1------------------------------------------------------------------------------
2--                                                                          --
3--                         GNAT COMPILER COMPONENTS                         --
4--                                                                          --
5--                             E X P _ P A K D                              --
6--                                                                          --
7--                                 B o d y                                  --
8--                                                                          --
9--          Copyright (C) 1992-2015, Free Software Foundation, Inc.         --
10--                                                                          --
11-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12-- terms of the  GNU General Public License as published  by the Free Soft- --
13-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
17-- for  more details.  You should have  received  a copy of the GNU General --
18-- Public License  distributed with GNAT; see file COPYING3.  If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license.          --
20--                                                                          --
21-- GNAT was originally developed  by the GNAT team at  New York University. --
22-- Extensive contributions were provided by Ada Core Technologies Inc.      --
23--                                                                          --
24------------------------------------------------------------------------------
25
26with Atree;    use Atree;
27with Checks;   use Checks;
28with Einfo;    use Einfo;
29with Errout;   use Errout;
30with Exp_Dbug; use Exp_Dbug;
31with Exp_Util; use Exp_Util;
32with Layout;   use Layout;
33with Lib.Xref; use Lib.Xref;
34with Namet;    use Namet;
35with Nlists;   use Nlists;
36with Nmake;    use Nmake;
37with Opt;      use Opt;
38with Sem;      use Sem;
39with Sem_Aux;  use Sem_Aux;
40with Sem_Ch3;  use Sem_Ch3;
41with Sem_Ch8;  use Sem_Ch8;
42with Sem_Ch13; use Sem_Ch13;
43with Sem_Eval; use Sem_Eval;
44with Sem_Res;  use Sem_Res;
45with Sem_Util; use Sem_Util;
46with Sinfo;    use Sinfo;
47with Snames;   use Snames;
48with Stand;    use Stand;
49with Targparm; use Targparm;
50with Tbuild;   use Tbuild;
51with Ttypes;   use Ttypes;
52with Uintp;    use Uintp;
53
54package body Exp_Pakd is
55
56   ---------------------------
57   -- Endian Considerations --
58   ---------------------------
59
60   --  As described in the specification, bit numbering in a packed array
61   --  is consistent with bit numbering in a record representation clause,
62   --  and hence dependent on the endianness of the machine:
63
64   --    For little-endian machines, element zero is at the right hand end
65   --    (low order end) of a bit field.
66
67   --    For big-endian machines, element zero is at the left hand end
68   --    (high order end) of a bit field.
69
70   --  The shifts that are used to right justify a field therefore differ in
71   --  the two cases. For the little-endian case, we can simply use the bit
72   --  number (i.e. the element number * element size) as the count for a right
73   --  shift. For the big-endian case, we have to subtract the shift count from
74   --  an appropriate constant to use in the right shift. We use rotates
75   --  instead of shifts (which is necessary in the store case to preserve
76   --  other fields), and we expect that the backend will be able to change the
77   --  right rotate into a left rotate, avoiding the subtract, if the machine
78   --  architecture provides such an instruction.
79
80   -----------------------
81   -- Local Subprograms --
82   -----------------------
83
84   procedure Compute_Linear_Subscript
85     (Atyp   : Entity_Id;
86      N      : Node_Id;
87      Subscr : out Node_Id);
88   --  Given a constrained array type Atyp, and an indexed component node N
89   --  referencing an array object of this type, build an expression of type
90   --  Standard.Integer representing the zero-based linear subscript value.
91   --  This expression includes any required range checks.
92
93   procedure Convert_To_PAT_Type (Aexp : Node_Id);
94   --  Given an expression of a packed array type, builds a corresponding
95   --  expression whose type is the implementation type used to represent
96   --  the packed array. Aexp is analyzed and resolved on entry and on exit.
97
98   procedure Get_Base_And_Bit_Offset
99     (N      : Node_Id;
100      Base   : out Node_Id;
101      Offset : out Node_Id);
102   --  Given a node N for a name which involves a packed array reference,
103   --  return the base object of the reference and build an expression of
104   --  type Standard.Integer representing the zero-based offset in bits
105   --  from Base'Address to the first bit of the reference.
106
107   function Known_Aligned_Enough (Obj : Node_Id; Csiz : Nat) return Boolean;
108   --  There are two versions of the Set routines, the ones used when the
109   --  object is known to be sufficiently well aligned given the number of
110   --  bits, and the ones used when the object is not known to be aligned.
111   --  This routine is used to determine which set to use. Obj is a reference
112   --  to the object, and Csiz is the component size of the packed array.
113   --  True is returned if the alignment of object is known to be sufficient,
114   --  defined as 1 for odd bit sizes, 4 for bit sizes divisible by 4, and
115   --  2 otherwise.
116
117   function Make_Shift_Left (N : Node_Id; S : Node_Id) return Node_Id;
118   --  Build a left shift node, checking for the case of a shift count of zero
119
120   function Make_Shift_Right (N : Node_Id; S : Node_Id) return Node_Id;
121   --  Build a right shift node, checking for the case of a shift count of zero
122
123   function RJ_Unchecked_Convert_To
124     (Typ  : Entity_Id;
125      Expr : Node_Id) return Node_Id;
126   --  The packed array code does unchecked conversions which in some cases
127   --  may involve non-discrete types with differing sizes. The semantics of
128   --  such conversions is potentially endianness dependent, and the effect
129   --  we want here for such a conversion is to do the conversion in size as
130   --  though numeric items are involved, and we extend or truncate on the
131   --  left side. This happens naturally in the little-endian case, but in
132   --  the big endian case we can get left justification, when what we want
133   --  is right justification. This routine does the unchecked conversion in
134   --  a stepwise manner to ensure that it gives the expected result. Hence
135   --  the name (RJ = Right justified). The parameters Typ and Expr are as
136   --  for the case of a normal Unchecked_Convert_To call.
137
138   procedure Setup_Enumeration_Packed_Array_Reference (N : Node_Id);
139   --  This routine is called in the Get and Set case for arrays that are
140   --  packed but not bit-packed, meaning that they have at least one
141   --  subscript that is of an enumeration type with a non-standard
142   --  representation. This routine modifies the given node to properly
143   --  reference the corresponding packed array type.
144
145   procedure Setup_Inline_Packed_Array_Reference
146     (N      : Node_Id;
147      Atyp   : Entity_Id;
148      Obj    : in out Node_Id;
149      Cmask  : out Uint;
150      Shift  : out Node_Id);
151   --  This procedure performs common processing on the N_Indexed_Component
152   --  parameter given as N, whose prefix is a reference to a packed array.
153   --  This is used for the get and set when the component size is 1, 2, 4,
154   --  or for other component sizes when the packed array type is a modular
155   --  type (i.e. the cases that are handled with inline code).
156   --
157   --  On entry:
158   --
159   --    N is the N_Indexed_Component node for the packed array reference
160   --
161   --    Atyp is the constrained array type (the actual subtype has been
162   --    computed if necessary to obtain the constraints, but this is still
163   --    the original array type, not the Packed_Array_Impl_Type value).
164   --
165   --    Obj is the object which is to be indexed. It is always of type Atyp.
166   --
167   --  On return:
168   --
169   --    Obj is the object containing the desired bit field. It is of type
170   --    Unsigned, Long_Unsigned, or Long_Long_Unsigned, and is either the
171   --    entire value, for the small static case, or the proper selected byte
172   --    from the array in the large or dynamic case. This node is analyzed
173   --    and resolved on return.
174   --
175   --    Shift is a node representing the shift count to be used in the
176   --    rotate right instruction that positions the field for access.
177   --    This node is analyzed and resolved on return.
178   --
179   --    Cmask is a mask corresponding to the width of the component field.
180   --    Its value is 2 ** Csize - 1 (e.g. 2#1111# for component size of 4).
181   --
182   --  Note: in some cases the call to this routine may generate actions
183   --  (for handling multi-use references and the generation of the packed
184   --  array type on the fly). Such actions are inserted into the tree
185   --  directly using Insert_Action.
186
187   function Revert_Storage_Order (N : Node_Id) return Node_Id;
188   --  Perform appropriate justification and byte ordering adjustments for N,
189   --  an element of a packed array type, when both the component type and
190   --  the enclosing packed array type have reverse scalar storage order.
191   --  On little-endian targets, the value is left justified before byte
192   --  swapping. The Etype of the returned expression is an integer type of
193   --  an appropriate power-of-2 size.
194
195   --------------------------
196   -- Revert_Storage_Order --
197   --------------------------
198
199   function Revert_Storage_Order (N : Node_Id) return Node_Id is
200      Loc     : constant Source_Ptr := Sloc (N);
201      T       : constant Entity_Id := Etype (N);
202      T_Size  : constant Uint := RM_Size (T);
203
204      Swap_RE : RE_Id;
205      Swap_F  : Entity_Id;
206      Swap_T  : Entity_Id;
207      --  Swapping function
208
209      Arg      : Node_Id;
210      Adjusted : Node_Id;
211      Shift    : Uint;
212
213   begin
214      if T_Size <= 8 then
215
216         --  Array component size is less than a byte: no swapping needed
217
218         Swap_F := Empty;
219         Swap_T := RTE (RE_Unsigned_8);
220
221      else
222         --  Select byte swapping function depending on array component size
223
224         if T_Size <= 16 then
225            Swap_RE := RE_Bswap_16;
226
227         elsif T_Size <= 32 then
228            Swap_RE := RE_Bswap_32;
229
230         else pragma Assert (T_Size <= 64);
231            Swap_RE := RE_Bswap_64;
232         end if;
233
234         Swap_F := RTE (Swap_RE);
235         Swap_T := Etype (Swap_F);
236
237      end if;
238
239      Shift := Esize (Swap_T) - T_Size;
240
241      Arg := RJ_Unchecked_Convert_To (Swap_T, N);
242
243      if not Bytes_Big_Endian and then Shift > Uint_0 then
244         Arg :=
245           Make_Op_Shift_Left (Loc,
246             Left_Opnd  => Arg,
247             Right_Opnd => Make_Integer_Literal (Loc, Shift));
248      end if;
249
250      if Present (Swap_F) then
251         Adjusted :=
252           Make_Function_Call (Loc,
253             Name                   => New_Occurrence_Of (Swap_F, Loc),
254             Parameter_Associations => New_List (Arg));
255      else
256         Adjusted := Arg;
257      end if;
258
259      Set_Etype (Adjusted, Swap_T);
260      return Adjusted;
261   end Revert_Storage_Order;
262
263   ------------------------------
264   -- Compute_Linear_Subscript --
265   ------------------------------
266
267   procedure Compute_Linear_Subscript
268     (Atyp   : Entity_Id;
269      N      : Node_Id;
270      Subscr : out Node_Id)
271   is
272      Loc    : constant Source_Ptr := Sloc (N);
273      Oldsub : Node_Id;
274      Newsub : Node_Id;
275      Indx   : Node_Id;
276      Styp   : Entity_Id;
277
278   begin
279      Subscr := Empty;
280
281      --  Loop through dimensions
282
283      Indx   := First_Index (Atyp);
284      Oldsub := First (Expressions (N));
285
286      while Present (Indx) loop
287         Styp := Etype (Indx);
288         Newsub := Relocate_Node (Oldsub);
289
290         --  Get expression for the subscript value. First, if Do_Range_Check
291         --  is set on a subscript, then we must do a range check against the
292         --  original bounds (not the bounds of the packed array type). We do
293         --  this by introducing a subtype conversion.
294
295         if Do_Range_Check (Newsub)
296           and then Etype (Newsub) /= Styp
297         then
298            Newsub := Convert_To (Styp, Newsub);
299         end if;
300
301         --  Now evolve the expression for the subscript. First convert
302         --  the subscript to be zero based and of an integer type.
303
304         --  Case of integer type, where we just subtract to get lower bound
305
306         if Is_Integer_Type (Styp) then
307
308            --  If length of integer type is smaller than standard integer,
309            --  then we convert to integer first, then do the subtract
310
311            --  Integer (subscript) - Integer (Styp'First)
312
313            if Esize (Styp) < Esize (Standard_Integer) then
314               Newsub :=
315                 Make_Op_Subtract (Loc,
316                   Left_Opnd => Convert_To (Standard_Integer, Newsub),
317                 Right_Opnd =>
318                   Convert_To (Standard_Integer,
319                     Make_Attribute_Reference (Loc,
320                       Prefix         => New_Occurrence_Of (Styp, Loc),
321                       Attribute_Name => Name_First)));
322
323            --  For larger integer types, subtract first, then convert to
324            --  integer, this deals with strange long long integer bounds.
325
326            --    Integer (subscript - Styp'First)
327
328            else
329               Newsub :=
330                 Convert_To (Standard_Integer,
331                   Make_Op_Subtract (Loc,
332                     Left_Opnd => Newsub,
333                   Right_Opnd =>
334                     Make_Attribute_Reference (Loc,
335                       Prefix         => New_Occurrence_Of (Styp, Loc),
336                       Attribute_Name => Name_First)));
337            end if;
338
339         --  For the enumeration case, we have to use 'Pos to get the value
340         --  to work with before subtracting the lower bound.
341
342         --    Integer (Styp'Pos (subscr)) - Integer (Styp'Pos (Styp'First));
343
344         --  This is not quite right for bizarre cases where the size of the
345         --  enumeration type is > Integer'Size bits due to rep clause ???
346
347         else
348            pragma Assert (Is_Enumeration_Type (Styp));
349
350            Newsub :=
351              Make_Op_Subtract (Loc,
352                Left_Opnd => Convert_To (Standard_Integer,
353                  Make_Attribute_Reference (Loc,
354                    Prefix         => New_Occurrence_Of (Styp, Loc),
355                    Attribute_Name => Name_Pos,
356                    Expressions    => New_List (Newsub))),
357
358                Right_Opnd =>
359                  Convert_To (Standard_Integer,
360                    Make_Attribute_Reference (Loc,
361                      Prefix         => New_Occurrence_Of (Styp, Loc),
362                      Attribute_Name => Name_Pos,
363                      Expressions    => New_List (
364                        Make_Attribute_Reference (Loc,
365                          Prefix         => New_Occurrence_Of (Styp, Loc),
366                          Attribute_Name => Name_First)))));
367         end if;
368
369         Set_Paren_Count (Newsub, 1);
370
371         --  For the first subscript, we just copy that subscript value
372
373         if No (Subscr) then
374            Subscr := Newsub;
375
376         --  Otherwise, we must multiply what we already have by the current
377         --  stride and then add in the new value to the evolving subscript.
378
379         else
380            Subscr :=
381              Make_Op_Add (Loc,
382                Left_Opnd =>
383                  Make_Op_Multiply (Loc,
384                    Left_Opnd  => Subscr,
385                    Right_Opnd =>
386                      Make_Attribute_Reference (Loc,
387                        Attribute_Name => Name_Range_Length,
388                        Prefix         => New_Occurrence_Of (Styp, Loc))),
389                Right_Opnd => Newsub);
390         end if;
391
392         --  Move to next subscript
393
394         Next_Index (Indx);
395         Next (Oldsub);
396      end loop;
397   end Compute_Linear_Subscript;
398
399   -------------------------
400   -- Convert_To_PAT_Type --
401   -------------------------
402
403   --  The PAT is always obtained from the actual subtype
404
405   procedure Convert_To_PAT_Type (Aexp : Node_Id) is
406      Act_ST : Entity_Id;
407
408   begin
409      Convert_To_Actual_Subtype (Aexp);
410      Act_ST := Underlying_Type (Etype (Aexp));
411      Create_Packed_Array_Impl_Type (Act_ST);
412
413      --  Just replace the etype with the packed array type. This works because
414      --  the expression will not be further analyzed, and Gigi considers the
415      --  two types equivalent in any case.
416
417      --  This is not strictly the case ??? If the reference is an actual in
418      --  call, the expansion of the prefix is delayed, and must be reanalyzed,
419      --  see Reset_Packed_Prefix. On the other hand, if the prefix is a simple
420      --  array reference, reanalysis can produce spurious type errors when the
421      --  PAT type is replaced again with the original type of the array. Same
422      --  for the case of a dereference. Ditto for function calls: expansion
423      --  may introduce additional actuals which will trigger errors if call is
424      --  reanalyzed. The following is correct and minimal, but the handling of
425      --  more complex packed expressions in actuals is confused. Probably the
426      --  problem only remains for actuals in calls.
427
428      Set_Etype (Aexp, Packed_Array_Impl_Type (Act_ST));
429
430      if Is_Entity_Name (Aexp)
431        or else
432           (Nkind (Aexp) = N_Indexed_Component
433             and then Is_Entity_Name (Prefix (Aexp)))
434        or else Nkind_In (Aexp, N_Explicit_Dereference, N_Function_Call)
435      then
436         Set_Analyzed (Aexp);
437      end if;
438   end Convert_To_PAT_Type;
439
440   -----------------------------------
441   -- Create_Packed_Array_Impl_Type --
442   -----------------------------------
443
444   procedure Create_Packed_Array_Impl_Type (Typ : Entity_Id) is
445      Loc      : constant Source_Ptr := Sloc (Typ);
446      Ctyp     : constant Entity_Id  := Component_Type (Typ);
447      Csize    : constant Uint       := Component_Size (Typ);
448
449      Ancest   : Entity_Id;
450      PB_Type  : Entity_Id;
451      PASize   : Uint;
452      Decl     : Node_Id;
453      PAT      : Entity_Id;
454      Len_Dim  : Node_Id;
455      Len_Expr : Node_Id;
456      Len_Bits : Uint;
457      Bits_U1  : Node_Id;
458      PAT_High : Node_Id;
459      Btyp     : Entity_Id;
460      Lit      : Node_Id;
461
462      procedure Install_PAT;
463      --  This procedure is called with Decl set to the declaration for the
464      --  packed array type. It creates the type and installs it as required.
465
466      procedure Set_PB_Type;
467      --  Sets PB_Type to Packed_Bytes{1,2,4} as required by the alignment
468      --  requirements (see documentation in the spec of this package).
469
470      -----------------
471      -- Install_PAT --
472      -----------------
473
474      procedure Install_PAT is
475         Pushed_Scope : Boolean := False;
476
477      begin
478         --  We do not want to put the declaration we have created in the tree
479         --  since it is often hard, and sometimes impossible to find a proper
480         --  place for it (the impossible case arises for a packed array type
481         --  with bounds depending on the discriminant, a declaration cannot
482         --  be put inside the record, and the reference to the discriminant
483         --  cannot be outside the record).
484
485         --  The solution is to analyze the declaration while temporarily
486         --  attached to the tree at an appropriate point, and then we install
487         --  the resulting type as an Itype in the packed array type field of
488         --  the original type, so that no explicit declaration is required.
489
490         --  Note: the packed type is created in the scope of its parent type.
491         --  There are at least some cases where the current scope is deeper,
492         --  and so when this is the case, we temporarily reset the scope
493         --  for the definition. This is clearly safe, since the first use
494         --  of the packed array type will be the implicit reference from
495         --  the corresponding unpacked type when it is elaborated.
496
497         if Is_Itype (Typ) then
498            Set_Parent (Decl, Associated_Node_For_Itype (Typ));
499         else
500            Set_Parent (Decl, Declaration_Node (Typ));
501         end if;
502
503         if Scope (Typ) /= Current_Scope then
504            Push_Scope (Scope (Typ));
505            Pushed_Scope := True;
506         end if;
507
508         Set_Is_Itype (PAT, True);
509         Set_Packed_Array_Impl_Type (Typ, PAT);
510         Analyze (Decl, Suppress => All_Checks);
511
512         if Pushed_Scope then
513            Pop_Scope;
514         end if;
515
516         --  Set Esize and RM_Size to the actual size of the packed object
517         --  Do not reset RM_Size if already set, as happens in the case of
518         --  a modular type.
519
520         if Unknown_Esize (PAT) then
521            Set_Esize (PAT, PASize);
522         end if;
523
524         if Unknown_RM_Size (PAT) then
525            Set_RM_Size (PAT, PASize);
526         end if;
527
528         Adjust_Esize_Alignment (PAT);
529
530         --  Set remaining fields of packed array type
531
532         Init_Alignment                (PAT);
533         Set_Parent                    (PAT, Empty);
534         Set_Associated_Node_For_Itype (PAT, Typ);
535         Set_Is_Packed_Array_Impl_Type (PAT, True);
536         Set_Original_Array_Type       (PAT, Typ);
537
538         --  Propagate representation aspects
539
540         Set_Is_Atomic               (PAT, Is_Atomic                (Typ));
541         Set_Is_Independent          (PAT, Is_Independent           (Typ));
542         Set_Is_Volatile             (PAT, Is_Volatile              (Typ));
543         Set_Is_Volatile_Full_Access (PAT, Is_Volatile_Full_Access  (Typ));
544         Set_Treat_As_Volatile       (PAT, Treat_As_Volatile        (Typ));
545
546         --  For a non-bit-packed array, propagate reverse storage order
547         --  flag from original base type to packed array base type.
548
549         if not Is_Bit_Packed_Array (Typ) then
550            Set_Reverse_Storage_Order
551              (Etype (PAT), Reverse_Storage_Order (Base_Type (Typ)));
552         end if;
553
554         --  We definitely do not want to delay freezing for packed array
555         --  types. This is of particular importance for the itypes that are
556         --  generated for record components depending on discriminants where
557         --  there is no place to put the freeze node.
558
559         Set_Has_Delayed_Freeze (PAT, False);
560         Set_Has_Delayed_Freeze (Etype (PAT), False);
561
562         --  If we did allocate a freeze node, then clear out the reference
563         --  since it is obsolete (should we delete the freeze node???)
564
565         Set_Freeze_Node (PAT, Empty);
566         Set_Freeze_Node (Etype (PAT), Empty);
567      end Install_PAT;
568
569      -----------------
570      -- Set_PB_Type --
571      -----------------
572
573      procedure Set_PB_Type is
574      begin
575         --  If the user has specified an explicit alignment for the
576         --  type or component, take it into account.
577
578         if Csize <= 2 or else Csize = 4 or else Csize mod 2 /= 0
579           or else Alignment (Typ) = 1
580           or else Component_Alignment (Typ) = Calign_Storage_Unit
581         then
582            PB_Type := RTE (RE_Packed_Bytes1);
583
584         elsif Csize mod 4 /= 0
585           or else Alignment (Typ) = 2
586         then
587            PB_Type := RTE (RE_Packed_Bytes2);
588
589         else
590            PB_Type := RTE (RE_Packed_Bytes4);
591         end if;
592      end Set_PB_Type;
593
594   --  Start of processing for Create_Packed_Array_Impl_Type
595
596   begin
597      --  If we already have a packed array type, nothing to do
598
599      if Present (Packed_Array_Impl_Type (Typ)) then
600         return;
601      end if;
602
603      --  If our immediate ancestor subtype is constrained, and it already
604      --  has a packed array type, then just share the same type, since the
605      --  bounds must be the same. If the ancestor is not an array type but
606      --  a private type, as can happen with multiple instantiations, create
607      --  a new packed type, to avoid privacy issues.
608
609      if Ekind (Typ) = E_Array_Subtype then
610         Ancest := Ancestor_Subtype (Typ);
611
612         if Present (Ancest)
613           and then Is_Array_Type (Ancest)
614           and then Is_Constrained (Ancest)
615           and then Present (Packed_Array_Impl_Type (Ancest))
616         then
617            Set_Packed_Array_Impl_Type (Typ, Packed_Array_Impl_Type (Ancest));
618            return;
619         end if;
620      end if;
621
622      --  We preset the result type size from the size of the original array
623      --  type, since this size clearly belongs to the packed array type. The
624      --  size of the conceptual unpacked type is always set to unknown.
625
626      PASize := RM_Size (Typ);
627
628      --  Case of an array where at least one index is of an enumeration
629      --  type with a non-standard representation, but the component size
630      --  is not appropriate for bit packing. This is the case where we
631      --  have Is_Packed set (we would never be in this unit otherwise),
632      --  but Is_Bit_Packed_Array is false.
633
634      --  Note that if the component size is appropriate for bit packing,
635      --  then the circuit for the computation of the subscript properly
636      --  deals with the non-standard enumeration type case by taking the
637      --  Pos anyway.
638
639      if not Is_Bit_Packed_Array (Typ) then
640
641         --  Here we build a declaration:
642
643         --    type tttP is array (index1, index2, ...) of component_type
644
645         --  where index1, index2, are the index types. These are the same
646         --  as the index types of the original array, except for the non-
647         --  standard representation enumeration type case, where we have
648         --  two subcases.
649
650         --  For the unconstrained array case, we use
651
652         --    Natural range <>
653
654         --  For the constrained case, we use
655
656         --    Natural range Enum_Type'Pos (Enum_Type'First) ..
657         --                  Enum_Type'Pos (Enum_Type'Last);
658
659         --  Note that tttP is created even if no index subtype is a non
660         --  standard enumeration, because we still need to remove padding
661         --  normally inserted for component alignment.
662
663         PAT :=
664           Make_Defining_Identifier (Loc,
665             Chars => New_External_Name (Chars (Typ), 'P'));
666
667         Set_Packed_Array_Impl_Type (Typ, PAT);
668
669         declare
670            Indexes   : constant List_Id := New_List;
671            Indx      : Node_Id;
672            Indx_Typ  : Entity_Id;
673            Enum_Case : Boolean;
674            Typedef   : Node_Id;
675
676         begin
677            Indx := First_Index (Typ);
678
679            while Present (Indx) loop
680               Indx_Typ := Etype (Indx);
681
682               Enum_Case := Is_Enumeration_Type (Indx_Typ)
683                              and then Has_Non_Standard_Rep (Indx_Typ);
684
685               --  Unconstrained case
686
687               if not Is_Constrained (Typ) then
688                  if Enum_Case then
689                     Indx_Typ := Standard_Natural;
690                  end if;
691
692                  Append_To (Indexes, New_Occurrence_Of (Indx_Typ, Loc));
693
694               --  Constrained case
695
696               else
697                  if not Enum_Case then
698                     Append_To (Indexes, New_Occurrence_Of (Indx_Typ, Loc));
699
700                  else
701                     Append_To (Indexes,
702                       Make_Subtype_Indication (Loc,
703                         Subtype_Mark =>
704                           New_Occurrence_Of (Standard_Natural, Loc),
705                         Constraint =>
706                           Make_Range_Constraint (Loc,
707                             Range_Expression =>
708                               Make_Range (Loc,
709                                 Low_Bound =>
710                                   Make_Attribute_Reference (Loc,
711                                     Prefix         =>
712                                       New_Occurrence_Of (Indx_Typ, Loc),
713                                     Attribute_Name => Name_Pos,
714                                     Expressions    => New_List (
715                                       Make_Attribute_Reference (Loc,
716                                         Prefix         =>
717                                           New_Occurrence_Of (Indx_Typ, Loc),
718                                         Attribute_Name => Name_First))),
719
720                                 High_Bound =>
721                                   Make_Attribute_Reference (Loc,
722                                     Prefix         =>
723                                       New_Occurrence_Of (Indx_Typ, Loc),
724                                     Attribute_Name => Name_Pos,
725                                     Expressions    => New_List (
726                                       Make_Attribute_Reference (Loc,
727                                         Prefix         =>
728                                           New_Occurrence_Of (Indx_Typ, Loc),
729                                         Attribute_Name => Name_Last)))))));
730
731                  end if;
732               end if;
733
734               Next_Index (Indx);
735            end loop;
736
737            if not Is_Constrained (Typ) then
738               Typedef :=
739                 Make_Unconstrained_Array_Definition (Loc,
740                   Subtype_Marks => Indexes,
741                   Component_Definition =>
742                     Make_Component_Definition (Loc,
743                       Aliased_Present    => False,
744                       Subtype_Indication =>
745                          New_Occurrence_Of (Ctyp, Loc)));
746
747            else
748               Typedef :=
749                  Make_Constrained_Array_Definition (Loc,
750                    Discrete_Subtype_Definitions => Indexes,
751                    Component_Definition =>
752                      Make_Component_Definition (Loc,
753                        Aliased_Present    => False,
754                        Subtype_Indication =>
755                          New_Occurrence_Of (Ctyp, Loc)));
756            end if;
757
758            Decl :=
759              Make_Full_Type_Declaration (Loc,
760                Defining_Identifier => PAT,
761                Type_Definition     => Typedef);
762         end;
763
764         --  Set type as packed array type and install it
765
766         Set_Is_Packed_Array_Impl_Type (PAT);
767         Install_PAT;
768         return;
769
770      --  Case of bit-packing required for unconstrained array. We create
771      --  a subtype that is equivalent to use Packed_Bytes{1,2,4} as needed.
772
773      elsif not Is_Constrained (Typ) then
774
775         --  When generating standard DWARF (i.e when GNAT_Encodings is
776         --  DWARF_GNAT_Encodings_Minimal), the ___XP suffix will be stripped
777         --  by the back-end but generate it anyway to ease compiler debugging.
778         --  This will help to distinguish implementation types from original
779         --  packed arrays.
780
781         PAT :=
782           Make_Defining_Identifier (Loc,
783             Chars => Make_Packed_Array_Impl_Type_Name (Typ, Csize));
784
785         Set_Packed_Array_Impl_Type (Typ, PAT);
786         Set_PB_Type;
787
788         Decl :=
789           Make_Subtype_Declaration (Loc,
790             Defining_Identifier => PAT,
791               Subtype_Indication => New_Occurrence_Of (PB_Type, Loc));
792         Install_PAT;
793         return;
794
795      --  Remaining code is for the case of bit-packing for constrained array
796
797      --  The name of the packed array subtype is
798
799      --    ttt___XPsss
800
801      --  where sss is the component size in bits and ttt is the name of
802      --  the parent packed type.
803
804      else
805         PAT :=
806           Make_Defining_Identifier (Loc,
807             Chars => Make_Packed_Array_Impl_Type_Name (Typ, Csize));
808
809         Set_Packed_Array_Impl_Type (Typ, PAT);
810
811         --  Build an expression for the length of the array in bits.
812         --  This is the product of the length of each of the dimensions
813
814         declare
815            J : Nat := 1;
816
817         begin
818            Len_Expr := Empty; -- suppress junk warning
819
820            loop
821               Len_Dim :=
822                 Make_Attribute_Reference (Loc,
823                   Attribute_Name => Name_Length,
824                   Prefix         => New_Occurrence_Of (Typ, Loc),
825                   Expressions    => New_List (
826                     Make_Integer_Literal (Loc, J)));
827
828               if J = 1 then
829                  Len_Expr := Len_Dim;
830
831               else
832                  Len_Expr :=
833                    Make_Op_Multiply (Loc,
834                      Left_Opnd  => Len_Expr,
835                      Right_Opnd => Len_Dim);
836               end if;
837
838               J := J + 1;
839               exit when J > Number_Dimensions (Typ);
840            end loop;
841         end;
842
843         --  Temporarily attach the length expression to the tree and analyze
844         --  and resolve it, so that we can test its value. We assume that the
845         --  total length fits in type Integer. This expression may involve
846         --  discriminants, so we treat it as a default/per-object expression.
847
848         Set_Parent (Len_Expr, Typ);
849         Preanalyze_Spec_Expression (Len_Expr, Standard_Long_Long_Integer);
850
851         --  Use a modular type if possible. We can do this if we have
852         --  static bounds, and the length is small enough, and the length
853         --  is not zero. We exclude the zero length case because the size
854         --  of things is always at least one, and the zero length object
855         --  would have an anomalous size.
856
857         if Compile_Time_Known_Value (Len_Expr) then
858            Len_Bits := Expr_Value (Len_Expr) * Csize;
859
860            --  Check for size known to be too large
861
862            if Len_Bits >
863              Uint_2 ** (Standard_Integer_Size - 1) * System_Storage_Unit
864            then
865               if System_Storage_Unit = 8 then
866                  Error_Msg_N
867                    ("packed array size cannot exceed " &
868                     "Integer''Last bytes", Typ);
869               else
870                  Error_Msg_N
871                    ("packed array size cannot exceed " &
872                     "Integer''Last storage units", Typ);
873               end if;
874
875               --  Reset length to arbitrary not too high value to continue
876
877               Len_Expr := Make_Integer_Literal (Loc, 65535);
878               Analyze_And_Resolve (Len_Expr, Standard_Long_Long_Integer);
879            end if;
880
881            --  We normally consider small enough to mean no larger than the
882            --  value of System_Max_Binary_Modulus_Power, checking that in the
883            --  case of values longer than word size, we have long shifts.
884
885            if Len_Bits > 0
886              and then
887                (Len_Bits <= System_Word_Size
888                   or else (Len_Bits <= System_Max_Binary_Modulus_Power
889                              and then Support_Long_Shifts_On_Target))
890            then
891               --  We can use the modular type, it has the form:
892
893               --    subtype tttPn is btyp
894               --      range 0 .. 2 ** ((Typ'Length (1)
895               --                * ... * Typ'Length (n)) * Csize) - 1;
896
897               --  The bounds are statically known, and btyp is one of the
898               --  unsigned types, depending on the length.
899
900               if Len_Bits <= Standard_Short_Short_Integer_Size then
901                  Btyp := RTE (RE_Short_Short_Unsigned);
902
903               elsif Len_Bits <= Standard_Short_Integer_Size then
904                  Btyp := RTE (RE_Short_Unsigned);
905
906               elsif Len_Bits <= Standard_Integer_Size then
907                  Btyp := RTE (RE_Unsigned);
908
909               elsif Len_Bits <= Standard_Long_Integer_Size then
910                  Btyp := RTE (RE_Long_Unsigned);
911
912               else
913                  Btyp := RTE (RE_Long_Long_Unsigned);
914               end if;
915
916               Lit := Make_Integer_Literal (Loc, 2 ** Len_Bits - 1);
917               Set_Print_In_Hex (Lit);
918
919               Decl :=
920                 Make_Subtype_Declaration (Loc,
921                   Defining_Identifier => PAT,
922                     Subtype_Indication =>
923                       Make_Subtype_Indication (Loc,
924                         Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
925
926                         Constraint =>
927                           Make_Range_Constraint (Loc,
928                             Range_Expression =>
929                               Make_Range (Loc,
930                                 Low_Bound =>
931                                   Make_Integer_Literal (Loc, 0),
932                                 High_Bound => Lit))));
933
934               if PASize = Uint_0 then
935                  PASize := Len_Bits;
936               end if;
937
938               Install_PAT;
939
940               --  Propagate a given alignment to the modular type. This can
941               --  cause it to be under-aligned, but that's OK.
942
943               if Present (Alignment_Clause (Typ)) then
944                  Set_Alignment (PAT, Alignment (Typ));
945               end if;
946
947               return;
948            end if;
949         end if;
950
951         --  Could not use a modular type, for all other cases, we build
952         --  a packed array subtype:
953
954         --    subtype tttPn is
955         --      System.Packed_Bytes{1,2,4} (0 .. (Bits + 7) / 8 - 1);
956
957         --  Bits is the length of the array in bits
958
959         Set_PB_Type;
960
961         Bits_U1 :=
962           Make_Op_Add (Loc,
963             Left_Opnd =>
964               Make_Op_Multiply (Loc,
965                 Left_Opnd  =>
966                   Make_Integer_Literal (Loc, Csize),
967                 Right_Opnd => Len_Expr),
968
969             Right_Opnd =>
970               Make_Integer_Literal (Loc, 7));
971
972         Set_Paren_Count (Bits_U1, 1);
973
974         PAT_High :=
975           Make_Op_Subtract (Loc,
976             Left_Opnd =>
977               Make_Op_Divide (Loc,
978                 Left_Opnd => Bits_U1,
979                 Right_Opnd => Make_Integer_Literal (Loc, 8)),
980             Right_Opnd => Make_Integer_Literal (Loc, 1));
981
982         Decl :=
983           Make_Subtype_Declaration (Loc,
984             Defining_Identifier => PAT,
985               Subtype_Indication =>
986                 Make_Subtype_Indication (Loc,
987                   Subtype_Mark => New_Occurrence_Of (PB_Type, Loc),
988                   Constraint =>
989                     Make_Index_Or_Discriminant_Constraint (Loc,
990                       Constraints => New_List (
991                         Make_Range (Loc,
992                           Low_Bound =>
993                             Make_Integer_Literal (Loc, 0),
994                           High_Bound =>
995                             Convert_To (Standard_Integer, PAT_High))))));
996
997         Install_PAT;
998
999         --  Currently the code in this unit requires that packed arrays
1000         --  represented by non-modular arrays of bytes be on a byte
1001         --  boundary for bit sizes handled by System.Pack_nn units.
1002         --  That's because these units assume the array being accessed
1003         --  starts on a byte boundary.
1004
1005         if Get_Id (UI_To_Int (Csize)) /= RE_Null then
1006            Set_Must_Be_On_Byte_Boundary (Typ);
1007         end if;
1008      end if;
1009   end Create_Packed_Array_Impl_Type;
1010
1011   -----------------------------------
1012   -- Expand_Bit_Packed_Element_Set --
1013   -----------------------------------
1014
1015   procedure Expand_Bit_Packed_Element_Set (N : Node_Id) is
1016      Loc : constant Source_Ptr := Sloc (N);
1017      Lhs : constant Node_Id    := Name (N);
1018
1019      Ass_OK : constant Boolean := Assignment_OK (Lhs);
1020      --  Used to preserve assignment OK status when assignment is rewritten
1021
1022      Rhs : Node_Id := Expression (N);
1023      --  Initially Rhs is the right hand side value, it will be replaced
1024      --  later by an appropriate unchecked conversion for the assignment.
1025
1026      Obj   : Node_Id;
1027      Atyp  : Entity_Id;
1028      PAT   : Entity_Id;
1029      Ctyp  : Entity_Id;
1030      Csiz  : Int;
1031      Cmask : Uint;
1032
1033      Shift : Node_Id;
1034      --  The expression for the shift value that is required
1035
1036      Shift_Used : Boolean := False;
1037      --  Set True if Shift has been used in the generated code at least once,
1038      --  so that it must be duplicated if used again.
1039
1040      New_Lhs : Node_Id;
1041      New_Rhs : Node_Id;
1042
1043      Rhs_Val_Known : Boolean;
1044      Rhs_Val       : Uint;
1045      --  If the value of the right hand side as an integer constant is
1046      --  known at compile time, Rhs_Val_Known is set True, and Rhs_Val
1047      --  contains the value. Otherwise Rhs_Val_Known is set False, and
1048      --  the Rhs_Val is undefined.
1049
1050      function Get_Shift return Node_Id;
1051      --  Function used to get the value of Shift, making sure that it
1052      --  gets duplicated if the function is called more than once.
1053
1054      ---------------
1055      -- Get_Shift --
1056      ---------------
1057
1058      function Get_Shift return Node_Id is
1059      begin
1060         --  If we used the shift value already, then duplicate it. We
1061         --  set a temporary parent in case actions have to be inserted.
1062
1063         if Shift_Used then
1064            Set_Parent (Shift, N);
1065            return Duplicate_Subexpr_No_Checks (Shift);
1066
1067         --  If first time, use Shift unchanged, and set flag for first use
1068
1069         else
1070            Shift_Used := True;
1071            return Shift;
1072         end if;
1073      end Get_Shift;
1074
1075   --  Start of processing for Expand_Bit_Packed_Element_Set
1076
1077   begin
1078      pragma Assert (Is_Bit_Packed_Array (Etype (Prefix (Lhs))));
1079
1080      Obj := Relocate_Node (Prefix (Lhs));
1081      Convert_To_Actual_Subtype (Obj);
1082      Atyp := Etype (Obj);
1083      PAT  := Packed_Array_Impl_Type (Atyp);
1084      Ctyp := Component_Type (Atyp);
1085      Csiz := UI_To_Int (Component_Size (Atyp));
1086
1087      --  We remove side effects, in case the rhs modifies the lhs, because we
1088      --  are about to transform the rhs into an expression that first READS
1089      --  the lhs, so we can do the necessary shifting and masking. Example:
1090      --  "X(2) := F(...);" where F modifies X(3). Otherwise, the side effect
1091      --  will be lost.
1092
1093      Remove_Side_Effects (Rhs);
1094
1095      --  We convert the right hand side to the proper subtype to ensure
1096      --  that an appropriate range check is made (since the normal range
1097      --  check from assignment will be lost in the transformations). This
1098      --  conversion is analyzed immediately so that subsequent processing
1099      --  can work with an analyzed Rhs (and e.g. look at its Etype)
1100
1101      --  If the right-hand side is a string literal, create a temporary for
1102      --  it, constant-folding is not ready to wrap the bit representation
1103      --  of a string literal.
1104
1105      if Nkind (Rhs) = N_String_Literal then
1106         declare
1107            Decl : Node_Id;
1108         begin
1109            Decl :=
1110              Make_Object_Declaration (Loc,
1111                Defining_Identifier => Make_Temporary (Loc, 'T', Rhs),
1112                Object_Definition   => New_Occurrence_Of (Ctyp, Loc),
1113                Expression          => New_Copy_Tree (Rhs));
1114
1115            Insert_Actions (N, New_List (Decl));
1116            Rhs := New_Occurrence_Of (Defining_Identifier (Decl), Loc);
1117         end;
1118      end if;
1119
1120      Rhs := Convert_To (Ctyp, Rhs);
1121      Set_Parent (Rhs, N);
1122
1123      --  If we are building the initialization procedure for a packed array,
1124      --  and Initialize_Scalars is enabled, each component assignment is an
1125      --  out-of-range value by design.  Compile this value without checks,
1126      --  because a call to the array init_proc must not raise an exception.
1127
1128      --  Condition is not consistent with description above, Within_Init_Proc
1129      --  is True also when we are building the IP for a record or protected
1130      --  type that has a packed array component???
1131
1132      if Within_Init_Proc
1133        and then Initialize_Scalars
1134      then
1135         Analyze_And_Resolve (Rhs, Ctyp, Suppress => All_Checks);
1136      else
1137         Analyze_And_Resolve (Rhs, Ctyp);
1138      end if;
1139
1140      --  For the AAMP target, indexing of certain packed array is passed
1141      --  through to the back end without expansion, because the expansion
1142      --  results in very inefficient code on that target. This allows the
1143      --  GNAAMP back end to generate specialized macros that support more
1144      --  efficient indexing of packed arrays with components having sizes
1145      --  that are small powers of two.
1146
1147      if AAMP_On_Target
1148        and then (Csiz = 1 or else Csiz = 2 or else Csiz = 4)
1149      then
1150         return;
1151      end if;
1152
1153      --  Case of component size 1,2,4 or any component size for the modular
1154      --  case. These are the cases for which we can inline the code.
1155
1156      if Csiz = 1 or else Csiz = 2 or else Csiz = 4
1157        or else (Present (PAT) and then Is_Modular_Integer_Type (PAT))
1158      then
1159         Setup_Inline_Packed_Array_Reference (Lhs, Atyp, Obj, Cmask, Shift);
1160
1161         --  The statement to be generated is:
1162
1163         --    Obj := atyp!((Obj and Mask1) or (shift_left (rhs, Shift)))
1164
1165         --  or in the case of a freestanding Reverse_Storage_Order object,
1166
1167         --    Obj := Swap (atyp!((Swap (Obj) and Mask1)
1168         --                         or (shift_left (rhs, Shift))))
1169
1170         --      where Mask1 is obtained by shifting Cmask left Shift bits
1171         --      and then complementing the result.
1172
1173         --      the "and Mask1" is omitted if rhs is constant and all 1 bits
1174
1175         --      the "or ..." is omitted if rhs is constant and all 0 bits
1176
1177         --      rhs is converted to the appropriate type
1178
1179         --      The result is converted back to the array type, since
1180         --      otherwise we lose knowledge of the packed nature.
1181
1182         --  Determine if right side is all 0 bits or all 1 bits
1183
1184         if Compile_Time_Known_Value (Rhs) then
1185            Rhs_Val       := Expr_Rep_Value (Rhs);
1186            Rhs_Val_Known := True;
1187
1188         --  The following test catches the case of an unchecked conversion of
1189         --  an integer literal. This results from optimizing aggregates of
1190         --  packed types.
1191
1192         elsif Nkind (Rhs) = N_Unchecked_Type_Conversion
1193           and then Compile_Time_Known_Value (Expression (Rhs))
1194         then
1195            Rhs_Val       := Expr_Rep_Value (Expression (Rhs));
1196            Rhs_Val_Known := True;
1197
1198         else
1199            Rhs_Val       := No_Uint;
1200            Rhs_Val_Known := False;
1201         end if;
1202
1203         --  Some special checks for the case where the right hand value is
1204         --  known at compile time. Basically we have to take care of the
1205         --  implicit conversion to the subtype of the component object.
1206
1207         if Rhs_Val_Known then
1208
1209            --  If we have a biased component type then we must manually do the
1210            --  biasing, since we are taking responsibility in this case for
1211            --  constructing the exact bit pattern to be used.
1212
1213            if Has_Biased_Representation (Ctyp) then
1214               Rhs_Val := Rhs_Val - Expr_Rep_Value (Type_Low_Bound (Ctyp));
1215            end if;
1216
1217            --  For a negative value, we manually convert the two's complement
1218            --  value to a corresponding unsigned value, so that the proper
1219            --  field width is maintained. If we did not do this, we would
1220            --  get too many leading sign bits later on.
1221
1222            if Rhs_Val < 0 then
1223               Rhs_Val := 2 ** UI_From_Int (Csiz) + Rhs_Val;
1224            end if;
1225         end if;
1226
1227         --  Now create copies removing side effects. Note that in some complex
1228         --  cases, this may cause the fact that we have already set a packed
1229         --  array type on Obj to get lost. So we save the type of Obj, and
1230         --  make sure it is reset properly.
1231
1232         New_Lhs := Duplicate_Subexpr (Obj, Name_Req => True);
1233         New_Rhs := Duplicate_Subexpr_No_Checks (Obj);
1234
1235         --  First we deal with the "and"
1236
1237         if not Rhs_Val_Known or else Rhs_Val /= Cmask then
1238            declare
1239               Mask1 : Node_Id;
1240               Lit   : Node_Id;
1241
1242            begin
1243               if Compile_Time_Known_Value (Shift) then
1244                  Mask1 :=
1245                    Make_Integer_Literal (Loc,
1246                      Modulus (Etype (Obj)) - 1 -
1247                                 (Cmask * (2 ** Expr_Value (Get_Shift))));
1248                  Set_Print_In_Hex (Mask1);
1249
1250               else
1251                  Lit := Make_Integer_Literal (Loc, Cmask);
1252                  Set_Print_In_Hex (Lit);
1253                  Mask1 :=
1254                    Make_Op_Not (Loc,
1255                      Right_Opnd => Make_Shift_Left (Lit, Get_Shift));
1256               end if;
1257
1258               New_Rhs :=
1259                 Make_Op_And (Loc,
1260                   Left_Opnd  => New_Rhs,
1261                   Right_Opnd => Mask1);
1262            end;
1263         end if;
1264
1265         --  Then deal with the "or"
1266
1267         if not Rhs_Val_Known or else Rhs_Val /= 0 then
1268            declare
1269               Or_Rhs : Node_Id;
1270
1271               procedure Fixup_Rhs;
1272               --  Adjust Rhs by bias if biased representation for components
1273               --  or remove extraneous high order sign bits if signed.
1274
1275               procedure Fixup_Rhs is
1276                  Etyp : constant Entity_Id := Etype (Rhs);
1277
1278               begin
1279                  --  For biased case, do the required biasing by simply
1280                  --  converting to the biased subtype (the conversion
1281                  --  will generate the required bias).
1282
1283                  if Has_Biased_Representation (Ctyp) then
1284                     Rhs := Convert_To (Ctyp, Rhs);
1285
1286                  --  For a signed integer type that is not biased, generate
1287                  --  a conversion to unsigned to strip high order sign bits.
1288
1289                  elsif Is_Signed_Integer_Type (Ctyp) then
1290                     Rhs := Unchecked_Convert_To (RTE (Bits_Id (Csiz)), Rhs);
1291                  end if;
1292
1293                  --  Set Etype, since it can be referenced before the node is
1294                  --  completely analyzed.
1295
1296                  Set_Etype (Rhs, Etyp);
1297
1298                  --  We now need to do an unchecked conversion of the
1299                  --  result to the target type, but it is important that
1300                  --  this conversion be a right justified conversion and
1301                  --  not a left justified conversion.
1302
1303                  Rhs := RJ_Unchecked_Convert_To (Etype (Obj), Rhs);
1304               end Fixup_Rhs;
1305
1306            begin
1307               if Rhs_Val_Known
1308                 and then Compile_Time_Known_Value (Get_Shift)
1309               then
1310                  Or_Rhs :=
1311                    Make_Integer_Literal (Loc,
1312                      Rhs_Val * (2 ** Expr_Value (Get_Shift)));
1313                  Set_Print_In_Hex (Or_Rhs);
1314
1315               else
1316                  --  We have to convert the right hand side to Etype (Obj).
1317                  --  A special case arises if what we have now is a Val
1318                  --  attribute reference whose expression type is Etype (Obj).
1319                  --  This happens for assignments of fields from the same
1320                  --  array. In this case we get the required right hand side
1321                  --  by simply removing the inner attribute reference.
1322
1323                  if Nkind (Rhs) = N_Attribute_Reference
1324                    and then Attribute_Name (Rhs) = Name_Val
1325                    and then Etype (First (Expressions (Rhs))) = Etype (Obj)
1326                  then
1327                     Rhs := Relocate_Node (First (Expressions (Rhs)));
1328                     Fixup_Rhs;
1329
1330                  --  If the value of the right hand side is a known integer
1331                  --  value, then just replace it by an untyped constant,
1332                  --  which will be properly retyped when we analyze and
1333                  --  resolve the expression.
1334
1335                  elsif Rhs_Val_Known then
1336
1337                     --  Note that Rhs_Val has already been normalized to
1338                     --  be an unsigned value with the proper number of bits.
1339
1340                     Rhs := Make_Integer_Literal (Loc, Rhs_Val);
1341
1342                  --  Otherwise we need an unchecked conversion
1343
1344                  else
1345                     Fixup_Rhs;
1346                  end if;
1347
1348                  Or_Rhs := Make_Shift_Left (Rhs, Get_Shift);
1349               end if;
1350
1351               if Nkind (New_Rhs) = N_Op_And then
1352                  Set_Paren_Count (New_Rhs, 1);
1353                  Set_Etype (New_Rhs, Etype (Left_Opnd (New_Rhs)));
1354               end if;
1355
1356               New_Rhs :=
1357                 Make_Op_Or (Loc,
1358                   Left_Opnd  => New_Rhs,
1359                   Right_Opnd => Or_Rhs);
1360            end;
1361         end if;
1362
1363         --  Now do the rewrite
1364
1365         Rewrite (N,
1366           Make_Assignment_Statement (Loc,
1367             Name       => New_Lhs,
1368             Expression =>
1369               Unchecked_Convert_To (Etype (New_Lhs), New_Rhs)));
1370         Set_Assignment_OK (Name (N), Ass_OK);
1371
1372      --  All other component sizes for non-modular case
1373
1374      else
1375         --  We generate
1376
1377         --    Set_nn (Arr'address, Subscr, Bits_nn!(Rhs))
1378
1379         --  where Subscr is the computed linear subscript
1380
1381         declare
1382            Bits_nn : constant Entity_Id := RTE (Bits_Id (Csiz));
1383            Set_nn  : Entity_Id;
1384            Subscr  : Node_Id;
1385            Atyp    : Entity_Id;
1386            Rev_SSO : Node_Id;
1387
1388         begin
1389            if No (Bits_nn) then
1390
1391               --  Error, most likely High_Integrity_Mode restriction
1392
1393               return;
1394            end if;
1395
1396            --  Acquire proper Set entity. We use the aligned or unaligned
1397            --  case as appropriate.
1398
1399            if Known_Aligned_Enough (Obj, Csiz) then
1400               Set_nn := RTE (Set_Id (Csiz));
1401            else
1402               Set_nn := RTE (SetU_Id (Csiz));
1403            end if;
1404
1405            --  Now generate the set reference
1406
1407            Obj := Relocate_Node (Prefix (Lhs));
1408            Convert_To_Actual_Subtype (Obj);
1409            Atyp := Etype (Obj);
1410            Compute_Linear_Subscript (Atyp, Lhs, Subscr);
1411
1412            --  Set indication of whether the packed array has reverse SSO
1413
1414            Rev_SSO :=
1415              New_Occurrence_Of
1416                (Boolean_Literals (Reverse_Storage_Order (Atyp)), Loc);
1417
1418            --  Below we must make the assumption that Obj is
1419            --  at least byte aligned, since otherwise its address
1420            --  cannot be taken. The assumption holds since the
1421            --  only arrays that can be misaligned are small packed
1422            --  arrays which are implemented as a modular type, and
1423            --  that is not the case here.
1424
1425            Rewrite (N,
1426              Make_Procedure_Call_Statement (Loc,
1427                  Name => New_Occurrence_Of (Set_nn, Loc),
1428                  Parameter_Associations => New_List (
1429                    Make_Attribute_Reference (Loc,
1430                      Prefix         => Obj,
1431                      Attribute_Name => Name_Address),
1432                    Subscr,
1433                    Unchecked_Convert_To (Bits_nn, Convert_To (Ctyp, Rhs)),
1434                    Rev_SSO)));
1435
1436         end;
1437      end if;
1438
1439      Analyze (N, Suppress => All_Checks);
1440   end Expand_Bit_Packed_Element_Set;
1441
1442   -------------------------------------
1443   -- Expand_Packed_Address_Reference --
1444   -------------------------------------
1445
1446   procedure Expand_Packed_Address_Reference (N : Node_Id) is
1447      Loc    : constant Source_Ptr := Sloc (N);
1448      Base   : Node_Id;
1449      Offset : Node_Id;
1450
1451   begin
1452      --  We build an expression that has the form
1453
1454      --    outer_object'Address
1455      --      + (linear-subscript * component_size  for each array reference
1456      --      +  field'Bit_Position                 for each record field
1457      --      +  ...
1458      --      +  ...) / Storage_Unit;
1459
1460      Get_Base_And_Bit_Offset (Prefix (N), Base, Offset);
1461
1462      Rewrite (N,
1463        Unchecked_Convert_To (RTE (RE_Address),
1464          Make_Op_Add (Loc,
1465            Left_Opnd =>
1466              Unchecked_Convert_To (RTE (RE_Integer_Address),
1467                Make_Attribute_Reference (Loc,
1468                  Prefix         => Base,
1469                  Attribute_Name => Name_Address)),
1470
1471            Right_Opnd =>
1472              Unchecked_Convert_To (RTE (RE_Integer_Address),
1473                Make_Op_Divide (Loc,
1474                  Left_Opnd => Offset,
1475                  Right_Opnd =>
1476                    Make_Integer_Literal (Loc, System_Storage_Unit))))));
1477
1478      Analyze_And_Resolve (N, RTE (RE_Address));
1479   end Expand_Packed_Address_Reference;
1480
1481   ---------------------------------
1482   -- Expand_Packed_Bit_Reference --
1483   ---------------------------------
1484
1485   procedure Expand_Packed_Bit_Reference (N : Node_Id) is
1486      Loc    : constant Source_Ptr := Sloc (N);
1487      Base   : Node_Id;
1488      Offset : Node_Id;
1489
1490   begin
1491      --  We build an expression that has the form
1492
1493      --    (linear-subscript * component_size      for each array reference
1494      --      +  field'Bit_Position                 for each record field
1495      --      +  ...
1496      --      +  ...) mod Storage_Unit;
1497
1498      Get_Base_And_Bit_Offset (Prefix (N), Base, Offset);
1499
1500      Rewrite (N,
1501        Unchecked_Convert_To (Universal_Integer,
1502          Make_Op_Mod (Loc,
1503            Left_Opnd => Offset,
1504            Right_Opnd => Make_Integer_Literal (Loc, System_Storage_Unit))));
1505
1506      Analyze_And_Resolve (N, Universal_Integer);
1507   end Expand_Packed_Bit_Reference;
1508
1509   ------------------------------------
1510   -- Expand_Packed_Boolean_Operator --
1511   ------------------------------------
1512
1513   --  This routine expands "a op b" for the packed cases
1514
1515   procedure Expand_Packed_Boolean_Operator (N : Node_Id) is
1516      Loc : constant Source_Ptr := Sloc (N);
1517      Typ : constant Entity_Id  := Etype (N);
1518      L   : constant Node_Id    := Relocate_Node (Left_Opnd  (N));
1519      R   : constant Node_Id    := Relocate_Node (Right_Opnd (N));
1520
1521      Ltyp : Entity_Id;
1522      Rtyp : Entity_Id;
1523      PAT  : Entity_Id;
1524
1525   begin
1526      Convert_To_Actual_Subtype (L);
1527      Convert_To_Actual_Subtype (R);
1528
1529      Ensure_Defined (Etype (L), N);
1530      Ensure_Defined (Etype (R), N);
1531
1532      Apply_Length_Check (R, Etype (L));
1533
1534      Ltyp := Etype (L);
1535      Rtyp := Etype (R);
1536
1537      --  Deal with silly case of XOR where the subcomponent has a range
1538      --  True .. True where an exception must be raised.
1539
1540      if Nkind (N) = N_Op_Xor then
1541         Silly_Boolean_Array_Xor_Test (N, Rtyp);
1542      end if;
1543
1544      --  Now that that silliness is taken care of, get packed array type
1545
1546      Convert_To_PAT_Type (L);
1547      Convert_To_PAT_Type (R);
1548
1549      PAT := Etype (L);
1550
1551      --  For the modular case, we expand a op b into
1552
1553      --    rtyp!(pat!(a) op pat!(b))
1554
1555      --  where rtyp is the Etype of the left operand. Note that we do not
1556      --  convert to the base type, since this would be unconstrained, and
1557      --  hence not have a corresponding packed array type set.
1558
1559      --  Note that both operands must be modular for this code to be used
1560
1561      if Is_Modular_Integer_Type (PAT)
1562           and then
1563         Is_Modular_Integer_Type (Etype (R))
1564      then
1565         declare
1566            P : Node_Id;
1567
1568         begin
1569            if Nkind (N) = N_Op_And then
1570               P := Make_Op_And (Loc, L, R);
1571
1572            elsif Nkind (N) = N_Op_Or then
1573               P := Make_Op_Or  (Loc, L, R);
1574
1575            else -- Nkind (N) = N_Op_Xor
1576               P := Make_Op_Xor (Loc, L, R);
1577            end if;
1578
1579            Rewrite (N, Unchecked_Convert_To (Ltyp, P));
1580         end;
1581
1582      --  For the array case, we insert the actions
1583
1584      --    Result : Ltype;
1585
1586      --    System.Bit_Ops.Bit_And/Or/Xor
1587      --     (Left'Address,
1588      --      Ltype'Length * Ltype'Component_Size;
1589      --      Right'Address,
1590      --      Rtype'Length * Rtype'Component_Size
1591      --      Result'Address);
1592
1593      --  where Left and Right are the Packed_Bytes{1,2,4} operands and
1594      --  the second argument and fourth arguments are the lengths of the
1595      --  operands in bits. Then we replace the expression by a reference
1596      --  to Result.
1597
1598      --  Note that if we are mixing a modular and array operand, everything
1599      --  works fine, since we ensure that the modular representation has the
1600      --  same physical layout as the array representation (that's what the
1601      --  left justified modular stuff in the big-endian case is about).
1602
1603      else
1604         declare
1605            Result_Ent : constant Entity_Id := Make_Temporary (Loc, 'T');
1606            E_Id       : RE_Id;
1607
1608         begin
1609            if Nkind (N) = N_Op_And then
1610               E_Id := RE_Bit_And;
1611
1612            elsif Nkind (N) = N_Op_Or then
1613               E_Id := RE_Bit_Or;
1614
1615            else -- Nkind (N) = N_Op_Xor
1616               E_Id := RE_Bit_Xor;
1617            end if;
1618
1619            Insert_Actions (N, New_List (
1620
1621              Make_Object_Declaration (Loc,
1622                Defining_Identifier => Result_Ent,
1623                Object_Definition => New_Occurrence_Of (Ltyp, Loc)),
1624
1625              Make_Procedure_Call_Statement (Loc,
1626                Name => New_Occurrence_Of (RTE (E_Id), Loc),
1627                  Parameter_Associations => New_List (
1628
1629                    Make_Byte_Aligned_Attribute_Reference (Loc,
1630                      Prefix         => L,
1631                      Attribute_Name => Name_Address),
1632
1633                    Make_Op_Multiply (Loc,
1634                      Left_Opnd =>
1635                        Make_Attribute_Reference (Loc,
1636                          Prefix         =>
1637                            New_Occurrence_Of
1638                              (Etype (First_Index (Ltyp)), Loc),
1639                          Attribute_Name => Name_Range_Length),
1640
1641                      Right_Opnd =>
1642                        Make_Integer_Literal (Loc, Component_Size (Ltyp))),
1643
1644                    Make_Byte_Aligned_Attribute_Reference (Loc,
1645                      Prefix         => R,
1646                      Attribute_Name => Name_Address),
1647
1648                    Make_Op_Multiply (Loc,
1649                      Left_Opnd =>
1650                        Make_Attribute_Reference (Loc,
1651                          Prefix         =>
1652                            New_Occurrence_Of
1653                              (Etype (First_Index (Rtyp)), Loc),
1654                          Attribute_Name => Name_Range_Length),
1655
1656                      Right_Opnd =>
1657                        Make_Integer_Literal (Loc, Component_Size (Rtyp))),
1658
1659                    Make_Byte_Aligned_Attribute_Reference (Loc,
1660                      Prefix => New_Occurrence_Of (Result_Ent, Loc),
1661                      Attribute_Name => Name_Address)))));
1662
1663            Rewrite (N,
1664              New_Occurrence_Of (Result_Ent, Loc));
1665         end;
1666      end if;
1667
1668      Analyze_And_Resolve (N, Typ, Suppress => All_Checks);
1669   end Expand_Packed_Boolean_Operator;
1670
1671   -------------------------------------
1672   -- Expand_Packed_Element_Reference --
1673   -------------------------------------
1674
1675   procedure Expand_Packed_Element_Reference (N : Node_Id) is
1676      Loc   : constant Source_Ptr := Sloc (N);
1677      Obj   : Node_Id;
1678      Atyp  : Entity_Id;
1679      PAT   : Entity_Id;
1680      Ctyp  : Entity_Id;
1681      Csiz  : Int;
1682      Shift : Node_Id;
1683      Cmask : Uint;
1684      Lit   : Node_Id;
1685      Arg   : Node_Id;
1686
1687   begin
1688      --  If the node is an actual in a call, the prefix has not been fully
1689      --  expanded, to account for the additional expansion for in-out actuals
1690      --  (see expand_actuals for details). If the prefix itself is a packed
1691      --  reference as well, we have to recurse to complete the transformation
1692      --  of the prefix.
1693
1694      if Nkind (Prefix (N)) = N_Indexed_Component
1695        and then not Analyzed (Prefix (N))
1696        and then Is_Bit_Packed_Array (Etype (Prefix (Prefix (N))))
1697      then
1698         Expand_Packed_Element_Reference (Prefix (N));
1699      end if;
1700
1701      --  The prefix may be rewritten below as a conversion. If it is a source
1702      --  entity generate reference to it now, to prevent spurious warnings
1703      --  about unused entities.
1704
1705      if Is_Entity_Name (Prefix (N))
1706        and then Comes_From_Source (Prefix (N))
1707      then
1708         Generate_Reference (Entity (Prefix (N)), Prefix (N), 'r');
1709      end if;
1710
1711      --  If not bit packed, we have the enumeration case, which is easily
1712      --  dealt with (just adjust the subscripts of the indexed component)
1713
1714      --  Note: this leaves the result as an indexed component, which is
1715      --  still a variable, so can be used in the assignment case, as is
1716      --  required in the enumeration case.
1717
1718      if not Is_Bit_Packed_Array (Etype (Prefix (N))) then
1719         Setup_Enumeration_Packed_Array_Reference (N);
1720         return;
1721      end if;
1722
1723      --  Remaining processing is for the bit-packed case
1724
1725      Obj := Relocate_Node (Prefix (N));
1726      Convert_To_Actual_Subtype (Obj);
1727      Atyp := Etype (Obj);
1728      PAT  := Packed_Array_Impl_Type (Atyp);
1729      Ctyp := Component_Type (Atyp);
1730      Csiz := UI_To_Int (Component_Size (Atyp));
1731
1732      --  For the AAMP target, indexing of certain packed array is passed
1733      --  through to the back end without expansion, because the expansion
1734      --  results in very inefficient code on that target. This allows the
1735      --  GNAAMP back end to generate specialized macros that support more
1736      --  efficient indexing of packed arrays with components having sizes
1737      --  that are small powers of two.
1738
1739      if AAMP_On_Target
1740        and then (Csiz = 1 or else Csiz = 2 or else Csiz = 4)
1741      then
1742         return;
1743      end if;
1744
1745      --  Case of component size 1,2,4 or any component size for the modular
1746      --  case. These are the cases for which we can inline the code.
1747
1748      if Csiz = 1 or else Csiz = 2 or else Csiz = 4
1749        or else (Present (PAT) and then Is_Modular_Integer_Type (PAT))
1750      then
1751         Setup_Inline_Packed_Array_Reference (N, Atyp, Obj, Cmask, Shift);
1752         Lit := Make_Integer_Literal (Loc, Cmask);
1753         Set_Print_In_Hex (Lit);
1754
1755         --  We generate a shift right to position the field, followed by a
1756         --  masking operation to extract the bit field, and we finally do an
1757         --  unchecked conversion to convert the result to the required target.
1758
1759         --  Note that the unchecked conversion automatically deals with the
1760         --  bias if we are dealing with a biased representation. What will
1761         --  happen is that we temporarily generate the biased representation,
1762         --  but almost immediately that will be converted to the original
1763         --  unbiased component type, and the bias will disappear.
1764
1765         Arg :=
1766           Make_Op_And (Loc,
1767             Left_Opnd  => Make_Shift_Right (Obj, Shift),
1768             Right_Opnd => Lit);
1769         Set_Etype (Arg, Ctyp);
1770
1771         --  Component extraction is performed on a native endianness scalar
1772         --  value: if Atyp has reverse storage order, then it has been byte
1773         --  swapped, and if the component being extracted is itself of a
1774         --  composite type with reverse storage order, then we need to swap
1775         --  it back to its expected endianness after extraction.
1776
1777         if Reverse_Storage_Order (Atyp)
1778           and then (Is_Record_Type (Ctyp) or else Is_Array_Type (Ctyp))
1779           and then Reverse_Storage_Order (Ctyp)
1780         then
1781            Arg := Revert_Storage_Order (Arg);
1782         end if;
1783
1784         --  We needed to analyze this before we do the unchecked convert
1785         --  below, but we need it temporarily attached to the tree for
1786         --  this analysis (hence the temporary Set_Parent call).
1787
1788         Set_Parent (Arg, Parent (N));
1789         Analyze_And_Resolve (Arg);
1790
1791         Rewrite (N, RJ_Unchecked_Convert_To (Ctyp, Arg));
1792
1793      --  All other component sizes for non-modular case
1794
1795      else
1796         --  We generate
1797
1798         --    Component_Type!(Get_nn (Arr'address, Subscr))
1799
1800         --  where Subscr is the computed linear subscript
1801
1802         declare
1803            Get_nn  : Entity_Id;
1804            Subscr  : Node_Id;
1805            Rev_SSO : constant Node_Id :=
1806              New_Occurrence_Of
1807                (Boolean_Literals (Reverse_Storage_Order (Atyp)), Loc);
1808
1809         begin
1810            --  Acquire proper Get entity. We use the aligned or unaligned
1811            --  case as appropriate.
1812
1813            if Known_Aligned_Enough (Obj, Csiz) then
1814               Get_nn := RTE (Get_Id (Csiz));
1815            else
1816               Get_nn := RTE (GetU_Id (Csiz));
1817            end if;
1818
1819            --  Now generate the get reference
1820
1821            Compute_Linear_Subscript (Atyp, N, Subscr);
1822
1823            --  Below we make the assumption that Obj is at least byte
1824            --  aligned, since otherwise its address cannot be taken.
1825            --  The assumption holds since the only arrays that can be
1826            --  misaligned are small packed arrays which are implemented
1827            --  as a modular type, and that is not the case here.
1828
1829            Rewrite (N,
1830              Unchecked_Convert_To (Ctyp,
1831                Make_Function_Call (Loc,
1832                  Name => New_Occurrence_Of (Get_nn, Loc),
1833                  Parameter_Associations => New_List (
1834                    Make_Attribute_Reference (Loc,
1835                      Prefix         => Obj,
1836                      Attribute_Name => Name_Address),
1837                    Subscr,
1838                    Rev_SSO))));
1839         end;
1840      end if;
1841
1842      Analyze_And_Resolve (N, Ctyp, Suppress => All_Checks);
1843   end Expand_Packed_Element_Reference;
1844
1845   ----------------------
1846   -- Expand_Packed_Eq --
1847   ----------------------
1848
1849   --  Handles expansion of "=" on packed array types
1850
1851   procedure Expand_Packed_Eq (N : Node_Id) is
1852      Loc : constant Source_Ptr := Sloc (N);
1853      L   : constant Node_Id    := Relocate_Node (Left_Opnd  (N));
1854      R   : constant Node_Id    := Relocate_Node (Right_Opnd (N));
1855
1856      LLexpr : Node_Id;
1857      RLexpr : Node_Id;
1858
1859      Ltyp : Entity_Id;
1860      Rtyp : Entity_Id;
1861      PAT  : Entity_Id;
1862
1863   begin
1864      Convert_To_Actual_Subtype (L);
1865      Convert_To_Actual_Subtype (R);
1866      Ltyp := Underlying_Type (Etype (L));
1867      Rtyp := Underlying_Type (Etype (R));
1868
1869      Convert_To_PAT_Type (L);
1870      Convert_To_PAT_Type (R);
1871      PAT := Etype (L);
1872
1873      LLexpr :=
1874        Make_Op_Multiply (Loc,
1875          Left_Opnd =>
1876            Make_Attribute_Reference (Loc,
1877              Prefix         => New_Occurrence_Of (Ltyp, Loc),
1878              Attribute_Name => Name_Length),
1879          Right_Opnd =>
1880            Make_Integer_Literal (Loc, Component_Size (Ltyp)));
1881
1882      RLexpr :=
1883        Make_Op_Multiply (Loc,
1884          Left_Opnd =>
1885            Make_Attribute_Reference (Loc,
1886              Prefix         => New_Occurrence_Of (Rtyp, Loc),
1887              Attribute_Name => Name_Length),
1888          Right_Opnd =>
1889            Make_Integer_Literal (Loc, Component_Size (Rtyp)));
1890
1891      --  For the modular case, we transform the comparison to:
1892
1893      --    Ltyp'Length = Rtyp'Length and then PAT!(L) = PAT!(R)
1894
1895      --  where PAT is the packed array type. This works fine, since in the
1896      --  modular case we guarantee that the unused bits are always zeroes.
1897      --  We do have to compare the lengths because we could be comparing
1898      --  two different subtypes of the same base type.
1899
1900      if Is_Modular_Integer_Type (PAT) then
1901         Rewrite (N,
1902           Make_And_Then (Loc,
1903             Left_Opnd =>
1904               Make_Op_Eq (Loc,
1905                 Left_Opnd  => LLexpr,
1906                 Right_Opnd => RLexpr),
1907
1908             Right_Opnd =>
1909               Make_Op_Eq (Loc,
1910                 Left_Opnd => L,
1911                 Right_Opnd => R)));
1912
1913      --  For the non-modular case, we call a runtime routine
1914
1915      --    System.Bit_Ops.Bit_Eq
1916      --      (L'Address, L_Length, R'Address, R_Length)
1917
1918      --  where PAT is the packed array type, and the lengths are the lengths
1919      --  in bits of the original packed arrays. This routine takes care of
1920      --  not comparing the unused bits in the last byte.
1921
1922      else
1923         Rewrite (N,
1924           Make_Function_Call (Loc,
1925             Name => New_Occurrence_Of (RTE (RE_Bit_Eq), Loc),
1926             Parameter_Associations => New_List (
1927               Make_Byte_Aligned_Attribute_Reference (Loc,
1928                 Prefix         => L,
1929                 Attribute_Name => Name_Address),
1930
1931               LLexpr,
1932
1933               Make_Byte_Aligned_Attribute_Reference (Loc,
1934                 Prefix         => R,
1935                 Attribute_Name => Name_Address),
1936
1937               RLexpr)));
1938      end if;
1939
1940      Analyze_And_Resolve (N, Standard_Boolean, Suppress => All_Checks);
1941   end Expand_Packed_Eq;
1942
1943   -----------------------
1944   -- Expand_Packed_Not --
1945   -----------------------
1946
1947   --  Handles expansion of "not" on packed array types
1948
1949   procedure Expand_Packed_Not (N : Node_Id) is
1950      Loc  : constant Source_Ptr := Sloc (N);
1951      Typ  : constant Entity_Id  := Etype (N);
1952      Opnd : constant Node_Id    := Relocate_Node (Right_Opnd (N));
1953
1954      Rtyp : Entity_Id;
1955      PAT  : Entity_Id;
1956      Lit  : Node_Id;
1957
1958   begin
1959      Convert_To_Actual_Subtype (Opnd);
1960      Rtyp := Etype (Opnd);
1961
1962      --  Deal with silly False..False and True..True subtype case
1963
1964      Silly_Boolean_Array_Not_Test (N, Rtyp);
1965
1966      --  Now that the silliness is taken care of, get packed array type
1967
1968      Convert_To_PAT_Type (Opnd);
1969      PAT := Etype (Opnd);
1970
1971      --  For the case where the packed array type is a modular type, "not A"
1972      --  expands simply into:
1973
1974      --     Rtyp!(PAT!(A) xor Mask)
1975
1976      --  where PAT is the packed array type, Mask is a mask of all 1 bits of
1977      --  length equal to the size of this packed type, and Rtyp is the actual
1978      --  actual subtype of the operand.
1979
1980      Lit := Make_Integer_Literal (Loc, 2 ** RM_Size (PAT) - 1);
1981      Set_Print_In_Hex (Lit);
1982
1983      if not Is_Array_Type (PAT) then
1984         Rewrite (N,
1985           Unchecked_Convert_To (Rtyp,
1986             Make_Op_Xor (Loc,
1987               Left_Opnd  => Opnd,
1988               Right_Opnd => Lit)));
1989
1990      --  For the array case, we insert the actions
1991
1992      --    Result : Typ;
1993
1994      --    System.Bit_Ops.Bit_Not
1995      --     (Opnd'Address,
1996      --      Typ'Length * Typ'Component_Size,
1997      --      Result'Address);
1998
1999      --  where Opnd is the Packed_Bytes{1,2,4} operand and the second argument
2000      --  is the length of the operand in bits. We then replace the expression
2001      --  with a reference to Result.
2002
2003      else
2004         declare
2005            Result_Ent : constant Entity_Id := Make_Temporary (Loc, 'T');
2006
2007         begin
2008            Insert_Actions (N, New_List (
2009              Make_Object_Declaration (Loc,
2010                Defining_Identifier => Result_Ent,
2011                Object_Definition   => New_Occurrence_Of (Rtyp, Loc)),
2012
2013              Make_Procedure_Call_Statement (Loc,
2014                Name => New_Occurrence_Of (RTE (RE_Bit_Not), Loc),
2015                  Parameter_Associations => New_List (
2016                    Make_Byte_Aligned_Attribute_Reference (Loc,
2017                      Prefix         => Opnd,
2018                      Attribute_Name => Name_Address),
2019
2020                    Make_Op_Multiply (Loc,
2021                      Left_Opnd =>
2022                        Make_Attribute_Reference (Loc,
2023                          Prefix         =>
2024                            New_Occurrence_Of
2025                              (Etype (First_Index (Rtyp)), Loc),
2026                          Attribute_Name => Name_Range_Length),
2027
2028                      Right_Opnd =>
2029                        Make_Integer_Literal (Loc, Component_Size (Rtyp))),
2030
2031                    Make_Byte_Aligned_Attribute_Reference (Loc,
2032                      Prefix         => New_Occurrence_Of (Result_Ent, Loc),
2033                      Attribute_Name => Name_Address)))));
2034
2035            Rewrite (N, New_Occurrence_Of (Result_Ent, Loc));
2036         end;
2037      end if;
2038
2039      Analyze_And_Resolve (N, Typ, Suppress => All_Checks);
2040   end Expand_Packed_Not;
2041
2042   -----------------------------
2043   -- Get_Base_And_Bit_Offset --
2044   -----------------------------
2045
2046   procedure Get_Base_And_Bit_Offset
2047     (N      : Node_Id;
2048      Base   : out Node_Id;
2049      Offset : out Node_Id)
2050   is
2051      Loc    : Source_Ptr;
2052      Term   : Node_Id;
2053      Atyp   : Entity_Id;
2054      Subscr : Node_Id;
2055
2056   begin
2057      Base   := N;
2058      Offset := Empty;
2059
2060      --  We build up an expression serially that has the form
2061
2062      --    linear-subscript * component_size       for each array reference
2063      --      +  field'Bit_Position                 for each record field
2064      --      +  ...
2065
2066      loop
2067         Loc := Sloc (Base);
2068
2069         if Nkind (Base) = N_Indexed_Component then
2070            Convert_To_Actual_Subtype (Prefix (Base));
2071            Atyp := Etype (Prefix (Base));
2072            Compute_Linear_Subscript (Atyp, Base, Subscr);
2073
2074            Term :=
2075              Make_Op_Multiply (Loc,
2076                Left_Opnd => Subscr,
2077                Right_Opnd =>
2078                 Make_Attribute_Reference (Loc,
2079                   Prefix         => New_Occurrence_Of (Atyp, Loc),
2080                   Attribute_Name => Name_Component_Size));
2081
2082         elsif Nkind (Base) = N_Selected_Component then
2083            Term :=
2084              Make_Attribute_Reference (Loc,
2085                Prefix         => Selector_Name (Base),
2086                Attribute_Name => Name_Bit_Position);
2087
2088         else
2089            return;
2090         end if;
2091
2092         if No (Offset) then
2093            Offset := Term;
2094
2095         else
2096            Offset :=
2097              Make_Op_Add (Loc,
2098                Left_Opnd  => Offset,
2099                Right_Opnd => Term);
2100         end if;
2101
2102         Base := Prefix (Base);
2103      end loop;
2104   end Get_Base_And_Bit_Offset;
2105
2106   -------------------------------------
2107   -- Involves_Packed_Array_Reference --
2108   -------------------------------------
2109
2110   function Involves_Packed_Array_Reference (N : Node_Id) return Boolean is
2111   begin
2112      if Nkind (N) = N_Indexed_Component
2113        and then Is_Bit_Packed_Array (Etype (Prefix (N)))
2114      then
2115         return True;
2116
2117      elsif Nkind (N) = N_Selected_Component then
2118         return Involves_Packed_Array_Reference (Prefix (N));
2119
2120      else
2121         return False;
2122      end if;
2123   end Involves_Packed_Array_Reference;
2124
2125   --------------------------
2126   -- Known_Aligned_Enough --
2127   --------------------------
2128
2129   function Known_Aligned_Enough (Obj : Node_Id; Csiz : Nat) return Boolean is
2130      Typ : constant Entity_Id := Etype (Obj);
2131
2132      function In_Partially_Packed_Record (Comp : Entity_Id) return Boolean;
2133      --  If the component is in a record that contains previous packed
2134      --  components, consider it unaligned because the back-end might
2135      --  choose to pack the rest of the record. Lead to less efficient code,
2136      --  but safer vis-a-vis of back-end choices.
2137
2138      --------------------------------
2139      -- In_Partially_Packed_Record --
2140      --------------------------------
2141
2142      function In_Partially_Packed_Record (Comp : Entity_Id) return Boolean is
2143         Rec_Type  : constant Entity_Id := Scope (Comp);
2144         Prev_Comp : Entity_Id;
2145
2146      begin
2147         Prev_Comp := First_Entity (Rec_Type);
2148         while Present (Prev_Comp) loop
2149            if Is_Packed (Etype (Prev_Comp)) then
2150               return True;
2151
2152            elsif Prev_Comp = Comp then
2153               return False;
2154            end if;
2155
2156            Next_Entity (Prev_Comp);
2157         end loop;
2158
2159         return False;
2160      end  In_Partially_Packed_Record;
2161
2162   --  Start of processing for Known_Aligned_Enough
2163
2164   begin
2165      --  Odd bit sizes don't need alignment anyway
2166
2167      if Csiz mod 2 = 1 then
2168         return True;
2169
2170      --  If we have a specified alignment, see if it is sufficient, if not
2171      --  then we can't possibly be aligned enough in any case.
2172
2173      elsif Known_Alignment (Etype (Obj)) then
2174         --  Alignment required is 4 if size is a multiple of 4, and
2175         --  2 otherwise (e.g. 12 bits requires 4, 10 bits requires 2)
2176
2177         if Alignment (Etype (Obj)) < 4 - (Csiz mod 4) then
2178            return False;
2179         end if;
2180      end if;
2181
2182      --  OK, alignment should be sufficient, if object is aligned
2183
2184      --  If object is strictly aligned, then it is definitely aligned
2185
2186      if Strict_Alignment (Typ) then
2187         return True;
2188
2189      --  Case of subscripted array reference
2190
2191      elsif Nkind (Obj) = N_Indexed_Component then
2192
2193         --  If we have a pointer to an array, then this is definitely
2194         --  aligned, because pointers always point to aligned versions.
2195
2196         if Is_Access_Type (Etype (Prefix (Obj))) then
2197            return True;
2198
2199         --  Otherwise, go look at the prefix
2200
2201         else
2202            return Known_Aligned_Enough (Prefix (Obj), Csiz);
2203         end if;
2204
2205      --  Case of record field
2206
2207      elsif Nkind (Obj) = N_Selected_Component then
2208
2209         --  What is significant here is whether the record type is packed
2210
2211         if Is_Record_Type (Etype (Prefix (Obj)))
2212           and then Is_Packed (Etype (Prefix (Obj)))
2213         then
2214            return False;
2215
2216         --  Or the component has a component clause which might cause
2217         --  the component to become unaligned (we can't tell if the
2218         --  backend is doing alignment computations).
2219
2220         elsif Present (Component_Clause (Entity (Selector_Name (Obj)))) then
2221            return False;
2222
2223         elsif In_Partially_Packed_Record (Entity (Selector_Name (Obj))) then
2224            return False;
2225
2226         --  In all other cases, go look at prefix
2227
2228         else
2229            return Known_Aligned_Enough (Prefix (Obj), Csiz);
2230         end if;
2231
2232      elsif Nkind (Obj) = N_Type_Conversion then
2233         return Known_Aligned_Enough (Expression (Obj), Csiz);
2234
2235      --  For a formal parameter, it is safer to assume that it is not
2236      --  aligned, because the formal may be unconstrained while the actual
2237      --  is constrained. In this situation, a small constrained packed
2238      --  array, represented in modular form, may be unaligned.
2239
2240      elsif Is_Entity_Name (Obj) then
2241         return not Is_Formal (Entity (Obj));
2242      else
2243
2244      --  If none of the above, must be aligned
2245         return True;
2246      end if;
2247   end Known_Aligned_Enough;
2248
2249   ---------------------
2250   -- Make_Shift_Left --
2251   ---------------------
2252
2253   function Make_Shift_Left (N : Node_Id; S : Node_Id) return Node_Id is
2254      Nod : Node_Id;
2255
2256   begin
2257      if Compile_Time_Known_Value (S) and then Expr_Value (S) = 0 then
2258         return N;
2259      else
2260         Nod :=
2261           Make_Op_Shift_Left (Sloc (N),
2262             Left_Opnd  => N,
2263             Right_Opnd => S);
2264         Set_Shift_Count_OK (Nod, True);
2265         return Nod;
2266      end if;
2267   end Make_Shift_Left;
2268
2269   ----------------------
2270   -- Make_Shift_Right --
2271   ----------------------
2272
2273   function Make_Shift_Right (N : Node_Id; S : Node_Id) return Node_Id is
2274      Nod : Node_Id;
2275
2276   begin
2277      if Compile_Time_Known_Value (S) and then Expr_Value (S) = 0 then
2278         return N;
2279      else
2280         Nod :=
2281           Make_Op_Shift_Right (Sloc (N),
2282             Left_Opnd  => N,
2283             Right_Opnd => S);
2284         Set_Shift_Count_OK (Nod, True);
2285         return Nod;
2286      end if;
2287   end Make_Shift_Right;
2288
2289   -----------------------------
2290   -- RJ_Unchecked_Convert_To --
2291   -----------------------------
2292
2293   function RJ_Unchecked_Convert_To
2294     (Typ  : Entity_Id;
2295      Expr : Node_Id) return Node_Id
2296   is
2297      Source_Typ : constant Entity_Id := Etype (Expr);
2298      Target_Typ : constant Entity_Id := Typ;
2299
2300      Src : Node_Id := Expr;
2301
2302      Source_Siz : Nat;
2303      Target_Siz : Nat;
2304
2305   begin
2306      Source_Siz := UI_To_Int (RM_Size (Source_Typ));
2307      Target_Siz := UI_To_Int (RM_Size (Target_Typ));
2308
2309      --  For a little-endian target type stored byte-swapped on a
2310      --  big-endian machine, do not mask to Target_Siz bits.
2311
2312      if Bytes_Big_Endian
2313           and then (Is_Record_Type (Target_Typ)
2314                       or else
2315                     Is_Array_Type (Target_Typ))
2316           and then Reverse_Storage_Order (Target_Typ)
2317      then
2318         Source_Siz := Target_Siz;
2319      end if;
2320
2321      --  First step, if the source type is not a discrete type, then we first
2322      --  convert to a modular type of the source length, since otherwise, on
2323      --  a big-endian machine, we get left-justification. We do it for little-
2324      --  endian machines as well, because there might be junk bits that are
2325      --  not cleared if the type is not numeric.
2326
2327      if Source_Siz /= Target_Siz
2328        and then not Is_Discrete_Type (Source_Typ)
2329      then
2330         Src := Unchecked_Convert_To (RTE (Bits_Id (Source_Siz)), Src);
2331      end if;
2332
2333      --  In the big endian case, if the lengths of the two types differ, then
2334      --  we must worry about possible left justification in the conversion,
2335      --  and avoiding that is what this is all about.
2336
2337      if Bytes_Big_Endian and then Source_Siz /= Target_Siz then
2338
2339         --  Next step. If the target is not a discrete type, then we first
2340         --  convert to a modular type of the target length, since otherwise,
2341         --  on a big-endian machine, we get left-justification.
2342
2343         if not Is_Discrete_Type (Target_Typ) then
2344            Src := Unchecked_Convert_To (RTE (Bits_Id (Target_Siz)), Src);
2345         end if;
2346      end if;
2347
2348      --  And now we can do the final conversion to the target type
2349
2350      return Unchecked_Convert_To (Target_Typ, Src);
2351   end RJ_Unchecked_Convert_To;
2352
2353   ----------------------------------------------
2354   -- Setup_Enumeration_Packed_Array_Reference --
2355   ----------------------------------------------
2356
2357   --  All we have to do here is to find the subscripts that correspond to the
2358   --  index positions that have non-standard enumeration types and insert a
2359   --  Pos attribute to get the proper subscript value.
2360
2361   --  Finally the prefix must be uncheck-converted to the corresponding packed
2362   --  array type.
2363
2364   --  Note that the component type is unchanged, so we do not need to fiddle
2365   --  with the types (Gigi always automatically takes the packed array type if
2366   --  it is set, as it will be in this case).
2367
2368   procedure Setup_Enumeration_Packed_Array_Reference (N : Node_Id) is
2369      Pfx   : constant Node_Id   := Prefix (N);
2370      Typ   : constant Entity_Id := Etype (N);
2371      Exprs : constant List_Id   := Expressions (N);
2372      Expr  : Node_Id;
2373
2374   begin
2375      --  If the array is unconstrained, then we replace the array reference
2376      --  with its actual subtype. This actual subtype will have a packed array
2377      --  type with appropriate bounds.
2378
2379      if not Is_Constrained (Packed_Array_Impl_Type (Etype (Pfx))) then
2380         Convert_To_Actual_Subtype (Pfx);
2381      end if;
2382
2383      Expr := First (Exprs);
2384      while Present (Expr) loop
2385         declare
2386            Loc      : constant Source_Ptr := Sloc (Expr);
2387            Expr_Typ : constant Entity_Id := Etype (Expr);
2388
2389         begin
2390            if Is_Enumeration_Type (Expr_Typ)
2391              and then Has_Non_Standard_Rep (Expr_Typ)
2392            then
2393               Rewrite (Expr,
2394                 Make_Attribute_Reference (Loc,
2395                   Prefix         => New_Occurrence_Of (Expr_Typ, Loc),
2396                   Attribute_Name => Name_Pos,
2397                   Expressions    => New_List (Relocate_Node (Expr))));
2398               Analyze_And_Resolve (Expr, Standard_Natural);
2399            end if;
2400         end;
2401
2402         Next (Expr);
2403      end loop;
2404
2405      Rewrite (N,
2406        Make_Indexed_Component (Sloc (N),
2407          Prefix      =>
2408            Unchecked_Convert_To (Packed_Array_Impl_Type (Etype (Pfx)), Pfx),
2409          Expressions => Exprs));
2410
2411      Analyze_And_Resolve (N, Typ);
2412   end Setup_Enumeration_Packed_Array_Reference;
2413
2414   -----------------------------------------
2415   -- Setup_Inline_Packed_Array_Reference --
2416   -----------------------------------------
2417
2418   procedure Setup_Inline_Packed_Array_Reference
2419     (N      : Node_Id;
2420      Atyp   : Entity_Id;
2421      Obj    : in out Node_Id;
2422      Cmask  : out Uint;
2423      Shift  : out Node_Id)
2424   is
2425      Loc  : constant Source_Ptr := Sloc (N);
2426      PAT  : Entity_Id;
2427      Otyp : Entity_Id;
2428      Csiz : Uint;
2429      Osiz : Uint;
2430
2431   begin
2432      Csiz := Component_Size (Atyp);
2433
2434      Convert_To_PAT_Type (Obj);
2435      PAT := Etype (Obj);
2436
2437      Cmask := 2 ** Csiz - 1;
2438
2439      if Is_Array_Type (PAT) then
2440         Otyp := Component_Type (PAT);
2441         Osiz := Component_Size (PAT);
2442
2443      else
2444         Otyp := PAT;
2445
2446         --  In the case where the PAT is a modular type, we want the actual
2447         --  size in bits of the modular value we use. This is neither the
2448         --  Object_Size nor the Value_Size, either of which may have been
2449         --  reset to strange values, but rather the minimum size. Note that
2450         --  since this is a modular type with full range, the issue of
2451         --  biased representation does not arise.
2452
2453         Osiz := UI_From_Int (Minimum_Size (Otyp));
2454      end if;
2455
2456      Compute_Linear_Subscript (Atyp, N, Shift);
2457
2458      --  If the component size is not 1, then the subscript must be multiplied
2459      --  by the component size to get the shift count.
2460
2461      if Csiz /= 1 then
2462         Shift :=
2463           Make_Op_Multiply (Loc,
2464             Left_Opnd  => Make_Integer_Literal (Loc, Csiz),
2465             Right_Opnd => Shift);
2466      end if;
2467
2468      --  If we have the array case, then this shift count must be broken down
2469      --  into a byte subscript, and a shift within the byte.
2470
2471      if Is_Array_Type (PAT) then
2472
2473         declare
2474            New_Shift : Node_Id;
2475
2476         begin
2477            --  We must analyze shift, since we will duplicate it
2478
2479            Set_Parent (Shift, N);
2480            Analyze_And_Resolve
2481              (Shift, Standard_Integer, Suppress => All_Checks);
2482
2483            --  The shift count within the word is
2484            --    shift mod Osiz
2485
2486            New_Shift :=
2487              Make_Op_Mod (Loc,
2488                Left_Opnd  => Duplicate_Subexpr (Shift),
2489                Right_Opnd => Make_Integer_Literal (Loc, Osiz));
2490
2491            --  The subscript to be used on the PAT array is
2492            --    shift / Osiz
2493
2494            Obj :=
2495              Make_Indexed_Component (Loc,
2496                Prefix => Obj,
2497                Expressions => New_List (
2498                  Make_Op_Divide (Loc,
2499                    Left_Opnd  => Duplicate_Subexpr (Shift),
2500                    Right_Opnd => Make_Integer_Literal (Loc, Osiz))));
2501
2502            Shift := New_Shift;
2503         end;
2504
2505      --  For the modular integer case, the object to be manipulated is the
2506      --  entire array, so Obj is unchanged. Note that we will reset its type
2507      --  to PAT before returning to the caller.
2508
2509      else
2510         null;
2511      end if;
2512
2513      --  The one remaining step is to modify the shift count for the
2514      --  big-endian case. Consider the following example in a byte:
2515
2516      --     xxxxxxxx  bits of byte
2517      --     vvvvvvvv  bits of value
2518      --     33221100  little-endian numbering
2519      --     00112233  big-endian numbering
2520
2521      --  Here we have the case of 2-bit fields
2522
2523      --  For the little-endian case, we already have the proper shift count
2524      --  set, e.g. for element 2, the shift count is 2*2 = 4.
2525
2526      --  For the big endian case, we have to adjust the shift count, computing
2527      --  it as (N - F) - Shift, where N is the number of bits in an element of
2528      --  the array used to implement the packed array, F is the number of bits
2529      --  in a source array element, and Shift is the count so far computed.
2530
2531      --  We also have to adjust if the storage order is reversed
2532
2533      if Bytes_Big_Endian xor Reverse_Storage_Order (Base_Type (Atyp)) then
2534         Shift :=
2535           Make_Op_Subtract (Loc,
2536             Left_Opnd  => Make_Integer_Literal (Loc, Osiz - Csiz),
2537             Right_Opnd => Shift);
2538      end if;
2539
2540      Set_Parent (Shift, N);
2541      Set_Parent (Obj, N);
2542      Analyze_And_Resolve (Obj,   Otyp,             Suppress => All_Checks);
2543      Analyze_And_Resolve (Shift, Standard_Integer, Suppress => All_Checks);
2544
2545      --  Make sure final type of object is the appropriate packed type
2546
2547      Set_Etype (Obj, Otyp);
2548
2549   end Setup_Inline_Packed_Array_Reference;
2550
2551end Exp_Pakd;
2552