344
1345         elsif Equal (L, H) then
1346            return Gen_Assign (New_Copy_Tree (L), Expr);
1347
1348         --  If H - L <= 2 then generate a sequence of assignments when we are
1349         --  processing the bottom most aggregate and it contains scalar
1350         --  components.
1351
1352         elsif No (Next_Index (Index))
1353           and then Scalar_Comp
1354           and then Local_Compile_Time_Known_Value (L)
1355           and then Local_Compile_Time_Known_Value (H)
1356           and then Local_Expr_Value (H) - Local_Expr_Value (L) <= 2
1357         then
1358
1359            Append_List_To (S, Gen_Assign (New_Copy_Tree (L), Expr));
1360            Append_List_To (S, Gen_Assign (Add (1, To => L), Expr));
1361
1362            if Local_Expr_Value (H) - Local_Expr_Value (L) = 2 then
1363               Append_List_To (S, Gen_Assign (Add (2, To => L), Expr));
1364            end if;
1365
1366            return S;
1367         end if;
1368
1369         --  Otherwise construct the loop, starting with the loop index L_J
1370
1371         L_J := Make_Temporary (Loc, 'J', L);
1372
1373         --  Construct "L .. H" in Index_Base. We use a qualified expression
1374         --  for the bound to convert to the index base, but we don't need
1375         --  to do that if we already have the base type at hand.
1376
1377         if Etype (L) = Index_Base then
1378            L_L := L;
1379         else
1380            L_L :=
1381              Make_Qualified_Expression (Loc,
1382                Subtype_Mark => Index_Base_Name,
1383                Expression   => L);
1384         end if;
1385
1386         if Etype (H) = Index_Base then
1387            L_H := H;
1388         else
1389            L_H :=
1390              Make_Qualified_Expression (Loc,
1391                Subtype_Mark => Index_Base_Name,
1392                Expression   => H);
1393         end if;
1394
1395         L_Range :=
1396           Make_Range (Loc,
1397             Low_Bound  => L_L,
1398             High_Bound => L_H);
1399
1400         --  Construct "for L_J in Index_Base range L .. H"
1401
1402         L_Iteration_Scheme :=
1403           Make_Iteration_Scheme
1404             (Loc,
1405              Loop_Parameter_Specification =>
1406                Make_Loop_Parameter_Specification
1407                  (Loc,
1408                   Defining_Identifier         => L_J,
1409                   Discrete_Subtype_Definition => L_Range));
1410
1411         --  Construct the statements to execute in the loop body
1412
1413         L_Body := Gen_Assign (New_Occurrence_Of (L_J, Loc), Expr);
1414
1415         --  Construct the final loop
1416
1417         Append_To (S,
1418           Make_Implicit_Loop_Statement
1419             (Node             => N,
1420              Identifier       => Empty,
1421              Iteration_Scheme => L_Iteration_Scheme,
1422              Statements       => L_Body));
1423
1424         --  A small optimization: if the aggregate is initialized with a box
1425         --  and the component type has no initialization procedure, remove the
1426         --  useless empty loop.
1427
1428         if Nkind (First (S)) = N_Loop_Statement
1429           and then Is_Empty_List (Statements (First (S)))
1430         then
1431            return New_List (Make_Null_Statement (Loc));
1432         else
1433            return S;
1434         end if;
1435      end Gen_Loop;
1436
1437      ---------------
1438      -- Gen_While --
1439      ---------------
1440
1441      --  The code built is
1442
1443      --     W_J : Index_Base := L;
1444      --     while W_J < H loop
1445      --        W_J := Index_Base'Succ (W);
1446      --        L_Body;
1447      --     end loop;
1448
1449      function Gen_While (L, H : Node_Id; Expr : Node_Id) return List_Id is
1450         W_J : Node_Id;
1451
1452         W_Decl : Node_Id;
1453         --  W_J : Base_Type := L;
1454
1455         W_Iteration_Scheme : Node_Id;
1456         --  while W_J < H
1457
1458         W_Index_Succ : Node_Id;
1459         --  Index_Base'Succ (J)
1460
1461         W_Increment : Node_Id;
1462         --  W_J := Index_Base'Succ (W)
1463
1464         W_Body : constant List_Id := New_List;
1465         --  The statements to execute in the loop
1466
1467         S : constant List_Id := New_List;
1468         --  list of statement
1469
1470      begin
1471         --  If loop bounds define an empty range or are equal return null
1472
1473         if Empty_Range (L, H) or else Equal (L, H) then
1474            Append_To (S, Make_Null_Statement (Loc));
1475            return S;
1476         end if;
1477
1478         --  Build the decl of W_J
1479
1480         W_J    := Make_Temporary (Loc, 'J', L);
1481         W_Decl :=
1482           Make_Object_Declaration
1483             (Loc,
1484              Defining_Identifier => W_J,
1485              Object_Definition   => Index_Base_Name,
1486              Expression          => L);
1487
1488         --  Theoretically we should do a New_Copy_Tree (L) here, but we know
1489         --  that in this particular case L is a fresh Expr generated by
1490         --  Add which we are the only ones to use.
1491
1492         Append_To (S, W_Decl);
1493
1494         --  Construct " while W_J < H"
1495
1496         W_Iteration_Scheme :=
1497           Make_Iteration_Scheme
1498             (Loc,
1499              Condition => Make_Op_Lt
1500                             (Loc,
1501                              Left_Opnd  => New_Occurrence_Of (W_J, Loc),
1502                              Right_Opnd => New_Copy_Tree (H)));
1503
1504         --  Construct the statements to execute in the loop body
1505
1506         W_Index_Succ :=
1507           Make_Attribute_Reference
1508             (Loc,
1509              Prefix         => Index_Base_Name,
1510              Attribute_Name => Name_Succ,
1511              Expressions    => New_List (New_Occurrence_Of (W_J, Loc)));
1512
1513         W_Increment  :=
1514           Make_OK_Assignment_Statement
1515             (Loc,
1516              Name       => New_Occurrence_Of (W_J, Loc),
1517              Expression => W_Index_Succ);
1518
1519         Append_To (W_Body, W_Increment);
1520         Append_List_To (W_Body,
1521           Gen_Assign (New_Occurrence_Of (W_J, Loc), Expr));
1522
1523         --  Construct the final loop
1524
1525         Append_To (S,
1526           Make_Implicit_Loop_Statement
1527             (Node             => N,
1528              Identifier       => Empty,
1529              Iteration_Scheme => W_Iteration_Scheme,
1530              Statements       => W_Body));
1531
1532         return S;
1533      end Gen_While;
1534
1535      --------------------
1536      -- Get_Assoc_Expr --
1537      --------------------
1538
1539      function Get_Assoc_Expr (Assoc : Node_Id) return Node_Id is
1540         Typ : constant Entity_Id := Base_Type (Etype (N));
1541
1542      begin
1543         if Box_Present (Assoc) then
1544            if Is_Scalar_Type (Ctype) then
1545               if Present (Default_Aspect_Component_Value (Typ)) then
1546                  return Default_Aspect_Component_Value (Typ);
1547               elsif Present (Default_Aspect_Value (Ctype)) then
1548                  return Default_Aspect_Value (Ctype);
1549               else
1550                  return Empty;
1551               end if;
1552
1553            else
1554               return Empty;
1555            end if;
1556
1557         else
1558            return Expression (Assoc);
1559         end if;
1560      end Get_Assoc_Expr;
1561
1562      ---------------------
1563      -- Index_Base_Name --
1564      ---------------------
1565
1566      function Index_Base_Name return Node_Id is
1567      begin
1568         return New_Occurrence_Of (Index_Base, Sloc (N));
1569      end Index_Base_Name;
1570
1571      ------------------------------------
1572      -- Local_Compile_Time_Known_Value --
1573      ------------------------------------
1574
1575      function Local_Compile_Time_Known_Value (E : Node_Id) return Boolean is
1576      begin
1577         return Compile_Time_Known_Value (E)
1578           or else
1579             (Nkind (E) = N_Attribute_Reference
1580               and then Attribute_Name (E) = Name_Val
1581               and then Compile_Time_Known_Value (First (Expressions (E))));
1582      end Local_Compile_Time_Known_Value;
1583
1584      ----------------------
1585      -- Local_Expr_Value --
1586      ----------------------
1587
1588      function Local_Expr_Value (E : Node_Id) return Uint is
1589      begin
1590         if Compile_Time_Known_Value (E) then
1591            return Expr_Value (E);
1592         else
1593            return Expr_Value (First (Expressions (E)));
1594         end if;
1595      end Local_Expr_Value;
1596
1597      --  Build_Array_Aggr_Code Variables
1598
1599      Assoc  : Node_Id;
1600      Choice : Node_Id;
1601      Expr   : Node_Id;
1602      Typ    : Entity_Id;
1603
1604      Others_Assoc        : Node_Id := Empty;
1605
1606      Aggr_L : constant Node_Id := Low_Bound (Aggregate_Bounds (N));
1607      Aggr_H : constant Node_Id := High_Bound (Aggregate_Bounds (N));
1608      --  The aggregate bounds of this specific sub-aggregate. Note that if
1609      --  the code generated by Build_Array_Aggr_Code is executed then these
1610      --  bounds are OK. Otherwise a Constraint_Error would have been raised.
1611
1612      Aggr_Low  : constant Node_Id := Duplicate_Subexpr_No_Checks (Aggr_L);
1613      Aggr_High : constant Node_Id := Duplicate_Subexpr_No_Checks (Aggr_H);
1614      --  After Duplicate_Subexpr these are side-effect free
1615
1616      Low        : Node_Id;
1617      High       : Node_Id;
1618
1619      Nb_Choices : Nat := 0;
1620      Table      : Case_Table_Type (1 .. Number_Of_Choices (N));
1621      --  Used to sort all the different choice values
1622
1623      Nb_Elements : Int;
1624      --  Number of elements in the positional aggregate
1625
1626      New_Code : constant List_Id := New_List;
1627
1628   --  Start of processing for Build_Array_Aggr_Code
1629
1630   begin
1631      --  First before we start, a special case. if we have a bit packed
1632      --  array represented as a modular type, then clear the value to
1633      --  zero first, to ensure that unused bits are properly cleared.
1634
1635      Typ := Etype (N);
1636
1637      if Present (Typ)
1638        and then Is_Bit_Packed_Array (Typ)
1639        and then Is_Modular_Integer_Type (Packed_Array_Impl_Type (Typ))
1640      then
1641         Append_To (New_Code,
1642           Make_Assignment_Statement (Loc,
1643             Name       => New_Copy_Tree (Into),
1644             Expression =>
1645               Unchecked_Convert_To (Typ,
1646                 Make_Integer_Literal (Loc, Uint_0))));
1647      end if;
1648
1649      --  If the component type contains tasks, we need to build a Master
1650      --  entity in the current scope, because it will be needed if build-
1651      --  in-place functions are called in the expanded code.
1652
1653      if Nkind (Parent (N)) = N_Object_Declaration and then Has_Task (Typ) then
1654         Build_Master_Entity (Defining_Identifier (Parent (N)));
1655      end if;
1656
1657      --  STEP 1: Process component associations
1658
1659      --  For those associations that may generate a loop, initialize
1660      --  Loop_Actions to collect inserted actions that may be crated.
1661
1662      --  Skip this if no component associations
1663
1664      if No (Expressions (N)) then
1665
1666         --  STEP 1 (a): Sort the discrete choices
1667
1668         Assoc := First (Component_Associations (N));
1669         while Present (Assoc) loop
1670            Choice := First (Choices (Assoc));
1671            while Present (Choice) loop
1672               if Nkind (Choice) = N_Others_Choice then
1673                  Set_Loop_Actions (Assoc, New_List);
1674                  Others_Assoc := Assoc;
1675                  exit;
1676               end if;
1677
1678               Get_Index_Bounds (Choice, Low, High);
1679
1680               if Low /= High then
1681                  Set_Loop_Actions (Assoc, New_List);
1682               end if;
1683
1684               Nb_Choices := Nb_Choices + 1;
1685
1686               Table (Nb_Choices) :=
1687                  (Choice_Lo   => Low,
1688                   Choice_Hi   => High,
1689                   Choice_Node => Get_Assoc_Expr (Assoc));
1690
1691               Next (Choice);
1692            end loop;
1693
1694            Next (Assoc);
1695         end loop;
1696
1697         --  If there is more than one set of choices these must be static
1698         --  and we can therefore sort them. Remember that Nb_Choices does not
1699         --  account for an others choice.
1700
1701         if Nb_Choices > 1 then
1702            Sort_Case_Table (Table);
1703         end if;
1704
1705         --  STEP 1 (b):  take care of the whole set of discrete choices
1706
1707         for J in 1 .. Nb_Choices loop
1708            Low  := Table (J).Choice_Lo;
1709            High := Table (J).Choice_Hi;
1710            Expr := Table (J).Choice_Node;
1711            Append_List (Gen_Loop (Low, High, Expr), To => New_Code);
1712         end loop;
1713
1714         --  STEP 1 (c): generate the remaining loops to cover others choice
1715         --  We don't need to generate loops over empty gaps, but if there is
1716         --  a single empty range we must analyze the expression for semantics
1717
1718         if Present (Others_Assoc) then
1719            declare
1720               First : Boolean := True;
1721
1722            begin
1723               for J in 0 .. Nb_Choices loop
1724                  if J = 0 then
1725                     Low := Aggr_Low;
1726                  else
1727                     Low := Add (1, To => Table (J).Choice_Hi);
1728                  end if;
1729
1730                  if J = Nb_Choices then
1731                     High := Aggr_High;
1732                  else
1733                     High := Add (-1, To => Table (J + 1).Choice_Lo);
1734                  end if;
1735
1736                  --  If this is an expansion within an init proc, make
1737                  --  sure that discriminant references are replaced by
1738                  --  the corresponding discriminal.
1739
1740                  if Inside_Init_Proc then
1741                     if Is_Entity_Name (Low)
1742                       and then Ekind (Entity (Low)) = E_Discriminant
1743                     then
1744                        Set_Entity (Low, Discriminal (Entity (Low)));
1745                     end if;
1746
1747                     if Is_Entity_Name (High)
1748                       and then Ekind (Entity (High)) = E_Discriminant
1749                     then
1750                        Set_Entity (High, Discriminal (Entity (High)));
1751                     end if;
1752                  end if;
1753
1754                  if First
1755                    or else not Empty_Range (Low, High)
1756                  then
1757                     First := False;
1758                     Append_List
1759                       (Gen_Loop (Low, High,
1760                          Get_Assoc_Expr (Others_Assoc)), To => New_Code);
1761                  end if;
1762               end loop;
1763            end;
1764         end if;
1765
1766      --  STEP 2: Process positional components
1767
1768      else
1769         --  STEP 2 (a): Generate the assignments for each positional element
1770         --  Note that here we have to use Aggr_L rather than Aggr_Low because
1771         --  Aggr_L is analyzed and Add wants an analyzed expression.
1772
1773         Expr        := First (Expressions (N));
1774         Nb_Elements := -1;
1775         while Present (Expr) loop
1776            Nb_Elements := Nb_Elements + 1;
1777            Append_List (Gen_Assign (Add (Nb_Elements, To => Aggr_L), Expr),
1778                         To => New_Code);
1779            Next (Expr);
1780         end loop;
1781
1782         --  STEP 2 (b): Generate final loop if an others choice is present
1783         --  Here Nb_Elements gives the offset of the last positional element.
1784
1785         if Present (Component_Associations (N)) then
1786            Assoc := Last (Component_Associations (N));
1787
1788            --  Ada 2005 (AI-287)
1789
1790            Append_List (Gen_While (Add (Nb_Elements, To => Aggr_L),
1791                                    Aggr_High,
1792                                    Get_Assoc_Expr (Assoc)), --  AI-287
1793                         To => New_Code);
1794         end if;
1795      end if;
1796
1797      return New_Code;
1798   end Build_Array_Aggr_Code;
1799
1800   ----------------------------
1801   -- Build_Record_Aggr_Code --
1802   ----------------------------
1803
1804   function Build_Record_Aggr_Code
1805     (N   : Node_Id;
1806      Typ : Entity_Id;
1807      Lhs : Node_Id) return List_Id
1808   is
1809      Loc     : constant Source_Ptr := Sloc (N);
1810      L       : constant List_Id    := New_List;
1811      N_Typ   : constant Entity_Id  := Etype (N);
1812
1813      Comp      : Node_Id;
1814      Instr     : Node_Id;
1815      Ref       : Node_Id;
1816      Target    : Entity_Id;
1817      Comp_Type : Entity_Id;
1818      Selector  : Entity_Id;
1819      Comp_Expr : Node_Id;
1820      Expr_Q    : Node_Id;
1821
1822      --  If this is an internal aggregate, the External_Final_List is an
1823      --  expression for the controller record of the enclosing type.
1824
1825      --  If the current aggregate has several controlled components, this
1826      --  expression will appear in several calls to attach to the finali-
1827      --  zation list, and it must not be shared.
1828
1829      Ancestor_Is_Expression   : Boolean := False;
1830      Ancestor_Is_Subtype_Mark : Boolean := False;
1831
1832      Init_Typ : Entity_Id := Empty;
1833
1834      Finalization_Done : Boolean := False;
1835      --  True if Generate_Finalization_Actions has already been called; calls
1836      --  after the first do nothing.
1837
1838      function Ancestor_Discriminant_Value (Disc : Entity_Id) return Node_Id;
1839      --  Returns the value that the given discriminant of an ancestor type
1840      --  should receive (in the absence of a conflict with the value provided
1841      --  by an ancestor part of an extension aggregate).
1842
1843      procedure Check_Ancestor_Discriminants (Anc_Typ : Entity_Id);
1844      --  Check that each of the discriminant values defined by the ancestor
1845      --  part of an extension aggregate match the corresponding values
1846      --  provided by either an association of the aggregate or by the
1847      --  constraint imposed by a parent type (RM95-4.3.2(8)).
1848
1849      function Compatible_Int_Bounds
1850        (Agg_Bounds : Node_Id;
1851         Typ_Bounds : Node_Id) return Boolean;
1852      --  Return true if Agg_Bounds are equal or within Typ_Bounds. It is
1853      --  assumed that both bounds are integer ranges.
1854
1855      procedure Generate_Finalization_Actions;
1856      --  Deal with the various controlled type data structure initializations
1857      --  (but only if it hasn't been done already).
1858
1859      function Get_Constraint_Association (T : Entity_Id) return Node_Id;
1860      --  Returns the first discriminant association in the constraint
1861      --  associated with T, if any, otherwise returns Empty.
1862
1863      procedure Init_Hidden_Discriminants (Typ : Entity_Id; List : List_Id);
1864      --  If Typ is derived, and constrains discriminants of the parent type,
1865      --  these discriminants are not components of the aggregate, and must be
1866      --  initialized. The assignments are appended to List. The same is done
1867      --  if Typ derives fron an already constrained subtype of a discriminated
1868      --  parent type.
1869
1870      function Get_Explicit_Discriminant_Value (D : Entity_Id) return Node_Id;
1871      --  If the ancestor part is an unconstrained type and further ancestors
1872      --  do not provide discriminants for it, check aggregate components for
1873      --  values of the discriminants.
1874
1875      function Is_Int_Range_Bounds (Bounds : Node_Id) return Boolean;
1876      --  Check whether Bounds is a range node and its lower and higher bounds
1877      --  are integers literals.
1878
1879      ---------------------------------
1880      -- Ancestor_Discriminant_Value --
1881      ---------------------------------
1882
1883      function Ancestor_Discriminant_Value (Disc : Entity_Id) return Node_Id is
1884         Assoc        : Node_Id;
1885         Assoc_Elmt   : Elmt_Id;
1886         Aggr_Comp    : Entity_Id;
1887         Corresp_Disc : Entity_Id;
1888         Current_Typ  : Entity_Id := Base_Type (Typ);
1889         Parent_Typ   : Entity_Id;
1890         Parent_Disc  : Entity_Id;
1891         Save_Assoc   : Node_Id := Empty;
1892
1893      begin
1894         --  First check any discriminant associations to see if any of them
1895         --  provide a value for the discriminant.
1896
1897         if Present (Discriminant_Specifications (Parent (Current_Typ))) then
1898            Assoc := First (Component_Associations (N));
1899            while Present (Assoc) loop
1900               Aggr_Comp := Entity (First (Choices (Assoc)));
1901
1902               if Ekind (Aggr_Comp) = E_Discriminant then
1903                  Save_Assoc := Expression (Assoc);
1904
1905                  Corresp_Disc := Corresponding_Discriminant (Aggr_Comp);
1906                  while Present (Corresp_Disc) loop
1907
1908                     --  If found a corresponding discriminant then return the
1909                     --  value given in the aggregate. (Note: this is not
1910                     --  correct in the presence of side effects. ???)
1911
1912                     if Disc = Corresp_Disc then
1913                        return Duplicate_Subexpr (Expression (Assoc));
1914                     end if;
1915
1916                     Corresp_Disc := Corresponding_Discriminant (Corresp_Disc);
1917                  end loop;
1918               end if;
1919
1920               Next (Assoc);
1921            end loop;
1922         end if;
1923
1924         --  No match found in aggregate, so chain up parent types to find
1925         --  a constraint that defines the value of the discriminant.
1926
1927         Parent_Typ := Etype (Current_Typ);
1928         while Current_Typ /= Parent_Typ loop
1929            if Has_Discriminants (Parent_Typ)
1930              and then not Has_Unknown_Discriminants (Parent_Typ)
1931            then
1932               Parent_Disc := First_Discriminant (Parent_Typ);
1933
1934               --  We either get the association from the subtype indication
1935               --  of the type definition itself, or from the discriminant
1936               --  constraint associated with the type entity (which is
1937               --  preferable, but it's not always present ???)
1938
1939               if Is_Empty_Elmt_List (Discriminant_Constraint (Current_Typ))
1940               then
1941                  Assoc := Get_Constraint_Association (Current_Typ);
1942                  Assoc_Elmt := No_Elmt;
1943               else
1944                  Assoc_Elmt :=
1945                    First_Elmt (Discriminant_Constraint (Current_Typ));
1946                  Assoc := Node (Assoc_Elmt);
1947               end if;
1948
1949               --  Traverse the discriminants of the parent type looking
1950               --  for one that corresponds.
1951
1952               while Present (Parent_Disc) and then Present (Assoc) loop
1953                  Corresp_Disc := Parent_Disc;
1954                  while Present (Corresp_Disc)
1955                    and then Disc /= Corresp_Disc
1956                  loop
1957                     Corresp_Disc := Corresponding_Discriminant (Corresp_Disc);
1958                  end loop;
1959
1960                  if Disc = Corresp_Disc then
1961                     if Nkind (Assoc) = N_Discriminant_Association then
1962                        Assoc := Expression (Assoc);
1963                     end if;
1964
1965                     --  If the located association directly denotes
1966                     --  a discriminant, then use the value of a saved
1967                     --  association of the aggregate. This is an approach
1968                     --  used to handle certain cases involving multiple
1969                     --  discriminants mapped to a single discriminant of
1970                     --  a descendant. It's not clear how to locate the
1971                     --  appropriate discriminant value for such cases. ???
1972
1973                     if Is_Entity_Name (Assoc)
1974                       and then Ekind (Entity (Assoc)) = E_Discriminant
1975                     then
1976                        Assoc := Save_Assoc;
1977                     end if;
1978
1979                     return Duplicate_Subexpr (Assoc);
1980                  end if;
1981
1982                  Next_Discriminant (Parent_Disc);
1983
1984                  if No (Assoc_Elmt) then
1985                     Next (Assoc);
1986
1987                  else
1988                     Next_Elmt (Assoc_Elmt);
1989
1990                     if Present (Assoc_Elmt) then
1991                        Assoc := Node (Assoc_Elmt);
1992                     else
1993                        Assoc := Empty;
1994                     end if;
1995                  end if;
1996               end loop;
1997            end if;
1998
1999            Current_Typ := Parent_Typ;
2000            Parent_Typ := Etype (Current_Typ);
2001         end loop;
2002
2003         --  In some cases there's no ancestor value to locate (such as
2004         --  when an ancestor part given by an expression defines the
2005         --  discriminant value).
2006
2007         return Empty;
2008      end Ancestor_Discriminant_Value;
2009
2010      ----------------------------------
2011      -- Check_Ancestor_Discriminants --
2012      ----------------------------------
2013
2014      procedure Check_Ancestor_Discriminants (Anc_Typ : Entity_Id) is
2015         Discr      : Entity_Id;
2016         Disc_Value : Node_Id;
2017         Cond       : Node_Id;
2018
2019      begin
2020         Discr := First_Discriminant (Base_Type (Anc_Typ));
2021         while Present (Discr) loop
2022            Disc_Value := Ancestor_Discriminant_Value (Discr);
2023
2024            if Present (Disc_Value) then
2025               Cond := Make_Op_Ne (Loc,
2026                 Left_Opnd  =>
2027                   Make_Selected_Component (Loc,
2028                     Prefix        => New_Copy_Tree (Target),
2029                     Selector_Name => New_Occurrence_Of (Discr, Loc)),
2030                 Right_Opnd => Disc_Value);
2031
2032               Append_To (L,
2033                 Make_Raise_Constraint_Error (Loc,
2034                   Condition => Cond,
2035                   Reason    => CE_Discriminant_Check_Failed));
2036            end if;
2037
2038            Next_Discriminant (Discr);
2039         end loop;
2040      end Check_Ancestor_Discriminants;
2041
2042      ---------------------------
2043      -- Compatible_Int_Bounds --
2044      ---------------------------
2045
2046      function Compatible_Int_Bounds
2047        (Agg_Bounds : Node_Id;
2048         Typ_Bounds : Node_Id) return Boolean
2049      is
2050         Agg_Lo : constant Uint := Intval (Low_Bound  (Agg_Bounds));
2051         Agg_Hi : constant Uint := Intval (High_Bound (Agg_Bounds));
2052         Typ_Lo : constant Uint := Intval (Low_Bound  (Typ_Bounds));
2053         Typ_Hi : constant Uint := Intval (High_Bound (Typ_Bounds));
2054      begin
2055         return Typ_Lo <= Agg_Lo and then Agg_Hi <= Typ_Hi;
2056      end Compatible_Int_Bounds;
2057
2058      --------------------------------
2059      -- Get_Constraint_Association --
2060      --------------------------------
2061
2062      function Get_Constraint_Association (T : Entity_Id) return Node_Id is
2063         Indic : Node_Id;
2064         Typ   : Entity_Id;
2065
2066      begin
2067         Typ := T;
2068
2069         --  If type is private, get constraint from full view. This was
2070         --  previously done in an instance context, but is needed whenever
2071         --  the ancestor part has a discriminant, possibly inherited through
2072         --  multiple derivations.
2073
2074         if Is_Private_Type (Typ) and then Present (Full_View (Typ)) then
2075            Typ := Full_View (Typ);
2076         end if;
2077
2078         Indic := Subtype_Indication (Type_Definition (Parent (Typ)));
2079
2080         --  Verify that the subtype indication carries a constraint
2081
2082         if Nkind (Indic) = N_Subtype_Indication
2083           and then Present (Constraint (Indic))
2084         then
2085            return First (Constraints (Constraint (Indic)));
2086         end if;
2087
2088         return Empty;
2089      end Get_Constraint_Association;
2090
2091      -------------------------------------
2092      -- Get_Explicit_Discriminant_Value --
2093      -------------------------------------
2094
2095      function Get_Explicit_Discriminant_Value
2096        (D : Entity_Id) return Node_Id
2097      is
2098         Assoc  : Node_Id;
2099         Choice : Node_Id;
2100         Val    : Node_Id;
2101
2102      begin
2103         --  The aggregate has been normalized and all associations have a
2104         --  single choice.
2105
2106         Assoc := First (Component_Associations (N));
2107         while Present (Assoc) loop
2108            Choice := First (Choices (Assoc));
2109
2110            if Chars (Choice) = Chars (D) then
2111               Val := Expression (Assoc);
2112               Remove (Assoc);
2113               return Val;
2114            end if;
2115
2116            Next (Assoc);
2117         end loop;
2118
2119         return Empty;
2120      end Get_Explicit_Discriminant_Value;
2121
2122      -------------------------------
2123      -- Init_Hidden_Discriminants --
2124      -------------------------------
2125
2126      procedure Init_Hidden_Discriminants (Typ : Entity_Id; List : List_Id) is
2127         function Is_Completely_Hidden_Discriminant
2128           (Discr : Entity_Id) return Boolean;
2129         --  Determine whether Discr is a completely hidden discriminant of
2130         --  type Typ.
2131
2132         ---------------------------------------
2133         -- Is_Completely_Hidden_Discriminant --
2134         ---------------------------------------
2135
2136         function Is_Completely_Hidden_Discriminant
2137           (Discr : Entity_Id) return Boolean
2138         is
2139            Item : Entity_Id;
2140
2141         begin
2142            --  Use First/Next_Entity as First/Next_Discriminant do not yield
2143            --  completely hidden discriminants.
2144
2145            Item := First_Entity (Typ);
2146            while Present (Item) loop
2147               if Ekind (Item) = E_Discriminant
2148                 and then Is_Completely_Hidden (Item)
2149                 and then Chars (Original_Record_Component (Item)) =
2150                          Chars (Discr)
2151               then
2152                  return True;
2153               end if;
2154
2155               Next_Entity (Item);
2156            end loop;
2157
2158            return False;
2159         end Is_Completely_Hidden_Discriminant;
2160
2161         --  Local variables
2162
2163         Base_Typ     : Entity_Id;
2164         Discr        : Entity_Id;
2165         Discr_Constr : Elmt_Id;
2166         Discr_Init   : Node_Id;
2167         Discr_Val    : Node_Id;
2168         In_Aggr_Type : Boolean;
2169         Par_Typ      : Entity_Id;
2170
2171      --  Start of processing for Init_Hidden_Discriminants
2172
2173      begin
2174         --  The constraints on the hidden discriminants, if present, are kept
2175         --  in the Stored_Constraint list of the type itself, or in that of
2176         --  the base type. If not in the constraints of the aggregate itself,
2177         --  we examine ancestors to find discriminants that are not renamed
2178         --  by other discriminants but constrained explicitly.
2179
2180         In_Aggr_Type := True;
2181
2182         Base_Typ := Base_Type (Typ);
2183         while Is_Derived_Type (Base_Typ)
2184           and then
2185             (Present (Stored_Constraint (Base_Typ))
2186               or else
2187                 (In_Aggr_Type and then Present (Stored_Constraint (Typ))))
2188         loop
2189            Par_Typ := Etype (Base_Typ);
2190
2191            if not Has_Discriminants (Par_Typ) then
2192               return;
2193            end if;
2194
2195            Discr := First_Discriminant (Par_Typ);
2196
2197            --  We know that one of the stored-constraint lists is present
2198
2199            if Present (Stored_Constraint (Base_Typ)) then
2200               Discr_Constr := First_Elmt (Stored_Constraint (Base_Typ));
2201
2202            --  For private extension, stored constraint may be on full view
2203
2204            elsif Is_Private_Type (Base_Typ)
2205              and then Present (Full_View (Base_Typ))
2206              and then Present (Stored_Constraint (Full_View (Base_Typ)))
2207            then
2208               Discr_Constr :=
2209                 First_Elmt (Stored_Constraint (Full_View (Base_Typ)));
2210
2211            else
2212               Discr_Constr := First_Elmt (Stored_Constraint (Typ));
2213            end if;
2214
2215            while Present (Discr) and then Present (Discr_Constr) loop
2216               Discr_Val := Node (Discr_Constr);
2217
2218               --  The parent discriminant is renamed in the derived type,
2219               --  nothing to initialize.
2220
2221               --    type Deriv_Typ (Discr : ...)
2222               --      is new Parent_Typ (Discr => Discr);
2223
2224               if Is_Entity_Name (Discr_Val)
2225                 and then Ekind (Entity (Discr_Val)) = E_Discriminant
2226               then
2227                  null;
2228
2229               --  When the parent discriminant is constrained at the type
2230               --  extension level, it does not appear in the derived type.
2231
2232               --    type Deriv_Typ (Discr : ...)
2233               --      is new Parent_Typ (Discr        => Discr,
2234               --                         Hidden_Discr => Expression);
2235
2236               elsif Is_Completely_Hidden_Discriminant (Discr) then
2237                  null;
2238
2239               --  Otherwise initialize the discriminant
2240
2241               else
2242                  Discr_Init :=
2243                    Make_OK_Assignment_Statement (Loc,
2244                      Name       =>
2245                        Make_Selected_Component (Loc,
2246                          Prefix        => New_Copy_Tree (Target),
2247                          Selector_Name => New_Occurrence_Of (Discr, Loc)),
2248                      Expression => New_Copy_Tree (Discr_Val));
2249
2250                  Set_No_Ctrl_Actions (Discr_Init);
2251                  Append_To (List, Discr_Init);
2252               end if;
2253
2254               Next_Elmt (Discr_Constr);
2255               Next_Discriminant (Discr);
2256            end loop;
2257
2258            In_Aggr_Type := False;
2259            Base_Typ := Base_Type (Par_Typ);
2260         end loop;
2261      end Init_Hidden_Discriminants;
2262
2263      -------------------------
2264      -- Is_Int_Range_Bounds --
2265      -------------------------
2266
2267      function Is_Int_Range_Bounds (Bounds : Node_Id) return Boolean is
2268      begin
2269         return Nkind (Bounds) = N_Range
2270           and then Nkind (Low_Bound  (Bounds)) = N_Integer_Literal
2271           and then Nkind (High_Bound (Bounds)) = N_Integer_Literal;
2272      end Is_Int_Range_Bounds;
2273
2274      -----------------------------------
2275      -- Generate_Finalization_Actions --
2276      -----------------------------------
2277
2278      procedure Generate_Finalization_Actions is
2279      begin
2280         --  Do the work only the first time this is called
2281
2282         if Finalization_Done then
2283            return;
2284         end if;
2285
2286         Finalization_Done := True;
2287
2288         --  Determine the external finalization list. It is either the
2289         --  finalization list of the outer-scope or the one coming from an
2290         --  outer aggregate. When the target is not a temporary, the proper
2291         --  scope is the scope of the target rather than the potentially
2292         --  transient current scope.
2293
2294         if Is_Controlled (Typ) and then Ancestor_Is_Subtype_Mark then
2295            Ref := Convert_To (Init_Typ, New_Copy_Tree (Target));
2296            Set_Assignment_OK (Ref);
2297
2298            Append_To (L,
2299              Make_Procedure_Call_Statement (Loc,
2300                Name                   =>
2301                  New_Occurrence_Of
2302                    (Find_Prim_Op (Init_Typ, Name_Initialize), Loc),
2303                Parameter_Associations => New_List (New_Copy_Tree (Ref))));
2304         end if;
2305      end Generate_Finalization_Actions;
2306
2307      function Rewrite_Discriminant (Expr : Node_Id) return Traverse_Result;
2308      --  If default expression of a component mentions a discriminant of the
2309      --  type, it must be rewritten as the discriminant of the target object.
2310
2311      function Replace_Type (Expr : Node_Id) return Traverse_Result;
2312      --  If the aggregate contains a self-reference, traverse each expression
2313      --  to replace a possible self-reference with a reference to the proper
2314      --  component of the target of the assignment.
2315
2316      --------------------------
2317      -- Rewrite_Discriminant --
2318      --------------------------
2319
2320      function Rewrite_Discriminant (Expr : Node_Id) return Traverse_Result is
2321      begin
2322         if Is_Entity_Name (Expr)
2323           and then Present (Entity (Expr))
2324           and then Ekind (Entity (Expr)) = E_In_Parameter
2325           and then Present (Discriminal_Link (Entity (Expr)))
2326           and then Scope (Discriminal_Link (Entity (Expr))) =
2327                                                       Base_Type (Etype (N))
2328         then
2329            Rewrite (Expr,
2330              Make_Selected_Component (Loc,
2331                Prefix        => New_Copy_Tree (Lhs),
2332                Selector_Name => Make_Identifier (Loc, Chars (Expr))));
2333         end if;
2334
2335         return OK;
2336      end Rewrite_Discriminant;
2337
2338      ------------------
2339      -- Replace_Type --
2340      ------------------
2341
2342      function Replace_Type (Expr : Node_Id) return Traverse_Result is
2343      begin
2344         --  Note regarding the Root_Type test below: Aggregate components for
2345         --  self-referential types include attribute references to the current
2346         --  instance, of the form: Typ'access, etc.. These references are
2347         --  rewritten as references to the target of the aggregate: the
2348         --  left-hand side of an assignment, the entity in a declaration,
2349         --  or a temporary. Without this test, we would improperly extended
2350         --  this rewriting to attribute references whose prefix was not the
2351         --  type of the aggregate.
2352
2353         if Nkind (Expr) = N_Attribute_Reference
2354           and then Is_Entity_Name (Prefix (Expr))
2355           and then Is_Type (Entity (Prefix (Expr)))
2356           and then Root_Type (Etype (N)) = Root_Type (Entity (Prefix (Expr)))
2357         then
2358            if Is_Entity_Name (Lhs) then
2359               Rewrite (Prefix (Expr),
2360                 New_Occurrence_Of (Entity (Lhs), Loc));
2361
2362            elsif Nkind (Lhs) = N_Selected_Component then
2363               Rewrite (Expr,
2364                 Make_Attribute_Reference (Loc,
2365                   Attribute_Name => Name_Unrestricted_Access,
2366                   Prefix         => New_Copy_Tree (Lhs)));
2367               Set_Analyzed (Parent (Expr), False);
2368
2369            else
2370               Rewrite (Expr,
2371                 Make_Attribute_Reference (Loc,
2372                   Attribute_Name => Name_Unrestricted_Access,
2373                   Prefix         => New_Copy_Tree (Lhs)));
2374               Set_Analyzed (Parent (Expr), False);
2375            end if;
2376         end if;
2377
2378         return OK;
2379      end Replace_Type;
2380
2381      procedure Replace_Self_Reference is
2382        new Traverse_Proc (Replace_Type);
2383
2384      procedure Replace_Discriminants is
2385        new Traverse_Proc (Rewrite_Discriminant);
2386
2387   --  Start of processing for Build_Record_Aggr_Code
2388
2389   begin
2390      if Has_Self_Reference (N) then
2391         Replace_Self_Reference (N);
2392      end if;
2393
2394      --  If the target of the aggregate is class-wide, we must convert it
2395      --  to the actual type of the aggregate, so that the proper components
2396      --  are visible. We know already that the types are compatible.
2397
2398      if Present (Etype (Lhs))
2399        and then Is_Class_Wide_Type (Etype (Lhs))
2400      then
2401         Target := Unchecked_Convert_To (Typ, Lhs);
2402      else
2403         Target := Lhs;
2404      end if;
2405
2406      --  Deal with the ancestor part of extension aggregates or with the
2407      --  discriminants of the root type.
2408
2409      if Nkind (N) = N_Extension_Aggregate then
2410         declare
2411            Ancestor : constant Node_Id := Ancestor_Part (N);
2412            Assign   : List_Id;
2413
2414         begin
2415            --  If the ancestor part is a subtype mark "T", we generate
2416
2417            --     init-proc (T (tmp));  if T is constrained and
2418            --     init-proc (S (tmp));  where S applies an appropriate
2419            --                           constraint if T is unconstrained
2420
2421            if Is_Entity_Name (Ancestor)
2422              and then Is_Type (Entity (Ancestor))
2423            then
2424               Ancestor_Is_Subtype_Mark := True;
2425
2426               if Is_Constrained (Entity (Ancestor)) then
2427                  Init_Typ := Entity (Ancestor);
2428
2429               --  For an ancestor part given by an unconstrained type mark,
2430               --  create a subtype constrained by appropriate corresponding
2431               --  discriminant values coming from either associations of the
2432               --  aggregate or a constraint on a parent type. The subtype will
2433               --  be used to generate the correct default value for the
2434               --  ancestor part.
2435
2436               elsif Has_Discriminants (Entity (Ancestor)) then
2437                  declare
2438                     Anc_Typ    : constant Entity_Id := Entity (Ancestor);
2439                     Anc_Constr : constant List_Id   := New_List;
2440                     Discrim    : Entity_Id;
2441                     Disc_Value : Node_Id;
2442                     New_Indic  : Node_Id;
2443                     Subt_Decl  : Node_Id;
2444
2445                  begin
2446                     Discrim := First_Discriminant (Anc_Typ);
2447                     while Present (Discrim) loop
2448                        Disc_Value := Ancestor_Discriminant_Value (Discrim);
2449
2450                        --  If no usable discriminant in ancestors, check
2451                        --  whether aggregate has an explicit value for it.
2452
2453                        if No (Disc_Value) then
2454                           Disc_Value :=
2455                             Get_Explicit_Discriminant_Value (Discrim);
2456                        end if;
2457
2458                        Append_To (Anc_Constr, Disc_Value);
2459                        Next_Discriminant (Discrim);
2460                     end loop;
2461
2462                     New_Indic :=
2463                       Make_Subtype_Indication (Loc,
2464                         Subtype_Mark => New_Occurrence_Of (Anc_Typ, Loc),
2465                         Constraint   =>
2466                           Make_Index_Or_Discriminant_Constraint (Loc,
2467                             Constraints => Anc_Constr));
2468
2469                     Init_Typ := Create_Itype (Ekind (Anc_Typ), N);
2470
2471                     Subt_Decl :=
2472                       Make_Subtype_Declaration (Loc,
2473                         Defining_Identifier => Init_Typ,
2474                         Subtype_Indication  => New_Indic);
2475
2476                     --  Itypes must be analyzed with checks off Declaration
2477                     --  must have a parent for proper handling of subsidiary
2478                     --  actions.
2479
2480                     Set_Parent (Subt_Decl, N);
2481                     Analyze (Subt_Decl, Suppress => All_Checks);
2482                  end;
2483               end if;
2484
2485               Ref := Convert_To (Init_Typ, New_Copy_Tree (Target));
2486               Set_Assignment_OK (Ref);
2487
2488               if not Is_Interface (Init_Typ) then
2489                  Append_List_To (L,
2490                    Build_Initialization_Call (Loc,
2491                      Id_Ref            => Ref,
2492                      Typ               => Init_Typ,
2493                      In_Init_Proc      => Within_Init_Proc,
2494                      With_Default_Init => Has_Default_Init_Comps (N)
2495                                             or else
2496                                           Has_Task (Base_Type (Init_Typ))));
2497
2498                  if Is_Constrained (Entity (Ancestor))
2499                    and then Has_Discriminants (Entity (Ancestor))
2500                  then
2501                     Check_Ancestor_Discriminants (Entity (Ancestor));
2502                  end if;
2503               end if;
2504
2505            --  Handle calls to C++ constructors
2506
2507            elsif Is_CPP_Constructor_Call (Ancestor) then
2508               Init_Typ := Etype (Ancestor);
2509               Ref := Convert_To (Init_Typ, New_Copy_Tree (Target));
2510               Set_Assignment_OK (Ref);
2511
2512               Append_List_To (L,
2513                 Build_Initialization_Call (Loc,
2514                   Id_Ref            => Ref,
2515                   Typ               => Init_Typ,
2516                   In_Init_Proc      => Within_Init_Proc,
2517                   With_Default_Init => Has_Default_Init_Comps (N),
2518                   Constructor_Ref   => Ancestor));
2519
2520            --  Ada 2005 (AI-287): If the ancestor part is an aggregate of
2521            --  limited type, a recursive call expands the ancestor. Note that
2522            --  in the limited case, the ancestor part must be either a
2523            --  function call (possibly qualified, or wrapped in an unchecked
2524            --  conversion) or aggregate (definitely qualified).
2525
2526            --  The ancestor part can also be a function call (that may be
2527            --  transformed into an explicit dereference) or a qualification
2528            --  of one such.
2529
2530            elsif Is_Limited_Type (Etype (Ancestor))
2531              and then Nkind_In (Unqualify (Ancestor), N_Aggregate,
2532                                                       N_Extension_Aggregate)
2533            then
2534               Ancestor_Is_Expression := True;
2535
2536               --  Set up finalization data for enclosing record, because
2537               --  controlled subcomponents of the ancestor part will be
2538               --  attached to it.
2539
2540               Generate_Finalization_Actions;
2541
2542               Append_List_To (L,
2543                  Build_Record_Aggr_Code
2544                    (N   => Unqualify (Ancestor),
2545                     Typ => Etype (Unqualify (Ancestor)),
2546                     Lhs => Target));
2547
2548            --  If the ancestor part is an expression "E", we generate
2549
2550            --     T (tmp) := E;
2551
2552            --  In Ada 2005, this includes the case of a (possibly qualified)
2553            --  limited function call. The assignment will turn into a
2554            --  build-in-place function call (for further details, see
2555            --  Make_Build_In_Place_Call_In_Assignment).
2556
2557            else
2558               Ancestor_Is_Expression := True;
2559               Init_Typ := Etype (Ancestor);
2560
2561               --  If the ancestor part is an aggregate, force its full
2562               --  expansion, which was delayed.
2563
2564               if Nkind_In (Unqualify (Ancestor), N_Aggregate,
2565                                                  N_Extension_Aggregate)
2566               then
2567                  Set_Analyzed (Ancestor, False);
2568                  Set_Analyzed (Expression (Ancestor), False);
2569               end if;
2570
2571               Ref := Convert_To (Init_Typ, New_Copy_Tree (Target));
2572               Set_Assignment_OK (Ref);
2573
2574               --  Make the assignment without usual controlled actions, since
2575               --  we only want to Adjust afterwards, but not to Finalize
2576               --  beforehand. Add manual Adjust when necessary.
2577
2578               Assign := New_List (
2579                 Make_OK_Assignment_Statement (Loc,
2580                   Name       => Ref,
2581                   Expression => Ancestor));
2582               Set_No_Ctrl_Actions (First (Assign));
2583
2584               --  Assign the tag now to make sure that the dispatching call in
2585               --  the subsequent deep_adjust works properly (unless
2586               --  Tagged_Type_Expansion where tags are implicit).
2587
2588               if Tagged_Type_Expansion then
2589                  Instr :=
2590                    Make_OK_Assignment_Statement (Loc,
2591                      Name       =>
2592                        Make_Selected_Component (Loc,
2593                          Prefix        => New_Copy_Tree (Target),
2594                          Selector_Name =>
2595                            New_Occurrence_Of
2596                              (First_Tag_Component (Base_Type (Typ)), Loc)),
2597
2598                      Expression =>
2599                        Unchecked_Convert_To (RTE (RE_Tag),
2600                          New_Occurrence_Of
2601                            (Node (First_Elmt
2602                               (Access_Disp_Table (Base_Type (Typ)))),
2603                             Loc)));
2604
2605                  Set_Assignment_OK (Name (Instr));
2606                  Append_To (Assign, Instr);
2607
2608                  --  Ada 2005 (AI-251): If tagged type has progenitors we must
2609                  --  also initialize tags of the secondary dispatch tables.
2610
2611                  if Has_Interfaces (Base_Type (Typ)) then
2612                     Init_Secondary_Tags
2613                       (Typ        => Base_Type (Typ),
2614                        Target     => Target,
2615                        Stmts_List => Assign);
2616                  end if;
2617               end if;
2618
2619               --  Call Adjust manually
2620
2621               if Needs_Finalization (Etype (Ancestor))
2622                 and then not Is_Limited_Type (Etype (Ancestor))
2623               then
2624                  Append_To (Assign,
2625                    Make_Adjust_Call
2626                      (Obj_Ref => New_Copy_Tree (Ref),
2627                       Typ     => Etype (Ancestor)));
2628               end if;
2629
2630               Append_To (L,
2631                 Make_Unsuppress_Block (Loc, Name_Discriminant_Check, Assign));
2632
2633               if Has_Discriminants (Init_Typ) then
2634                  Check_Ancestor_Discriminants (Init_Typ);
2635               end if;
2636            end if;
2637         end;
2638
2639         --  Generate assignments of hidden discriminants. If the base type is
2640         --  an unchecked union, the discriminants are unknown to the back-end
2641         --  and absent from a value of the type, so assignments for them are
2642         --  not emitted.
2643
2644         if Has_Discriminants (Typ)
2645           and then not Is_Unchecked_Union (Base_Type (Typ))
2646         then
2647            Init_Hidden_Discriminants (Typ, L);
2648         end if;
2649
2650      --  Normal case (not an extension aggregate)
2651
2652      else
2653         --  Generate the discriminant expressions, component by component.
2654         --  If the base type is an unchecked union, the discriminants are
2655         --  unknown to the back-end and absent from a value of the type, so
2656         --  assignments for them are not emitted.
2657
2658         if Has_Discriminants (Typ)
2659           and then not Is_Unchecked_Union (Base_Type (Typ))
2660         then
2661            Init_Hidden_Discriminants (Typ, L);
2662
2663            --  Generate discriminant init values for the visible discriminants
2664
2665            declare
2666               Discriminant : Entity_Id;
2667               Discriminant_Value : Node_Id;
2668
2669            begin
2670               Discriminant := First_Stored_Discriminant (Typ);
2671               while Present (Discriminant) loop
2672                  Comp_Expr :=
2673                    Make_Selected_Component (Loc,
2674                      Prefix        => New_Copy_Tree (Target),
2675                      Selector_Name => New_Occurrence_Of (Discriminant, Loc));
2676
2677                  Discriminant_Value :=
2678                    Get_Discriminant_Value
2679                      (Discriminant,
2680                       N_Typ,
2681                       Discriminant_Constraint (N_Typ));
2682
2683                  Instr :=
2684                    Make_OK_Assignment_Statement (Loc,
2685                      Name       => Comp_Expr,
2686                      Expression => New_Copy_Tree (Discriminant_Value));
2687
2688                  Set_No_Ctrl_Actions (Instr);
2689                  Append_To (L, Instr);
2690
2691                  Next_Stored_Discriminant (Discriminant);
2692               end loop;
2693            end;
2694         end if;
2695      end if;
2696
2697      --  For CPP types we generate an implicit call to the C++ default
2698      --  constructor to ensure the proper initialization of the _Tag
2699      --  component.
2700
2701      if Is_CPP_Class (Root_Type (Typ)) and then CPP_Num_Prims (Typ) > 0 then
2702         Invoke_Constructor : declare
2703            CPP_Parent : constant Entity_Id := Enclosing_CPP_Parent (Typ);
2704
2705            procedure Invoke_IC_Proc (T : Entity_Id);
2706            --  Recursive routine used to climb to parents. Required because
2707            --  parents must be initialized before descendants to ensure
2708            --  propagation of inherited C++ slots.
2709
2710            --------------------
2711            -- Invoke_IC_Proc --
2712            --------------------
2713
2714            procedure Invoke_IC_Proc (T : Entity_Id) is
2715            begin
2716               --  Avoid generating extra calls. Initialization required
2717               --  only for types defined from the level of derivation of
2718               --  type of the constructor and the type of the aggregate.
2719
2720               if T = CPP_Parent then
2721                  return;
2722               end if;
2723
2724               Invoke_IC_Proc (Etype (T));
2725
2726               --  Generate call to the IC routine
2727
2728               if Present (CPP_Init_Proc (T)) then
2729                  Append_To (L,
2730                    Make_Procedure_Call_Statement (Loc,
2731                      Name => New_Occurrence_Of (CPP_Init_Proc (T), Loc)));
2732               end if;
2733            end Invoke_IC_Proc;
2734
2735         --  Start of processing for Invoke_Constructor
2736
2737         begin
2738            --  Implicit invocation of the C++ constructor
2739
2740            if Nkind (N) = N_Aggregate then
2741               Append_To (L,
2742                 Make_Procedure_Call_Statement (Loc,
2743                   Name                   =>
2744                     New_Occurrence_Of (Base_Init_Proc (CPP_Parent), Loc),
2745                   Parameter_Associations => New_List (
2746                     Unchecked_Convert_To (CPP_Parent,
2747                       New_Copy_Tree (Lhs)))));
2748            end if;
2749
2750            Invoke_IC_Proc (Typ);
2751         end Invoke_Constructor;
2752      end if;
2753
2754      --  Generate the assignments, component by component
2755
2756      --    tmp.comp1 := Expr1_From_Aggr;
2757      --    tmp.comp2 := Expr2_From_Aggr;
2758      --    ....
2759
2760      Comp := First (Component_Associations (N));
2761      while Present (Comp) loop
2762         Selector := Entity (First (Choices (Comp)));
2763
2764         --  C++ constructors
2765
2766         if Is_CPP_Constructor_Call (Expression (Comp)) then
2767            Append_List_To (L,
2768              Build_Initialization_Call (Loc,
2769                Id_Ref            =>
2770                  Make_Selected_Component (Loc,
2771                    Prefix        => New_Copy_Tree (Target),
2772                    Selector_Name => New_Occurrence_Of (Selector, Loc)),
2773                Typ               => Etype (Selector),
2774                Enclos_Type       => Typ,
2775                With_Default_Init => True,
2776                Constructor_Ref   => Expression (Comp)));
2777
2778         --  Ada 2005 (AI-287): For each default-initialized component generate
2779         --  a call to the corresponding IP subprogram if available.
2780
2781         elsif Box_Present (Comp)
2782           and then Has_Non_Null_Base_Init_Proc (Etype (Selector))
2783         then
2784            if Ekind (Selector) /= E_Discriminant then
2785               Generate_Finalization_Actions;
2786            end if;
2787
2788            --  Ada 2005 (AI-287): If the component type has tasks then
2789            --  generate the activation chain and master entities (except
2790            --  in case of an allocator because in that case these entities
2791            --  are generated by Build_Task_Allocate_Block_With_Init_Stmts).
2792
2793            declare
2794               Ctype            : constant Entity_Id := Etype (Selector);
2795               Inside_Allocator : Boolean            := False;
2796               P                : Node_Id            := Parent (N);
2797
2798            begin
2799               if Is_Task_Type (Ctype) or else Has_Task (Ctype) then
2800                  while Present (P) loop
2801                     if Nkind (P) = N_Allocator then
2802                        Inside_Allocator := True;
2803                        exit;
2804                     end if;
2805
2806                     P := Parent (P);
2807                  end loop;
2808
2809                  if not Inside_Init_Proc and not Inside_Allocator then
2810                     Build_Activation_Chain_Entity (N);
2811                  end if;
2812               end if;
2813            end;
2814
2815            Append_List_To (L,
2816              Build_Initialization_Call (Loc,
2817                Id_Ref            => Make_Selected_Component (Loc,
2818                                       Prefix        => New_Copy_Tree (Target),
2819                                       Selector_Name =>
2820                                         New_Occurrence_Of (Selector, Loc)),
2821                Typ               => Etype (Selector),
2822                Enclos_Type       => Typ,
2823                With_Default_Init => True));
2824
2825         --  Prepare for component assignment
2826
2827         elsif Ekind (Selector) /= E_Discriminant
2828           or else Nkind (N) = N_Extension_Aggregate
2829         then
2830            --  All the discriminants have now been assigned
2831
2832            --  This is now a good moment to initialize and attach all the
2833            --  controllers. Their position may depend on the discriminants.
2834
2835            if Ekind (Selector) /= E_Discriminant then
2836               Generate_Finalization_Actions;
2837            end if;
2838
2839            Comp_Type := Underlying_Type (Etype (Selector));
2840            Comp_Expr :=
2841              Make_Selected_Component (Loc,
2842                Prefix        => New_Copy_Tree (Target),
2843                Selector_Name => New_Occurrence_Of (Selector, Loc));
2844
2845            if Nkind (Expression (Comp)) = N_Qualified_Expression then
2846               Expr_Q := Expression (Expression (Comp));
2847            else
2848               Expr_Q := Expression (Comp);
2849            end if;
2850
2851            --  Now either create the assignment or generate the code for the
2852            --  inner aggregate top-down.
2853
2854            if Is_Delayed_Aggregate (Expr_Q) then
2855
2856               --  We have the following case of aggregate nesting inside
2857               --  an object declaration:
2858
2859               --    type Arr_Typ is array (Integer range <>) of ...;
2860
2861               --    type Rec_Typ (...) is record
2862               --       Obj_Arr_Typ : Arr_Typ (A .. B);
2863               --    end record;
2864
2865               --    Obj_Rec_Typ : Rec_Typ := (...,
2866               --      Obj_Arr_Typ => (X => (...), Y => (...)));
2867
2868               --  The length of the ranges of the aggregate and Obj_Add_Typ
2869               --  are equal (B - A = Y - X), but they do not coincide (X /=
2870               --  A and B /= Y). This case requires array sliding which is
2871               --  performed in the following manner:
2872
2873               --    subtype Arr_Sub is Arr_Typ (X .. Y);
2874               --    Temp : Arr_Sub;
2875               --    Temp (X) := (...);
2876               --    ...
2877               --    Temp (Y) := (...);
2878               --    Obj_Rec_Typ.Obj_Arr_Typ := Temp;
2879
2880               if Ekind (Comp_Type) = E_Array_Subtype
2881                 and then Is_Int_Range_Bounds (Aggregate_Bounds (Expr_Q))
2882                 and then Is_Int_Range_Bounds (First_Index (Comp_Type))
2883                 and then not
2884                   Compatible_Int_Bounds
2885                     (Agg_Bounds => Aggregate_Bounds (Expr_Q),
2886                      Typ_Bounds => First_Index (Comp_Type))
2887               then
2888                  --  Create the array subtype with bounds equal to those of
2889                  --  the corresponding aggregate.
2890
2891                  declare
2892                     SubE : constant Entity_Id := Make_Temporary (Loc, 'T');
2893
2894                     SubD : constant Node_Id :=
2895                       Make_Subtype_Declaration (Loc,
2896                         Defining_Identifier => SubE,
2897                         Subtype_Indication  =>
2898                           Make_Subtype_Indication (Loc,
2899                             Subtype_Mark =>
2900                               New_Occurrence_Of (Etype (Comp_Type), Loc),
2901                             Constraint =>
2902                               Make_Index_Or_Discriminant_Constraint
2903                                 (Loc,
2904                                  Constraints => New_List (
2905                                    New_Copy_Tree
2906                                      (Aggregate_Bounds (Expr_Q))))));
2907
2908                     --  Create a temporary array of the above subtype which
2909                     --  will be used to capture the aggregate assignments.
2910
2911                     TmpE : constant Entity_Id := Make_Temporary (Loc, 'A', N);
2912
2913                     TmpD : constant Node_Id :=
2914                       Make_Object_Declaration (Loc,
2915                         Defining_Identifier => TmpE,
2916                         Object_Definition   => New_Occurrence_Of (SubE, Loc));
2917
2918                  begin
2919                     Set_No_Initialization (TmpD);
2920                     Append_To (L, SubD);
2921                     Append_To (L, TmpD);
2922
2923                     --  Expand aggregate into assignments to the temp array
2924
2925                     Append_List_To (L,
2926                       Late_Expansion (Expr_Q, Comp_Type,
2927                         New_Occurrence_Of (TmpE, Loc)));
2928
2929                     --  Slide
2930
2931                     Append_To (L,
2932                       Make_Assignment_Statement (Loc,
2933                         Name       => New_Copy_Tree (Comp_Expr),
2934                         Expression => New_Occurrence_Of (TmpE, Loc)));
2935                  end;
2936
2937               --  Normal case (sliding not required)
2938
2939               else
2940                  Append_List_To (L,
2941                    Late_Expansion (Expr_Q, Comp_Type, Comp_Expr));
2942               end if;
2943
2944            --  Expr_Q is not delayed aggregate
2945
2946            else
2947               if Has_Discriminants (Typ) then
2948                  Replace_Discriminants (Expr_Q);
2949
2950                  --  If the component is an array type that depends on
2951                  --  discriminants, and the expression is a single Others
2952                  --  clause, create an explicit subtype for it because the
2953                  --  backend has troubles recovering the actual bounds.
2954
2955                  if Nkind (Expr_Q) = N_Aggregate
2956                    and then Is_Array_Type (Comp_Type)
2957                    and then Present (Component_Associations (Expr_Q))
2958                  then
2959                     declare
2960                        Assoc : constant Node_Id :=
2961                                  First (Component_Associations (Expr_Q));
2962                        Decl  : Node_Id;
2963
2964                     begin
2965                        if Nkind (First (Choices (Assoc))) = N_Others_Choice
2966                        then
2967                           Decl :=
2968                             Build_Actual_Subtype_Of_Component
2969                               (Comp_Type, Comp_Expr);
2970
2971                           --  If the component type does not in fact depend on
2972                           --  discriminants, the subtype declaration is empty.
2973
2974                           if Present (Decl) then
2975                              Append_To (L, Decl);
2976                              Set_Etype (Comp_Expr, Defining_Entity (Decl));
2977                           end if;
2978                        end if;
2979                     end;
2980                  end if;
2981               end if;
2982
2983               if Generate_C_Code
2984                 and then Nkind (Expr_Q) = N_Aggregate
2985                 and then Is_Array_Type (Etype (Expr_Q))
2986                 and then Present (First_Index (Etype (Expr_Q)))
2987               then
2988                  declare
2989                     Expr_Q_Type : constant Node_Id := Etype (Expr_Q);
2990                  begin
2991                     Append_List_To (L,
2992                       Build_Array_Aggr_Code
2993                         (N           => Expr_Q,
2994                          Ctype       => Component_Type (Expr_Q_Type),
2995                          Index       => First_Index (Expr_Q_Type),
2996                          Into        => Comp_Expr,
2997                          Scalar_Comp => Is_Scalar_Type
2998                                           (Component_Type (Expr_Q_Type))));
2999                  end;
3000
3001               else
3002                  Instr :=
3003                    Make_OK_Assignment_Statement (Loc,
3004                      Name       => Comp_Expr,
3005                      Expression => Expr_Q);
3006
3007                  Set_No_Ctrl_Actions (Instr);
3008                  Append_To (L, Instr);
3009               end if;
3010
3011               --  Adjust the tag if tagged (because of possible view
3012               --  conversions), unless compiling for a VM where tags are
3013               --  implicit.
3014
3015               --    tmp.comp._tag := comp_typ'tag;
3016
3017               if Is_Tagged_Type (Comp_Type)
3018                 and then Tagged_Type_Expansion
3019               then
3020                  Instr :=
3021                    Make_OK_Assignment_Statement (Loc,
3022                      Name =>
3023                        Make_Selected_Component (Loc,
3024                          Prefix =>  New_Copy_Tree (Comp_Expr),
3025                          Selector_Name =>
3026                            New_Occurrence_Of
3027                              (First_Tag_Component (Comp_Type), Loc)),
3028
3029                      Expression =>
3030                        Unchecked_Convert_To (RTE (RE_Tag),
3031                          New_Occurrence_Of
3032                            (Node (First_Elmt (Access_Disp_Table (Comp_Type))),
3033                             Loc)));
3034
3035                  Append_To (L, Instr);
3036               end if;
3037
3038               --  Generate:
3039               --    Adjust (tmp.comp);
3040
3041               if Needs_Finalization (Comp_Type)
3042                 and then not Is_Limited_Type (Comp_Type)
3043               then
3044                  Append_To (L,
3045                    Make_Adjust_Call
3046                      (Obj_Ref => New_Copy_Tree (Comp_Expr),
3047                       Typ     => Comp_Type));
3048               end if;
3049            end if;
3050
3051         --  comment would be good here ???
3052
3053         elsif Ekind (Selector) = E_Discriminant
3054           and then Nkind (N) /= N_Extension_Aggregate
3055           and then Nkind (Parent (N)) = N_Component_Association
3056           and then Is_Constrained (Typ)
3057         then
3058            --  We must check that the discriminant value imposed by the
3059            --  context is the same as the value given in the subaggregate,
3060            --  because after the expansion into assignments there is no
3061            --  record on which to perform a regular discriminant check.
3062
3063            declare
3064               D_Val : Elmt_Id;
3065               Disc  : Entity_Id;
3066
3067            begin
3068               D_Val := First_Elmt (Discriminant_Constraint (Typ));
3069               Disc  := First_Discriminant (Typ);
3070               while Chars (Disc) /= Chars (Selector) loop
3071                  Next_Discriminant (Disc);
3072                  Next_Elmt (D_Val);
3073               end loop;
3074
3075               pragma Assert (Present (D_Val));
3076
3077               --  This check cannot performed for components that are
3078               --  constrained by a current instance, because this is not a
3079               --  value that can be compared with the actual constraint.
3080
3081               if Nkind (Node (D_Val)) /= N_Attribute_Reference
3082                 or else not Is_Entity_Name (Prefix (Node (D_Val)))
3083                 or else not Is_Type (Entity (Prefix (Node (D_Val))))
3084               then
3085                  Append_To (L,
3086                  Make_Raise_Constraint_Error (Loc,
3087                    Condition =>
3088                      Make_Op_Ne (Loc,
3089                        Left_Opnd  => New_Copy_Tree (Node (D_Val)),
3090                        Right_Opnd => Expression (Comp)),
3091                    Reason    => CE_Discriminant_Check_Failed));
3092
3093               else
3094                  --  Find self-reference in previous discriminant assignment,
3095                  --  and replace with proper expression.
3096
3097                  declare
3098                     Ass : Node_Id;
3099
3100                  begin
3101                     Ass := First (L);
3102                     while Present (Ass) loop
3103                        if Nkind (Ass) = N_Assignment_Statement
3104                          and then Nkind (Name (Ass)) = N_Selected_Component
3105                          and then Chars (Selector_Name (Name (Ass))) =
3106                                                                 Chars (Disc)
3107                        then
3108                           Set_Expression
3109                             (Ass, New_Copy_Tree (Expression (Comp)));
3110                           exit;
3111                        end if;
3112                        Next (Ass);
3113                     end loop;
3114                  end;
3115               end if;
3116            end;
3117         end if;
3118
3119         Next (Comp);
3120      end loop;
3121
3122      --  If the type is tagged, the tag needs to be initialized (unless we
3123      --  are in VM-mode where tags are implicit). It is done late in the
3124      --  initialization process because in some cases, we call the init
3125      --  proc of an ancestor which will not leave out the right tag.
3126
3127      if Ancestor_Is_Expression then
3128         null;
3129
3130      --  For CPP types we generated a call to the C++ default constructor
3131      --  before the components have been initialized to ensure the proper
3132      --  initialization of the _Tag component (see above).
3133
3134      elsif Is_CPP_Class (Typ) then
3135         null;
3136
3137      elsif Is_Tagged_Type (Typ) and then Tagged_Type_Expansion then
3138         Instr :=
3139           Make_OK_Assignment_Statement (Loc,
3140             Name =>
3141               Make_Selected_Component (Loc,
3142                 Prefix => New_Copy_Tree (Target),
3143                 Selector_Name =>
3144                   New_Occurrence_Of
3145                     (First_Tag_Component (Base_Type (Typ)), Loc)),
3146
3147             Expression =>
3148               Unchecked_Convert_To (RTE (RE_Tag),
3149                 New_Occurrence_Of
3150                   (Node (First_Elmt (Access_Disp_Table (Base_Type (Typ)))),
3151                    Loc)));
3152
3153         Append_To (L, Instr);
3154
3155         --  Ada 2005 (AI-251): If the tagged type has been derived from an
3156         --  abstract interfaces we must also initialize the tags of the
3157         --  secondary dispatch tables.
3158
3159         if Has_Interfaces (Base_Type (Typ)) then
3160            Init_Secondary_Tags
3161              (Typ        => Base_Type (Typ),
3162               Target     => Target,
3163               Stmts_List => L);
3164         end if;
3165      end if;
3166
3167      --  If the controllers have not been initialized yet (by lack of non-
3168      --  discriminant components), let's do it now.
3169
3170      Generate_Finalization_Actions;
3171
3172      return L;
3173   end Build_Record_Aggr_Code;
3174
3175   ---------------------------------------
3176   -- Collect_Initialization_Statements --
3177   ---------------------------------------
3178
3179   procedure Collect_Initialization_Statements
3180     (Obj        : Entity_Id;
3181      N          : Node_Id;
3182      Node_After : Node_Id)
3183   is
3184      Loc          : constant Source_Ptr := Sloc (N);
3185      Init_Actions : constant List_Id    := New_List;
3186      Init_Node    : Node_Id;
3187      Comp_Stmt    : Node_Id;
3188
3189   begin
3190      --  Nothing to do if Obj is already frozen, as in this case we known we
3191      --  won't need to move the initialization statements about later on.
3192
3193      if Is_Frozen (Obj) then
3194         return;
3195      end if;
3196
3197      Init_Node := N;
3198      while Next (Init_Node) /= Node_After loop
3199         Append_To (Init_Actions, Remove_Next (Init_Node));
3200      end loop;
3201
3202      if not Is_Empty_List (Init_Actions) then
3203         Comp_Stmt := Make_Compound_Statement (Loc, Actions => Init_Actions);
3204         Insert_Action_After (Init_Node, Comp_Stmt);
3205         Set_Initialization_Statements (Obj, Comp_Stmt);
3206      end if;
3207   end Collect_Initialization_Statements;
3208
3209   -------------------------------
3210   -- Convert_Aggr_In_Allocator --
3211   -------------------------------
3212
3213   procedure Convert_Aggr_In_Allocator
3214     (Alloc :  Node_Id;
3215      Decl  :  Node_Id;
3216      Aggr  :  Node_Id)
3217   is
3218      Loc  : constant Source_Ptr := Sloc (Aggr);
3219      Typ  : constant Entity_Id  := Etype (Aggr);
3220      Temp : constant Entity_Id  := Defining_Identifier (Decl);
3221
3222      Occ  : constant Node_Id :=
3223        Unchecked_Convert_To (Typ,
3224          Make_Explicit_Dereference (Loc, New_Occurrence_Of (Temp, Loc)));
3225
3226   begin
3227      if Is_Array_Type (Typ) then
3228         Convert_Array_Aggr_In_Allocator (Decl, Aggr, Occ);
3229
3230      elsif Has_Default_Init_Comps (Aggr) then
3231         declare
3232            L          : constant List_Id := New_List;
3233            Init_Stmts : List_Id;
3234
3235         begin
3236            Init_Stmts := Late_Expansion (Aggr, Typ, Occ);
3237
3238            if Has_Task (Typ) then
3239               Build_Task_Allocate_Block_With_Init_Stmts (L, Aggr, Init_Stmts);
3240               Insert_Actions (Alloc, L);
3241            else
3242               Insert_Actions (Alloc, Init_Stmts);
3243            end if;
3244         end;
3245
3246      else
3247         Insert_Actions (Alloc, Late_Expansion (Aggr, Typ, Occ));
3248      end if;
3249   end Convert_Aggr_In_Allocator;
3250
3251   --------------------------------
3252   -- Convert_Aggr_In_Assignment --
3253   --------------------------------
3254
3255   procedure Convert_Aggr_In_Assignment (N : Node_Id) is
3256      Aggr : Node_Id            := Expression (N);
3257      Typ  : constant Entity_Id := Etype (Aggr);
3258      Occ  : constant Node_Id   := New_Copy_Tree (Name (N));
3259
3260   begin
3261      if Nkind (Aggr) = N_Qualified_Expression then
3262         Aggr := Expression (Aggr);
3263      end if;
3264
3265      Insert_Actions_After (N, Late_Expansion (Aggr, Typ, Occ));
3266   end Convert_Aggr_In_Assignment;
3267
3268   ---------------------------------
3269   -- Convert_Aggr_In_Object_Decl --
3270   ---------------------------------
3271
3272   procedure Convert_Aggr_In_Object_Decl (N : Node_Id) is
3273      Obj  : constant Entity_Id  := Defining_Identifier (N);
3274      Aggr : Node_Id             := Expression (N);
3275      Loc  : constant Source_Ptr := Sloc (Aggr);
3276      Typ  : constant Entity_Id  := Etype (Aggr);
3277      Occ  : constant Node_Id    := New_Occurrence_Of (Obj, Loc);
3278
3279      function Discriminants_Ok return Boolean;
3280      --  If the object type is constrained, the discriminants in the
3281      --  aggregate must be checked against the discriminants of the subtype.
3282      --  This cannot be done using Apply_Discriminant_Checks because after
3283      --  expansion there is no aggregate left to check.
3284
3285      ----------------------
3286      -- Discriminants_Ok --
3287      ----------------------
3288
3289      function Discriminants_Ok return Boolean is
3290         Cond  : Node_Id := Empty;
3291         Check : Node_Id;
3292         D     : Entity_Id;
3293         Disc1 : Elmt_Id;
3294         Disc2 : Elmt_Id;
3295         Val1  : Node_Id;
3296         Val2  : Node_Id;
3297
3298      begin
3299         D := First_Discriminant (Typ);
3300         Disc1 := First_Elmt (Discriminant_Constraint (Typ));
3301         Disc2 := First_Elmt (Discriminant_Constraint (Etype (Obj)));
3302         while Present (Disc1) and then Present (Disc2) loop
3303            Val1 := Node (Disc1);
3304            Val2 := Node (Disc2);
3305
3306            if not Is_OK_Static_Expression (Val1)
3307              or else not Is_OK_Static_Expression (Val2)
3308            then
3309               Check := Make_Op_Ne (Loc,
3310                 Left_Opnd  => Duplicate_Subexpr (Val1),
3311                 Right_Opnd => Duplicate_Subexpr (Val2));
3312
3313               if No (Cond) then
3314                  Cond := Check;
3315
3316               else
3317                  Cond := Make_Or_Else (Loc,
3318                    Left_Opnd => Cond,
3319                    Right_Opnd => Check);
3320               end if;
3321
3322            elsif Expr_Value (Val1) /= Expr_Value (Val2) then
3323               Apply_Compile_Time_Constraint_Error (Aggr,
3324                 Msg    => "incorrect value for discriminant&??",
3325                 Reason => CE_Discriminant_Check_Failed,
3326                 Ent    => D);
3327               return False;
3328            end if;
3329
3330            Next_Discriminant (D);
3331            Next_Elmt (Disc1);
3332            Next_Elmt (Disc2);
3333         end loop;
3334
3335         --  If any discriminant constraint is non-static, emit a check
3336
3337         if Present (Cond) then
3338            Insert_Action (N,
3339              Make_Raise_Constraint_Error (Loc,
3340                Condition => Cond,
3341                Reason    => CE_Discriminant_Check_Failed));
3342         end if;
3343
3344         return True;
3345      end Discriminants_Ok;
3346
3347   --  Start of processing for Convert_Aggr_In_Object_Decl
3348
3349   begin
3350      Set_Assignment_OK (Occ);
3351
3352      if Nkind (Aggr) = N_Qualified_Expression then
3353         Aggr := Expression (Aggr);
3354      end if;
3355
3356      if Has_Discriminants (Typ)
3357        and then Typ /= Etype (Obj)
3358        and then Is_Constrained (Etype (Obj))
3359        and then not Discriminants_Ok
3360      then
3361         return;
3362      end if;
3363
3364      --  If the context is an extended return statement, it has its own
3365      --  finalization machinery (i.e. works like a transient scope) and
3366      --  we do not want to create an additional one, because objects on
3367      --  the finalization list of the return must be moved to the caller's
3368      --  finalization list to complete the return.
3369
3370      --  However, if the aggregate is limited, it is built in place, and the
3371      --  controlled components are not assigned to intermediate temporaries
3372      --  so there is no need for a transient scope in this case either.
3373
3374      if Requires_Transient_Scope (Typ)
3375        and then Ekind (Current_Scope) /= E_Return_Statement
3376        and then not Is_Limited_Type (Typ)
3377      then
3378         Establish_Transient_Scope
3379           (Aggr,
3380            Sec_Stack =>
3381              Is_Controlled (Typ) or else Has_Controlled_Component (Typ));
3382      end if;
3383
3384      declare
3385         Node_After   : constant Node_Id := Next (N);
3386      begin
3387         Insert_Actions_After (N, Late_Expansion (Aggr, Typ, Occ));
3388         Collect_Initialization_Statements (Obj, N, Node_After);
3389      end;
3390      Set_No_Initialization (N);
3391      Initialize_Discriminants (N, Typ);
3392   end Convert_Aggr_In_Object_Decl;
3393
3394   -------------------------------------
3395   -- Convert_Array_Aggr_In_Allocator --
3396   -------------------------------------
3397
3398   procedure Convert_Array_Aggr_In_Allocator
3399     (Decl   : Node_Id;
3400      Aggr   : Node_Id;
3401      Target : Node_Id)
3402   is
3403      Aggr_Code : List_Id;
3404      Typ       : constant Entity_Id := Etype (Aggr);
3405      Ctyp      : constant Entity_Id := Component_Type (Typ);
3406
3407   begin
3408      --  The target is an explicit dereference of the allocated object.
3409      --  Generate component assignments to it, as for an aggregate that
3410      --  appears on the right-hand side of an assignment statement.
3411
3412      Aggr_Code :=
3413        Build_Array_Aggr_Code (Aggr,
3414          Ctype       => Ctyp,
3415          Index       => First_Index (Typ),
3416          Into        => Target,
3417          Scalar_Comp => Is_Scalar_Type (Ctyp));
3418
3419      Insert_Actions_After (Decl, Aggr_Code);
3420   end Convert_Array_Aggr_In_Allocator;
3421
3422   ----------------------------
3423   -- Convert_To_Assignments --
3424   ----------------------------
3425
3426   procedure Convert_To_Assignments (N : Node_Id; Typ : Entity_Id) is
3427      Loc  : constant Source_Ptr := Sloc (N);
3428      T    : Entity_Id;
3429      Temp : Entity_Id;
3430
3431      Aggr_Code   : List_Id;
3432      Instr       : Node_Id;
3433      Target_Expr : Node_Id;
3434      Parent_Kind : Node_Kind;
3435      Unc_Decl    : Boolean := False;
3436      Parent_Node : Node_Id;
3437
3438   begin
3439      pragma Assert (not Is_Static_Dispatch_Table_Aggregate (N));
3440      pragma Assert (Is_Record_Type (Typ));
3441
3442      Parent_Node := Parent (N);
3443      Parent_Kind := Nkind (Parent_Node);
3444
3445      if Parent_Kind = N_Qualified_Expression then
3446
3447         --  Check if we are in a unconstrained declaration because in this
3448         --  case the current delayed expansion mechanism doesn't work when
3449         --  the declared object size depend on the initializing expr.
3450
3451         begin
3452            Parent_Node := Parent (Parent_Node);
3453            Parent_Kind := Nkind (Parent_Node);
3454
3455            if Parent_Kind = N_Object_Declaration then
3456               Unc_Decl :=
3457                 not Is_Entity_Name (Object_Definition (Parent_Node))
3458                   or else Has_Discriminants
3459                             (Entity (Object_Definition (Parent_Node)))
3460                   or else Is_Class_Wide_Type
3461                             (Entity (Object_Definition (Parent_Node)));
3462            end if;
3463         end;
3464      end if;
3465
3466      --  Just set the Delay flag in the cases where the transformation will be
3467      --  done top down from above.
3468
3469      if False
3470
3471         --  Internal aggregate (transformed when expanding the parent)
3472
3473         or else Parent_Kind = N_Aggregate
3474         or else Parent_Kind = N_Extension_Aggregate
3475         or else Parent_Kind = N_Component_Association
3476
3477         --  Allocator (see Convert_Aggr_In_Allocator)
3478
3479         or else Parent_Kind = N_Allocator
3480
3481         --  Object declaration (see Convert_Aggr_In_Object_Decl)
3482
3483         or else (Parent_Kind = N_Object_Declaration and then not Unc_Decl)
3484
3485         --  Safe assignment (see Convert_Aggr_Assignments). So far only the
3486         --  assignments in init procs are taken into account.
3487
3488         or else (Parent_Kind = N_Assignment_Statement
3489                   and then Inside_Init_Proc)
3490
3491         --  (Ada 2005) An inherently limited type in a return statement, which
3492         --  will be handled in a build-in-place fashion, and may be rewritten
3493         --  as an extended return and have its own finalization machinery.
3494         --  In the case of a simple return, the aggregate needs to be delayed
3495         --  until the scope for the return statement has been created, so
3496         --  that any finalization chain will be associated with that scope.
3497         --  For extended returns, we delay expansion to avoid the creation
3498         --  of an unwanted transient scope that could result in premature
3499         --  finalization of the return object (which is built in place
3500         --  within the caller's scope).
3501
3502         or else
3503           (Is_Limited_View (Typ)
3504             and then
3505               (Nkind (Parent (Parent_Node)) = N_Extended_Return_Statement
3506                 or else Nkind (Parent_Node) = N_Simple_Return_Statement))
3507      then
3508         Set_Expansion_Delayed (N);
3509         return;
3510      end if;
3511
3512      --  Otherwise, if a transient scope is required, create it now. If we
3513      --  are within an initialization procedure do not create such, because
3514      --  the target of the assignment must not be declared within a local
3515      --  block, and because cleanup will take place on return from the
3516      --  initialization procedure.
3517      --  Should the condition be more restrictive ???
3518
3519      if Requires_Transient_Scope (Typ) and then not Inside_Init_Proc then
3520         Establish_Transient_Scope (N, Sec_Stack => Needs_Finalization (Typ));
3521      end if;
3522
3523      --  If the aggregate is non-limited, create a temporary. If it is limited
3524      --  and context is an assignment, this is a subaggregate for an enclosing
3525      --  aggregate being expanded. It must be built in place, so use target of
3526      --  the current assignment.
3527
3528      if Is_Limited_Type (Typ)
3529        and then Nkind (Parent (N)) = N_Assignment_Statement
3530      then
3531         Target_Expr := New_Copy_Tree (Name (Parent (N)));
3532         Insert_Actions (Parent (N),
3533           Build_Record_Aggr_Code (N, Typ, Target_Expr));
3534         Rewrite (Parent (N), Make_Null_Statement (Loc));
3535
3536      else
3537         Temp := Make_Temporary (Loc, 'A', N);
3538
3539         --  If the type inherits unknown discriminants, use the view with
3540         --  known discriminants if available.
3541
3542         if Has_Unknown_Discriminants (Typ)
3543           and then Present (Underlying_Record_View (Typ))
3544         then
3545            T := Underlying_Record_View (Typ);
3546         else
3547            T := Typ;
3548         end if;
3549
3550         Instr :=
3551           Make_Object_Declaration (Loc,
3552             Defining_Identifier => Temp,
3553             Object_Definition   => New_Occurrence_Of (T, Loc));
3554
3555         Set_No_Initialization (Instr);
3556         Insert_Action (N, Instr);
3557         Initialize_Discriminants (Instr, T);
3558
3559         Target_Expr := New_Occurrence_Of (Temp, Loc);
3560         Aggr_Code   := Build_Record_Aggr_Code (N, T, Target_Expr);
3561
3562         --  Save the last assignment statement associated with the aggregate
3563         --  when building a controlled object. This reference is utilized by
3564         --  the finalization machinery when marking an object as successfully
3565         --  initialized.
3566
3567         if Needs_Finalization (T) then
3568            Set_Last_Aggregate_Assignment (Temp, Last (Aggr_Code));
3569         end if;
3570
3571         Insert_Actions (N, Aggr_Code);
3572         Rewrite (N, New_Occurrence_Of (Temp, Loc));
3573         Analyze_And_Resolve (N, T);
3574      end if;
3575   end Convert_To_Assignments;
3576
3577   ---------------------------
3578   -- Convert_To_Positional --
3579   ---------------------------
3580
3581   procedure Convert_To_Positional
3582     (N                    : Node_Id;
3583      Max_Others_Replicate : Nat     := 5;
3584      Handle_Bit_Packed    : Boolean := False)
3585   is
3586      Typ : constant Entity_Id := Etype (N);
3587
3588      Static_Components : Boolean := True;
3589
3590      procedure Check_Static_Components;
3591      --  Check whether all components of the aggregate are compile-time known
3592      --  values, and can be passed as is to the back-end without further
3593      --  expansion.
3594
3595      function Flatten
3596        (N   : Node_Id;
3597         Ix  : Node_Id;
3598         Ixb : Node_Id) return Boolean;
3599      --  Convert the aggregate into a purely positional form if possible. On
3600      --  entry the bounds of all dimensions are known to be static, and the
3601      --  total number of components is safe enough to expand.
3602
3603      function Is_Flat (N : Node_Id; Dims : Int) return Boolean;
3604      --  Return True iff the array N is flat (which is not trivial in the case
3605      --  of multidimensional aggregates).
3606
3607      -----------------------------
3608      -- Check_Static_Components --
3609      -----------------------------
3610
3611      --  Could use some comments in this body ???
3612
3613      procedure Check_Static_Components is
3614         Expr : Node_Id;
3615
3616      begin
3617         Static_Components := True;
3618
3619         if Nkind (N) = N_String_Literal then
3620            null;
3621
3622         elsif Present (Expressions (N)) then
3623            Expr := First (Expressions (N));
3624            while Present (Expr) loop
3625               if Nkind (Expr) /= N_Aggregate
3626                 or else not Compile_Time_Known_Aggregate (Expr)
3627                 or else Expansion_Delayed (Expr)
3628               then
3629                  Static_Components := False;
3630                  exit;
3631               end if;
3632
3633               Next (Expr);
3634            end loop;
3635         end if;
3636
3637         if Nkind (N) = N_Aggregate
3638           and then Present (Component_Associations (N))
3639         then
3640            Expr := First (Component_Associations (N));
3641            while Present (Expr) loop
3642               if Nkind_In (Expression (Expr), N_Integer_Literal,
3643                                               N_Real_Literal)
3644               then
3645                  null;
3646
3647               elsif Is_Entity_Name (Expression (Expr))
3648                 and then Present (Entity (Expression (Expr)))
3649                 and then Ekind (Entity (Expression (Expr))) =
3650                                                       E_Enumeration_Literal
3651               then
3652                  null;
3653
3654               elsif Nkind (Expression (Expr)) /= N_Aggregate
3655                 or else not Compile_Time_Known_Aggregate (Expression (Expr))
3656                 or else Expansion_Delayed (Expression (Expr))
3657               then
3658                  Static_Components := False;
3659                  exit;
3660               end if;
3661
3662               Next (Expr);
3663            end loop;
3664         end if;
3665      end Check_Static_Components;
3666
3667      -------------
3668      -- Flatten --
3669      -------------
3670
3671      function Flatten
3672        (N   : Node_Id;
3673         Ix  : Node_Id;
3674         Ixb : Node_Id) return Boolean
3675      is
3676         Loc : constant Source_Ptr := Sloc (N);
3677         Blo : constant Node_Id    := Type_Low_Bound (Etype (Ixb));
3678         Lo  : constant Node_Id    := Type_Low_Bound (Etype (Ix));
3679         Hi  : constant Node_Id    := Type_High_Bound (Etype (Ix));
3680         Lov : Uint;
3681         Hiv : Uint;
3682
3683         Others_Present : Boolean := False;
3684
3685      begin
3686         if Nkind (Original_Node (N)) = N_String_Literal then
3687            return True;
3688         end if;
3689
3690         if not Compile_Time_Known_Value (Lo)
3691           or else not Compile_Time_Known_Value (Hi)
3692         then
3693            return False;
3694         end if;
3695
3696         Lov := Expr_Value (Lo);
3697         Hiv := Expr_Value (Hi);
3698
3699         --  Check if there is an others choice
3700
3701         if Present (Component_Associations (N)) then
3702            declare
3703               Assoc   : Node_Id;
3704               Choice  : Node_Id;
3705
3706            begin
3707               Assoc := First (Component_Associations (N));
3708               while Present (Assoc) loop
3709
3710                  --  If this is a box association, flattening is in general
3711                  --  not possible because at this point we cannot tell if the
3712                  --  default is static or even exists.
3713
3714                  if Box_Present (Assoc) then
3715                     return False;
3716                  end if;
3717
3718                  Choice := First (Choices (Assoc));
3719
3720                  while Present (Choice) loop
3721                     if Nkind (Choice) = N_Others_Choice then
3722                        Others_Present := True;
3723                     end if;
3724
3725                     Next (Choice);
3726                  end loop;
3727
3728                  Next (Assoc);
3729               end loop;
3730            end;
3731         end if;
3732
3733         --  If the low bound is not known at compile time and others is not
3734         --  present we can proceed since the bounds can be obtained from the
3735         --  aggregate.
3736
3737         if Hiv < Lov
3738           or else (not Compile_Time_Known_Value (Blo) and then Others_Present)
3739         then
3740            return False;
3741         end if;
3742
3743         --  Determine if set of alternatives is suitable for conversion and
3744         --  build an array containing the values in sequence.
3745
3746         declare
3747            Vals : array (UI_To_Int (Lov) .. UI_To_Int (Hiv))
3748                     of Node_Id := (others => Empty);
3749            --  The values in the aggregate sorted appropriately
3750
3751            Vlist : List_Id;
3752            --  Same data as Vals in list form
3753
3754            Rep_Count : Nat;
3755            --  Used to validate Max_Others_Replicate limit
3756
3757            Elmt         : Node_Id;
3758            Num          : Int := UI_To_Int (Lov);
3759            Choice_Index : Int;
3760            Choice       : Node_Id;
3761            Lo, Hi       : Node_Id;
3762
3763         begin
3764            if Present (Expressions (N)) then
3765               Elmt := First (Expressions (N));
3766               while Present (Elmt) loop
3767                  if Nkind (Elmt) = N_Aggregate
3768                    and then Present (Next_Index (Ix))
3769                    and then
3770                      not Flatten (Elmt, Next_Index (Ix), Next_Index (Ixb))
3771                  then
3772                     return False;
3773                  end if;
3774
3775                  Vals (Num) := Relocate_Node (Elmt);
3776                  Num := Num + 1;
3777
3778                  Next (Elmt);
3779               end loop;
3780            end if;
3781
3782            if No (Component_Associations (N)) then
3783               return True;
3784            end if;
3785
3786            Elmt := First (Component_Associations (N));
3787
3788            if Nkind (Expression (Elmt)) = N_Aggregate then
3789               if Present (Next_Index (Ix))
3790                 and then
3791                   not Flatten
3792                         (Expression (Elmt), Next_Index (Ix), Next_Index (Ixb))
3793               then
3794                  return False;
3795               end if;
3796            end if;
3797
3798            Component_Loop : while Present (Elmt) loop
3799               Choice := First (Choices (Elmt));
3800               Choice_Loop : while Present (Choice) loop
3801
3802                  --  If we have an others choice, fill in the missing elements
3803                  --  subject to the limit established by Max_Others_Replicate.
3804
3805                  if Nkind (Choice) = N_Others_Choice then
3806                     Rep_Count := 0;
3807
3808                     for J in Vals'Range loop
3809                        if No (Vals (J)) then
3810                           Vals (J) := New_Copy_Tree (Expression (Elmt));
3811                           Rep_Count := Rep_Count + 1;
3812
3813                           --  Check for maximum others replication. Note that
3814                           --  we skip this test if either of the restrictions
3815                           --  No_Elaboration_Code or No_Implicit_Loops is
3816                           --  active, if this is a preelaborable unit or
3817                           --  a predefined unit, or if the unit must be
3818                           --  placed in data memory. This also ensures that
3819                           --  predefined units get the same level of constant
3820                           --  folding in Ada 95 and Ada 2005, where their
3821                           --  categorization has changed.
3822
3823                           declare
3824                              P : constant Entity_Id :=
3825                                Cunit_Entity (Current_Sem_Unit);
3826
3827                           begin
3828                              --  Check if duplication OK and if so continue
3829                              --  processing.
3830
3831                              if Restriction_Active (No_Elaboration_Code)
3832                                or else Restriction_Active (No_Implicit_Loops)
3833                                or else
3834                                  (Ekind (Current_Scope) = E_Package
3835                                    and then Static_Elaboration_Desired
3836                                               (Current_Scope))
3837                                or else Is_Preelaborated (P)
3838                                or else (Ekind (P) = E_Package_Body
3839                                          and then
3840                                            Is_Preelaborated (Spec_Entity (P)))
3841                                or else
3842                                  Is_Predefined_File_Name
3843                                    (Unit_File_Name (Get_Source_Unit (P)))
3844                              then
3845                                 null;
3846
3847                              --  If duplication not OK, then we return False
3848                              --  if the replication count is too high
3849
3850                              elsif Rep_Count > Max_Others_Replicate then
3851                                 return False;
3852
3853                              --  Continue on if duplication not OK, but the
3854                              --  replication count is not excessive.
3855
3856                              else
3857                                 null;
3858                              end if;
3859                           end;
3860                        end if;
3861                     end loop;
3862
3863                     exit Component_Loop;
3864
3865                  --  Case of a subtype mark, identifier or expanded name
3866
3867                  elsif Is_Entity_Name (Choice)
3868                    and then Is_Type (Entity (Choice))
3869                  then
3870                     Lo := Type_Low_Bound  (Etype (Choice));
3871                     Hi := Type_High_Bound (Etype (Choice));
3872
3873                  --  Case of subtype indication
3874
3875                  elsif Nkind (Choice) = N_Subtype_Indication then
3876                     Lo := Low_Bound  (Range_Expression (Constraint (Choice)));
3877                     Hi := High_Bound (Range_Expression (Constraint (Choice)));
3878
3879                  --  Case of a range
3880
3881                  elsif Nkind (Choice) = N_Range then
3882                     Lo := Low_Bound (Choice);
3883                     Hi := High_Bound (Choice);
3884
3885                  --  Normal subexpression case
3886
3887                  else pragma Assert (Nkind (Choice) in N_Subexpr);
3888                     if not Compile_Time_Known_Value (Choice) then
3889                        return False;
3890
3891                     else
3892                        Choice_Index := UI_To_Int (Expr_Value (Choice));
3893
3894                        if Choice_Index in Vals'Range then
3895                           Vals (Choice_Index) :=
3896                             New_Copy_Tree (Expression (Elmt));
3897                           goto Continue;
3898
3899                        --  Choice is statically out-of-range, will be
3900                        --  rewritten to raise Constraint_Error.
3901
3902                        else
3903                           return False;
3904                        end if;
3905                     end if;
3906                  end if;
3907
3908                  --  Range cases merge with Lo,Hi set
3909
3910                  if not Compile_Time_Known_Value (Lo)
3911                       or else
3912                     not Compile_Time_Known_Value (Hi)
3913                  then
3914                     return False;
3915
3916                  else
3917                     for J in UI_To_Int (Expr_Value (Lo)) ..
3918                              UI_To_Int (Expr_Value (Hi))
3919                     loop
3920                        Vals (J) := New_Copy_Tree (Expression (Elmt));
3921                     end loop;
3922                  end if;
3923
3924               <<Continue>>
3925                  Next (Choice);
3926               end loop Choice_Loop;
3927
3928               Next (Elmt);
3929            end loop Component_Loop;
3930
3931            --  If we get here the conversion is possible
3932
3933            Vlist := New_List;
3934            for J in Vals'Range loop
3935               Append (Vals (J), Vlist);
3936            end loop;
3937
3938            Rewrite (N, Make_Aggregate (Loc, Expressions => Vlist));
3939            Set_Aggregate_Bounds (N, Aggregate_Bounds (Original_Node (N)));
3940            return True;
3941         end;
3942      end Flatten;
3943
3944      -------------
3945      -- Is_Flat --
3946      -------------
3947
3948      function Is_Flat (N : Node_Id; Dims : Int) return Boolean is
3949         Elmt : Node_Id;
3950
3951      begin
3952         if Dims = 0 then
3953            return True;
3954
3955         elsif Nkind (N) = N_Aggregate then
3956            if Present (Component_Associations (N)) then
3957               return False;
3958
3959            else
3960               Elmt := First (Expressions (N));
3961               while Present (Elmt) loop
3962                  if not Is_Flat (Elmt, Dims - 1) then
3963                     return False;
3964                  end if;
3965
3966                  Next (Elmt);
3967               end loop;
3968
3969               return True;
3970            end if;
3971         else
3972            return True;
3973         end if;
3974      end Is_Flat;
3975
3976   --  Start of processing for Convert_To_Positional
3977
3978   begin
3979      --  Only convert to positional when generating C in case of an
3980      --  object declaration, this is the only case where aggregates are
3981      --  supported in C.
3982
3983      if Modify_Tree_For_C and then not In_Object_Declaration (N) then
3984         return;
3985      end if;
3986
3987      --  Ada 2005 (AI-287): Do not convert in case of default initialized
3988      --  components because in this case will need to call the corresponding
3989      --  IP procedure.
3990
3991      if Has_Default_Init_Comps (N) then
3992         return;
3993      end if;
3994
3995      if Is_Flat (N, Number_Dimensions (Typ)) then
3996         return;
3997      end if;
3998
3999      if Is_Bit_Packed_Array (Typ) and then not Handle_Bit_Packed then
4000         return;
4001      end if;
4002
4003      --  Do not convert to positional if controlled components are involved
4004      --  since these require special processing
4005
4006      if Has_Controlled_Component (Typ) then
4007         return;
4008      end if;
4009
4010      Check_Static_Components;
4011
4012      --  If the size is known, or all the components are static, try to
4013      --  build a fully positional aggregate.
4014
4015      --  The size of the type may not be known for an aggregate with
4016      --  discriminated array components, but if the components are static
4017      --  it is still possible to verify statically that the length is
4018      --  compatible with the upper bound of the type, and therefore it is
4019      --  worth flattening such aggregates as well.
4020
4021      --  For now the back-end expands these aggregates into individual
4022      --  assignments to the target anyway, but it is conceivable that
4023      --  it will eventually be able to treat such aggregates statically???
4024
4025      if Aggr_Size_OK (N, Typ)
4026        and then Flatten (N, First_Index (Typ), First_Index (Base_Type (Typ)))
4027      then
4028         if Static_Components then
4029            Set_Compile_Time_Known_Aggregate (N);
4030            Set_Expansion_Delayed (N, False);
4031         end if;
4032
4033         Analyze_And_Resolve (N, Typ);
4034      end if;
4035
4036      --  Is Static_Eaboration_Desired has been specified, diagnose aggregates
4037      --  that will still require initialization code.
4038
4039      if (Ekind (Current_Scope) = E_Package
4040        and then Static_Elaboration_Desired (Current_Scope))
4041        and then Nkind (Parent (N)) = N_Object_Declaration
4042      then
4043         declare
4044            Expr : Node_Id;
4045
4046         begin
4047            if Nkind (N) = N_Aggregate and then Present (Expressions (N)) then
4048               Expr := First (Expressions (N));
4049               while Present (Expr) loop
4050                  if Nkind_In (Expr, N_Integer_Literal, N_Real_Literal)
4051                    or else
4052                      (Is_Entity_Name (Expr)
4053                        and then Ekind (Entity (Expr)) = E_Enumeration_Literal)
4054                  then
4055                     null;
4056
4057                  else
4058                     Error_Msg_N
4059                       ("non-static object requires elaboration code??", N);
4060                     exit;
4061                  end if;
4062
4063                  Next (Expr);
4064               end loop;
4065
4066               if Present (Component_Associations (N)) then
4067                  Error_Msg_N ("object requires elaboration code??", N);
4068               end if;
4069            end if;
4070         end;
4071      end if;
4072   end Convert_To_Positional;
4073
4074   ----------------------------
4075   -- Expand_Array_Aggregate --
4076   ----------------------------
4077
4078   --  Array aggregate expansion proceeds as follows:
4079
4080   --  1. If requested we generate code to perform all the array aggregate
4081   --     bound checks, specifically
4082
4083   --         (a) Check that the index range defined by aggregate bounds is
4084   --             compatible with corresponding index subtype.
4085
4086   --         (b) If an others choice is present check that no aggregate
4087   --             index is outside the bounds of the index constraint.
4088
4089   --         (c) For multidimensional arrays make sure that all subaggregates
4090   --             corresponding to the same dimension have the same bounds.
4091
4092   --  2. Check for packed array aggregate which can be converted to a
4093   --     constant so that the aggregate disappears completely.
4094
4095   --  3. Check case of nested aggregate. Generally nested aggregates are
4096   --     handled during the processing of the parent aggregate.
4097
4098   --  4. Check if the aggregate can be statically processed. If this is the
4099   --     case pass it as is to Gigi. Note that a necessary condition for
4100   --     static processing is that the aggregate be fully positional.
4101
4102   --  5. If in place aggregate expansion is possible (i.e. no need to create
4103   --     a temporary) then mark the aggregate as such and return. Otherwise
4104   --     create a new temporary and generate the appropriate initialization
4105   --     code.
4106
4107   procedure Expand_Array_Aggregate (N : Node_Id) is
4108      Loc : constant Source_Ptr := Sloc (N);
4109
4110      Typ  : constant Entity_Id := Etype (N);
4111      Ctyp : constant Entity_Id := Component_Type (Typ);
4112      --  Typ is the correct constrained array subtype of the aggregate
4113      --  Ctyp is the corresponding component type.
4114
4115      Aggr_Dimension : constant Pos := Number_Dimensions (Typ);
4116      --  Number of aggregate index dimensions
4117
4118      Aggr_Low  : array (1 .. Aggr_Dimension) of Node_Id;
4119      Aggr_High : array (1 .. Aggr_Dimension) of Node_Id;
4120      --  Low and High bounds of the constraint for each aggregate index
4121
4122      Aggr_Index_Typ : array (1 .. Aggr_Dimension) of Entity_Id;
4123      --  The type of each index
4124
4125      In_Place_Assign_OK_For_Declaration : Boolean := False;
4126      --  True if we are to generate an in place assignment for a declaration
4127
4128      Maybe_In_Place_OK : Boolean;
4129      --  If the type is neither controlled nor packed and the aggregate
4130      --  is the expression in an assignment, assignment in place may be
4131      --  possible, provided other conditions are met on the LHS.
4132
4133      Others_Present : array (1 .. Aggr_Dimension) of Boolean :=
4134        (others => False);
4135      --  If Others_Present (J) is True, then there is an others choice
4136      --  in one of the sub-aggregates of N at dimension J.
4137
4138      function Aggr_Assignment_OK_For_Backend (N : Node_Id) return Boolean;
4139      --  Returns true if an aggregate assignment can be done by the back end
4140
4141      procedure Build_Constrained_Type (Positional : Boolean);
4142      --  If the subtype is not static or unconstrained, build a constrained
4143      --  type using the computable sizes of the aggregate and its sub-
4144      --  aggregates.
4145
4146      procedure Check_Bounds (Aggr_Bounds : Node_Id; Index_Bounds : Node_Id);
4147      --  Checks that the bounds of Aggr_Bounds are within the bounds defined
4148      --  by Index_Bounds.
4149
4150      procedure Check_Same_Aggr_Bounds (Sub_Aggr : Node_Id; Dim : Pos);
4151      --  Checks that in a multi-dimensional array aggregate all subaggregates
4152      --  corresponding to the same dimension have the same bounds.
4153      --  Sub_Aggr is an array sub-aggregate. Dim is the dimension
4154      --  corresponding to the sub-aggregate.
4155
4156      procedure Compute_Others_Present (Sub_Aggr : Node_Id; Dim : Pos);
4157      --  Computes the values of array Others_Present. Sub_Aggr is the
4158      --  array sub-aggregate we start the computation from. Dim is the
4159      --  dimension corresponding to the sub-aggregate.
4160
4161      function In_Place_Assign_OK return Boolean;
4162      --  Simple predicate to determine whether an aggregate assignment can
4163      --  be done in place, because none of the new values can depend on the
4164      --  components of the target of the assignment.
4165
4166      procedure Others_Check (Sub_Aggr : Node_Id; Dim : Pos);
4167      --  Checks that if an others choice is present in any sub-aggregate no
4168      --  aggregate index is outside the bounds of the index constraint.
4169      --  Sub_Aggr is an array sub-aggregate. Dim is the dimension
4170      --  corresponding to the sub-aggregate.
4171
4172      function Safe_Left_Hand_Side (N : Node_Id) return Boolean;
4173      --  In addition to Maybe_In_Place_OK, in order for an aggregate to be
4174      --  built directly into the target of the assignment it must be free
4175      --  of side-effects.
4176
4177      ------------------------------------
4178      -- Aggr_Assignment_OK_For_Backend --
4179      ------------------------------------
4180
4181      --  Backend processing by Gigi/gcc is possible only if all the following
4182      --  conditions are met:
4183
4184      --    1. N consists of a single OTHERS choice, possibly recursively
4185
4186      --    2. The array type is not packed
4187
4188      --    3. The array type has no atomic components
4189
4190      --    4. The array type has no null ranges (the purpose of this is to
4191      --       avoid a bogus warning for an out-of-range value).
4192
4193      --    5. The component type is discrete
4194
4195      --    6. The component size is Storage_Unit or the value is of the form
4196      --       M * (1 + A**1 + A**2 + .. A**(K-1)) where A = 2**(Storage_Unit)
4197      --       and M in 1 .. A-1. This can also be viewed as K occurrences of
4198      --       the 8-bit value M, concatenated together.
4199
4200      --  The ultimate goal is to generate a call to a fast memset routine
4201      --  specifically optimized for the target.
4202
4203      function Aggr_Assignment_OK_For_Backend (N : Node_Id) return Boolean is
4204         Ctyp      : Entity_Id;
4205         Index     : Entity_Id;
4206         Expr      : Node_Id := N;
4207         Low       : Node_Id;
4208         High      : Node_Id;
4209         Remainder : Uint;
4210         Value     : Uint;
4211         Nunits    : Nat;
4212
4213      begin
4214         --  Recurse as far as possible to find the innermost component type
4215
4216         Ctyp := Etype (N);
4217         while Is_Array_Type (Ctyp) loop
4218            if Nkind (Expr) /= N_Aggregate
4219              or else not Is_Others_Aggregate (Expr)
4220            then
4221               return False;
4222            end if;
4223
4224            if Present (Packed_Array_Impl_Type (Ctyp)) then
4225               return False;
4226            end if;
4227
4228            if Has_Atomic_Components (Ctyp) then
4229               return False;
4230            end if;
4231
4232            Index := First_Index (Ctyp);
4233            while Present (Index) loop
4234               Get_Index_Bounds (Index, Low, High);
4235
4236               if Is_Null_Range (Low, High) then
4237                  return False;
4238               end if;
4239
4240               Next_Index (Index);
4241            end loop;
4242
4243            Expr := Expression (First (Component_Associations (Expr)));
4244
4245            for J in 1 .. Number_Dimensions (Ctyp) - 1 loop
4246               if Nkind (Expr) /= N_Aggregate
4247                 or else not Is_Others_Aggregate (Expr)
4248               then
4249                  return False;
4250               end if;
4251
4252               Expr := Expression (First (Component_Associations (Expr)));
4253            end loop;
4254
4255            Ctyp := Component_Type (Ctyp);
4256
4257            if Is_Atomic_Or_VFA (Ctyp) then
4258               return False;
4259            end if;
4260         end loop;
4261
4262         if not Is_Discrete_Type (Ctyp) then
4263            return False;
4264         end if;
4265
4266         --  The expression needs to be analyzed if True is returned
4267
4268         Analyze_And_Resolve (Expr, Ctyp);
4269
4270         --  The back end uses the Esize as the precision of the type
4271
4272         Nunits := UI_To_Int (Esize (Ctyp)) / System_Storage_Unit;
4273
4274         if Nunits = 1 then
4275            return True;
4276         end if;
4277
4278         if not Compile_Time_Known_Value (Expr) then
4279            return False;
4280         end if;
4281
4282         Value := Expr_Value (Expr);
4283
4284         if Has_Biased_Representation (Ctyp) then
4285            Value := Value - Expr_Value (Type_Low_Bound (Ctyp));
4286         end if;
4287
4288         --  Values 0 and -1 immediately satisfy the last check
4289
4290         if Value = Uint_0 or else Value = Uint_Minus_1 then
4291            return True;
4292         end if;
4293
4294         --  We need to work with an unsigned value
4295
4296         if Value < 0 then
4297            Value := Value + 2**(System_Storage_Unit * Nunits);
4298         end if;
4299
4300         Remainder := Value rem 2**System_Storage_Unit;
4301
4302         for J in 1 .. Nunits - 1 loop
4303            Value := Value / 2**System_Storage_Unit;
4304
4305            if Value rem 2**System_Storage_Unit /= Remainder then
4306               return False;
4307            end if;
4308         end loop;
4309
4310         return True;
4311      end Aggr_Assignment_OK_For_Backend;
4312
4313      ----------------------------
4314      -- Build_Constrained_Type --
4315      ----------------------------
4316
4317      procedure Build_Constrained_Type (Positional : Boolean) is
4318         Loc      : constant Source_Ptr := Sloc (N);
4319         Agg_Type : constant Entity_Id  := Make_Temporary (Loc, 'A');
4320         Comp     : Node_Id;
4321         Decl     : Node_Id;
4322         Typ      : constant Entity_Id := Etype (N);
4323         Indexes  : constant List_Id   := New_List;
4324         Num      : Int;
4325         Sub_Agg  : Node_Id;
4326
4327      begin
4328         --  If the aggregate is purely positional, all its subaggregates
4329         --  have the same size. We collect the dimensions from the first
4330         --  subaggregate at each level.
4331
4332         if Positional then
4333            Sub_Agg := N;
4334
4335            for D in 1 .. Number_Dimensions (Typ) loop
4336               Sub_Agg := First (Expressions (Sub_Agg));
4337
4338               Comp := Sub_Agg;
4339               Num := 0;
4340               while Present (Comp) loop
4341                  Num := Num + 1;
4342                  Next (Comp);
4343               end loop;
4344
4345               Append_To (Indexes,
4346                 Make_Range (Loc,
4347                   Low_Bound  => Make_Integer_Literal (Loc, 1),
4348                   High_Bound => Make_Integer_Literal (Loc, Num)));
4349            end loop;
4350
4351         else
4352            --  We know the aggregate type is unconstrained and the aggregate
4353            --  is not processable by the back end, therefore not necessarily
4354            --  positional. Retrieve each dimension bounds (computed earlier).
4355
4356            for D in 1 .. Number_Dimensions (Typ) loop
4357               Append_To (Indexes,
4358                 Make_Range (Loc,
4359                   Low_Bound  => Aggr_Low  (D),
4360                   High_Bound => Aggr_High (D)));
4361            end loop;
4362         end if;
4363
4364         Decl :=
4365           Make_Full_Type_Declaration (Loc,
4366               Defining_Identifier => Agg_Type,
4367               Type_Definition     =>
4368                 Make_Constrained_Array_Definition (Loc,
4369                   Discrete_Subtype_Definitions => Indexes,
4370                   Component_Definition         =>
4371                     Make_Component_Definition (Loc,
4372                       Aliased_Present    => False,
4373                       Subtype_Indication =>
4374                         New_Occurrence_Of (Component_Type (Typ), Loc))));
4375
4376         Insert_Action (N, Decl);
4377         Analyze (Decl);
4378         Set_Etype (N, Agg_Type);
4379         Set_Is_Itype (Agg_Type);
4380         Freeze_Itype (Agg_Type, N);
4381      end Build_Constrained_Type;
4382
4383      ------------------
4384      -- Check_Bounds --
4385      ------------------
4386
4387      procedure Check_Bounds (Aggr_Bounds : Node_Id; Index_Bounds : Node_Id) is
4388         Aggr_Lo : Node_Id;
4389         Aggr_Hi : Node_Id;
4390
4391         Ind_Lo  : Node_Id;
4392         Ind_Hi  : Node_Id;
4393
4394         Cond    : Node_Id := Empty;
4395
4396      begin
4397         Get_Index_Bounds (Aggr_Bounds, Aggr_Lo, Aggr_Hi);
4398         Get_Index_Bounds (Index_Bounds, Ind_Lo, Ind_Hi);
4399
4400         --  Generate the following test:
4401
4402         --    [constraint_error when
4403         --      Aggr_Lo <= Aggr_Hi and then
4404         --        (Aggr_Lo < Ind_Lo or else Aggr_Hi > Ind_Hi)]
4405
4406         --  As an optimization try to see if some tests are trivially vacuous
4407         --  because we are comparing an expression against itself.
4408
4409         if Aggr_Lo = Ind_Lo and then Aggr_Hi = Ind_Hi then
4410            Cond := Empty;
4411
4412         elsif Aggr_Hi = Ind_Hi then
4413            Cond :=
4414              Make_Op_Lt (Loc,
4415                Left_Opnd  => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
4416                Right_Opnd => Duplicate_Subexpr_Move_Checks (Ind_Lo));
4417
4418         elsif Aggr_Lo = Ind_Lo then
4419            Cond :=
4420              Make_Op_Gt (Loc,
4421                Left_Opnd  => Duplicate_Subexpr_Move_Checks (Aggr_Hi),
4422                Right_Opnd => Duplicate_Subexpr_Move_Checks (Ind_Hi));
4423
4424         else
4425            Cond :=
4426              Make_Or_Else (Loc,
4427                Left_Opnd =>
4428                  Make_Op_Lt (Loc,
4429                    Left_Opnd  => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
4430                    Right_Opnd => Duplicate_Subexpr_Move_Checks (Ind_Lo)),
4431
4432                Right_Opnd =>
4433                  Make_Op_Gt (Loc,
4434                    Left_Opnd  => Duplicate_Subexpr (Aggr_Hi),
4435                    Right_Opnd => Duplicate_Subexpr (Ind_Hi)));
4436         end if;
4437
4438         if Present (Cond) then
4439            Cond :=
4440              Make_And_Then (Loc,
4441                Left_Opnd =>
4442                  Make_Op_Le (Loc,
4443                    Left_Opnd  => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
4444                    Right_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Hi)),
4445
4446                Right_Opnd => Cond);
4447
4448            Set_Analyzed (Left_Opnd  (Left_Opnd (Cond)), False);
4449            Set_Analyzed (Right_Opnd (Left_Opnd (Cond)), False);
4450            Insert_Action (N,
4451              Make_Raise_Constraint_Error (Loc,
4452                Condition => Cond,
4453                Reason    => CE_Range_Check_Failed));
4454         end if;
4455      end Check_Bounds;
4456
4457      ----------------------------
4458      -- Check_Same_Aggr_Bounds --
4459      ----------------------------
4460
4461      procedure Check_Same_Aggr_Bounds (Sub_Aggr : Node_Id; Dim : Pos) is
4462         Sub_Lo : constant Node_Id := Low_Bound (Aggregate_Bounds (Sub_Aggr));
4463         Sub_Hi : constant Node_Id := High_Bound (Aggregate_Bounds (Sub_Aggr));
4464         --  The bounds of this specific sub-aggregate
4465
4466         Aggr_Lo : constant Node_Id := Aggr_Low (Dim);
4467         Aggr_Hi : constant Node_Id := Aggr_High (Dim);
4468         --  The bounds of the aggregate for this dimension
4469
4470         Ind_Typ : constant Entity_Id := Aggr_Index_Typ (Dim);
4471         --  The index type for this dimension.xxx
4472
4473         Cond  : Node_Id := Empty;
4474         Assoc : Node_Id;
4475         Expr  : Node_Id;
4476
4477      begin
4478         --  If index checks are on generate the test
4479
4480         --    [constraint_error when
4481         --      Aggr_Lo /= Sub_Lo or else Aggr_Hi /= Sub_Hi]
4482
4483         --  As an optimization try to see if some tests are trivially vacuos
4484         --  because we are comparing an expression against itself. Also for
4485         --  the first dimension the test is trivially vacuous because there
4486         --  is just one aggregate for dimension 1.
4487
4488         if Index_Checks_Suppressed (Ind_Typ) then
4489            Cond := Empty;
4490
4491         elsif Dim = 1 or else (Aggr_Lo = Sub_Lo and then Aggr_Hi = Sub_Hi)
4492         then
4493            Cond := Empty;
4494
4495         elsif Aggr_Hi = Sub_Hi then
4496            Cond :=
4497              Make_Op_Ne (Loc,
4498                Left_Opnd  => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
4499                Right_Opnd => Duplicate_Subexpr_Move_Checks (Sub_Lo));
4500
4501         elsif Aggr_Lo = Sub_Lo then
4502            Cond :=
4503              Make_Op_Ne (Loc,
4504                Left_Opnd  => Duplicate_Subexpr_Move_Checks (Aggr_Hi),
4505                Right_Opnd => Duplicate_Subexpr_Move_Checks (Sub_Hi));
4506
4507         else
4508            Cond :=
4509              Make_Or_Else (Loc,
4510                Left_Opnd =>
4511                  Make_Op_Ne (Loc,
4512                    Left_Opnd  => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
4513                    Right_Opnd => Duplicate_Subexpr_Move_Checks (Sub_Lo)),
4514
4515                Right_Opnd =>
4516                  Make_Op_Ne (Loc,
4517                    Left_Opnd  => Duplicate_Subexpr (Aggr_Hi),
4518                    Right_Opnd => Duplicate_Subexpr (Sub_Hi)));
4519         end if;
4520
4521         if Present (Cond) then
4522            Insert_Action (N,
4523              Make_Raise_Constraint_Error (Loc,
4524                Condition => Cond,
4525                Reason    => CE_Length_Check_Failed));
4526         end if;
4527
4528         --  Now look inside the sub-aggregate to see if there is more work
4529
4530         if Dim < Aggr_Dimension then
4531
4532            --  Process positional components
4533
4534            if Present (Expressions (Sub_Aggr)) then
4535               Expr := First (Expressions (Sub_Aggr));
4536               while Present (Expr) loop
4537                  Check_Same_Aggr_Bounds (Expr, Dim + 1);
4538                  Next (Expr);
4539               end loop;
4540            end if;
4541
4542            --  Process component associations
4543
4544            if Present (Component_Associations (Sub_Aggr)) then
4545               Assoc := First (Component_Associations (Sub_Aggr));
4546               while Present (Assoc) loop
4547                  Expr := Expression (Assoc);
4548                  Check_Same_Aggr_Bounds (Expr, Dim + 1);
4549                  Next (Assoc);
4550               end loop;
4551            end if;
4552         end if;
4553      end Check_Same_Aggr_Bounds;
4554
4555      ----------------------------
4556      -- Compute_Others_Present --
4557      ----------------------------
4558
4559      procedure Compute_Others_Present (Sub_Aggr : Node_Id; Dim : Pos) is
4560         Assoc : Node_Id;
4561         Expr  : Node_Id;
4562
4563      begin
4564         if Present (Component_Associations (Sub_Aggr)) then
4565            Assoc := Last (Component_Associations (Sub_Aggr));
4566
4567            if Nkind (First (Choices (Assoc))) = N_Others_Choice then
4568               Others_Present (Dim) := True;
4569            end if;
4570         end if;
4571
4572         --  Now look inside the sub-aggregate to see if there is more work
4573
4574         if Dim < Aggr_Dimension then
4575
4576            --  Process positional components
4577
4578            if Present (Expressions (Sub_Aggr)) then
4579               Expr := First (Expressions (Sub_Aggr));
4580               while Present (Expr) loop
4581                  Compute_Others_Present (Expr, Dim + 1);
4582                  Next (Expr);
4583               end loop;
4584            end if;
4585
4586            --  Process component associations
4587
4588            if Present (Component_Associations (Sub_Aggr)) then
4589               Assoc := First (Component_Associations (Sub_Aggr));
4590               while Present (Assoc) loop
4591                  Expr := Expression (Assoc);
4592                  Compute_Others_Present (Expr, Dim + 1);
4593                  Next (Assoc);
4594               end loop;
4595            end if;
4596         end if;
4597      end Compute_Others_Present;
4598
4599      ------------------------
4600      -- In_Place_Assign_OK --
4601      ------------------------
4602
4603      function In_Place_Assign_OK return Boolean is
4604         Aggr_In : Node_Id;
4605         Aggr_Lo : Node_Id;
4606         Aggr_Hi : Node_Id;
4607         Obj_In  : Node_Id;
4608         Obj_Lo  : Node_Id;
4609         Obj_Hi  : Node_Id;
4610
4611         function Safe_Aggregate (Aggr : Node_Id) return Boolean;
4612         --  Check recursively that each component of a (sub)aggregate does
4613         --  not depend on the variable being assigned to.
4614
4615         function Safe_Component (Expr : Node_Id) return Boolean;
4616         --  Verify that an expression cannot depend on the variable being
4617         --  assigned to. Room for improvement here (but less than before).
4618
4619         --------------------
4620         -- Safe_Aggregate --
4621         --------------------
4622
4623         function Safe_Aggregate (Aggr : Node_Id) return Boolean is
4624            Expr : Node_Id;
4625
4626         begin
4627            if Present (Expressions (Aggr)) then
4628               Expr := First (Expressions (Aggr));
4629               while Present (Expr) loop
4630                  if Nkind (Expr) = N_Aggregate then
4631                     if not Safe_Aggregate (Expr) then
4632                        return False;
4633                     end if;
4634
4635                  elsif not Safe_Component (Expr) then
4636                     return False;
4637                  end if;
4638
4639                  Next (Expr);
4640               end loop;
4641            end if;
4642
4643            if Present (Component_Associations (Aggr)) then
4644               Expr := First (Component_Associations (Aggr));
4645               while Present (Expr) loop
4646                  if Nkind (Expression (Expr)) = N_Aggregate then
4647                     if not Safe_Aggregate (Expression (Expr)) then
4648                        return False;
4649                     end if;
4650
4651                  --  If association has a box, no way to determine yet
4652                  --  whether default can be assigned in place.
4653
4654                  elsif Box_Present (Expr) then
4655                     return False;
4656
4657                  elsif not Safe_Component (Expression (Expr)) then
4658                     return False;
4659                  end if;
4660
4661                  Next (Expr);
4662               end loop;
4663            end if;
4664
4665            return True;
4666         end Safe_Aggregate;
4667
4668         --------------------
4669         -- Safe_Component --
4670         --------------------
4671
4672         function Safe_Component (Expr : Node_Id) return Boolean is
4673            Comp : Node_Id := Expr;
4674
4675            function Check_Component (Comp : Node_Id) return Boolean;
4676            --  Do the recursive traversal, after copy
4677
4678            ---------------------
4679            -- Check_Component --
4680            ---------------------
4681
4682            function Check_Component (Comp : Node_Id) return Boolean is
4683            begin
4684               if Is_Overloaded (Comp) then
4685                  return False;
4686               end if;
4687
4688               return Compile_Time_Known_Value (Comp)
4689
4690                 or else (Is_Entity_Name (Comp)
4691                           and then Present (Entity (Comp))
4692                           and then No (Renamed_Object (Entity (Comp))))
4693
4694                 or else (Nkind (Comp) = N_Attribute_Reference
4695                           and then Check_Component (Prefix (Comp)))
4696
4697                 or else (Nkind (Comp) in N_Binary_Op
4698                           and then Check_Component (Left_Opnd  (Comp))
4699                           and then Check_Component (Right_Opnd (Comp)))
4700
4701                 or else (Nkind (Comp) in N_Unary_Op
4702                           and then Check_Component (Right_Opnd (Comp)))
4703
4704                 or else (Nkind (Comp) = N_Selected_Component
4705                           and then Check_Component (Prefix (Comp)))
4706
4707                 or else (Nkind (Comp) = N_Unchecked_Type_Conversion
4708                           and then Check_Component (Expression (Comp)));
4709            end Check_Component;
4710
4711         --  Start of processing for Safe_Component
4712
4713         begin
4714            --  If the component appears in an association that may correspond
4715            --  to more than one element, it is not analyzed before expansion
4716            --  into assignments, to avoid side effects. We analyze, but do not
4717            --  resolve the copy, to obtain sufficient entity information for
4718            --  the checks that follow. If component is overloaded we assume
4719            --  an unsafe function call.
4720
4721            if not Analyzed (Comp) then
4722               if Is_Overloaded (Expr) then
4723                  return False;
4724
4725               elsif Nkind (Expr) = N_Aggregate
4726                  and then not Is_Others_Aggregate (Expr)
4727               then
4728                  return False;
4729
4730               elsif Nkind (Expr) = N_Allocator then
4731
4732                  --  For now, too complex to analyze
4733
4734                  return False;
4735               end if;
4736
4737               Comp := New_Copy_Tree (Expr);
4738               Set_Parent (Comp, Parent (Expr));
4739               Analyze (Comp);
4740            end if;
4741
4742            if Nkind (Comp) = N_Aggregate then
4743               return Safe_Aggregate (Comp);
4744            else
4745               return Check_Component (Comp);
4746            end if;
4747         end Safe_Component;
4748
4749      --  Start of processing for In_Place_Assign_OK
4750
4751      begin
4752         if Present (Component_Associations (N)) then
4753
4754            --  On assignment, sliding can take place, so we cannot do the
4755            --  assignment in place unless the bounds of the aggregate are
4756            --  statically equal to those of the target.
4757
4758            --  If the aggregate is given by an others choice, the bounds are
4759            --  derived from the left-hand side, and the assignment is safe if
4760            --  the expression is.
4761
4762            if Is_Others_Aggregate (N) then
4763               return
4764                 Safe_Component
4765                  (Expression (First (Component_Associations (N))));
4766            end if;
4767
4768            Aggr_In := First_Index (Etype (N));
4769
4770            if Nkind (Parent (N)) = N_Assignment_Statement then
4771               Obj_In  := First_Index (Etype (Name (Parent (N))));
4772
4773            else
4774               --  Context is an allocator. Check bounds of aggregate against
4775               --  given type in qualified expression.
4776
4777               pragma Assert (Nkind (Parent (Parent (N))) = N_Allocator);
4778               Obj_In :=
4779                 First_Index (Etype (Entity (Subtype_Mark (Parent (N)))));
4780            end if;
4781
4782            while Present (Aggr_In) loop
4783               Get_Index_Bounds (Aggr_In, Aggr_Lo, Aggr_Hi);
4784               Get_Index_Bounds (Obj_In, Obj_Lo, Obj_Hi);
4785
4786               if not Compile_Time_Known_Value (Aggr_Lo)
4787                 or else not Compile_Time_Known_Value (Aggr_Hi)
4788                 or else not Compile_Time_Known_Value (Obj_Lo)
4789                 or else not Compile_Time_Known_Value (Obj_Hi)
4790                 or else Expr_Value (Aggr_Lo) /= Expr_Value (Obj_Lo)
4791                 or else Expr_Value (Aggr_Hi) /= Expr_Value (Obj_Hi)
4792               then
4793                  return False;
4794               end if;
4795
4796               Next_Index (Aggr_In);
4797               Next_Index (Obj_In);
4798            end loop;
4799         end if;
4800
4801         --  Now check the component values themselves
4802
4803         return Safe_Aggregate (N);
4804      end In_Place_Assign_OK;
4805
4806      ------------------
4807      -- Others_Check --
4808      ------------------
4809
4810      procedure Others_Check (Sub_Aggr : Node_Id; Dim : Pos) is
4811         Aggr_Lo : constant Node_Id := Aggr_Low (Dim);
4812         Aggr_Hi : constant Node_Id := Aggr_High (Dim);
4813         --  The bounds of the aggregate for this dimension
4814
4815         Ind_Typ : constant Entity_Id := Aggr_Index_Typ (Dim);
4816         --  The index type for this dimension
4817
4818         Need_To_Check : Boolean := False;
4819
4820         Choices_Lo : Node_Id := Empty;
4821         Choices_Hi : Node_Id := Empty;
4822         --  The lowest and highest discrete choices for a named sub-aggregate
4823
4824         Nb_Choices : Int := -1;
4825         --  The number of discrete non-others choices in this sub-aggregate
4826
4827         Nb_Elements : Uint := Uint_0;
4828         --  The number of elements in a positional aggregate
4829
4830         Cond : Node_Id := Empty;
4831
4832         Assoc  : Node_Id;
4833         Choice : Node_Id;
4834         Expr   : Node_Id;
4835
4836      begin
4837         --  Check if we have an others choice. If we do make sure that this
4838         --  sub-aggregate contains at least one element in addition to the
4839         --  others choice.
4840
4841         if Range_Checks_Suppressed (Ind_Typ) then
4842            Need_To_Check := False;
4843
4844         elsif Present (Expressions (Sub_Aggr))
4845           and then Present (Component_Associations (Sub_Aggr))
4846         then
4847            Need_To_Check := True;
4848
4849         elsif Present (Component_Associations (Sub_Aggr)) then
4850            Assoc := Last (Component_Associations (Sub_Aggr));
4851
4852            if Nkind (First (Choices (Assoc))) /= N_Others_Choice then
4853               Need_To_Check := False;
4854
4855            else
4856               --  Count the number of discrete choices. Start with -1 because
4857               --  the others choice does not count.
4858
4859               --  Is there some reason we do not use List_Length here ???
4860
4861               Nb_Choices := -1;
4862               Assoc := First (Component_Associations (Sub_Aggr));
4863               while Present (Assoc) loop
4864                  Choice := First (Choices (Assoc));
4865                  while Present (Choice) loop
4866                     Nb_Choices := Nb_Choices + 1;
4867                     Next (Choice);
4868                  end loop;
4869
4870                  Next (Assoc);
4871               end loop;
4872
4873               --  If there is only an others choice nothing to do
4874
4875               Need_To_Check := (Nb_Choices > 0);
4876            end if;
4877
4878         else
4879            Need_To_Check := False;
4880         end if;
4881
4882         --  If we are dealing with a positional sub-aggregate with an others
4883         --  choice then compute the number or positional elements.
4884
4885         if Need_To_Check and then Present (Expressions (Sub_Aggr)) then
4886            Expr := First (Expressions (Sub_Aggr));
4887            Nb_Elements := Uint_0;
4888            while Present (Expr) loop
4889               Nb_Elements := Nb_Elements + 1;
4890               Next (Expr);
4891            end loop;
4892
4893         --  If the aggregate contains discrete choices and an others choice
4894         --  compute the smallest and largest discrete choice values.
4895
4896         elsif Need_To_Check then
4897            Compute_Choices_Lo_And_Choices_Hi : declare
4898
4899               Table : Case_Table_Type (1 .. Nb_Choices);
4900               --  Used to sort all the different choice values
4901
4902               J    : Pos := 1;
4903               Low  : Node_Id;
4904               High : Node_Id;
4905
4906            begin
4907               Assoc := First (Component_Associations (Sub_Aggr));
4908               while Present (Assoc) loop
4909                  Choice := First (Choices (Assoc));
4910                  while Present (Choice) loop
4911                     if Nkind (Choice) = N_Others_Choice then
4912                        exit;
4913                     end if;
4914
4915                     Get_Index_Bounds (Choice, Low, High);
4916                     Table (J).Choice_Lo := Low;
4917                     Table (J).Choice_Hi := High;
4918
4919                     J := J + 1;
4920                     Next (Choice);
4921                  end loop;
4922
4923                  Next (Assoc);
4924               end loop;
4925
4926               --  Sort the discrete choices
4927
4928               Sort_Case_Table (Table);
4929
4930               Choices_Lo := Table (1).Choice_Lo;
4931               Choices_Hi := Table (Nb_Choices).Choice_Hi;
4932            end Compute_Choices_Lo_And_Choices_Hi;
4933         end if;
4934
4935         --  If no others choice in this sub-aggregate, or the aggregate
4936         --  comprises only an others choice, nothing to do.
4937
4938         if not Need_To_Check then
4939            Cond := Empty;
4940
4941         --  If we are dealing with an aggregate containing an others choice
4942         --  and positional components, we generate the following test:
4943
4944         --    if Ind_Typ'Pos (Aggr_Lo) + (Nb_Elements - 1) >
4945         --            Ind_Typ'Pos (Aggr_Hi)
4946         --    then
4947         --       raise Constraint_Error;
4948         --    end if;
4949
4950         elsif Nb_Elements > Uint_0 then
4951            Cond :=
4952              Make_Op_Gt (Loc,
4953                Left_Opnd  =>
4954                  Make_Op_Add (Loc,
4955                    Left_Opnd  =>
4956                      Make_Attribute_Reference (Loc,
4957                        Prefix         => New_Occurrence_Of (Ind_Typ, Loc),
4958                        Attribute_Name => Name_Pos,
4959                        Expressions    =>
4960                          New_List
4961                            (Duplicate_Subexpr_Move_Checks (Aggr_Lo))),
4962                Right_Opnd => Make_Integer_Literal (Loc, Nb_Elements - 1)),
4963
4964                Right_Opnd =>
4965                  Make_Attribute_Reference (Loc,
4966                    Prefix         => New_Occurrence_Of (Ind_Typ, Loc),
4967                    Attribute_Name => Name_Pos,
4968                    Expressions    => New_List (
4969                      Duplicate_Subexpr_Move_Checks (Aggr_Hi))));
4970
4971         --  If we are dealing with an aggregate containing an others choice
4972         --  and discrete choices we generate the following test:
4973
4974         --    [constraint_error when
4975         --      Choices_Lo < Aggr_Lo or else Choices_Hi > Aggr_Hi];
4976
4977         else
4978            Cond :=
4979              Make_Or_Else (Loc,
4980                Left_Opnd =>
4981                  Make_Op_Lt (Loc,
4982                    Left_Opnd  => Duplicate_Subexpr_Move_Checks (Choices_Lo),
4983                    Right_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Lo)),
4984
4985                Right_Opnd =>
4986                  Make_Op_Gt (Loc,
4987                    Left_Opnd  => Duplicate_Subexpr (Choices_Hi),
4988                    Right_Opnd => Duplicate_Subexpr (Aggr_Hi)));
4989         end if;
4990
4991         if Present (Cond) then
4992            Insert_Action (N,
4993              Make_Raise_Constraint_Error (Loc,
4994                Condition => Cond,
4995                Reason    => CE_Length_Check_Failed));
4996            --  Questionable reason code, shouldn't that be a
4997            --  CE_Range_Check_Failed ???
4998         end if;
4999
5000         --  Now look inside the sub-aggregate to see if there is more work
5001
5002         if Dim < Aggr_Dimension then
5003
5004            --  Process positional components
5005
5006            if Present (Expressions (Sub_Aggr)) then
5007               Expr := First (Expressions (Sub_Aggr));
5008               while Present (Expr) loop
5009                  Others_Check (Expr, Dim + 1);
5010                  Next (Expr);
5011               end loop;
5012            end if;
5013
5014            --  Process component associations
5015
5016            if Present (Component_Associations (Sub_Aggr)) then
5017               Assoc := First (Component_Associations (Sub_Aggr));
5018               while Present (Assoc) loop
5019                  Expr := Expression (Assoc);
5020                  Others_Check (Expr, Dim + 1);
5021                  Next (Assoc);
5022               end loop;
5023            end if;
5024         end if;
5025      end Others_Check;
5026
5027      -------------------------
5028      -- Safe_Left_Hand_Side --
5029      -------------------------
5030
5031      function Safe_Left_Hand_Side (N : Node_Id) return Boolean is
5032         function Is_Safe_Index (Indx : Node_Id) return Boolean;
5033         --  If the left-hand side includes an indexed component, check that
5034         --  the indexes are free of side-effect.
5035
5036         -------------------
5037         -- Is_Safe_Index --
5038         -------------------
5039
5040         function Is_Safe_Index (Indx : Node_Id) return Boolean is
5041         begin
5042            if Is_Entity_Name (Indx) then
5043               return True;
5044
5045            elsif Nkind (Indx) = N_Integer_Literal then
5046               return True;
5047
5048            elsif Nkind (Indx) = N_Function_Call
5049              and then Is_Entity_Name (Name (Indx))
5050              and then Has_Pragma_Pure_Function (Entity (Name (Indx)))
5051            then
5052               return True;
5053
5054            elsif Nkind (Indx) = N_Type_Conversion
5055              and then Is_Safe_Index (Expression (Indx))
5056            then
5057               return True;
5058
5059            else
5060               return False;
5061            end if;
5062         end Is_Safe_Index;
5063
5064      --  Start of processing for Safe_Left_Hand_Side
5065
5066      begin
5067         if Is_Entity_Name (N) then
5068            return True;
5069
5070         elsif Nkind_In (N, N_Explicit_Dereference, N_Selected_Component)
5071           and then Safe_Left_Hand_Side (Prefix (N))
5072         then
5073            return True;
5074
5075         elsif Nkind (N) = N_Indexed_Component
5076           and then Safe_Left_Hand_Side (Prefix (N))
5077           and then Is_Safe_Index (First (Expressions (N)))
5078         then
5079            return True;
5080
5081         elsif Nkind (N) = N_Unchecked_Type_Conversion then
5082            return Safe_Left_Hand_Side (Expression (N));
5083
5084         else
5085            return False;
5086         end if;
5087      end Safe_Left_Hand_Side;
5088
5089      --  Local variables
5090
5091      Tmp : Entity_Id;
5092      --  Holds the temporary aggregate value
5093
5094      Tmp_Decl : Node_Id;
5095      --  Holds the declaration of Tmp
5096
5097      Aggr_Code   : List_Id;
5098      Parent_Node : Node_Id;
5099      Parent_Kind : Node_Kind;
5100
5101   --  Start of processing for Expand_Array_Aggregate
5102
5103   begin
5104      --  Do not touch the special aggregates of attributes used for Asm calls
5105
5106      if Is_RTE (Ctyp, RE_Asm_Input_Operand)
5107        or else Is_RTE (Ctyp, RE_Asm_Output_Operand)
5108      then
5109         return;
5110
5111      --  Do not expand an aggregate for an array type which contains tasks if
5112      --  the aggregate is associated with an unexpanded return statement of a
5113      --  build-in-place function. The aggregate is expanded when the related
5114      --  return statement (rewritten into an extended return) is processed.
5115      --  This delay ensures that any temporaries and initialization code
5116      --  generated for the aggregate appear in the proper return block and
5117      --  use the correct _chain and _master.
5118
5119      elsif Has_Task (Base_Type (Etype (N)))
5120        and then Nkind (Parent (N)) = N_Simple_Return_Statement
5121        and then Is_Build_In_Place_Function
5122                   (Return_Applies_To (Return_Statement_Entity (Parent (N))))
5123      then
5124         return;
5125
5126      --  Do not attempt expansion if error already detected. We may reach this
5127      --  point in spite of previous errors when compiling with -gnatq, to
5128      --  force all possible errors (this is the usual ACATS mode).
5129
5130      elsif Error_Posted (N) then
5131         return;
5132      end if;
5133
5134      --  If the semantic analyzer has determined that aggregate N will raise
5135      --  Constraint_Error at run time, then the aggregate node has been
5136      --  replaced with an N_Raise_Constraint_Error node and we should
5137      --  never get here.
5138
5139      pragma Assert (not Raises_Constraint_Error (N));
5140
5141      --  STEP 1a
5142
5143      --  Check that the index range defined by aggregate bounds is
5144      --  compatible with corresponding index subtype.
5145
5146      Index_Compatibility_Check : declare
5147         Aggr_Index_Range : Node_Id := First_Index (Typ);
5148         --  The current aggregate index range
5149
5150         Index_Constraint : Node_Id := First_Index (Etype (Typ));
5151         --  The corresponding index constraint against which we have to
5152         --  check the above aggregate index range.
5153
5154      begin
5155         Compute_Others_Present (N, 1);
5156
5157         for J in 1 .. Aggr_Dimension loop
5158            --  There is no need to emit a check if an others choice is present
5159            --  for this array aggregate dimension since in this case one of
5160            --  N's sub-aggregates has taken its bounds from the context and
5161            --  these bounds must have been checked already. In addition all
5162            --  sub-aggregates corresponding to the same dimension must all
5163            --  have the same bounds (checked in (c) below).
5164
5165            if not Range_Checks_Suppressed (Etype (Index_Constraint))
5166              and then not Others_Present (J)
5167            then
5168               --  We don't use Checks.Apply_Range_Check here because it emits
5169               --  a spurious check. Namely it checks that the range defined by
5170               --  the aggregate bounds is non empty. But we know this already
5171               --  if we get here.
5172
5173               Check_Bounds (Aggr_Index_Range, Index_Constraint);
5174            end if;
5175
5176            --  Save the low and high bounds of the aggregate index as well as
5177            --  the index type for later use in checks (b) and (c) below.
5178
5179            Aggr_Low  (J) := Low_Bound (Aggr_Index_Range);
5180            Aggr_High (J) := High_Bound (Aggr_Index_Range);
5181
5182            Aggr_Index_Typ (J) := Etype (Index_Constraint);
5183
5184            Next_Index (Aggr_Index_Range);
5185            Next_Index (Index_Constraint);
5186         end loop;
5187      end Index_Compatibility_Check;
5188
5189      --  STEP 1b
5190
5191      --  If an others choice is present check that no aggregate index is
5192      --  outside the bounds of the index constraint.
5193
5194      Others_Check (N, 1);
5195
5196      --  STEP 1c
5197
5198      --  For multidimensional arrays make sure that all subaggregates
5199      --  corresponding to the same dimension have the same bounds.
5200
5201      if Aggr_Dimension > 1 then
5202         Check_Same_Aggr_Bounds (N, 1);
5203      end if;
5204
5205      --  STEP 1d
5206
5207      --  If we have a default component value, or simple initialization is
5208      --  required for the component type, then we replace <> in component
5209      --  associations by the required default value.
5210
5211      declare
5212         Default_Val : Node_Id;
5213         Assoc       : Node_Id;
5214
5215      begin
5216         if (Present (Default_Aspect_Component_Value (Typ))
5217              or else Needs_Simple_Initialization (Ctyp))
5218           and then Present (Component_Associations (N))
5219         then
5220            Assoc := First (Component_Associations (N));
5221            while Present (Assoc) loop
5222               if Nkind (Assoc) = N_Component_Association
5223                 and then Box_Present (Assoc)
5224               then
5225                  Set_Box_Present (Assoc, False);
5226
5227                  if Present (Default_Aspect_Component_Value (Typ)) then
5228                     Default_Val := Default_Aspect_Component_Value (Typ);
5229                  else
5230                     Default_Val := Get_Simple_Init_Val (Ctyp, N);
5231                  end if;
5232
5233                  Set_Expression (Assoc, New_Copy_Tree (Default_Val));
5234                  Analyze_And_Resolve (Expression (Assoc), Ctyp);
5235               end if;
5236
5237               Next (Assoc);
5238            end loop;
5239         end if;
5240      end;
5241
5242      --  STEP 2
5243
5244      --  Here we test for is packed array aggregate that we can handle at
5245      --  compile time. If so, return with transformation done. Note that we do
5246      --  this even if the aggregate is nested, because once we have done this
5247      --  processing, there is no more nested aggregate.
5248
5249      if Packed_Array_Aggregate_Handled (N) then
5250         return;
5251      end if;
5252
5253      --  At this point we try to convert to positional form
5254
5255      if Ekind (Current_Scope) = E_Package
5256        and then Static_Elaboration_Desired (Current_Scope)
5257      then
5258         Convert_To_Positional (N, Max_Others_Replicate => 100);
5259      else
5260         Convert_To_Positional (N);
5261      end if;
5262
5263      --  if the result is no longer an aggregate (e.g. it may be a string
5264      --  literal, or a temporary which has the needed value), then we are
5265      --  done, since there is no longer a nested aggregate.
5266
5267      if Nkind (N) /= N_Aggregate then
5268         return;
5269
5270      --  We are also done if the result is an analyzed aggregate, indicating
5271      --  that Convert_To_Positional succeeded and reanalyzed the rewritten
5272      --  aggregate.
5273
5274      elsif Analyzed (N) and then N /= Original_Node (N) then
5275         return;
5276      end if;
5277
5278      --  If all aggregate components are compile-time known and the aggregate
5279      --  has been flattened, nothing left to do. The same occurs if the
5280      --  aggregate is used to initialize the components of a statically
5281      --  allocated dispatch table.
5282
5283      if Compile_Time_Known_Aggregate (N)
5284        or else Is_Static_Dispatch_Table_Aggregate (N)
5285      then
5286         Set_Expansion_Delayed (N, False);
5287         return;
5288      end if;
5289
5290      --  Now see if back end processing is possible
5291
5292      if Backend_Processing_Possible (N) then
5293
5294         --  If the aggregate is static but the constraints are not, build
5295         --  a static subtype for the aggregate, so that Gigi can place it
5296         --  in static memory. Perform an unchecked_conversion to the non-
5297         --  static type imposed by the context.
5298
5299         declare
5300            Itype      : constant Entity_Id := Etype (N);
5301            Index      : Node_Id;
5302            Needs_Type : Boolean := False;
5303
5304         begin
5305            Index := First_Index (Itype);
5306            while Present (Index) loop
5307               if not Is_OK_Static_Subtype (Etype (Index)) then
5308                  Needs_Type := True;
5309                  exit;
5310               else
5311                  Next_Index (Index);
5312               end if;
5313            end loop;
5314
5315            if Needs_Type then
5316               Build_Constrained_Type (Positional => True);
5317               Rewrite (N, Unchecked_Convert_To (Itype, N));
5318               Analyze (N);
5319            end if;
5320         end;
5321
5322         return;
5323      end if;
5324
5325      --  STEP 3
5326
5327      --  Delay expansion for nested aggregates: it will be taken care of
5328      --  when the parent aggregate is expanded.
5329
5330      Parent_Node := Parent (N);
5331      Parent_Kind := Nkind (Parent_Node);
5332
5333      if Parent_Kind = N_Qualified_Expression then
5334         Parent_Node := Parent (Parent_Node);
5335         Parent_Kind := Nkind (Parent_Node);
5336      end if;
5337
5338      if Parent_Kind = N_Aggregate
5339        or else Parent_Kind = N_Extension_Aggregate
5340        or else Parent_Kind = N_Component_Association
5341        or else (Parent_Kind = N_Object_Declaration
5342                  and then Needs_Finalization (Typ))
5343        or else (Parent_Kind = N_Assignment_Statement
5344                  and then Inside_Init_Proc)
5345      then
5346         if Static_Array_Aggregate (N)
5347           or else Compile_Time_Known_Aggregate (N)
5348         then
5349            Set_Expansion_Delayed (N, False);
5350            return;
5351         else
5352            Set_Expansion_Delayed (N);
5353            return;
5354         end if;
5355      end if;
5356
5357      --  STEP 4
5358
5359      --  Look if in place aggregate expansion is possible
5360
5361      --  For object declarations we build the aggregate in place, unless
5362      --  the array is bit-packed or the component is controlled.
5363
5364      --  For assignments we do the assignment in place if all the component
5365      --  associations have compile-time known values. For other cases we
5366      --  create a temporary. The analysis for safety of on-line assignment
5367      --  is delicate, i.e. we don't know how to do it fully yet ???
5368
5369      --  For allocators we assign to the designated object in place if the
5370      --  aggregate meets the same conditions as other in-place assignments.
5371      --  In this case the aggregate may not come from source but was created
5372      --  for default initialization, e.g. with Initialize_Scalars.
5373
5374      if Requires_Transient_Scope (Typ) then
5375         Establish_Transient_Scope
5376           (N, Sec_Stack => Has_Controlled_Component (Typ));
5377      end if;
5378
5379      if Has_Default_Init_Comps (N) then
5380         Maybe_In_Place_OK := False;
5381
5382      elsif Is_Bit_Packed_Array (Typ)
5383        or else Has_Controlled_Component (Typ)
5384      then
5385         Maybe_In_Place_OK := False;
5386
5387      else
5388         Maybe_In_Place_OK :=
5389          (Nkind (Parent (N)) = N_Assignment_Statement
5390            and then In_Place_Assign_OK)
5391
5392            or else
5393             (Nkind (Parent (Parent (N))) = N_Allocator
5394              and then In_Place_Assign_OK);
5395      end if;
5396
5397      --  If this is an array of tasks, it will be expanded into build-in-place
5398      --  assignments. Build an activation chain for the tasks now.
5399
5400      if Has_Task (Etype (N)) then
5401         Build_Activation_Chain_Entity (N);
5402      end if;
5403
5404      --  Perform in-place expansion of aggregate in an object declaration.
5405      --  Note: actions generated for the aggregate will be captured in an
5406      --  expression-with-actions statement so that they can be transferred
5407      --  to freeze actions later if there is an address clause for the
5408      --  object. (Note: we don't use a block statement because this would
5409      --  cause generated freeze nodes to be elaborated in the wrong scope).
5410
5411      --  Should document these individual tests ???
5412
5413      if not Has_Default_Init_Comps (N)
5414         and then Comes_From_Source (Parent_Node)
5415         and then Parent_Kind = N_Object_Declaration
5416         and then not
5417           Must_Slide (Etype (Defining_Identifier (Parent_Node)), Typ)
5418         and then N = Expression (Parent_Node)
5419         and then not Is_Bit_Packed_Array (Typ)
5420         and then not Has_Controlled_Component (Typ)
5421      then
5422         In_Place_Assign_OK_For_Declaration := True;
5423         Tmp := Defining_Identifier (Parent (N));
5424         Set_No_Initialization (Parent (N));
5425         Set_Expression (Parent (N), Empty);
5426
5427         --  Set kind and type of the entity, for use in the analysis
5428         --  of the subsequent assignments. If the nominal type is not
5429         --  constrained, build a subtype from the known bounds of the
5430         --  aggregate. If the declaration has a subtype mark, use it,
5431         --  otherwise use the itype of the aggregate.
5432
5433         Set_Ekind (Tmp, E_Variable);
5434
5435         if not Is_Constrained (Typ) then
5436            Build_Constrained_Type (Positional => False);
5437
5438         elsif Is_Entity_Name (Object_Definition (Parent (N)))
5439           and then Is_Constrained (Entity (Object_Definition (Parent (N))))
5440         then
5441            Set_Etype (Tmp, Entity (Object_Definition (Parent (N))));
5442
5443         else
5444            Set_Size_Known_At_Compile_Time (Typ, False);
5445            Set_Etype (Tmp, Typ);
5446         end if;
5447
5448      elsif Maybe_In_Place_OK
5449        and then Nkind (Parent (N)) = N_Qualified_Expression
5450        and then Nkind (Parent (Parent (N))) = N_Allocator
5451      then
5452         Set_Expansion_Delayed (N);
5453         return;
5454
5455      --  In the remaining cases the aggregate is the RHS of an assignment
5456
5457      elsif Maybe_In_Place_OK
5458        and then Safe_Left_Hand_Side (Name (Parent (N)))
5459      then
5460         Tmp := Name (Parent (N));
5461
5462         if Etype (Tmp) /= Etype (N) then
5463            Apply_Length_Check (N, Etype (Tmp));
5464
5465            if Nkind (N) = N_Raise_Constraint_Error then
5466
5467               --  Static error, nothing further to expand
5468
5469               return;
5470            end if;
5471         end if;
5472
5473      --  If a slice assignment has an aggregate with a single others_choice,
5474      --  the assignment can be done in place even if bounds are not static,
5475      --  by converting it into a loop over the discrete range of the slice.
5476
5477      elsif Maybe_In_Place_OK
5478        and then Nkind (Name (Parent (N))) = N_Slice
5479        and then Is_Others_Aggregate (N)
5480      then
5481         Tmp := Name (Parent (N));
5482
5483         --  Set type of aggregate to be type of lhs in assignment, in order
5484         --  to suppress redundant length checks.
5485
5486         Set_Etype (N, Etype (Tmp));
5487
5488      --  Step 5
5489
5490      --  In place aggregate expansion is not possible
5491
5492      else
5493         Maybe_In_Place_OK := False;
5494         Tmp := Make_Temporary (Loc, 'A', N);
5495         Tmp_Decl :=
5496           Make_Object_Declaration (Loc,
5497             Defining_Identifier => Tmp,
5498             Object_Definition   => New_Occurrence_Of (Typ, Loc));
5499         Set_No_Initialization (Tmp_Decl, True);
5500
5501         --  If we are within a loop, the temporary will be pushed on the
5502         --  stack at each iteration. If the aggregate is the expression for an
5503         --  allocator, it will be immediately copied to the heap and can
5504         --  be reclaimed at once. We create a transient scope around the
5505         --  aggregate for this purpose.
5506
5507         if Ekind (Current_Scope) = E_Loop
5508           and then Nkind (Parent (Parent (N))) = N_Allocator
5509         then
5510            Establish_Transient_Scope (N, False);
5511         end if;
5512
5513         Insert_Action (N, Tmp_Decl);
5514      end if;
5515
5516      --  Construct and insert the aggregate code. We can safely suppress index
5517      --  checks because this code is guaranteed not to raise CE on index
5518      --  checks. However we should *not* suppress all checks.
5519
5520      declare
5521         Target : Node_Id;
5522
5523      begin
5524         if Nkind (Tmp) = N_Defining_Identifier then
5525            Target := New_Occurrence_Of (Tmp, Loc);
5526
5527         else
5528            if Has_Default_Init_Comps (N) then
5529
5530               --  Ada 2005 (AI-287): This case has not been analyzed???
5531
5532               raise Program_Error;
5533            end if;
5534
5535            --  Name in assignment is explicit dereference
5536
5537            Target := New_Copy (Tmp);
5538         end if;
5539
5540         --  If we are to generate an in place assignment for a declaration or
5541         --  an assignment statement, and the assignment can be done directly
5542         --  by the back end, then do not expand further.
5543
5544         --  ??? We can also do that if in place expansion is not possible but
5545         --  then we could go into an infinite recursion.
5546
5547         if (In_Place_Assign_OK_For_Declaration or else Maybe_In_Place_OK)
5548           and then not AAMP_On_Target
5549           and then not CodePeer_Mode
5550           and then not Generate_C_Code
5551           and then not Possible_Bit_Aligned_Component (Target)
5552           and then not Is_Possibly_Unaligned_Slice (Target)
5553           and then Aggr_Assignment_OK_For_Backend (N)
5554         then
5555            if Maybe_In_Place_OK then
5556               return;
5557            end if;
5558
5559            Aggr_Code :=
5560              New_List (
5561                Make_Assignment_Statement (Loc,
5562                  Name       => Target,
5563                  Expression => New_Copy (N)));
5564
5565         else
5566            Aggr_Code :=
5567              Build_Array_Aggr_Code (N,
5568                Ctype       => Ctyp,
5569                Index       => First_Index (Typ),
5570                Into        => Target,
5571                Scalar_Comp => Is_Scalar_Type (Ctyp));
5572         end if;
5573
5574         --  Save the last assignment statement associated with the aggregate
5575         --  when building a controlled object. This reference is utilized by
5576         --  the finalization machinery when marking an object as successfully
5577         --  initialized.
5578
5579         if Needs_Finalization (Typ)
5580           and then Is_Entity_Name (Target)
5581           and then Present (Entity (Target))
5582           and then Ekind_In (Entity (Target), E_Constant, E_Variable)
5583         then
5584            Set_Last_Aggregate_Assignment (Entity (Target), Last (Aggr_Code));
5585         end if;
5586      end;
5587
5588      --  If the aggregate is the expression in a declaration, the expanded
5589      --  code must be inserted after it. The defining entity might not come
5590      --  from source if this is part of an inlined body, but the declaration
5591      --  itself will.
5592
5593      if Comes_From_Source (Tmp)
5594        or else
5595          (Nkind (Parent (N)) = N_Object_Declaration
5596            and then Comes_From_Source (Parent (N))
5597            and then Tmp = Defining_Entity (Parent (N)))
5598      then
5599         declare
5600            Node_After : constant Node_Id := Next (Parent_Node);
5601
5602         begin
5603            Insert_Actions_After (Parent_Node, Aggr_Code);
5604
5605            if Parent_Kind = N_Object_Declaration then
5606               Collect_Initialization_Statements
5607                 (Obj => Tmp, N => Parent_Node, Node_After => Node_After);
5608            end if;
5609         end;
5610
5611      else
5612         Insert_Actions (N, Aggr_Code);
5613      end if;
5614
5615      --  If the aggregate has been assigned in place, remove the original
5616      --  assignment.
5617
5618      if Nkind (Parent (N)) = N_Assignment_Statement
5619        and then Maybe_In_Place_OK
5620      then
5621         Rewrite (Parent (N), Make_Null_Statement (Loc));
5622
5623      elsif Nkind (Parent (N)) /= N_Object_Declaration
5624        or else Tmp /= Defining_Identifier (Parent (N))
5625      then
5626         Rewrite (N, New_Occurrence_Of (Tmp, Loc));
5627         Analyze_And_Resolve (N, Typ);
5628      end if;
5629   end Expand_Array_Aggregate;
5630
5631   ------------------------
5632   -- Expand_N_Aggregate --
5633   ------------------------
5634
5635   procedure Expand_N_Aggregate (N : Node_Id) is
5636   begin
5637      --  Record aggregate case
5638
5639      if Is_Record_Type (Etype (N)) then
5640         Expand_Record_Aggregate (N);
5641
5642      --  Array aggregate case
5643
5644      else
5645         --  A special case, if we have a string subtype with bounds 1 .. N,
5646         --  where N is known at compile time, and the aggregate is of the
5647         --  form (others => 'x'), with a single choice and no expressions,
5648         --  and N is less than 80 (an arbitrary limit for now), then replace
5649         --  the aggregate by the equivalent string literal (but do not mark
5650         --  it as static since it is not).
5651
5652         --  Note: this entire circuit is redundant with respect to code in
5653         --  Expand_Array_Aggregate that collapses others choices to positional
5654         --  form, but there are two problems with that circuit:
5655
5656         --    a) It is limited to very small cases due to ill-understood
5657         --       interactions with bootstrapping. That limit is removed by
5658         --       use of the No_Implicit_Loops restriction.
5659
5660         --    b) It incorrectly ends up with the resulting expressions being
5661         --       considered static when they are not. For example, the
5662         --       following test should fail:
5663
5664         --           pragma Restrictions (No_Implicit_Loops);
5665         --           package NonSOthers4 is
5666         --              B  : constant String (1 .. 6) := (others => 'A');
5667         --              DH : constant String (1 .. 8) := B & "BB";
5668         --              X : Integer;
5669         --              pragma Export (C, X, Link_Name => DH);
5670         --           end;
5671
5672         --       But it succeeds (DH looks static to pragma Export)
5673
5674         --    To be sorted out ???
5675
5676         if Present (Component_Associations (N)) then
5677            declare
5678               CA : constant Node_Id := First (Component_Associations (N));
5679               MX : constant         := 80;
5680
5681            begin
5682               if Nkind (First (Choices (CA))) = N_Others_Choice
5683                 and then Nkind (Expression (CA)) = N_Character_Literal
5684                 and then No (Expressions (N))
5685               then
5686                  declare
5687                     T  : constant Entity_Id := Etype (N);
5688                     X  : constant Node_Id   := First_Index (T);
5689                     EC : constant Node_Id   := Expression (CA);
5690                     CV : constant Uint      := Char_Literal_Value (EC);
5691                     CC : constant Int       := UI_To_Int (CV);
5692
5693                  begin
5694                     if Nkind (X) = N_Range
5695                       and then Compile_Time_Known_Value (Low_Bound (X))
5696                       and then Expr_Value (Low_Bound (X)) = 1
5697                       and then Compile_Time_Known_Value (High_Bound (X))
5698                     then
5699                        declare
5700                           Hi : constant Uint := Expr_Value (High_Bound (X));
5701
5702                        begin
5703                           if Hi <= MX then
5704                              Start_String;
5705
5706                              for J in 1 .. UI_To_Int (Hi) loop
5707                                 Store_String_Char (Char_Code (CC));
5708                              end loop;
5709
5710                              Rewrite (N,
5711                                Make_String_Literal (Sloc (N),
5712                                  Strval => End_String));
5713
5714                              if CC >= Int (2 ** 16) then
5715                                 Set_Has_Wide_Wide_Character (N);
5716                              elsif CC >= Int (2 ** 8) then
5717                                 Set_Has_Wide_Character (N);
5718                              end if;
5719
5720                              Analyze_And_Resolve (N, T);
5721                              Set_Is_Static_Expression (N, False);
5722                              return;
5723                           end if;
5724                        end;
5725                     end if;
5726                  end;
5727               end if;
5728            end;
5729         end if;
5730
5731         --  Not that special case, so normal expansion of array aggregate
5732
5733         Expand_Array_Aggregate (N);
5734      end if;
5735
5736   exception
5737      when RE_Not_Available =>
5738         return;
5739   end Expand_N_Aggregate;
5740
5741   ----------------------------------
5742   -- Expand_N_Extension_Aggregate --
5743   ----------------------------------
5744
5745   --  If the ancestor part is an expression, add a component association for
5746   --  the parent field. If the type of the ancestor part is not the direct
5747   --  parent of the expected type,  build recursively the needed ancestors.
5748   --  If the ancestor part is a subtype_mark, replace aggregate with a decla-
5749   --  ration for a temporary of the expected type, followed by individual
5750   --  assignments to the given components.
5751
5752   procedure Expand_N_Extension_Aggregate (N : Node_Id) is
5753      Loc : constant Source_Ptr := Sloc  (N);
5754      A   : constant Node_Id    := Ancestor_Part (N);
5755      Typ : constant Entity_Id  := Etype (N);
5756
5757   begin
5758      --  If the ancestor is a subtype mark, an init proc must be called
5759      --  on the resulting object which thus has to be materialized in
5760      --  the front-end
5761
5762      if Is_Entity_Name (A) and then Is_Type (Entity (A)) then
5763         Convert_To_Assignments (N, Typ);
5764
5765      --  The extension aggregate is transformed into a record aggregate
5766      --  of the following form (c1 and c2 are inherited components)
5767
5768      --   (Exp with c3 => a, c4 => b)
5769      --      ==> (c1 => Exp.c1, c2 => Exp.c2, c3 => a, c4 => b)
5770
5771      else
5772         Set_Etype (N, Typ);
5773
5774         if Tagged_Type_Expansion then
5775            Expand_Record_Aggregate (N,
5776              Orig_Tag    =>
5777                New_Occurrence_Of
5778                  (Node (First_Elmt (Access_Disp_Table (Typ))), Loc),
5779              Parent_Expr => A);
5780
5781         --  No tag is needed in the case of a VM
5782
5783         else
5784            Expand_Record_Aggregate (N, Parent_Expr => A);
5785         end if;
5786      end if;
5787
5788   exception
5789      when RE_Not_Available =>
5790         return;
5791   end Expand_N_Extension_Aggregate;
5792
5793   -----------------------------
5794   -- Expand_Record_Aggregate --
5795   -----------------------------
5796
5797   procedure Expand_Record_Aggregate
5798     (N           : Node_Id;
5799      Orig_Tag    : Node_Id := Empty;
5800      Parent_Expr : Node_Id := Empty)
5801   is
5802      Loc      : constant Source_Ptr := Sloc  (N);
5803      Comps    : constant List_Id    := Component_Associations (N);
5804      Typ      : constant Entity_Id  := Etype (N);
5805      Base_Typ : constant Entity_Id  := Base_Type (Typ);
5806
5807      Static_Components : Boolean := True;
5808      --  Flag to indicate whether all components are compile-time known,
5809      --  and the aggregate can be constructed statically and handled by
5810      --  the back-end.
5811
5812      function Compile_Time_Known_Composite_Value (N : Node_Id) return Boolean;
5813      --  Returns true if N is an expression of composite type which can be
5814      --  fully evaluated at compile time without raising constraint error.
5815      --  Such expressions can be passed as is to Gigi without any expansion.
5816      --
5817      --  This returns true for N_Aggregate with Compile_Time_Known_Aggregate
5818      --  set and constants whose expression is such an aggregate, recursively.
5819
5820      function Component_Not_OK_For_Backend return Boolean;
5821      --  Check for presence of a component which makes it impossible for the
5822      --  backend to process the aggregate, thus requiring the use of a series
5823      --  of assignment statements. Cases checked for are a nested aggregate
5824      --  needing Late_Expansion, the presence of a tagged component which may
5825      --  need tag adjustment, and a bit unaligned component reference.
5826      --
5827      --  We also force expansion into assignments if a component is of a
5828      --  mutable type (including a private type with discriminants) because
5829      --  in that case the size of the component to be copied may be smaller
5830      --  than the side of the target, and there is no simple way for gigi
5831      --  to compute the size of the object to be copied.
5832      --
5833      --  NOTE: This is part of the ongoing work to define precisely the
5834      --  interface between front-end and back-end handling of aggregates.
5835      --  In general it is desirable to pass aggregates as they are to gigi,
5836      --  in order to minimize elaboration code. This is one case where the
5837      --  semantics of Ada complicate the analysis and lead to anomalies in
5838      --  the gcc back-end if the aggregate is not expanded into assignments.
5839
5840      function Has_Visible_Private_Ancestor (Id : E) return Boolean;
5841      --  If any ancestor of the current type is private, the aggregate
5842      --  cannot be built in place. We cannot rely on Has_Private_Ancestor,
5843      --  because it will not be set when type and its parent are in the
5844      --  same scope, and the parent component needs expansion.
5845
5846      function Top_Level_Aggregate (N : Node_Id) return Node_Id;
5847      --  For nested aggregates return the ultimate enclosing aggregate; for
5848      --  non-nested aggregates return N.
5849
5850      ----------------------------------------
5851      -- Compile_Time_Known_Composite_Value --
5852      ----------------------------------------
5853
5854      function Compile_Time_Known_Composite_Value
5855        (N : Node_Id) return Boolean
5856      is
5857      begin
5858         --  If we have an entity name, then see if it is the name of a
5859         --  constant and if so, test the corresponding constant value.
5860
5861         if Is_Entity_Name (N) then
5862            declare
5863               E : constant Entity_Id := Entity (N);
5864               V : Node_Id;
5865            begin
5866               if Ekind (E) /= E_Constant then
5867                  return False;
5868               else
5869                  V := Constant_Value (E);
5870                  return Present (V)
5871                    and then Compile_Time_Known_Composite_Value (V);
5872               end if;
5873            end;
5874
5875         --  We have a value, see if it is compile time known
5876
5877         else
5878            if Nkind (N) = N_Aggregate then
5879               return Compile_Time_Known_Aggregate (N);
5880            end if;
5881
5882            --  All other types of values are not known at compile time
5883
5884            return False;
5885         end if;
5886
5887      end Compile_Time_Known_Composite_Value;
5888
5889      ----------------------------------
5890      -- Component_Not_OK_For_Backend --
5891      ----------------------------------
5892
5893      function Component_Not_OK_For_Backend return Boolean is
5894         C      : Node_Id;
5895         Expr_Q : Node_Id;
5896
5897      begin
5898         if No (Comps) then
5899            return False;
5900         end if;
5901
5902         C := First (Comps);
5903         while Present (C) loop
5904
5905            --  If the component has box initialization, expansion is needed
5906            --  and component is not ready for backend.
5907
5908            if Box_Present (C) then
5909               return True;
5910            end if;
5911
5912            if Nkind (Expression (C)) = N_Qualified_Expression then
5913               Expr_Q := Expression (Expression (C));
5914            else
5915               Expr_Q := Expression (C);
5916            end if;
5917
5918            --  Return true if the aggregate has any associations for tagged
5919            --  components that may require tag adjustment.
5920
5921            --  These are cases where the source expression may have a tag that
5922            --  could differ from the component tag (e.g., can occur for type
5923            --  conversions and formal parameters). (Tag adjustment not needed
5924            --  if Tagged_Type_Expansion because object tags are implicit in
5925            --  the machine.)
5926
5927            if Is_Tagged_Type (Etype (Expr_Q))
5928              and then (Nkind (Expr_Q) = N_Type_Conversion
5929                         or else (Is_Entity_Name (Expr_Q)
5930                                    and then
5931                                      Ekind (Entity (Expr_Q)) in Formal_Kind))
5932              and then Tagged_Type_Expansion
5933            then
5934               Static_Components := False;
5935               return True;
5936
5937            elsif Is_Delayed_Aggregate (Expr_Q) then
5938               Static_Components := False;
5939               return True;
5940
5941            elsif Possible_Bit_Aligned_Component (Expr_Q) then
5942               Static_Components := False;
5943               return True;
5944            end if;
5945
5946            if Is_Elementary_Type (Etype (Expr_Q)) then
5947               if not Compile_Time_Known_Value (Expr_Q) then
5948                  Static_Components := False;
5949               end if;
5950
5951            elsif not Compile_Time_Known_Composite_Value (Expr_Q) then
5952               Static_Components := False;
5953
5954               if Is_Private_Type (Etype (Expr_Q))
5955                 and then Has_Discriminants (Etype (Expr_Q))
5956               then
5957                  return True;
5958               end if;
5959            end if;
5960
5961            Next (C);
5962         end loop;
5963
5964         return False;
5965      end Component_Not_OK_For_Backend;
5966
5967      -----------------------------------
5968      --  Has_Visible_Private_Ancestor --
5969      -----------------------------------
5970
5971      function Has_Visible_Private_Ancestor (Id : E) return Boolean is
5972         R  : constant Entity_Id := Root_Type (Id);
5973         T1 : Entity_Id := Id;
5974
5975      begin
5976         loop
5977            if Is_Private_Type (T1) then
5978               return True;
5979
5980            elsif T1 = R then
5981               return False;
5982
5983            else
5984               T1 := Etype (T1);
5985            end if;
5986         end loop;
5987      end Has_Visible_Private_Ancestor;
5988
5989      -------------------------
5990      -- Top_Level_Aggregate --
5991      -------------------------
5992
5993      function Top_Level_Aggregate (N : Node_Id) return Node_Id is
5994         Aggr : Node_Id;
5995
5996      begin
5997         Aggr := N;
5998         while Present (Parent (Aggr))
5999           and then Nkind_In (Parent (Aggr), N_Component_Association,
6000                                             N_Aggregate)
6001         loop
6002            Aggr := Parent (Aggr);
6003         end loop;
6004
6005         return Aggr;
6006      end Top_Level_Aggregate;
6007
6008      --  Local variables
6009
6010      Top_Level_Aggr : constant Node_Id := Top_Level_Aggregate (N);
6011      Tag_Value      : Node_Id;
6012      Comp           : Entity_Id;
6013      New_Comp       : Node_Id;
6014
6015   --  Start of processing for Expand_Record_Aggregate
6016
6017   begin
6018      --  If the aggregate is to be assigned to an atomic/VFA variable, we have
6019      --  to prevent a piecemeal assignment even if the aggregate is to be
6020      --  expanded. We create a temporary for the aggregate, and assign the
6021      --  temporary instead, so that the back end can generate an atomic move
6022      --  for it.
6023
6024      if Is_Atomic_VFA_Aggregate (N) then
6025         return;
6026
6027      --  No special management required for aggregates used to initialize
6028      --  statically allocated dispatch tables
6029
6030      elsif Is_Static_Dispatch_Table_Aggregate (N) then
6031         return;
6032      end if;
6033
6034      --  Ada 2005 (AI-318-2): We need to convert to assignments if components
6035      --  are build-in-place function calls. The assignments will each turn
6036      --  into a build-in-place function call. If components are all static,
6037      --  we can pass the aggregate to the backend regardless of limitedness.
6038
6039      --  Extension aggregates, aggregates in extended return statements, and
6040      --  aggregates for C++ imported types must be expanded.
6041
6042      if Ada_Version >= Ada_2005 and then Is_Limited_View (Typ) then
6043         if not Nkind_In (Parent (N), N_Object_Declaration,
6044                                      N_Component_Association)
6045         then
6046            Convert_To_Assignments (N, Typ);
6047
6048         elsif Nkind (N) = N_Extension_Aggregate
6049           or else Convention (Typ) = Convention_CPP
6050         then
6051            Convert_To_Assignments (N, Typ);
6052
6053         elsif not Size_Known_At_Compile_Time (Typ)
6054           or else Component_Not_OK_For_Backend
6055           or else not Static_Components
6056         then
6057            Convert_To_Assignments (N, Typ);
6058
6059         else
6060            Set_Compile_Time_Known_Aggregate (N);
6061            Set_Expansion_Delayed (N, False);
6062         end if;
6063
6064      --  Gigi doesn't properly handle temporaries of variable size so we
6065      --  generate it in the front-end
6066
6067      elsif not Size_Known_At_Compile_Time (Typ)
6068        and then Tagged_Type_Expansion
6069      then
6070         Convert_To_Assignments (N, Typ);
6071
6072      --  An aggregate used to initialize a controlled object must be turned
6073      --  into component assignments as the components themselves may require
6074      --  finalization actions such as adjustment.
6075
6076      elsif Needs_Finalization (Typ) then
6077         Convert_To_Assignments (N, Typ);
6078
6079      --  Ada 2005 (AI-287): In case of default initialized components we
6080      --  convert the aggregate into assignments.
6081
6082      elsif Has_Default_Init_Comps (N) then
6083         Convert_To_Assignments (N, Typ);
6084
6085      --  Check components
6086
6087      elsif Component_Not_OK_For_Backend then
6088         Convert_To_Assignments (N, Typ);
6089
6090      --  If an ancestor is private, some components are not inherited and we
6091      --  cannot expand into a record aggregate.
6092
6093      elsif Has_Visible_Private_Ancestor (Typ) then
6094         Convert_To_Assignments (N, Typ);
6095
6096      --  ??? The following was done to compile fxacc00.ads in the ACVCs. Gigi
6097      --  is not able to handle the aggregate for Late_Request.
6098
6099      elsif Is_Tagged_Type (Typ) and then Has_Discriminants (Typ) then
6100         Convert_To_Assignments (N, Typ);
6101
6102      --  If the tagged types covers interface types we need to initialize all
6103      --  hidden components containing pointers to secondary dispatch tables.
6104
6105      elsif Is_Tagged_Type (Typ) and then Has_Interfaces (Typ) then
6106         Convert_To_Assignments (N, Typ);
6107
6108      --  If some components are mutable, the size of the aggregate component
6109      --  may be distinct from the default size of the type component, so
6110      --  we need to expand to insure that the back-end copies the proper
6111      --  size of the data. However, if the aggregate is the initial value of
6112      --  a constant, the target is immutable and might be built statically
6113      --  if components are appropriate.
6114
6115      elsif Has_Mutable_Components (Typ)
6116        and then
6117          (Nkind (Parent (Top_Level_Aggr)) /= N_Object_Declaration
6118            or else not Constant_Present (Parent (Top_Level_Aggr))
6119            or else not Static_Components)
6120      then
6121         Convert_To_Assignments (N, Typ);
6122
6123      --  If the type involved has bit aligned components, then we are not sure
6124      --  that the back end can handle this case correctly.
6125
6126      elsif Type_May_Have_Bit_Aligned_Components (Typ) then
6127         Convert_To_Assignments (N, Typ);
6128
6129      --  When generating C, only generate an aggregate when declaring objects
6130      --  since C does not support aggregates in e.g. assignment statements.
6131
6132      elsif Modify_Tree_For_C and then not In_Object_Declaration (N) then
6133         Convert_To_Assignments (N, Typ);
6134
6135      --  In all other cases, build a proper aggregate to be handled by gigi
6136
6137      else
6138         if Nkind (N) = N_Aggregate then
6139
6140            --  If the aggregate is static and can be handled by the back-end,
6141            --  nothing left to do.
6142
6143            if Static_Components then
6144               Set_Compile_Time_Known_Aggregate (N);
6145               Set_Expansion_Delayed (N, False);
6146            end if;
6147         end if;
6148
6149         --  If no discriminants, nothing special to do
6150
6151         if not Has_Discriminants (Typ) then
6152            null;
6153
6154         --  Case of discriminants present
6155
6156         elsif Is_Derived_Type (Typ) then
6157
6158            --  For untagged types, non-stored discriminants are replaced
6159            --  with stored discriminants, which are the ones that gigi uses
6160            --  to describe the type and its components.
6161
6162            Generate_Aggregate_For_Derived_Type : declare
6163               Constraints  : constant List_Id := New_List;
6164               First_Comp   : Node_Id;
6165               Discriminant : Entity_Id;
6166               Decl         : Node_Id;
6167               Num_Disc     : Int := 0;
6168               Num_Gird     : Int := 0;
6169
6170               procedure Prepend_Stored_Values (T : Entity_Id);
6171               --  Scan the list of stored discriminants of the type, and add
6172               --  their values to the aggregate being built.
6173
6174               ---------------------------
6175               -- Prepend_Stored_Values --
6176               ---------------------------
6177
6178               procedure Prepend_Stored_Values (T : Entity_Id) is
6179               begin
6180                  Discriminant := First_Stored_Discriminant (T);
6181                  while Present (Discriminant) loop
6182                     New_Comp :=
6183                       Make_Component_Association (Loc,
6184                         Choices    =>
6185                           New_List (New_Occurrence_Of (Discriminant, Loc)),
6186
6187                         Expression =>
6188                           New_Copy_Tree
6189                             (Get_Discriminant_Value
6190                                (Discriminant,
6191                                 Typ,
6192                                 Discriminant_Constraint (Typ))));
6193
6194                     if No (First_Comp) then
6195                        Prepend_To (Component_Associations (N), New_Comp);
6196                     else
6197                        Insert_After (First_Comp, New_Comp);
6198                     end if;
6199
6200                     First_Comp := New_Comp;
6201                     Next_Stored_Discriminant (Discriminant);
6202                  end loop;
6203               end Prepend_Stored_Values;
6204
6205            --  Start of processing for Generate_Aggregate_For_Derived_Type
6206
6207            begin
6208               --  Remove the associations for the discriminant of derived type
6209
6210               First_Comp := First (Component_Associations (N));
6211               while Present (First_Comp) loop
6212                  Comp := First_Comp;
6213                  Next (First_Comp);
6214
6215                  if Ekind (Entity (First (Choices (Comp)))) = E_Discriminant
6216                  then
6217                     Remove (Comp);
6218                     Num_Disc := Num_Disc + 1;
6219                  end if;
6220               end loop;
6221
6222               --  Insert stored discriminant associations in the correct
6223               --  order. If there are more stored discriminants than new
6224               --  discriminants, there is at least one new discriminant that
6225               --  constrains more than one of the stored discriminants. In
6226               --  this case we need to construct a proper subtype of the
6227               --  parent type, in order to supply values to all the
6228               --  components. Otherwise there is one-one correspondence
6229               --  between the constraints and the stored discriminants.
6230
6231               First_Comp := Empty;
6232
6233               Discriminant := First_Stored_Discriminant (Base_Type (Typ));
6234               while Present (Discriminant) loop
6235                  Num_Gird := Num_Gird + 1;
6236                  Next_Stored_Discriminant (Discriminant);
6237               end loop;
6238
6239               --  Case of more stored discriminants than new discriminants
6240
6241               if Num_Gird > Num_Disc then
6242
6243                  --  Create a proper subtype of the parent type, which is the
6244                  --  proper implementation type for the aggregate, and convert
6245                  --  it to the intended target type.
6246
6247                  Discriminant := First_Stored_Discriminant (Base_Type (Typ));
6248                  while Present (Discriminant) loop
6249                     New_Comp :=
6250                       New_Copy_Tree
6251                         (Get_Discriminant_Value
6252                            (Discriminant,
6253                             Typ,
6254                             Discriminant_Constraint (Typ)));
6255                     Append (New_Comp, Constraints);
6256                     Next_Stored_Discriminant (Discriminant);
6257                  end loop;
6258
6259                  Decl :=
6260                    Make_Subtype_Declaration (Loc,
6261                      Defining_Identifier => Make_Temporary (Loc, 'T'),
6262                      Subtype_Indication  =>
6263                        Make_Subtype_Indication (Loc,
6264                          Subtype_Mark =>
6265                            New_Occurrence_Of (Etype (Base_Type (Typ)), Loc),
6266                          Constraint   =>
6267                            Make_Index_Or_Discriminant_Constraint
6268                              (Loc, Constraints)));
6269
6270                  Insert_Action (N, Decl);
6271                  Prepend_Stored_Values (Base_Type (Typ));
6272
6273                  Set_Etype (N, Defining_Identifier (Decl));
6274                  Set_Analyzed (N);
6275
6276                  Rewrite (N, Unchecked_Convert_To (Typ, N));
6277                  Analyze (N);
6278
6279               --  Case where we do not have fewer new discriminants than
6280               --  stored discriminants, so in this case we can simply use the
6281               --  stored discriminants of the subtype.
6282
6283               else
6284                  Prepend_Stored_Values (Typ);
6285               end if;
6286            end Generate_Aggregate_For_Derived_Type;
6287         end if;
6288
6289         if Is_Tagged_Type (Typ) then
6290
6291            --  In the tagged case, _parent and _tag component must be created
6292
6293            --  Reset Null_Present unconditionally. Tagged records always have
6294            --  at least one field (the tag or the parent).
6295
6296            Set_Null_Record_Present (N, False);
6297
6298            --  When the current aggregate comes from the expansion of an
6299            --  extension aggregate, the parent expr is replaced by an
6300            --  aggregate formed by selected components of this expr.
6301
6302            if Present (Parent_Expr) and then Is_Empty_List (Comps) then
6303               Comp := First_Component_Or_Discriminant (Typ);
6304               while Present (Comp) loop
6305
6306                  --  Skip all expander-generated components
6307
6308                  if not Comes_From_Source (Original_Record_Component (Comp))
6309                  then
6310                     null;
6311
6312                  else
6313                     New_Comp :=
6314                       Make_Selected_Component (Loc,
6315                         Prefix        =>
6316                           Unchecked_Convert_To (Typ,
6317                             Duplicate_Subexpr (Parent_Expr, True)),
6318                         Selector_Name => New_Occurrence_Of (Comp, Loc));
6319
6320                     Append_To (Comps,
6321                       Make_Component_Association (Loc,
6322                         Choices    =>
6323                           New_List (New_Occurrence_Of (Comp, Loc)),
6324                         Expression => New_Comp));
6325
6326                     Analyze_And_Resolve (New_Comp, Etype (Comp));
6327                  end if;
6328
6329                  Next_Component_Or_Discriminant (Comp);
6330               end loop;
6331            end if;
6332
6333            --  Compute the value for the Tag now, if the type is a root it
6334            --  will be included in the aggregate right away, otherwise it will
6335            --  be propagated to the parent aggregate.
6336
6337            if Present (Orig_Tag) then
6338               Tag_Value := Orig_Tag;
6339            elsif not Tagged_Type_Expansion then
6340               Tag_Value := Empty;
6341            else
6342               Tag_Value :=
6343                 New_Occurrence_Of
6344                   (Node (First_Elmt (Access_Disp_Table (Typ))), Loc);
6345            end if;
6346
6347            --  For a derived type, an aggregate for the parent is formed with
6348            --  all the inherited components.
6349
6350            if Is_Derived_Type (Typ) then
6351
6352               declare
6353                  First_Comp   : Node_Id;
6354                  Parent_Comps : List_Id;
6355                  Parent_Aggr  : Node_Id;
6356                  Parent_Name  : Node_Id;
6357
6358               begin
6359                  --  Remove the inherited component association from the
6360                  --  aggregate and store them in the parent aggregate
6361
6362                  First_Comp := First (Component_Associations (N));
6363                  Parent_Comps := New_List;
6364                  while Present (First_Comp)
6365                    and then
6366                      Scope (Original_Record_Component
6367                               (Entity (First (Choices (First_Comp))))) /=
6368                                                                    Base_Typ
6369                  loop
6370                     Comp := First_Comp;
6371                     Next (First_Comp);
6372                     Remove (Comp);
6373                     Append (Comp, Parent_Comps);
6374                  end loop;
6375
6376                  Parent_Aggr :=
6377                    Make_Aggregate (Loc,
6378                      Component_Associations => Parent_Comps);
6379                  Set_Etype (Parent_Aggr, Etype (Base_Type (Typ)));
6380
6381                  --  Find the _parent component
6382
6383                  Comp := First_Component (Typ);
6384                  while Chars (Comp) /= Name_uParent loop
6385                     Comp := Next_Component (Comp);
6386                  end loop;
6387
6388                  Parent_Name := New_Occurrence_Of (Comp, Loc);
6389
6390                  --  Insert the parent aggregate
6391
6392                  Prepend_To (Component_Associations (N),
6393                    Make_Component_Association (Loc,
6394                      Choices    => New_List (Parent_Name),
6395                      Expression => Parent_Aggr));
6396
6397                  --  Expand recursively the parent propagating the right Tag
6398
6399                  Expand_Record_Aggregate
6400                    (Parent_Aggr, Tag_Value, Parent_Expr);
6401
6402                  --  The ancestor part may be a nested aggregate that has
6403                  --  delayed expansion: recheck now.
6404
6405                  if Component_Not_OK_For_Backend then
6406                     Convert_To_Assignments (N, Typ);
6407                  end if;
6408               end;
6409
6410            --  For a root type, the tag component is added (unless compiling
6411            --  for the VMs, where tags are implicit).
6412
6413            elsif Tagged_Type_Expansion then
6414               declare
6415                  Tag_Name  : constant Node_Id :=
6416                    New_Occurrence_Of (First_Tag_Component (Typ), Loc);
6417                  Typ_Tag   : constant Entity_Id := RTE (RE_Tag);
6418                  Conv_Node : constant Node_Id :=
6419                    Unchecked_Convert_To (Typ_Tag, Tag_Value);
6420
6421               begin
6422                  Set_Etype (Conv_Node, Typ_Tag);
6423                  Prepend_To (Component_Associations (N),
6424                    Make_Component_Association (Loc,
6425                      Choices    => New_List (Tag_Name),
6426                      Expression => Conv_Node));
6427               end;
6428            end if;
6429         end if;
6430      end if;
6431
6432   end Expand_Record_Aggregate;
6433
6434   ----------------------------
6435   -- Has_Default_Init_Comps --
6436   ----------------------------
6437
6438   function Has_Default_Init_Comps (N : Node_Id) return Boolean is
6439      Comps : constant List_Id := Component_Associations (N);
6440      C     : Node_Id;
6441      Expr  : Node_Id;
6442
6443   begin
6444      pragma Assert (Nkind_In (N, N_Aggregate, N_Extension_Aggregate));
6445
6446      if No (Comps) then
6447         return False;
6448      end if;
6449
6450      if Has_Self_Reference (N) then
6451         return True;
6452      end if;
6453
6454      --  Check if any direct component has default initialized components
6455
6456      C := First (Comps);
6457      while Present (C) loop
6458         if Box_Present (C) then
6459            return True;
6460         end if;
6461
6462         Next (C);
6463      end loop;
6464
6465      --  Recursive call in case of aggregate expression
6466
6467      C := First (Comps);
6468      while Present (C) loop
6469         Expr := Expression (C);
6470
6471         if Present (Expr)
6472           and then Nkind_In (Expr, N_Aggregate, N_Extension_Aggregate)
6473           and then Has_Default_Init_Comps (Expr)
6474         then
6475            return True;
6476         end if;
6477
6478         Next (C);
6479      end loop;
6480
6481      return False;
6482   end Has_Default_Init_Comps;
6483
6484   --------------------------
6485   -- Is_Delayed_Aggregate --
6486   --------------------------
6487
6488   function Is_Delayed_Aggregate (N : Node_Id) return Boolean is
6489      Node : Node_Id   := N;
6490      Kind : Node_Kind := Nkind (Node);
6491
6492   begin
6493      if Kind = N_Qualified_Expression then
6494         Node := Expression (Node);
6495         Kind := Nkind (Node);
6496      end if;
6497
6498      if not Nkind_In (Kind, N_Aggregate, N_Extension_Aggregate) then
6499         return False;
6500      else
6501         return Expansion_Delayed (Node);
6502      end if;
6503   end Is_Delayed_Aggregate;
6504
6505   ---------------------------
6506   -- In_Object_Declaration --
6507   ---------------------------
6508
6509   function In_Object_Declaration (N : Node_Id) return Boolean is
6510      P : Node_Id := Parent (N);
6511   begin
6512      while Present (P) loop
6513         if Nkind (P) = N_Object_Declaration then
6514            return True;
6515         end if;
6516
6517         P := Parent (P);
6518      end loop;
6519
6520      return False;
6521   end In_Object_Declaration;
6522
6523   ----------------------------------------
6524   -- Is_Static_Dispatch_Table_Aggregate --
6525   ----------------------------------------
6526
6527   function Is_Static_Dispatch_Table_Aggregate (N : Node_Id) return Boolean is
6528      Typ : constant Entity_Id := Base_Type (Etype (N));
6529
6530   begin
6531      return Static_Dispatch_Tables
6532        and then Tagged_Type_Expansion
6533        and then RTU_Loaded (Ada_Tags)
6534
6535         --  Avoid circularity when rebuilding the compiler
6536
6537        and then Cunit_Entity (Get_Source_Unit (N)) /= RTU_Entity (Ada_Tags)
6538        and then (Typ = RTE (RE_Dispatch_Table_Wrapper)
6539                    or else
6540                  Typ = RTE (RE_Address_Array)
6541                    or else
6542                  Typ = RTE (RE_Type_Specific_Data)
6543                    or else
6544                  Typ = RTE (RE_Tag_Table)
6545                    or else
6546                  (RTE_Available (RE_Interface_Data)
6547                     and then Typ = RTE (RE_Interface_Data))
6548                    or else
6549                  (RTE_Available (RE_Interfaces_Array)
6550                     and then Typ = RTE (RE_Interfaces_Array))
6551                    or else
6552                  (RTE_Available (RE_Interface_Data_Element)
6553                     and then Typ = RTE (RE_Interface_Data_Element)));
6554   end Is_Static_Dispatch_Table_Aggregate;
6555
6556   -----------------------------
6557   -- Is_Two_Dim_Packed_Array --
6558   -----------------------------
6559
6560   function Is_Two_Dim_Packed_Array (Typ : Entity_Id) return Boolean is
6561      C : constant Int := UI_To_Int (Component_Size (Typ));
6562   begin
6563      return Number_Dimensions (Typ) = 2
6564        and then Is_Bit_Packed_Array (Typ)
6565        and then (C = 1 or else C = 2 or else C = 4);
6566   end Is_Two_Dim_Packed_Array;
6567
6568   --------------------
6569   -- Late_Expansion --
6570   --------------------
6571
6572   function Late_Expansion
6573     (N      : Node_Id;
6574      Typ    : Entity_Id;
6575      Target : Node_Id) return List_Id
6576   is
6577      Aggr_Code : List_Id;
6578
6579   begin
6580      if Is_Array_Type (Etype (N)) then
6581         Aggr_Code :=
6582           Build_Array_Aggr_Code
6583             (N           => N,
6584              Ctype       => Component_Type (Etype (N)),
6585              Index       => First_Index (Typ),
6586              Into        => Target,
6587              Scalar_Comp => Is_Scalar_Type (Component_Type (Typ)),
6588              Indexes     => No_List);
6589
6590      --  Directly or indirectly (e.g. access protected procedure) a record
6591
6592      else
6593         Aggr_Code := Build_Record_Aggr_Code (N, Typ, Target);
6594      end if;
6595
6596      --  Save the last assignment statement associated with the aggregate
6597      --  when building a controlled object. This reference is utilized by
6598      --  the finalization machinery when marking an object as successfully
6599      --  initialized.
6600
6601      if Needs_Finalization (Typ)
6602        and then Is_Entity_Name (Target)
6603        and then Present (Entity (Target))
6604        and then Ekind_In (Entity (Target), E_Constant, E_Variable)
6605      then
6606         Set_Last_Aggregate_Assignment (Entity (Target), Last (Aggr_Code));
6607      end if;
6608
6609      return Aggr_Code;
6610   end Late_Expansion;
6611
6612   ----------------------------------
6613   -- Make_OK_Assignment_Statement --
6614   ----------------------------------
6615
6616   function Make_OK_Assignment_Statement
6617     (Sloc       : Source_Ptr;
6618      Name       : Node_Id;
6619      Expression : Node_Id) return Node_Id
6620   is
6621   begin
6622      Set_Assignment_OK (Name);
6623      return Make_Assignment_Statement (Sloc, Name, Expression);
6624   end Make_OK_Assignment_Statement;
6625
6626   -----------------------
6627   -- Number_Of_Choices --
6628   -----------------------
6629
6630   function Number_Of_Choices (N : Node_Id) return Nat is
6631      Assoc  : Node_Id;
6632      Choice : Node_Id;
6633
6634      Nb_Choices : Nat := 0;
6635
6636   begin
6637      if Present (Expressions (N)) then
6638         return 0;
6639      end if;
6640
6641      Assoc := First (Component_Associations (N));
6642      while Present (Assoc) loop
6643         Choice := First (Choices (Assoc));
6644         while Present (Choice) loop
6645            if Nkind (Choice) /= N_Others_Choice then
6646               Nb_Choices := Nb_Choices + 1;
6647            end if;
6648
6649            Next (Choice);
6650         end loop;
6651
6652         Next (Assoc);
6653      end loop;
6654
6655      return Nb_Choices;
6656   end Number_Of_Choices;
6657
6658   ------------------------------------
6659   -- Packed_Array_Aggregate_Handled --
6660   ------------------------------------
6661
6662   --  The current version of this procedure will handle at compile time
6663   --  any array aggregate that meets these conditions:
6664
6665   --    One and two dimensional, bit packed
6666   --    Underlying packed type is modular type
6667   --    Bounds are within 32-bit Int range
6668   --    All bounds and values are static
6669
6670   --  Note: for now, in the 2-D case, we only handle component sizes of
6671   --  1, 2, 4 (cases where an integral number of elements occupies a byte).
6672
6673   function Packed_Array_Aggregate_Handled (N : Node_Id) return Boolean is
6674      Loc  : constant Source_Ptr := Sloc (N);
6675      Typ  : constant Entity_Id  := Etype (N);
6676      Ctyp : constant Entity_Id  := Component_Type (Typ);
6677
6678      Not_Handled : exception;
6679      --  Exception raised if this aggregate cannot be handled
6680
6681   begin
6682      --  Handle one- or two dimensional bit packed array
6683
6684      if not Is_Bit_Packed_Array (Typ)
6685        or else Number_Dimensions (Typ) > 2
6686      then
6687         return False;
6688      end if;
6689
6690      --  If two-dimensional, check whether it can be folded, and transformed
6691      --  into a one-dimensional aggregate for the Packed_Array_Impl_Type of
6692      --  the original type.
6693
6694      if Number_Dimensions (Typ) = 2 then
6695         return Two_Dim_Packed_Array_Handled (N);
6696      end if;
6697
6698      if not Is_Modular_Integer_Type (Packed_Array_Impl_Type (Typ)) then
6699         return False;
6700      end if;
6701
6702      if not Is_Scalar_Type (Component_Type (Typ))
6703        and then Has_Non_Standard_Rep (Component_Type (Typ))
6704      then
6705         return False;
6706      end if;
6707
6708      declare
6709         Csiz  : constant Nat := UI_To_Int (Component_Size (Typ));
6710
6711         Lo : Node_Id;
6712         Hi : Node_Id;
6713         --  Bounds of index type
6714
6715         Lob : Uint;
6716         Hib : Uint;
6717         --  Values of bounds if compile time known
6718
6719         function Get_Component_Val (N : Node_Id) return Uint;
6720         --  Given a expression value N of the component type Ctyp, returns a
6721         --  value of Csiz (component size) bits representing this value. If
6722         --  the value is non-static or any other reason exists why the value
6723         --  cannot be returned, then Not_Handled is raised.
6724
6725         -----------------------
6726         -- Get_Component_Val --
6727         -----------------------
6728
6729         function Get_Component_Val (N : Node_Id) return Uint is
6730            Val  : Uint;
6731
6732         begin
6733            --  We have to analyze the expression here before doing any further
6734            --  processing here. The analysis of such expressions is deferred
6735            --  till expansion to prevent some problems of premature analysis.
6736
6737            Analyze_And_Resolve (N, Ctyp);
6738
6739            --  Must have a compile time value. String literals have to be
6740            --  converted into temporaries as well, because they cannot easily
6741            --  be converted into their bit representation.
6742
6743            if not Compile_Time_Known_Value (N)
6744              or else Nkind (N) = N_String_Literal
6745            then
6746               raise Not_Handled;
6747            end if;
6748
6749            Val := Expr_Rep_Value (N);
6750
6751            --  Adjust for bias, and strip proper number of bits
6752
6753            if Has_Biased_Representation (Ctyp) then
6754               Val := Val - Expr_Value (Type_Low_Bound (Ctyp));
6755            end if;
6756
6757            return Val mod Uint_2 ** Csiz;
6758         end Get_Component_Val;
6759
6760      --  Here we know we have a one dimensional bit packed array
6761
6762      begin
6763         Get_Index_Bounds (First_Index (Typ), Lo, Hi);
6764
6765         --  Cannot do anything if bounds are dynamic
6766
6767         if not Compile_Time_Known_Value (Lo)
6768              or else
6769            not Compile_Time_Known_Value (Hi)
6770         then
6771            return False;
6772         end if;
6773
6774         --  Or are silly out of range of int bounds
6775
6776         Lob := Expr_Value (Lo);
6777         Hib := Expr_Value (Hi);
6778
6779         if not UI_Is_In_Int_Range (Lob)
6780              or else
6781            not UI_Is_In_Int_Range (Hib)
6782         then
6783            return False;
6784         end if;
6785
6786         --  At this stage we have a suitable aggregate for handling at compile
6787         --  time. The only remaining checks are that the values of expressions
6788         --  in the aggregate are compile-time known (checks are performed by
6789         --  Get_Component_Val), and that any subtypes or ranges are statically
6790         --  known.
6791
6792         --  If the aggregate is not fully positional at this stage, then
6793         --  convert it to positional form. Either this will fail, in which
6794         --  case we can do nothing, or it will succeed, in which case we have
6795         --  succeeded in handling the aggregate and transforming it into a
6796         --  modular value, or it will stay an aggregate, in which case we
6797         --  have failed to create a packed value for it.
6798
6799         if Present (Component_Associations (N)) then
6800            Convert_To_Positional
6801              (N, Max_Others_Replicate => 64, Handle_Bit_Packed => True);
6802            return Nkind (N) /= N_Aggregate;
6803         end if;
6804
6805         --  Otherwise we are all positional, so convert to proper value
6806
6807         declare
6808            Lov : constant Int := UI_To_Int (Lob);
6809            Hiv : constant Int := UI_To_Int (Hib);
6810
6811            Len : constant Nat := Int'Max (0, Hiv - Lov + 1);
6812            --  The length of the array (number of elements)
6813
6814            Aggregate_Val : Uint;
6815            --  Value of aggregate. The value is set in the low order bits of
6816            --  this value. For the little-endian case, the values are stored
6817            --  from low-order to high-order and for the big-endian case the
6818            --  values are stored from high-order to low-order. Note that gigi
6819            --  will take care of the conversions to left justify the value in
6820            --  the big endian case (because of left justified modular type
6821            --  processing), so we do not have to worry about that here.
6822
6823            Lit : Node_Id;
6824            --  Integer literal for resulting constructed value
6825
6826            Shift : Nat;
6827            --  Shift count from low order for next value
6828
6829            Incr : Int;
6830            --  Shift increment for loop
6831
6832            Expr : Node_Id;
6833            --  Next expression from positional parameters of aggregate
6834
6835            Left_Justified : Boolean;
6836            --  Set True if we are filling the high order bits of the target
6837            --  value (i.e. the value is left justified).
6838
6839         begin
6840            --  For little endian, we fill up the low order bits of the target
6841            --  value. For big endian we fill up the high order bits of the
6842            --  target value (which is a left justified modular value).
6843
6844            Left_Justified := Bytes_Big_Endian;
6845
6846            --  Switch justification if using -gnatd8
6847
6848            if Debug_Flag_8 then
6849               Left_Justified := not Left_Justified;
6850            end if;
6851
6852            --  Switch justfification if reverse storage order
6853
6854            if Reverse_Storage_Order (Base_Type (Typ)) then
6855               Left_Justified := not Left_Justified;
6856            end if;
6857
6858            if Left_Justified then
6859               Shift := Csiz * (Len - 1);
6860               Incr  := -Csiz;
6861            else
6862               Shift := 0;
6863               Incr  := +Csiz;
6864            end if;
6865
6866            --  Loop to set the values
6867
6868            if Len = 0 then
6869               Aggregate_Val := Uint_0;
6870            else
6871               Expr := First (Expressions (N));
6872               Aggregate_Val := Get_Component_Val (Expr) * Uint_2 ** Shift;
6873
6874               for J in 2 .. Len loop
6875                  Shift := Shift + Incr;
6876                  Next (Expr);
6877                  Aggregate_Val :=
6878                    Aggregate_Val + Get_Component_Val (Expr) * Uint_2 ** Shift;
6879               end loop;
6880            end if;
6881
6882            --  Now we can rewrite with the proper value
6883
6884            Lit := Make_Integer_Literal (Loc, Intval => Aggregate_Val);
6885            Set_Print_In_Hex (Lit);
6886
6887            --  Construct the expression using this literal. Note that it is
6888            --  important to qualify the literal with its proper modular type
6889            --  since universal integer does not have the required range and
6890            --  also this is a left justified modular type, which is important
6891            --  in the big-endian case.
6892
6893            Rewrite (N,
6894              Unchecked_Convert_To (Typ,
6895                Make_Qualified_Expression (Loc,
6896                  Subtype_Mark =>
6897                    New_Occurrence_Of (Packed_Array_Impl_Type (Typ), Loc),
6898                  Expression   => Lit)));
6899
6900            Analyze_And_Resolve (N, Typ);
6901            return True;
6902         end;
6903      end;
6904
6905   exception
6906      when Not_Handled =>
6907         return False;
6908   end Packed_Array_Aggregate_Handled;
6909
6910   ----------------------------
6911   -- Has_Mutable_Components --
6912   ----------------------------
6913
6914   function Has_Mutable_Components (Typ : Entity_Id) return Boolean is
6915      Comp : Entity_Id;
6916
6917   begin
6918      Comp := First_Component (Typ);
6919      while Present (Comp) loop
6920         if Is_Record_Type (Etype (Comp))
6921           and then Has_Discriminants (Etype (Comp))
6922           and then not Is_Constrained (Etype (Comp))
6923         then
6924            return True;
6925         end if;
6926
6927         Next_Component (Comp);
6928      end loop;
6929
6930      return False;
6931   end Has_Mutable_Components;
6932
6933   ------------------------------
6934   -- Initialize_Discriminants --
6935   ------------------------------
6936
6937   procedure Initialize_Discriminants (N : Node_Id; Typ : Entity_Id) is
6938      Loc  : constant Source_Ptr := Sloc (N);
6939      Bas  : constant Entity_Id  := Base_Type (Typ);
6940      Par  : constant Entity_Id  := Etype (Bas);
6941      Decl : constant Node_Id    := Parent (Par);
6942      Ref  : Node_Id;
6943
6944   begin
6945      if Is_Tagged_Type (Bas)
6946        and then Is_Derived_Type (Bas)
6947        and then Has_Discriminants (Par)
6948        and then Has_Discriminants (Bas)
6949        and then Number_Discriminants (Bas) /= Number_Discriminants (Par)
6950        and then Nkind (Decl) = N_Full_Type_Declaration
6951        and then Nkind (Type_Definition (Decl)) = N_Record_Definition
6952        and then
6953          Present (Variant_Part (Component_List (Type_Definition (Decl))))
6954        and then Nkind (N) /= N_Extension_Aggregate
6955      then
6956
6957         --   Call init proc to set discriminants.
6958         --   There should eventually be a special procedure for this ???
6959
6960         Ref := New_Occurrence_Of (Defining_Identifier (N), Loc);
6961         Insert_Actions_After (N,
6962           Build_Initialization_Call (Sloc (N), Ref, Typ));
6963      end if;
6964   end Initialize_Discriminants;
6965
6966   ----------------
6967   -- Must_Slide --
6968   ----------------
6969
6970   function Must_Slide
6971     (Obj_Type : Entity_Id;
6972      Typ      : Entity_Id) return Boolean
6973   is
6974      L1, L2, H1, H2 : Node_Id;
6975
6976   begin
6977      --  No sliding if the type of the object is not established yet, if it is
6978      --  an unconstrained type whose actual subtype comes from the aggregate,
6979      --  or if the two types are identical.
6980
6981      if not Is_Array_Type (Obj_Type) then
6982         return False;
6983
6984      elsif not Is_Constrained (Obj_Type) then
6985         return False;
6986
6987      elsif Typ = Obj_Type then
6988         return False;
6989
6990      else
6991         --  Sliding can only occur along the first dimension
6992
6993         Get_Index_Bounds (First_Index (Typ), L1, H1);
6994         Get_Index_Bounds (First_Index (Obj_Type), L2, H2);
6995
6996         if not Is_OK_Static_Expression (L1) or else
6997            not Is_OK_Static_Expression (L2) or else
6998            not Is_OK_Static_Expression (H1) or else
6999            not Is_OK_Static_Expression (H2)
7000         then
7001            return False;
7002         else
7003            return Expr_Value (L1) /= Expr_Value (L2)
7004                     or else
7005                   Expr_Value (H1) /= Expr_Value (H2);
7006         end if;
7007      end if;
7008   end Must_Slide;
7009
7010   ----------------------------------
7011   -- Two_Dim_Packed_Array_Handled --
7012   ----------------------------------
7013
7014   function Two_Dim_Packed_Array_Handled (N : Node_Id) return Boolean is
7015      Loc          : constant Source_Ptr := Sloc (N);
7016      Typ          : constant Entity_Id  := Etype (N);
7017      Ctyp         : constant Entity_Id  := Component_Type (Typ);
7018      Comp_Size    : constant Int        := UI_To_Int (Component_Size (Typ));
7019      Packed_Array : constant Entity_Id  :=
7020                       Packed_Array_Impl_Type (Base_Type (Typ));
7021
7022      One_Comp : Node_Id;
7023      --  Expression in original aggregate
7024
7025      One_Dim : Node_Id;
7026      --  One-dimensional subaggregate
7027
7028   begin
7029
7030      --  For now, only deal with cases where an integral number of elements
7031      --  fit in a single byte. This includes the most common boolean case.
7032
7033      if not (Comp_Size = 1 or else
7034              Comp_Size = 2 or else
7035              Comp_Size = 4)
7036      then
7037         return False;
7038      end if;
7039
7040      Convert_To_Positional
7041        (N, Max_Others_Replicate => 64, Handle_Bit_Packed => True);
7042
7043      --  Verify that all components are static
7044
7045      if Nkind (N) = N_Aggregate
7046        and then Compile_Time_Known_Aggregate (N)
7047      then
7048         null;
7049
7050      --  The aggregate may have been re-analyzed and converted already
7051
7052      elsif Nkind (N) /= N_Aggregate then
7053         return True;
7054
7055      --  If component associations remain, the aggregate is not static
7056
7057      elsif Present (Component_Associations (N)) then
7058         return False;
7059
7060      else
7061         One_Dim := First (Expressions (N));
7062         while Present (One_Dim) loop
7063            if Present (Component_Associations (One_Dim)) then
7064               return False;
7065            end if;
7066
7067            One_Comp := First (Expressions (One_Dim));
7068            while Present (One_Comp) loop
7069               if not Is_OK_Static_Expression (One_Comp) then
7070                  return False;
7071               end if;
7072
7073               Next (One_Comp);
7074            end loop;
7075
7076            Next (One_Dim);
7077         end loop;
7078      end if;
7079
7080      --  Two-dimensional aggregate is now fully positional so pack one
7081      --  dimension to create a static one-dimensional array, and rewrite
7082      --  as an unchecked conversion to the original type.
7083
7084      declare
7085         Byte_Size : constant Int := UI_To_Int (Component_Size (Packed_Array));
7086         --  The packed array type is a byte array
7087
7088         Packed_Num : Int;
7089         --  Number of components accumulated in current byte
7090
7091         Comps : List_Id;
7092         --  Assembled list of packed values for equivalent aggregate
7093
7094         Comp_Val : Uint;
7095         --  integer value of component
7096
7097         Incr : Int;
7098         --  Step size for packing
7099
7100         Init_Shift : Int;
7101         --  Endian-dependent start position for packing
7102
7103         Shift : Int;
7104         --  Current insertion position
7105
7106         Val : Int;
7107         --  Component of packed array being assembled.
7108
7109      begin
7110         Comps := New_List;
7111         Val   := 0;
7112         Packed_Num := 0;
7113
7114         --  Account for endianness.  See corresponding comment in
7115         --  Packed_Array_Aggregate_Handled concerning the following.
7116
7117         if Bytes_Big_Endian
7118           xor Debug_Flag_8
7119           xor Reverse_Storage_Order (Base_Type (Typ))
7120         then
7121            Init_Shift := Byte_Size - Comp_Size;
7122            Incr := -Comp_Size;
7123         else
7124            Init_Shift := 0;
7125            Incr := +Comp_Size;
7126         end if;
7127
7128         --  Iterate over each subaggregate
7129
7130         Shift := Init_Shift;
7131         One_Dim := First (Expressions (N));
7132         while Present (One_Dim) loop
7133            One_Comp := First (Expressions (One_Dim));
7134            while Present (One_Comp) loop
7135               if Packed_Num = Byte_Size / Comp_Size then
7136
7137                  --  Byte is complete, add to list of expressions
7138
7139                  Append (Make_Integer_Literal (Sloc (One_Dim), Val), Comps);
7140                  Val := 0;
7141                  Shift := Init_Shift;
7142                  Packed_Num := 0;
7143
7144               else
7145                  Comp_Val := Expr_Rep_Value (One_Comp);
7146
7147                  --  Adjust for bias, and strip proper number of bits
7148
7149                  if Has_Biased_Representation (Ctyp) then
7150                     Comp_Val := Comp_Val - Expr_Value (Type_Low_Bound (Ctyp));
7151                  end if;
7152
7153                  Comp_Val := Comp_Val mod Uint_2 ** Comp_Size;
7154                  Val := UI_To_Int (Val + Comp_Val * Uint_2 ** Shift);
7155                  Shift := Shift + Incr;
7156                  One_Comp := Next (One_Comp);
7157                  Packed_Num := Packed_Num + 1;
7158               end if;
7159            end loop;
7160
7161            One_Dim := Next (One_Dim);
7162         end loop;
7163
7164         if Packed_Num > 0 then
7165
7166            --  Add final incomplete byte if present
7167
7168            Append (Make_Integer_Literal (Sloc (One_Dim), Val), Comps);
7169         end if;
7170
7171         Rewrite (N,
7172             Unchecked_Convert_To (Typ,
7173               Make_Qualified_Expression (Loc,
7174                 Subtype_Mark => New_Occurrence_Of (Packed_Array, Loc),
7175                 Expression   => Make_Aggregate (Loc, Expressions => Comps))));
7176         Analyze_And_Resolve (N);
7177         return True;
7178      end;
7179   end Two_Dim_Packed_Array_Handled;
7180
7181   ---------------------
7182   -- Sort_Case_Table --
7183   ---------------------
7184
7185   procedure Sort_Case_Table (Case_Table : in out Case_Table_Type) is
7186      L : constant Int := Case_Table'First;
7187      U : constant Int := Case_Table'Last;
7188      K : Int;
7189      J : Int;
7190      T : Case_Bounds;
7191
7192   begin
7193      K := L;
7194      while K /= U loop
7195         T := Case_Table (K + 1);
7196
7197         J := K + 1;
7198         while J /= L
7199           and then Expr_Value (Case_Table (J - 1).Choice_Lo) >
7200                    Expr_Value (T.Choice_Lo)
7201         loop
7202            Case_Table (J) := Case_Table (J - 1);
7203            J := J - 1;
7204         end loop;
7205
7206         Case_Table (J) := T;
7207         K := K + 1;
7208      end loop;
7209   end Sort_Case_Table;
7210
7211   ----------------------------
7212   -- Static_Array_Aggregate --
7213   ----------------------------
7214
7215   function Static_Array_Aggregate (N : Node_Id) return Boolean is
7216      Bounds : constant Node_Id := Aggregate_Bounds (N);
7217
7218      Typ       : constant Entity_Id := Etype (N);
7219      Comp_Type : constant Entity_Id := Component_Type (Typ);
7220      Agg       : Node_Id;
7221      Expr      : Node_Id;
7222      Lo        : Node_Id;
7223      Hi        : Node_Id;
7224
7225   begin
7226      if Is_Tagged_Type (Typ)
7227        or else Is_Controlled (Typ)
7228        or else Is_Packed (Typ)
7229      then
7230         return False;
7231      end if;
7232
7233      if Present (Bounds)
7234        and then Nkind (Bounds) = N_Range
7235        and then Nkind (Low_Bound  (Bounds)) = N_Integer_Literal
7236        and then Nkind (High_Bound (Bounds)) = N_Integer_Literal
7237      then
7238         Lo := Low_Bound  (Bounds);
7239         Hi := High_Bound (Bounds);
7240
7241         if No (Component_Associations (N)) then
7242
7243            --  Verify that all components are static integers
7244
7245            Expr := First (Expressions (N));
7246            while Present (Expr) loop
7247               if Nkind (Expr) /= N_Integer_Literal then
7248                  return False;
7249               end if;
7250
7251               Next (Expr);
7252            end loop;
7253
7254            return True;
7255
7256         else
7257            --  We allow only a single named association, either a static
7258            --  range or an others_clause, with a static expression.
7259
7260            Expr := First (Component_Associations (N));
7261
7262            if Present (Expressions (N)) then
7263               return False;
7264
7265            elsif Present (Next (Expr)) then
7266               return False;
7267
7268            elsif Present (Next (First (Choices (Expr)))) then
7269               return False;
7270
7271            else
7272               --  The aggregate is static if all components are literals,
7273               --  or else all its components are static aggregates for the
7274               --  component type. We also limit the size of a static aggregate
7275               --  to prevent runaway static expressions.
7276
7277               if Is_Array_Type (Comp_Type)
7278                 or else Is_Record_Type (Comp_Type)
7279               then
7280                  if Nkind (Expression (Expr)) /= N_Aggregate
7281                    or else
7282                      not Compile_Time_Known_Aggregate (Expression (Expr))
7283                  then
7284                     return False;
7285                  end if;
7286
7287               elsif Nkind (Expression (Expr)) /= N_Integer_Literal then
7288                  return False;
7289               end if;
7290
7291               if not Aggr_Size_OK (N, Typ) then
7292                  return False;
7293               end if;
7294
7295               --  Create a positional aggregate with the right number of
7296               --  copies of the expression.
7297
7298               Agg := Make_Aggregate (Sloc (N), New_List, No_List);
7299
7300               for I in UI_To_Int (Intval (Lo)) .. UI_To_Int (Intval (Hi))
7301               loop
7302                  Append_To (Expressions (Agg), New_Copy (Expression (Expr)));
7303
7304                  --  The copied expression must be analyzed and resolved.
7305                  --  Besides setting the type, this ensures that static
7306                  --  expressions are appropriately marked as such.
7307
7308                  Analyze_And_Resolve
7309                    (Last (Expressions (Agg)), Component_Type (Typ));
7310               end loop;
7311
7312               Set_Aggregate_Bounds (Agg, Bounds);
7313               Set_Etype (Agg, Typ);
7314               Set_Analyzed (Agg);
7315               Rewrite (N, Agg);
7316               Set_Compile_Time_Known_Aggregate (N);
7317
7318               return True;
7319            end if;
7320         end if;
7321
7322      else
7323         return False;
7324      end if;
7325   end Static_Array_Aggregate;
7326
7327end Exp_Aggr;
7328