1------------------------------------------------------------------------------
2--                                                                          --
3--                         GNAT RUN-TIME COMPONENTS                         --
4--                                                                          --
5--                      S Y S T E M . A R I T H _ 6 4                       --
6--                                                                          --
7--                                 B o d y                                  --
8--                                                                          --
9--          Copyright (C) 1992-2015, Free Software Foundation, Inc.         --
10--                                                                          --
11-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12-- terms of the  GNU General Public License as published  by the Free Soft- --
13-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
17--                                                                          --
18-- As a special exception under Section 7 of GPL version 3, you are granted --
19-- additional permissions described in the GCC Runtime Library Exception,   --
20-- version 3.1, as published by the Free Software Foundation.               --
21--                                                                          --
22-- You should have received a copy of the GNU General Public License and    --
23-- a copy of the GCC Runtime Library Exception along with this program;     --
24-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
25-- <http://www.gnu.org/licenses/>.                                          --
26--                                                                          --
27-- GNAT was originally developed  by the GNAT team at  New York University. --
28-- Extensive contributions were provided by Ada Core Technologies Inc.      --
29--                                                                          --
30------------------------------------------------------------------------------
31
32with Interfaces; use Interfaces;
33
34with Ada.Unchecked_Conversion;
35
36package body System.Arith_64 is
37
38   pragma Suppress (Overflow_Check);
39   pragma Suppress (Range_Check);
40
41   subtype Uns64 is Unsigned_64;
42   function To_Uns is new Ada.Unchecked_Conversion (Int64, Uns64);
43   function To_Int is new Ada.Unchecked_Conversion (Uns64, Int64);
44
45   subtype Uns32 is Unsigned_32;
46
47   -----------------------
48   -- Local Subprograms --
49   -----------------------
50
51   function "+" (A, B : Uns32) return Uns64 is (Uns64 (A) + Uns64 (B));
52   function "+" (A : Uns64; B : Uns32) return Uns64 is (A + Uns64 (B));
53   --  Length doubling additions
54
55   function "*" (A, B : Uns32) return Uns64 is (Uns64 (A) * Uns64 (B));
56   --  Length doubling multiplication
57
58   function "/" (A : Uns64; B : Uns32) return Uns64 is (A / Uns64 (B));
59   --  Length doubling division
60
61   function "&" (Hi, Lo : Uns32) return Uns64 is
62     (Shift_Left (Uns64 (Hi), 32) or Uns64 (Lo));
63   --  Concatenate hi, lo values to form 64-bit result
64
65   function "abs" (X : Int64) return Uns64 is
66     (if X = Int64'First then 2**63 else Uns64 (Int64'(abs X)));
67   --  Convert absolute value of X to unsigned. Note that we can't just use
68   --  the expression of the Else, because it overflows for X = Int64'First.
69
70   function "rem" (A : Uns64; B : Uns32) return Uns64 is (A rem Uns64 (B));
71   --  Length doubling remainder
72
73   function Le3 (X1, X2, X3 : Uns32; Y1, Y2, Y3 : Uns32) return Boolean;
74   --  Determines if 96 bit value X1&X2&X3 <= Y1&Y2&Y3
75
76   function Lo (A : Uns64) return Uns32 is (Uns32 (A and 16#FFFF_FFFF#));
77   --  Low order half of 64-bit value
78
79   function Hi (A : Uns64) return Uns32 is (Uns32 (Shift_Right (A, 32)));
80   --  High order half of 64-bit value
81
82   procedure Sub3 (X1, X2, X3 : in out Uns32; Y1, Y2, Y3 : Uns32);
83   --  Computes X1&X2&X3 := X1&X2&X3 - Y1&Y1&Y3 with mod 2**96 wrap
84
85   function To_Neg_Int (A : Uns64) return Int64 with Inline;
86   --  Convert to negative integer equivalent. If the input is in the range
87   --  0 .. 2 ** 63, then the corresponding negative signed integer (obtained
88   --  by negating the given value) is returned, otherwise constraint error
89   --  is raised.
90
91   function To_Pos_Int (A : Uns64) return Int64 with Inline;
92   --  Convert to positive integer equivalent. If the input is in the range
93   --  0 .. 2 ** 63-1, then the corresponding non-negative signed integer is
94   --  returned, otherwise constraint error is raised.
95
96   procedure Raise_Error with Inline;
97   pragma No_Return (Raise_Error);
98   --  Raise constraint error with appropriate message
99
100   --------------------------
101   -- Add_With_Ovflo_Check --
102   --------------------------
103
104   function Add_With_Ovflo_Check (X, Y : Int64) return Int64 is
105      R : constant Int64 := To_Int (To_Uns (X) + To_Uns (Y));
106
107   begin
108      if X >= 0 then
109         if Y < 0 or else R >= 0 then
110            return R;
111         end if;
112
113      else -- X < 0
114         if Y > 0 or else R < 0 then
115            return R;
116         end if;
117      end if;
118
119      Raise_Error;
120   end Add_With_Ovflo_Check;
121
122   -------------------
123   -- Double_Divide --
124   -------------------
125
126   procedure Double_Divide
127     (X, Y, Z : Int64;
128      Q, R    : out Int64;
129      Round   : Boolean)
130   is
131      Xu  : constant Uns64 := abs X;
132      Yu  : constant Uns64 := abs Y;
133
134      Yhi : constant Uns32 := Hi (Yu);
135      Ylo : constant Uns32 := Lo (Yu);
136
137      Zu  : constant Uns64 := abs Z;
138      Zhi : constant Uns32 := Hi (Zu);
139      Zlo : constant Uns32 := Lo (Zu);
140
141      T1, T2     : Uns64;
142      Du, Qu, Ru : Uns64;
143      Den_Pos    : Boolean;
144
145   begin
146      if Yu = 0 or else Zu = 0 then
147         Raise_Error;
148      end if;
149
150      --  Compute Y * Z. Note that if the result overflows 64 bits unsigned,
151      --  then the rounded result is clearly zero (since the dividend is at
152      --  most 2**63 - 1, the extra bit of precision is nice here).
153
154      if Yhi /= 0 then
155         if Zhi /= 0 then
156            Q := 0;
157            R := X;
158            return;
159         else
160            T2 := Yhi * Zlo;
161         end if;
162
163      else
164         T2 := (if Zhi /= 0 then Ylo * Zhi else 0);
165      end if;
166
167      T1 := Ylo * Zlo;
168      T2 := T2 + Hi (T1);
169
170      if Hi (T2) /= 0 then
171         Q := 0;
172         R := X;
173         return;
174      end if;
175
176      Du := Lo (T2) & Lo (T1);
177
178      --  Set final signs (RM 4.5.5(27-30))
179
180      Den_Pos := (Y < 0) = (Z < 0);
181
182      --  Check overflow case of largest negative number divided by 1
183
184      if X = Int64'First and then Du = 1 and then not Den_Pos then
185         Raise_Error;
186      end if;
187
188      --  Perform the actual division
189
190      Qu := Xu / Du;
191      Ru := Xu rem Du;
192
193      --  Deal with rounding case
194
195      if Round and then Ru > (Du - Uns64'(1)) / Uns64'(2) then
196         Qu := Qu + Uns64'(1);
197      end if;
198
199      --  Case of dividend (X) sign positive
200
201      if X >= 0 then
202         R := To_Int (Ru);
203         Q := (if Den_Pos then To_Int (Qu) else -To_Int (Qu));
204
205      --  Case of dividend (X) sign negative
206
207      else
208         R := -To_Int (Ru);
209         Q := (if Den_Pos then -To_Int (Qu) else To_Int (Qu));
210      end if;
211   end Double_Divide;
212
213   ---------
214   -- Le3 --
215   ---------
216
217   function Le3 (X1, X2, X3 : Uns32; Y1, Y2, Y3 : Uns32) return Boolean is
218   begin
219      if X1 < Y1 then
220         return True;
221      elsif X1 > Y1 then
222         return False;
223      elsif X2 < Y2 then
224         return True;
225      elsif X2 > Y2 then
226         return False;
227      else
228         return X3 <= Y3;
229      end if;
230   end Le3;
231
232   -------------------------------
233   -- Multiply_With_Ovflo_Check --
234   -------------------------------
235
236   function Multiply_With_Ovflo_Check (X, Y : Int64) return Int64 is
237      Xu  : constant Uns64 := abs X;
238      Xhi : constant Uns32 := Hi (Xu);
239      Xlo : constant Uns32 := Lo (Xu);
240
241      Yu  : constant Uns64 := abs Y;
242      Yhi : constant Uns32 := Hi (Yu);
243      Ylo : constant Uns32 := Lo (Yu);
244
245      T1, T2 : Uns64;
246
247   begin
248      if Xhi /= 0 then
249         if Yhi /= 0 then
250            Raise_Error;
251         else
252            T2 := Xhi * Ylo;
253         end if;
254
255      elsif Yhi /= 0 then
256         T2 := Xlo * Yhi;
257
258      else -- Yhi = Xhi = 0
259         T2 := 0;
260      end if;
261
262      --  Here we have T2 set to the contribution to the upper half of the
263      --  result from the upper halves of the input values.
264
265      T1 := Xlo * Ylo;
266      T2 := T2 + Hi (T1);
267
268      if Hi (T2) /= 0 then
269         Raise_Error;
270      end if;
271
272      T2 := Lo (T2) & Lo (T1);
273
274      if X >= 0 then
275         if Y >= 0 then
276            return To_Pos_Int (T2);
277         else
278            return To_Neg_Int (T2);
279         end if;
280      else -- X < 0
281         if Y < 0 then
282            return To_Pos_Int (T2);
283         else
284            return To_Neg_Int (T2);
285         end if;
286      end if;
287
288   end Multiply_With_Ovflo_Check;
289
290   -----------------
291   -- Raise_Error --
292   -----------------
293
294   procedure Raise_Error is
295   begin
296      raise Constraint_Error with "64-bit arithmetic overflow";
297   end Raise_Error;
298
299   -------------------
300   -- Scaled_Divide --
301   -------------------
302
303   procedure Scaled_Divide
304     (X, Y, Z : Int64;
305      Q, R    : out Int64;
306      Round   : Boolean)
307   is
308      Xu  : constant Uns64 := abs X;
309      Xhi : constant Uns32 := Hi (Xu);
310      Xlo : constant Uns32 := Lo (Xu);
311
312      Yu  : constant Uns64 := abs Y;
313      Yhi : constant Uns32 := Hi (Yu);
314      Ylo : constant Uns32 := Lo (Yu);
315
316      Zu  : Uns64 := abs Z;
317      Zhi : Uns32 := Hi (Zu);
318      Zlo : Uns32 := Lo (Zu);
319
320      D : array (1 .. 4) of Uns32;
321      --  The dividend, four digits (D(1) is high order)
322
323      Qd : array (1 .. 2) of Uns32;
324      --  The quotient digits, two digits (Qd(1) is high order)
325
326      S1, S2, S3 : Uns32;
327      --  Value to subtract, three digits (S1 is high order)
328
329      Qu : Uns64;
330      Ru : Uns64;
331      --  Unsigned quotient and remainder
332
333      Scale : Natural;
334      --  Scaling factor used for multiple-precision divide. Dividend and
335      --  Divisor are multiplied by 2 ** Scale, and the final remainder is
336      --  divided by the scaling factor. The reason for this scaling is to
337      --  allow more accurate estimation of quotient digits.
338
339      T1, T2, T3 : Uns64;
340      --  Temporary values
341
342   begin
343      --  First do the multiplication, giving the four digit dividend
344
345      T1 := Xlo * Ylo;
346      D (4) := Lo (T1);
347      D (3) := Hi (T1);
348
349      if Yhi /= 0 then
350         T1 := Xlo * Yhi;
351         T2 := D (3) + Lo (T1);
352         D (3) := Lo (T2);
353         D (2) := Hi (T1) + Hi (T2);
354
355         if Xhi /= 0 then
356            T1 := Xhi * Ylo;
357            T2 := D (3) + Lo (T1);
358            D (3) := Lo (T2);
359            T3 := D (2) + Hi (T1);
360            T3 := T3 + Hi (T2);
361            D (2) := Lo (T3);
362            D (1) := Hi (T3);
363
364            T1 := (D (1) & D (2)) + Uns64'(Xhi * Yhi);
365            D (1) := Hi (T1);
366            D (2) := Lo (T1);
367
368         else
369            D (1) := 0;
370         end if;
371
372      else
373         if Xhi /= 0 then
374            T1 := Xhi * Ylo;
375            T2 := D (3) + Lo (T1);
376            D (3) := Lo (T2);
377            D (2) := Hi (T1) + Hi (T2);
378
379         else
380            D (2) := 0;
381         end if;
382
383         D (1) := 0;
384      end if;
385
386      --  Now it is time for the dreaded multiple precision division. First an
387      --  easy case, check for the simple case of a one digit divisor.
388
389      if Zhi = 0 then
390         if D (1) /= 0 or else D (2) >= Zlo then
391            Raise_Error;
392
393         --  Here we are dividing at most three digits by one digit
394
395         else
396            T1 := D (2) & D (3);
397            T2 := Lo (T1 rem Zlo) & D (4);
398
399            Qu := Lo (T1 / Zlo) & Lo (T2 / Zlo);
400            Ru := T2 rem Zlo;
401         end if;
402
403      --  If divisor is double digit and too large, raise error
404
405      elsif (D (1) & D (2)) >= Zu then
406         Raise_Error;
407
408      --  This is the complex case where we definitely have a double digit
409      --  divisor and a dividend of at least three digits. We use the classical
410      --  multiple division algorithm (see section (4.3.1) of Knuth's "The Art
411      --  of Computer Programming", Vol. 2 for a description (algorithm D).
412
413      else
414         --  First normalize the divisor so that it has the leading bit on.
415         --  We do this by finding the appropriate left shift amount.
416
417         Scale := 0;
418
419         if (Zhi and 16#FFFF0000#) = 0 then
420            Scale := 16;
421            Zu := Shift_Left (Zu, 16);
422         end if;
423
424         if (Hi (Zu) and 16#FF00_0000#) = 0 then
425            Scale := Scale + 8;
426            Zu := Shift_Left (Zu, 8);
427         end if;
428
429         if (Hi (Zu) and 16#F000_0000#) = 0 then
430            Scale := Scale + 4;
431            Zu := Shift_Left (Zu, 4);
432         end if;
433
434         if (Hi (Zu) and 16#C000_0000#) = 0 then
435            Scale := Scale + 2;
436            Zu := Shift_Left (Zu, 2);
437         end if;
438
439         if (Hi (Zu) and 16#8000_0000#) = 0 then
440            Scale := Scale + 1;
441            Zu := Shift_Left (Zu, 1);
442         end if;
443
444         Zhi := Hi (Zu);
445         Zlo := Lo (Zu);
446
447         --  Note that when we scale up the dividend, it still fits in four
448         --  digits, since we already tested for overflow, and scaling does
449         --  not change the invariant that (D (1) & D (2)) >= Zu.
450
451         T1 := Shift_Left (D (1) & D (2), Scale);
452         D (1) := Hi (T1);
453         T2 := Shift_Left (0 & D (3), Scale);
454         D (2) := Lo (T1) or Hi (T2);
455         T3 := Shift_Left (0 & D (4), Scale);
456         D (3) := Lo (T2) or Hi (T3);
457         D (4) := Lo (T3);
458
459         --  Loop to compute quotient digits, runs twice for Qd(1) and Qd(2)
460
461         for J in 0 .. 1 loop
462
463            --  Compute next quotient digit. We have to divide three digits by
464            --  two digits. We estimate the quotient by dividing the leading
465            --  two digits by the leading digit. Given the scaling we did above
466            --  which ensured the first bit of the divisor is set, this gives
467            --  an estimate of the quotient that is at most two too high.
468
469            Qd (J + 1) := (if D (J + 1) = Zhi
470                           then 2 ** 32 - 1
471                           else Lo ((D (J + 1) & D (J + 2)) / Zhi));
472
473            --  Compute amount to subtract
474
475            T1 := Qd (J + 1) * Zlo;
476            T2 := Qd (J + 1) * Zhi;
477            S3 := Lo (T1);
478            T1 := Hi (T1) + Lo (T2);
479            S2 := Lo (T1);
480            S1 := Hi (T1) + Hi (T2);
481
482            --  Adjust quotient digit if it was too high
483
484            loop
485               exit when Le3 (S1, S2, S3, D (J + 1), D (J + 2), D (J + 3));
486               Qd (J + 1) := Qd (J + 1) - 1;
487               Sub3 (S1, S2, S3, 0, Zhi, Zlo);
488            end loop;
489
490            --  Now subtract S1&S2&S3 from D1&D2&D3 ready for next step
491
492            Sub3 (D (J + 1), D (J + 2), D (J + 3), S1, S2, S3);
493         end loop;
494
495         --  The two quotient digits are now set, and the remainder of the
496         --  scaled division is in D3&D4. To get the remainder for the
497         --  original unscaled division, we rescale this dividend.
498
499         --  We rescale the divisor as well, to make the proper comparison
500         --  for rounding below.
501
502         Qu := Qd (1) & Qd (2);
503         Ru := Shift_Right (D (3) & D (4), Scale);
504         Zu := Shift_Right (Zu, Scale);
505      end if;
506
507      --  Deal with rounding case
508
509      if Round and then Ru > (Zu - Uns64'(1)) / Uns64'(2) then
510         Qu := Qu + Uns64 (1);
511      end if;
512
513      --  Set final signs (RM 4.5.5(27-30))
514
515      --  Case of dividend (X * Y) sign positive
516
517      if (X >= 0 and then Y >= 0) or else (X < 0 and then Y < 0) then
518         R := To_Pos_Int (Ru);
519         Q := (if Z > 0 then To_Pos_Int (Qu) else To_Neg_Int (Qu));
520
521      --  Case of dividend (X * Y) sign negative
522
523      else
524         R := To_Neg_Int (Ru);
525         Q := (if Z > 0 then To_Neg_Int (Qu) else To_Pos_Int (Qu));
526      end if;
527   end Scaled_Divide;
528
529   ----------
530   -- Sub3 --
531   ----------
532
533   procedure Sub3 (X1, X2, X3 : in out Uns32; Y1, Y2, Y3 : Uns32) is
534   begin
535      if Y3 > X3 then
536         if X2 = 0 then
537            X1 := X1 - 1;
538         end if;
539
540         X2 := X2 - 1;
541      end if;
542
543      X3 := X3 - Y3;
544
545      if Y2 > X2 then
546         X1 := X1 - 1;
547      end if;
548
549      X2 := X2 - Y2;
550      X1 := X1 - Y1;
551   end Sub3;
552
553   -------------------------------
554   -- Subtract_With_Ovflo_Check --
555   -------------------------------
556
557   function Subtract_With_Ovflo_Check (X, Y : Int64) return Int64 is
558      R : constant Int64 := To_Int (To_Uns (X) - To_Uns (Y));
559
560   begin
561      if X >= 0 then
562         if Y > 0 or else R >= 0 then
563            return R;
564         end if;
565
566      else -- X < 0
567         if Y <= 0 or else R < 0 then
568            return R;
569         end if;
570      end if;
571
572      Raise_Error;
573   end Subtract_With_Ovflo_Check;
574
575   ----------------
576   -- To_Neg_Int --
577   ----------------
578
579   function To_Neg_Int (A : Uns64) return Int64 is
580      R : constant Int64 := (if A = 2**63 then Int64'First else -To_Int (A));
581      --  Note that we can't just use the expression of the Else, because it
582      --  overflows for A = 2**63.
583   begin
584      if R <= 0 then
585         return R;
586      else
587         Raise_Error;
588      end if;
589   end To_Neg_Int;
590
591   ----------------
592   -- To_Pos_Int --
593   ----------------
594
595   function To_Pos_Int (A : Uns64) return Int64 is
596      R : constant Int64 := To_Int (A);
597   begin
598      if R >= 0 then
599         return R;
600      else
601         Raise_Error;
602      end if;
603   end To_Pos_Int;
604
605end System.Arith_64;
606