1------------------------------------------------------------------------------
2--                                                                          --
3--                         GNAT COMPILER COMPONENTS                         --
4--                                                                          --
5--                               L A Y O U T                                --
6--                                                                          --
7--                                 B o d y                                  --
8--                                                                          --
9--          Copyright (C) 2001-2015, Free Software Foundation, Inc.         --
10--                                                                          --
11-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12-- terms of the  GNU General Public License as published  by the Free Soft- --
13-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
17-- for  more details.  You should have  received  a copy of the GNU General --
18-- Public License  distributed with GNAT; see file COPYING3.  If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license.          --
20--                                                                          --
21-- GNAT was originally developed  by the GNAT team at  New York University. --
22-- Extensive contributions were provided by Ada Core Technologies Inc.      --
23--                                                                          --
24------------------------------------------------------------------------------
25
26with Atree;    use Atree;
27with Checks;   use Checks;
28with Debug;    use Debug;
29with Einfo;    use Einfo;
30with Errout;   use Errout;
31with Exp_Ch3;  use Exp_Ch3;
32with Exp_Util; use Exp_Util;
33with Namet;    use Namet;
34with Nlists;   use Nlists;
35with Nmake;    use Nmake;
36with Opt;      use Opt;
37with Repinfo;  use Repinfo;
38with Sem;      use Sem;
39with Sem_Aux;  use Sem_Aux;
40with Sem_Case; use Sem_Case;
41with Sem_Ch13; use Sem_Ch13;
42with Sem_Eval; use Sem_Eval;
43with Sem_Util; use Sem_Util;
44with Sinfo;    use Sinfo;
45with Snames;   use Snames;
46with Stand;    use Stand;
47with Targparm; use Targparm;
48with Tbuild;   use Tbuild;
49with Ttypes;   use Ttypes;
50with Uintp;    use Uintp;
51
52package body Layout is
53
54   ------------------------
55   -- Local Declarations --
56   ------------------------
57
58   SSU : constant Int := Ttypes.System_Storage_Unit;
59   --  Short hand for System_Storage_Unit
60
61   Vname : constant Name_Id := Name_uV;
62   --  Formal parameter name used for functions generated for size offset
63   --  values that depend on the discriminant. All such functions have the
64   --  following form:
65   --
66   --     function xxx (V : vtyp) return Unsigned is
67   --     begin
68   --        return ... expression involving V.discrim
69   --     end xxx;
70
71   -----------------------
72   -- Local Subprograms --
73   -----------------------
74
75   function Assoc_Add
76     (Loc        : Source_Ptr;
77      Left_Opnd  : Node_Id;
78      Right_Opnd : Node_Id) return Node_Id;
79   --  This is like Make_Op_Add except that it optimizes some cases knowing
80   --  that associative rearrangement is allowed for constant folding if one
81   --  of the operands is a compile time known value.
82
83   function Assoc_Multiply
84     (Loc        : Source_Ptr;
85      Left_Opnd  : Node_Id;
86      Right_Opnd : Node_Id) return Node_Id;
87   --  This is like Make_Op_Multiply except that it optimizes some cases
88   --  knowing that associative rearrangement is allowed for constant folding
89   --  if one of the operands is a compile time known value
90
91   function Assoc_Subtract
92     (Loc        : Source_Ptr;
93      Left_Opnd  : Node_Id;
94      Right_Opnd : Node_Id) return Node_Id;
95   --  This is like Make_Op_Subtract except that it optimizes some cases
96   --  knowing that associative rearrangement is allowed for constant folding
97   --  if one of the operands is a compile time known value
98
99   function Bits_To_SU (N : Node_Id) return Node_Id;
100   --  This is used when we cross the boundary from static sizes in bits to
101   --  dynamic sizes in storage units. If the argument N is anything other
102   --  than an integer literal, it is returned unchanged, but if it is an
103   --  integer literal, then it is taken as a size in bits, and is replaced
104   --  by the corresponding size in storage units.
105
106   function Compute_Length (Lo : Node_Id; Hi : Node_Id) return Node_Id;
107   --  Given expressions for the low bound (Lo) and the high bound (Hi),
108   --  Build an expression for the value hi-lo+1, converted to type
109   --  Standard.Unsigned. Takes care of the case where the operands
110   --  are of an enumeration type (so that the subtraction cannot be
111   --  done directly) by applying the Pos operator to Hi/Lo first.
112
113   procedure Compute_Size_Depends_On_Discriminant (E : Entity_Id);
114   --  Given an array type or an array subtype E, compute whether its size
115   --  depends on the value of one or more discriminants and set the flag
116   --  Size_Depends_On_Discriminant accordingly. This need not be called
117   --  in front end layout mode since it does the computation on its own.
118
119   function Expr_From_SO_Ref
120     (Loc  : Source_Ptr;
121      D    : SO_Ref;
122      Comp : Entity_Id := Empty) return Node_Id;
123   --  Given a value D from a size or offset field, return an expression
124   --  representing the value stored. If the value is known at compile time,
125   --  then an N_Integer_Literal is returned with the appropriate value. If
126   --  the value references a constant entity, then an N_Identifier node
127   --  referencing this entity is returned. If the value denotes a size
128   --  function, then returns a call node denoting the given function, with
129   --  a single actual parameter that either refers to the parameter V of
130   --  an enclosing size function (if Comp is Empty or its type doesn't match
131   --  the function's formal), or else is a selected component V.c when Comp
132   --  denotes a component c whose type matches that of the function formal.
133   --  The Loc value is used for the Sloc value of constructed notes.
134
135   function SO_Ref_From_Expr
136     (Expr      : Node_Id;
137      Ins_Type  : Entity_Id;
138      Vtype     : Entity_Id := Empty;
139      Make_Func : Boolean   := False) return Dynamic_SO_Ref;
140   --  This routine is used in the case where a size/offset value is dynamic
141   --  and is represented by the expression Expr. SO_Ref_From_Expr checks if
142   --  the Expr contains a reference to the identifier V, and if so builds
143   --  a function depending on discriminants of the formal parameter V which
144   --  is of type Vtype. Otherwise, if the parameter Make_Func is True, then
145   --  Expr will be encapsulated in a parameterless function; if Make_Func is
146   --  False, then a constant entity with the value Expr is built. The result
147   --  is a Dynamic_SO_Ref to the created entity. Note that Vtype can be
148   --  omitted if Expr does not contain any reference to V, the created entity.
149   --  The declaration created is inserted in the freeze actions of Ins_Type,
150   --  which also supplies the Sloc for created nodes. This function also takes
151   --  care of making sure that the expression is properly analyzed and
152   --  resolved (which may not be the case yet if we build the expression
153   --  in this unit).
154
155   function Get_Max_SU_Size (E : Entity_Id) return Node_Id;
156   --  E is an array type or subtype that has at least one index bound that
157   --  is the value of a record discriminant. For such an array, the function
158   --  computes an expression that yields the maximum possible size of the
159   --  array in storage units. The result is not defined for any other type,
160   --  or for arrays that do not depend on discriminants, and it is a fatal
161   --  error to call this unless Size_Depends_On_Discriminant (E) is True.
162
163   procedure Layout_Array_Type (E : Entity_Id);
164   --  Front-end layout of non-bit-packed array type or subtype
165
166   procedure Layout_Record_Type (E : Entity_Id);
167   --  Front-end layout of record type
168
169   procedure Rewrite_Integer (N : Node_Id; V : Uint);
170   --  Rewrite node N with an integer literal whose value is V. The Sloc for
171   --  the new node is taken from N, and the type of the literal is set to a
172   --  copy of the type of N on entry.
173
174   procedure Set_And_Check_Static_Size
175     (E      : Entity_Id;
176      Esiz   : SO_Ref;
177      RM_Siz : SO_Ref);
178   --  This procedure is called to check explicit given sizes (possibly stored
179   --  in the Esize and RM_Size fields of E) against computed Object_Size
180   --  (Esiz) and Value_Size (RM_Siz) values. Appropriate errors and warnings
181   --  are posted if specified sizes are inconsistent with specified sizes. On
182   --  return, Esize and RM_Size fields of E are set (either from previously
183   --  given values, or from the newly computed values, as appropriate).
184
185   procedure Set_Composite_Alignment (E : Entity_Id);
186   --  This procedure is called for record types and subtypes, and also for
187   --  atomic array types and subtypes. If no alignment is set, and the size
188   --  is 2 or 4 (or 8 if the word size is 8), then the alignment is set to
189   --  match the size.
190
191   ----------------------------
192   -- Adjust_Esize_Alignment --
193   ----------------------------
194
195   procedure Adjust_Esize_Alignment (E : Entity_Id) is
196      Abits     : Int;
197      Esize_Set : Boolean;
198
199   begin
200      --  Nothing to do if size unknown
201
202      if Unknown_Esize (E) then
203         return;
204      end if;
205
206      --  Determine if size is constrained by an attribute definition clause
207      --  which must be obeyed. If so, we cannot increase the size in this
208      --  routine.
209
210      --  For a type, the issue is whether an object size clause has been set.
211      --  A normal size clause constrains only the value size (RM_Size)
212
213      if Is_Type (E) then
214         Esize_Set := Has_Object_Size_Clause (E);
215
216      --  For an object, the issue is whether a size clause is present
217
218      else
219         Esize_Set := Has_Size_Clause (E);
220      end if;
221
222      --  If size is known it must be a multiple of the storage unit size
223
224      if Esize (E) mod SSU /= 0 then
225
226         --  If not, and size specified, then give error
227
228         if Esize_Set then
229            Error_Msg_NE
230              ("size for& not a multiple of storage unit size",
231               Size_Clause (E), E);
232            return;
233
234         --  Otherwise bump up size to a storage unit boundary
235
236         else
237            Set_Esize (E, (Esize (E) + SSU - 1) / SSU * SSU);
238         end if;
239      end if;
240
241      --  Now we have the size set, it must be a multiple of the alignment
242      --  nothing more we can do here if the alignment is unknown here.
243
244      if Unknown_Alignment (E) then
245         return;
246      end if;
247
248      --  At this point both the Esize and Alignment are known, so we need
249      --  to make sure they are consistent.
250
251      Abits := UI_To_Int (Alignment (E)) * SSU;
252
253      if Esize (E) mod Abits = 0 then
254         return;
255      end if;
256
257      --  Here we have a situation where the Esize is not a multiple of the
258      --  alignment. We must either increase Esize or reduce the alignment to
259      --  correct this situation.
260
261      --  The case in which we can decrease the alignment is where the
262      --  alignment was not set by an alignment clause, and the type in
263      --  question is a discrete type, where it is definitely safe to reduce
264      --  the alignment. For example:
265
266      --    t : integer range 1 .. 2;
267      --    for t'size use 8;
268
269      --  In this situation, the initial alignment of t is 4, copied from
270      --  the Integer base type, but it is safe to reduce it to 1 at this
271      --  stage, since we will only be loading a single storage unit.
272
273      if Is_Discrete_Type (Etype (E)) and then not Has_Alignment_Clause (E)
274      then
275         loop
276            Abits := Abits / 2;
277            exit when Esize (E) mod Abits = 0;
278         end loop;
279
280         Init_Alignment (E, Abits / SSU);
281         return;
282      end if;
283
284      --  Now the only possible approach left is to increase the Esize but we
285      --  can't do that if the size was set by a specific clause.
286
287      if Esize_Set then
288         Error_Msg_NE
289           ("size for& is not a multiple of alignment",
290            Size_Clause (E), E);
291
292      --  Otherwise we can indeed increase the size to a multiple of alignment
293
294      else
295         Set_Esize (E, ((Esize (E) + (Abits - 1)) / Abits) * Abits);
296      end if;
297   end Adjust_Esize_Alignment;
298
299   ---------------
300   -- Assoc_Add --
301   ---------------
302
303   function Assoc_Add
304     (Loc        : Source_Ptr;
305      Left_Opnd  : Node_Id;
306      Right_Opnd : Node_Id) return Node_Id
307   is
308      L : Node_Id;
309      R : Uint;
310
311   begin
312      --  Case of right operand is a constant
313
314      if Compile_Time_Known_Value (Right_Opnd) then
315         L := Left_Opnd;
316         R := Expr_Value (Right_Opnd);
317
318      --  Case of left operand is a constant
319
320      elsif Compile_Time_Known_Value (Left_Opnd) then
321         L := Right_Opnd;
322         R := Expr_Value (Left_Opnd);
323
324      --  Neither operand is a constant, do the addition with no optimization
325
326      else
327         return Make_Op_Add (Loc, Left_Opnd, Right_Opnd);
328      end if;
329
330      --  Case of left operand is an addition
331
332      if Nkind (L) = N_Op_Add then
333
334         --  (C1 + E) + C2 = (C1 + C2) + E
335
336         if Compile_Time_Known_Value (Sinfo.Left_Opnd (L)) then
337            Rewrite_Integer
338              (Sinfo.Left_Opnd (L),
339               Expr_Value (Sinfo.Left_Opnd (L)) + R);
340            return L;
341
342         --  (E + C1) + C2 = E + (C1 + C2)
343
344         elsif Compile_Time_Known_Value (Sinfo.Right_Opnd (L)) then
345            Rewrite_Integer
346              (Sinfo.Right_Opnd (L),
347               Expr_Value (Sinfo.Right_Opnd (L)) + R);
348            return L;
349         end if;
350
351      --  Case of left operand is a subtraction
352
353      elsif Nkind (L) = N_Op_Subtract then
354
355         --  (C1 - E) + C2 = (C1 + C2) - E
356
357         if Compile_Time_Known_Value (Sinfo.Left_Opnd (L)) then
358            Rewrite_Integer
359              (Sinfo.Left_Opnd (L),
360               Expr_Value (Sinfo.Left_Opnd (L)) + R);
361            return L;
362
363         --  (E - C1) + C2 = E - (C1 - C2)
364
365         --  If the type is unsigned then only do the optimization if C1 >= C2,
366         --  to avoid creating a negative literal that can't be used with the
367         --  unsigned type.
368
369         elsif Compile_Time_Known_Value (Sinfo.Right_Opnd (L))
370           and then (not Is_Unsigned_Type (Etype (Sinfo.Right_Opnd (L)))
371                      or else Expr_Value (Sinfo.Right_Opnd (L)) >= R)
372         then
373            Rewrite_Integer
374              (Sinfo.Right_Opnd (L),
375               Expr_Value (Sinfo.Right_Opnd (L)) - R);
376            return L;
377         end if;
378      end if;
379
380      --  Not optimizable, do the addition
381
382      return Make_Op_Add (Loc, Left_Opnd, Right_Opnd);
383   end Assoc_Add;
384
385   --------------------
386   -- Assoc_Multiply --
387   --------------------
388
389   function Assoc_Multiply
390     (Loc        : Source_Ptr;
391      Left_Opnd  : Node_Id;
392      Right_Opnd : Node_Id) return Node_Id
393   is
394      L : Node_Id;
395      R : Uint;
396
397   begin
398      --  Case of right operand is a constant
399
400      if Compile_Time_Known_Value (Right_Opnd) then
401         L := Left_Opnd;
402         R := Expr_Value (Right_Opnd);
403
404      --  Case of left operand is a constant
405
406      elsif Compile_Time_Known_Value (Left_Opnd) then
407         L := Right_Opnd;
408         R := Expr_Value (Left_Opnd);
409
410      --  Neither operand is a constant, do the multiply with no optimization
411
412      else
413         return Make_Op_Multiply (Loc, Left_Opnd, Right_Opnd);
414      end if;
415
416      --  Case of left operand is an multiplication
417
418      if Nkind (L) = N_Op_Multiply then
419
420         --  (C1 * E) * C2 = (C1 * C2) + E
421
422         if Compile_Time_Known_Value (Sinfo.Left_Opnd (L)) then
423            Rewrite_Integer
424              (Sinfo.Left_Opnd (L),
425               Expr_Value (Sinfo.Left_Opnd (L)) * R);
426            return L;
427
428         --  (E * C1) * C2 = E * (C1 * C2)
429
430         elsif Compile_Time_Known_Value (Sinfo.Right_Opnd (L)) then
431            Rewrite_Integer
432              (Sinfo.Right_Opnd (L),
433               Expr_Value (Sinfo.Right_Opnd (L)) * R);
434            return L;
435         end if;
436      end if;
437
438      --  Not optimizable, do the multiplication
439
440      return Make_Op_Multiply (Loc, Left_Opnd, Right_Opnd);
441   end Assoc_Multiply;
442
443   --------------------
444   -- Assoc_Subtract --
445   --------------------
446
447   function Assoc_Subtract
448     (Loc        : Source_Ptr;
449      Left_Opnd  : Node_Id;
450      Right_Opnd : Node_Id) return Node_Id
451   is
452      L : Node_Id;
453      R : Uint;
454
455   begin
456      --  Case of right operand is a constant
457
458      if Compile_Time_Known_Value (Right_Opnd) then
459         L := Left_Opnd;
460         R := Expr_Value (Right_Opnd);
461
462      --  Right operand is a constant, do the subtract with no optimization
463
464      else
465         return Make_Op_Subtract (Loc, Left_Opnd, Right_Opnd);
466      end if;
467
468      --  Case of left operand is an addition
469
470      if Nkind (L) = N_Op_Add then
471
472         --  (C1 + E) - C2 = (C1 - C2) + E
473
474         if Compile_Time_Known_Value (Sinfo.Left_Opnd (L)) then
475            Rewrite_Integer
476              (Sinfo.Left_Opnd (L),
477               Expr_Value (Sinfo.Left_Opnd (L)) - R);
478            return L;
479
480         --  (E + C1) - C2 = E + (C1 - C2)
481
482         elsif Compile_Time_Known_Value (Sinfo.Right_Opnd (L)) then
483            Rewrite_Integer
484              (Sinfo.Right_Opnd (L),
485               Expr_Value (Sinfo.Right_Opnd (L)) - R);
486            return L;
487         end if;
488
489      --  Case of left operand is a subtraction
490
491      elsif Nkind (L) = N_Op_Subtract then
492
493         --  (C1 - E) - C2 = (C1 - C2) + E
494
495         if Compile_Time_Known_Value (Sinfo.Left_Opnd (L)) then
496            Rewrite_Integer
497              (Sinfo.Left_Opnd (L),
498               Expr_Value (Sinfo.Left_Opnd (L)) + R);
499            return L;
500
501         --  (E - C1) - C2 = E - (C1 + C2)
502
503         elsif Compile_Time_Known_Value (Sinfo.Right_Opnd (L)) then
504            Rewrite_Integer
505              (Sinfo.Right_Opnd (L),
506               Expr_Value (Sinfo.Right_Opnd (L)) + R);
507            return L;
508         end if;
509      end if;
510
511      --  Not optimizable, do the subtraction
512
513      return Make_Op_Subtract (Loc, Left_Opnd, Right_Opnd);
514   end Assoc_Subtract;
515
516   ----------------
517   -- Bits_To_SU --
518   ----------------
519
520   function Bits_To_SU (N : Node_Id) return Node_Id is
521   begin
522      if Nkind (N) = N_Integer_Literal then
523         Set_Intval (N, (Intval (N) + (SSU - 1)) / SSU);
524      end if;
525
526      return N;
527   end Bits_To_SU;
528
529   --------------------
530   -- Compute_Length --
531   --------------------
532
533   function Compute_Length (Lo : Node_Id; Hi : Node_Id) return Node_Id is
534      Loc    : constant Source_Ptr := Sloc (Lo);
535      Typ    : constant Entity_Id  := Etype (Lo);
536      Lo_Op  : Node_Id;
537      Hi_Op  : Node_Id;
538      Lo_Dim : Uint;
539      Hi_Dim : Uint;
540
541   begin
542      --  If the bounds are First and Last attributes for the same dimension
543      --  and both have prefixes that denotes the same entity, then we create
544      --  and return a Length attribute. This may allow the back end to
545      --  generate better code in cases where it already has the length.
546
547      if Nkind (Lo) = N_Attribute_Reference
548        and then Attribute_Name (Lo) = Name_First
549        and then Nkind (Hi) = N_Attribute_Reference
550        and then Attribute_Name (Hi) = Name_Last
551        and then Is_Entity_Name (Prefix (Lo))
552        and then Is_Entity_Name (Prefix (Hi))
553        and then Entity (Prefix (Lo)) = Entity (Prefix (Hi))
554      then
555         Lo_Dim := Uint_1;
556         Hi_Dim := Uint_1;
557
558         if Present (First (Expressions (Lo))) then
559            Lo_Dim := Expr_Value (First (Expressions (Lo)));
560         end if;
561
562         if Present (First (Expressions (Hi))) then
563            Hi_Dim := Expr_Value (First (Expressions (Hi)));
564         end if;
565
566         if Lo_Dim = Hi_Dim then
567            return
568              Make_Attribute_Reference (Loc,
569                Prefix         => New_Occurrence_Of
570                                    (Entity (Prefix (Lo)), Loc),
571                Attribute_Name => Name_Length,
572                Expressions    => New_List
573                                    (Make_Integer_Literal (Loc, Lo_Dim)));
574         end if;
575      end if;
576
577      Lo_Op := New_Copy_Tree (Lo);
578      Hi_Op := New_Copy_Tree (Hi);
579
580      --  If type is enumeration type, then use Pos attribute to convert
581      --  to integer type for which subtraction is a permitted operation.
582
583      if Is_Enumeration_Type (Typ) then
584         Lo_Op :=
585           Make_Attribute_Reference (Loc,
586             Prefix         => New_Occurrence_Of (Typ, Loc),
587             Attribute_Name => Name_Pos,
588             Expressions    => New_List (Lo_Op));
589
590         Hi_Op :=
591           Make_Attribute_Reference (Loc,
592             Prefix         => New_Occurrence_Of (Typ, Loc),
593             Attribute_Name => Name_Pos,
594             Expressions    => New_List (Hi_Op));
595      end if;
596
597      return
598        Assoc_Add (Loc,
599          Left_Opnd =>
600            Assoc_Subtract (Loc,
601              Left_Opnd  => Hi_Op,
602              Right_Opnd => Lo_Op),
603          Right_Opnd => Make_Integer_Literal (Loc, 1));
604   end Compute_Length;
605
606   ----------------------
607   -- Expr_From_SO_Ref --
608   ----------------------
609
610   function Expr_From_SO_Ref
611     (Loc  : Source_Ptr;
612      D    : SO_Ref;
613      Comp : Entity_Id := Empty) return Node_Id
614   is
615      Ent : Entity_Id;
616
617   begin
618      if Is_Dynamic_SO_Ref (D) then
619         Ent := Get_Dynamic_SO_Entity (D);
620
621         if Is_Discrim_SO_Function (Ent) then
622
623            --  If a component is passed in whose type matches the type of
624            --  the function formal, then select that component from the "V"
625            --  parameter rather than passing "V" directly.
626
627            if Present (Comp)
628               and then Base_Type (Etype (Comp)) =
629                        Base_Type (Etype (First_Formal (Ent)))
630            then
631               return
632                 Make_Function_Call (Loc,
633                   Name                   => New_Occurrence_Of (Ent, Loc),
634                   Parameter_Associations => New_List (
635                     Make_Selected_Component (Loc,
636                       Prefix        => Make_Identifier (Loc, Vname),
637                       Selector_Name => New_Occurrence_Of (Comp, Loc))));
638
639            else
640               return
641                 Make_Function_Call (Loc,
642                   Name                   => New_Occurrence_Of (Ent, Loc),
643                   Parameter_Associations => New_List (
644                     Make_Identifier (Loc, Vname)));
645            end if;
646
647         else
648            return New_Occurrence_Of (Ent, Loc);
649         end if;
650
651      else
652         return Make_Integer_Literal (Loc, D);
653      end if;
654   end Expr_From_SO_Ref;
655
656   ---------------------
657   -- Get_Max_SU_Size --
658   ---------------------
659
660   function Get_Max_SU_Size (E : Entity_Id) return Node_Id is
661      Loc  : constant Source_Ptr := Sloc (E);
662      Indx : Node_Id;
663      Ityp : Entity_Id;
664      Lo   : Node_Id;
665      Hi   : Node_Id;
666      S    : Uint;
667      Len  : Node_Id;
668
669      type Val_Status_Type is (Const, Dynamic);
670
671      type Val_Type (Status : Val_Status_Type := Const) is
672         record
673            case Status is
674               when Const   => Val : Uint;
675               when Dynamic => Nod : Node_Id;
676            end case;
677         end record;
678      --  Shows the status of the value so far. Const means that the value is
679      --  constant, and Val is the current constant value. Dynamic means that
680      --  the value is dynamic, and in this case Nod is the Node_Id of the
681      --  expression to compute the value.
682
683      Size : Val_Type;
684      --  Calculated value so far if Size.Status = Const,
685      --  or expression value so far if Size.Status = Dynamic.
686
687      SU_Convert_Required : Boolean := False;
688      --  This is set to True if the final result must be converted from bits
689      --  to storage units (rounding up to a storage unit boundary).
690
691      -----------------------
692      -- Local Subprograms --
693      -----------------------
694
695      procedure Max_Discrim (N : in out Node_Id);
696      --  If the node N represents a discriminant, replace it by the maximum
697      --  value of the discriminant.
698
699      procedure Min_Discrim (N : in out Node_Id);
700      --  If the node N represents a discriminant, replace it by the minimum
701      --  value of the discriminant.
702
703      -----------------
704      -- Max_Discrim --
705      -----------------
706
707      procedure Max_Discrim (N : in out Node_Id) is
708      begin
709         if Nkind (N) = N_Identifier
710           and then Ekind (Entity (N)) = E_Discriminant
711         then
712            N := Type_High_Bound (Etype (N));
713         end if;
714      end Max_Discrim;
715
716      -----------------
717      -- Min_Discrim --
718      -----------------
719
720      procedure Min_Discrim (N : in out Node_Id) is
721      begin
722         if Nkind (N) = N_Identifier
723           and then Ekind (Entity (N)) = E_Discriminant
724         then
725            N := Type_Low_Bound (Etype (N));
726         end if;
727      end Min_Discrim;
728
729   --  Start of processing for Get_Max_SU_Size
730
731   begin
732      pragma Assert (Size_Depends_On_Discriminant (E));
733
734      --  Initialize status from component size
735
736      if Known_Static_Component_Size (E) then
737         Size := (Const, Component_Size (E));
738
739      else
740         Size := (Dynamic, Expr_From_SO_Ref (Loc, Component_Size (E)));
741      end if;
742
743      --  Loop through indexes
744
745      Indx := First_Index (E);
746      while Present (Indx) loop
747         Ityp := Etype (Indx);
748         Lo := Type_Low_Bound (Ityp);
749         Hi := Type_High_Bound (Ityp);
750
751         Min_Discrim (Lo);
752         Max_Discrim (Hi);
753
754         --  Value of the current subscript range is statically known
755
756         if Compile_Time_Known_Value (Lo)
757              and then
758            Compile_Time_Known_Value (Hi)
759         then
760            S := Expr_Value (Hi) - Expr_Value (Lo) + 1;
761
762            --  If known flat bound, entire size of array is zero
763
764            if S <= 0 then
765               return Make_Integer_Literal (Loc, 0);
766            end if;
767
768            --  Current value is constant, evolve value
769
770            if Size.Status = Const then
771               Size.Val := Size.Val * S;
772
773            --  Current value is dynamic
774
775            else
776               --  An interesting little optimization, if we have a pending
777               --  conversion from bits to storage units, and the current
778               --  length is a multiple of the storage unit size, then we
779               --  can take the factor out here statically, avoiding some
780               --  extra dynamic computations at the end.
781
782               if SU_Convert_Required and then S mod SSU = 0 then
783                  S := S / SSU;
784                  SU_Convert_Required := False;
785               end if;
786
787               Size.Nod :=
788                 Assoc_Multiply (Loc,
789                   Left_Opnd  => Size.Nod,
790                   Right_Opnd =>
791                     Make_Integer_Literal (Loc, Intval => S));
792            end if;
793
794         --  Value of the current subscript range is dynamic
795
796         else
797            --  If the current size value is constant, then here is where we
798            --  make a transition to dynamic values, which are always stored
799            --  in storage units, However, we do not want to convert to SU's
800            --  too soon, consider the case of a packed array of single bits,
801            --  we want to do the SU conversion after computing the size in
802            --  this case.
803
804            if Size.Status = Const then
805
806               --  If the current value is a multiple of the storage unit,
807               --  then most certainly we can do the conversion now, simply
808               --  by dividing the current value by the storage unit value.
809               --  If this works, we set SU_Convert_Required to False.
810
811               if Size.Val mod SSU = 0 then
812
813                  Size :=
814                    (Dynamic, Make_Integer_Literal (Loc, Size.Val / SSU));
815                  SU_Convert_Required := False;
816
817               --  Otherwise, we go ahead and convert the value in bits, and
818               --  set SU_Convert_Required to True to ensure that the final
819               --  value is indeed properly converted.
820
821               else
822                  Size := (Dynamic, Make_Integer_Literal (Loc, Size.Val));
823                  SU_Convert_Required := True;
824               end if;
825            end if;
826
827            --  Length is hi-lo+1
828
829            Len := Compute_Length (Lo, Hi);
830
831            --  Check possible range of Len
832
833            declare
834               OK  : Boolean;
835               LLo : Uint;
836               LHi : Uint;
837               pragma Warnings (Off, LHi);
838
839            begin
840               Set_Parent (Len, E);
841               Determine_Range (Len, OK, LLo, LHi);
842
843               Len := Convert_To (Standard_Unsigned, Len);
844
845               --  If we cannot verify that range cannot be super-flat, we need
846               --  a max with zero, since length must be non-negative.
847
848               if not OK or else LLo < 0 then
849                  Len :=
850                    Make_Attribute_Reference (Loc,
851                      Prefix         =>
852                        New_Occurrence_Of (Standard_Unsigned, Loc),
853                      Attribute_Name => Name_Max,
854                      Expressions    => New_List (
855                        Make_Integer_Literal (Loc, 0),
856                        Len));
857               end if;
858            end;
859         end if;
860
861         Next_Index (Indx);
862      end loop;
863
864      --  Here after processing all bounds to set sizes. If the value is a
865      --  constant, then it is bits, so we convert to storage units.
866
867      if Size.Status = Const then
868         return Bits_To_SU (Make_Integer_Literal (Loc, Size.Val));
869
870      --  Case where the value is dynamic
871
872      else
873         --  Do convert from bits to SU's if needed
874
875         if SU_Convert_Required then
876
877            --  The expression required is (Size.Nod + SU - 1) / SU
878
879            Size.Nod :=
880              Make_Op_Divide (Loc,
881                Left_Opnd =>
882                  Make_Op_Add (Loc,
883                    Left_Opnd  => Size.Nod,
884                    Right_Opnd => Make_Integer_Literal (Loc, SSU - 1)),
885                Right_Opnd => Make_Integer_Literal (Loc, SSU));
886         end if;
887
888         return Size.Nod;
889      end if;
890   end Get_Max_SU_Size;
891
892   -----------------------
893   -- Layout_Array_Type --
894   -----------------------
895
896   procedure Layout_Array_Type (E : Entity_Id) is
897      Loc  : constant Source_Ptr := Sloc (E);
898      Ctyp : constant Entity_Id  := Component_Type (E);
899      Indx : Node_Id;
900      Ityp : Entity_Id;
901      Lo   : Node_Id;
902      Hi   : Node_Id;
903      S    : Uint;
904      Len  : Node_Id;
905
906      Insert_Typ : Entity_Id;
907      --  This is the type with which any generated constants or functions
908      --  will be associated (i.e. inserted into the freeze actions). This
909      --  is normally the type being laid out. The exception occurs when
910      --  we are laying out Itype's which are local to a record type, and
911      --  whose scope is this record type. Such types do not have freeze
912      --  nodes (because we have no place to put them).
913
914      ------------------------------------
915      -- How An Array Type is Laid Out --
916      ------------------------------------
917
918      --  Here is what goes on. We need to multiply the component size of the
919      --  array (which has already been set) by the length of each of the
920      --  indexes. If all these values are known at compile time, then the
921      --  resulting size of the array is the appropriate constant value.
922
923      --  If the component size or at least one bound is dynamic (but no
924      --  discriminants are present), then the size will be computed as an
925      --  expression that calculates the proper size.
926
927      --  If there is at least one discriminant bound, then the size is also
928      --  computed as an expression, but this expression contains discriminant
929      --  values which are obtained by selecting from a function parameter, and
930      --  the size is given by a function that is passed the variant record in
931      --  question, and whose body is the expression.
932
933      type Val_Status_Type is (Const, Dynamic, Discrim);
934
935      type Val_Type (Status : Val_Status_Type := Const) is
936         record
937            case Status is
938               when Const =>
939                  Val : Uint;
940                  --  Calculated value so far if Val_Status = Const
941
942               when Dynamic | Discrim =>
943                  Nod : Node_Id;
944                  --  Expression value so far if Val_Status /= Const
945
946            end case;
947         end record;
948      --  Records the value or expression computed so far. Const means that
949      --  the value is constant, and Val is the current constant value.
950      --  Dynamic means that the value is dynamic, and in this case Nod is
951      --  the Node_Id of the expression to compute the value, and Discrim
952      --  means that at least one bound is a discriminant, in which case Nod
953      --  is the expression so far (which will be the body of the function).
954
955      Size : Val_Type;
956      --  Value of size computed so far. See comments above
957
958      Vtyp : Entity_Id := Empty;
959      --  Variant record type for the formal parameter of the discriminant
960      --  function V if Status = Discrim.
961
962      SU_Convert_Required : Boolean := False;
963      --  This is set to True if the final result must be converted from
964      --  bits to storage units (rounding up to a storage unit boundary).
965
966      Storage_Divisor : Uint := UI_From_Int (SSU);
967      --  This is the amount that a nonstatic computed size will be divided
968      --  by to convert it from bits to storage units. This is normally
969      --  equal to SSU, but can be reduced in the case of packed components
970      --  that fit evenly into a storage unit.
971
972      Make_Size_Function : Boolean := False;
973      --  Indicates whether to request that SO_Ref_From_Expr should
974      --  encapsulate the array size expression in a function.
975
976      procedure Discrimify (N : in out Node_Id);
977      --  If N represents a discriminant, then the Size.Status is set to
978      --  Discrim, and Vtyp is set. The parameter N is replaced with the
979      --  proper expression to extract the discriminant value from V.
980
981      ----------------
982      -- Discrimify --
983      ----------------
984
985      procedure Discrimify (N : in out Node_Id) is
986         Decl : Node_Id;
987         Typ  : Entity_Id;
988
989      begin
990         if Nkind (N) = N_Identifier
991           and then Ekind (Entity (N)) = E_Discriminant
992         then
993            Set_Size_Depends_On_Discriminant (E);
994
995            if Size.Status /= Discrim then
996               Decl := Parent (Parent (Entity (N)));
997               Size := (Discrim, Size.Nod);
998               Vtyp := Defining_Identifier (Decl);
999            end if;
1000
1001            Typ := Etype (N);
1002
1003            N :=
1004              Make_Selected_Component (Loc,
1005                Prefix        => Make_Identifier (Loc, Vname),
1006                Selector_Name => New_Occurrence_Of (Entity (N), Loc));
1007
1008            --  Set the Etype attributes of the selected name and its prefix.
1009            --  Analyze_And_Resolve can't be called here because the Vname
1010            --  entity denoted by the prefix will not yet exist (it's created
1011            --  by SO_Ref_From_Expr, called at the end of Layout_Array_Type).
1012
1013            Set_Etype (Prefix (N), Vtyp);
1014            Set_Etype (N, Typ);
1015         end if;
1016      end Discrimify;
1017
1018   --  Start of processing for Layout_Array_Type
1019
1020   begin
1021      --  Default alignment is component alignment
1022
1023      if Unknown_Alignment (E) then
1024         Set_Alignment (E, Alignment (Ctyp));
1025      end if;
1026
1027      --  Calculate proper type for insertions
1028
1029      if Is_Record_Type (Underlying_Type (Scope (E))) then
1030         Insert_Typ := Underlying_Type (Scope (E));
1031      else
1032         Insert_Typ := E;
1033      end if;
1034
1035      --  If the component type is a generic formal type then there's no point
1036      --  in determining a size for the array type.
1037
1038      if Is_Generic_Type (Ctyp) then
1039         return;
1040      end if;
1041
1042      --  Deal with component size if base type
1043
1044      if Ekind (E) = E_Array_Type then
1045
1046         --  Cannot do anything if Esize of component type unknown
1047
1048         if Unknown_Esize (Ctyp) then
1049            return;
1050         end if;
1051
1052         --  Set component size if not set already
1053
1054         if Unknown_Component_Size (E) then
1055            Set_Component_Size (E, Esize (Ctyp));
1056         end if;
1057      end if;
1058
1059      --  (RM 13.3 (48)) says that the size of an unconstrained array
1060      --  is implementation defined. We choose to leave it as Unknown
1061      --  here, and the actual behavior is determined by the back end.
1062
1063      if not Is_Constrained (E) then
1064         return;
1065      end if;
1066
1067      --  Initialize status from component size
1068
1069      if Known_Static_Component_Size (E) then
1070         Size := (Const, Component_Size (E));
1071
1072      else
1073         Size := (Dynamic, Expr_From_SO_Ref (Loc, Component_Size (E)));
1074      end if;
1075
1076      --  Loop to process array indexes
1077
1078      Indx := First_Index (E);
1079      while Present (Indx) loop
1080         Ityp := Etype (Indx);
1081
1082         --  If an index of the array is a generic formal type then there is
1083         --  no point in determining a size for the array type.
1084
1085         if Is_Generic_Type (Ityp) then
1086            return;
1087         end if;
1088
1089         Lo := Type_Low_Bound (Ityp);
1090         Hi := Type_High_Bound (Ityp);
1091
1092         --  Value of the current subscript range is statically known
1093
1094         if Compile_Time_Known_Value (Lo)
1095              and then
1096            Compile_Time_Known_Value (Hi)
1097         then
1098            S := Expr_Value (Hi) - Expr_Value (Lo) + 1;
1099
1100            --  If known flat bound, entire size of array is zero
1101
1102            if S <= 0 then
1103               Set_Esize (E, Uint_0);
1104               Set_RM_Size (E, Uint_0);
1105               return;
1106            end if;
1107
1108            --  If constant, evolve value
1109
1110            if Size.Status = Const then
1111               Size.Val := Size.Val * S;
1112
1113            --  Current value is dynamic
1114
1115            else
1116               --  An interesting little optimization, if we have a pending
1117               --  conversion from bits to storage units, and the current
1118               --  length is a multiple of the storage unit size, then we
1119               --  can take the factor out here statically, avoiding some
1120               --  extra dynamic computations at the end.
1121
1122               if SU_Convert_Required and then S mod SSU = 0 then
1123                  S := S / SSU;
1124                  SU_Convert_Required := False;
1125               end if;
1126
1127               --  Now go ahead and evolve the expression
1128
1129               Size.Nod :=
1130                 Assoc_Multiply (Loc,
1131                   Left_Opnd  => Size.Nod,
1132                   Right_Opnd =>
1133                     Make_Integer_Literal (Loc, Intval => S));
1134            end if;
1135
1136         --  Value of the current subscript range is dynamic
1137
1138         else
1139            --  If the current size value is constant, then here is where we
1140            --  make a transition to dynamic values, which are always stored
1141            --  in storage units, However, we do not want to convert to SU's
1142            --  too soon, consider the case of a packed array of single bits,
1143            --  we want to do the SU conversion after computing the size in
1144            --  this case.
1145
1146            if Size.Status = Const then
1147
1148               --  If the current value is a multiple of the storage unit,
1149               --  then most certainly we can do the conversion now, simply
1150               --  by dividing the current value by the storage unit value.
1151               --  If this works, we set SU_Convert_Required to False.
1152
1153               if Size.Val mod SSU = 0 then
1154                  Size :=
1155                    (Dynamic, Make_Integer_Literal (Loc, Size.Val / SSU));
1156                  SU_Convert_Required := False;
1157
1158               --  If the current value is a factor of the storage unit, then
1159               --  we can use a value of one for the size and reduce the
1160               --  strength of the later division.
1161
1162               elsif SSU mod Size.Val = 0 then
1163                  Storage_Divisor := SSU / Size.Val;
1164                  Size := (Dynamic, Make_Integer_Literal (Loc, Uint_1));
1165                  SU_Convert_Required := True;
1166
1167               --  Otherwise, we go ahead and convert the value in bits, and
1168               --  set SU_Convert_Required to True to ensure that the final
1169               --  value is indeed properly converted.
1170
1171               else
1172                  Size := (Dynamic, Make_Integer_Literal (Loc, Size.Val));
1173                  SU_Convert_Required := True;
1174               end if;
1175            end if;
1176
1177            Discrimify (Lo);
1178            Discrimify (Hi);
1179
1180            --  Length is hi-lo+1
1181
1182            Len := Compute_Length (Lo, Hi);
1183
1184            --  If Len isn't a Length attribute, then its range needs to be
1185            --  checked a possible Max with zero needs to be computed.
1186
1187            if Nkind (Len) /= N_Attribute_Reference
1188              or else Attribute_Name (Len) /= Name_Length
1189            then
1190               declare
1191                  OK  : Boolean;
1192                  LLo : Uint;
1193                  LHi : Uint;
1194
1195               begin
1196                  --  Check possible range of Len
1197
1198                  Set_Parent (Len, E);
1199                  Determine_Range (Len, OK, LLo, LHi);
1200
1201                  Len := Convert_To (Standard_Unsigned, Len);
1202
1203                  --  If range definitely flat or superflat, result size is 0
1204
1205                  if OK and then LHi <= 0 then
1206                     Set_Esize (E, Uint_0);
1207                     Set_RM_Size (E, Uint_0);
1208                     return;
1209                  end if;
1210
1211                  --  If we cannot verify that range cannot be super-flat, we
1212                  --  need a max with zero, since length cannot be negative.
1213
1214                  if not OK or else LLo < 0 then
1215                     Len :=
1216                       Make_Attribute_Reference (Loc,
1217                         Prefix         =>
1218                           New_Occurrence_Of (Standard_Unsigned, Loc),
1219                         Attribute_Name => Name_Max,
1220                         Expressions    => New_List (
1221                           Make_Integer_Literal (Loc, 0),
1222                           Len));
1223                  end if;
1224               end;
1225            end if;
1226
1227            --  At this stage, Len has the expression for the length
1228
1229            Size.Nod :=
1230              Assoc_Multiply (Loc,
1231                Left_Opnd  => Size.Nod,
1232                Right_Opnd => Len);
1233         end if;
1234
1235         Next_Index (Indx);
1236      end loop;
1237
1238      --  Here after processing all bounds to set sizes. If the value is a
1239      --  constant, then it is bits, and the only thing we need to do is to
1240      --  check against explicit given size and do alignment adjust.
1241
1242      if Size.Status = Const then
1243         Set_And_Check_Static_Size (E, Size.Val, Size.Val);
1244         Adjust_Esize_Alignment (E);
1245
1246      --  Case where the value is dynamic
1247
1248      else
1249         --  Do convert from bits to SU's if needed
1250
1251         if SU_Convert_Required then
1252
1253            --  The expression required is:
1254            --    (Size.Nod + Storage_Divisor - 1) / Storage_Divisor
1255
1256            Size.Nod :=
1257              Make_Op_Divide (Loc,
1258                Left_Opnd =>
1259                  Make_Op_Add (Loc,
1260                    Left_Opnd  => Size.Nod,
1261                    Right_Opnd => Make_Integer_Literal
1262                                    (Loc, Storage_Divisor - 1)),
1263                Right_Opnd => Make_Integer_Literal (Loc, Storage_Divisor));
1264         end if;
1265
1266         --  If the array entity is not declared at the library level and its
1267         --  not nested within a subprogram that is marked for inlining, then
1268         --  we request that the size expression be encapsulated in a function.
1269         --  Since this expression is not needed in most cases, we prefer not
1270         --  to incur the overhead of the computation on calls to the enclosing
1271         --  subprogram except for subprograms that require the size.
1272
1273         if not Is_Library_Level_Entity (E) then
1274            Make_Size_Function := True;
1275
1276            declare
1277               Parent_Subp : Entity_Id := Enclosing_Subprogram (E);
1278
1279            begin
1280               while Present (Parent_Subp) loop
1281                  if Is_Inlined (Parent_Subp) then
1282                     Make_Size_Function := False;
1283                     exit;
1284                  end if;
1285
1286                  Parent_Subp := Enclosing_Subprogram (Parent_Subp);
1287               end loop;
1288            end;
1289         end if;
1290
1291         --  Now set the dynamic size (the Value_Size is always the same as the
1292         --  Object_Size for arrays whose length is dynamic).
1293
1294         --  ??? If Size.Status = Dynamic, Vtyp will not have been set.
1295         --  The added initialization sets it to Empty now, but is this
1296         --  correct?
1297
1298         Set_Esize
1299           (E,
1300            SO_Ref_From_Expr
1301              (Size.Nod, Insert_Typ, Vtyp, Make_Func => Make_Size_Function));
1302         Set_RM_Size (E, Esize (E));
1303      end if;
1304   end Layout_Array_Type;
1305
1306   ------------------------------------------
1307   -- Compute_Size_Depends_On_Discriminant --
1308   ------------------------------------------
1309
1310   procedure Compute_Size_Depends_On_Discriminant (E : Entity_Id) is
1311      Indx : Node_Id;
1312      Ityp : Entity_Id;
1313      Lo   : Node_Id;
1314      Hi   : Node_Id;
1315      Res  : Boolean := False;
1316
1317   begin
1318      --  Loop to process array indexes
1319
1320      Indx := First_Index (E);
1321      while Present (Indx) loop
1322         Ityp := Etype (Indx);
1323
1324         --  If an index of the array is a generic formal type then there is
1325         --  no point in determining a size for the array type.
1326
1327         if Is_Generic_Type (Ityp) then
1328            return;
1329         end if;
1330
1331         Lo := Type_Low_Bound (Ityp);
1332         Hi := Type_High_Bound (Ityp);
1333
1334         if (Nkind (Lo) = N_Identifier
1335              and then Ekind (Entity (Lo)) = E_Discriminant)
1336           or else
1337            (Nkind (Hi) = N_Identifier
1338              and then Ekind (Entity (Hi)) = E_Discriminant)
1339         then
1340            Res := True;
1341         end if;
1342
1343         Next_Index (Indx);
1344      end loop;
1345
1346      if Res then
1347         Set_Size_Depends_On_Discriminant (E);
1348      end if;
1349   end Compute_Size_Depends_On_Discriminant;
1350
1351   -------------------
1352   -- Layout_Object --
1353   -------------------
1354
1355   procedure Layout_Object (E : Entity_Id) is
1356      T : constant Entity_Id := Etype (E);
1357
1358   begin
1359      --  Nothing to do if backend does layout
1360
1361      if not Frontend_Layout_On_Target then
1362         return;
1363      end if;
1364
1365      --  Set size if not set for object and known for type. Use the RM_Size if
1366      --  that is known for the type and Esize is not.
1367
1368      if Unknown_Esize (E) then
1369         if Known_Esize (T) then
1370            Set_Esize (E, Esize (T));
1371
1372         elsif Known_RM_Size (T) then
1373            Set_Esize (E, RM_Size (T));
1374         end if;
1375      end if;
1376
1377      --  Set alignment from type if unknown and type alignment known
1378
1379      if Unknown_Alignment (E) and then Known_Alignment (T) then
1380         Set_Alignment (E, Alignment (T));
1381      end if;
1382
1383      --  Make sure size and alignment are consistent
1384
1385      Adjust_Esize_Alignment (E);
1386
1387      --  Final adjustment, if we don't know the alignment, and the Esize was
1388      --  not set by an explicit Object_Size attribute clause, then we reset
1389      --  the Esize to unknown, since we really don't know it.
1390
1391      if Unknown_Alignment (E) and then not Has_Size_Clause (E) then
1392         Set_Esize (E, Uint_0);
1393      end if;
1394   end Layout_Object;
1395
1396   ------------------------
1397   -- Layout_Record_Type --
1398   ------------------------
1399
1400   procedure Layout_Record_Type (E : Entity_Id) is
1401      Loc  : constant Source_Ptr := Sloc (E);
1402      Decl : Node_Id;
1403
1404      Comp : Entity_Id;
1405      --  Current component being laid out
1406
1407      Prev_Comp : Entity_Id;
1408      --  Previous laid out component
1409
1410      procedure Get_Next_Component_Location
1411        (Prev_Comp  : Entity_Id;
1412         Align      : Uint;
1413         New_Npos   : out SO_Ref;
1414         New_Fbit   : out SO_Ref;
1415         New_NPMax  : out SO_Ref;
1416         Force_SU   : Boolean);
1417      --  Given the previous component in Prev_Comp, which is already laid
1418      --  out, and the alignment of the following component, lays out the
1419      --  following component, and returns its starting position in New_Npos
1420      --  (Normalized_Position value), New_Fbit (Normalized_First_Bit value),
1421      --  and New_NPMax (Normalized_Position_Max value). If Prev_Comp is empty
1422      --  (no previous component is present), then New_Npos, New_Fbit and
1423      --  New_NPMax are all set to zero on return. This procedure is also
1424      --  used to compute the size of a record or variant by giving it the
1425      --  last component, and the record alignment. Force_SU is used to force
1426      --  the new component location to be aligned on a storage unit boundary,
1427      --  even in a packed record, False means that the new position does not
1428      --  need to be bumped to a storage unit boundary, True means a storage
1429      --  unit boundary is always required.
1430
1431      procedure Layout_Component (Comp : Entity_Id; Prev_Comp : Entity_Id);
1432      --  Lays out component Comp, given Prev_Comp, the previously laid-out
1433      --  component (Prev_Comp = Empty if no components laid out yet). The
1434      --  alignment of the record itself is also updated if needed. Both
1435      --  Comp and Prev_Comp can be either components or discriminants.
1436
1437      procedure Layout_Components
1438        (From   : Entity_Id;
1439         To     : Entity_Id;
1440         Esiz   : out SO_Ref;
1441         RM_Siz : out SO_Ref);
1442      --  This procedure lays out the components of the given component list
1443      --  which contains the components starting with From and ending with To.
1444      --  The Next_Entity chain is used to traverse the components. On entry,
1445      --  Prev_Comp is set to the component preceding the list, so that the
1446      --  list is laid out after this component. Prev_Comp is set to Empty if
1447      --  the component list is to be laid out starting at the start of the
1448      --  record. On return, the components are all laid out, and Prev_Comp is
1449      --  set to the last laid out component. On return, Esiz is set to the
1450      --  resulting Object_Size value, which is the length of the record up
1451      --  to and including the last laid out entity. For Esiz, the value is
1452      --  adjusted to match the alignment of the record. RM_Siz is similarly
1453      --  set to the resulting Value_Size value, which is the same length, but
1454      --  not adjusted to meet the alignment. Note that in the case of variant
1455      --  records, Esiz represents the maximum size.
1456
1457      procedure Layout_Non_Variant_Record;
1458      --  Procedure called to lay out a non-variant record type or subtype
1459
1460      procedure Layout_Variant_Record;
1461      --  Procedure called to lay out a variant record type. Decl is set to the
1462      --  full type declaration for the variant record.
1463
1464      ---------------------------------
1465      -- Get_Next_Component_Location --
1466      ---------------------------------
1467
1468      procedure Get_Next_Component_Location
1469        (Prev_Comp  : Entity_Id;
1470         Align      : Uint;
1471         New_Npos   : out SO_Ref;
1472         New_Fbit   : out SO_Ref;
1473         New_NPMax  : out SO_Ref;
1474         Force_SU   : Boolean)
1475      is
1476      begin
1477         --  No previous component, return zero position
1478
1479         if No (Prev_Comp) then
1480            New_Npos  := Uint_0;
1481            New_Fbit  := Uint_0;
1482            New_NPMax := Uint_0;
1483            return;
1484         end if;
1485
1486         --  Here we have a previous component
1487
1488         declare
1489            Loc       : constant Source_Ptr := Sloc (Prev_Comp);
1490
1491            Old_Npos  : constant SO_Ref := Normalized_Position     (Prev_Comp);
1492            Old_Fbit  : constant SO_Ref := Normalized_First_Bit    (Prev_Comp);
1493            Old_NPMax : constant SO_Ref := Normalized_Position_Max (Prev_Comp);
1494            Old_Esiz  : constant SO_Ref := Esize                   (Prev_Comp);
1495
1496            Old_Maxsz : Node_Id;
1497            --  Expression representing maximum size of previous component
1498
1499         begin
1500            --  Case where previous field had a dynamic size
1501
1502            if Is_Dynamic_SO_Ref (Esize (Prev_Comp)) then
1503
1504               --  If the previous field had a dynamic length, then it is
1505               --  required to occupy an integral number of storage units,
1506               --  and start on a storage unit boundary. This means that
1507               --  the Normalized_First_Bit value is zero in the previous
1508               --  component, and the new value is also set to zero.
1509
1510               New_Fbit := Uint_0;
1511
1512               --  In this case, the new position is given by an expression
1513               --  that is the sum of old normalized position and old size.
1514
1515               New_Npos :=
1516                 SO_Ref_From_Expr
1517                   (Assoc_Add (Loc,
1518                      Left_Opnd  =>
1519                        Expr_From_SO_Ref (Loc, Old_Npos),
1520                      Right_Opnd =>
1521                        Expr_From_SO_Ref (Loc, Old_Esiz, Prev_Comp)),
1522                    Ins_Type => E,
1523                    Vtype    => E);
1524
1525               --  Get maximum size of previous component
1526
1527               if Size_Depends_On_Discriminant (Etype (Prev_Comp)) then
1528                  Old_Maxsz := Get_Max_SU_Size (Etype (Prev_Comp));
1529               else
1530                  Old_Maxsz := Expr_From_SO_Ref (Loc, Old_Esiz, Prev_Comp);
1531               end if;
1532
1533               --  Now we can compute the new max position. If the max size
1534               --  is static and the old position is static, then we can
1535               --  compute the new position statically.
1536
1537               if Nkind (Old_Maxsz) = N_Integer_Literal
1538                 and then Known_Static_Normalized_Position_Max (Prev_Comp)
1539               then
1540                  New_NPMax := Old_NPMax + Intval (Old_Maxsz);
1541
1542               --  Otherwise new max position is dynamic
1543
1544               else
1545                  New_NPMax :=
1546                    SO_Ref_From_Expr
1547                      (Assoc_Add (Loc,
1548                         Left_Opnd  => Expr_From_SO_Ref (Loc, Old_NPMax),
1549                         Right_Opnd => Old_Maxsz),
1550                       Ins_Type => E,
1551                       Vtype    => E);
1552               end if;
1553
1554            --  Previous field has known static Esize
1555
1556            else
1557               New_Fbit := Old_Fbit + Old_Esiz;
1558
1559               --  Bump New_Fbit to storage unit boundary if required
1560
1561               if New_Fbit /= 0 and then Force_SU then
1562                  New_Fbit := (New_Fbit + SSU - 1) / SSU * SSU;
1563               end if;
1564
1565               --  If old normalized position is static, we can go ahead and
1566               --  compute the new normalized position directly.
1567
1568               if Known_Static_Normalized_Position (Prev_Comp) then
1569                  New_Npos := Old_Npos;
1570
1571                  if New_Fbit >= SSU then
1572                     New_Npos := New_Npos + New_Fbit / SSU;
1573                     New_Fbit := New_Fbit mod SSU;
1574                  end if;
1575
1576                  --  Bump alignment if stricter than prev
1577
1578                  if Align > Alignment (Etype (Prev_Comp)) then
1579                     New_Npos := (New_Npos + Align - 1) / Align * Align;
1580                  end if;
1581
1582                  --  The max position is always equal to the position if
1583                  --  the latter is static, since arrays depending on the
1584                  --  values of discriminants never have static sizes.
1585
1586                  New_NPMax := New_Npos;
1587                  return;
1588
1589               --  Case of old normalized position is dynamic
1590
1591               else
1592                  --  If new bit position is within the current storage unit,
1593                  --  we can just copy the old position as the result position
1594                  --  (we have already set the new first bit value).
1595
1596                  if New_Fbit < SSU then
1597                     New_Npos  := Old_Npos;
1598                     New_NPMax := Old_NPMax;
1599
1600                  --  If new bit position is past the current storage unit, we
1601                  --  need to generate a new dynamic value for the position
1602                  --  ??? need to deal with alignment
1603
1604                  else
1605                     New_Npos :=
1606                       SO_Ref_From_Expr
1607                         (Assoc_Add (Loc,
1608                            Left_Opnd  => Expr_From_SO_Ref (Loc, Old_Npos),
1609                            Right_Opnd =>
1610                              Make_Integer_Literal (Loc,
1611                                Intval => New_Fbit / SSU)),
1612                          Ins_Type => E,
1613                          Vtype    => E);
1614
1615                     New_NPMax :=
1616                       SO_Ref_From_Expr
1617                         (Assoc_Add (Loc,
1618                            Left_Opnd  => Expr_From_SO_Ref (Loc, Old_NPMax),
1619                            Right_Opnd =>
1620                              Make_Integer_Literal (Loc,
1621                                Intval => New_Fbit / SSU)),
1622                            Ins_Type => E,
1623                            Vtype    => E);
1624                     New_Fbit := New_Fbit mod SSU;
1625                  end if;
1626               end if;
1627            end if;
1628         end;
1629      end Get_Next_Component_Location;
1630
1631      ----------------------
1632      -- Layout_Component --
1633      ----------------------
1634
1635      procedure Layout_Component (Comp : Entity_Id; Prev_Comp : Entity_Id) is
1636         Ctyp  : constant Entity_Id := Etype (Comp);
1637         ORC   : constant Entity_Id := Original_Record_Component (Comp);
1638         Npos  : SO_Ref;
1639         Fbit  : SO_Ref;
1640         NPMax : SO_Ref;
1641         Forc  : Boolean;
1642
1643      begin
1644         --  Increase alignment of record if necessary. Note that we do not
1645         --  do this for packed records, which have an alignment of one by
1646         --  default, or for records for which an explicit alignment was
1647         --  specified with an alignment clause.
1648
1649         if not Is_Packed (E)
1650           and then not Has_Alignment_Clause (E)
1651           and then Alignment (Ctyp) > Alignment (E)
1652         then
1653            Set_Alignment (E, Alignment (Ctyp));
1654         end if;
1655
1656         --  If original component set, then use same layout
1657
1658         if Present (ORC) and then ORC /= Comp then
1659            Set_Normalized_Position     (Comp, Normalized_Position     (ORC));
1660            Set_Normalized_First_Bit    (Comp, Normalized_First_Bit    (ORC));
1661            Set_Normalized_Position_Max (Comp, Normalized_Position_Max (ORC));
1662            Set_Component_Bit_Offset    (Comp, Component_Bit_Offset    (ORC));
1663            Set_Esize                   (Comp, Esize                   (ORC));
1664            return;
1665         end if;
1666
1667         --  Parent field is always at start of record, this will overlap
1668         --  the actual fields that are part of the parent, and that's fine
1669
1670         if Chars (Comp) = Name_uParent then
1671            Set_Normalized_Position     (Comp, Uint_0);
1672            Set_Normalized_First_Bit    (Comp, Uint_0);
1673            Set_Normalized_Position_Max (Comp, Uint_0);
1674            Set_Component_Bit_Offset    (Comp, Uint_0);
1675            Set_Esize                   (Comp, Esize (Ctyp));
1676            return;
1677         end if;
1678
1679         --  Check case of type of component has a scope of the record we are
1680         --  laying out. When this happens, the type in question is an Itype
1681         --  that has not yet been laid out (that's because such types do not
1682         --  get frozen in the normal manner, because there is no place for
1683         --  the freeze nodes).
1684
1685         if Scope (Ctyp) = E then
1686            Layout_Type (Ctyp);
1687         end if;
1688
1689         --  If component already laid out, then we are done
1690
1691         if Known_Normalized_Position (Comp) then
1692            return;
1693         end if;
1694
1695         --  Set size of component from type. We use the Esize except in a
1696         --  packed record, where we use the RM_Size (since that is what the
1697         --  RM_Size value, as distinct from the Object_Size is useful for).
1698
1699         if Is_Packed (E) then
1700            Set_Esize (Comp, RM_Size (Ctyp));
1701         else
1702            Set_Esize (Comp, Esize (Ctyp));
1703         end if;
1704
1705         --  Compute the component position from the previous one. See if
1706         --  current component requires being on a storage unit boundary.
1707
1708         --  If record is not packed, we always go to a storage unit boundary
1709
1710         if not Is_Packed (E) then
1711            Forc := True;
1712
1713         --  Packed cases
1714
1715         else
1716            --  Elementary types do not need SU boundary in packed record
1717
1718            if Is_Elementary_Type (Ctyp) then
1719               Forc := False;
1720
1721            --  Packed array types with a modular packed array type do not
1722            --  force a storage unit boundary (since the code generation
1723            --  treats these as equivalent to the underlying modular type),
1724
1725            elsif Is_Array_Type (Ctyp)
1726              and then Is_Bit_Packed_Array (Ctyp)
1727              and then Is_Modular_Integer_Type (Packed_Array_Impl_Type (Ctyp))
1728            then
1729               Forc := False;
1730
1731            --  Record types with known length less than or equal to the length
1732            --  of long long integer can also be unaligned, since they can be
1733            --  treated as scalars.
1734
1735            elsif Is_Record_Type (Ctyp)
1736              and then not Is_Dynamic_SO_Ref (Esize (Ctyp))
1737              and then Esize (Ctyp) <= Esize (Standard_Long_Long_Integer)
1738            then
1739               Forc := False;
1740
1741            --  All other cases force a storage unit boundary, even when packed
1742
1743            else
1744               Forc := True;
1745            end if;
1746         end if;
1747
1748         --  Now get the next component location
1749
1750         Get_Next_Component_Location
1751           (Prev_Comp, Alignment (Ctyp), Npos, Fbit, NPMax, Forc);
1752         Set_Normalized_Position     (Comp, Npos);
1753         Set_Normalized_First_Bit    (Comp, Fbit);
1754         Set_Normalized_Position_Max (Comp, NPMax);
1755
1756         --  Set Component_Bit_Offset in the static case
1757
1758         if Known_Static_Normalized_Position (Comp)
1759           and then Known_Normalized_First_Bit (Comp)
1760         then
1761            Set_Component_Bit_Offset (Comp, SSU * Npos + Fbit);
1762         end if;
1763      end Layout_Component;
1764
1765      -----------------------
1766      -- Layout_Components --
1767      -----------------------
1768
1769      procedure Layout_Components
1770        (From   : Entity_Id;
1771         To     : Entity_Id;
1772         Esiz   : out SO_Ref;
1773         RM_Siz : out SO_Ref)
1774      is
1775         End_Npos  : SO_Ref;
1776         End_Fbit  : SO_Ref;
1777         End_NPMax : SO_Ref;
1778
1779      begin
1780         --  Only lay out components if there are some to lay out
1781
1782         if Present (From) then
1783
1784            --  Lay out components with no component clauses
1785
1786            Comp := From;
1787            loop
1788               if Ekind (Comp) = E_Component
1789                 or else Ekind (Comp) = E_Discriminant
1790               then
1791                  --  The compatibility of component clauses with composite
1792                  --  types isn't checked in Sem_Ch13, so we check it here.
1793
1794                  if Present (Component_Clause (Comp)) then
1795                     if Is_Composite_Type (Etype (Comp))
1796                       and then Esize (Comp) < RM_Size (Etype (Comp))
1797                     then
1798                        Error_Msg_Uint_1 := RM_Size (Etype (Comp));
1799                        Error_Msg_NE
1800                          ("size for & too small, minimum allowed is ^",
1801                           Component_Clause (Comp),
1802                           Comp);
1803                     end if;
1804
1805                  else
1806                     Layout_Component (Comp, Prev_Comp);
1807                     Prev_Comp := Comp;
1808                  end if;
1809               end if;
1810
1811               exit when Comp = To;
1812               Next_Entity (Comp);
1813            end loop;
1814         end if;
1815
1816         --  Set size fields, both are zero if no components
1817
1818         if No (Prev_Comp) then
1819            Esiz := Uint_0;
1820            RM_Siz := Uint_0;
1821
1822            --  If record subtype with non-static discriminants, then we don't
1823            --  know which variant will be the one which gets chosen. We don't
1824            --  just want to set the maximum size from the base, because the
1825            --  size should depend on the particular variant.
1826
1827            --  What we do is to use the RM_Size of the base type, which has
1828            --  the necessary conditional computation of the size, using the
1829            --  size information for the particular variant chosen. Records
1830            --  with default discriminants for example have an Esize that is
1831            --  set to the maximum of all variants, but that's not what we
1832            --  want for a constrained subtype.
1833
1834         elsif Ekind (E) = E_Record_Subtype
1835           and then not Has_Static_Discriminants (E)
1836         then
1837            declare
1838               BT : constant Node_Id := Base_Type (E);
1839            begin
1840               Esiz   := RM_Size (BT);
1841               RM_Siz := RM_Size (BT);
1842               Set_Alignment (E, Alignment (BT));
1843            end;
1844
1845         else
1846            --  First the object size, for which we align past the last field
1847            --  to the alignment of the record (the object size is required to
1848            --  be a multiple of the alignment).
1849
1850            Get_Next_Component_Location
1851              (Prev_Comp,
1852               Alignment (E),
1853               End_Npos,
1854               End_Fbit,
1855               End_NPMax,
1856               Force_SU => True);
1857
1858            --  If the resulting normalized position is a dynamic reference,
1859            --  then the size is dynamic, and is stored in storage units. In
1860            --  this case, we set the RM_Size to the same value, it is simply
1861            --  not worth distinguishing Esize and RM_Size values in the
1862            --  dynamic case, since the RM has nothing to say about them.
1863
1864            --  Note that a size cannot have been given in this case, since
1865            --  size specifications cannot be given for variable length types.
1866
1867            declare
1868               Align : constant Uint := Alignment (E);
1869
1870            begin
1871               if Is_Dynamic_SO_Ref (End_Npos) then
1872                  RM_Siz := End_Npos;
1873
1874                  --  Set the Object_Size allowing for the alignment. In the
1875                  --  dynamic case, we must do the actual runtime computation.
1876                  --  We can skip this in the non-packed record case if the
1877                  --  last component has a smaller alignment than the overall
1878                  --  record alignment.
1879
1880                  if Is_Dynamic_SO_Ref (End_NPMax) then
1881                     Esiz := End_NPMax;
1882
1883                     if Is_Packed (E)
1884                       or else Alignment (Etype (Prev_Comp)) < Align
1885                     then
1886                        --  The expression we build is:
1887                        --    (expr + align - 1) / align * align
1888
1889                        Esiz :=
1890                          SO_Ref_From_Expr
1891                            (Expr =>
1892                               Make_Op_Multiply (Loc,
1893                                 Left_Opnd =>
1894                                   Make_Op_Divide (Loc,
1895                                     Left_Opnd =>
1896                                       Make_Op_Add (Loc,
1897                                         Left_Opnd =>
1898                                           Expr_From_SO_Ref (Loc, Esiz),
1899                                         Right_Opnd =>
1900                                           Make_Integer_Literal (Loc,
1901                                             Intval => Align - 1)),
1902                                     Right_Opnd =>
1903                                       Make_Integer_Literal (Loc, Align)),
1904                                 Right_Opnd =>
1905                                   Make_Integer_Literal (Loc, Align)),
1906                            Ins_Type => E,
1907                            Vtype    => E);
1908                     end if;
1909
1910                  --  Here Esiz is static, so we can adjust the alignment
1911                  --  directly go give the required aligned value.
1912
1913                  else
1914                     Esiz := (End_NPMax + Align - 1) / Align * Align * SSU;
1915                  end if;
1916
1917               --  Case where computed size is static
1918
1919               else
1920                  --  The ending size was computed in Npos in storage units,
1921                  --  but the actual size is stored in bits, so adjust
1922                  --  accordingly. We also adjust the size to match the
1923                  --  alignment here.
1924
1925                  Esiz := (End_NPMax + Align - 1) / Align * Align * SSU;
1926
1927                  --  Compute the resulting Value_Size (RM_Size). For this
1928                  --  purpose we do not force alignment of the record or
1929                  --  storage size alignment of the result.
1930
1931                  Get_Next_Component_Location
1932                    (Prev_Comp,
1933                     Uint_0,
1934                     End_Npos,
1935                     End_Fbit,
1936                     End_NPMax,
1937                     Force_SU => False);
1938
1939                  RM_Siz := End_Npos * SSU + End_Fbit;
1940                  Set_And_Check_Static_Size (E, Esiz, RM_Siz);
1941               end if;
1942            end;
1943         end if;
1944      end Layout_Components;
1945
1946      -------------------------------
1947      -- Layout_Non_Variant_Record --
1948      -------------------------------
1949
1950      procedure Layout_Non_Variant_Record is
1951         Esiz   : SO_Ref;
1952         RM_Siz : SO_Ref;
1953      begin
1954         Layout_Components (First_Entity (E), Last_Entity (E), Esiz, RM_Siz);
1955         Set_Esize   (E, Esiz);
1956         Set_RM_Size (E, RM_Siz);
1957      end Layout_Non_Variant_Record;
1958
1959      ---------------------------
1960      -- Layout_Variant_Record --
1961      ---------------------------
1962
1963      procedure Layout_Variant_Record is
1964         Tdef        : constant Node_Id := Type_Definition (Decl);
1965         First_Discr : Entity_Id;
1966         Last_Discr  : Entity_Id;
1967         Esiz        : SO_Ref;
1968
1969         RM_Siz : SO_Ref;
1970         pragma Warnings (Off, SO_Ref);
1971
1972         RM_Siz_Expr : Node_Id := Empty;
1973         --  Expression for the evolving RM_Siz value. This is typically an if
1974         --  expression which involves tests of discriminant values that are
1975         --  formed as references to the entity V. At the end of scanning all
1976         --  the components, a suitable function is constructed in which V is
1977         --  the parameter.
1978
1979         -----------------------
1980         -- Local Subprograms --
1981         -----------------------
1982
1983         procedure Layout_Component_List
1984           (Clist       : Node_Id;
1985            Esiz        : out SO_Ref;
1986            RM_Siz_Expr : out Node_Id);
1987         --  Recursive procedure, called to lay out one component list Esiz
1988         --  and RM_Siz_Expr are set to the Object_Size and Value_Size values
1989         --  respectively representing the record size up to and including the
1990         --  last component in the component list (including any variants in
1991         --  this component list). RM_Siz_Expr is returned as an expression
1992         --  which may in the general case involve some references to the
1993         --  discriminants of the current record value, referenced by selecting
1994         --  from the entity V.
1995
1996         ---------------------------
1997         -- Layout_Component_List --
1998         ---------------------------
1999
2000         procedure Layout_Component_List
2001           (Clist       : Node_Id;
2002            Esiz        : out SO_Ref;
2003            RM_Siz_Expr : out Node_Id)
2004         is
2005            Citems  : constant List_Id := Component_Items (Clist);
2006            Vpart   : constant Node_Id := Variant_Part (Clist);
2007            Prv     : Node_Id;
2008            Var     : Node_Id;
2009            RM_Siz  : Uint;
2010            RMS_Ent : Entity_Id;
2011
2012         begin
2013            if Is_Non_Empty_List (Citems) then
2014               Layout_Components
2015                 (From   => Defining_Identifier (First (Citems)),
2016                  To     => Defining_Identifier (Last  (Citems)),
2017                  Esiz   => Esiz,
2018                  RM_Siz => RM_Siz);
2019            else
2020               Layout_Components (Empty, Empty, Esiz, RM_Siz);
2021            end if;
2022
2023            --  Case where no variants are present in the component list
2024
2025            if No (Vpart) then
2026
2027               --  The Esiz value has been correctly set by the call to
2028               --  Layout_Components, so there is nothing more to be done.
2029
2030               --  For RM_Siz, we have an SO_Ref value, which we must convert
2031               --  to an appropriate expression.
2032
2033               if Is_Static_SO_Ref (RM_Siz) then
2034                  RM_Siz_Expr :=
2035                    Make_Integer_Literal (Loc,
2036                                          Intval => RM_Siz);
2037
2038               else
2039                  RMS_Ent := Get_Dynamic_SO_Entity (RM_Siz);
2040
2041                  --  If the size is represented by a function, then we create
2042                  --  an appropriate function call using V as the parameter to
2043                  --  the call.
2044
2045                  if Is_Discrim_SO_Function (RMS_Ent) then
2046                     RM_Siz_Expr :=
2047                       Make_Function_Call (Loc,
2048                         Name => New_Occurrence_Of (RMS_Ent, Loc),
2049                         Parameter_Associations => New_List (
2050                           Make_Identifier (Loc, Vname)));
2051
2052                  --  If the size is represented by a constant, then the
2053                  --  expression we want is a reference to this constant
2054
2055                  else
2056                     RM_Siz_Expr := New_Occurrence_Of (RMS_Ent, Loc);
2057                  end if;
2058               end if;
2059
2060            --  Case where variants are present in this component list
2061
2062            else
2063               declare
2064                  EsizV    : SO_Ref;
2065                  RM_SizV  : Node_Id;
2066                  Dchoice  : Node_Id;
2067                  Discrim  : Node_Id;
2068                  Dtest    : Node_Id;
2069                  D_List   : List_Id;
2070                  D_Entity : Entity_Id;
2071
2072               begin
2073                  RM_Siz_Expr := Empty;
2074                  Prv := Prev_Comp;
2075
2076                  Var := Last (Variants (Vpart));
2077                  while Present (Var) loop
2078                     Prev_Comp := Prv;
2079                     Layout_Component_List
2080                       (Component_List (Var), EsizV, RM_SizV);
2081
2082                     --  Set the Object_Size. If this is the first variant,
2083                     --  we just set the size of this first variant.
2084
2085                     if Var = Last (Variants (Vpart)) then
2086                        Esiz := EsizV;
2087
2088                     --  Otherwise the Object_Size is formed as a maximum
2089                     --  of Esiz so far from previous variants, and the new
2090                     --  Esiz value from the variant we just processed.
2091
2092                     --  If both values are static, we can just compute the
2093                     --  maximum directly to save building junk nodes.
2094
2095                     elsif not Is_Dynamic_SO_Ref (Esiz)
2096                       and then not Is_Dynamic_SO_Ref (EsizV)
2097                     then
2098                        Esiz := UI_Max (Esiz, EsizV);
2099
2100                     --  If either value is dynamic, then we have to generate
2101                     --  an appropriate Standard_Unsigned'Max attribute call.
2102                     --  If one of the values is static then it needs to be
2103                     --  converted from bits to storage units to be compatible
2104                     --  with the dynamic value.
2105
2106                     else
2107                        if Is_Static_SO_Ref (Esiz) then
2108                           Esiz := (Esiz + SSU - 1) / SSU;
2109                        end if;
2110
2111                        if Is_Static_SO_Ref (EsizV) then
2112                           EsizV := (EsizV + SSU - 1) / SSU;
2113                        end if;
2114
2115                        Esiz :=
2116                          SO_Ref_From_Expr
2117                            (Make_Attribute_Reference (Loc,
2118                               Attribute_Name => Name_Max,
2119                               Prefix         =>
2120                                 New_Occurrence_Of (Standard_Unsigned, Loc),
2121                               Expressions => New_List (
2122                                 Expr_From_SO_Ref (Loc, Esiz),
2123                                 Expr_From_SO_Ref (Loc, EsizV))),
2124                             Ins_Type => E,
2125                             Vtype    => E);
2126                     end if;
2127
2128                     --  Now deal with Value_Size (RM_Siz). We are aiming at
2129                     --  an expression that looks like:
2130
2131                     --    if      xxDx (V.disc) then rmsiz1
2132                     --    else if xxDx (V.disc) then rmsiz2
2133                     --    else ...
2134
2135                     --  Where rmsiz1, rmsiz2... are the RM_Siz values for the
2136                     --  individual variants, and xxDx are the discriminant
2137                     --  checking functions generated for the variant type.
2138
2139                     --  If this is the first variant, we simply set the result
2140                     --  as the expression. Note that this takes care of the
2141                     --  others case.
2142
2143                     if No (RM_Siz_Expr) then
2144
2145                        --  If this is the only variant and the size is a
2146                        --  literal, then use bit size as is, otherwise convert
2147                        --  to storage units and continue to the next variant.
2148
2149                        if No (Prev (Var))
2150                          and then Nkind (RM_SizV) = N_Integer_Literal
2151                        then
2152                           RM_Siz_Expr := RM_SizV;
2153                        else
2154                           RM_Siz_Expr := Bits_To_SU (RM_SizV);
2155                        end if;
2156
2157                     --  Otherwise construct the appropriate test
2158
2159                     else
2160                        --  The test to be used in general is a call to the
2161                        --  discriminant checking function. However, it is
2162                        --  definitely worth special casing the very common
2163                        --  case where a single value is involved.
2164
2165                        Dchoice := First (Discrete_Choices (Var));
2166
2167                        if No (Next (Dchoice))
2168                          and then Nkind (Dchoice) /= N_Range
2169                        then
2170                           --  Discriminant to be tested
2171
2172                           Discrim :=
2173                             Make_Selected_Component (Loc,
2174                               Prefix        =>
2175                                 Make_Identifier (Loc, Vname),
2176                               Selector_Name =>
2177                                 New_Occurrence_Of
2178                                   (Entity (Name (Vpart)), Loc));
2179
2180                           Dtest :=
2181                             Make_Op_Eq (Loc,
2182                               Left_Opnd  => Discrim,
2183                               Right_Opnd => New_Copy (Dchoice));
2184
2185                        --  Generate a call to the discriminant-checking
2186                        --  function for the variant. Note that the result
2187                        --  has to be complemented since the function returns
2188                        --  False when the passed discriminant value matches.
2189
2190                        else
2191                           --  The checking function takes all of the type's
2192                           --  discriminants as parameters, so a list of all
2193                           --  the selected discriminants must be constructed.
2194
2195                           D_List := New_List;
2196                           D_Entity := First_Discriminant (E);
2197                           while Present (D_Entity) loop
2198                              Append_To (D_List,
2199                                Make_Selected_Component (Loc,
2200                                  Prefix        =>
2201                                    Make_Identifier (Loc, Vname),
2202                                  Selector_Name =>
2203                                    New_Occurrence_Of (D_Entity, Loc)));
2204
2205                              D_Entity := Next_Discriminant (D_Entity);
2206                           end loop;
2207
2208                           Dtest :=
2209                             Make_Op_Not (Loc,
2210                               Right_Opnd =>
2211                                 Make_Function_Call (Loc,
2212                                   Name =>
2213                                     New_Occurrence_Of
2214                                       (Dcheck_Function (Var), Loc),
2215                                   Parameter_Associations =>
2216                                     D_List));
2217                        end if;
2218
2219                        RM_Siz_Expr :=
2220                          Make_If_Expression (Loc,
2221                            Expressions =>
2222                              New_List
2223                                (Dtest, Bits_To_SU (RM_SizV), RM_Siz_Expr));
2224                     end if;
2225
2226                     Prev (Var);
2227                  end loop;
2228               end;
2229            end if;
2230         end Layout_Component_List;
2231
2232         Others_Present : Boolean;
2233         pragma Warnings (Off, Others_Present);
2234         --  Indicates others present, not used in this case
2235
2236         procedure Non_Static_Choice_Error (Choice : Node_Id);
2237         --  Error routine invoked by the generic instantiation below when
2238         --  the variant part has a nonstatic choice.
2239
2240         package Variant_Choices_Processing is new
2241           Generic_Check_Choices
2242             (Process_Empty_Choice      => No_OP,
2243              Process_Non_Static_Choice => Non_Static_Choice_Error,
2244              Process_Associated_Node   => No_OP);
2245         use Variant_Choices_Processing;
2246
2247         -----------------------------
2248         -- Non_Static_Choice_Error --
2249         -----------------------------
2250
2251         procedure Non_Static_Choice_Error (Choice : Node_Id) is
2252         begin
2253            Flag_Non_Static_Expr
2254              ("choice given in case expression is not static!", Choice);
2255         end Non_Static_Choice_Error;
2256
2257      --  Start of processing for Layout_Variant_Record
2258
2259      begin
2260         --  Call Check_Choices here to ensure that Others_Discrete_Choices
2261         --  gets set on any 'others' choice before the discriminant-checking
2262         --  functions are generated. Otherwise the function for the 'others'
2263         --  alternative will unconditionally return True, causing discriminant
2264         --  checks to fail. However, Check_Choices is now normally delayed
2265         --  until the type's freeze entity is processed, due to requirements
2266         --  coming from subtype predicates, so doing it at this point is
2267         --  probably not right in general, but it's not clear how else to deal
2268         --  with this situation. Perhaps we should only generate declarations
2269         --  for the checking functions here, and somehow delay generation of
2270         --  their bodies, but that would be a nontrivial change. ???
2271
2272         declare
2273            VP : constant Node_Id :=
2274                   Variant_Part (Component_List (Type_Definition (Decl)));
2275         begin
2276            Check_Choices
2277              (VP, Variants (VP), Etype (Name (VP)), Others_Present);
2278         end;
2279
2280         --  We need the discriminant checking functions, since we generate
2281         --  calls to these functions for the RM_Size expression, so make
2282         --  sure that these functions have been constructed in time.
2283
2284         Build_Discr_Checking_Funcs (Decl);
2285
2286         --  Lay out the discriminants
2287
2288         First_Discr := First_Discriminant (E);
2289         Last_Discr  := First_Discr;
2290         while Present (Next_Discriminant (Last_Discr)) loop
2291            Next_Discriminant (Last_Discr);
2292         end loop;
2293
2294         Layout_Components
2295           (From   => First_Discr,
2296            To     => Last_Discr,
2297            Esiz   => Esiz,
2298            RM_Siz => RM_Siz);
2299
2300         --  Lay out the main component list (this will make recursive calls
2301         --  to lay out all component lists nested within variants).
2302
2303         Layout_Component_List (Component_List (Tdef), Esiz, RM_Siz_Expr);
2304         Set_Esize (E, Esiz);
2305
2306         --  If the RM_Size is a literal, set its value
2307
2308         if Nkind (RM_Siz_Expr) = N_Integer_Literal then
2309            Set_RM_Size (E, Intval (RM_Siz_Expr));
2310
2311         --  Otherwise we construct a dynamic SO_Ref
2312
2313         else
2314            Set_RM_Size (E,
2315              SO_Ref_From_Expr
2316                (RM_Siz_Expr,
2317                 Ins_Type => E,
2318                 Vtype    => E));
2319         end if;
2320      end Layout_Variant_Record;
2321
2322   --  Start of processing for Layout_Record_Type
2323
2324   begin
2325      --  If this is a cloned subtype, just copy the size fields from the
2326      --  original, nothing else needs to be done in this case, since the
2327      --  components themselves are all shared.
2328
2329      if Ekind_In (E, E_Record_Subtype, E_Class_Wide_Subtype)
2330        and then Present (Cloned_Subtype (E))
2331      then
2332         Set_Esize     (E, Esize     (Cloned_Subtype (E)));
2333         Set_RM_Size   (E, RM_Size   (Cloned_Subtype (E)));
2334         Set_Alignment (E, Alignment (Cloned_Subtype (E)));
2335
2336      --  Another special case, class-wide types. The RM says that the size
2337      --  of such types is implementation defined (RM 13.3(48)). What we do
2338      --  here is to leave the fields set as unknown values, and the backend
2339      --  determines the actual behavior.
2340
2341      elsif Ekind (E) = E_Class_Wide_Type then
2342         null;
2343
2344      --  All other cases
2345
2346      else
2347         --  Initialize alignment conservatively to 1. This value will be
2348         --  increased as necessary during processing of the record.
2349
2350         if Unknown_Alignment (E) then
2351            Set_Alignment (E, Uint_1);
2352         end if;
2353
2354         --  Initialize previous component. This is Empty unless there are
2355         --  components which have already been laid out by component clauses.
2356         --  If there are such components, we start our lay out of the
2357         --  remaining components following the last such component.
2358
2359         Prev_Comp := Empty;
2360
2361         Comp := First_Component_Or_Discriminant (E);
2362         while Present (Comp) loop
2363            if Present (Component_Clause (Comp)) then
2364               if No (Prev_Comp)
2365                 or else
2366                   Component_Bit_Offset (Comp) >
2367                   Component_Bit_Offset (Prev_Comp)
2368               then
2369                  Prev_Comp := Comp;
2370               end if;
2371            end if;
2372
2373            Next_Component_Or_Discriminant (Comp);
2374         end loop;
2375
2376         --  We have two separate circuits, one for non-variant records and
2377         --  one for variant records. For non-variant records, we simply go
2378         --  through the list of components. This handles all the non-variant
2379         --  cases including those cases of subtypes where there is no full
2380         --  type declaration, so the tree cannot be used to drive the layout.
2381         --  For variant records, we have to drive the layout from the tree
2382         --  since we need to understand the variant structure in this case.
2383
2384         if Present (Full_View (E)) then
2385            Decl := Declaration_Node (Full_View (E));
2386         else
2387            Decl := Declaration_Node (E);
2388         end if;
2389
2390         --  Scan all the components
2391
2392         if Nkind (Decl) = N_Full_Type_Declaration
2393           and then Has_Discriminants (E)
2394           and then Nkind (Type_Definition (Decl)) = N_Record_Definition
2395           and then Present (Component_List (Type_Definition (Decl)))
2396           and then
2397             Present (Variant_Part (Component_List (Type_Definition (Decl))))
2398         then
2399            Layout_Variant_Record;
2400         else
2401            Layout_Non_Variant_Record;
2402         end if;
2403      end if;
2404   end Layout_Record_Type;
2405
2406   -----------------
2407   -- Layout_Type --
2408   -----------------
2409
2410   procedure Layout_Type (E : Entity_Id) is
2411      Desig_Type : Entity_Id;
2412
2413   begin
2414      --  For string literal types, for now, kill the size always, this is
2415      --  because gigi does not like or need the size to be set ???
2416
2417      if Ekind (E) = E_String_Literal_Subtype then
2418         Set_Esize (E, Uint_0);
2419         Set_RM_Size (E, Uint_0);
2420         return;
2421      end if;
2422
2423      --  For access types, set size/alignment. This is system address size,
2424      --  except for fat pointers (unconstrained array access types), where the
2425      --  size is two times the address size, to accommodate the two pointers
2426      --  that are required for a fat pointer (data and template). Note that
2427      --  E_Access_Protected_Subprogram_Type is not an access type for this
2428      --  purpose since it is not a pointer but is equivalent to a record. For
2429      --  access subtypes, copy the size from the base type since Gigi
2430      --  represents them the same way.
2431
2432      if Is_Access_Type (E) then
2433         Desig_Type := Underlying_Type (Designated_Type (E));
2434
2435         --  If we only have a limited view of the type, see whether the
2436         --  non-limited view is available.
2437
2438         if From_Limited_With (Designated_Type (E))
2439           and then Ekind (Designated_Type (E)) = E_Incomplete_Type
2440           and then Present (Non_Limited_View (Designated_Type (E)))
2441         then
2442            Desig_Type := Non_Limited_View (Designated_Type (E));
2443         end if;
2444
2445         --  If Esize already set (e.g. by a size clause), then nothing further
2446         --  to be done here.
2447
2448         if Known_Esize (E) then
2449            null;
2450
2451         --  Access to subprogram is a strange beast, and we let the backend
2452         --  figure out what is needed (it may be some kind of fat pointer,
2453         --  including the static link for example.
2454
2455         elsif Is_Access_Protected_Subprogram_Type (E) then
2456            null;
2457
2458         --  For access subtypes, copy the size information from base type
2459
2460         elsif Ekind (E) = E_Access_Subtype then
2461            Set_Size_Info (E, Base_Type (E));
2462            Set_RM_Size   (E, RM_Size (Base_Type (E)));
2463
2464         --  For other access types, we use either address size, or, if a fat
2465         --  pointer is used (pointer-to-unconstrained array case), twice the
2466         --  address size to accommodate a fat pointer.
2467
2468         elsif Present (Desig_Type)
2469           and then Is_Array_Type (Desig_Type)
2470           and then not Is_Constrained (Desig_Type)
2471           and then not Has_Completion_In_Body (Desig_Type)
2472
2473           --  Debug Flag -gnatd6 says make all pointers to unconstrained thin
2474
2475           and then not Debug_Flag_6
2476         then
2477            Init_Size (E, 2 * System_Address_Size);
2478
2479            --  Check for bad convention set
2480
2481            if Warn_On_Export_Import
2482              and then
2483                (Convention (E) = Convention_C
2484                   or else
2485                 Convention (E) = Convention_CPP)
2486            then
2487               Error_Msg_N
2488                 ("?x?this access type does not correspond to C pointer", E);
2489            end if;
2490
2491         --  If the designated type is a limited view it is unanalyzed. We can
2492         --  examine the declaration itself to determine whether it will need a
2493         --  fat pointer.
2494
2495         elsif Present (Desig_Type)
2496           and then Present (Parent (Desig_Type))
2497           and then Nkind (Parent (Desig_Type)) = N_Full_Type_Declaration
2498           and then Nkind (Type_Definition (Parent (Desig_Type))) =
2499                                             N_Unconstrained_Array_Definition
2500           and then not Debug_Flag_6
2501         then
2502            Init_Size (E, 2 * System_Address_Size);
2503
2504         --  When the target is AAMP, access-to-subprogram types are fat
2505         --  pointers consisting of the subprogram address and a static link,
2506         --  with the exception of library-level access types (including
2507         --  library-level anonymous access types, such as for components),
2508         --  where a simple subprogram address is used.
2509
2510         elsif AAMP_On_Target
2511           and then
2512             ((Ekind (E) = E_Access_Subprogram_Type
2513                and then Present (Enclosing_Subprogram (E)))
2514               or else
2515                 (Ekind (E) = E_Anonymous_Access_Subprogram_Type
2516                   and then
2517                     (not Is_Local_Anonymous_Access (E)
2518                       or else Present (Enclosing_Subprogram (E)))))
2519         then
2520            Init_Size (E, 2 * System_Address_Size);
2521
2522         --  Normal case of thin pointer
2523
2524         else
2525            Init_Size (E, System_Address_Size);
2526         end if;
2527
2528         Set_Elem_Alignment (E);
2529
2530      --  Scalar types: set size and alignment
2531
2532      elsif Is_Scalar_Type (E) then
2533
2534         --  For discrete types, the RM_Size and Esize must be set already,
2535         --  since this is part of the earlier processing and the front end is
2536         --  always required to lay out the sizes of such types (since they are
2537         --  available as static attributes). All we do is to check that this
2538         --  rule is indeed obeyed.
2539
2540         if Is_Discrete_Type (E) then
2541
2542            --  If the RM_Size is not set, then here is where we set it
2543
2544            --  Note: an RM_Size of zero looks like not set here, but this
2545            --  is a rare case, and we can simply reset it without any harm.
2546
2547            if not Known_RM_Size (E) then
2548               Set_Discrete_RM_Size (E);
2549            end if;
2550
2551            --  If Esize for a discrete type is not set then set it
2552
2553            if not Known_Esize (E) then
2554               declare
2555                  S : Int := 8;
2556
2557               begin
2558                  loop
2559                     --  If size is big enough, set it and exit
2560
2561                     if S >= RM_Size (E) then
2562                        Init_Esize (E, S);
2563                        exit;
2564
2565                     --  If the RM_Size is greater than 64 (happens only when
2566                     --  strange values are specified by the user, then Esize
2567                     --  is simply a copy of RM_Size, it will be further
2568                     --  refined later on)
2569
2570                     elsif S = 64 then
2571                        Set_Esize (E, RM_Size (E));
2572                        exit;
2573
2574                     --  Otherwise double possible size and keep trying
2575
2576                     else
2577                        S := S * 2;
2578                     end if;
2579                  end loop;
2580               end;
2581            end if;
2582
2583         --  For non-discrete scalar types, if the RM_Size is not set, then set
2584         --  it now to a copy of the Esize if the Esize is set.
2585
2586         else
2587            if Known_Esize (E) and then Unknown_RM_Size (E) then
2588               Set_RM_Size (E, Esize (E));
2589            end if;
2590         end if;
2591
2592         Set_Elem_Alignment (E);
2593
2594      --  Non-elementary (composite) types
2595
2596      else
2597         --  For packed arrays, take size and alignment values from the packed
2598         --  array type if a packed array type has been created and the fields
2599         --  are not currently set.
2600
2601         if Is_Array_Type (E)
2602           and then Present (Packed_Array_Impl_Type (E))
2603         then
2604            declare
2605               PAT : constant Entity_Id := Packed_Array_Impl_Type (E);
2606
2607            begin
2608               if Unknown_Esize (E) then
2609                  Set_Esize     (E, Esize     (PAT));
2610               end if;
2611
2612               if Unknown_RM_Size (E) then
2613                  Set_RM_Size   (E, RM_Size   (PAT));
2614               end if;
2615
2616               if Unknown_Alignment (E) then
2617                  Set_Alignment (E, Alignment (PAT));
2618               end if;
2619            end;
2620         end if;
2621
2622         --  If Esize is set, and RM_Size is not, RM_Size is copied from Esize.
2623         --  At least for now this seems reasonable, and is in any case needed
2624         --  for compatibility with old versions of gigi.
2625
2626         if Known_Esize (E) and then Unknown_RM_Size (E) then
2627            Set_RM_Size (E, Esize (E));
2628         end if;
2629
2630         --  For array base types, set component size if object size of the
2631         --  component type is known and is a small power of 2 (8, 16, 32, 64),
2632         --  since this is what will always be used.
2633
2634         if Ekind (E) = E_Array_Type and then Unknown_Component_Size (E) then
2635            declare
2636               CT : constant Entity_Id := Component_Type (E);
2637
2638            begin
2639               --  For some reason, access types can cause trouble, So let's
2640               --  just do this for scalar types ???
2641
2642               if Present (CT)
2643                 and then Is_Scalar_Type (CT)
2644                 and then Known_Static_Esize (CT)
2645               then
2646                  declare
2647                     S : constant Uint := Esize (CT);
2648                  begin
2649                     if Addressable (S) then
2650                        Set_Component_Size (E, S);
2651                     end if;
2652                  end;
2653               end if;
2654            end;
2655         end if;
2656      end if;
2657
2658      --  Lay out array and record types if front end layout set
2659
2660      if Frontend_Layout_On_Target then
2661         if Is_Array_Type (E) and then not Is_Bit_Packed_Array (E) then
2662            Layout_Array_Type (E);
2663         elsif Is_Record_Type (E) then
2664            Layout_Record_Type (E);
2665         end if;
2666
2667      --  Case of backend layout, we still do a little in the front end
2668
2669      else
2670         --  Processing for record types
2671
2672         if Is_Record_Type (E) then
2673
2674            --  Special remaining processing for record types with a known
2675            --  size of 16, 32, or 64 bits whose alignment is not yet set.
2676            --  For these types, we set a corresponding alignment matching
2677            --  the size if possible, or as large as possible if not.
2678
2679            if Convention (E) = Convention_Ada and then not Debug_Flag_Q then
2680               Set_Composite_Alignment (E);
2681            end if;
2682
2683         --  Processing for array types
2684
2685         elsif Is_Array_Type (E) then
2686
2687            --  For arrays that are required to be atomic/VFA, we do the same
2688            --  processing as described above for short records, since we
2689            --  really need to have the alignment set for the whole array.
2690
2691            if Is_Atomic_Or_VFA (E) and then not Debug_Flag_Q then
2692               Set_Composite_Alignment (E);
2693            end if;
2694
2695            --  For unpacked array types, set an alignment of 1 if we know
2696            --  that the component alignment is not greater than 1. The reason
2697            --  we do this is to avoid unnecessary copying of slices of such
2698            --  arrays when passed to subprogram parameters (see special test
2699            --  in Exp_Ch6.Expand_Actuals).
2700
2701            if not Is_Packed (E) and then Unknown_Alignment (E) then
2702               if Known_Static_Component_Size (E)
2703                 and then Component_Size (E) = 1
2704               then
2705                  Set_Alignment (E, Uint_1);
2706               end if;
2707            end if;
2708
2709            --  We need to know whether the size depends on the value of one
2710            --  or more discriminants to select the return mechanism. Skip if
2711            --  errors are present, to prevent cascaded messages.
2712
2713            if Serious_Errors_Detected = 0 then
2714               Compute_Size_Depends_On_Discriminant (E);
2715            end if;
2716
2717         end if;
2718      end if;
2719
2720      --  Final step is to check that Esize and RM_Size are compatible
2721
2722      if Known_Static_Esize (E) and then Known_Static_RM_Size (E) then
2723         if Esize (E) < RM_Size (E) then
2724
2725            --  Esize is less than RM_Size. That's not good. First we test
2726            --  whether this was set deliberately with an Object_Size clause
2727            --  and if so, object to the clause.
2728
2729            if Has_Object_Size_Clause (E) then
2730               Error_Msg_Uint_1 := RM_Size (E);
2731               Error_Msg_F
2732                 ("object size is too small, minimum allowed is ^",
2733                  Expression (Get_Attribute_Definition_Clause
2734                                             (E, Attribute_Object_Size)));
2735            end if;
2736
2737            --  Adjust Esize up to RM_Size value
2738
2739            declare
2740               Size : constant Uint := RM_Size (E);
2741
2742            begin
2743               Set_Esize (E, RM_Size (E));
2744
2745               --  For scalar types, increase Object_Size to power of 2, but
2746               --  not less than a storage unit in any case (i.e., normally
2747               --  this means it will be storage-unit addressable).
2748
2749               if Is_Scalar_Type (E) then
2750                  if Size <= System_Storage_Unit then
2751                     Init_Esize (E, System_Storage_Unit);
2752                  elsif Size <= 16 then
2753                     Init_Esize (E, 16);
2754                  elsif Size <= 32 then
2755                     Init_Esize (E, 32);
2756                  else
2757                     Set_Esize  (E, (Size + 63) / 64 * 64);
2758                  end if;
2759
2760                  --  Finally, make sure that alignment is consistent with
2761                  --  the newly assigned size.
2762
2763                  while Alignment (E) * System_Storage_Unit < Esize (E)
2764                    and then Alignment (E) < Maximum_Alignment
2765                  loop
2766                     Set_Alignment (E, 2 * Alignment (E));
2767                  end loop;
2768               end if;
2769            end;
2770         end if;
2771      end if;
2772   end Layout_Type;
2773
2774   ---------------------
2775   -- Rewrite_Integer --
2776   ---------------------
2777
2778   procedure Rewrite_Integer (N : Node_Id; V : Uint) is
2779      Loc : constant Source_Ptr := Sloc (N);
2780      Typ : constant Entity_Id  := Etype (N);
2781   begin
2782      Rewrite (N, Make_Integer_Literal (Loc, Intval => V));
2783      Set_Etype (N, Typ);
2784   end Rewrite_Integer;
2785
2786   -------------------------------
2787   -- Set_And_Check_Static_Size --
2788   -------------------------------
2789
2790   procedure Set_And_Check_Static_Size
2791     (E      : Entity_Id;
2792      Esiz   : SO_Ref;
2793      RM_Siz : SO_Ref)
2794   is
2795      SC : Node_Id;
2796
2797      procedure Check_Size_Too_Small (Spec : Uint; Min : Uint);
2798      --  Spec is the number of bit specified in the size clause, and Min is
2799      --  the minimum computed size. An error is given that the specified size
2800      --  is too small if Spec < Min, and in this case both Esize and RM_Size
2801      --  are set to unknown in E. The error message is posted on node SC.
2802
2803      procedure Check_Unused_Bits (Spec : Uint; Max : Uint);
2804      --  Spec is the number of bits specified in the size clause, and Max is
2805      --  the maximum computed size. A warning is given about unused bits if
2806      --  Spec > Max. This warning is posted on node SC.
2807
2808      --------------------------
2809      -- Check_Size_Too_Small --
2810      --------------------------
2811
2812      procedure Check_Size_Too_Small (Spec : Uint; Min : Uint) is
2813      begin
2814         if Spec < Min then
2815            Error_Msg_Uint_1 := Min;
2816            Error_Msg_NE ("size for & too small, minimum allowed is ^", SC, E);
2817            Init_Esize   (E);
2818            Init_RM_Size (E);
2819         end if;
2820      end Check_Size_Too_Small;
2821
2822      -----------------------
2823      -- Check_Unused_Bits --
2824      -----------------------
2825
2826      procedure Check_Unused_Bits (Spec : Uint; Max : Uint) is
2827      begin
2828         if Spec > Max then
2829            Error_Msg_Uint_1 := Spec - Max;
2830            Error_Msg_NE ("??^ bits of & unused", SC, E);
2831         end if;
2832      end Check_Unused_Bits;
2833
2834   --  Start of processing for Set_And_Check_Static_Size
2835
2836   begin
2837      --  Case where Object_Size (Esize) is already set by a size clause
2838
2839      if Known_Static_Esize (E) then
2840         SC := Size_Clause (E);
2841
2842         if No (SC) then
2843            SC := Get_Attribute_Definition_Clause (E, Attribute_Object_Size);
2844         end if;
2845
2846         --  Perform checks on specified size against computed sizes
2847
2848         if Present (SC) then
2849            Check_Unused_Bits    (Esize (E), Esiz);
2850            Check_Size_Too_Small (Esize (E), RM_Siz);
2851         end if;
2852      end if;
2853
2854      --  Case where Value_Size (RM_Size) is set by specific Value_Size clause
2855      --  (we do not need to worry about Value_Size being set by a Size clause,
2856      --  since that will have set Esize as well, and we already took care of
2857      --  that case).
2858
2859      if Known_Static_RM_Size (E) then
2860         SC := Get_Attribute_Definition_Clause (E, Attribute_Value_Size);
2861
2862         --  Perform checks on specified size against computed sizes
2863
2864         if Present (SC) then
2865            Check_Unused_Bits    (RM_Size (E), Esiz);
2866            Check_Size_Too_Small (RM_Size (E), RM_Siz);
2867         end if;
2868      end if;
2869
2870      --  Set sizes if unknown
2871
2872      if Unknown_Esize (E) then
2873         Set_Esize (E, Esiz);
2874      end if;
2875
2876      if Unknown_RM_Size (E) then
2877         Set_RM_Size (E, RM_Siz);
2878      end if;
2879   end Set_And_Check_Static_Size;
2880
2881   -----------------------------
2882   -- Set_Composite_Alignment --
2883   -----------------------------
2884
2885   procedure Set_Composite_Alignment (E : Entity_Id) is
2886      Siz   : Uint;
2887      Align : Nat;
2888
2889   begin
2890      --  If alignment is already set, then nothing to do
2891
2892      if Known_Alignment (E) then
2893         return;
2894      end if;
2895
2896      --  Alignment is not known, see if we can set it, taking into account
2897      --  the setting of the Optimize_Alignment mode.
2898
2899      --  If Optimize_Alignment is set to Space, then we try to give packed
2900      --  records an aligmment of 1, unless there is some reason we can't.
2901
2902      if Optimize_Alignment_Space (E)
2903        and then Is_Record_Type (E)
2904        and then Is_Packed (E)
2905      then
2906         --  No effect for record with atomic/VFA components
2907
2908         if Is_Atomic_Or_VFA (E) then
2909            Error_Msg_N ("Optimize_Alignment has no effect for &??", E);
2910
2911            if Is_Atomic (E) then
2912               Error_Msg_N
2913                 ("\pragma ignored for atomic record??", E);
2914            else
2915               Error_Msg_N
2916                 ("\pragma ignored for bolatile full access record??", E);
2917            end if;
2918
2919            return;
2920         end if;
2921
2922         --  No effect if independent components
2923
2924         if Has_Independent_Components (E) then
2925            Error_Msg_N ("Optimize_Alignment has no effect for &??", E);
2926            Error_Msg_N
2927              ("\pragma ignored for record with independent components??", E);
2928            return;
2929         end if;
2930
2931         --  No effect if any component is atomic/VFA or is a by-reference type
2932
2933         declare
2934            Ent : Entity_Id;
2935
2936         begin
2937            Ent := First_Component_Or_Discriminant (E);
2938            while Present (Ent) loop
2939               if Is_By_Reference_Type (Etype (Ent))
2940                 or else Is_Atomic_Or_VFA (Etype (Ent))
2941                 or else Is_Atomic_Or_VFA (Ent)
2942               then
2943                  Error_Msg_N ("Optimize_Alignment has no effect for &??", E);
2944
2945                  if Is_Atomic (Etype (Ent)) or else Is_Atomic (Ent) then
2946                     Error_Msg_N
2947                       ("\pragma is ignored if atomic "
2948                        & "components present??", E);
2949                  else
2950                     Error_Msg_N
2951                       ("\pragma is ignored if bolatile full access "
2952                        & "components present??", E);
2953                  end if;
2954
2955                  return;
2956               else
2957                  Next_Component_Or_Discriminant (Ent);
2958               end if;
2959            end loop;
2960         end;
2961
2962         --  Optimize_Alignment has no effect on variable length record
2963
2964         if not Size_Known_At_Compile_Time (E) then
2965            Error_Msg_N ("Optimize_Alignment has no effect for &??", E);
2966            Error_Msg_N ("\pragma is ignored for variable length record??", E);
2967            return;
2968         end if;
2969
2970         --  All tests passed, we can set alignment to 1
2971
2972         Align := 1;
2973
2974      --  Not a record, or not packed
2975
2976      else
2977         --  The only other cases we worry about here are where the size is
2978         --  statically known at compile time.
2979
2980         if Known_Static_Esize (E) then
2981            Siz := Esize (E);
2982         elsif Unknown_Esize (E) and then Known_Static_RM_Size (E) then
2983            Siz := RM_Size (E);
2984         else
2985            return;
2986         end if;
2987
2988         --  Size is known, alignment is not set
2989
2990         --  Reset alignment to match size if the known size is exactly 2, 4,
2991         --  or 8 storage units.
2992
2993         if Siz = 2 * System_Storage_Unit then
2994            Align := 2;
2995         elsif Siz = 4 * System_Storage_Unit then
2996            Align := 4;
2997         elsif Siz = 8 * System_Storage_Unit then
2998            Align := 8;
2999
3000            --  If Optimize_Alignment is set to Space, then make sure the
3001            --  alignment matches the size, for example, if the size is 17
3002            --  bytes then we want an alignment of 1 for the type.
3003
3004         elsif Optimize_Alignment_Space (E) then
3005            if Siz mod (8 * System_Storage_Unit) = 0 then
3006               Align := 8;
3007            elsif Siz mod (4 * System_Storage_Unit) = 0 then
3008               Align := 4;
3009            elsif Siz mod (2 * System_Storage_Unit) = 0 then
3010               Align := 2;
3011            else
3012               Align := 1;
3013            end if;
3014
3015            --  If Optimize_Alignment is set to Time, then we reset for odd
3016            --  "in between sizes", for example a 17 bit record is given an
3017            --  alignment of 4.
3018
3019         elsif Optimize_Alignment_Time (E)
3020           and then Siz > System_Storage_Unit
3021           and then Siz <= 8 * System_Storage_Unit
3022         then
3023            if Siz <= 2 * System_Storage_Unit then
3024               Align := 2;
3025            elsif Siz <= 4 * System_Storage_Unit then
3026               Align := 4;
3027            else -- Siz <= 8 * System_Storage_Unit then
3028               Align := 8;
3029            end if;
3030
3031            --  No special alignment fiddling needed
3032
3033         else
3034            return;
3035         end if;
3036      end if;
3037
3038      --  Here we have Set Align to the proposed improved value. Make sure the
3039      --  value set does not exceed Maximum_Alignment for the target.
3040
3041      if Align > Maximum_Alignment then
3042         Align := Maximum_Alignment;
3043      end if;
3044
3045      --  Further processing for record types only to reduce the alignment
3046      --  set by the above processing in some specific cases. We do not
3047      --  do this for atomic/VFA records, since we need max alignment there,
3048
3049      if Is_Record_Type (E) and then not Is_Atomic_Or_VFA (E) then
3050
3051         --  For records, there is generally no point in setting alignment
3052         --  higher than word size since we cannot do better than move by
3053         --  words in any case. Omit this if we are optimizing for time,
3054         --  since conceivably we may be able to do better.
3055
3056         if Align > System_Word_Size / System_Storage_Unit
3057           and then not Optimize_Alignment_Time (E)
3058         then
3059            Align := System_Word_Size / System_Storage_Unit;
3060         end if;
3061
3062         --  Check components. If any component requires a higher alignment,
3063         --  then we set that higher alignment in any case. Don't do this if
3064         --  we have Optimize_Alignment set to Space. Note that that covers
3065         --  the case of packed records, where we already set alignment to 1.
3066
3067         if not Optimize_Alignment_Space (E) then
3068            declare
3069               Comp : Entity_Id;
3070
3071            begin
3072               Comp := First_Component (E);
3073               while Present (Comp) loop
3074                  if Known_Alignment (Etype (Comp)) then
3075                     declare
3076                        Calign : constant Uint := Alignment (Etype (Comp));
3077
3078                     begin
3079                        --  The cases to process are when the alignment of the
3080                        --  component type is larger than the alignment we have
3081                        --  so far, and either there is no component clause for
3082                        --  the component, or the length set by the component
3083                        --  clause matches the length of the component type.
3084
3085                        if Calign > Align
3086                          and then
3087                            (Unknown_Esize (Comp)
3088                              or else (Known_Static_Esize (Comp)
3089                                        and then
3090                                          Esize (Comp) =
3091                                              Calign * System_Storage_Unit))
3092                        then
3093                           Align := UI_To_Int (Calign);
3094                        end if;
3095                     end;
3096                  end if;
3097
3098                  Next_Component (Comp);
3099               end loop;
3100            end;
3101         end if;
3102      end if;
3103
3104      --  Set chosen alignment, and increase Esize if necessary to match the
3105      --  chosen alignment.
3106
3107      Set_Alignment (E, UI_From_Int (Align));
3108
3109      if Known_Static_Esize (E)
3110        and then Esize (E) < Align * System_Storage_Unit
3111      then
3112         Set_Esize (E, UI_From_Int (Align * System_Storage_Unit));
3113      end if;
3114   end Set_Composite_Alignment;
3115
3116   --------------------------
3117   -- Set_Discrete_RM_Size --
3118   --------------------------
3119
3120   procedure Set_Discrete_RM_Size (Def_Id : Entity_Id) is
3121      FST : constant Entity_Id := First_Subtype (Def_Id);
3122
3123   begin
3124      --  All discrete types except for the base types in standard are
3125      --  constrained, so indicate this by setting Is_Constrained.
3126
3127      Set_Is_Constrained (Def_Id);
3128
3129      --  Set generic types to have an unknown size, since the representation
3130      --  of a generic type is irrelevant, in view of the fact that they have
3131      --  nothing to do with code.
3132
3133      if Is_Generic_Type (Root_Type (FST)) then
3134         Set_RM_Size (Def_Id, Uint_0);
3135
3136      --  If the subtype statically matches the first subtype, then it is
3137      --  required to have exactly the same layout. This is required by
3138      --  aliasing considerations.
3139
3140      elsif Def_Id /= FST and then
3141        Subtypes_Statically_Match (Def_Id, FST)
3142      then
3143         Set_RM_Size   (Def_Id, RM_Size (FST));
3144         Set_Size_Info (Def_Id, FST);
3145
3146      --  In all other cases the RM_Size is set to the minimum size. Note that
3147      --  this routine is never called for subtypes for which the RM_Size is
3148      --  set explicitly by an attribute clause.
3149
3150      else
3151         Set_RM_Size (Def_Id, UI_From_Int (Minimum_Size (Def_Id)));
3152      end if;
3153   end Set_Discrete_RM_Size;
3154
3155   ------------------------
3156   -- Set_Elem_Alignment --
3157   ------------------------
3158
3159   procedure Set_Elem_Alignment (E : Entity_Id) is
3160   begin
3161      --  Do not set alignment for packed array types, unless we are doing
3162      --  front end layout, because otherwise this is always handled in the
3163      --  backend.
3164
3165      if Is_Packed_Array_Impl_Type (E)
3166        and then not Frontend_Layout_On_Target
3167      then
3168         return;
3169
3170      --  If there is an alignment clause, then we respect it
3171
3172      elsif Has_Alignment_Clause (E) then
3173         return;
3174
3175      --  If the size is not set, then don't attempt to set the alignment. This
3176      --  happens in the backend layout case for access-to-subprogram types.
3177
3178      elsif not Known_Static_Esize (E) then
3179         return;
3180
3181      --  For access types, do not set the alignment if the size is less than
3182      --  the allowed minimum size. This avoids cascaded error messages.
3183
3184      elsif Is_Access_Type (E) and then Esize (E) < System_Address_Size then
3185         return;
3186      end if;
3187
3188      --  Here we calculate the alignment as the largest power of two multiple
3189      --  of System.Storage_Unit that does not exceed either the object size of
3190      --  the type, or the maximum allowed alignment.
3191
3192      declare
3193         S : Int;
3194         A : Nat;
3195
3196         Max_Alignment : Nat;
3197
3198      begin
3199         --  The given Esize may be larger that int'last because of a previous
3200         --  error, and the call to UI_To_Int will fail, so use default.
3201
3202         if Esize (E) / SSU > Ttypes.Maximum_Alignment then
3203            S := Ttypes.Maximum_Alignment;
3204
3205         --  If this is an access type and the target doesn't have strict
3206         --  alignment and we are not doing front end layout, then cap the
3207         --  alignment to that of a regular access type. This will avoid
3208         --  giving fat pointers twice the usual alignment for no practical
3209         --  benefit since the misalignment doesn't really matter.
3210
3211         elsif Is_Access_Type (E)
3212           and then not Target_Strict_Alignment
3213           and then not Frontend_Layout_On_Target
3214         then
3215            S := System_Address_Size / SSU;
3216
3217         else
3218            S := UI_To_Int (Esize (E)) / SSU;
3219         end if;
3220
3221         --  If the default alignment of "double" floating-point types is
3222         --  specifically capped, enforce the cap.
3223
3224         if Ttypes.Target_Double_Float_Alignment > 0
3225           and then S = 8
3226           and then Is_Floating_Point_Type (E)
3227         then
3228            Max_Alignment := Ttypes.Target_Double_Float_Alignment;
3229
3230         --  If the default alignment of "double" or larger scalar types is
3231         --  specifically capped, enforce the cap.
3232
3233         elsif Ttypes.Target_Double_Scalar_Alignment > 0
3234           and then S >= 8
3235           and then Is_Scalar_Type (E)
3236         then
3237            Max_Alignment := Ttypes.Target_Double_Scalar_Alignment;
3238
3239         --  Otherwise enforce the overall alignment cap
3240
3241         else
3242            Max_Alignment := Ttypes.Maximum_Alignment;
3243         end if;
3244
3245         A := 1;
3246         while 2 * A <= Max_Alignment and then 2 * A <= S loop
3247            A := 2 * A;
3248         end loop;
3249
3250         --  If alignment is currently not set, then we can safetly set it to
3251         --  this new calculated value.
3252
3253         if Unknown_Alignment (E) then
3254            Init_Alignment (E, A);
3255
3256         --  Cases where we have inherited an alignment
3257
3258         --  For constructed types, always reset the alignment, these are
3259         --  Generally invisible to the user anyway, and that way we are
3260         --  sure that no constructed types have weird alignments.
3261
3262         elsif not Comes_From_Source (E) then
3263            Init_Alignment (E, A);
3264
3265         --  If this inherited alignment is the same as the one we computed,
3266         --  then obviously everything is fine, and we do not need to reset it.
3267
3268         elsif Alignment (E) = A then
3269            null;
3270
3271         --  Now we come to the difficult cases where we have inherited an
3272         --  alignment and size, but overridden the size but not the alignment.
3273
3274         elsif Has_Size_Clause (E) or else Has_Object_Size_Clause (E) then
3275
3276            --  This is tricky, it might be thought that we should try to
3277            --  inherit the alignment, since that's what the RM implies, but
3278            --  that leads to complex rules and oddities. Consider for example:
3279
3280            --    type R is new Character;
3281            --    for R'Size use 16;
3282
3283            --  It seems quite bogus in this case to inherit an alignment of 1
3284            --  from the parent type Character. Furthermore, if that's what the
3285            --  programmer really wanted for some odd reason, then they could
3286            --  specify the alignment they wanted.
3287
3288            --  Furthermore we really don't want to inherit the alignment in
3289            --  the case of a specified Object_Size for a subtype, since then
3290            --  there would be no way of overriding to give a reasonable value
3291            --  (we don't have an Object_Subtype attribute). Consider:
3292
3293            --    subtype R is new Character;
3294            --    for R'Object_Size use 16;
3295
3296            --  If we inherit the alignment of 1, then we have an odd
3297            --  inefficient alignment for the subtype, which cannot be fixed.
3298
3299            --  So we make the decision that if Size (or Object_Size) is given
3300            --  (and, in the case of a first subtype, the alignment is not set
3301            --  with a specific alignment clause). We reset the alignment to
3302            --  the appropriate value for the specified size. This is a nice
3303            --  simple rule to implement and document.
3304
3305            --  There is one slight glitch, which is that a confirming size
3306            --  clause can now change the alignment, which, if we really think
3307            --  that confirming rep clauses should have no effect, is a no-no.
3308
3309            --    type R is new Character;
3310            --    for R'Alignment use 2;
3311            --    type S is new R;
3312            --    for S'Size use Character'Size;
3313
3314            --  Now the alignment of S is 1 instead of 2, as a result of
3315            --  applying the above rule to the confirming rep clause for S. Not
3316            --  clear this is worth worrying about. If we recorded whether a
3317            --  size clause was confirming we could avoid this, but right now
3318            --  we have no way of doing that or easily figuring it out, so we
3319            --  don't bother.
3320
3321            --  Historical note. In versions of GNAT prior to Nov 6th, 2010, an
3322            --  odd distinction was made between inherited alignments greater
3323            --  than the computed alignment (where the larger alignment was
3324            --  inherited) and inherited alignments smaller than the computed
3325            --  alignment (where the smaller alignment was overridden). This
3326            --  was a dubious fix to get around an ACATS problem which seems
3327            --  to have disappeared anyway, and in any case, this peculiarity
3328            --  was never documented.
3329
3330            Init_Alignment (E, A);
3331
3332         --  If no Size (or Object_Size) was specified, then we inherited the
3333         --  object size, so we should inherit the alignment as well and not
3334         --  modify it. This takes care of cases like:
3335
3336         --    type R is new Integer;
3337         --    for R'Alignment use 1;
3338         --    subtype S is R;
3339
3340         --  Here we have R has a default Object_Size of 32, and a specified
3341         --  alignment of 1, and it seeems right for S to inherit both values.
3342
3343         else
3344            null;
3345         end if;
3346      end;
3347   end Set_Elem_Alignment;
3348
3349   ----------------------
3350   -- SO_Ref_From_Expr --
3351   ----------------------
3352
3353   function SO_Ref_From_Expr
3354     (Expr      : Node_Id;
3355      Ins_Type  : Entity_Id;
3356      Vtype     : Entity_Id := Empty;
3357      Make_Func : Boolean   := False) return Dynamic_SO_Ref
3358   is
3359      Loc  : constant Source_Ptr := Sloc (Ins_Type);
3360      K    : constant Entity_Id := Make_Temporary (Loc, 'K');
3361      Decl : Node_Id;
3362
3363      Vtype_Primary_View : Entity_Id;
3364
3365      function Check_Node_V_Ref (N : Node_Id) return Traverse_Result;
3366      --  Function used to check one node for reference to V
3367
3368      function Has_V_Ref is new Traverse_Func (Check_Node_V_Ref);
3369      --  Function used to traverse tree to check for reference to V
3370
3371      ----------------------
3372      -- Check_Node_V_Ref --
3373      ----------------------
3374
3375      function Check_Node_V_Ref (N : Node_Id) return Traverse_Result is
3376      begin
3377         if Nkind (N) = N_Identifier then
3378            if Chars (N) = Vname then
3379               return Abandon;
3380            else
3381               return Skip;
3382            end if;
3383
3384         else
3385            return OK;
3386         end if;
3387      end Check_Node_V_Ref;
3388
3389   --  Start of processing for SO_Ref_From_Expr
3390
3391   begin
3392      --  Case of expression is an integer literal, in this case we just
3393      --  return the value (which must always be non-negative, since size
3394      --  and offset values can never be negative).
3395
3396      if Nkind (Expr) = N_Integer_Literal then
3397         pragma Assert (Intval (Expr) >= 0);
3398         return Intval (Expr);
3399      end if;
3400
3401      --  Case where there is a reference to V, create function
3402
3403      if Has_V_Ref (Expr) = Abandon then
3404
3405         pragma Assert (Present (Vtype));
3406
3407         --  Check whether Vtype is a view of a private type and ensure that
3408         --  we use the primary view of the type (which is denoted by its
3409         --  Etype, whether it's the type's partial or full view entity).
3410         --  This is needed to make sure that we use the same (primary) view
3411         --  of the type for all V formals, whether the current view of the
3412         --  type is the partial or full view, so that types will always
3413         --  match on calls from one size function to another.
3414
3415         if Has_Private_Declaration (Vtype) then
3416            Vtype_Primary_View := Etype (Vtype);
3417         else
3418            Vtype_Primary_View := Vtype;
3419         end if;
3420
3421         Set_Is_Discrim_SO_Function (K);
3422
3423         Decl :=
3424           Make_Subprogram_Body (Loc,
3425
3426             Specification =>
3427               Make_Function_Specification (Loc,
3428                 Defining_Unit_Name => K,
3429                   Parameter_Specifications => New_List (
3430                     Make_Parameter_Specification (Loc,
3431                       Defining_Identifier =>
3432                         Make_Defining_Identifier (Loc, Chars => Vname),
3433                       Parameter_Type      =>
3434                         New_Occurrence_Of (Vtype_Primary_View, Loc))),
3435                   Result_Definition =>
3436                     New_Occurrence_Of (Standard_Unsigned, Loc)),
3437
3438             Declarations => Empty_List,
3439
3440             Handled_Statement_Sequence =>
3441               Make_Handled_Sequence_Of_Statements (Loc,
3442                 Statements => New_List (
3443                   Make_Simple_Return_Statement (Loc,
3444                     Expression => Expr))));
3445
3446      --  The caller requests that the expression be encapsulated in a
3447      --  parameterless function.
3448
3449      elsif Make_Func then
3450         Decl :=
3451           Make_Subprogram_Body (Loc,
3452
3453             Specification =>
3454               Make_Function_Specification (Loc,
3455                 Defining_Unit_Name => K,
3456                   Parameter_Specifications => Empty_List,
3457                   Result_Definition =>
3458                     New_Occurrence_Of (Standard_Unsigned, Loc)),
3459
3460             Declarations => Empty_List,
3461
3462             Handled_Statement_Sequence =>
3463               Make_Handled_Sequence_Of_Statements (Loc,
3464                 Statements => New_List (
3465                   Make_Simple_Return_Statement (Loc, Expression => Expr))));
3466
3467      --  No reference to V and function not requested, so create a constant
3468
3469      else
3470         Decl :=
3471           Make_Object_Declaration (Loc,
3472             Defining_Identifier => K,
3473             Object_Definition   =>
3474               New_Occurrence_Of (Standard_Unsigned, Loc),
3475             Constant_Present    => True,
3476             Expression          => Expr);
3477      end if;
3478
3479      Append_Freeze_Action (Ins_Type, Decl);
3480      Analyze (Decl);
3481      return Create_Dynamic_SO_Ref (K);
3482   end SO_Ref_From_Expr;
3483
3484end Layout;
3485