1------------------------------------------------------------------------------
2--                                                                          --
3--                         GNAT RUN-TIME COMPONENTS                         --
4--                                                                          --
5--                S Y S T E M . R A N D O M _ N U M B E R S                 --
6--                                                                          --
7--                                 B o d y                                  --
8--                                                                          --
9--          Copyright (C) 2007-2015, Free Software Foundation, Inc.         --
10--                                                                          --
11-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12-- terms of the  GNU General Public License as published  by the Free Soft- --
13-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
17--                                                                          --
18-- As a special exception under Section 7 of GPL version 3, you are granted --
19-- additional permissions described in the GCC Runtime Library Exception,   --
20-- version 3.1, as published by the Free Software Foundation.               --
21--                                                                          --
22-- You should have received a copy of the GNU General Public License and    --
23-- a copy of the GCC Runtime Library Exception along with this program;     --
24-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
25-- <http://www.gnu.org/licenses/>.                                          --
26--                                                                          --
27-- GNAT was originally developed  by the GNAT team at  New York University. --
28-- Extensive contributions were provided by Ada Core Technologies Inc.      --
29--                                                                          --
30------------------------------------------------------------------------------
31
32------------------------------------------------------------------------------
33--                                                                          --
34-- The implementation here is derived from a C-program for MT19937, with    --
35-- initialization improved 2002/1/26. As required, the following notice is  --
36-- copied from the original program.                                        --
37--                                                                          --
38-- Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,        --
39-- All rights reserved.                                                     --
40--                                                                          --
41-- Redistribution and use in source and binary forms, with or without       --
42-- modification, are permitted provided that the following conditions       --
43-- are met:                                                                 --
44--                                                                          --
45--   1. Redistributions of source code must retain the above copyright      --
46--      notice, this list of conditions and the following disclaimer.       --
47--                                                                          --
48--   2. Redistributions in binary form must reproduce the above copyright   --
49--      notice, this list of conditions and the following disclaimer in the --
50--      documentation and/or other materials provided with the distribution.--
51--                                                                          --
52--   3. The names of its contributors may not be used to endorse or promote --
53--      products derived from this software without specific prior written  --
54--      permission.                                                         --
55--                                                                          --
56-- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS      --
57-- "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT        --
58-- LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR    --
59-- A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT    --
60-- OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,    --
61-- SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED --
62-- TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR   --
63-- PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF   --
64-- LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING     --
65-- NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS       --
66-- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.             --
67--                                                                          --
68------------------------------------------------------------------------------
69
70------------------------------------------------------------------------------
71--                                                                          --
72-- This is an implementation of the Mersenne Twister, twisted generalized   --
73-- feedback shift register of rational normal form, with state-bit          --
74-- reflection and tempering. This version generates 32-bit integers with a  --
75-- period of 2**19937 - 1 (a Mersenne prime, hence the name). For           --
76-- applications requiring more than 32 bits (up to 64), we concatenate two  --
77-- 32-bit numbers.                                                          --
78--                                                                          --
79-- See http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html for         --
80-- details.                                                                 --
81--                                                                          --
82-- In contrast to the original code, we do not generate random numbers in   --
83-- batches of N. Measurement seems to show this has very little if any      --
84-- effect on performance, and it may be marginally better for real-time     --
85-- applications with hard deadlines.                                        --
86--                                                                          --
87------------------------------------------------------------------------------
88
89with Ada.Unchecked_Conversion;
90
91with System.Random_Seed;
92
93with Interfaces; use Interfaces;
94
95use Ada;
96
97package body System.Random_Numbers with
98  SPARK_Mode => Off
99is
100   Image_Numeral_Length : constant := Max_Image_Width / N;
101
102   subtype Image_String is String (1 .. Max_Image_Width);
103
104   ----------------------------
105   -- Algorithmic Parameters --
106   ----------------------------
107
108   Lower_Mask : constant := 2**31 - 1;
109   Upper_Mask : constant := 2**31;
110
111   Matrix_A   : constant array (State_Val range 0 .. 1) of State_Val
112     := (0, 16#9908b0df#);
113   --  The twist transformation is represented by a matrix of the form
114   --
115   --               [  0    I(31) ]
116   --               [    _a       ]
117   --
118   --  where 0 is a 31x31 block of 0s, I(31) is the 31x31 identity matrix and
119   --  _a is a particular bit row-vector, represented here by a 32-bit integer.
120   --  If integer x represents a row vector of bits (with x(0), the units bit,
121   --  last), then
122   --           x * A = [0 x(31..1)] xor Matrix_A(x(0)).
123
124   U      : constant := 11;
125   S      : constant := 7;
126   B_Mask : constant := 16#9d2c5680#;
127   T      : constant := 15;
128   C_Mask : constant := 16#efc60000#;
129   L      : constant := 18;
130   --  The tempering shifts and bit masks, in the order applied
131
132   Seed0 : constant := 5489;
133   --  Default seed, used to initialize the state vector when Reset not called
134
135   Seed1 : constant := 19650218;
136   --  Seed used to initialize the state vector when calling Reset with an
137   --  initialization vector.
138
139   Mult0 : constant := 1812433253;
140   --  Multiplier for a modified linear congruential generator used to
141   --  initialize the state vector when calling Reset with a single integer
142   --  seed.
143
144   Mult1 : constant := 1664525;
145   Mult2 : constant := 1566083941;
146   --  Multipliers for two modified linear congruential generators used to
147   --  initialize the state vector when calling Reset with an initialization
148   --  vector.
149
150   -----------------------
151   -- Local Subprograms --
152   -----------------------
153
154   procedure Init (Gen : Generator; Initiator : Unsigned_32);
155   --  Perform a default initialization of the state of Gen. The resulting
156   --  state is identical for identical values of Initiator.
157
158   procedure Insert_Image
159     (S     : in out Image_String;
160      Index : Integer;
161      V     : State_Val);
162   --  Insert image of V into S, in the Index'th 11-character substring
163
164   function Extract_Value (S : String; Index : Integer) return State_Val;
165   --  Treat S as a sequence of 11-character decimal numerals and return
166   --  the result of converting numeral #Index (numbering from 0)
167
168   function To_Unsigned is
169     new Unchecked_Conversion (Integer_32, Unsigned_32);
170   function To_Unsigned is
171     new Unchecked_Conversion (Integer_64, Unsigned_64);
172
173   ------------
174   -- Random --
175   ------------
176
177   function Random (Gen : Generator) return Unsigned_32 is
178      G : Generator renames Gen.Writable.Self.all;
179      Y : State_Val;
180      I : Integer;      --  should avoid use of identifier I ???
181
182   begin
183      I := G.I;
184
185      if I < N - M then
186         Y := (G.S (I) and Upper_Mask) or (G.S (I + 1) and Lower_Mask);
187         Y := G.S (I + M) xor Shift_Right (Y, 1) xor Matrix_A (Y and 1);
188         I := I + 1;
189
190      elsif I < N - 1 then
191         Y := (G.S (I) and Upper_Mask) or (G.S (I + 1) and Lower_Mask);
192         Y := G.S (I + (M - N))
193                xor Shift_Right (Y, 1)
194                xor Matrix_A (Y and 1);
195         I := I + 1;
196
197      elsif I = N - 1 then
198         Y := (G.S (I) and Upper_Mask) or (G.S (0) and Lower_Mask);
199         Y := G.S (M - 1) xor Shift_Right (Y, 1) xor Matrix_A (Y and 1);
200         I := 0;
201
202      else
203         Init (G, Seed0);
204         return Random (Gen);
205      end if;
206
207      G.S (G.I) := Y;
208      G.I := I;
209
210      Y := Y xor Shift_Right (Y, U);
211      Y := Y xor (Shift_Left (Y, S)  and B_Mask);
212      Y := Y xor (Shift_Left (Y, T) and C_Mask);
213      Y := Y xor Shift_Right (Y, L);
214
215      return Y;
216   end Random;
217
218   generic
219      type Unsigned is mod <>;
220      type Real is digits <>;
221      with function Random (G : Generator) return Unsigned is <>;
222   function Random_Float_Template (Gen : Generator) return Real;
223   pragma Inline (Random_Float_Template);
224   --  Template for a random-number generator implementation that delivers
225   --  values of type Real in the range [0 .. 1], using values from Gen,
226   --  assuming that Unsigned is large enough to hold the bits of a mantissa
227   --  for type Real.
228
229   ---------------------------
230   -- Random_Float_Template --
231   ---------------------------
232
233   function Random_Float_Template (Gen : Generator) return Real is
234
235      pragma Compile_Time_Error
236        (Unsigned'Last <= 2**(Real'Machine_Mantissa - 1),
237         "insufficiently large modular type used to hold mantissa");
238
239   begin
240      --  This code generates random floating-point numbers from unsigned
241      --  integers. Assuming that Real'Machine_Radix = 2, it can deliver all
242      --  machine values of type Real (as implied by Real'Machine_Mantissa and
243      --  Real'Machine_Emin), which is not true of the standard method (to
244      --  which we fall back for nonbinary radix): computing Real(<random
245      --  integer>) / (<max random integer>+1). To do so, we first extract an
246      --  (M-1)-bit significand (where M is Real'Machine_Mantissa), and then
247      --  decide on a normalized exponent by repeated coin flips, decrementing
248      --  from 0 as long as we flip heads (1 bits). This process yields the
249      --  proper geometric distribution for the exponent: in a uniformly
250      --  distributed set of floating-point numbers, 1/2 of them will be in
251      --  (0.5, 1], 1/4 will be in (0.25, 0.5], and so forth. It makes a
252      --  further adjustment at binade boundaries (see comments below) to give
253      --  the effect of selecting a uniformly distributed real deviate in
254      --  [0..1] and then rounding to the nearest representable floating-point
255      --  number.  The algorithm attempts to be stingy with random integers. In
256      --  the worst case, it can consume roughly -Real'Machine_Emin/32 32-bit
257      --  integers, but this case occurs with probability around
258      --  2**Machine_Emin, and the expected number of calls to integer-valued
259      --  Random is 1.  For another discussion of the issues addressed by this
260      --  process, see Allen Downey's unpublished paper at
261      --  http://allendowney.com/research/rand/downey07randfloat.pdf.
262
263      if Real'Machine_Radix /= 2 then
264         return Real'Machine
265           (Real (Unsigned'(Random (Gen))) * 2.0**(-Unsigned'Size));
266
267      else
268         declare
269            type Bit_Count is range 0 .. 4;
270
271            subtype T is Real'Base;
272
273            Trailing_Ones : constant array (Unsigned_32 range 0 .. 15)
274              of Bit_Count :=
275                  (2#00000# => 0, 2#00001# => 1, 2#00010# => 0, 2#00011# => 2,
276                   2#00100# => 0, 2#00101# => 1, 2#00110# => 0, 2#00111# => 3,
277                   2#01000# => 0, 2#01001# => 1, 2#01010# => 0, 2#01011# => 2,
278                   2#01100# => 0, 2#01101# => 1, 2#01110# => 0, 2#01111# => 4);
279
280            Pow_Tab : constant array (Bit_Count range 0 .. 3) of Real
281              := (0 => 2.0**(0 - T'Machine_Mantissa),
282                  1 => 2.0**(-1 - T'Machine_Mantissa),
283                  2 => 2.0**(-2 - T'Machine_Mantissa),
284                  3 => 2.0**(-3 - T'Machine_Mantissa));
285
286            Extra_Bits : constant Natural :=
287                         (Unsigned'Size - T'Machine_Mantissa + 1);
288            --  Random bits left over after selecting mantissa
289
290            Mantissa : Unsigned;
291
292            X      : Real;            --  Scaled mantissa
293            R      : Unsigned_32;     --  Supply of random bits
294            R_Bits : Natural;         --  Number of bits left in R
295            K      : Bit_Count;       --  Next decrement to exponent
296
297         begin
298            Mantissa := Random (Gen) / 2**Extra_Bits;
299            R := Unsigned_32 (Mantissa mod 2**Extra_Bits);
300            R_Bits := Extra_Bits;
301            X := Real (2**(T'Machine_Mantissa - 1) + Mantissa); -- Exact
302
303            if Extra_Bits < 4 and then R < 2 ** Extra_Bits - 1 then
304
305               --  We got lucky and got a zero in our few extra bits
306
307               K := Trailing_Ones (R);
308
309            else
310               Find_Zero : loop
311
312                  --  R has R_Bits unprocessed random bits, a multiple of 4.
313                  --  X needs to be halved for each trailing one bit. The
314                  --  process stops as soon as a 0 bit is found. If R_Bits
315                  --  becomes zero, reload R.
316
317                  --  Process 4 bits at a time for speed: the two iterations
318                  --  on average with three tests each was still too slow,
319                  --  probably because the branches are not predictable.
320                  --  This loop now will only execute once 94% of the cases,
321                  --  doing more bits at a time will not help.
322
323                  while R_Bits >= 4 loop
324                     K := Trailing_Ones (R mod 16);
325
326                     exit Find_Zero when K < 4; -- Exits 94% of the time
327
328                     R_Bits := R_Bits - 4;
329                     X := X / 16.0;
330                     R := R / 16;
331                  end loop;
332
333                  --  Do not allow us to loop endlessly even in the (very
334                  --  unlikely) case that Random (Gen) keeps yielding all ones.
335
336                  exit Find_Zero when X = 0.0;
337                  R := Random (Gen);
338                  R_Bits := 32;
339               end loop Find_Zero;
340            end if;
341
342            --  K has the count of trailing ones not reflected yet in X. The
343            --  following multiplication takes care of that, as well as the
344            --  correction to move the radix point to the left of the mantissa.
345            --  Doing it at the end avoids repeated rounding errors in the
346            --  exceedingly unlikely case of ever having a subnormal result.
347
348            X := X * Pow_Tab (K);
349
350            --  The smallest value in each binade is rounded to by 0.75 of
351            --  the span of real numbers as its next larger neighbor, and
352            --  1.0 is rounded to by half of the span of real numbers as its
353            --  next smaller neighbor. To account for this, when we encounter
354            --  the smallest number in a binade, we substitute the smallest
355            --  value in the next larger binade with probability 1/2.
356
357            if Mantissa = 0 and then Unsigned_32'(Random (Gen)) mod 2 = 0 then
358               X := 2.0 * X;
359            end if;
360
361            return X;
362         end;
363      end if;
364   end Random_Float_Template;
365
366   ------------
367   -- Random --
368   ------------
369
370   function Random (Gen : Generator) return Float is
371      function F is new Random_Float_Template (Unsigned_32, Float);
372   begin
373      return F (Gen);
374   end Random;
375
376   function Random (Gen : Generator) return Long_Float is
377      function F is new Random_Float_Template (Unsigned_64, Long_Float);
378   begin
379      return F (Gen);
380   end Random;
381
382   function Random (Gen : Generator) return Unsigned_64 is
383   begin
384      return Shift_Left (Unsigned_64 (Unsigned_32'(Random (Gen))), 32)
385        or Unsigned_64 (Unsigned_32'(Random (Gen)));
386   end Random;
387
388   ---------------------
389   -- Random_Discrete --
390   ---------------------
391
392   function Random_Discrete
393     (Gen : Generator;
394      Min : Result_Subtype := Default_Min;
395      Max : Result_Subtype := Result_Subtype'Last) return Result_Subtype
396   is
397   begin
398      if Max = Min then
399         return Max;
400
401      elsif Max < Min then
402         raise Constraint_Error;
403
404      elsif Result_Subtype'Base'Size > 32 then
405         declare
406            --  In the 64-bit case, we have to be careful, since not all 64-bit
407            --  unsigned values are representable in GNAT's root_integer type.
408            --  Ignore different-size warnings here since GNAT's handling
409            --  is correct.
410
411            pragma Warnings ("Z");
412            function Conv_To_Unsigned is
413               new Unchecked_Conversion (Result_Subtype'Base, Unsigned_64);
414            function Conv_To_Result is
415               new Unchecked_Conversion (Unsigned_64, Result_Subtype'Base);
416            pragma Warnings ("z");
417
418            N : constant Unsigned_64 :=
419                  Conv_To_Unsigned (Max) - Conv_To_Unsigned (Min) + 1;
420
421            X, Slop : Unsigned_64;
422
423         begin
424            if N = 0 then
425               return Conv_To_Result (Conv_To_Unsigned (Min) + Random (Gen));
426
427            else
428               Slop := Unsigned_64'Last rem N + 1;
429
430               loop
431                  X := Random (Gen);
432                  exit when Slop = N or else X <= Unsigned_64'Last - Slop;
433               end loop;
434
435               return Conv_To_Result (Conv_To_Unsigned (Min) + X rem N);
436            end if;
437         end;
438
439      elsif Result_Subtype'Pos (Max) - Result_Subtype'Pos (Min) =
440                                                         2 ** 32 - 1
441      then
442         return Result_Subtype'Val
443           (Result_Subtype'Pos (Min) + Unsigned_32'Pos (Random (Gen)));
444      else
445         declare
446            N    : constant Unsigned_32 :=
447                     Unsigned_32 (Result_Subtype'Pos (Max) -
448                                    Result_Subtype'Pos (Min) + 1);
449            Slop : constant Unsigned_32 := Unsigned_32'Last rem N + 1;
450            X    : Unsigned_32;
451
452         begin
453            loop
454               X := Random (Gen);
455               exit when Slop = N or else X <= Unsigned_32'Last - Slop;
456            end loop;
457
458            return
459              Result_Subtype'Val
460                (Result_Subtype'Pos (Min) + Unsigned_32'Pos (X rem N));
461         end;
462      end if;
463   end Random_Discrete;
464
465   ------------------
466   -- Random_Float --
467   ------------------
468
469   function Random_Float (Gen : Generator) return Result_Subtype is
470   begin
471      if Result_Subtype'Base'Digits > Float'Digits then
472         return Result_Subtype'Machine (Result_Subtype
473                                         (Long_Float'(Random (Gen))));
474      else
475         return Result_Subtype'Machine (Result_Subtype
476                                         (Float'(Random (Gen))));
477      end if;
478   end Random_Float;
479
480   -----------
481   -- Reset --
482   -----------
483
484   procedure Reset (Gen : Generator) is
485   begin
486      Init (Gen, Unsigned_32'Mod (Random_Seed.Get_Seed));
487   end Reset;
488
489   procedure Reset (Gen : Generator; Initiator : Integer_32) is
490   begin
491      Init (Gen, To_Unsigned (Initiator));
492   end Reset;
493
494   procedure Reset (Gen : Generator; Initiator : Unsigned_32) is
495   begin
496      Init (Gen, Initiator);
497   end Reset;
498
499   procedure Reset (Gen : Generator; Initiator : Integer) is
500   begin
501      --  This is probably an unnecessary precaution against future change, but
502      --  since the test is a static expression, no extra code is involved.
503
504      if Integer'Size <= 32 then
505         Init (Gen, To_Unsigned (Integer_32 (Initiator)));
506
507      else
508         declare
509            Initiator1 : constant Unsigned_64 :=
510                           To_Unsigned (Integer_64 (Initiator));
511            Init0      : constant Unsigned_32 :=
512                           Unsigned_32 (Initiator1 mod 2 ** 32);
513            Init1      : constant Unsigned_32 :=
514                           Unsigned_32 (Shift_Right (Initiator1, 32));
515         begin
516            Reset (Gen, Initialization_Vector'(Init0, Init1));
517         end;
518      end if;
519   end Reset;
520
521   procedure Reset (Gen : Generator; Initiator : Initialization_Vector) is
522      G    : Generator renames Gen.Writable.Self.all;
523      I, J : Integer;
524
525   begin
526      Init (G, Seed1);
527      I := 1;
528      J := 0;
529
530      if Initiator'Length > 0 then
531         for K in reverse 1 .. Integer'Max (N, Initiator'Length) loop
532            G.S (I) :=
533              (G.S (I) xor ((G.S (I - 1)
534                               xor Shift_Right (G.S (I - 1), 30)) * Mult1))
535              + Initiator (J + Initiator'First) + Unsigned_32 (J);
536
537            I := I + 1;
538            J := J + 1;
539
540            if I >= N then
541               G.S (0) := G.S (N - 1);
542               I := 1;
543            end if;
544
545            if J >= Initiator'Length then
546               J := 0;
547            end if;
548         end loop;
549      end if;
550
551      for K in reverse 1 .. N - 1 loop
552         G.S (I) :=
553           (G.S (I) xor ((G.S (I - 1)
554                            xor Shift_Right (G.S (I - 1), 30)) * Mult2))
555           - Unsigned_32 (I);
556         I := I + 1;
557
558         if I >= N then
559            G.S (0) := G.S (N - 1);
560            I := 1;
561         end if;
562      end loop;
563
564      G.S (0) := Upper_Mask;
565   end Reset;
566
567   procedure Reset (Gen : Generator; From_State : Generator) is
568      G : Generator renames Gen.Writable.Self.all;
569   begin
570      G.S := From_State.S;
571      G.I := From_State.I;
572   end Reset;
573
574   procedure Reset (Gen : Generator; From_State : State) is
575      G : Generator renames Gen.Writable.Self.all;
576   begin
577      G.I := 0;
578      G.S := From_State;
579   end Reset;
580
581   procedure Reset (Gen : Generator; From_Image : String) is
582      G : Generator renames Gen.Writable.Self.all;
583   begin
584      G.I := 0;
585
586      for J in 0 .. N - 1 loop
587         G.S (J) := Extract_Value (From_Image, J);
588      end loop;
589   end Reset;
590
591   ----------
592   -- Save --
593   ----------
594
595   procedure Save (Gen : Generator; To_State : out State) is
596      Gen2 : Generator;
597
598   begin
599      if Gen.I = N then
600         Init (Gen2, 5489);
601         To_State := Gen2.S;
602
603      else
604         To_State (0 .. N - 1 - Gen.I) := Gen.S (Gen.I .. N - 1);
605         To_State (N - Gen.I .. N - 1) := Gen.S (0 .. Gen.I - 1);
606      end if;
607   end Save;
608
609   -----------
610   -- Image --
611   -----------
612
613   function Image (Of_State : State) return String is
614      Result : Image_String;
615
616   begin
617      Result := (others => ' ');
618
619      for J in Of_State'Range loop
620         Insert_Image (Result, J, Of_State (J));
621      end loop;
622
623      return Result;
624   end Image;
625
626   function Image (Gen : Generator) return String is
627      Result : Image_String;
628
629   begin
630      Result := (others => ' ');
631      for J in 0 .. N - 1 loop
632         Insert_Image (Result, J, Gen.S ((J + Gen.I) mod N));
633      end loop;
634
635      return Result;
636   end Image;
637
638   -----------
639   -- Value --
640   -----------
641
642   function Value (Coded_State : String) return State is
643      Gen : Generator;
644      S   : State;
645   begin
646      Reset (Gen, Coded_State);
647      Save (Gen, S);
648      return S;
649   end Value;
650
651   ----------
652   -- Init --
653   ----------
654
655   procedure Init (Gen : Generator; Initiator : Unsigned_32) is
656      G : Generator renames Gen.Writable.Self.all;
657   begin
658      G.S (0) := Initiator;
659
660      for I in 1 .. N - 1 loop
661         G.S (I) :=
662           (G.S (I - 1) xor Shift_Right (G.S (I - 1), 30)) * Mult0
663           + Unsigned_32 (I);
664      end loop;
665
666      G.I := 0;
667   end Init;
668
669   ------------------
670   -- Insert_Image --
671   ------------------
672
673   procedure Insert_Image
674     (S     : in out Image_String;
675      Index : Integer;
676      V     : State_Val)
677   is
678      Value : constant String := State_Val'Image (V);
679   begin
680      S (Index * 11 + 1 .. Index * 11 + Value'Length) := Value;
681   end Insert_Image;
682
683   -------------------
684   -- Extract_Value --
685   -------------------
686
687   function Extract_Value (S : String; Index : Integer) return State_Val is
688      Start : constant Integer := S'First + Index * Image_Numeral_Length;
689   begin
690      return State_Val'Value (S (Start .. Start + Image_Numeral_Length - 1));
691   end Extract_Value;
692
693end System.Random_Numbers;
694