1------------------------------------------------------------------------------
2--                                                                          --
3--                         GNAT COMPILER COMPONENTS                         --
4--                                                                          --
5--                      S Y S T E M . V A L _ R E A L                       --
6--                                                                          --
7--                                 B o d y                                  --
8--                                                                          --
9--          Copyright (C) 1992-2015, Free Software Foundation, Inc.         --
10--                                                                          --
11-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12-- terms of the  GNU General Public License as published  by the Free Soft- --
13-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
17--                                                                          --
18-- As a special exception under Section 7 of GPL version 3, you are granted --
19-- additional permissions described in the GCC Runtime Library Exception,   --
20-- version 3.1, as published by the Free Software Foundation.               --
21--                                                                          --
22-- You should have received a copy of the GNU General Public License and    --
23-- a copy of the GCC Runtime Library Exception along with this program;     --
24-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
25-- <http://www.gnu.org/licenses/>.                                          --
26--                                                                          --
27-- GNAT was originally developed  by the GNAT team at  New York University. --
28-- Extensive contributions were provided by Ada Core Technologies Inc.      --
29--                                                                          --
30------------------------------------------------------------------------------
31
32with System.Powten_Table;  use System.Powten_Table;
33with System.Val_Util;      use System.Val_Util;
34with System.Float_Control;
35
36package body System.Val_Real is
37
38   ---------------
39   -- Scan_Real --
40   ---------------
41
42   function Scan_Real
43     (Str : String;
44      Ptr : not null access Integer;
45      Max : Integer) return Long_Long_Float
46   is
47      P : Integer;
48      --  Local copy of string pointer
49
50      Base : Long_Long_Float;
51      --  Base value
52
53      Uval : Long_Long_Float;
54      --  Accumulated float result
55
56      subtype Digs is Character range '0' .. '9';
57      --  Used to check for decimal digit
58
59      Scale : Integer := 0;
60      --  Power of Base to multiply result by
61
62      Start : Positive;
63      --  Position of starting non-blank character
64
65      Minus : Boolean;
66      --  Set to True if minus sign is present, otherwise to False
67
68      Bad_Base : Boolean := False;
69      --  Set True if Base out of range or if out of range digit
70
71      After_Point : Natural := 0;
72      --  Set to 1 after the point
73
74      Num_Saved_Zeroes : Natural := 0;
75      --  This counts zeroes after the decimal point. A non-zero value means
76      --  that this number of previously scanned digits are zero. If the end
77      --  of the number is reached, these zeroes are simply discarded, which
78      --  ensures that trailing zeroes after the point never affect the value
79      --  (which might otherwise happen as a result of rounding). With this
80      --  processing in place, we can ensure that, for example, we get the
81      --  same exact result from 1.0E+49 and 1.0000000E+49. This is not
82      --  necessarily required in a case like this where the result is not
83      --  a machine number, but it is certainly a desirable behavior.
84
85      procedure Scanf;
86      --  Scans integer literal value starting at current character position.
87      --  For each digit encountered, Uval is multiplied by 10.0, and the new
88      --  digit value is incremented. In addition Scale is decremented for each
89      --  digit encountered if we are after the point (After_Point = 1). The
90      --  longest possible syntactically valid numeral is scanned out, and on
91      --  return P points past the last character. On entry, the current
92      --  character is known to be a digit, so a numeral is definitely present.
93
94      -----------
95      -- Scanf --
96      -----------
97
98      procedure Scanf is
99         Digit : Natural;
100
101      begin
102         loop
103            Digit := Character'Pos (Str (P)) - Character'Pos ('0');
104            P := P + 1;
105
106            --  Save up trailing zeroes after the decimal point
107
108            if Digit = 0 and then After_Point = 1 then
109               Num_Saved_Zeroes := Num_Saved_Zeroes + 1;
110
111            --  Here for a non-zero digit
112
113            else
114               --  First deal with any previously saved zeroes
115
116               if Num_Saved_Zeroes /= 0 then
117                  while Num_Saved_Zeroes > Maxpow loop
118                     Uval := Uval * Powten (Maxpow);
119                     Num_Saved_Zeroes := Num_Saved_Zeroes - Maxpow;
120                     Scale := Scale - Maxpow;
121                  end loop;
122
123                  Uval := Uval * Powten (Num_Saved_Zeroes);
124                  Scale := Scale - Num_Saved_Zeroes;
125
126                  Num_Saved_Zeroes := 0;
127               end if;
128
129               --  Accumulate new digit
130
131               Uval := Uval * 10.0 + Long_Long_Float (Digit);
132               Scale := Scale - After_Point;
133            end if;
134
135            --  Done if end of input field
136
137            if P > Max then
138               return;
139
140            --  Check next character
141
142            elsif Str (P) not in Digs then
143               if Str (P) = '_' then
144                  Scan_Underscore (Str, P, Ptr, Max, False);
145               else
146                  return;
147               end if;
148            end if;
149         end loop;
150      end Scanf;
151
152   --  Start of processing for System.Scan_Real
153
154   begin
155      --  We do not tolerate strings with Str'Last = Positive'Last
156
157      if Str'Last = Positive'Last then
158         raise Program_Error with
159           "string upper bound is Positive'Last, not supported";
160      end if;
161
162      --  We call the floating-point processor reset routine so that we can
163      --  be sure the floating-point processor is properly set for conversion
164      --  calls. This is notably need on Windows, where calls to the operating
165      --  system randomly reset the processor into 64-bit mode.
166
167      System.Float_Control.Reset;
168
169      Scan_Sign (Str, Ptr, Max, Minus, Start);
170      P := Ptr.all;
171      Ptr.all := Start;
172
173      --  If digit, scan numeral before point
174
175      if Str (P) in Digs then
176         Uval := 0.0;
177         Scanf;
178
179      --  Initial point, allowed only if followed by digit (RM 3.5(47))
180
181      elsif Str (P) = '.'
182        and then P < Max
183        and then Str (P + 1) in Digs
184      then
185         Uval := 0.0;
186
187      --  Any other initial character is an error
188
189      else
190         Bad_Value (Str);
191      end if;
192
193      --  Deal with based case. We reognize either the standard '#' or the
194      --  allowed alternative replacement ':' (see RM J.2(3)).
195
196      if P < Max and then (Str (P) = '#' or else Str (P) = ':') then
197         declare
198            Base_Char : constant Character := Str (P);
199            Digit     : Natural;
200            Fdigit    : Long_Long_Float;
201
202         begin
203            --  Set bad base if out of range, and use safe base of 16.0,
204            --  to guard against division by zero in the loop below.
205
206            if Uval < 2.0 or else Uval > 16.0 then
207               Bad_Base := True;
208               Uval := 16.0;
209            end if;
210
211            Base := Uval;
212            Uval := 0.0;
213            P := P + 1;
214
215            --  Special check to allow initial point (RM 3.5(49))
216
217            if Str (P) = '.' then
218               After_Point := 1;
219               P := P + 1;
220            end if;
221
222            --  Loop to scan digits of based number. On entry to the loop we
223            --  must have a valid digit. If we don't, then we have an illegal
224            --  floating-point value, and we raise Constraint_Error, note that
225            --  Ptr at this stage was reset to the proper (Start) value.
226
227            loop
228               if P > Max then
229                  Bad_Value (Str);
230
231               elsif Str (P) in Digs then
232                  Digit := Character'Pos (Str (P)) - Character'Pos ('0');
233
234               elsif Str (P) in 'A' .. 'F' then
235                  Digit :=
236                    Character'Pos (Str (P)) - (Character'Pos ('A') - 10);
237
238               elsif Str (P) in 'a' .. 'f' then
239                  Digit :=
240                    Character'Pos (Str (P)) - (Character'Pos ('a') - 10);
241
242               else
243                  Bad_Value (Str);
244               end if;
245
246               --  Save up trailing zeroes after the decimal point
247
248               if Digit = 0 and then After_Point = 1 then
249                  Num_Saved_Zeroes := Num_Saved_Zeroes + 1;
250
251               --  Here for a non-zero digit
252
253               else
254                  --  First deal with any previously saved zeroes
255
256                  if Num_Saved_Zeroes /= 0 then
257                     Uval := Uval * Base ** Num_Saved_Zeroes;
258                     Scale := Scale - Num_Saved_Zeroes;
259                     Num_Saved_Zeroes := 0;
260                  end if;
261
262                  --  Now accumulate the new digit
263
264                  Fdigit := Long_Long_Float (Digit);
265
266                  if Fdigit >= Base then
267                     Bad_Base := True;
268                  else
269                     Scale := Scale - After_Point;
270                     Uval := Uval * Base + Fdigit;
271                  end if;
272               end if;
273
274               P := P + 1;
275
276               if P > Max then
277                  Bad_Value (Str);
278
279               elsif Str (P) = '_' then
280                  Scan_Underscore (Str, P, Ptr, Max, True);
281
282               else
283                  --  Skip past period after digit. Note that the processing
284                  --  here will permit either a digit after the period, or the
285                  --  terminating base character, as allowed in (RM 3.5(48))
286
287                  if Str (P) = '.' and then After_Point = 0 then
288                     P := P + 1;
289                     After_Point := 1;
290
291                     if P > Max then
292                        Bad_Value (Str);
293                     end if;
294                  end if;
295
296                  exit when Str (P) = Base_Char;
297               end if;
298            end loop;
299
300            --  Based number successfully scanned out (point was found)
301
302            Ptr.all := P + 1;
303         end;
304
305      --  Non-based case, check for being at decimal point now. Note that
306      --  in Ada 95, we do not insist on a decimal point being present
307
308      else
309         Base := 10.0;
310         After_Point := 1;
311
312         if P <= Max and then Str (P) = '.' then
313            P := P + 1;
314
315            --  Scan digits after point if any are present (RM 3.5(46))
316
317            if P <= Max and then Str (P) in Digs then
318               Scanf;
319            end if;
320         end if;
321
322         Ptr.all := P;
323      end if;
324
325      --  At this point, we have Uval containing the digits of the value as
326      --  an integer, and Scale indicates the negative of the number of digits
327      --  after the point. Base contains the base value (an integral value in
328      --  the range 2.0 .. 16.0). Test for exponent, must be at least one
329      --  character after the E for the exponent to be valid.
330
331      Scale := Scale + Scan_Exponent (Str, Ptr, Max, Real => True);
332
333      --  At this point the exponent has been scanned if one is present and
334      --  Scale is adjusted to include the exponent value. Uval contains the
335      --  the integral value which is to be multiplied by Base ** Scale.
336
337      --  If base is not 10, use exponentiation for scaling
338
339      if Base /= 10.0 then
340         Uval := Uval * Base ** Scale;
341
342      --  For base 10, use power of ten table, repeatedly if necessary
343
344      elsif Scale > 0 then
345         while Scale > Maxpow loop
346            Uval := Uval * Powten (Maxpow);
347            Scale := Scale - Maxpow;
348         end loop;
349
350         --  Note that we still know that Scale > 0, since the loop
351         --  above leaves Scale in the range 1 .. Maxpow.
352
353         Uval := Uval * Powten (Scale);
354
355      elsif Scale < 0 then
356         while (-Scale) > Maxpow loop
357            Uval := Uval / Powten (Maxpow);
358            Scale := Scale + Maxpow;
359         end loop;
360
361         --  Note that we still know that Scale < 0, since the loop
362         --  above leaves Scale in the range -Maxpow .. -1.
363
364         Uval := Uval / Powten (-Scale);
365      end if;
366
367      --  Here is where we check for a bad based number
368
369      if Bad_Base then
370         Bad_Value (Str);
371
372      --  If OK, then deal with initial minus sign, note that this processing
373      --  is done even if Uval is zero, so that -0.0 is correctly interpreted.
374
375      else
376         if Minus then
377            return -Uval;
378         else
379            return Uval;
380         end if;
381      end if;
382   end Scan_Real;
383
384   ----------------
385   -- Value_Real --
386   ----------------
387
388   function Value_Real (Str : String) return Long_Long_Float is
389   begin
390      --  We have to special case Str'Last = Positive'Last because the normal
391      --  circuit ends up setting P to Str'Last + 1 which is out of bounds. We
392      --  deal with this by converting to a subtype which fixes the bounds.
393
394      if Str'Last = Positive'Last then
395         declare
396            subtype NT is String (1 .. Str'Length);
397         begin
398            return Value_Real (NT (Str));
399         end;
400
401      --  Normal case where Str'Last < Positive'Last
402
403      else
404         declare
405            V : Long_Long_Float;
406            P : aliased Integer := Str'First;
407         begin
408            V := Scan_Real (Str, P'Access, Str'Last);
409            Scan_Trailing_Blanks (Str, P);
410            return V;
411         end;
412      end if;
413   end Value_Real;
414
415end System.Val_Real;
416