1------------------------------------------------------------------------------
2--                                                                          --
3--                         GNAT COMPILER COMPONENTS                         --
4--                                                                          --
5--                               I N L I N E                                --
6--                                                                          --
7--                                 B o d y                                  --
8--                                                                          --
9--          Copyright (C) 1992-2015, Free Software Foundation, Inc.         --
10--                                                                          --
11-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12-- terms of the  GNU General Public License as published  by the Free Soft- --
13-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
17-- for  more details.  You should have  received  a copy of the GNU General --
18-- Public License  distributed with GNAT; see file COPYING3.  If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license.          --
20--                                                                          --
21-- GNAT was originally developed  by the GNAT team at  New York University. --
22-- Extensive contributions were provided by Ada Core Technologies Inc.      --
23--                                                                          --
24------------------------------------------------------------------------------
25
26with Aspects;  use Aspects;
27with Atree;    use Atree;
28with Debug;    use Debug;
29with Einfo;    use Einfo;
30with Elists;   use Elists;
31with Errout;   use Errout;
32with Expander; use Expander;
33with Exp_Ch6;  use Exp_Ch6;
34with Exp_Ch7;  use Exp_Ch7;
35with Exp_Tss;  use Exp_Tss;
36with Exp_Util; use Exp_Util;
37with Fname;    use Fname;
38with Fname.UF; use Fname.UF;
39with Lib;      use Lib;
40with Namet;    use Namet;
41with Nmake;    use Nmake;
42with Nlists;   use Nlists;
43with Output;   use Output;
44with Sem_Aux;  use Sem_Aux;
45with Sem_Ch8;  use Sem_Ch8;
46with Sem_Ch10; use Sem_Ch10;
47with Sem_Ch12; use Sem_Ch12;
48with Sem_Prag; use Sem_Prag;
49with Sem_Util; use Sem_Util;
50with Sinfo;    use Sinfo;
51with Sinput;   use Sinput;
52with Snames;   use Snames;
53with Stand;    use Stand;
54with Uname;    use Uname;
55with Tbuild;   use Tbuild;
56
57package body Inline is
58
59   Check_Inlining_Restrictions : constant Boolean := True;
60   --  In the following cases the frontend rejects inlining because they
61   --  are not handled well by the backend. This variable facilitates
62   --  disabling these restrictions to evaluate future versions of the
63   --  GCC backend in which some of the restrictions may be supported.
64   --
65   --   - subprograms that have:
66   --      - nested subprograms
67   --      - instantiations
68   --      - package declarations
69   --      - task or protected object declarations
70   --      - some of the following statements:
71   --          - abort
72   --          - asynchronous-select
73   --          - conditional-entry-call
74   --          - delay-relative
75   --          - delay-until
76   --          - selective-accept
77   --          - timed-entry-call
78
79   Inlined_Calls : Elist_Id;
80   --  List of frontend inlined calls
81
82   Backend_Calls : Elist_Id;
83   --  List of inline calls passed to the backend
84
85   Backend_Inlined_Subps : Elist_Id;
86   --  List of subprograms inlined by the backend
87
88   Backend_Not_Inlined_Subps : Elist_Id;
89   --  List of subprograms that cannot be inlined by the backend
90
91   --------------------
92   -- Inlined Bodies --
93   --------------------
94
95   --  Inlined functions are actually placed in line by the backend if the
96   --  corresponding bodies are available (i.e. compiled). Whenever we find
97   --  a call to an inlined subprogram, we add the name of the enclosing
98   --  compilation unit to a worklist. After all compilation, and after
99   --  expansion of generic bodies, we traverse the list of pending bodies
100   --  and compile them as well.
101
102   package Inlined_Bodies is new Table.Table (
103     Table_Component_Type => Entity_Id,
104     Table_Index_Type     => Int,
105     Table_Low_Bound      => 0,
106     Table_Initial        => Alloc.Inlined_Bodies_Initial,
107     Table_Increment      => Alloc.Inlined_Bodies_Increment,
108     Table_Name           => "Inlined_Bodies");
109
110   -----------------------
111   -- Inline Processing --
112   -----------------------
113
114   --  For each call to an inlined subprogram, we make entries in a table
115   --  that stores caller and callee, and indicates the call direction from
116   --  one to the other. We also record the compilation unit that contains
117   --  the callee. After analyzing the bodies of all such compilation units,
118   --  we compute the transitive closure of inlined subprograms called from
119   --  the main compilation unit and make it available to the code generator
120   --  in no particular order, thus allowing cycles in the call graph.
121
122   Last_Inlined : Entity_Id := Empty;
123
124   --  For each entry in the table we keep a list of successors in topological
125   --  order, i.e. callers of the current subprogram.
126
127   type Subp_Index is new Nat;
128   No_Subp : constant Subp_Index := 0;
129
130   --  The subprogram entities are hashed into the Inlined table
131
132   Num_Hash_Headers : constant := 512;
133
134   Hash_Headers : array (Subp_Index range 0 .. Num_Hash_Headers - 1)
135                                                          of Subp_Index;
136
137   type Succ_Index is new Nat;
138   No_Succ : constant Succ_Index := 0;
139
140   type Succ_Info is record
141      Subp : Subp_Index;
142      Next : Succ_Index;
143   end record;
144
145   --  The following table stores list elements for the successor lists. These
146   --  lists cannot be chained directly through entries in the Inlined table,
147   --  because a given subprogram can appear in several such lists.
148
149   package Successors is new Table.Table (
150      Table_Component_Type => Succ_Info,
151      Table_Index_Type     => Succ_Index,
152      Table_Low_Bound      => 1,
153      Table_Initial        => Alloc.Successors_Initial,
154      Table_Increment      => Alloc.Successors_Increment,
155      Table_Name           => "Successors");
156
157   type Subp_Info is record
158      Name        : Entity_Id  := Empty;
159      Next        : Subp_Index := No_Subp;
160      First_Succ  : Succ_Index := No_Succ;
161      Main_Call   : Boolean    := False;
162      Processed   : Boolean    := False;
163   end record;
164
165   package Inlined is new Table.Table (
166      Table_Component_Type => Subp_Info,
167      Table_Index_Type     => Subp_Index,
168      Table_Low_Bound      => 1,
169      Table_Initial        => Alloc.Inlined_Initial,
170      Table_Increment      => Alloc.Inlined_Increment,
171      Table_Name           => "Inlined");
172
173   -----------------------
174   -- Local Subprograms --
175   -----------------------
176
177   procedure Add_Call (Called : Entity_Id; Caller : Entity_Id := Empty);
178   --  Make two entries in Inlined table, for an inlined subprogram being
179   --  called, and for the inlined subprogram that contains the call. If
180   --  the call is in the main compilation unit, Caller is Empty.
181
182   procedure Add_Inlined_Subprogram (E : Entity_Id);
183   --  Add subprogram E to the list of inlined subprogram for the unit
184
185   function Add_Subp (E : Entity_Id) return Subp_Index;
186   --  Make entry in Inlined table for subprogram E, or return table index
187   --  that already holds E.
188
189   function Get_Code_Unit_Entity (E : Entity_Id) return Entity_Id;
190   pragma Inline (Get_Code_Unit_Entity);
191   --  Return the entity node for the unit containing E. Always return the spec
192   --  for a package.
193
194   function Has_Initialized_Type (E : Entity_Id) return Boolean;
195   --  If a candidate for inlining contains type declarations for types with
196   --  nontrivial initialization procedures, they are not worth inlining.
197
198   function Has_Single_Return (N : Node_Id) return Boolean;
199   --  In general we cannot inline functions that return unconstrained type.
200   --  However, we can handle such functions if all return statements return a
201   --  local variable that is the only declaration in the body of the function.
202   --  In that case the call can be replaced by that local variable as is done
203   --  for other inlined calls.
204
205   function In_Main_Unit_Or_Subunit (E : Entity_Id) return Boolean;
206   --  Return True if E is in the main unit or its spec or in a subunit
207
208   function Is_Nested (E : Entity_Id) return Boolean;
209   --  If the function is nested inside some other function, it will always
210   --  be compiled if that function is, so don't add it to the inline list.
211   --  We cannot compile a nested function outside the scope of the containing
212   --  function anyway. This is also the case if the function is defined in a
213   --  task body or within an entry (for example, an initialization procedure).
214
215   procedure Remove_Aspects_And_Pragmas (Body_Decl : Node_Id);
216   --  Remove all aspects and/or pragmas that have no meaning in inlined body
217   --  Body_Decl. The analysis of these items is performed on the non-inlined
218   --  body. The items currently removed are:
219   --    Contract_Cases
220   --    Global
221   --    Depends
222   --    Postcondition
223   --    Precondition
224   --    Refined_Global
225   --    Refined_Depends
226   --    Refined_Post
227   --    Test_Case
228   --    Unmodified
229   --    Unreferenced
230
231   ------------------------------
232   -- Deferred Cleanup Actions --
233   ------------------------------
234
235   --  The cleanup actions for scopes that contain instantiations is delayed
236   --  until after expansion of those instantiations, because they may contain
237   --  finalizable objects or tasks that affect the cleanup code. A scope
238   --  that contains instantiations only needs to be finalized once, even
239   --  if it contains more than one instance. We keep a list of scopes
240   --  that must still be finalized, and call cleanup_actions after all
241   --  the instantiations have been completed.
242
243   To_Clean : Elist_Id;
244
245   procedure Add_Scope_To_Clean (Inst : Entity_Id);
246   --  Build set of scopes on which cleanup actions must be performed
247
248   procedure Cleanup_Scopes;
249   --  Complete cleanup actions on scopes that need it
250
251   --------------
252   -- Add_Call --
253   --------------
254
255   procedure Add_Call (Called : Entity_Id; Caller : Entity_Id := Empty) is
256      P1 : constant Subp_Index := Add_Subp (Called);
257      P2 : Subp_Index;
258      J  : Succ_Index;
259
260   begin
261      if Present (Caller) then
262         P2 := Add_Subp (Caller);
263
264         --  Add P1 to the list of successors of P2, if not already there.
265         --  Note that P2 may contain more than one call to P1, and only
266         --  one needs to be recorded.
267
268         J := Inlined.Table (P2).First_Succ;
269         while J /= No_Succ loop
270            if Successors.Table (J).Subp = P1 then
271               return;
272            end if;
273
274            J := Successors.Table (J).Next;
275         end loop;
276
277         --  On exit, make a successor entry for P1
278
279         Successors.Increment_Last;
280         Successors.Table (Successors.Last).Subp := P1;
281         Successors.Table (Successors.Last).Next :=
282                             Inlined.Table (P2).First_Succ;
283         Inlined.Table (P2).First_Succ := Successors.Last;
284      else
285         Inlined.Table (P1).Main_Call := True;
286      end if;
287   end Add_Call;
288
289   ----------------------
290   -- Add_Inlined_Body --
291   ----------------------
292
293   procedure Add_Inlined_Body (E : Entity_Id; N : Node_Id) is
294
295      type Inline_Level_Type is (Dont_Inline, Inline_Call, Inline_Package);
296      --  Level of inlining for the call: Dont_Inline means no inlining,
297      --  Inline_Call means that only the call is considered for inlining,
298      --  Inline_Package means that the call is considered for inlining and
299      --  its package compiled and scanned for more inlining opportunities.
300
301      function Must_Inline return Inline_Level_Type;
302      --  Inlining is only done if the call statement N is in the main unit,
303      --  or within the body of another inlined subprogram.
304
305      -----------------
306      -- Must_Inline --
307      -----------------
308
309      function Must_Inline return Inline_Level_Type is
310         Scop : Entity_Id;
311         Comp : Node_Id;
312
313      begin
314         --  Check if call is in main unit
315
316         Scop := Current_Scope;
317
318         --  Do not try to inline if scope is standard. This could happen, for
319         --  example, for a call to Add_Global_Declaration, and it causes
320         --  trouble to try to inline at this level.
321
322         if Scop = Standard_Standard then
323            return Dont_Inline;
324         end if;
325
326         --  Otherwise lookup scope stack to outer scope
327
328         while Scope (Scop) /= Standard_Standard
329           and then not Is_Child_Unit (Scop)
330         loop
331            Scop := Scope (Scop);
332         end loop;
333
334         Comp := Parent (Scop);
335         while Nkind (Comp) /= N_Compilation_Unit loop
336            Comp := Parent (Comp);
337         end loop;
338
339         --  If the call is in the main unit, inline the call and compile the
340         --  package of the subprogram to find more calls to be inlined.
341
342         if Comp = Cunit (Main_Unit)
343           or else Comp = Library_Unit (Cunit (Main_Unit))
344         then
345            Add_Call (E);
346            return Inline_Package;
347         end if;
348
349         --  The call is not in the main unit. See if it is in some subprogram
350         --  that can be inlined outside its unit. If so, inline the call and,
351         --  if the inlining level is set to 1, stop there; otherwise also
352         --  compile the package as above.
353
354         Scop := Current_Scope;
355         while Scope (Scop) /= Standard_Standard
356           and then not Is_Child_Unit (Scop)
357         loop
358            if Is_Overloadable (Scop)
359              and then Is_Inlined (Scop)
360              and then not Is_Nested (Scop)
361            then
362               Add_Call (E, Scop);
363
364               if Inline_Level = 1 then
365                  return Inline_Call;
366               else
367                  return Inline_Package;
368               end if;
369            end if;
370
371            Scop := Scope (Scop);
372         end loop;
373
374         return Dont_Inline;
375      end Must_Inline;
376
377      Level : Inline_Level_Type;
378
379   --  Start of processing for Add_Inlined_Body
380
381   begin
382      Append_New_Elmt (N, To => Backend_Calls);
383
384      --  Skip subprograms that cannot be inlined outside their unit
385
386      if Is_Abstract_Subprogram (E)
387        or else Convention (E) = Convention_Protected
388        or else Is_Nested (E)
389      then
390         return;
391      end if;
392
393      --  Find unit containing E, and add to list of inlined bodies if needed.
394      --  If the body is already present, no need to load any other unit. This
395      --  is the case for an initialization procedure, which appears in the
396      --  package declaration that contains the type. It is also the case if
397      --  the body has already been analyzed. Finally, if the unit enclosing
398      --  E is an instance, the instance body will be analyzed in any case,
399      --  and there is no need to add the enclosing unit (whose body might not
400      --  be available).
401
402      --  Library-level functions must be handled specially, because there is
403      --  no enclosing package to retrieve. In this case, it is the body of
404      --  the function that will have to be loaded.
405
406      Level := Must_Inline;
407
408      if Level /= Dont_Inline then
409         declare
410            Pack : constant Entity_Id := Get_Code_Unit_Entity (E);
411
412         begin
413            --  Ensure that Analyze_Inlined_Bodies will be invoked after
414            --  completing the analysis of the current unit.
415
416            Inline_Processing_Required := True;
417
418            if Pack = E then
419
420               --  Library-level inlined function. Add function itself to
421               --  list of needed units.
422
423               Set_Is_Called (E);
424               Inlined_Bodies.Increment_Last;
425               Inlined_Bodies.Table (Inlined_Bodies.Last) := E;
426
427            elsif Ekind (Pack) = E_Package then
428               Set_Is_Called (E);
429
430               if Is_Generic_Instance (Pack) then
431                  null;
432
433               --  Do not inline the package if the subprogram is an init proc
434               --  or other internally generated subprogram, because in that
435               --  case the subprogram body appears in the same unit that
436               --  declares the type, and that body is visible to the back end.
437               --  Do not inline it either if it is in the main unit.
438
439               elsif Level = Inline_Package
440                 and then not Is_Inlined (Pack)
441                 and then not Is_Internal (E)
442                 and then not In_Main_Unit_Or_Subunit (Pack)
443               then
444                  Set_Is_Inlined (Pack);
445                  Inlined_Bodies.Increment_Last;
446                  Inlined_Bodies.Table (Inlined_Bodies.Last) := Pack;
447
448               --  Extend the -gnatn2 processing to -gnatn1 for Inline_Always
449               --  calls if the back-end takes care of inlining the call.
450
451               elsif Level = Inline_Call
452                 and then Has_Pragma_Inline_Always (E)
453                 and then Back_End_Inlining
454               then
455                  Set_Is_Inlined (Pack);
456                  Inlined_Bodies.Increment_Last;
457                  Inlined_Bodies.Table (Inlined_Bodies.Last) := Pack;
458               end if;
459            end if;
460
461            --  If the call was generated by the compiler and is to a function
462            --  in a run-time unit, we need to suppress debugging information
463            --  for it, so that the code that is eventually inlined will not
464            --  affect debugging of the program. We do not do it if the call
465            --  comes from source because, even if the call is inlined, the
466            --  user may expect it to be present in the debugging information.
467
468            if not Comes_From_Source (N)
469               and then In_Extended_Main_Source_Unit (N)
470               and then
471                 Is_Predefined_File_Name (Unit_File_Name (Get_Source_Unit (E)))
472            then
473               Set_Needs_Debug_Info (E, False);
474            end if;
475         end;
476      end if;
477   end Add_Inlined_Body;
478
479   ----------------------------
480   -- Add_Inlined_Subprogram --
481   ----------------------------
482
483   procedure Add_Inlined_Subprogram (E : Entity_Id) is
484      Decl : constant Node_Id   := Parent (Declaration_Node (E));
485      Pack : constant Entity_Id := Get_Code_Unit_Entity (E);
486
487      procedure Register_Backend_Inlined_Subprogram (Subp : Entity_Id);
488      --  Append Subp to the list of subprograms inlined by the backend
489
490      procedure Register_Backend_Not_Inlined_Subprogram (Subp : Entity_Id);
491      --  Append Subp to the list of subprograms that cannot be inlined by
492      --  the backend.
493
494      -----------------------------------------
495      -- Register_Backend_Inlined_Subprogram --
496      -----------------------------------------
497
498      procedure Register_Backend_Inlined_Subprogram (Subp : Entity_Id) is
499      begin
500         Append_New_Elmt (Subp, To => Backend_Inlined_Subps);
501      end Register_Backend_Inlined_Subprogram;
502
503      ---------------------------------------------
504      -- Register_Backend_Not_Inlined_Subprogram --
505      ---------------------------------------------
506
507      procedure Register_Backend_Not_Inlined_Subprogram (Subp : Entity_Id) is
508      begin
509         Append_New_Elmt (Subp, To => Backend_Not_Inlined_Subps);
510      end Register_Backend_Not_Inlined_Subprogram;
511
512   --  Start of processing for Add_Inlined_Subprogram
513
514   begin
515      --  If the subprogram is to be inlined, and if its unit is known to be
516      --  inlined or is an instance whose body will be analyzed anyway or the
517      --  subprogram was generated as a body by the compiler (for example an
518      --  initialization procedure) or its declaration was provided along with
519      --  the body (for example an expression function), and if it is declared
520      --  at the library level not in the main unit, and if it can be inlined
521      --  by the back-end, then insert it in the list of inlined subprograms.
522
523      if Is_Inlined (E)
524        and then (Is_Inlined (Pack)
525                   or else Is_Generic_Instance (Pack)
526                   or else Nkind (Decl) = N_Subprogram_Body
527                   or else Present (Corresponding_Body (Decl)))
528        and then not In_Main_Unit_Or_Subunit (E)
529        and then not Is_Nested (E)
530        and then not Has_Initialized_Type (E)
531      then
532         Register_Backend_Inlined_Subprogram (E);
533
534         if No (Last_Inlined) then
535            Set_First_Inlined_Subprogram (Cunit (Main_Unit), E);
536         else
537            Set_Next_Inlined_Subprogram (Last_Inlined, E);
538         end if;
539
540         Last_Inlined := E;
541
542      else
543         Register_Backend_Not_Inlined_Subprogram (E);
544      end if;
545   end Add_Inlined_Subprogram;
546
547   ------------------------
548   -- Add_Scope_To_Clean --
549   ------------------------
550
551   procedure Add_Scope_To_Clean (Inst : Entity_Id) is
552      Scop : constant Entity_Id := Enclosing_Dynamic_Scope (Inst);
553      Elmt : Elmt_Id;
554
555   begin
556      --  If the instance appears in a library-level package declaration,
557      --  all finalization is global, and nothing needs doing here.
558
559      if Scop = Standard_Standard then
560         return;
561      end if;
562
563      --  If the instance is within a generic unit, no finalization code
564      --  can be generated. Note that at this point all bodies have been
565      --  analyzed, and the scope stack itself is not present, and the flag
566      --  Inside_A_Generic is not set.
567
568      declare
569         S : Entity_Id;
570
571      begin
572         S := Scope (Inst);
573         while Present (S) and then S /= Standard_Standard loop
574            if Is_Generic_Unit (S) then
575               return;
576            end if;
577
578            S := Scope (S);
579         end loop;
580      end;
581
582      Elmt := First_Elmt (To_Clean);
583      while Present (Elmt) loop
584         if Node (Elmt) = Scop then
585            return;
586         end if;
587
588         Elmt := Next_Elmt (Elmt);
589      end loop;
590
591      Append_Elmt (Scop, To_Clean);
592   end Add_Scope_To_Clean;
593
594   --------------
595   -- Add_Subp --
596   --------------
597
598   function Add_Subp (E : Entity_Id) return Subp_Index is
599      Index : Subp_Index := Subp_Index (E) mod Num_Hash_Headers;
600      J     : Subp_Index;
601
602      procedure New_Entry;
603      --  Initialize entry in Inlined table
604
605      procedure New_Entry is
606      begin
607         Inlined.Increment_Last;
608         Inlined.Table (Inlined.Last).Name        := E;
609         Inlined.Table (Inlined.Last).Next        := No_Subp;
610         Inlined.Table (Inlined.Last).First_Succ  := No_Succ;
611         Inlined.Table (Inlined.Last).Main_Call   := False;
612         Inlined.Table (Inlined.Last).Processed   := False;
613      end New_Entry;
614
615   --  Start of processing for Add_Subp
616
617   begin
618      if Hash_Headers (Index) = No_Subp then
619         New_Entry;
620         Hash_Headers (Index) := Inlined.Last;
621         return Inlined.Last;
622
623      else
624         J := Hash_Headers (Index);
625         while J /= No_Subp loop
626            if Inlined.Table (J).Name = E then
627               return J;
628            else
629               Index := J;
630               J := Inlined.Table (J).Next;
631            end if;
632         end loop;
633
634         --  On exit, subprogram was not found. Enter in table. Index is
635         --  the current last entry on the hash chain.
636
637         New_Entry;
638         Inlined.Table (Index).Next := Inlined.Last;
639         return Inlined.Last;
640      end if;
641   end Add_Subp;
642
643   ----------------------------
644   -- Analyze_Inlined_Bodies --
645   ----------------------------
646
647   procedure Analyze_Inlined_Bodies is
648      Comp_Unit : Node_Id;
649      J         : Int;
650      Pack      : Entity_Id;
651      Subp      : Subp_Index;
652      S         : Succ_Index;
653
654      type Pending_Index is new Nat;
655
656      package Pending_Inlined is new Table.Table (
657         Table_Component_Type => Subp_Index,
658         Table_Index_Type     => Pending_Index,
659         Table_Low_Bound      => 1,
660         Table_Initial        => Alloc.Inlined_Initial,
661         Table_Increment      => Alloc.Inlined_Increment,
662         Table_Name           => "Pending_Inlined");
663      --  The workpile used to compute the transitive closure
664
665      function Is_Ancestor_Of_Main
666        (U_Name : Entity_Id;
667         Nam    : Node_Id) return Boolean;
668      --  Determine whether the unit whose body is loaded is an ancestor of
669      --  the main unit, and has a with_clause on it. The body is not
670      --  analyzed yet, so the check is purely lexical: the name of the with
671      --  clause is a selected component, and names of ancestors must match.
672
673      -------------------------
674      -- Is_Ancestor_Of_Main --
675      -------------------------
676
677      function Is_Ancestor_Of_Main
678        (U_Name : Entity_Id;
679         Nam    : Node_Id) return Boolean
680      is
681         Pref : Node_Id;
682
683      begin
684         if Nkind (Nam) /= N_Selected_Component then
685            return False;
686
687         else
688            if Chars (Selector_Name (Nam)) /=
689               Chars (Cunit_Entity (Main_Unit))
690            then
691               return False;
692            end if;
693
694            Pref := Prefix (Nam);
695            if Nkind (Pref) = N_Identifier then
696
697               --  Par is an ancestor of Par.Child.
698
699               return Chars (Pref) = Chars (U_Name);
700
701            elsif Nkind (Pref) = N_Selected_Component
702              and then Chars (Selector_Name (Pref)) = Chars (U_Name)
703            then
704               --  Par.Child is an ancestor of Par.Child.Grand.
705
706               return True;   --  should check that ancestor match
707
708            else
709               --  A is an ancestor of A.B.C if it is an ancestor of A.B
710
711               return Is_Ancestor_Of_Main (U_Name, Pref);
712            end if;
713         end if;
714      end Is_Ancestor_Of_Main;
715
716   --  Start of processing for Analyze_Inlined_Bodies
717
718   begin
719      if Serious_Errors_Detected = 0 then
720         Push_Scope (Standard_Standard);
721
722         J := 0;
723         while J <= Inlined_Bodies.Last
724           and then Serious_Errors_Detected = 0
725         loop
726            Pack := Inlined_Bodies.Table (J);
727            while Present (Pack)
728              and then Scope (Pack) /= Standard_Standard
729              and then not Is_Child_Unit (Pack)
730            loop
731               Pack := Scope (Pack);
732            end loop;
733
734            Comp_Unit := Parent (Pack);
735            while Present (Comp_Unit)
736              and then Nkind (Comp_Unit) /= N_Compilation_Unit
737            loop
738               Comp_Unit := Parent (Comp_Unit);
739            end loop;
740
741            --  Load the body, unless it is the main unit, or is an instance
742            --  whose body has already been analyzed.
743
744            if Present (Comp_Unit)
745              and then Comp_Unit /= Cunit (Main_Unit)
746              and then Body_Required (Comp_Unit)
747              and then (Nkind (Unit (Comp_Unit)) /= N_Package_Declaration
748                         or else No (Corresponding_Body (Unit (Comp_Unit))))
749            then
750               declare
751                  Bname : constant Unit_Name_Type :=
752                            Get_Body_Name (Get_Unit_Name (Unit (Comp_Unit)));
753
754                  OK : Boolean;
755
756               begin
757                  if not Is_Loaded (Bname) then
758                     Style_Check := False;
759                     Load_Needed_Body (Comp_Unit, OK, Do_Analyze => False);
760
761                     if not OK then
762
763                        --  Warn that a body was not available for inlining
764                        --  by the back-end.
765
766                        Error_Msg_Unit_1 := Bname;
767                        Error_Msg_N
768                          ("one or more inlined subprograms accessed in $!??",
769                           Comp_Unit);
770                        Error_Msg_File_1 :=
771                          Get_File_Name (Bname, Subunit => False);
772                        Error_Msg_N ("\but file{ was not found!??", Comp_Unit);
773
774                     else
775                        --  If the package to be inlined is an ancestor unit of
776                        --  the main unit, and it has a semantic dependence on
777                        --  it, the inlining cannot take place to prevent an
778                        --  elaboration circularity. The desired body is not
779                        --  analyzed yet, to prevent the completion of Taft
780                        --  amendment types that would lead to elaboration
781                        --  circularities in gigi.
782
783                        declare
784                           U_Id      : constant Entity_Id :=
785                                         Defining_Entity (Unit (Comp_Unit));
786                           Body_Unit : constant Node_Id :=
787                                         Library_Unit (Comp_Unit);
788                           Item      : Node_Id;
789
790                        begin
791                           Item := First (Context_Items (Body_Unit));
792                           while Present (Item) loop
793                              if Nkind (Item) = N_With_Clause
794                                and then
795                                  Is_Ancestor_Of_Main (U_Id, Name (Item))
796                              then
797                                 Set_Is_Inlined (U_Id, False);
798                                 exit;
799                              end if;
800
801                              Next (Item);
802                           end loop;
803
804                           --  If no suspicious with_clauses, analyze the body.
805
806                           if Is_Inlined (U_Id) then
807                              Semantics (Body_Unit);
808                           end if;
809                        end;
810                     end if;
811                  end if;
812               end;
813            end if;
814
815            J := J + 1;
816
817            if J > Inlined_Bodies.Last then
818
819               --  The analysis of required bodies may have produced additional
820               --  generic instantiations. To obtain further inlining, we need
821               --  to perform another round of generic body instantiations.
822
823               Instantiate_Bodies;
824
825               --  Symmetrically, the instantiation of required generic bodies
826               --  may have caused additional bodies to be inlined. To obtain
827               --  further inlining, we keep looping over the inlined bodies.
828            end if;
829         end loop;
830
831         --  The list of inlined subprograms is an overestimate, because it
832         --  includes inlined functions called from functions that are compiled
833         --  as part of an inlined package, but are not themselves called. An
834         --  accurate computation of just those subprograms that are needed
835         --  requires that we perform a transitive closure over the call graph,
836         --  starting from calls in the main compilation unit.
837
838         for Index in Inlined.First .. Inlined.Last loop
839            if not Is_Called (Inlined.Table (Index).Name) then
840
841               --  This means that Add_Inlined_Body added the subprogram to the
842               --  table but wasn't able to handle its code unit. Do nothing.
843
844               Inlined.Table (Index).Processed := True;
845
846            elsif Inlined.Table (Index).Main_Call then
847               Pending_Inlined.Increment_Last;
848               Pending_Inlined.Table (Pending_Inlined.Last) := Index;
849               Inlined.Table (Index).Processed := True;
850
851            else
852               Set_Is_Called (Inlined.Table (Index).Name, False);
853            end if;
854         end loop;
855
856         --  Iterate over the workpile until it is emptied, propagating the
857         --  Is_Called flag to the successors of the processed subprogram.
858
859         while Pending_Inlined.Last >= Pending_Inlined.First loop
860            Subp := Pending_Inlined.Table (Pending_Inlined.Last);
861            Pending_Inlined.Decrement_Last;
862
863            S := Inlined.Table (Subp).First_Succ;
864
865            while S /= No_Succ loop
866               Subp := Successors.Table (S).Subp;
867
868               if not Inlined.Table (Subp).Processed then
869                  Set_Is_Called (Inlined.Table (Subp).Name);
870                  Pending_Inlined.Increment_Last;
871                  Pending_Inlined.Table (Pending_Inlined.Last) := Subp;
872                  Inlined.Table (Subp).Processed := True;
873               end if;
874
875               S := Successors.Table (S).Next;
876            end loop;
877         end loop;
878
879         --  Finally add the called subprograms to the list of inlined
880         --  subprograms for the unit.
881
882         for Index in Inlined.First .. Inlined.Last loop
883            if Is_Called (Inlined.Table (Index).Name) then
884               Add_Inlined_Subprogram (Inlined.Table (Index).Name);
885            end if;
886         end loop;
887
888         Pop_Scope;
889      end if;
890   end Analyze_Inlined_Bodies;
891
892   --------------------------
893   -- Build_Body_To_Inline --
894   --------------------------
895
896   procedure Build_Body_To_Inline (N : Node_Id; Spec_Id : Entity_Id) is
897      Decl            : constant Node_Id := Unit_Declaration_Node (Spec_Id);
898      Analysis_Status : constant Boolean := Full_Analysis;
899      Original_Body   : Node_Id;
900      Body_To_Analyze : Node_Id;
901      Max_Size        : constant := 10;
902
903      function Has_Pending_Instantiation return Boolean;
904      --  If some enclosing body contains instantiations that appear before
905      --  the corresponding generic body, the enclosing body has a freeze node
906      --  so that it can be elaborated after the generic itself. This might
907      --  conflict with subsequent inlinings, so that it is unsafe to try to
908      --  inline in such a case.
909
910      function Has_Single_Return_In_GNATprove_Mode return Boolean;
911      --  This function is called only in GNATprove mode, and it returns
912      --  True if the subprogram has no return statement or a single return
913      --  statement as last statement. It returns False for subprogram with
914      --  a single return as last statement inside one or more blocks, as
915      --  inlining would generate gotos in that case as well (although the
916      --  goto is useless in that case).
917
918      function Uses_Secondary_Stack (Bod : Node_Id) return Boolean;
919      --  If the body of the subprogram includes a call that returns an
920      --  unconstrained type, the secondary stack is involved, and it
921      --  is not worth inlining.
922
923      -------------------------------
924      -- Has_Pending_Instantiation --
925      -------------------------------
926
927      function Has_Pending_Instantiation return Boolean is
928         S : Entity_Id;
929
930      begin
931         S := Current_Scope;
932         while Present (S) loop
933            if Is_Compilation_Unit (S)
934              or else Is_Child_Unit (S)
935            then
936               return False;
937
938            elsif Ekind (S) = E_Package
939              and then Has_Forward_Instantiation (S)
940            then
941               return True;
942            end if;
943
944            S := Scope (S);
945         end loop;
946
947         return False;
948      end Has_Pending_Instantiation;
949
950      -----------------------------------------
951      -- Has_Single_Return_In_GNATprove_Mode --
952      -----------------------------------------
953
954      function Has_Single_Return_In_GNATprove_Mode return Boolean is
955         Last_Statement : Node_Id := Empty;
956
957         function Check_Return (N : Node_Id) return Traverse_Result;
958         --  Returns OK on node N if this is not a return statement different
959         --  from the last statement in the subprogram.
960
961         ------------------
962         -- Check_Return --
963         ------------------
964
965         function Check_Return (N : Node_Id) return Traverse_Result is
966         begin
967            if Nkind_In (N, N_Simple_Return_Statement,
968                            N_Extended_Return_Statement)
969            then
970               if N = Last_Statement then
971                  return OK;
972               else
973                  return Abandon;
974               end if;
975
976            else
977               return OK;
978            end if;
979         end Check_Return;
980
981         function Check_All_Returns is new Traverse_Func (Check_Return);
982
983      --  Start of processing for Has_Single_Return_In_GNATprove_Mode
984
985      begin
986         --  Retrieve the last statement
987
988         Last_Statement := Last (Statements (Handled_Statement_Sequence (N)));
989
990         --  Check that the last statement is the only possible return
991         --  statement in the subprogram.
992
993         return Check_All_Returns (N) = OK;
994      end Has_Single_Return_In_GNATprove_Mode;
995
996      --------------------------
997      -- Uses_Secondary_Stack --
998      --------------------------
999
1000      function Uses_Secondary_Stack (Bod : Node_Id) return Boolean is
1001         function Check_Call (N : Node_Id) return Traverse_Result;
1002         --  Look for function calls that return an unconstrained type
1003
1004         ----------------
1005         -- Check_Call --
1006         ----------------
1007
1008         function Check_Call (N : Node_Id) return Traverse_Result is
1009         begin
1010            if Nkind (N) = N_Function_Call
1011              and then Is_Entity_Name (Name (N))
1012              and then Is_Composite_Type (Etype (Entity (Name (N))))
1013              and then not Is_Constrained (Etype (Entity (Name (N))))
1014            then
1015               Cannot_Inline
1016                 ("cannot inline & (call returns unconstrained type)?",
1017                  N, Spec_Id);
1018               return Abandon;
1019            else
1020               return OK;
1021            end if;
1022         end Check_Call;
1023
1024         function Check_Calls is new Traverse_Func (Check_Call);
1025
1026      begin
1027         return Check_Calls (Bod) = Abandon;
1028      end Uses_Secondary_Stack;
1029
1030   --  Start of processing for Build_Body_To_Inline
1031
1032   begin
1033      --  Return immediately if done already
1034
1035      if Nkind (Decl) = N_Subprogram_Declaration
1036        and then Present (Body_To_Inline (Decl))
1037      then
1038         return;
1039
1040      --  Subprograms that have return statements in the middle of the body are
1041      --  inlined with gotos. GNATprove does not currently support gotos, so
1042      --  we prevent such inlining.
1043
1044      elsif GNATprove_Mode
1045        and then not Has_Single_Return_In_GNATprove_Mode
1046      then
1047         Cannot_Inline ("cannot inline & (multiple returns)?", N, Spec_Id);
1048         return;
1049
1050      --  Functions that return unconstrained composite types require
1051      --  secondary stack handling, and cannot currently be inlined, unless
1052      --  all return statements return a local variable that is the first
1053      --  local declaration in the body.
1054
1055      elsif Ekind (Spec_Id) = E_Function
1056        and then not Is_Scalar_Type (Etype (Spec_Id))
1057        and then not Is_Access_Type (Etype (Spec_Id))
1058        and then not Is_Constrained (Etype (Spec_Id))
1059      then
1060         if not Has_Single_Return (N) then
1061            Cannot_Inline
1062              ("cannot inline & (unconstrained return type)?", N, Spec_Id);
1063            return;
1064         end if;
1065
1066      --  Ditto for functions that return controlled types, where controlled
1067      --  actions interfere in complex ways with inlining.
1068
1069      elsif Ekind (Spec_Id) = E_Function
1070        and then Needs_Finalization (Etype (Spec_Id))
1071      then
1072         Cannot_Inline
1073           ("cannot inline & (controlled return type)?", N, Spec_Id);
1074         return;
1075      end if;
1076
1077      if Present (Declarations (N))
1078        and then Has_Excluded_Declaration (Spec_Id, Declarations (N))
1079      then
1080         return;
1081      end if;
1082
1083      if Present (Handled_Statement_Sequence (N)) then
1084         if Present (Exception_Handlers (Handled_Statement_Sequence (N))) then
1085            Cannot_Inline
1086              ("cannot inline& (exception handler)?",
1087               First (Exception_Handlers (Handled_Statement_Sequence (N))),
1088               Spec_Id);
1089            return;
1090
1091         elsif Has_Excluded_Statement
1092                 (Spec_Id, Statements (Handled_Statement_Sequence (N)))
1093         then
1094            return;
1095         end if;
1096      end if;
1097
1098      --  We do not inline a subprogram that is too large, unless it is marked
1099      --  Inline_Always or we are in GNATprove mode. This pragma does not
1100      --  suppress the other checks on inlining (forbidden declarations,
1101      --  handlers, etc).
1102
1103      if not (Has_Pragma_Inline_Always (Spec_Id) or else GNATprove_Mode)
1104        and then List_Length
1105                   (Statements (Handled_Statement_Sequence (N))) > Max_Size
1106      then
1107         Cannot_Inline ("cannot inline& (body too large)?", N, Spec_Id);
1108         return;
1109      end if;
1110
1111      if Has_Pending_Instantiation then
1112         Cannot_Inline
1113           ("cannot inline& (forward instance within enclosing body)?",
1114             N, Spec_Id);
1115         return;
1116      end if;
1117
1118      --  Within an instance, the body to inline must be treated as a nested
1119      --  generic, so that the proper global references are preserved.
1120
1121      --  Note that we do not do this at the library level, because it is not
1122      --  needed, and furthermore this causes trouble if front end inlining
1123      --  is activated (-gnatN).
1124
1125      if In_Instance and then Scope (Current_Scope) /= Standard_Standard then
1126         Save_Env (Scope (Current_Scope), Scope (Current_Scope));
1127         Original_Body := Copy_Generic_Node (N, Empty, True);
1128      else
1129         Original_Body := Copy_Separate_Tree (N);
1130      end if;
1131
1132      --  We need to capture references to the formals in order to substitute
1133      --  the actuals at the point of inlining, i.e. instantiation. To treat
1134      --  the formals as globals to the body to inline, we nest it within a
1135      --  dummy parameterless subprogram, declared within the real one. To
1136      --  avoid generating an internal name (which is never public, and which
1137      --  affects serial numbers of other generated names), we use an internal
1138      --  symbol that cannot conflict with user declarations.
1139
1140      Set_Parameter_Specifications (Specification (Original_Body), No_List);
1141      Set_Defining_Unit_Name
1142        (Specification (Original_Body),
1143         Make_Defining_Identifier (Sloc (N), Name_uParent));
1144      Set_Corresponding_Spec (Original_Body, Empty);
1145
1146      --  Remove all aspects/pragmas that have no meaining in an inlined body
1147
1148      Remove_Aspects_And_Pragmas (Original_Body);
1149
1150      Body_To_Analyze := Copy_Generic_Node (Original_Body, Empty, False);
1151
1152      --  Set return type of function, which is also global and does not need
1153      --  to be resolved.
1154
1155      if Ekind (Spec_Id) = E_Function then
1156         Set_Result_Definition
1157           (Specification (Body_To_Analyze),
1158            New_Occurrence_Of (Etype (Spec_Id), Sloc (N)));
1159      end if;
1160
1161      if No (Declarations (N)) then
1162         Set_Declarations (N, New_List (Body_To_Analyze));
1163      else
1164         Append (Body_To_Analyze, Declarations (N));
1165      end if;
1166
1167      --  The body to inline is pre-analyzed. In GNATprove mode we must disable
1168      --  full analysis as well so that light expansion does not take place
1169      --  either, and name resolution is unaffected.
1170
1171      Expander_Mode_Save_And_Set (False);
1172      Full_Analysis := False;
1173
1174      Analyze (Body_To_Analyze);
1175      Push_Scope (Defining_Entity (Body_To_Analyze));
1176      Save_Global_References (Original_Body);
1177      End_Scope;
1178      Remove (Body_To_Analyze);
1179
1180      Expander_Mode_Restore;
1181      Full_Analysis := Analysis_Status;
1182
1183      --  Restore environment if previously saved
1184
1185      if In_Instance and then Scope (Current_Scope) /= Standard_Standard then
1186         Restore_Env;
1187      end if;
1188
1189      --  If secondary stack is used, there is no point in inlining. We have
1190      --  already issued the warning in this case, so nothing to do.
1191
1192      if Uses_Secondary_Stack (Body_To_Analyze) then
1193         return;
1194      end if;
1195
1196      Set_Body_To_Inline (Decl, Original_Body);
1197      Set_Ekind (Defining_Entity (Original_Body), Ekind (Spec_Id));
1198      Set_Is_Inlined (Spec_Id);
1199   end Build_Body_To_Inline;
1200
1201   -------------------
1202   -- Cannot_Inline --
1203   -------------------
1204
1205   procedure Cannot_Inline
1206     (Msg        : String;
1207      N          : Node_Id;
1208      Subp       : Entity_Id;
1209      Is_Serious : Boolean := False)
1210   is
1211   begin
1212      --  In GNATprove mode, inlining is the technical means by which the
1213      --  higher-level goal of contextual analysis is reached, so issue
1214      --  messages about failure to apply contextual analysis to a
1215      --  subprogram, rather than failure to inline it.
1216
1217      if GNATprove_Mode
1218        and then Msg (Msg'First .. Msg'First + 12) = "cannot inline"
1219      then
1220         declare
1221            Len1 : constant Positive :=
1222              String (String'("cannot inline"))'Length;
1223            Len2 : constant Positive :=
1224              String (String'("info: no contextual analysis of"))'Length;
1225
1226            New_Msg : String (1 .. Msg'Length + Len2 - Len1);
1227
1228         begin
1229            New_Msg (1 .. Len2) := "info: no contextual analysis of";
1230            New_Msg (Len2 + 1 .. Msg'Length + Len2 - Len1) :=
1231              Msg (Msg'First + Len1 .. Msg'Last);
1232            Cannot_Inline (New_Msg, N, Subp, Is_Serious);
1233            return;
1234         end;
1235      end if;
1236
1237      pragma Assert (Msg (Msg'Last) = '?');
1238
1239      --  Legacy front end inlining model
1240
1241      if not Back_End_Inlining then
1242
1243         --  Do not emit warning if this is a predefined unit which is not
1244         --  the main unit. With validity checks enabled, some predefined
1245         --  subprograms may contain nested subprograms and become ineligible
1246         --  for inlining.
1247
1248         if Is_Predefined_File_Name (Unit_File_Name (Get_Source_Unit (Subp)))
1249           and then not In_Extended_Main_Source_Unit (Subp)
1250         then
1251            null;
1252
1253         --  In GNATprove mode, issue a warning, and indicate that the
1254         --  subprogram is not always inlined by setting flag Is_Inlined_Always
1255         --  to False.
1256
1257         elsif GNATprove_Mode then
1258            Set_Is_Inlined_Always (Subp, False);
1259            Error_Msg_NE (Msg & "p?", N, Subp);
1260
1261         elsif Has_Pragma_Inline_Always (Subp) then
1262
1263            --  Remove last character (question mark) to make this into an
1264            --  error, because the Inline_Always pragma cannot be obeyed.
1265
1266            Error_Msg_NE (Msg (Msg'First .. Msg'Last - 1), N, Subp);
1267
1268         elsif Ineffective_Inline_Warnings then
1269            Error_Msg_NE (Msg & "p?", N, Subp);
1270         end if;
1271
1272      --  New semantics relying on back end inlining
1273
1274      elsif Is_Serious then
1275
1276         --  Remove last character (question mark) to make this into an error.
1277
1278         Error_Msg_NE (Msg (Msg'First .. Msg'Last - 1), N, Subp);
1279
1280      --  In GNATprove mode, issue a warning, and indicate that the subprogram
1281      --  is not always inlined by setting flag Is_Inlined_Always to False.
1282
1283      elsif GNATprove_Mode then
1284         Set_Is_Inlined_Always (Subp, False);
1285         Error_Msg_NE (Msg & "p?", N, Subp);
1286
1287      else
1288
1289         --  Do not emit warning if this is a predefined unit which is not
1290         --  the main unit. This behavior is currently provided for backward
1291         --  compatibility but it will be removed when we enforce the
1292         --  strictness of the new rules.
1293
1294         if Is_Predefined_File_Name (Unit_File_Name (Get_Source_Unit (Subp)))
1295           and then not In_Extended_Main_Source_Unit (Subp)
1296         then
1297            null;
1298
1299         elsif Has_Pragma_Inline_Always (Subp) then
1300
1301            --  Emit a warning if this is a call to a runtime subprogram
1302            --  which is located inside a generic. Previously this call
1303            --  was silently skipped.
1304
1305            if Is_Generic_Instance (Subp) then
1306               declare
1307                  Gen_P : constant Entity_Id := Generic_Parent (Parent (Subp));
1308               begin
1309                  if Is_Predefined_File_Name
1310                       (Unit_File_Name (Get_Source_Unit (Gen_P)))
1311                  then
1312                     Set_Is_Inlined (Subp, False);
1313                     Error_Msg_NE (Msg & "p?", N, Subp);
1314                     return;
1315                  end if;
1316               end;
1317            end if;
1318
1319            --  Remove last character (question mark) to make this into an
1320            --  error, because the Inline_Always pragma cannot be obeyed.
1321
1322            Error_Msg_NE (Msg (Msg'First .. Msg'Last - 1), N, Subp);
1323
1324         else
1325            Set_Is_Inlined (Subp, False);
1326
1327            if Ineffective_Inline_Warnings then
1328               Error_Msg_NE (Msg & "p?", N, Subp);
1329            end if;
1330         end if;
1331      end if;
1332   end Cannot_Inline;
1333
1334   --------------------------------------
1335   -- Can_Be_Inlined_In_GNATprove_Mode --
1336   --------------------------------------
1337
1338   function Can_Be_Inlined_In_GNATprove_Mode
1339     (Spec_Id : Entity_Id;
1340      Body_Id : Entity_Id) return Boolean
1341   is
1342      function Has_Formal_With_Discriminant_Dependent_Fields
1343        (Id : Entity_Id) return Boolean;
1344      --  Returns true if the subprogram has at least one formal parameter of
1345      --  an unconstrained record type with per-object constraints on component
1346      --  types.
1347
1348      function Has_Some_Contract (Id : Entity_Id) return Boolean;
1349      --  Returns True if subprogram Id has any contract (Pre, Post, Global,
1350      --  Depends, etc.)
1351
1352      function Is_Unit_Subprogram (Id : Entity_Id) return Boolean;
1353      --  Returns True if subprogram Id defines a compilation unit
1354      --  Shouldn't this be in Sem_Aux???
1355
1356      function In_Package_Visible_Spec (Id : Node_Id) return Boolean;
1357      --  Returns True if subprogram Id is defined in the visible part of a
1358      --  package specification.
1359
1360      ---------------------------------------------------
1361      -- Has_Formal_With_Discriminant_Dependent_Fields --
1362      ---------------------------------------------------
1363
1364      function Has_Formal_With_Discriminant_Dependent_Fields
1365        (Id : Entity_Id) return Boolean is
1366
1367         function Has_Discriminant_Dependent_Component
1368           (Typ : Entity_Id) return Boolean;
1369         --  Determine whether unconstrained record type Typ has at least
1370         --  one component that depends on a discriminant.
1371
1372         ------------------------------------------
1373         -- Has_Discriminant_Dependent_Component --
1374         ------------------------------------------
1375
1376         function Has_Discriminant_Dependent_Component
1377           (Typ : Entity_Id) return Boolean
1378         is
1379            Comp : Entity_Id;
1380
1381         begin
1382            --  Inspect all components of the record type looking for one
1383            --  that depends on a discriminant.
1384
1385            Comp := First_Component (Typ);
1386            while Present (Comp) loop
1387               if Has_Discriminant_Dependent_Constraint (Comp) then
1388                  return True;
1389               end if;
1390
1391               Next_Component (Comp);
1392            end loop;
1393
1394            return False;
1395         end Has_Discriminant_Dependent_Component;
1396
1397         --  Local variables
1398
1399         Subp_Id    : constant Entity_Id := Ultimate_Alias (Id);
1400         Formal     : Entity_Id;
1401         Formal_Typ : Entity_Id;
1402
1403         --  Start of processing for
1404         --  Has_Formal_With_Discriminant_Dependent_Component
1405
1406      begin
1407         --  Inspect all parameters of the subprogram looking for a formal
1408         --  of an unconstrained record type with at least one discriminant
1409         --  dependent component.
1410
1411         Formal := First_Formal (Subp_Id);
1412         while Present (Formal) loop
1413            Formal_Typ := Etype (Formal);
1414
1415            if Is_Record_Type (Formal_Typ)
1416              and then not Is_Constrained (Formal_Typ)
1417              and then Has_Discriminant_Dependent_Component (Formal_Typ)
1418            then
1419               return True;
1420            end if;
1421
1422            Next_Formal (Formal);
1423         end loop;
1424
1425         return False;
1426      end Has_Formal_With_Discriminant_Dependent_Fields;
1427
1428      -----------------------
1429      -- Has_Some_Contract --
1430      -----------------------
1431
1432      function Has_Some_Contract (Id : Entity_Id) return Boolean is
1433         Items : Node_Id;
1434
1435      begin
1436         --  A call to an expression function may precede the actual body which
1437         --  is inserted at the end of the enclosing declarations. Ensure that
1438         --  the related entity is decorated before inspecting the contract.
1439
1440         if Is_Subprogram_Or_Generic_Subprogram (Id) then
1441            Items := Contract (Id);
1442
1443            return Present (Items)
1444              and then (Present (Pre_Post_Conditions (Items)) or else
1445                        Present (Contract_Test_Cases (Items)) or else
1446                        Present (Classifications     (Items)));
1447         end if;
1448
1449         return False;
1450      end Has_Some_Contract;
1451
1452      -----------------------------
1453      -- In_Package_Visible_Spec --
1454      -----------------------------
1455
1456      function In_Package_Visible_Spec  (Id : Node_Id) return Boolean is
1457         Decl : Node_Id := Parent (Parent (Id));
1458         P    : Node_Id;
1459
1460      begin
1461         if Nkind (Parent (Id)) = N_Defining_Program_Unit_Name then
1462            Decl := Parent (Decl);
1463         end if;
1464
1465         P := Parent (Decl);
1466
1467         return Nkind (P) = N_Package_Specification
1468           and then List_Containing (Decl) = Visible_Declarations (P);
1469      end In_Package_Visible_Spec;
1470
1471      ------------------------
1472      -- Is_Unit_Subprogram --
1473      ------------------------
1474
1475      function Is_Unit_Subprogram (Id : Entity_Id) return Boolean is
1476         Decl : Node_Id := Parent (Parent (Id));
1477      begin
1478         if Nkind (Parent (Id)) = N_Defining_Program_Unit_Name then
1479            Decl := Parent (Decl);
1480         end if;
1481
1482         return Nkind (Parent (Decl)) = N_Compilation_Unit;
1483      end Is_Unit_Subprogram;
1484
1485      --  Local declarations
1486
1487      Id : Entity_Id;  --  Procedure or function entity for the subprogram
1488
1489   --  Start of processing for Can_Be_Inlined_In_GNATprove_Mode
1490
1491   begin
1492      pragma Assert (Present (Spec_Id) or else Present (Body_Id));
1493
1494      if Present (Spec_Id) then
1495         Id := Spec_Id;
1496      else
1497         Id := Body_Id;
1498      end if;
1499
1500      --  Only local subprograms without contracts are inlined in GNATprove
1501      --  mode, as these are the subprograms which a user is not interested in
1502      --  analyzing in isolation, but rather in the context of their call. This
1503      --  is a convenient convention, that could be changed for an explicit
1504      --  pragma/aspect one day.
1505
1506      --  In a number of special cases, inlining is not desirable or not
1507      --  possible, see below.
1508
1509      --  Do not inline unit-level subprograms
1510
1511      if Is_Unit_Subprogram (Id) then
1512         return False;
1513
1514      --  Do not inline subprograms declared in the visible part of a package
1515
1516      elsif In_Package_Visible_Spec (Id) then
1517         return False;
1518
1519      --  Do not inline subprograms marked No_Return, possibly used for
1520      --  signaling errors, which GNATprove handles specially.
1521
1522      elsif No_Return (Id) then
1523         return False;
1524
1525      --  Do not inline subprograms that have a contract on the spec or the
1526      --  body. Use the contract(s) instead in GNATprove.
1527
1528      elsif (Present (Spec_Id) and then Has_Some_Contract (Spec_Id))
1529               or else
1530            (Present (Body_Id) and then Has_Some_Contract (Body_Id))
1531      then
1532         return False;
1533
1534      --  Do not inline expression functions, which are directly inlined at the
1535      --  prover level.
1536
1537      elsif (Present (Spec_Id) and then Is_Expression_Function (Spec_Id))
1538              or else
1539            (Present (Body_Id) and then Is_Expression_Function (Body_Id))
1540      then
1541         return False;
1542
1543      --  Do not inline generic subprogram instances. The visibility rules of
1544      --  generic instances plays badly with inlining.
1545
1546      elsif Is_Generic_Instance (Spec_Id) then
1547         return False;
1548
1549      --  Only inline subprograms whose spec is marked SPARK_Mode On. For
1550      --  the subprogram body, a similar check is performed after the body
1551      --  is analyzed, as this is where a pragma SPARK_Mode might be inserted.
1552
1553      elsif Present (Spec_Id)
1554        and then
1555          (No (SPARK_Pragma (Spec_Id))
1556            or else Get_SPARK_Mode_From_Pragma (SPARK_Pragma (Spec_Id)) /= On)
1557      then
1558         return False;
1559
1560      --  Subprograms in generic instances are currently not inlined, to avoid
1561      --  problems with inlining of standard library subprograms.
1562
1563      elsif Instantiation_Location (Sloc (Id)) /= No_Location then
1564         return False;
1565
1566      --  Do not inline predicate functions (treated specially by GNATprove)
1567
1568      elsif Is_Predicate_Function (Id) then
1569         return False;
1570
1571      --  Do not inline subprograms with a parameter of an unconstrained
1572      --  record type if it has discrimiant dependent fields. Indeed, with
1573      --  such parameters, the frontend cannot always ensure type compliance
1574      --  in record component accesses (in particular with records containing
1575      --  packed arrays).
1576
1577      elsif Has_Formal_With_Discriminant_Dependent_Fields (Id) then
1578         return False;
1579
1580      --  Otherwise, this is a subprogram declared inside the private part of a
1581      --  package, or inside a package body, or locally in a subprogram, and it
1582      --  does not have any contract. Inline it.
1583
1584      else
1585         return True;
1586      end if;
1587   end Can_Be_Inlined_In_GNATprove_Mode;
1588
1589   --------------------------------------------
1590   -- Check_And_Split_Unconstrained_Function --
1591   --------------------------------------------
1592
1593   procedure Check_And_Split_Unconstrained_Function
1594     (N       : Node_Id;
1595      Spec_Id : Entity_Id;
1596      Body_Id : Entity_Id)
1597   is
1598      procedure Build_Body_To_Inline (N : Node_Id; Spec_Id : Entity_Id);
1599      --  Use generic machinery to build an unexpanded body for the subprogram.
1600      --  This body is subsequently used for inline expansions at call sites.
1601
1602      function Can_Split_Unconstrained_Function (N : Node_Id) return Boolean;
1603      --  Return true if we generate code for the function body N, the function
1604      --  body N has no local declarations and its unique statement is a single
1605      --  extended return statement with a handled statements sequence.
1606
1607      procedure Generate_Subprogram_Body
1608        (N              : Node_Id;
1609         Body_To_Inline : out Node_Id);
1610      --  Generate a parameterless duplicate of subprogram body N. Occurrences
1611      --  of pragmas referencing the formals are removed since they have no
1612      --  meaning when the body is inlined and the formals are rewritten (the
1613      --  analysis of the non-inlined body will handle these pragmas properly).
1614      --  A new internal name is associated with Body_To_Inline.
1615
1616      procedure Split_Unconstrained_Function
1617        (N       : Node_Id;
1618         Spec_Id : Entity_Id);
1619      --  N is an inlined function body that returns an unconstrained type and
1620      --  has a single extended return statement. Split N in two subprograms:
1621      --  a procedure P' and a function F'. The formals of P' duplicate the
1622      --  formals of N plus an extra formal which is used return a value;
1623      --  its body is composed by the declarations and list of statements
1624      --  of the extended return statement of N.
1625
1626      --------------------------
1627      -- Build_Body_To_Inline --
1628      --------------------------
1629
1630      procedure Build_Body_To_Inline (N : Node_Id; Spec_Id : Entity_Id) is
1631         Decl            : constant Node_Id := Unit_Declaration_Node (Spec_Id);
1632         Original_Body   : Node_Id;
1633         Body_To_Analyze : Node_Id;
1634
1635      begin
1636         pragma Assert (Current_Scope = Spec_Id);
1637
1638         --  Within an instance, the body to inline must be treated as a nested
1639         --  generic, so that the proper global references are preserved. We
1640         --  do not do this at the library level, because it is not needed, and
1641         --  furthermore this causes trouble if front end inlining is activated
1642         --  (-gnatN).
1643
1644         if In_Instance
1645           and then Scope (Current_Scope) /= Standard_Standard
1646         then
1647            Save_Env (Scope (Current_Scope), Scope (Current_Scope));
1648         end if;
1649
1650         --  We need to capture references to the formals in order
1651         --  to substitute the actuals at the point of inlining, i.e.
1652         --  instantiation. To treat the formals as globals to the body to
1653         --  inline, we nest it within a dummy parameterless subprogram,
1654         --  declared within the real one.
1655
1656         Generate_Subprogram_Body (N, Original_Body);
1657         Body_To_Analyze := Copy_Generic_Node (Original_Body, Empty, False);
1658
1659         --  Set return type of function, which is also global and does not
1660         --  need to be resolved.
1661
1662         if Ekind (Spec_Id) = E_Function then
1663            Set_Result_Definition (Specification (Body_To_Analyze),
1664              New_Occurrence_Of (Etype (Spec_Id), Sloc (N)));
1665         end if;
1666
1667         if No (Declarations (N)) then
1668            Set_Declarations (N, New_List (Body_To_Analyze));
1669         else
1670            Append_To (Declarations (N), Body_To_Analyze);
1671         end if;
1672
1673         Preanalyze (Body_To_Analyze);
1674
1675         Push_Scope (Defining_Entity (Body_To_Analyze));
1676         Save_Global_References (Original_Body);
1677         End_Scope;
1678         Remove (Body_To_Analyze);
1679
1680         --  Restore environment if previously saved
1681
1682         if In_Instance
1683           and then Scope (Current_Scope) /= Standard_Standard
1684         then
1685            Restore_Env;
1686         end if;
1687
1688         pragma Assert (No (Body_To_Inline (Decl)));
1689         Set_Body_To_Inline (Decl, Original_Body);
1690         Set_Ekind (Defining_Entity (Original_Body), Ekind (Spec_Id));
1691      end Build_Body_To_Inline;
1692
1693      --------------------------------------
1694      -- Can_Split_Unconstrained_Function --
1695      --------------------------------------
1696
1697      function Can_Split_Unconstrained_Function (N : Node_Id) return Boolean
1698      is
1699         Ret_Node : constant Node_Id :=
1700                      First (Statements (Handled_Statement_Sequence (N)));
1701         D : Node_Id;
1702
1703      begin
1704         --  No user defined declarations allowed in the function except inside
1705         --  the unique return statement; implicit labels are the only allowed
1706         --  declarations.
1707
1708         if not Is_Empty_List (Declarations (N)) then
1709            D := First (Declarations (N));
1710            while Present (D) loop
1711               if Nkind (D) /= N_Implicit_Label_Declaration then
1712                  return False;
1713               end if;
1714
1715               Next (D);
1716            end loop;
1717         end if;
1718
1719         --  We only split the inlined function when we are generating the code
1720         --  of its body; otherwise we leave duplicated split subprograms in
1721         --  the tree which (if referenced) generate wrong references at link
1722         --  time.
1723
1724         return In_Extended_Main_Code_Unit (N)
1725           and then Present (Ret_Node)
1726           and then Nkind (Ret_Node) = N_Extended_Return_Statement
1727           and then No (Next (Ret_Node))
1728           and then Present (Handled_Statement_Sequence (Ret_Node));
1729      end Can_Split_Unconstrained_Function;
1730
1731      -----------------------------
1732      -- Generate_Body_To_Inline --
1733      -----------------------------
1734
1735      procedure Generate_Subprogram_Body
1736        (N              : Node_Id;
1737         Body_To_Inline : out Node_Id)
1738      is
1739      begin
1740         --  Within an instance, the body to inline must be treated as a nested
1741         --  generic, so that the proper global references are preserved.
1742
1743         --  Note that we do not do this at the library level, because it
1744         --  is not needed, and furthermore this causes trouble if front
1745         --  end inlining is activated (-gnatN).
1746
1747         if In_Instance
1748           and then Scope (Current_Scope) /= Standard_Standard
1749         then
1750            Body_To_Inline := Copy_Generic_Node (N, Empty, True);
1751         else
1752            Body_To_Inline := Copy_Separate_Tree (N);
1753         end if;
1754
1755         --  Remove all aspects/pragmas that have no meaning in an inlined body
1756
1757         Remove_Aspects_And_Pragmas (Body_To_Inline);
1758
1759         --  We need to capture references to the formals in order
1760         --  to substitute the actuals at the point of inlining, i.e.
1761         --  instantiation. To treat the formals as globals to the body to
1762         --  inline, we nest it within a dummy parameterless subprogram,
1763         --  declared within the real one.
1764
1765         Set_Parameter_Specifications
1766           (Specification (Body_To_Inline), No_List);
1767
1768         --  A new internal name is associated with Body_To_Inline to avoid
1769         --  conflicts when the non-inlined body N is analyzed.
1770
1771         Set_Defining_Unit_Name (Specification (Body_To_Inline),
1772            Make_Defining_Identifier (Sloc (N), New_Internal_Name ('P')));
1773         Set_Corresponding_Spec (Body_To_Inline, Empty);
1774      end Generate_Subprogram_Body;
1775
1776      ----------------------------------
1777      -- Split_Unconstrained_Function --
1778      ----------------------------------
1779
1780      procedure Split_Unconstrained_Function
1781        (N        : Node_Id;
1782         Spec_Id  : Entity_Id)
1783      is
1784         Loc      : constant Source_Ptr := Sloc (N);
1785         Ret_Node : constant Node_Id :=
1786                      First (Statements (Handled_Statement_Sequence (N)));
1787         Ret_Obj  : constant Node_Id :=
1788                      First (Return_Object_Declarations (Ret_Node));
1789
1790         procedure Build_Procedure
1791           (Proc_Id   : out Entity_Id;
1792            Decl_List : out List_Id);
1793         --  Build a procedure containing the statements found in the extended
1794         --  return statement of the unconstrained function body N.
1795
1796         ---------------------
1797         -- Build_Procedure --
1798         ---------------------
1799
1800         procedure Build_Procedure
1801           (Proc_Id   : out Entity_Id;
1802            Decl_List : out List_Id)
1803         is
1804            Formal         : Entity_Id;
1805            Formal_List    : constant List_Id := New_List;
1806            Proc_Spec      : Node_Id;
1807            Proc_Body      : Node_Id;
1808            Subp_Name      : constant Name_Id := New_Internal_Name ('F');
1809            Body_Decl_List : List_Id := No_List;
1810            Param_Type     : Node_Id;
1811
1812         begin
1813            if Nkind (Object_Definition (Ret_Obj)) = N_Identifier then
1814               Param_Type :=
1815                 New_Copy (Object_Definition (Ret_Obj));
1816            else
1817               Param_Type :=
1818                 New_Copy (Subtype_Mark (Object_Definition (Ret_Obj)));
1819            end if;
1820
1821            Append_To (Formal_List,
1822              Make_Parameter_Specification (Loc,
1823                Defining_Identifier    =>
1824                  Make_Defining_Identifier (Loc,
1825                    Chars => Chars (Defining_Identifier (Ret_Obj))),
1826                In_Present             => False,
1827                Out_Present            => True,
1828                Null_Exclusion_Present => False,
1829                Parameter_Type         => Param_Type));
1830
1831            Formal := First_Formal (Spec_Id);
1832
1833            --  Note that we copy the parameter type rather than creating
1834            --  a reference to it, because it may be a class-wide entity
1835            --  that will not be retrieved by name.
1836
1837            while Present (Formal) loop
1838               Append_To (Formal_List,
1839                 Make_Parameter_Specification (Loc,
1840                   Defining_Identifier    =>
1841                     Make_Defining_Identifier (Sloc (Formal),
1842                       Chars => Chars (Formal)),
1843                   In_Present             => In_Present (Parent (Formal)),
1844                   Out_Present            => Out_Present (Parent (Formal)),
1845                   Null_Exclusion_Present =>
1846                     Null_Exclusion_Present (Parent (Formal)),
1847                   Parameter_Type         =>
1848                     New_Copy_Tree (Parameter_Type (Parent (Formal))),
1849                   Expression             =>
1850                     Copy_Separate_Tree (Expression (Parent (Formal)))));
1851
1852               Next_Formal (Formal);
1853            end loop;
1854
1855            Proc_Id := Make_Defining_Identifier (Loc, Chars => Subp_Name);
1856
1857            Proc_Spec :=
1858              Make_Procedure_Specification (Loc,
1859                Defining_Unit_Name       => Proc_Id,
1860                Parameter_Specifications => Formal_List);
1861
1862            Decl_List := New_List;
1863
1864            Append_To (Decl_List,
1865              Make_Subprogram_Declaration (Loc, Proc_Spec));
1866
1867            --  Can_Convert_Unconstrained_Function checked that the function
1868            --  has no local declarations except implicit label declarations.
1869            --  Copy these declarations to the built procedure.
1870
1871            if Present (Declarations (N)) then
1872               Body_Decl_List := New_List;
1873
1874               declare
1875                  D     : Node_Id;
1876                  New_D : Node_Id;
1877
1878               begin
1879                  D := First (Declarations (N));
1880                  while Present (D) loop
1881                     pragma Assert (Nkind (D) = N_Implicit_Label_Declaration);
1882
1883                     New_D :=
1884                       Make_Implicit_Label_Declaration (Loc,
1885                         Make_Defining_Identifier (Loc,
1886                           Chars => Chars (Defining_Identifier (D))),
1887                         Label_Construct => Empty);
1888                     Append_To (Body_Decl_List, New_D);
1889
1890                     Next (D);
1891                  end loop;
1892               end;
1893            end if;
1894
1895            pragma Assert (Present (Handled_Statement_Sequence (Ret_Node)));
1896
1897            Proc_Body :=
1898              Make_Subprogram_Body (Loc,
1899                Specification => Copy_Separate_Tree (Proc_Spec),
1900                Declarations  => Body_Decl_List,
1901                Handled_Statement_Sequence =>
1902                  Copy_Separate_Tree (Handled_Statement_Sequence (Ret_Node)));
1903
1904            Set_Defining_Unit_Name (Specification (Proc_Body),
1905               Make_Defining_Identifier (Loc, Subp_Name));
1906
1907            Append_To (Decl_List, Proc_Body);
1908         end Build_Procedure;
1909
1910         --  Local variables
1911
1912         New_Obj   : constant Node_Id := Copy_Separate_Tree (Ret_Obj);
1913         Blk_Stmt  : Node_Id;
1914         Proc_Id   : Entity_Id;
1915         Proc_Call : Node_Id;
1916
1917      --  Start of processing for Split_Unconstrained_Function
1918
1919      begin
1920         --  Build the associated procedure, analyze it and insert it before
1921         --  the function body N.
1922
1923         declare
1924            Scope     : constant Entity_Id := Current_Scope;
1925            Decl_List : List_Id;
1926         begin
1927            Pop_Scope;
1928            Build_Procedure (Proc_Id, Decl_List);
1929            Insert_Actions (N, Decl_List);
1930            Push_Scope (Scope);
1931         end;
1932
1933         --  Build the call to the generated procedure
1934
1935         declare
1936            Actual_List : constant List_Id := New_List;
1937            Formal      : Entity_Id;
1938
1939         begin
1940            Append_To (Actual_List,
1941              New_Occurrence_Of (Defining_Identifier (New_Obj), Loc));
1942
1943            Formal := First_Formal (Spec_Id);
1944            while Present (Formal) loop
1945               Append_To (Actual_List, New_Occurrence_Of (Formal, Loc));
1946
1947               --  Avoid spurious warning on unreferenced formals
1948
1949               Set_Referenced (Formal);
1950               Next_Formal (Formal);
1951            end loop;
1952
1953            Proc_Call :=
1954              Make_Procedure_Call_Statement (Loc,
1955                Name                   => New_Occurrence_Of (Proc_Id, Loc),
1956                Parameter_Associations => Actual_List);
1957         end;
1958
1959         --  Generate
1960
1961         --    declare
1962         --       New_Obj : ...
1963         --    begin
1964         --       main_1__F1b (New_Obj, ...);
1965         --       return Obj;
1966         --    end B10b;
1967
1968         Blk_Stmt :=
1969           Make_Block_Statement (Loc,
1970             Declarations               => New_List (New_Obj),
1971             Handled_Statement_Sequence =>
1972               Make_Handled_Sequence_Of_Statements (Loc,
1973                 Statements => New_List (
1974
1975                   Proc_Call,
1976
1977                   Make_Simple_Return_Statement (Loc,
1978                     Expression =>
1979                       New_Occurrence_Of
1980                         (Defining_Identifier (New_Obj), Loc)))));
1981
1982         Rewrite (Ret_Node, Blk_Stmt);
1983      end Split_Unconstrained_Function;
1984
1985      --  Local variables
1986
1987      Decl : constant Node_Id := Unit_Declaration_Node (Spec_Id);
1988
1989   --  Start of processing for Check_And_Split_Unconstrained_Function
1990
1991   begin
1992      pragma Assert (Back_End_Inlining
1993        and then Ekind (Spec_Id) = E_Function
1994        and then Returns_Unconstrained_Type (Spec_Id)
1995        and then Comes_From_Source (Body_Id)
1996        and then (Has_Pragma_Inline_Always (Spec_Id)
1997                    or else Optimization_Level > 0));
1998
1999      --  This routine must not be used in GNATprove mode since GNATprove
2000      --  relies on frontend inlining
2001
2002      pragma Assert (not GNATprove_Mode);
2003
2004      --  No need to split the function if we cannot generate the code
2005
2006      if Serious_Errors_Detected /= 0 then
2007         return;
2008      end if;
2009
2010      --  No action needed in stubs since the attribute Body_To_Inline
2011      --  is not available
2012
2013      if Nkind (Decl) = N_Subprogram_Body_Stub then
2014         return;
2015
2016      --  Cannot build the body to inline if the attribute is already set.
2017      --  This attribute may have been set if this is a subprogram renaming
2018      --  declarations (see Freeze.Build_Renamed_Body).
2019
2020      elsif Present (Body_To_Inline (Decl)) then
2021         return;
2022
2023      --  Check excluded declarations
2024
2025      elsif Present (Declarations (N))
2026        and then Has_Excluded_Declaration (Spec_Id, Declarations (N))
2027      then
2028         return;
2029
2030      --  Check excluded statements. There is no need to protect us against
2031      --  exception handlers since they are supported by the GCC backend.
2032
2033      elsif Present (Handled_Statement_Sequence (N))
2034        and then Has_Excluded_Statement
2035                   (Spec_Id, Statements (Handled_Statement_Sequence (N)))
2036      then
2037         return;
2038      end if;
2039
2040      --  Build the body to inline only if really needed
2041
2042      if Can_Split_Unconstrained_Function (N) then
2043         Split_Unconstrained_Function (N, Spec_Id);
2044         Build_Body_To_Inline (N, Spec_Id);
2045         Set_Is_Inlined (Spec_Id);
2046      end if;
2047   end Check_And_Split_Unconstrained_Function;
2048
2049   -------------------------------------
2050   -- Check_Package_Body_For_Inlining --
2051   -------------------------------------
2052
2053   procedure Check_Package_Body_For_Inlining (N : Node_Id; P : Entity_Id) is
2054      Bname : Unit_Name_Type;
2055      E     : Entity_Id;
2056      OK    : Boolean;
2057
2058   begin
2059      --  Legacy implementation (relying on frontend inlining)
2060
2061      if not Back_End_Inlining
2062        and then Is_Compilation_Unit (P)
2063        and then not Is_Generic_Instance (P)
2064      then
2065         Bname := Get_Body_Name (Get_Unit_Name (Unit (N)));
2066
2067         E := First_Entity (P);
2068         while Present (E) loop
2069            if Has_Pragma_Inline_Always (E)
2070              or else (Has_Pragma_Inline (E) and Front_End_Inlining)
2071            then
2072               if not Is_Loaded (Bname) then
2073                  Load_Needed_Body (N, OK);
2074
2075                  if OK then
2076
2077                     --  Check we are not trying to inline a parent whose body
2078                     --  depends on a child, when we are compiling the body of
2079                     --  the child. Otherwise we have a potential elaboration
2080                     --  circularity with inlined subprograms and with
2081                     --  Taft-Amendment types.
2082
2083                     declare
2084                        Comp        : Node_Id;      --  Body just compiled
2085                        Child_Spec  : Entity_Id;    --  Spec of main unit
2086                        Ent         : Entity_Id;    --  For iteration
2087                        With_Clause : Node_Id;      --  Context of body.
2088
2089                     begin
2090                        if Nkind (Unit (Cunit (Main_Unit))) = N_Package_Body
2091                          and then Present (Body_Entity (P))
2092                        then
2093                           Child_Spec :=
2094                             Defining_Entity
2095                               ((Unit (Library_Unit (Cunit (Main_Unit)))));
2096
2097                           Comp :=
2098                             Parent (Unit_Declaration_Node (Body_Entity (P)));
2099
2100                           --  Check whether the context of the body just
2101                           --  compiled includes a child of itself, and that
2102                           --  child is the spec of the main compilation.
2103
2104                           With_Clause := First (Context_Items (Comp));
2105                           while Present (With_Clause) loop
2106                              if Nkind (With_Clause) = N_With_Clause
2107                                and then
2108                                  Scope (Entity (Name (With_Clause))) = P
2109                                and then
2110                                  Entity (Name (With_Clause)) = Child_Spec
2111                              then
2112                                 Error_Msg_Node_2 := Child_Spec;
2113                                 Error_Msg_NE
2114                                   ("body of & depends on child unit&??",
2115                                    With_Clause, P);
2116                                 Error_Msg_N
2117                                   ("\subprograms in body cannot be inlined??",
2118                                    With_Clause);
2119
2120                                 --  Disable further inlining from this unit,
2121                                 --  and keep Taft-amendment types incomplete.
2122
2123                                 Ent := First_Entity (P);
2124                                 while Present (Ent) loop
2125                                    if Is_Type (Ent)
2126                                      and then Has_Completion_In_Body (Ent)
2127                                    then
2128                                       Set_Full_View (Ent, Empty);
2129
2130                                    elsif Is_Subprogram (Ent) then
2131                                       Set_Is_Inlined (Ent, False);
2132                                    end if;
2133
2134                                    Next_Entity (Ent);
2135                                 end loop;
2136
2137                                 return;
2138                              end if;
2139
2140                              Next (With_Clause);
2141                           end loop;
2142                        end if;
2143                     end;
2144
2145                  elsif Ineffective_Inline_Warnings then
2146                     Error_Msg_Unit_1 := Bname;
2147                     Error_Msg_N
2148                       ("unable to inline subprograms defined in $??", P);
2149                     Error_Msg_N ("\body not found??", P);
2150                     return;
2151                  end if;
2152               end if;
2153
2154               return;
2155            end if;
2156
2157            Next_Entity (E);
2158         end loop;
2159      end if;
2160   end Check_Package_Body_For_Inlining;
2161
2162   --------------------
2163   -- Cleanup_Scopes --
2164   --------------------
2165
2166   procedure Cleanup_Scopes is
2167      Elmt : Elmt_Id;
2168      Decl : Node_Id;
2169      Scop : Entity_Id;
2170
2171   begin
2172      Elmt := First_Elmt (To_Clean);
2173      while Present (Elmt) loop
2174         Scop := Node (Elmt);
2175
2176         if Ekind (Scop) = E_Entry then
2177            Scop := Protected_Body_Subprogram (Scop);
2178
2179         elsif Is_Subprogram (Scop)
2180           and then Is_Protected_Type (Scope (Scop))
2181           and then Present (Protected_Body_Subprogram (Scop))
2182         then
2183            --  If a protected operation contains an instance, its cleanup
2184            --  operations have been delayed, and the subprogram has been
2185            --  rewritten in the expansion of the enclosing protected body. It
2186            --  is the corresponding subprogram that may require the cleanup
2187            --  operations, so propagate the information that triggers cleanup
2188            --  activity.
2189
2190            Set_Uses_Sec_Stack
2191              (Protected_Body_Subprogram (Scop),
2192                Uses_Sec_Stack (Scop));
2193
2194            Scop := Protected_Body_Subprogram (Scop);
2195         end if;
2196
2197         if Ekind (Scop) = E_Block then
2198            Decl := Parent (Block_Node (Scop));
2199
2200         else
2201            Decl := Unit_Declaration_Node (Scop);
2202
2203            if Nkind_In (Decl, N_Subprogram_Declaration,
2204                               N_Task_Type_Declaration,
2205                               N_Subprogram_Body_Stub)
2206            then
2207               Decl := Unit_Declaration_Node (Corresponding_Body (Decl));
2208            end if;
2209         end if;
2210
2211         Push_Scope (Scop);
2212         Expand_Cleanup_Actions (Decl);
2213         End_Scope;
2214
2215         Elmt := Next_Elmt (Elmt);
2216      end loop;
2217   end Cleanup_Scopes;
2218
2219   -------------------------
2220   -- Expand_Inlined_Call --
2221   -------------------------
2222
2223   procedure Expand_Inlined_Call
2224    (N         : Node_Id;
2225     Subp      : Entity_Id;
2226     Orig_Subp : Entity_Id)
2227   is
2228      Loc       : constant Source_Ptr := Sloc (N);
2229      Is_Predef : constant Boolean :=
2230                    Is_Predefined_File_Name
2231                      (Unit_File_Name (Get_Source_Unit (Subp)));
2232      Orig_Bod  : constant Node_Id :=
2233                    Body_To_Inline (Unit_Declaration_Node (Subp));
2234
2235      Blk      : Node_Id;
2236      Decl     : Node_Id;
2237      Decls    : constant List_Id := New_List;
2238      Exit_Lab : Entity_Id        := Empty;
2239      F        : Entity_Id;
2240      A        : Node_Id;
2241      Lab_Decl : Node_Id;
2242      Lab_Id   : Node_Id;
2243      New_A    : Node_Id;
2244      Num_Ret  : Int := 0;
2245      Ret_Type : Entity_Id;
2246
2247      Targ : Node_Id;
2248      --  The target of the call. If context is an assignment statement then
2249      --  this is the left-hand side of the assignment, else it is a temporary
2250      --  to which the return value is assigned prior to rewriting the call.
2251
2252      Targ1 : Node_Id;
2253      --  A separate target used when the return type is unconstrained
2254
2255      Temp     : Entity_Id;
2256      Temp_Typ : Entity_Id;
2257
2258      Return_Object : Entity_Id := Empty;
2259      --  Entity in declaration in an extended_return_statement
2260
2261      Is_Unc      : Boolean;
2262      Is_Unc_Decl : Boolean;
2263      --  If the type returned by the function is unconstrained and the call
2264      --  can be inlined, special processing is required.
2265
2266      procedure Make_Exit_Label;
2267      --  Build declaration for exit label to be used in Return statements,
2268      --  sets Exit_Lab (the label node) and Lab_Decl (corresponding implicit
2269      --  declaration). Does nothing if Exit_Lab already set.
2270
2271      function Process_Formals (N : Node_Id) return Traverse_Result;
2272      --  Replace occurrence of a formal with the corresponding actual, or the
2273      --  thunk generated for it. Replace a return statement with an assignment
2274      --  to the target of the call, with appropriate conversions if needed.
2275
2276      function Process_Sloc (Nod : Node_Id) return Traverse_Result;
2277      --  If the call being expanded is that of an internal subprogram, set the
2278      --  sloc of the generated block to that of the call itself, so that the
2279      --  expansion is skipped by the "next" command in gdb. Same processing
2280      --  for a subprogram in a predefined file, e.g. Ada.Tags. If
2281      --  Debug_Generated_Code is true, suppress this change to simplify our
2282      --  own development. Same in GNATprove mode, to ensure that warnings and
2283      --  diagnostics point to the proper location.
2284
2285      procedure Reset_Dispatching_Calls (N : Node_Id);
2286      --  In subtree N search for occurrences of dispatching calls that use the
2287      --  Ada 2005 Object.Operation notation and the object is a formal of the
2288      --  inlined subprogram. Reset the entity associated with Operation in all
2289      --  the found occurrences.
2290
2291      procedure Rewrite_Function_Call (N : Node_Id; Blk : Node_Id);
2292      --  If the function body is a single expression, replace call with
2293      --  expression, else insert block appropriately.
2294
2295      procedure Rewrite_Procedure_Call (N : Node_Id; Blk : Node_Id);
2296      --  If procedure body has no local variables, inline body without
2297      --  creating block, otherwise rewrite call with block.
2298
2299      function Formal_Is_Used_Once (Formal : Entity_Id) return Boolean;
2300      --  Determine whether a formal parameter is used only once in Orig_Bod
2301
2302      ---------------------
2303      -- Make_Exit_Label --
2304      ---------------------
2305
2306      procedure Make_Exit_Label is
2307         Lab_Ent : Entity_Id;
2308      begin
2309         if No (Exit_Lab) then
2310            Lab_Ent := Make_Temporary (Loc, 'L');
2311            Lab_Id  := New_Occurrence_Of (Lab_Ent, Loc);
2312            Exit_Lab := Make_Label (Loc, Lab_Id);
2313            Lab_Decl :=
2314              Make_Implicit_Label_Declaration (Loc,
2315                Defining_Identifier => Lab_Ent,
2316                Label_Construct     => Exit_Lab);
2317         end if;
2318      end Make_Exit_Label;
2319
2320      ---------------------
2321      -- Process_Formals --
2322      ---------------------
2323
2324      function Process_Formals (N : Node_Id) return Traverse_Result is
2325         A   : Entity_Id;
2326         E   : Entity_Id;
2327         Ret : Node_Id;
2328
2329      begin
2330         if Is_Entity_Name (N) and then Present (Entity (N)) then
2331            E := Entity (N);
2332
2333            if Is_Formal (E) and then Scope (E) = Subp then
2334               A := Renamed_Object (E);
2335
2336               --  Rewrite the occurrence of the formal into an occurrence of
2337               --  the actual. Also establish visibility on the proper view of
2338               --  the actual's subtype for the body's context (if the actual's
2339               --  subtype is private at the call point but its full view is
2340               --  visible to the body, then the inlined tree here must be
2341               --  analyzed with the full view).
2342
2343               if Is_Entity_Name (A) then
2344                  Rewrite (N, New_Occurrence_Of (Entity (A), Sloc (N)));
2345                  Check_Private_View (N);
2346
2347               elsif Nkind (A) = N_Defining_Identifier then
2348                  Rewrite (N, New_Occurrence_Of (A, Sloc (N)));
2349                  Check_Private_View (N);
2350
2351               --  Numeric literal
2352
2353               else
2354                  Rewrite (N, New_Copy (A));
2355               end if;
2356            end if;
2357
2358            return Skip;
2359
2360         elsif Is_Entity_Name (N)
2361           and then Present (Return_Object)
2362           and then Chars (N) = Chars (Return_Object)
2363         then
2364            --  Occurrence within an extended return statement. The return
2365            --  object is local to the body been inlined, and thus the generic
2366            --  copy is not analyzed yet, so we match by name, and replace it
2367            --  with target of call.
2368
2369            if Nkind (Targ) = N_Defining_Identifier then
2370               Rewrite (N, New_Occurrence_Of (Targ, Loc));
2371            else
2372               Rewrite (N, New_Copy_Tree (Targ));
2373            end if;
2374
2375            return Skip;
2376
2377         elsif Nkind (N) = N_Simple_Return_Statement then
2378            if No (Expression (N)) then
2379               Make_Exit_Label;
2380               Rewrite (N,
2381                 Make_Goto_Statement (Loc, Name => New_Copy (Lab_Id)));
2382
2383            else
2384               if Nkind (Parent (N)) = N_Handled_Sequence_Of_Statements
2385                 and then Nkind (Parent (Parent (N))) = N_Subprogram_Body
2386               then
2387                  --  Function body is a single expression. No need for
2388                  --  exit label.
2389
2390                  null;
2391
2392               else
2393                  Num_Ret := Num_Ret + 1;
2394                  Make_Exit_Label;
2395               end if;
2396
2397               --  Because of the presence of private types, the views of the
2398               --  expression and the context may be different, so place an
2399               --  unchecked conversion to the context type to avoid spurious
2400               --  errors, e.g. when the expression is a numeric literal and
2401               --  the context is private. If the expression is an aggregate,
2402               --  use a qualified expression, because an aggregate is not a
2403               --  legal argument of a conversion. Ditto for numeric literals,
2404               --  which must be resolved to a specific type.
2405
2406               if Nkind_In (Expression (N), N_Aggregate,
2407                                            N_Null,
2408                                            N_Real_Literal,
2409                                            N_Integer_Literal)
2410               then
2411                  Ret :=
2412                    Make_Qualified_Expression (Sloc (N),
2413                      Subtype_Mark => New_Occurrence_Of (Ret_Type, Sloc (N)),
2414                      Expression   => Relocate_Node (Expression (N)));
2415               else
2416                  Ret :=
2417                    Unchecked_Convert_To
2418                      (Ret_Type, Relocate_Node (Expression (N)));
2419               end if;
2420
2421               if Nkind (Targ) = N_Defining_Identifier then
2422                  Rewrite (N,
2423                    Make_Assignment_Statement (Loc,
2424                      Name       => New_Occurrence_Of (Targ, Loc),
2425                      Expression => Ret));
2426               else
2427                  Rewrite (N,
2428                    Make_Assignment_Statement (Loc,
2429                      Name       => New_Copy (Targ),
2430                      Expression => Ret));
2431               end if;
2432
2433               Set_Assignment_OK (Name (N));
2434
2435               if Present (Exit_Lab) then
2436                  Insert_After (N,
2437                    Make_Goto_Statement (Loc, Name => New_Copy (Lab_Id)));
2438               end if;
2439            end if;
2440
2441            return OK;
2442
2443         --  An extended return becomes a block whose first statement is the
2444         --  assignment of the initial expression of the return object to the
2445         --  target of the call itself.
2446
2447         elsif Nkind (N) = N_Extended_Return_Statement then
2448            declare
2449               Return_Decl : constant Entity_Id :=
2450                               First (Return_Object_Declarations (N));
2451               Assign      : Node_Id;
2452
2453            begin
2454               Return_Object := Defining_Identifier (Return_Decl);
2455
2456               if Present (Expression (Return_Decl)) then
2457                  if Nkind (Targ) = N_Defining_Identifier then
2458                     Assign :=
2459                       Make_Assignment_Statement (Loc,
2460                         Name       => New_Occurrence_Of (Targ, Loc),
2461                         Expression => Expression (Return_Decl));
2462                  else
2463                     Assign :=
2464                       Make_Assignment_Statement (Loc,
2465                         Name       => New_Copy (Targ),
2466                         Expression => Expression (Return_Decl));
2467                  end if;
2468
2469                  Set_Assignment_OK (Name (Assign));
2470
2471                  if No (Handled_Statement_Sequence (N)) then
2472                     Set_Handled_Statement_Sequence (N,
2473                       Make_Handled_Sequence_Of_Statements (Loc,
2474                         Statements => New_List));
2475                  end if;
2476
2477                  Prepend (Assign,
2478                    Statements (Handled_Statement_Sequence (N)));
2479               end if;
2480
2481               Rewrite (N,
2482                 Make_Block_Statement (Loc,
2483                    Handled_Statement_Sequence =>
2484                      Handled_Statement_Sequence (N)));
2485
2486               return OK;
2487            end;
2488
2489         --  Remove pragma Unreferenced since it may refer to formals that
2490         --  are not visible in the inlined body, and in any case we will
2491         --  not be posting warnings on the inlined body so it is unneeded.
2492
2493         elsif Nkind (N) = N_Pragma
2494           and then Pragma_Name (N) = Name_Unreferenced
2495         then
2496            Rewrite (N, Make_Null_Statement (Sloc (N)));
2497            return OK;
2498
2499         else
2500            return OK;
2501         end if;
2502      end Process_Formals;
2503
2504      procedure Replace_Formals is new Traverse_Proc (Process_Formals);
2505
2506      ------------------
2507      -- Process_Sloc --
2508      ------------------
2509
2510      function Process_Sloc (Nod : Node_Id) return Traverse_Result is
2511      begin
2512         if not Debug_Generated_Code then
2513            Set_Sloc (Nod, Sloc (N));
2514            Set_Comes_From_Source (Nod, False);
2515         end if;
2516
2517         return OK;
2518      end Process_Sloc;
2519
2520      procedure Reset_Slocs is new Traverse_Proc (Process_Sloc);
2521
2522      ------------------------------
2523      --  Reset_Dispatching_Calls --
2524      ------------------------------
2525
2526      procedure Reset_Dispatching_Calls (N : Node_Id) is
2527
2528         function Do_Reset (N : Node_Id) return Traverse_Result;
2529         --  Comment required ???
2530
2531         --------------
2532         -- Do_Reset --
2533         --------------
2534
2535         function Do_Reset (N : Node_Id) return Traverse_Result is
2536         begin
2537            if Nkind (N) = N_Procedure_Call_Statement
2538              and then Nkind (Name (N)) = N_Selected_Component
2539              and then Nkind (Prefix (Name (N))) = N_Identifier
2540              and then Is_Formal (Entity (Prefix (Name (N))))
2541              and then Is_Dispatching_Operation
2542                         (Entity (Selector_Name (Name (N))))
2543            then
2544               Set_Entity (Selector_Name (Name (N)), Empty);
2545            end if;
2546
2547            return OK;
2548         end Do_Reset;
2549
2550         function Do_Reset_Calls is new Traverse_Func (Do_Reset);
2551
2552         --  Local variables
2553
2554         Dummy : constant Traverse_Result := Do_Reset_Calls (N);
2555         pragma Unreferenced (Dummy);
2556
2557         --  Start of processing for Reset_Dispatching_Calls
2558
2559      begin
2560         null;
2561      end Reset_Dispatching_Calls;
2562
2563      ---------------------------
2564      -- Rewrite_Function_Call --
2565      ---------------------------
2566
2567      procedure Rewrite_Function_Call (N : Node_Id; Blk : Node_Id) is
2568         HSS : constant Node_Id := Handled_Statement_Sequence (Blk);
2569         Fst : constant Node_Id := First (Statements (HSS));
2570
2571      begin
2572         --  Optimize simple case: function body is a single return statement,
2573         --  which has been expanded into an assignment.
2574
2575         if Is_Empty_List (Declarations (Blk))
2576           and then Nkind (Fst) = N_Assignment_Statement
2577           and then No (Next (Fst))
2578         then
2579            --  The function call may have been rewritten as the temporary
2580            --  that holds the result of the call, in which case remove the
2581            --  now useless declaration.
2582
2583            if Nkind (N) = N_Identifier
2584              and then Nkind (Parent (Entity (N))) = N_Object_Declaration
2585            then
2586               Rewrite (Parent (Entity (N)), Make_Null_Statement (Loc));
2587            end if;
2588
2589            Rewrite (N, Expression (Fst));
2590
2591         elsif Nkind (N) = N_Identifier
2592           and then Nkind (Parent (Entity (N))) = N_Object_Declaration
2593         then
2594            --  The block assigns the result of the call to the temporary
2595
2596            Insert_After (Parent (Entity (N)), Blk);
2597
2598         --  If the context is an assignment, and the left-hand side is free of
2599         --  side-effects, the replacement is also safe.
2600         --  Can this be generalized further???
2601
2602         elsif Nkind (Parent (N)) = N_Assignment_Statement
2603           and then
2604            (Is_Entity_Name (Name (Parent (N)))
2605              or else
2606                (Nkind (Name (Parent (N))) = N_Explicit_Dereference
2607                  and then Is_Entity_Name (Prefix (Name (Parent (N)))))
2608
2609              or else
2610                (Nkind (Name (Parent (N))) = N_Selected_Component
2611                  and then Is_Entity_Name (Prefix (Name (Parent (N))))))
2612         then
2613            --  Replace assignment with the block
2614
2615            declare
2616               Original_Assignment : constant Node_Id := Parent (N);
2617
2618            begin
2619               --  Preserve the original assignment node to keep the complete
2620               --  assignment subtree consistent enough for Analyze_Assignment
2621               --  to proceed (specifically, the original Lhs node must still
2622               --  have an assignment statement as its parent).
2623
2624               --  We cannot rely on Original_Node to go back from the block
2625               --  node to the assignment node, because the assignment might
2626               --  already be a rewrite substitution.
2627
2628               Discard_Node (Relocate_Node (Original_Assignment));
2629               Rewrite (Original_Assignment, Blk);
2630            end;
2631
2632         elsif Nkind (Parent (N)) = N_Object_Declaration then
2633
2634            --  A call to a function which returns an unconstrained type
2635            --  found in the expression initializing an object-declaration is
2636            --  expanded into a procedure call which must be added after the
2637            --  object declaration.
2638
2639            if Is_Unc_Decl and Back_End_Inlining then
2640               Insert_Action_After (Parent (N), Blk);
2641            else
2642               Set_Expression (Parent (N), Empty);
2643               Insert_After (Parent (N), Blk);
2644            end if;
2645
2646         elsif Is_Unc and then not Back_End_Inlining then
2647            Insert_Before (Parent (N), Blk);
2648         end if;
2649      end Rewrite_Function_Call;
2650
2651      ----------------------------
2652      -- Rewrite_Procedure_Call --
2653      ----------------------------
2654
2655      procedure Rewrite_Procedure_Call (N : Node_Id; Blk : Node_Id) is
2656         HSS  : constant Node_Id := Handled_Statement_Sequence (Blk);
2657
2658      begin
2659         --  If there is a transient scope for N, this will be the scope of the
2660         --  actions for N, and the statements in Blk need to be within this
2661         --  scope. For example, they need to have visibility on the constant
2662         --  declarations created for the formals.
2663
2664         --  If N needs no transient scope, and if there are no declarations in
2665         --  the inlined body, we can do a little optimization and insert the
2666         --  statements for the body directly after N, and rewrite N to a
2667         --  null statement, instead of rewriting N into a full-blown block
2668         --  statement.
2669
2670         if not Scope_Is_Transient
2671           and then Is_Empty_List (Declarations (Blk))
2672         then
2673            Insert_List_After (N, Statements (HSS));
2674            Rewrite (N, Make_Null_Statement (Loc));
2675         else
2676            Rewrite (N, Blk);
2677         end if;
2678      end Rewrite_Procedure_Call;
2679
2680      -------------------------
2681      -- Formal_Is_Used_Once --
2682      -------------------------
2683
2684      function Formal_Is_Used_Once (Formal : Entity_Id) return Boolean is
2685         Use_Counter : Int := 0;
2686
2687         function Count_Uses (N : Node_Id) return Traverse_Result;
2688         --  Traverse the tree and count the uses of the formal parameter.
2689         --  In this case, for optimization purposes, we do not need to
2690         --  continue the traversal once more than one use is encountered.
2691
2692         ----------------
2693         -- Count_Uses --
2694         ----------------
2695
2696         function Count_Uses (N : Node_Id) return Traverse_Result is
2697         begin
2698            --  The original node is an identifier
2699
2700            if Nkind (N) = N_Identifier
2701              and then Present (Entity (N))
2702
2703               --  Original node's entity points to the one in the copied body
2704
2705              and then Nkind (Entity (N)) = N_Identifier
2706              and then Present (Entity (Entity (N)))
2707
2708               --  The entity of the copied node is the formal parameter
2709
2710              and then Entity (Entity (N)) = Formal
2711            then
2712               Use_Counter := Use_Counter + 1;
2713
2714               if Use_Counter > 1 then
2715
2716                  --  Denote more than one use and abandon the traversal
2717
2718                  Use_Counter := 2;
2719                  return Abandon;
2720
2721               end if;
2722            end if;
2723
2724            return OK;
2725         end Count_Uses;
2726
2727         procedure Count_Formal_Uses is new Traverse_Proc (Count_Uses);
2728
2729      --  Start of processing for Formal_Is_Used_Once
2730
2731      begin
2732         Count_Formal_Uses (Orig_Bod);
2733         return Use_Counter = 1;
2734      end Formal_Is_Used_Once;
2735
2736   --  Start of processing for Expand_Inlined_Call
2737
2738   begin
2739      --  Initializations for old/new semantics
2740
2741      if not Back_End_Inlining then
2742         Is_Unc      := Is_Array_Type (Etype (Subp))
2743                          and then not Is_Constrained (Etype (Subp));
2744         Is_Unc_Decl := False;
2745      else
2746         Is_Unc      := Returns_Unconstrained_Type (Subp)
2747                          and then Optimization_Level > 0;
2748         Is_Unc_Decl := Nkind (Parent (N)) = N_Object_Declaration
2749                          and then Is_Unc;
2750      end if;
2751
2752      --  Check for an illegal attempt to inline a recursive procedure. If the
2753      --  subprogram has parameters this is detected when trying to supply a
2754      --  binding for parameters that already have one. For parameterless
2755      --  subprograms this must be done explicitly.
2756
2757      if In_Open_Scopes (Subp) then
2758         Error_Msg_N ("call to recursive subprogram cannot be inlined??", N);
2759         Set_Is_Inlined (Subp, False);
2760
2761         --  In GNATprove mode, issue a warning, and indicate that the
2762         --  subprogram is not always inlined by setting flag Is_Inlined_Always
2763         --  to False.
2764
2765         if GNATprove_Mode then
2766            Set_Is_Inlined_Always (Subp, False);
2767         end if;
2768
2769         return;
2770
2771      --  Skip inlining if this is not a true inlining since the attribute
2772      --  Body_To_Inline is also set for renamings (see sinfo.ads). For a
2773      --  true inlining, Orig_Bod has code rather than being an entity.
2774
2775      elsif Nkind (Orig_Bod) in N_Entity then
2776         return;
2777
2778      --  Skip inlining if the function returns an unconstrained type using
2779      --  an extended return statement since this part of the new inlining
2780      --  model which is not yet supported by the current implementation. ???
2781
2782      elsif Is_Unc
2783        and then
2784          Nkind (First (Statements (Handled_Statement_Sequence (Orig_Bod))))
2785            = N_Extended_Return_Statement
2786        and then not Back_End_Inlining
2787      then
2788         return;
2789      end if;
2790
2791      if Nkind (Orig_Bod) = N_Defining_Identifier
2792        or else Nkind (Orig_Bod) = N_Defining_Operator_Symbol
2793      then
2794         --  Subprogram is renaming_as_body. Calls occurring after the renaming
2795         --  can be replaced with calls to the renamed entity directly, because
2796         --  the subprograms are subtype conformant. If the renamed subprogram
2797         --  is an inherited operation, we must redo the expansion because
2798         --  implicit conversions may be needed. Similarly, if the renamed
2799         --  entity is inlined, expand the call for further optimizations.
2800
2801         Set_Name (N, New_Occurrence_Of (Orig_Bod, Loc));
2802
2803         if Present (Alias (Orig_Bod)) or else Is_Inlined (Orig_Bod) then
2804            Expand_Call (N);
2805         end if;
2806
2807         return;
2808      end if;
2809
2810      --  Register the call in the list of inlined calls
2811
2812      Append_New_Elmt (N, To => Inlined_Calls);
2813
2814      --  Use generic machinery to copy body of inlined subprogram, as if it
2815      --  were an instantiation, resetting source locations appropriately, so
2816      --  that nested inlined calls appear in the main unit.
2817
2818      Save_Env (Subp, Empty);
2819      Set_Copied_Sloc_For_Inlined_Body (N, Defining_Entity (Orig_Bod));
2820
2821      --  Old semantics
2822
2823      if not Back_End_Inlining then
2824         declare
2825            Bod : Node_Id;
2826
2827         begin
2828            Bod := Copy_Generic_Node (Orig_Bod, Empty, Instantiating => True);
2829            Blk :=
2830              Make_Block_Statement (Loc,
2831                Declarations               => Declarations (Bod),
2832                Handled_Statement_Sequence =>
2833                  Handled_Statement_Sequence (Bod));
2834
2835            if No (Declarations (Bod)) then
2836               Set_Declarations (Blk, New_List);
2837            end if;
2838
2839            --  For the unconstrained case, capture the name of the local
2840            --  variable that holds the result. This must be the first
2841            --  declaration in the block, because its bounds cannot depend
2842            --  on local variables. Otherwise there is no way to declare the
2843            --  result outside of the block. Needless to say, in general the
2844            --  bounds will depend on the actuals in the call.
2845
2846            --  If the context is an assignment statement, as is the case
2847            --  for the expansion of an extended return, the left-hand side
2848            --  provides bounds even if the return type is unconstrained.
2849
2850            if Is_Unc then
2851               declare
2852                  First_Decl : Node_Id;
2853
2854               begin
2855                  First_Decl := First (Declarations (Blk));
2856
2857                  if Nkind (First_Decl) /= N_Object_Declaration then
2858                     return;
2859                  end if;
2860
2861                  if Nkind (Parent (N)) /= N_Assignment_Statement then
2862                     Targ1 := Defining_Identifier (First_Decl);
2863                  else
2864                     Targ1 := Name (Parent (N));
2865                  end if;
2866               end;
2867            end if;
2868         end;
2869
2870      --  New semantics
2871
2872      else
2873         declare
2874            Bod : Node_Id;
2875
2876         begin
2877            --  General case
2878
2879            if not Is_Unc then
2880               Bod :=
2881                 Copy_Generic_Node (Orig_Bod, Empty, Instantiating => True);
2882               Blk :=
2883                 Make_Block_Statement (Loc,
2884                   Declarations               => Declarations (Bod),
2885                   Handled_Statement_Sequence =>
2886                     Handled_Statement_Sequence (Bod));
2887
2888            --  Inline a call to a function that returns an unconstrained type.
2889            --  The semantic analyzer checked that frontend-inlined functions
2890            --  returning unconstrained types have no declarations and have
2891            --  a single extended return statement. As part of its processing
2892            --  the function was split in two subprograms: a procedure P and
2893            --  a function F that has a block with a call to procedure P (see
2894            --  Split_Unconstrained_Function).
2895
2896            else
2897               pragma Assert
2898                 (Nkind
2899                   (First
2900                     (Statements (Handled_Statement_Sequence (Orig_Bod)))) =
2901                                                         N_Block_Statement);
2902
2903               declare
2904                  Blk_Stmt    : constant Node_Id :=
2905                    First (Statements (Handled_Statement_Sequence (Orig_Bod)));
2906                  First_Stmt  : constant Node_Id :=
2907                    First (Statements (Handled_Statement_Sequence (Blk_Stmt)));
2908                  Second_Stmt : constant Node_Id := Next (First_Stmt);
2909
2910               begin
2911                  pragma Assert
2912                    (Nkind (First_Stmt) = N_Procedure_Call_Statement
2913                      and then Nkind (Second_Stmt) = N_Simple_Return_Statement
2914                      and then No (Next (Second_Stmt)));
2915
2916                  Bod :=
2917                    Copy_Generic_Node
2918                      (First
2919                        (Statements (Handled_Statement_Sequence (Orig_Bod))),
2920                       Empty, Instantiating => True);
2921                  Blk := Bod;
2922
2923                  --  Capture the name of the local variable that holds the
2924                  --  result. This must be the first declaration in the block,
2925                  --  because its bounds cannot depend on local variables.
2926                  --  Otherwise there is no way to declare the result outside
2927                  --  of the block. Needless to say, in general the bounds will
2928                  --  depend on the actuals in the call.
2929
2930                  if Nkind (Parent (N)) /= N_Assignment_Statement then
2931                     Targ1 := Defining_Identifier (First (Declarations (Blk)));
2932
2933                  --  If the context is an assignment statement, as is the case
2934                  --  for the expansion of an extended return, the left-hand
2935                  --  side provides bounds even if the return type is
2936                  --  unconstrained.
2937
2938                  else
2939                     Targ1 := Name (Parent (N));
2940                  end if;
2941               end;
2942            end if;
2943
2944            if No (Declarations (Bod)) then
2945               Set_Declarations (Blk, New_List);
2946            end if;
2947         end;
2948      end if;
2949
2950      --  If this is a derived function, establish the proper return type
2951
2952      if Present (Orig_Subp) and then Orig_Subp /= Subp then
2953         Ret_Type := Etype (Orig_Subp);
2954      else
2955         Ret_Type := Etype (Subp);
2956      end if;
2957
2958      --  Create temporaries for the actuals that are expressions, or that are
2959      --  scalars and require copying to preserve semantics.
2960
2961      F := First_Formal (Subp);
2962      A := First_Actual (N);
2963      while Present (F) loop
2964         if Present (Renamed_Object (F)) then
2965
2966            --  If expander is active, it is an error to try to inline a
2967            --  recursive program. In GNATprove mode, just indicate that the
2968            --  inlining will not happen, and mark the subprogram as not always
2969            --  inlined.
2970
2971            if GNATprove_Mode then
2972               Cannot_Inline
2973                 ("cannot inline call to recursive subprogram?", N, Subp);
2974               Set_Is_Inlined_Always (Subp, False);
2975            else
2976               Error_Msg_N
2977                 ("cannot inline call to recursive subprogram", N);
2978            end if;
2979
2980            return;
2981         end if;
2982
2983         --  Reset Last_Assignment for any parameters of mode out or in out, to
2984         --  prevent spurious warnings about overwriting for assignments to the
2985         --  formal in the inlined code.
2986
2987         if Is_Entity_Name (A) and then Ekind (F) /= E_In_Parameter then
2988            Set_Last_Assignment (Entity (A), Empty);
2989         end if;
2990
2991         --  If the argument may be a controlling argument in a call within
2992         --  the inlined body, we must preserve its classwide nature to insure
2993         --  that dynamic dispatching take place subsequently. If the formal
2994         --  has a constraint it must be preserved to retain the semantics of
2995         --  the body.
2996
2997         if Is_Class_Wide_Type (Etype (F))
2998           or else (Is_Access_Type (Etype (F))
2999                     and then Is_Class_Wide_Type (Designated_Type (Etype (F))))
3000         then
3001            Temp_Typ := Etype (F);
3002
3003         elsif Base_Type (Etype (F)) = Base_Type (Etype (A))
3004           and then Etype (F) /= Base_Type (Etype (F))
3005         then
3006            Temp_Typ := Etype (F);
3007         else
3008            Temp_Typ := Etype (A);
3009         end if;
3010
3011         --  If the actual is a simple name or a literal, no need to
3012         --  create a temporary, object can be used directly.
3013
3014         --  If the actual is a literal and the formal has its address taken,
3015         --  we cannot pass the literal itself as an argument, so its value
3016         --  must be captured in a temporary.
3017
3018         if (Is_Entity_Name (A)
3019              and then
3020               (not Is_Scalar_Type (Etype (A))
3021                 or else Ekind (Entity (A)) = E_Enumeration_Literal))
3022
3023         --  When the actual is an identifier and the corresponding formal is
3024         --  used only once in the original body, the formal can be substituted
3025         --  directly with the actual parameter.
3026
3027           or else (Nkind (A) = N_Identifier
3028             and then Formal_Is_Used_Once (F))
3029
3030           or else
3031             (Nkind_In (A, N_Real_Literal,
3032                           N_Integer_Literal,
3033                           N_Character_Literal)
3034               and then not Address_Taken (F))
3035         then
3036            if Etype (F) /= Etype (A) then
3037               Set_Renamed_Object
3038                 (F, Unchecked_Convert_To (Etype (F), Relocate_Node (A)));
3039            else
3040               Set_Renamed_Object (F, A);
3041            end if;
3042
3043         else
3044            Temp := Make_Temporary (Loc, 'C');
3045
3046            --  If the actual for an in/in-out parameter is a view conversion,
3047            --  make it into an unchecked conversion, given that an untagged
3048            --  type conversion is not a proper object for a renaming.
3049
3050            --  In-out conversions that involve real conversions have already
3051            --  been transformed in Expand_Actuals.
3052
3053            if Nkind (A) = N_Type_Conversion
3054              and then Ekind (F) /= E_In_Parameter
3055            then
3056               New_A :=
3057                 Make_Unchecked_Type_Conversion (Loc,
3058                   Subtype_Mark => New_Occurrence_Of (Etype (F), Loc),
3059                   Expression   => Relocate_Node (Expression (A)));
3060
3061            elsif Etype (F) /= Etype (A) then
3062               New_A := Unchecked_Convert_To (Etype (F), Relocate_Node (A));
3063               Temp_Typ := Etype (F);
3064
3065            else
3066               New_A := Relocate_Node (A);
3067            end if;
3068
3069            Set_Sloc (New_A, Sloc (N));
3070
3071            --  If the actual has a by-reference type, it cannot be copied,
3072            --  so its value is captured in a renaming declaration. Otherwise
3073            --  declare a local constant initialized with the actual.
3074
3075            --  We also use a renaming declaration for expressions of an array
3076            --  type that is not bit-packed, both for efficiency reasons and to
3077            --  respect the semantics of the call: in most cases the original
3078            --  call will pass the parameter by reference, and thus the inlined
3079            --  code will have the same semantics.
3080
3081            --  Finally, we need a renaming declaration in the case of limited
3082            --  types for which initialization cannot be by copy either.
3083
3084            if Ekind (F) = E_In_Parameter
3085              and then not Is_By_Reference_Type (Etype (A))
3086              and then not Is_Limited_Type (Etype (A))
3087              and then
3088                (not Is_Array_Type (Etype (A))
3089                  or else not Is_Object_Reference (A)
3090                  or else Is_Bit_Packed_Array (Etype (A)))
3091            then
3092               Decl :=
3093                 Make_Object_Declaration (Loc,
3094                   Defining_Identifier => Temp,
3095                   Constant_Present    => True,
3096                   Object_Definition   => New_Occurrence_Of (Temp_Typ, Loc),
3097                   Expression          => New_A);
3098            else
3099               Decl :=
3100                 Make_Object_Renaming_Declaration (Loc,
3101                   Defining_Identifier => Temp,
3102                   Subtype_Mark        => New_Occurrence_Of (Temp_Typ, Loc),
3103                   Name                => New_A);
3104            end if;
3105
3106            Append (Decl, Decls);
3107            Set_Renamed_Object (F, Temp);
3108         end if;
3109
3110         Next_Formal (F);
3111         Next_Actual (A);
3112      end loop;
3113
3114      --  Establish target of function call. If context is not assignment or
3115      --  declaration, create a temporary as a target. The declaration for the
3116      --  temporary may be subsequently optimized away if the body is a single
3117      --  expression, or if the left-hand side of the assignment is simple
3118      --  enough, i.e. an entity or an explicit dereference of one.
3119
3120      if Ekind (Subp) = E_Function then
3121         if Nkind (Parent (N)) = N_Assignment_Statement
3122           and then Is_Entity_Name (Name (Parent (N)))
3123         then
3124            Targ := Name (Parent (N));
3125
3126         elsif Nkind (Parent (N)) = N_Assignment_Statement
3127           and then Nkind (Name (Parent (N))) = N_Explicit_Dereference
3128           and then Is_Entity_Name (Prefix (Name (Parent (N))))
3129         then
3130            Targ := Name (Parent (N));
3131
3132         elsif Nkind (Parent (N)) = N_Assignment_Statement
3133           and then Nkind (Name (Parent (N))) = N_Selected_Component
3134           and then Is_Entity_Name (Prefix (Name (Parent (N))))
3135         then
3136            Targ := New_Copy_Tree (Name (Parent (N)));
3137
3138         elsif Nkind (Parent (N)) = N_Object_Declaration
3139           and then Is_Limited_Type (Etype (Subp))
3140         then
3141            Targ := Defining_Identifier (Parent (N));
3142
3143         --  New semantics: In an object declaration avoid an extra copy
3144         --  of the result of a call to an inlined function that returns
3145         --  an unconstrained type
3146
3147         elsif Back_End_Inlining
3148           and then Nkind (Parent (N)) = N_Object_Declaration
3149           and then Is_Unc
3150         then
3151            Targ := Defining_Identifier (Parent (N));
3152
3153         else
3154            --  Replace call with temporary and create its declaration
3155
3156            Temp := Make_Temporary (Loc, 'C');
3157            Set_Is_Internal (Temp);
3158
3159            --  For the unconstrained case, the generated temporary has the
3160            --  same constrained declaration as the result variable. It may
3161            --  eventually be possible to remove that temporary and use the
3162            --  result variable directly.
3163
3164            if Is_Unc and then Nkind (Parent (N)) /= N_Assignment_Statement
3165            then
3166               Decl :=
3167                 Make_Object_Declaration (Loc,
3168                   Defining_Identifier => Temp,
3169                   Object_Definition   =>
3170                     New_Copy_Tree (Object_Definition (Parent (Targ1))));
3171
3172               Replace_Formals (Decl);
3173
3174            else
3175               Decl :=
3176                 Make_Object_Declaration (Loc,
3177                   Defining_Identifier => Temp,
3178                   Object_Definition   => New_Occurrence_Of (Ret_Type, Loc));
3179
3180               Set_Etype (Temp, Ret_Type);
3181            end if;
3182
3183            Set_No_Initialization (Decl);
3184            Append (Decl, Decls);
3185            Rewrite (N, New_Occurrence_Of (Temp, Loc));
3186            Targ := Temp;
3187         end if;
3188      end if;
3189
3190      Insert_Actions (N, Decls);
3191
3192      if Is_Unc_Decl then
3193
3194         --  Special management for inlining a call to a function that returns
3195         --  an unconstrained type and initializes an object declaration: we
3196         --  avoid generating undesired extra calls and goto statements.
3197
3198         --     Given:
3199         --                 function Func (...) return ...
3200         --                 begin
3201         --                    declare
3202         --                       Result : String (1 .. 4);
3203         --                    begin
3204         --                       Proc (Result, ...);
3205         --                       return Result;
3206         --                    end;
3207         --                 end F;
3208
3209         --                 Result : String := Func (...);
3210
3211         --     Replace this object declaration by:
3212
3213         --                 Result : String (1 .. 4);
3214         --                 Proc (Result, ...);
3215
3216         Remove_Homonym (Targ);
3217
3218         Decl :=
3219           Make_Object_Declaration
3220             (Loc,
3221              Defining_Identifier => Targ,
3222              Object_Definition   =>
3223                New_Copy_Tree (Object_Definition (Parent (Targ1))));
3224         Replace_Formals (Decl);
3225         Rewrite (Parent (N), Decl);
3226         Analyze (Parent (N));
3227
3228         --  Avoid spurious warnings since we know that this declaration is
3229         --  referenced by the procedure call.
3230
3231         Set_Never_Set_In_Source (Targ, False);
3232
3233         --  Remove the local declaration of the extended return stmt from the
3234         --  inlined code
3235
3236         Remove (Parent (Targ1));
3237
3238         --  Update the reference to the result (since we have rewriten the
3239         --  object declaration)
3240
3241         declare
3242            Blk_Call_Stmt : Node_Id;
3243
3244         begin
3245            --  Capture the call to the procedure
3246
3247            Blk_Call_Stmt :=
3248              First (Statements (Handled_Statement_Sequence (Blk)));
3249            pragma Assert
3250              (Nkind (Blk_Call_Stmt) = N_Procedure_Call_Statement);
3251
3252            Remove (First (Parameter_Associations (Blk_Call_Stmt)));
3253            Prepend_To (Parameter_Associations (Blk_Call_Stmt),
3254              New_Occurrence_Of (Targ, Loc));
3255         end;
3256
3257         --  Remove the return statement
3258
3259         pragma Assert
3260           (Nkind (Last (Statements (Handled_Statement_Sequence (Blk)))) =
3261                                                   N_Simple_Return_Statement);
3262
3263         Remove (Last (Statements (Handled_Statement_Sequence (Blk))));
3264      end if;
3265
3266      --  Traverse the tree and replace formals with actuals or their thunks.
3267      --  Attach block to tree before analysis and rewriting.
3268
3269      Replace_Formals (Blk);
3270      Set_Parent (Blk, N);
3271
3272      if GNATprove_Mode then
3273         null;
3274
3275      elsif not Comes_From_Source (Subp) or else Is_Predef then
3276         Reset_Slocs (Blk);
3277      end if;
3278
3279      if Is_Unc_Decl then
3280
3281         --  No action needed since return statement has been already removed
3282
3283         null;
3284
3285      elsif Present (Exit_Lab) then
3286
3287         --  If the body was a single expression, the single return statement
3288         --  and the corresponding label are useless.
3289
3290         if Num_Ret = 1
3291           and then
3292             Nkind (Last (Statements (Handled_Statement_Sequence (Blk)))) =
3293                                                            N_Goto_Statement
3294         then
3295            Remove (Last (Statements (Handled_Statement_Sequence (Blk))));
3296         else
3297            Append (Lab_Decl, (Declarations (Blk)));
3298            Append (Exit_Lab, Statements (Handled_Statement_Sequence (Blk)));
3299         end if;
3300      end if;
3301
3302      --  Analyze Blk with In_Inlined_Body set, to avoid spurious errors
3303      --  on conflicting private views that Gigi would ignore. If this is a
3304      --  predefined unit, analyze with checks off, as is done in the non-
3305      --  inlined run-time units.
3306
3307      declare
3308         I_Flag : constant Boolean := In_Inlined_Body;
3309
3310      begin
3311         In_Inlined_Body := True;
3312
3313         if Is_Predef then
3314            declare
3315               Style : constant Boolean := Style_Check;
3316
3317            begin
3318               Style_Check := False;
3319
3320               --  Search for dispatching calls that use the Object.Operation
3321               --  notation using an Object that is a parameter of the inlined
3322               --  function. We reset the decoration of Operation to force
3323               --  the reanalysis of the inlined dispatching call because
3324               --  the actual object has been inlined.
3325
3326               Reset_Dispatching_Calls (Blk);
3327
3328               Analyze (Blk, Suppress => All_Checks);
3329               Style_Check := Style;
3330            end;
3331
3332         else
3333            Analyze (Blk);
3334         end if;
3335
3336         In_Inlined_Body := I_Flag;
3337      end;
3338
3339      if Ekind (Subp) = E_Procedure then
3340         Rewrite_Procedure_Call (N, Blk);
3341
3342      else
3343         Rewrite_Function_Call (N, Blk);
3344
3345         if Is_Unc_Decl then
3346            null;
3347
3348         --  For the unconstrained case, the replacement of the call has been
3349         --  made prior to the complete analysis of the generated declarations.
3350         --  Propagate the proper type now.
3351
3352         elsif Is_Unc then
3353            if Nkind (N) = N_Identifier then
3354               Set_Etype (N, Etype (Entity (N)));
3355            else
3356               Set_Etype (N, Etype (Targ1));
3357            end if;
3358         end if;
3359      end if;
3360
3361      Restore_Env;
3362
3363      --  Cleanup mapping between formals and actuals for other expansions
3364
3365      F := First_Formal (Subp);
3366      while Present (F) loop
3367         Set_Renamed_Object (F, Empty);
3368         Next_Formal (F);
3369      end loop;
3370   end Expand_Inlined_Call;
3371
3372   --------------------------
3373   -- Get_Code_Unit_Entity --
3374   --------------------------
3375
3376   function Get_Code_Unit_Entity (E : Entity_Id) return Entity_Id is
3377      Unit : Entity_Id := Cunit_Entity (Get_Code_Unit (E));
3378
3379   begin
3380      if Ekind (Unit) = E_Package_Body then
3381         Unit := Spec_Entity (Unit);
3382      end if;
3383
3384      return Unit;
3385   end Get_Code_Unit_Entity;
3386
3387   ------------------------------
3388   -- Has_Excluded_Declaration --
3389   ------------------------------
3390
3391   function Has_Excluded_Declaration
3392     (Subp  : Entity_Id;
3393      Decls : List_Id) return Boolean
3394   is
3395      D : Node_Id;
3396
3397      function Is_Unchecked_Conversion (D : Node_Id) return Boolean;
3398      --  Nested subprograms make a given body ineligible for inlining, but
3399      --  we make an exception for instantiations of unchecked conversion.
3400      --  The body has not been analyzed yet, so check the name, and verify
3401      --  that the visible entity with that name is the predefined unit.
3402
3403      -----------------------------
3404      -- Is_Unchecked_Conversion --
3405      -----------------------------
3406
3407      function Is_Unchecked_Conversion (D : Node_Id) return Boolean is
3408         Id   : constant Node_Id := Name (D);
3409         Conv : Entity_Id;
3410
3411      begin
3412         if Nkind (Id) = N_Identifier
3413           and then Chars (Id) = Name_Unchecked_Conversion
3414         then
3415            Conv := Current_Entity (Id);
3416
3417         elsif Nkind_In (Id, N_Selected_Component, N_Expanded_Name)
3418           and then Chars (Selector_Name (Id)) = Name_Unchecked_Conversion
3419         then
3420            Conv := Current_Entity (Selector_Name (Id));
3421         else
3422            return False;
3423         end if;
3424
3425         return Present (Conv)
3426           and then Is_Predefined_File_Name
3427                      (Unit_File_Name (Get_Source_Unit (Conv)))
3428           and then Is_Intrinsic_Subprogram (Conv);
3429      end Is_Unchecked_Conversion;
3430
3431   --  Start of processing for Has_Excluded_Declaration
3432
3433   begin
3434      --  No action needed if the check is not needed
3435
3436      if not Check_Inlining_Restrictions then
3437         return False;
3438      end if;
3439
3440      D := First (Decls);
3441      while Present (D) loop
3442
3443         --  First declarations universally excluded
3444
3445         if Nkind (D) = N_Package_Declaration then
3446            Cannot_Inline
3447              ("cannot inline & (nested package declaration)?", D, Subp);
3448            return True;
3449
3450         elsif Nkind (D) = N_Package_Instantiation then
3451            Cannot_Inline
3452              ("cannot inline & (nested package instantiation)?", D, Subp);
3453            return True;
3454         end if;
3455
3456         --  Then declarations excluded only for front end inlining
3457
3458         if Back_End_Inlining then
3459            null;
3460
3461         elsif Nkind (D) = N_Task_Type_Declaration
3462           or else Nkind (D) = N_Single_Task_Declaration
3463         then
3464            Cannot_Inline
3465              ("cannot inline & (nested task type declaration)?", D, Subp);
3466            return True;
3467
3468         elsif Nkind (D) = N_Protected_Type_Declaration
3469           or else Nkind (D) = N_Single_Protected_Declaration
3470         then
3471            Cannot_Inline
3472              ("cannot inline & (nested protected type declaration)?",
3473               D, Subp);
3474            return True;
3475
3476         elsif Nkind (D) = N_Subprogram_Body then
3477            Cannot_Inline
3478              ("cannot inline & (nested subprogram)?", D, Subp);
3479            return True;
3480
3481         elsif Nkind (D) = N_Function_Instantiation
3482           and then not Is_Unchecked_Conversion (D)
3483         then
3484            Cannot_Inline
3485              ("cannot inline & (nested function instantiation)?", D, Subp);
3486            return True;
3487
3488         elsif Nkind (D) = N_Procedure_Instantiation then
3489            Cannot_Inline
3490              ("cannot inline & (nested procedure instantiation)?", D, Subp);
3491            return True;
3492
3493         --  Subtype declarations with predicates will generate predicate
3494         --  functions, i.e. nested subprogram bodies, so inlining is not
3495         --  possible.
3496
3497         elsif Nkind (D) = N_Subtype_Declaration
3498           and then Present (Aspect_Specifications (D))
3499         then
3500            declare
3501               A    : Node_Id;
3502               A_Id : Aspect_Id;
3503
3504            begin
3505               A := First (Aspect_Specifications (D));
3506               while Present (A) loop
3507                  A_Id := Get_Aspect_Id (Chars (Identifier (A)));
3508
3509                  if A_Id = Aspect_Predicate
3510                    or else A_Id = Aspect_Static_Predicate
3511                    or else A_Id = Aspect_Dynamic_Predicate
3512                  then
3513                     Cannot_Inline
3514                       ("cannot inline & (subtype declaration with "
3515                        & "predicate)?", D, Subp);
3516                     return True;
3517                  end if;
3518
3519                  Next (A);
3520               end loop;
3521            end;
3522         end if;
3523
3524         Next (D);
3525      end loop;
3526
3527      return False;
3528   end Has_Excluded_Declaration;
3529
3530   ----------------------------
3531   -- Has_Excluded_Statement --
3532   ----------------------------
3533
3534   function Has_Excluded_Statement
3535     (Subp  : Entity_Id;
3536      Stats : List_Id) return Boolean
3537   is
3538      S : Node_Id;
3539      E : Node_Id;
3540
3541   begin
3542      --  No action needed if the check is not needed
3543
3544      if not Check_Inlining_Restrictions then
3545         return False;
3546      end if;
3547
3548      S := First (Stats);
3549      while Present (S) loop
3550         if Nkind_In (S, N_Abort_Statement,
3551                         N_Asynchronous_Select,
3552                         N_Conditional_Entry_Call,
3553                         N_Delay_Relative_Statement,
3554                         N_Delay_Until_Statement,
3555                         N_Selective_Accept,
3556                         N_Timed_Entry_Call)
3557         then
3558            Cannot_Inline
3559              ("cannot inline & (non-allowed statement)?", S, Subp);
3560            return True;
3561
3562         elsif Nkind (S) = N_Block_Statement then
3563            if Present (Declarations (S))
3564              and then Has_Excluded_Declaration (Subp, Declarations (S))
3565            then
3566               return True;
3567
3568            elsif Present (Handled_Statement_Sequence (S)) then
3569               if not Back_End_Inlining
3570                 and then
3571                   Present
3572                     (Exception_Handlers (Handled_Statement_Sequence (S)))
3573               then
3574                  Cannot_Inline
3575                    ("cannot inline& (exception handler)?",
3576                     First (Exception_Handlers
3577                              (Handled_Statement_Sequence (S))),
3578                     Subp);
3579                  return True;
3580
3581               elsif Has_Excluded_Statement
3582                       (Subp, Statements (Handled_Statement_Sequence (S)))
3583               then
3584                  return True;
3585               end if;
3586            end if;
3587
3588         elsif Nkind (S) = N_Case_Statement then
3589            E := First (Alternatives (S));
3590            while Present (E) loop
3591               if Has_Excluded_Statement (Subp, Statements (E)) then
3592                  return True;
3593               end if;
3594
3595               Next (E);
3596            end loop;
3597
3598         elsif Nkind (S) = N_If_Statement then
3599            if Has_Excluded_Statement (Subp, Then_Statements (S)) then
3600               return True;
3601            end if;
3602
3603            if Present (Elsif_Parts (S)) then
3604               E := First (Elsif_Parts (S));
3605               while Present (E) loop
3606                  if Has_Excluded_Statement (Subp, Then_Statements (E)) then
3607                     return True;
3608                  end if;
3609
3610                  Next (E);
3611               end loop;
3612            end if;
3613
3614            if Present (Else_Statements (S))
3615              and then Has_Excluded_Statement (Subp, Else_Statements (S))
3616            then
3617               return True;
3618            end if;
3619
3620         elsif Nkind (S) = N_Loop_Statement
3621           and then Has_Excluded_Statement (Subp, Statements (S))
3622         then
3623            return True;
3624
3625         elsif Nkind (S) = N_Extended_Return_Statement then
3626            if Present (Handled_Statement_Sequence (S))
3627              and then
3628                Has_Excluded_Statement
3629                  (Subp, Statements (Handled_Statement_Sequence (S)))
3630            then
3631               return True;
3632
3633            elsif not Back_End_Inlining
3634              and then Present (Handled_Statement_Sequence (S))
3635              and then
3636                Present (Exception_Handlers
3637                          (Handled_Statement_Sequence (S)))
3638            then
3639               Cannot_Inline
3640                 ("cannot inline& (exception handler)?",
3641                  First (Exception_Handlers (Handled_Statement_Sequence (S))),
3642                  Subp);
3643               return True;
3644            end if;
3645         end if;
3646
3647         Next (S);
3648      end loop;
3649
3650      return False;
3651   end Has_Excluded_Statement;
3652
3653   --------------------------
3654   -- Has_Initialized_Type --
3655   --------------------------
3656
3657   function Has_Initialized_Type (E : Entity_Id) return Boolean is
3658      E_Body : constant Node_Id := Subprogram_Body (E);
3659      Decl   : Node_Id;
3660
3661   begin
3662      if No (E_Body) then        --  imported subprogram
3663         return False;
3664
3665      else
3666         Decl := First (Declarations (E_Body));
3667         while Present (Decl) loop
3668            if Nkind (Decl) = N_Full_Type_Declaration
3669              and then Present (Init_Proc (Defining_Identifier (Decl)))
3670            then
3671               return True;
3672            end if;
3673
3674            Next (Decl);
3675         end loop;
3676      end if;
3677
3678      return False;
3679   end Has_Initialized_Type;
3680
3681   -----------------------
3682   -- Has_Single_Return --
3683   -----------------------
3684
3685   function Has_Single_Return (N : Node_Id) return Boolean is
3686      Return_Statement : Node_Id := Empty;
3687
3688      function Check_Return (N : Node_Id) return Traverse_Result;
3689
3690      ------------------
3691      -- Check_Return --
3692      ------------------
3693
3694      function Check_Return (N : Node_Id) return Traverse_Result is
3695      begin
3696         if Nkind (N) = N_Simple_Return_Statement then
3697            if Present (Expression (N))
3698              and then Is_Entity_Name (Expression (N))
3699            then
3700               if No (Return_Statement) then
3701                  Return_Statement := N;
3702                  return OK;
3703
3704               elsif Chars (Expression (N)) =
3705                     Chars (Expression (Return_Statement))
3706               then
3707                  return OK;
3708
3709               else
3710                  return Abandon;
3711               end if;
3712
3713            --  A return statement within an extended return is a noop
3714            --  after inlining.
3715
3716            elsif No (Expression (N))
3717              and then
3718                Nkind (Parent (Parent (N))) = N_Extended_Return_Statement
3719            then
3720               return OK;
3721
3722            else
3723               --  Expression has wrong form
3724
3725               return Abandon;
3726            end if;
3727
3728         --  We can only inline a build-in-place function if it has a single
3729         --  extended return.
3730
3731         elsif Nkind (N) = N_Extended_Return_Statement then
3732            if No (Return_Statement) then
3733               Return_Statement := N;
3734               return OK;
3735
3736            else
3737               return Abandon;
3738            end if;
3739
3740         else
3741            return OK;
3742         end if;
3743      end Check_Return;
3744
3745      function Check_All_Returns is new Traverse_Func (Check_Return);
3746
3747   --  Start of processing for Has_Single_Return
3748
3749   begin
3750      if Check_All_Returns (N) /= OK then
3751         return False;
3752
3753      elsif Nkind (Return_Statement) = N_Extended_Return_Statement then
3754         return True;
3755
3756      else
3757         return Present (Declarations (N))
3758           and then Present (First (Declarations (N)))
3759           and then Chars (Expression (Return_Statement)) =
3760                    Chars (Defining_Identifier (First (Declarations (N))));
3761      end if;
3762   end Has_Single_Return;
3763
3764   -----------------------------
3765   -- In_Main_Unit_Or_Subunit --
3766   -----------------------------
3767
3768   function In_Main_Unit_Or_Subunit (E : Entity_Id) return Boolean is
3769      Comp : Node_Id := Cunit (Get_Code_Unit (E));
3770
3771   begin
3772      --  Check whether the subprogram or package to inline is within the main
3773      --  unit or its spec or within a subunit. In either case there are no
3774      --  additional bodies to process. If the subprogram appears in a parent
3775      --  of the current unit, the check on whether inlining is possible is
3776      --  done in Analyze_Inlined_Bodies.
3777
3778      while Nkind (Unit (Comp)) = N_Subunit loop
3779         Comp := Library_Unit (Comp);
3780      end loop;
3781
3782      return Comp = Cunit (Main_Unit)
3783        or else Comp = Library_Unit (Cunit (Main_Unit));
3784   end In_Main_Unit_Or_Subunit;
3785
3786   ----------------
3787   -- Initialize --
3788   ----------------
3789
3790   procedure Initialize is
3791   begin
3792      Pending_Descriptor.Init;
3793      Pending_Instantiations.Init;
3794      Inlined_Bodies.Init;
3795      Successors.Init;
3796      Inlined.Init;
3797
3798      for J in Hash_Headers'Range loop
3799         Hash_Headers (J) := No_Subp;
3800      end loop;
3801
3802      Inlined_Calls := No_Elist;
3803      Backend_Calls := No_Elist;
3804      Backend_Inlined_Subps := No_Elist;
3805      Backend_Not_Inlined_Subps := No_Elist;
3806   end Initialize;
3807
3808   ------------------------
3809   -- Instantiate_Bodies --
3810   ------------------------
3811
3812   --  Generic bodies contain all the non-local references, so an
3813   --  instantiation does not need any more context than Standard
3814   --  itself, even if the instantiation appears in an inner scope.
3815   --  Generic associations have verified that the contract model is
3816   --  satisfied, so that any error that may occur in the analysis of
3817   --  the body is an internal error.
3818
3819   procedure Instantiate_Bodies is
3820      J    : Int;
3821      Info : Pending_Body_Info;
3822
3823   begin
3824      if Serious_Errors_Detected = 0 then
3825         Expander_Active := (Operating_Mode = Opt.Generate_Code);
3826         Push_Scope (Standard_Standard);
3827         To_Clean := New_Elmt_List;
3828
3829         if Is_Generic_Unit (Cunit_Entity (Main_Unit)) then
3830            Start_Generic;
3831         end if;
3832
3833         --  A body instantiation may generate additional instantiations, so
3834         --  the following loop must scan to the end of a possibly expanding
3835         --  set (that's why we can't simply use a FOR loop here).
3836
3837         J := 0;
3838         while J <= Pending_Instantiations.Last
3839           and then Serious_Errors_Detected = 0
3840         loop
3841            Info := Pending_Instantiations.Table (J);
3842
3843            --  If the instantiation node is absent, it has been removed
3844            --  as part of unreachable code.
3845
3846            if No (Info.Inst_Node) then
3847               null;
3848
3849            elsif Nkind (Info.Act_Decl) = N_Package_Declaration then
3850               Instantiate_Package_Body (Info);
3851               Add_Scope_To_Clean (Defining_Entity (Info.Act_Decl));
3852
3853            else
3854               Instantiate_Subprogram_Body (Info);
3855            end if;
3856
3857            J := J + 1;
3858         end loop;
3859
3860         --  Reset the table of instantiations. Additional instantiations
3861         --  may be added through inlining, when additional bodies are
3862         --  analyzed.
3863
3864         Pending_Instantiations.Init;
3865
3866         --  We can now complete the cleanup actions of scopes that contain
3867         --  pending instantiations (skipped for generic units, since we
3868         --  never need any cleanups in generic units).
3869         --  pending instantiations.
3870
3871         if Expander_Active
3872           and then not Is_Generic_Unit (Main_Unit_Entity)
3873         then
3874            Cleanup_Scopes;
3875         elsif Is_Generic_Unit (Cunit_Entity (Main_Unit)) then
3876            End_Generic;
3877         end if;
3878
3879         Pop_Scope;
3880      end if;
3881   end Instantiate_Bodies;
3882
3883   ---------------
3884   -- Is_Nested --
3885   ---------------
3886
3887   function Is_Nested (E : Entity_Id) return Boolean is
3888      Scop : Entity_Id;
3889
3890   begin
3891      Scop := Scope (E);
3892      while Scop /= Standard_Standard loop
3893         if Ekind (Scop) in Subprogram_Kind then
3894            return True;
3895
3896         elsif Ekind (Scop) = E_Task_Type
3897           or else Ekind (Scop) = E_Entry
3898           or else Ekind (Scop) = E_Entry_Family
3899         then
3900            return True;
3901         end if;
3902
3903         Scop := Scope (Scop);
3904      end loop;
3905
3906      return False;
3907   end Is_Nested;
3908
3909   ------------------------
3910   -- List_Inlining_Info --
3911   ------------------------
3912
3913   procedure List_Inlining_Info is
3914      Elmt  : Elmt_Id;
3915      Nod   : Node_Id;
3916      Count : Nat;
3917
3918   begin
3919      if not Debug_Flag_Dot_J then
3920         return;
3921      end if;
3922
3923      --  Generate listing of calls inlined by the frontend
3924
3925      if Present (Inlined_Calls) then
3926         Count := 0;
3927         Elmt  := First_Elmt (Inlined_Calls);
3928         while Present (Elmt) loop
3929            Nod := Node (Elmt);
3930
3931            if In_Extended_Main_Code_Unit (Nod) then
3932               Count := Count + 1;
3933
3934               if Count = 1 then
3935                  Write_Str ("List of calls inlined by the frontend");
3936                  Write_Eol;
3937               end if;
3938
3939               Write_Str ("  ");
3940               Write_Int (Count);
3941               Write_Str (":");
3942               Write_Location (Sloc (Nod));
3943               Write_Str (":");
3944               Output.Write_Eol;
3945            end if;
3946
3947            Next_Elmt (Elmt);
3948         end loop;
3949      end if;
3950
3951      --  Generate listing of calls passed to the backend
3952
3953      if Present (Backend_Calls) then
3954         Count := 0;
3955
3956         Elmt := First_Elmt (Backend_Calls);
3957         while Present (Elmt) loop
3958            Nod := Node (Elmt);
3959
3960            if In_Extended_Main_Code_Unit (Nod) then
3961               Count := Count + 1;
3962
3963               if Count = 1 then
3964                  Write_Str ("List of inlined calls passed to the backend");
3965                  Write_Eol;
3966               end if;
3967
3968               Write_Str ("  ");
3969               Write_Int (Count);
3970               Write_Str (":");
3971               Write_Location (Sloc (Nod));
3972               Output.Write_Eol;
3973            end if;
3974
3975            Next_Elmt (Elmt);
3976         end loop;
3977      end if;
3978
3979      --  Generate listing of subprograms passed to the backend
3980
3981      if Present (Backend_Inlined_Subps) and then Back_End_Inlining then
3982         Count := 0;
3983
3984         Elmt := First_Elmt (Backend_Inlined_Subps);
3985         while Present (Elmt) loop
3986            Nod := Node (Elmt);
3987
3988            Count := Count + 1;
3989
3990            if Count = 1 then
3991               Write_Str
3992                 ("List of inlined subprograms passed to the backend");
3993               Write_Eol;
3994            end if;
3995
3996            Write_Str ("  ");
3997            Write_Int (Count);
3998            Write_Str (":");
3999            Write_Name (Chars (Nod));
4000            Write_Str (" (");
4001            Write_Location (Sloc (Nod));
4002            Write_Str (")");
4003            Output.Write_Eol;
4004
4005            Next_Elmt (Elmt);
4006         end loop;
4007      end if;
4008
4009      --  Generate listing of subprograms that cannot be inlined by the backend
4010
4011      if Present (Backend_Not_Inlined_Subps) and then Back_End_Inlining then
4012         Count := 0;
4013
4014         Elmt := First_Elmt (Backend_Not_Inlined_Subps);
4015         while Present (Elmt) loop
4016            Nod := Node (Elmt);
4017
4018            Count := Count + 1;
4019
4020            if Count = 1 then
4021               Write_Str
4022                 ("List of subprograms that cannot be inlined by the backend");
4023               Write_Eol;
4024            end if;
4025
4026            Write_Str ("  ");
4027            Write_Int (Count);
4028            Write_Str (":");
4029            Write_Name (Chars (Nod));
4030            Write_Str (" (");
4031            Write_Location (Sloc (Nod));
4032            Write_Str (")");
4033            Output.Write_Eol;
4034
4035            Next_Elmt (Elmt);
4036         end loop;
4037      end if;
4038   end List_Inlining_Info;
4039
4040   ----------
4041   -- Lock --
4042   ----------
4043
4044   procedure Lock is
4045   begin
4046      Pending_Instantiations.Locked := True;
4047      Inlined_Bodies.Locked := True;
4048      Successors.Locked := True;
4049      Inlined.Locked := True;
4050      Pending_Instantiations.Release;
4051      Inlined_Bodies.Release;
4052      Successors.Release;
4053      Inlined.Release;
4054   end Lock;
4055
4056   --------------------------------
4057   -- Remove_Aspects_And_Pragmas --
4058   --------------------------------
4059
4060   procedure Remove_Aspects_And_Pragmas (Body_Decl : Node_Id) is
4061      procedure Remove_Items (List : List_Id);
4062      --  Remove all useless aspects/pragmas from a particular list
4063
4064      ------------------
4065      -- Remove_Items --
4066      ------------------
4067
4068      procedure Remove_Items (List : List_Id) is
4069         Item      : Node_Id;
4070         Item_Id   : Node_Id;
4071         Next_Item : Node_Id;
4072
4073      begin
4074         --  Traverse the list looking for an aspect specification or a pragma
4075
4076         Item := First (List);
4077         while Present (Item) loop
4078            Next_Item := Next (Item);
4079
4080            if Nkind (Item) = N_Aspect_Specification then
4081               Item_Id := Identifier (Item);
4082            elsif Nkind (Item) = N_Pragma then
4083               Item_Id := Pragma_Identifier (Item);
4084            else
4085               Item_Id := Empty;
4086            end if;
4087
4088            if Present (Item_Id)
4089              and then Nam_In (Chars (Item_Id), Name_Contract_Cases,
4090                                                Name_Global,
4091                                                Name_Depends,
4092                                                Name_Postcondition,
4093                                                Name_Precondition,
4094                                                Name_Refined_Global,
4095                                                Name_Refined_Depends,
4096                                                Name_Refined_Post,
4097                                                Name_Test_Case,
4098                                                Name_Unmodified,
4099                                                Name_Unreferenced)
4100            then
4101               Remove (Item);
4102            end if;
4103
4104            Item := Next_Item;
4105         end loop;
4106      end Remove_Items;
4107
4108   --  Start of processing for Remove_Aspects_And_Pragmas
4109
4110   begin
4111      Remove_Items (Aspect_Specifications (Body_Decl));
4112      Remove_Items (Declarations          (Body_Decl));
4113   end Remove_Aspects_And_Pragmas;
4114
4115   --------------------------
4116   -- Remove_Dead_Instance --
4117   --------------------------
4118
4119   procedure Remove_Dead_Instance (N : Node_Id) is
4120      J : Int;
4121
4122   begin
4123      J := 0;
4124      while J <= Pending_Instantiations.Last loop
4125         if Pending_Instantiations.Table (J).Inst_Node = N then
4126            Pending_Instantiations.Table (J).Inst_Node := Empty;
4127            return;
4128         end if;
4129
4130         J := J + 1;
4131      end loop;
4132   end Remove_Dead_Instance;
4133
4134end Inline;
4135