1------------------------------------------------------------------------------
2--                                                                          --
3--                         GNAT COMPILER COMPONENTS                         --
4--                                                                          --
5--                             S E M _ A G G R                              --
6--                                                                          --
7--                                 B o d y                                  --
8--                                                                          --
9--          Copyright (C) 1992-2015, Free Software Foundation, Inc.         --
10--                                                                          --
11-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12-- terms of the  GNU General Public License as published  by the Free Soft- --
13-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
17-- for  more details.  You should have  received  a copy of the GNU General --
18-- Public License  distributed with GNAT; see file COPYING3.  If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license.          --
20--                                                                          --
21-- GNAT was originally developed  by the GNAT team at  New York University. --
22-- Extensive contributions were provided by Ada Core Technologies Inc.      --
23--                                                                          --
24------------------------------------------------------------------------------
25
26with Aspects;  use Aspects;
27with Atree;    use Atree;
28with Checks;   use Checks;
29with Einfo;    use Einfo;
30with Elists;   use Elists;
31with Errout;   use Errout;
32with Expander; use Expander;
33with Exp_Tss;  use Exp_Tss;
34with Exp_Util; use Exp_Util;
35with Freeze;   use Freeze;
36with Itypes;   use Itypes;
37with Lib;      use Lib;
38with Lib.Xref; use Lib.Xref;
39with Namet;    use Namet;
40with Namet.Sp; use Namet.Sp;
41with Nmake;    use Nmake;
42with Nlists;   use Nlists;
43with Opt;      use Opt;
44with Restrict; use Restrict;
45with Rident;   use Rident;
46with Sem;      use Sem;
47with Sem_Aux;  use Sem_Aux;
48with Sem_Cat;  use Sem_Cat;
49with Sem_Ch3;  use Sem_Ch3;
50with Sem_Ch8;  use Sem_Ch8;
51with Sem_Ch13; use Sem_Ch13;
52with Sem_Dim;  use Sem_Dim;
53with Sem_Eval; use Sem_Eval;
54with Sem_Res;  use Sem_Res;
55with Sem_Util; use Sem_Util;
56with Sem_Type; use Sem_Type;
57with Sem_Warn; use Sem_Warn;
58with Sinfo;    use Sinfo;
59with Snames;   use Snames;
60with Stringt;  use Stringt;
61with Stand;    use Stand;
62with Style;    use Style;
63with Targparm; use Targparm;
64with Tbuild;   use Tbuild;
65with Uintp;    use Uintp;
66
67package body Sem_Aggr is
68
69   type Case_Bounds is record
70      Lo : Node_Id;
71      --  Low bound of choice. Once we sort the Case_Table, then entries
72      --  will be in order of ascending Choice_Lo values.
73
74      Hi : Node_Id;
75      --  High Bound of choice. The sort does not pay any attention to the
76      --  high bound, so choices 1 .. 4 and 1 .. 5 could be in either order.
77
78      Highest : Uint;
79      --  If there are duplicates or missing entries, then in the sorted
80      --  table, this records the highest value among Choice_Hi values
81      --  seen so far, including this entry.
82
83      Choice : Node_Id;
84      --  The node of the choice
85   end record;
86
87   type Case_Table_Type is array (Nat range <>) of Case_Bounds;
88   --  Table type used by Check_Case_Choices procedure. Entry zero is not
89   --  used (reserved for the sort). Real entries start at one.
90
91   -----------------------
92   -- Local Subprograms --
93   -----------------------
94
95   procedure Sort_Case_Table (Case_Table : in out Case_Table_Type);
96   --  Sort the Case Table using the Lower Bound of each Choice as the key. A
97   --  simple insertion sort is used since the choices in a case statement will
98   --  usually be in near sorted order.
99
100   procedure Check_Can_Never_Be_Null (Typ : Entity_Id; Expr : Node_Id);
101   --  Ada 2005 (AI-231): Check bad usage of null for a component for which
102   --  null exclusion (NOT NULL) is specified. Typ can be an E_Array_Type for
103   --  the array case (the component type of the array will be used) or an
104   --  E_Component/E_Discriminant entity in the record case, in which case the
105   --  type of the component will be used for the test. If Typ is any other
106   --  kind of entity, the call is ignored. Expr is the component node in the
107   --  aggregate which is known to have a null value. A warning message will be
108   --  issued if the component is null excluding.
109   --
110   --  It would be better to pass the proper type for Typ ???
111
112   procedure Check_Expr_OK_In_Limited_Aggregate (Expr : Node_Id);
113   --  Check that Expr is either not limited or else is one of the cases of
114   --  expressions allowed for a limited component association (namely, an
115   --  aggregate, function call, or <> notation). Report error for violations.
116   --  Expression is also OK in an instance or inlining context, because we
117   --  have already pre-analyzed and it is known to be type correct.
118
119   procedure Check_Qualified_Aggregate (Level : Nat; Expr : Node_Id);
120   --  Given aggregate Expr, check that sub-aggregates of Expr that are nested
121   --  at Level are qualified. If Level = 0, this applies to Expr directly.
122   --  Only issue errors in formal verification mode.
123
124   function Is_Top_Level_Aggregate (Expr : Node_Id) return Boolean;
125   --  Return True of Expr is an aggregate not contained directly in another
126   --  aggregate.
127
128   ------------------------------------------------------
129   -- Subprograms used for RECORD AGGREGATE Processing --
130   ------------------------------------------------------
131
132   procedure Resolve_Record_Aggregate (N : Node_Id; Typ : Entity_Id);
133   --  This procedure performs all the semantic checks required for record
134   --  aggregates. Note that for aggregates analysis and resolution go
135   --  hand in hand. Aggregate analysis has been delayed up to here and
136   --  it is done while resolving the aggregate.
137   --
138   --    N is the N_Aggregate node.
139   --    Typ is the record type for the aggregate resolution
140   --
141   --  While performing the semantic checks, this procedure builds a new
142   --  Component_Association_List where each record field appears alone in a
143   --  Component_Choice_List along with its corresponding expression. The
144   --  record fields in the Component_Association_List appear in the same order
145   --  in which they appear in the record type Typ.
146   --
147   --  Once this new Component_Association_List is built and all the semantic
148   --  checks performed, the original aggregate subtree is replaced with the
149   --  new named record aggregate just built. Note that subtree substitution is
150   --  performed with Rewrite so as to be able to retrieve the original
151   --  aggregate.
152   --
153   --  The aggregate subtree manipulation performed by Resolve_Record_Aggregate
154   --  yields the aggregate format expected by Gigi. Typically, this kind of
155   --  tree manipulations are done in the expander. However, because the
156   --  semantic checks that need to be performed on record aggregates really go
157   --  hand in hand with the record aggregate normalization, the aggregate
158   --  subtree transformation is performed during resolution rather than
159   --  expansion. Had we decided otherwise we would have had to duplicate most
160   --  of the code in the expansion procedure Expand_Record_Aggregate. Note,
161   --  however, that all the expansion concerning aggregates for tagged records
162   --  is done in Expand_Record_Aggregate.
163   --
164   --  The algorithm of Resolve_Record_Aggregate proceeds as follows:
165   --
166   --  1. Make sure that the record type against which the record aggregate
167   --     has to be resolved is not abstract. Furthermore if the type is a
168   --     null aggregate make sure the input aggregate N is also null.
169   --
170   --  2. Verify that the structure of the aggregate is that of a record
171   --     aggregate. Specifically, look for component associations and ensure
172   --     that each choice list only has identifiers or the N_Others_Choice
173   --     node. Also make sure that if present, the N_Others_Choice occurs
174   --     last and by itself.
175   --
176   --  3. If Typ contains discriminants, the values for each discriminant is
177   --     looked for. If the record type Typ has variants, we check that the
178   --     expressions corresponding to each discriminant ruling the (possibly
179   --     nested) variant parts of Typ, are static. This allows us to determine
180   --     the variant parts to which the rest of the aggregate must conform.
181   --     The names of discriminants with their values are saved in a new
182   --     association list, New_Assoc_List which is later augmented with the
183   --     names and values of the remaining components in the record type.
184   --
185   --     During this phase we also make sure that every discriminant is
186   --     assigned exactly one value. Note that when several values for a given
187   --     discriminant are found, semantic processing continues looking for
188   --     further errors. In this case it's the first discriminant value found
189   --     which we will be recorded.
190   --
191   --     IMPORTANT NOTE: For derived tagged types this procedure expects
192   --     First_Discriminant and Next_Discriminant to give the correct list
193   --     of discriminants, in the correct order.
194   --
195   --  4. After all the discriminant values have been gathered, we can set the
196   --     Etype of the record aggregate. If Typ contains no discriminants this
197   --     is straightforward: the Etype of N is just Typ, otherwise a new
198   --     implicit constrained subtype of Typ is built to be the Etype of N.
199   --
200   --  5. Gather the remaining record components according to the discriminant
201   --     values. This involves recursively traversing the record type
202   --     structure to see what variants are selected by the given discriminant
203   --     values. This processing is a little more convoluted if Typ is a
204   --     derived tagged types since we need to retrieve the record structure
205   --     of all the ancestors of Typ.
206   --
207   --  6. After gathering the record components we look for their values in the
208   --     record aggregate and emit appropriate error messages should we not
209   --     find such values or should they be duplicated.
210   --
211   --  7. We then make sure no illegal component names appear in the record
212   --     aggregate and make sure that the type of the record components
213   --     appearing in a same choice list is the same. Finally we ensure that
214   --     the others choice, if present, is used to provide the value of at
215   --     least a record component.
216   --
217   --  8. The original aggregate node is replaced with the new named aggregate
218   --     built in steps 3 through 6, as explained earlier.
219   --
220   --  Given the complexity of record aggregate resolution, the primary goal of
221   --  this routine is clarity and simplicity rather than execution and storage
222   --  efficiency. If there are only positional components in the aggregate the
223   --  running time is linear. If there are associations the running time is
224   --  still linear as long as the order of the associations is not too far off
225   --  the order of the components in the record type. If this is not the case
226   --  the running time is at worst quadratic in the size of the association
227   --  list.
228
229   procedure Check_Misspelled_Component
230     (Elements  : Elist_Id;
231      Component : Node_Id);
232   --  Give possible misspelling diagnostic if Component is likely to be a
233   --  misspelling of one of the components of the Assoc_List. This is called
234   --  by Resolve_Aggr_Expr after producing an invalid component error message.
235
236   procedure Check_Static_Discriminated_Subtype (T : Entity_Id; V : Node_Id);
237   --  An optimization: determine whether a discriminated subtype has a static
238   --  constraint, and contains array components whose length is also static,
239   --  either because they are constrained by the discriminant, or because the
240   --  original component bounds are static.
241
242   -----------------------------------------------------
243   -- Subprograms used for ARRAY AGGREGATE Processing --
244   -----------------------------------------------------
245
246   function Resolve_Array_Aggregate
247     (N              : Node_Id;
248      Index          : Node_Id;
249      Index_Constr   : Node_Id;
250      Component_Typ  : Entity_Id;
251      Others_Allowed : Boolean) return Boolean;
252   --  This procedure performs the semantic checks for an array aggregate.
253   --  True is returned if the aggregate resolution succeeds.
254   --
255   --  The procedure works by recursively checking each nested aggregate.
256   --  Specifically, after checking a sub-aggregate nested at the i-th level
257   --  we recursively check all the subaggregates at the i+1-st level (if any).
258   --  Note that for aggregates analysis and resolution go hand in hand.
259   --  Aggregate analysis has been delayed up to here and it is done while
260   --  resolving the aggregate.
261   --
262   --    N is the current N_Aggregate node to be checked.
263   --
264   --    Index is the index node corresponding to the array sub-aggregate that
265   --    we are currently checking (RM 4.3.3 (8)). Its Etype is the
266   --    corresponding index type (or subtype).
267   --
268   --    Index_Constr is the node giving the applicable index constraint if
269   --    any (RM 4.3.3 (10)). It "is a constraint provided by certain
270   --    contexts [...] that can be used to determine the bounds of the array
271   --    value specified by the aggregate". If Others_Allowed below is False
272   --    there is no applicable index constraint and this node is set to Index.
273   --
274   --    Component_Typ is the array component type.
275   --
276   --    Others_Allowed indicates whether an others choice is allowed
277   --    in the context where the top-level aggregate appeared.
278   --
279   --  The algorithm of Resolve_Array_Aggregate proceeds as follows:
280   --
281   --  1. Make sure that the others choice, if present, is by itself and
282   --     appears last in the sub-aggregate. Check that we do not have
283   --     positional and named components in the array sub-aggregate (unless
284   --     the named association is an others choice). Finally if an others
285   --     choice is present, make sure it is allowed in the aggregate context.
286   --
287   --  2. If the array sub-aggregate contains discrete_choices:
288   --
289   --     (A) Verify their validity. Specifically verify that:
290   --
291   --        (a) If a null range is present it must be the only possible
292   --            choice in the array aggregate.
293   --
294   --        (b) Ditto for a non static range.
295   --
296   --        (c) Ditto for a non static expression.
297   --
298   --        In addition this step analyzes and resolves each discrete_choice,
299   --        making sure that its type is the type of the corresponding Index.
300   --        If we are not at the lowest array aggregate level (in the case of
301   --        multi-dimensional aggregates) then invoke Resolve_Array_Aggregate
302   --        recursively on each component expression. Otherwise, resolve the
303   --        bottom level component expressions against the expected component
304   --        type ONLY IF the component corresponds to a single discrete choice
305   --        which is not an others choice (to see why read the DELAYED
306   --        COMPONENT RESOLUTION below).
307   --
308   --     (B) Determine the bounds of the sub-aggregate and lowest and
309   --         highest choice values.
310   --
311   --  3. For positional aggregates:
312   --
313   --     (A) Loop over the component expressions either recursively invoking
314   --         Resolve_Array_Aggregate on each of these for multi-dimensional
315   --         array aggregates or resolving the bottom level component
316   --         expressions against the expected component type.
317   --
318   --     (B) Determine the bounds of the positional sub-aggregates.
319   --
320   --  4. Try to determine statically whether the evaluation of the array
321   --     sub-aggregate raises Constraint_Error. If yes emit proper
322   --     warnings. The precise checks are the following:
323   --
324   --     (A) Check that the index range defined by aggregate bounds is
325   --         compatible with corresponding index subtype.
326   --         We also check against the base type. In fact it could be that
327   --         Low/High bounds of the base type are static whereas those of
328   --         the index subtype are not. Thus if we can statically catch
329   --         a problem with respect to the base type we are guaranteed
330   --         that the same problem will arise with the index subtype
331   --
332   --     (B) If we are dealing with a named aggregate containing an others
333   --         choice and at least one discrete choice then make sure the range
334   --         specified by the discrete choices does not overflow the
335   --         aggregate bounds. We also check against the index type and base
336   --         type bounds for the same reasons given in (A).
337   --
338   --     (C) If we are dealing with a positional aggregate with an others
339   --         choice make sure the number of positional elements specified
340   --         does not overflow the aggregate bounds. We also check against
341   --         the index type and base type bounds as mentioned in (A).
342   --
343   --     Finally construct an N_Range node giving the sub-aggregate bounds.
344   --     Set the Aggregate_Bounds field of the sub-aggregate to be this
345   --     N_Range. The routine Array_Aggr_Subtype below uses such N_Ranges
346   --     to build the appropriate aggregate subtype. Aggregate_Bounds
347   --     information is needed during expansion.
348   --
349   --  DELAYED COMPONENT RESOLUTION: The resolution of bottom level component
350   --  expressions in an array aggregate may call Duplicate_Subexpr or some
351   --  other routine that inserts code just outside the outermost aggregate.
352   --  If the array aggregate contains discrete choices or an others choice,
353   --  this may be wrong. Consider for instance the following example.
354   --
355   --    type Rec is record
356   --       V : Integer := 0;
357   --    end record;
358   --
359   --    type Acc_Rec is access Rec;
360   --    Arr : array (1..3) of Acc_Rec := (1 .. 3 => new Rec);
361   --
362   --  Then the transformation of "new Rec" that occurs during resolution
363   --  entails the following code modifications
364   --
365   --    P7b : constant Acc_Rec := new Rec;
366   --    RecIP (P7b.all);
367   --    Arr : array (1..3) of Acc_Rec := (1 .. 3 => P7b);
368   --
369   --  This code transformation is clearly wrong, since we need to call
370   --  "new Rec" for each of the 3 array elements. To avoid this problem we
371   --  delay resolution of the components of non positional array aggregates
372   --  to the expansion phase. As an optimization, if the discrete choice
373   --  specifies a single value we do not delay resolution.
374
375   function Array_Aggr_Subtype (N : Node_Id; Typ : Node_Id) return Entity_Id;
376   --  This routine returns the type or subtype of an array aggregate.
377   --
378   --    N is the array aggregate node whose type we return.
379   --
380   --    Typ is the context type in which N occurs.
381   --
382   --  This routine creates an implicit array subtype whose bounds are
383   --  those defined by the aggregate. When this routine is invoked
384   --  Resolve_Array_Aggregate has already processed aggregate N. Thus the
385   --  Aggregate_Bounds of each sub-aggregate, is an N_Range node giving the
386   --  sub-aggregate bounds. When building the aggregate itype, this function
387   --  traverses the array aggregate N collecting such Aggregate_Bounds and
388   --  constructs the proper array aggregate itype.
389   --
390   --  Note that in the case of multidimensional aggregates each inner
391   --  sub-aggregate corresponding to a given array dimension, may provide a
392   --  different bounds. If it is possible to determine statically that
393   --  some sub-aggregates corresponding to the same index do not have the
394   --  same bounds, then a warning is emitted. If such check is not possible
395   --  statically (because some sub-aggregate bounds are dynamic expressions)
396   --  then this job is left to the expander. In all cases the particular
397   --  bounds that this function will chose for a given dimension is the first
398   --  N_Range node for a sub-aggregate corresponding to that dimension.
399   --
400   --  Note that the Raises_Constraint_Error flag of an array aggregate
401   --  whose evaluation is determined to raise CE by Resolve_Array_Aggregate,
402   --  is set in Resolve_Array_Aggregate but the aggregate is not
403   --  immediately replaced with a raise CE. In fact, Array_Aggr_Subtype must
404   --  first construct the proper itype for the aggregate (Gigi needs
405   --  this). After constructing the proper itype we will eventually replace
406   --  the top-level aggregate with a raise CE (done in Resolve_Aggregate).
407   --  Of course in cases such as:
408   --
409   --     type Arr is array (integer range <>) of Integer;
410   --     A : Arr := (positive range -1 .. 2 => 0);
411   --
412   --  The bounds of the aggregate itype are cooked up to look reasonable
413   --  (in this particular case the bounds will be 1 .. 2).
414
415   procedure Make_String_Into_Aggregate (N : Node_Id);
416   --  A string literal can appear in a context in which a one dimensional
417   --  array of characters is expected. This procedure simply rewrites the
418   --  string as an aggregate, prior to resolution.
419
420   ------------------------
421   -- Array_Aggr_Subtype --
422   ------------------------
423
424   function Array_Aggr_Subtype
425     (N   : Node_Id;
426      Typ : Entity_Id) return Entity_Id
427   is
428      Aggr_Dimension : constant Pos := Number_Dimensions (Typ);
429      --  Number of aggregate index dimensions
430
431      Aggr_Range : array (1 .. Aggr_Dimension) of Node_Id := (others => Empty);
432      --  Constrained N_Range of each index dimension in our aggregate itype
433
434      Aggr_Low  : array (1 .. Aggr_Dimension) of Node_Id := (others => Empty);
435      Aggr_High : array (1 .. Aggr_Dimension) of Node_Id := (others => Empty);
436      --  Low and High bounds for each index dimension in our aggregate itype
437
438      Is_Fully_Positional : Boolean := True;
439
440      procedure Collect_Aggr_Bounds (N : Node_Id; Dim : Pos);
441      --  N is an array (sub-)aggregate. Dim is the dimension corresponding
442      --  to (sub-)aggregate N. This procedure collects and removes the side
443      --  effects of the constrained N_Range nodes corresponding to each index
444      --  dimension of our aggregate itype. These N_Range nodes are collected
445      --  in Aggr_Range above.
446      --
447      --  Likewise collect in Aggr_Low & Aggr_High above the low and high
448      --  bounds of each index dimension. If, when collecting, two bounds
449      --  corresponding to the same dimension are static and found to differ,
450      --  then emit a warning, and mark N as raising Constraint_Error.
451
452      -------------------------
453      -- Collect_Aggr_Bounds --
454      -------------------------
455
456      procedure Collect_Aggr_Bounds (N : Node_Id; Dim : Pos) is
457         This_Range : constant Node_Id := Aggregate_Bounds (N);
458         --  The aggregate range node of this specific sub-aggregate
459
460         This_Low  : constant Node_Id := Low_Bound (Aggregate_Bounds (N));
461         This_High : constant Node_Id := High_Bound (Aggregate_Bounds (N));
462         --  The aggregate bounds of this specific sub-aggregate
463
464         Assoc : Node_Id;
465         Expr  : Node_Id;
466
467      begin
468         Remove_Side_Effects (This_Low,  Variable_Ref => True);
469         Remove_Side_Effects (This_High, Variable_Ref => True);
470
471         --  Collect the first N_Range for a given dimension that you find.
472         --  For a given dimension they must be all equal anyway.
473
474         if No (Aggr_Range (Dim)) then
475            Aggr_Low (Dim)   := This_Low;
476            Aggr_High (Dim)  := This_High;
477            Aggr_Range (Dim) := This_Range;
478
479         else
480            if Compile_Time_Known_Value (This_Low) then
481               if not Compile_Time_Known_Value (Aggr_Low (Dim)) then
482                  Aggr_Low (Dim)  := This_Low;
483
484               elsif Expr_Value (This_Low) /= Expr_Value (Aggr_Low (Dim)) then
485                  Set_Raises_Constraint_Error (N);
486                  Error_Msg_Warn := SPARK_Mode /= On;
487                  Error_Msg_N ("sub-aggregate low bound mismatch<<", N);
488                  Error_Msg_N ("\Constraint_Error [<<", N);
489               end if;
490            end if;
491
492            if Compile_Time_Known_Value (This_High) then
493               if not Compile_Time_Known_Value (Aggr_High (Dim)) then
494                  Aggr_High (Dim)  := This_High;
495
496               elsif
497                 Expr_Value (This_High) /= Expr_Value (Aggr_High (Dim))
498               then
499                  Set_Raises_Constraint_Error (N);
500                  Error_Msg_Warn := SPARK_Mode /= On;
501                  Error_Msg_N ("sub-aggregate high bound mismatch<<", N);
502                  Error_Msg_N ("\Constraint_Error [<<", N);
503               end if;
504            end if;
505         end if;
506
507         if Dim < Aggr_Dimension then
508
509            --  Process positional components
510
511            if Present (Expressions (N)) then
512               Expr := First (Expressions (N));
513               while Present (Expr) loop
514                  Collect_Aggr_Bounds (Expr, Dim + 1);
515                  Next (Expr);
516               end loop;
517            end if;
518
519            --  Process component associations
520
521            if Present (Component_Associations (N)) then
522               Is_Fully_Positional := False;
523
524               Assoc := First (Component_Associations (N));
525               while Present (Assoc) loop
526                  Expr := Expression (Assoc);
527                  Collect_Aggr_Bounds (Expr, Dim + 1);
528                  Next (Assoc);
529               end loop;
530            end if;
531         end if;
532      end Collect_Aggr_Bounds;
533
534      --  Array_Aggr_Subtype variables
535
536      Itype : Entity_Id;
537      --  The final itype of the overall aggregate
538
539      Index_Constraints : constant List_Id := New_List;
540      --  The list of index constraints of the aggregate itype
541
542   --  Start of processing for Array_Aggr_Subtype
543
544   begin
545      --  Make sure that the list of index constraints is properly attached to
546      --  the tree, and then collect the aggregate bounds.
547
548      Set_Parent (Index_Constraints, N);
549      Collect_Aggr_Bounds (N, 1);
550
551      --  Build the list of constrained indexes of our aggregate itype
552
553      for J in 1 .. Aggr_Dimension loop
554         Create_Index : declare
555            Index_Base : constant Entity_Id :=
556                           Base_Type (Etype (Aggr_Range (J)));
557            Index_Typ  : Entity_Id;
558
559         begin
560            --  Construct the Index subtype, and associate it with the range
561            --  construct that generates it.
562
563            Index_Typ :=
564              Create_Itype (Subtype_Kind (Ekind (Index_Base)), Aggr_Range (J));
565
566            Set_Etype (Index_Typ, Index_Base);
567
568            if Is_Character_Type (Index_Base) then
569               Set_Is_Character_Type (Index_Typ);
570            end if;
571
572            Set_Size_Info      (Index_Typ,                (Index_Base));
573            Set_RM_Size        (Index_Typ, RM_Size        (Index_Base));
574            Set_First_Rep_Item (Index_Typ, First_Rep_Item (Index_Base));
575            Set_Scalar_Range   (Index_Typ, Aggr_Range (J));
576
577            if Is_Discrete_Or_Fixed_Point_Type (Index_Typ) then
578               Set_RM_Size (Index_Typ, UI_From_Int (Minimum_Size (Index_Typ)));
579            end if;
580
581            Set_Etype (Aggr_Range (J), Index_Typ);
582
583            Append (Aggr_Range (J), To => Index_Constraints);
584         end Create_Index;
585      end loop;
586
587      --  Now build the Itype
588
589      Itype := Create_Itype (E_Array_Subtype, N);
590
591      Set_First_Rep_Item         (Itype, First_Rep_Item        (Typ));
592      Set_Convention             (Itype, Convention            (Typ));
593      Set_Depends_On_Private     (Itype, Has_Private_Component (Typ));
594      Set_Etype                  (Itype, Base_Type             (Typ));
595      Set_Has_Alignment_Clause   (Itype, Has_Alignment_Clause  (Typ));
596      Set_Is_Aliased             (Itype, Is_Aliased            (Typ));
597      Set_Depends_On_Private     (Itype, Depends_On_Private    (Typ));
598
599      Copy_Suppress_Status (Index_Check,  Typ, Itype);
600      Copy_Suppress_Status (Length_Check, Typ, Itype);
601
602      Set_First_Index    (Itype, First (Index_Constraints));
603      Set_Is_Constrained (Itype, True);
604      Set_Is_Internal    (Itype, True);
605
606      --  A simple optimization: purely positional aggregates of static
607      --  components should be passed to gigi unexpanded whenever possible, and
608      --  regardless of the staticness of the bounds themselves. Subsequent
609      --  checks in exp_aggr verify that type is not packed, etc.
610
611      Set_Size_Known_At_Compile_Time
612        (Itype,
613         Is_Fully_Positional
614           and then Comes_From_Source (N)
615           and then Size_Known_At_Compile_Time (Component_Type (Typ)));
616
617      --  We always need a freeze node for a packed array subtype, so that we
618      --  can build the Packed_Array_Impl_Type corresponding to the subtype. If
619      --  expansion is disabled, the packed array subtype is not built, and we
620      --  must not generate a freeze node for the type, or else it will appear
621      --  incomplete to gigi.
622
623      if Is_Packed (Itype)
624        and then not In_Spec_Expression
625        and then Expander_Active
626      then
627         Freeze_Itype (Itype, N);
628      end if;
629
630      return Itype;
631   end Array_Aggr_Subtype;
632
633   --------------------------------
634   -- Check_Misspelled_Component --
635   --------------------------------
636
637   procedure Check_Misspelled_Component
638     (Elements  : Elist_Id;
639      Component : Node_Id)
640   is
641      Max_Suggestions   : constant := 2;
642
643      Nr_Of_Suggestions : Natural := 0;
644      Suggestion_1      : Entity_Id := Empty;
645      Suggestion_2      : Entity_Id := Empty;
646      Component_Elmt    : Elmt_Id;
647
648   begin
649      --  All the components of List are matched against Component and a count
650      --  is maintained of possible misspellings. When at the end of the the
651      --  analysis there are one or two (not more) possible misspellings,
652      --  these misspellings will be suggested as possible correction.
653
654      Component_Elmt := First_Elmt (Elements);
655      while Nr_Of_Suggestions <= Max_Suggestions
656        and then Present (Component_Elmt)
657      loop
658         if Is_Bad_Spelling_Of
659              (Chars (Node (Component_Elmt)),
660               Chars (Component))
661         then
662            Nr_Of_Suggestions := Nr_Of_Suggestions + 1;
663
664            case Nr_Of_Suggestions is
665               when 1      => Suggestion_1 := Node (Component_Elmt);
666               when 2      => Suggestion_2 := Node (Component_Elmt);
667               when others => exit;
668            end case;
669         end if;
670
671         Next_Elmt (Component_Elmt);
672      end loop;
673
674      --  Report at most two suggestions
675
676      if Nr_Of_Suggestions = 1 then
677         Error_Msg_NE -- CODEFIX
678           ("\possible misspelling of&", Component, Suggestion_1);
679
680      elsif Nr_Of_Suggestions = 2 then
681         Error_Msg_Node_2 := Suggestion_2;
682         Error_Msg_NE -- CODEFIX
683           ("\possible misspelling of& or&", Component, Suggestion_1);
684      end if;
685   end Check_Misspelled_Component;
686
687   ----------------------------------------
688   -- Check_Expr_OK_In_Limited_Aggregate --
689   ----------------------------------------
690
691   procedure Check_Expr_OK_In_Limited_Aggregate (Expr : Node_Id) is
692   begin
693      if Is_Limited_Type (Etype (Expr))
694         and then Comes_From_Source (Expr)
695      then
696         if In_Instance_Body or else In_Inlined_Body then
697            null;
698
699         elsif not OK_For_Limited_Init (Etype (Expr), Expr) then
700            Error_Msg_N
701              ("initialization not allowed for limited types", Expr);
702            Explain_Limited_Type (Etype (Expr), Expr);
703         end if;
704      end if;
705   end Check_Expr_OK_In_Limited_Aggregate;
706
707   -------------------------------
708   -- Check_Qualified_Aggregate --
709   -------------------------------
710
711   procedure Check_Qualified_Aggregate (Level : Nat; Expr : Node_Id) is
712      Comp_Expr : Node_Id;
713      Comp_Assn : Node_Id;
714
715   begin
716      if Level = 0 then
717         if Nkind (Parent (Expr)) /= N_Qualified_Expression then
718            Check_SPARK_05_Restriction ("aggregate should be qualified", Expr);
719         end if;
720
721      else
722         Comp_Expr := First (Expressions (Expr));
723         while Present (Comp_Expr) loop
724            if Nkind (Comp_Expr) = N_Aggregate then
725               Check_Qualified_Aggregate (Level - 1, Comp_Expr);
726            end if;
727
728            Comp_Expr := Next (Comp_Expr);
729         end loop;
730
731         Comp_Assn := First (Component_Associations (Expr));
732         while Present (Comp_Assn) loop
733            Comp_Expr := Expression (Comp_Assn);
734
735            if Nkind (Comp_Expr) = N_Aggregate then
736               Check_Qualified_Aggregate (Level - 1, Comp_Expr);
737            end if;
738
739            Comp_Assn := Next (Comp_Assn);
740         end loop;
741      end if;
742   end Check_Qualified_Aggregate;
743
744   ----------------------------------------
745   -- Check_Static_Discriminated_Subtype --
746   ----------------------------------------
747
748   procedure Check_Static_Discriminated_Subtype (T : Entity_Id; V : Node_Id) is
749      Disc : constant Entity_Id := First_Discriminant (T);
750      Comp : Entity_Id;
751      Ind  : Entity_Id;
752
753   begin
754      if Has_Record_Rep_Clause (T) then
755         return;
756
757      elsif Present (Next_Discriminant (Disc)) then
758         return;
759
760      elsif Nkind (V) /= N_Integer_Literal then
761         return;
762      end if;
763
764      Comp := First_Component (T);
765      while Present (Comp) loop
766         if Is_Scalar_Type (Etype (Comp)) then
767            null;
768
769         elsif Is_Private_Type (Etype (Comp))
770           and then Present (Full_View (Etype (Comp)))
771           and then Is_Scalar_Type (Full_View (Etype (Comp)))
772         then
773            null;
774
775         elsif Is_Array_Type (Etype (Comp)) then
776            if Is_Bit_Packed_Array (Etype (Comp)) then
777               return;
778            end if;
779
780            Ind := First_Index (Etype (Comp));
781            while Present (Ind) loop
782               if Nkind (Ind) /= N_Range
783                 or else Nkind (Low_Bound (Ind))  /= N_Integer_Literal
784                 or else Nkind (High_Bound (Ind)) /= N_Integer_Literal
785               then
786                  return;
787               end if;
788
789               Next_Index (Ind);
790            end loop;
791
792         else
793            return;
794         end if;
795
796         Next_Component (Comp);
797      end loop;
798
799      --  On exit, all components have statically known sizes
800
801      Set_Size_Known_At_Compile_Time (T);
802   end Check_Static_Discriminated_Subtype;
803
804   -------------------------
805   -- Is_Others_Aggregate --
806   -------------------------
807
808   function Is_Others_Aggregate (Aggr : Node_Id) return Boolean is
809   begin
810      return No (Expressions (Aggr))
811        and then
812          Nkind (First (Choices (First (Component_Associations (Aggr))))) =
813                                                              N_Others_Choice;
814   end Is_Others_Aggregate;
815
816   ----------------------------
817   -- Is_Top_Level_Aggregate --
818   ----------------------------
819
820   function Is_Top_Level_Aggregate (Expr : Node_Id) return Boolean is
821   begin
822      return Nkind (Parent (Expr)) /= N_Aggregate
823        and then (Nkind (Parent (Expr)) /= N_Component_Association
824                   or else Nkind (Parent (Parent (Expr))) /= N_Aggregate);
825   end Is_Top_Level_Aggregate;
826
827   --------------------------------
828   -- Make_String_Into_Aggregate --
829   --------------------------------
830
831   procedure Make_String_Into_Aggregate (N : Node_Id) is
832      Exprs  : constant List_Id    := New_List;
833      Loc    : constant Source_Ptr := Sloc (N);
834      Str    : constant String_Id  := Strval (N);
835      Strlen : constant Nat        := String_Length (Str);
836      C      : Char_Code;
837      C_Node : Node_Id;
838      New_N  : Node_Id;
839      P      : Source_Ptr;
840
841   begin
842      P := Loc + 1;
843      for J in  1 .. Strlen loop
844         C := Get_String_Char (Str, J);
845         Set_Character_Literal_Name (C);
846
847         C_Node :=
848           Make_Character_Literal (P,
849             Chars              => Name_Find,
850             Char_Literal_Value => UI_From_CC (C));
851         Set_Etype (C_Node, Any_Character);
852         Append_To (Exprs, C_Node);
853
854         P := P + 1;
855         --  Something special for wide strings???
856      end loop;
857
858      New_N := Make_Aggregate (Loc, Expressions => Exprs);
859      Set_Analyzed (New_N);
860      Set_Etype (New_N, Any_Composite);
861
862      Rewrite (N, New_N);
863   end Make_String_Into_Aggregate;
864
865   -----------------------
866   -- Resolve_Aggregate --
867   -----------------------
868
869   procedure Resolve_Aggregate (N : Node_Id; Typ : Entity_Id) is
870      Loc   : constant Source_Ptr := Sloc (N);
871      Pkind : constant Node_Kind  := Nkind (Parent (N));
872
873      Aggr_Subtyp : Entity_Id;
874      --  The actual aggregate subtype. This is not necessarily the same as Typ
875      --  which is the subtype of the context in which the aggregate was found.
876
877   begin
878      --  Ignore junk empty aggregate resulting from parser error
879
880      if No (Expressions (N))
881        and then No (Component_Associations (N))
882        and then not Null_Record_Present (N)
883      then
884         return;
885      end if;
886
887      --  If the aggregate has box-initialized components, its type must be
888      --  frozen so that initialization procedures can properly be called
889      --  in the resolution that follows.  The replacement of boxes with
890      --  initialization calls is properly an expansion activity but it must
891      --  be done during resolution.
892
893      if Expander_Active
894        and then Present (Component_Associations (N))
895      then
896         declare
897            Comp : Node_Id;
898
899         begin
900            Comp := First (Component_Associations (N));
901            while Present (Comp) loop
902               if Box_Present (Comp) then
903                  Insert_Actions (N, Freeze_Entity (Typ, N));
904                  exit;
905               end if;
906
907               Next (Comp);
908            end loop;
909         end;
910      end if;
911
912      --  An unqualified aggregate is restricted in SPARK to:
913
914      --    An aggregate item inside an aggregate for a multi-dimensional array
915
916      --    An expression being assigned to an unconstrained array, but only if
917      --    the aggregate specifies a value for OTHERS only.
918
919      if Nkind (Parent (N)) = N_Qualified_Expression then
920         if Is_Array_Type (Typ) then
921            Check_Qualified_Aggregate (Number_Dimensions (Typ), N);
922         else
923            Check_Qualified_Aggregate (1, N);
924         end if;
925      else
926         if Is_Array_Type (Typ)
927           and then Nkind (Parent (N)) = N_Assignment_Statement
928           and then not Is_Constrained (Etype (Name (Parent (N))))
929         then
930            if not Is_Others_Aggregate (N) then
931               Check_SPARK_05_Restriction
932                 ("array aggregate should have only OTHERS", N);
933            end if;
934
935         elsif Is_Top_Level_Aggregate (N) then
936            Check_SPARK_05_Restriction ("aggregate should be qualified", N);
937
938         --  The legality of this unqualified aggregate is checked by calling
939         --  Check_Qualified_Aggregate from one of its enclosing aggregate,
940         --  unless one of these already causes an error to be issued.
941
942         else
943            null;
944         end if;
945      end if;
946
947      --  Check for aggregates not allowed in configurable run-time mode.
948      --  We allow all cases of aggregates that do not come from source, since
949      --  these are all assumed to be small (e.g. bounds of a string literal).
950      --  We also allow aggregates of types we know to be small.
951
952      if not Support_Aggregates_On_Target
953        and then Comes_From_Source (N)
954        and then (not Known_Static_Esize (Typ) or else Esize (Typ) > 64)
955      then
956         Error_Msg_CRT ("aggregate", N);
957      end if;
958
959      --  Ada 2005 (AI-287): Limited aggregates allowed
960
961      --  In an instance, ignore aggregate subcomponents tnat may be limited,
962      --  because they originate in view conflicts. If the original aggregate
963      --  is legal and the actuals are legal, the aggregate itself is legal.
964
965      if Is_Limited_Type (Typ)
966        and then Ada_Version < Ada_2005
967        and then not In_Instance
968      then
969         Error_Msg_N ("aggregate type cannot be limited", N);
970         Explain_Limited_Type (Typ, N);
971
972      elsif Is_Class_Wide_Type (Typ) then
973         Error_Msg_N ("type of aggregate cannot be class-wide", N);
974
975      elsif Typ = Any_String
976        or else Typ = Any_Composite
977      then
978         Error_Msg_N ("no unique type for aggregate", N);
979         Set_Etype (N, Any_Composite);
980
981      elsif Is_Array_Type (Typ) and then Null_Record_Present (N) then
982         Error_Msg_N ("null record forbidden in array aggregate", N);
983
984      elsif Is_Record_Type (Typ) then
985         Resolve_Record_Aggregate (N, Typ);
986
987      elsif Is_Array_Type (Typ) then
988
989         --  First a special test, for the case of a positional aggregate
990         --  of characters which can be replaced by a string literal.
991
992         --  Do not perform this transformation if this was a string literal to
993         --  start with, whose components needed constraint checks, or if the
994         --  component type is non-static, because it will require those checks
995         --  and be transformed back into an aggregate.
996
997         if Number_Dimensions (Typ) = 1
998           and then Is_Standard_Character_Type (Component_Type (Typ))
999           and then No (Component_Associations (N))
1000           and then not Is_Limited_Composite (Typ)
1001           and then not Is_Private_Composite (Typ)
1002           and then not Is_Bit_Packed_Array (Typ)
1003           and then Nkind (Original_Node (Parent (N))) /= N_String_Literal
1004           and then Is_OK_Static_Subtype (Component_Type (Typ))
1005         then
1006            declare
1007               Expr : Node_Id;
1008
1009            begin
1010               Expr := First (Expressions (N));
1011               while Present (Expr) loop
1012                  exit when Nkind (Expr) /= N_Character_Literal;
1013                  Next (Expr);
1014               end loop;
1015
1016               if No (Expr) then
1017                  Start_String;
1018
1019                  Expr := First (Expressions (N));
1020                  while Present (Expr) loop
1021                     Store_String_Char (UI_To_CC (Char_Literal_Value (Expr)));
1022                     Next (Expr);
1023                  end loop;
1024
1025                  Rewrite (N, Make_String_Literal (Loc, End_String));
1026
1027                  Analyze_And_Resolve (N, Typ);
1028                  return;
1029               end if;
1030            end;
1031         end if;
1032
1033         --  Here if we have a real aggregate to deal with
1034
1035         Array_Aggregate : declare
1036            Aggr_Resolved : Boolean;
1037
1038            Aggr_Typ : constant Entity_Id := Etype (Typ);
1039            --  This is the unconstrained array type, which is the type against
1040            --  which the aggregate is to be resolved. Typ itself is the array
1041            --  type of the context which may not be the same subtype as the
1042            --  subtype for the final aggregate.
1043
1044         begin
1045            --  In the following we determine whether an OTHERS choice is
1046            --  allowed inside the array aggregate. The test checks the context
1047            --  in which the array aggregate occurs. If the context does not
1048            --  permit it, or the aggregate type is unconstrained, an OTHERS
1049            --  choice is not allowed (except that it is always allowed on the
1050            --  right-hand side of an assignment statement; in this case the
1051            --  constrainedness of the type doesn't matter).
1052
1053            --  If expansion is disabled (generic context, or semantics-only
1054            --  mode) actual subtypes cannot be constructed, and the type of an
1055            --  object may be its unconstrained nominal type. However, if the
1056            --  context is an assignment, we assume that OTHERS is allowed,
1057            --  because the target of the assignment will have a constrained
1058            --  subtype when fully compiled.
1059
1060            --  Note that there is no node for Explicit_Actual_Parameter.
1061            --  To test for this context we therefore have to test for node
1062            --  N_Parameter_Association which itself appears only if there is a
1063            --  formal parameter. Consequently we also need to test for
1064            --  N_Procedure_Call_Statement or N_Function_Call.
1065
1066            --  The context may be an N_Reference node, created by expansion.
1067            --  Legality of the others clause was established in the source,
1068            --  so the context is legal.
1069
1070            Set_Etype (N, Aggr_Typ);  --  May be overridden later on
1071
1072            if Pkind = N_Assignment_Statement
1073              or else (Is_Constrained (Typ)
1074                        and then
1075                          (Pkind = N_Parameter_Association     or else
1076                           Pkind = N_Function_Call             or else
1077                           Pkind = N_Procedure_Call_Statement  or else
1078                           Pkind = N_Generic_Association       or else
1079                           Pkind = N_Formal_Object_Declaration or else
1080                           Pkind = N_Simple_Return_Statement   or else
1081                           Pkind = N_Object_Declaration        or else
1082                           Pkind = N_Component_Declaration     or else
1083                           Pkind = N_Parameter_Specification   or else
1084                           Pkind = N_Qualified_Expression      or else
1085                           Pkind = N_Reference                 or else
1086                           Pkind = N_Aggregate                 or else
1087                           Pkind = N_Extension_Aggregate       or else
1088                           Pkind = N_Component_Association))
1089            then
1090               Aggr_Resolved :=
1091                 Resolve_Array_Aggregate
1092                   (N,
1093                    Index          => First_Index (Aggr_Typ),
1094                    Index_Constr   => First_Index (Typ),
1095                    Component_Typ  => Component_Type (Typ),
1096                    Others_Allowed => True);
1097
1098            elsif not Expander_Active
1099              and then Pkind = N_Assignment_Statement
1100            then
1101               Aggr_Resolved :=
1102                 Resolve_Array_Aggregate
1103                   (N,
1104                    Index          => First_Index (Aggr_Typ),
1105                    Index_Constr   => First_Index (Typ),
1106                    Component_Typ  => Component_Type (Typ),
1107                    Others_Allowed => True);
1108
1109            else
1110               Aggr_Resolved :=
1111                 Resolve_Array_Aggregate
1112                   (N,
1113                    Index          => First_Index (Aggr_Typ),
1114                    Index_Constr   => First_Index (Aggr_Typ),
1115                    Component_Typ  => Component_Type (Typ),
1116                    Others_Allowed => False);
1117            end if;
1118
1119            if not Aggr_Resolved then
1120
1121               --  A parenthesized expression may have been intended as an
1122               --  aggregate, leading to a type error when analyzing the
1123               --  component. This can also happen for a nested component
1124               --  (see Analyze_Aggr_Expr).
1125
1126               if Paren_Count (N) > 0 then
1127                  Error_Msg_N
1128                    ("positional aggregate cannot have one component", N);
1129               end if;
1130
1131               Aggr_Subtyp := Any_Composite;
1132
1133            else
1134               Aggr_Subtyp := Array_Aggr_Subtype (N, Typ);
1135            end if;
1136
1137            Set_Etype (N, Aggr_Subtyp);
1138         end Array_Aggregate;
1139
1140      elsif Is_Private_Type (Typ)
1141        and then Present (Full_View (Typ))
1142        and then (In_Inlined_Body or In_Instance_Body)
1143        and then Is_Composite_Type (Full_View (Typ))
1144      then
1145         Resolve (N, Full_View (Typ));
1146
1147      else
1148         Error_Msg_N ("illegal context for aggregate", N);
1149      end if;
1150
1151      --  If we can determine statically that the evaluation of the aggregate
1152      --  raises Constraint_Error, then replace the aggregate with an
1153      --  N_Raise_Constraint_Error node, but set the Etype to the right
1154      --  aggregate subtype. Gigi needs this.
1155
1156      if Raises_Constraint_Error (N) then
1157         Aggr_Subtyp := Etype (N);
1158         Rewrite (N,
1159           Make_Raise_Constraint_Error (Loc, Reason => CE_Range_Check_Failed));
1160         Set_Raises_Constraint_Error (N);
1161         Set_Etype (N, Aggr_Subtyp);
1162         Set_Analyzed (N);
1163      end if;
1164
1165      Check_Function_Writable_Actuals (N);
1166   end Resolve_Aggregate;
1167
1168   -----------------------------
1169   -- Resolve_Array_Aggregate --
1170   -----------------------------
1171
1172   function Resolve_Array_Aggregate
1173     (N              : Node_Id;
1174      Index          : Node_Id;
1175      Index_Constr   : Node_Id;
1176      Component_Typ  : Entity_Id;
1177      Others_Allowed : Boolean) return Boolean
1178   is
1179      Loc : constant Source_Ptr := Sloc (N);
1180
1181      Failure : constant Boolean := False;
1182      Success : constant Boolean := True;
1183
1184      Index_Typ      : constant Entity_Id := Etype (Index);
1185      Index_Typ_Low  : constant Node_Id   := Type_Low_Bound  (Index_Typ);
1186      Index_Typ_High : constant Node_Id   := Type_High_Bound (Index_Typ);
1187      --  The type of the index corresponding to the array sub-aggregate along
1188      --  with its low and upper bounds.
1189
1190      Index_Base      : constant Entity_Id := Base_Type (Index_Typ);
1191      Index_Base_Low  : constant Node_Id   := Type_Low_Bound (Index_Base);
1192      Index_Base_High : constant Node_Id   := Type_High_Bound (Index_Base);
1193      --  Ditto for the base type
1194
1195      function Add (Val : Uint; To : Node_Id) return Node_Id;
1196      --  Creates a new expression node where Val is added to expression To.
1197      --  Tries to constant fold whenever possible. To must be an already
1198      --  analyzed expression.
1199
1200      procedure Check_Bound (BH : Node_Id; AH : in out Node_Id);
1201      --  Checks that AH (the upper bound of an array aggregate) is less than
1202      --  or equal to BH (the upper bound of the index base type). If the check
1203      --  fails, a warning is emitted, the Raises_Constraint_Error flag of N is
1204      --  set, and AH is replaced with a duplicate of BH.
1205
1206      procedure Check_Bounds (L, H : Node_Id; AL, AH : Node_Id);
1207      --  Checks that range AL .. AH is compatible with range L .. H. Emits a
1208      --  warning if not and sets the Raises_Constraint_Error flag in N.
1209
1210      procedure Check_Length (L, H : Node_Id; Len : Uint);
1211      --  Checks that range L .. H contains at least Len elements. Emits a
1212      --  warning if not and sets the Raises_Constraint_Error flag in N.
1213
1214      function Dynamic_Or_Null_Range (L, H : Node_Id) return Boolean;
1215      --  Returns True if range L .. H is dynamic or null
1216
1217      procedure Get (Value : out Uint; From : Node_Id; OK : out Boolean);
1218      --  Given expression node From, this routine sets OK to False if it
1219      --  cannot statically evaluate From. Otherwise it stores this static
1220      --  value into Value.
1221
1222      function Resolve_Aggr_Expr
1223        (Expr        : Node_Id;
1224         Single_Elmt : Boolean) return Boolean;
1225      --  Resolves aggregate expression Expr. Returns False if resolution
1226      --  fails. If Single_Elmt is set to False, the expression Expr may be
1227      --  used to initialize several array aggregate elements (this can happen
1228      --  for discrete choices such as "L .. H => Expr" or the OTHERS choice).
1229      --  In this event we do not resolve Expr unless expansion is disabled.
1230      --  To know why, see the DELAYED COMPONENT RESOLUTION note above.
1231      --
1232      --  NOTE: In the case of "... => <>", we pass the in the
1233      --  N_Component_Association node as Expr, since there is no Expression in
1234      --  that case, and we need a Sloc for the error message.
1235
1236      ---------
1237      -- Add --
1238      ---------
1239
1240      function Add (Val : Uint; To : Node_Id) return Node_Id is
1241         Expr_Pos : Node_Id;
1242         Expr     : Node_Id;
1243         To_Pos   : Node_Id;
1244
1245      begin
1246         if Raises_Constraint_Error (To) then
1247            return To;
1248         end if;
1249
1250         --  First test if we can do constant folding
1251
1252         if Compile_Time_Known_Value (To)
1253           or else Nkind (To) = N_Integer_Literal
1254         then
1255            Expr_Pos := Make_Integer_Literal (Loc, Expr_Value (To) + Val);
1256            Set_Is_Static_Expression (Expr_Pos);
1257            Set_Etype (Expr_Pos, Etype (To));
1258            Set_Analyzed (Expr_Pos, Analyzed (To));
1259
1260            if not Is_Enumeration_Type (Index_Typ) then
1261               Expr := Expr_Pos;
1262
1263            --  If we are dealing with enumeration return
1264            --     Index_Typ'Val (Expr_Pos)
1265
1266            else
1267               Expr :=
1268                 Make_Attribute_Reference
1269                   (Loc,
1270                    Prefix         => New_Occurrence_Of (Index_Typ, Loc),
1271                    Attribute_Name => Name_Val,
1272                    Expressions    => New_List (Expr_Pos));
1273            end if;
1274
1275            return Expr;
1276         end if;
1277
1278         --  If we are here no constant folding possible
1279
1280         if not Is_Enumeration_Type (Index_Base) then
1281            Expr :=
1282              Make_Op_Add (Loc,
1283                Left_Opnd  => Duplicate_Subexpr (To),
1284                Right_Opnd => Make_Integer_Literal (Loc, Val));
1285
1286         --  If we are dealing with enumeration return
1287         --    Index_Typ'Val (Index_Typ'Pos (To) + Val)
1288
1289         else
1290            To_Pos :=
1291              Make_Attribute_Reference
1292                (Loc,
1293                 Prefix         => New_Occurrence_Of (Index_Typ, Loc),
1294                 Attribute_Name => Name_Pos,
1295                 Expressions    => New_List (Duplicate_Subexpr (To)));
1296
1297            Expr_Pos :=
1298              Make_Op_Add (Loc,
1299                Left_Opnd  => To_Pos,
1300                Right_Opnd => Make_Integer_Literal (Loc, Val));
1301
1302            Expr :=
1303              Make_Attribute_Reference
1304                (Loc,
1305                 Prefix         => New_Occurrence_Of (Index_Typ, Loc),
1306                 Attribute_Name => Name_Val,
1307                 Expressions    => New_List (Expr_Pos));
1308
1309            --  If the index type has a non standard representation, the
1310            --  attributes 'Val and 'Pos expand into function calls and the
1311            --  resulting expression is considered non-safe for reevaluation
1312            --  by the backend. Relocate it into a constant temporary in order
1313            --  to make it safe for reevaluation.
1314
1315            if Has_Non_Standard_Rep (Etype (N)) then
1316               declare
1317                  Def_Id : Entity_Id;
1318
1319               begin
1320                  Def_Id := Make_Temporary (Loc, 'R', Expr);
1321                  Set_Etype (Def_Id, Index_Typ);
1322                  Insert_Action (N,
1323                    Make_Object_Declaration (Loc,
1324                      Defining_Identifier => Def_Id,
1325                      Object_Definition   =>
1326                        New_Occurrence_Of (Index_Typ, Loc),
1327                      Constant_Present    => True,
1328                      Expression          => Relocate_Node (Expr)));
1329
1330                  Expr := New_Occurrence_Of (Def_Id, Loc);
1331               end;
1332            end if;
1333         end if;
1334
1335         return Expr;
1336      end Add;
1337
1338      -----------------
1339      -- Check_Bound --
1340      -----------------
1341
1342      procedure Check_Bound (BH : Node_Id; AH : in out Node_Id) is
1343         Val_BH : Uint;
1344         Val_AH : Uint;
1345
1346         OK_BH : Boolean;
1347         OK_AH : Boolean;
1348
1349      begin
1350         Get (Value => Val_BH, From => BH, OK => OK_BH);
1351         Get (Value => Val_AH, From => AH, OK => OK_AH);
1352
1353         if OK_BH and then OK_AH and then Val_BH < Val_AH then
1354            Set_Raises_Constraint_Error (N);
1355            Error_Msg_Warn := SPARK_Mode /= On;
1356            Error_Msg_N ("upper bound out of range<<", AH);
1357            Error_Msg_N ("\Constraint_Error [<<", AH);
1358
1359            --  You need to set AH to BH or else in the case of enumerations
1360            --  indexes we will not be able to resolve the aggregate bounds.
1361
1362            AH := Duplicate_Subexpr (BH);
1363         end if;
1364      end Check_Bound;
1365
1366      ------------------
1367      -- Check_Bounds --
1368      ------------------
1369
1370      procedure Check_Bounds (L, H : Node_Id; AL, AH : Node_Id) is
1371         Val_L  : Uint;
1372         Val_H  : Uint;
1373         Val_AL : Uint;
1374         Val_AH : Uint;
1375
1376         OK_L : Boolean;
1377         OK_H : Boolean;
1378
1379         OK_AL : Boolean;
1380         OK_AH  : Boolean;
1381         pragma Warnings (Off, OK_AL);
1382         pragma Warnings (Off, OK_AH);
1383
1384      begin
1385         if Raises_Constraint_Error (N)
1386           or else Dynamic_Or_Null_Range (AL, AH)
1387         then
1388            return;
1389         end if;
1390
1391         Get (Value => Val_L, From => L, OK => OK_L);
1392         Get (Value => Val_H, From => H, OK => OK_H);
1393
1394         Get (Value => Val_AL, From => AL, OK => OK_AL);
1395         Get (Value => Val_AH, From => AH, OK => OK_AH);
1396
1397         if OK_L and then Val_L > Val_AL then
1398            Set_Raises_Constraint_Error (N);
1399            Error_Msg_Warn := SPARK_Mode /= On;
1400            Error_Msg_N ("lower bound of aggregate out of range<<", N);
1401            Error_Msg_N ("\Constraint_Error [<<", N);
1402         end if;
1403
1404         if OK_H and then Val_H < Val_AH then
1405            Set_Raises_Constraint_Error (N);
1406            Error_Msg_Warn := SPARK_Mode /= On;
1407            Error_Msg_N ("upper bound of aggregate out of range<<", N);
1408            Error_Msg_N ("\Constraint_Error [<<", N);
1409         end if;
1410      end Check_Bounds;
1411
1412      ------------------
1413      -- Check_Length --
1414      ------------------
1415
1416      procedure Check_Length (L, H : Node_Id; Len : Uint) is
1417         Val_L  : Uint;
1418         Val_H  : Uint;
1419
1420         OK_L  : Boolean;
1421         OK_H  : Boolean;
1422
1423         Range_Len : Uint;
1424
1425      begin
1426         if Raises_Constraint_Error (N) then
1427            return;
1428         end if;
1429
1430         Get (Value => Val_L, From => L, OK => OK_L);
1431         Get (Value => Val_H, From => H, OK => OK_H);
1432
1433         if not OK_L or else not OK_H then
1434            return;
1435         end if;
1436
1437         --  If null range length is zero
1438
1439         if Val_L > Val_H then
1440            Range_Len := Uint_0;
1441         else
1442            Range_Len := Val_H - Val_L + 1;
1443         end if;
1444
1445         if Range_Len < Len then
1446            Set_Raises_Constraint_Error (N);
1447            Error_Msg_Warn := SPARK_Mode /= On;
1448            Error_Msg_N ("too many elements<<", N);
1449            Error_Msg_N ("\Constraint_Error [<<", N);
1450         end if;
1451      end Check_Length;
1452
1453      ---------------------------
1454      -- Dynamic_Or_Null_Range --
1455      ---------------------------
1456
1457      function Dynamic_Or_Null_Range (L, H : Node_Id) return Boolean is
1458         Val_L : Uint;
1459         Val_H : Uint;
1460
1461         OK_L  : Boolean;
1462         OK_H  : Boolean;
1463
1464      begin
1465         Get (Value => Val_L, From => L, OK => OK_L);
1466         Get (Value => Val_H, From => H, OK => OK_H);
1467
1468         return not OK_L or else not OK_H
1469           or else not Is_OK_Static_Expression (L)
1470           or else not Is_OK_Static_Expression (H)
1471           or else Val_L > Val_H;
1472      end Dynamic_Or_Null_Range;
1473
1474      ---------
1475      -- Get --
1476      ---------
1477
1478      procedure Get (Value : out Uint; From : Node_Id; OK : out Boolean) is
1479      begin
1480         OK := True;
1481
1482         if Compile_Time_Known_Value (From) then
1483            Value := Expr_Value (From);
1484
1485         --  If expression From is something like Some_Type'Val (10) then
1486         --  Value = 10.
1487
1488         elsif Nkind (From) = N_Attribute_Reference
1489           and then Attribute_Name (From) = Name_Val
1490           and then Compile_Time_Known_Value (First (Expressions (From)))
1491         then
1492            Value := Expr_Value (First (Expressions (From)));
1493         else
1494            Value := Uint_0;
1495            OK := False;
1496         end if;
1497      end Get;
1498
1499      -----------------------
1500      -- Resolve_Aggr_Expr --
1501      -----------------------
1502
1503      function Resolve_Aggr_Expr
1504        (Expr        : Node_Id;
1505         Single_Elmt : Boolean) return Boolean
1506      is
1507         Nxt_Ind        : constant Node_Id := Next_Index (Index);
1508         Nxt_Ind_Constr : constant Node_Id := Next_Index (Index_Constr);
1509         --  Index is the current index corresponding to the expression
1510
1511         Resolution_OK : Boolean := True;
1512         --  Set to False if resolution of the expression failed
1513
1514      begin
1515         --  Defend against previous errors
1516
1517         if Nkind (Expr) = N_Error
1518           or else Error_Posted (Expr)
1519         then
1520            return True;
1521         end if;
1522
1523         --  If the array type against which we are resolving the aggregate
1524         --  has several dimensions, the expressions nested inside the
1525         --  aggregate must be further aggregates (or strings).
1526
1527         if Present (Nxt_Ind) then
1528            if Nkind (Expr) /= N_Aggregate then
1529
1530               --  A string literal can appear where a one-dimensional array
1531               --  of characters is expected. If the literal looks like an
1532               --  operator, it is still an operator symbol, which will be
1533               --  transformed into a string when analyzed.
1534
1535               if Is_Character_Type (Component_Typ)
1536                 and then No (Next_Index (Nxt_Ind))
1537                 and then Nkind_In (Expr, N_String_Literal, N_Operator_Symbol)
1538               then
1539                  --  A string literal used in a multidimensional array
1540                  --  aggregate in place of the final one-dimensional
1541                  --  aggregate must not be enclosed in parentheses.
1542
1543                  if Paren_Count (Expr) /= 0 then
1544                     Error_Msg_N ("no parenthesis allowed here", Expr);
1545                  end if;
1546
1547                  Make_String_Into_Aggregate (Expr);
1548
1549               else
1550                  Error_Msg_N ("nested array aggregate expected", Expr);
1551
1552                  --  If the expression is parenthesized, this may be
1553                  --  a missing component association for a 1-aggregate.
1554
1555                  if Paren_Count (Expr) > 0 then
1556                     Error_Msg_N
1557                       ("\if single-component aggregate is intended, "
1558                        & "write e.g. (1 ='> ...)", Expr);
1559                  end if;
1560
1561                  return Failure;
1562               end if;
1563            end if;
1564
1565            --  If it's "... => <>", nothing to resolve
1566
1567            if Nkind (Expr) = N_Component_Association then
1568               pragma Assert (Box_Present (Expr));
1569               return Success;
1570            end if;
1571
1572            --  Ada 2005 (AI-231): Propagate the type to the nested aggregate.
1573            --  Required to check the null-exclusion attribute (if present).
1574            --  This value may be overridden later on.
1575
1576            Set_Etype (Expr, Etype (N));
1577
1578            Resolution_OK := Resolve_Array_Aggregate
1579              (Expr, Nxt_Ind, Nxt_Ind_Constr, Component_Typ, Others_Allowed);
1580
1581         else
1582            --  If it's "... => <>", nothing to resolve
1583
1584            if Nkind (Expr) = N_Component_Association then
1585               pragma Assert (Box_Present (Expr));
1586               return Success;
1587            end if;
1588
1589            --  Do not resolve the expressions of discrete or others choices
1590            --  unless the expression covers a single component, or the
1591            --  expander is inactive.
1592
1593            --  In SPARK mode, expressions that can perform side-effects will
1594            --  be recognized by the gnat2why back-end, and the whole
1595            --  subprogram will be ignored. So semantic analysis can be
1596            --  performed safely.
1597
1598            if Single_Elmt
1599              or else not Expander_Active
1600              or else In_Spec_Expression
1601            then
1602               Analyze_And_Resolve (Expr, Component_Typ);
1603               Check_Expr_OK_In_Limited_Aggregate (Expr);
1604               Check_Non_Static_Context (Expr);
1605               Aggregate_Constraint_Checks (Expr, Component_Typ);
1606               Check_Unset_Reference (Expr);
1607            end if;
1608         end if;
1609
1610         --  If an aggregate component has a type with predicates, an explicit
1611         --  predicate check must be applied, as for an assignment statement,
1612         --  because the aggegate might not be expanded into individual
1613         --  component assignments.
1614
1615         if Present (Predicate_Function (Component_Typ)) then
1616            Apply_Predicate_Check (Expr, Component_Typ);
1617         end if;
1618
1619         if Raises_Constraint_Error (Expr)
1620           and then Nkind (Parent (Expr)) /= N_Component_Association
1621         then
1622            Set_Raises_Constraint_Error (N);
1623         end if;
1624
1625         --  If the expression has been marked as requiring a range check,
1626         --  then generate it here. It's a bit odd to be generating such
1627         --  checks in the analyzer, but harmless since Generate_Range_Check
1628         --  does nothing (other than making sure Do_Range_Check is set) if
1629         --  the expander is not active.
1630
1631         if Do_Range_Check (Expr) then
1632            Generate_Range_Check (Expr, Component_Typ, CE_Range_Check_Failed);
1633         end if;
1634
1635         return Resolution_OK;
1636      end Resolve_Aggr_Expr;
1637
1638      --  Variables local to Resolve_Array_Aggregate
1639
1640      Assoc   : Node_Id;
1641      Choice  : Node_Id;
1642      Expr    : Node_Id;
1643      Discard : Node_Id;
1644
1645      Delete_Choice : Boolean;
1646      --  Used when replacing a subtype choice with predicate by a list
1647
1648      Aggr_Low  : Node_Id := Empty;
1649      Aggr_High : Node_Id := Empty;
1650      --  The actual low and high bounds of this sub-aggregate
1651
1652      Choices_Low  : Node_Id := Empty;
1653      Choices_High : Node_Id := Empty;
1654      --  The lowest and highest discrete choices values for a named aggregate
1655
1656      Nb_Elements : Uint := Uint_0;
1657      --  The number of elements in a positional aggregate
1658
1659      Others_Present : Boolean := False;
1660
1661      Nb_Choices : Nat := 0;
1662      --  Contains the overall number of named choices in this sub-aggregate
1663
1664      Nb_Discrete_Choices : Nat := 0;
1665      --  The overall number of discrete choices (not counting others choice)
1666
1667      Case_Table_Size : Nat;
1668      --  Contains the size of the case table needed to sort aggregate choices
1669
1670   --  Start of processing for Resolve_Array_Aggregate
1671
1672   begin
1673      --  Ignore junk empty aggregate resulting from parser error
1674
1675      if No (Expressions (N))
1676        and then No (Component_Associations (N))
1677        and then not Null_Record_Present (N)
1678      then
1679         return False;
1680      end if;
1681
1682      --  STEP 1: make sure the aggregate is correctly formatted
1683
1684      if Present (Component_Associations (N)) then
1685         Assoc := First (Component_Associations (N));
1686         while Present (Assoc) loop
1687            Choice := First (Choices (Assoc));
1688            Delete_Choice := False;
1689            while Present (Choice) loop
1690               if Nkind (Choice) = N_Others_Choice then
1691                  Others_Present := True;
1692
1693                  if Choice /= First (Choices (Assoc))
1694                    or else Present (Next (Choice))
1695                  then
1696                     Error_Msg_N
1697                       ("OTHERS must appear alone in a choice list", Choice);
1698                     return Failure;
1699                  end if;
1700
1701                  if Present (Next (Assoc)) then
1702                     Error_Msg_N
1703                       ("OTHERS must appear last in an aggregate", Choice);
1704                     return Failure;
1705                  end if;
1706
1707                  if Ada_Version = Ada_83
1708                    and then Assoc /= First (Component_Associations (N))
1709                    and then Nkind_In (Parent (N), N_Assignment_Statement,
1710                                                   N_Object_Declaration)
1711                  then
1712                     Error_Msg_N
1713                       ("(Ada 83) illegal context for OTHERS choice", N);
1714                  end if;
1715
1716               elsif Is_Entity_Name (Choice) then
1717                  Analyze (Choice);
1718
1719                  declare
1720                     E      : constant Entity_Id := Entity (Choice);
1721                     New_Cs : List_Id;
1722                     P      : Node_Id;
1723                     C      : Node_Id;
1724
1725                  begin
1726                     if Is_Type (E) and then Has_Predicates (E) then
1727                        Freeze_Before (N, E);
1728
1729                        if Has_Dynamic_Predicate_Aspect (E) then
1730                           Error_Msg_NE
1731                             ("subtype& has dynamic predicate, not allowed "
1732                              & "in aggregate choice", Choice, E);
1733
1734                        elsif not Is_OK_Static_Subtype (E) then
1735                           Error_Msg_NE
1736                             ("non-static subtype& has predicate, not allowed "
1737                              & "in aggregate choice", Choice, E);
1738                        end if;
1739
1740                        --  If the subtype has a static predicate, replace the
1741                        --  original choice with the list of individual values
1742                        --  covered by the predicate.
1743
1744                        if Present (Static_Discrete_Predicate (E)) then
1745                           Delete_Choice := True;
1746
1747                           New_Cs := New_List;
1748                           P := First (Static_Discrete_Predicate (E));
1749                           while Present (P) loop
1750                              C := New_Copy (P);
1751                              Set_Sloc (C, Sloc (Choice));
1752                              Append_To (New_Cs, C);
1753                              Next (P);
1754                           end loop;
1755
1756                           Insert_List_After (Choice, New_Cs);
1757                        end if;
1758                     end if;
1759                  end;
1760               end if;
1761
1762               Nb_Choices := Nb_Choices + 1;
1763
1764               declare
1765                  C : constant Node_Id := Choice;
1766
1767               begin
1768                  Next (Choice);
1769
1770                  if Delete_Choice then
1771                     Remove (C);
1772                     Nb_Choices := Nb_Choices - 1;
1773                     Delete_Choice := False;
1774                  end if;
1775               end;
1776            end loop;
1777
1778            Next (Assoc);
1779         end loop;
1780      end if;
1781
1782      --  At this point we know that the others choice, if present, is by
1783      --  itself and appears last in the aggregate. Check if we have mixed
1784      --  positional and discrete associations (other than the others choice).
1785
1786      if Present (Expressions (N))
1787        and then (Nb_Choices > 1
1788                   or else (Nb_Choices = 1 and then not Others_Present))
1789      then
1790         Error_Msg_N
1791           ("named association cannot follow positional association",
1792            First (Choices (First (Component_Associations (N)))));
1793         return Failure;
1794      end if;
1795
1796      --  Test for the validity of an others choice if present
1797
1798      if Others_Present and then not Others_Allowed then
1799         Error_Msg_N
1800           ("OTHERS choice not allowed here",
1801            First (Choices (First (Component_Associations (N)))));
1802         return Failure;
1803      end if;
1804
1805      --  Protect against cascaded errors
1806
1807      if Etype (Index_Typ) = Any_Type then
1808         return Failure;
1809      end if;
1810
1811      --  STEP 2: Process named components
1812
1813      if No (Expressions (N)) then
1814         if Others_Present then
1815            Case_Table_Size := Nb_Choices - 1;
1816         else
1817            Case_Table_Size := Nb_Choices;
1818         end if;
1819
1820         Step_2 : declare
1821            Low  : Node_Id;
1822            High : Node_Id;
1823            --  Denote the lowest and highest values in an aggregate choice
1824
1825            S_Low  : Node_Id := Empty;
1826            S_High : Node_Id := Empty;
1827            --  if a choice in an aggregate is a subtype indication these
1828            --  denote the lowest and highest values of the subtype
1829
1830            Table : Case_Table_Type (0 .. Case_Table_Size);
1831            --  Used to sort all the different choice values. Entry zero is
1832            --  reserved for sorting purposes.
1833
1834            Single_Choice : Boolean;
1835            --  Set to true every time there is a single discrete choice in a
1836            --  discrete association
1837
1838            Prev_Nb_Discrete_Choices : Nat;
1839            --  Used to keep track of the number of discrete choices in the
1840            --  current association.
1841
1842            Errors_Posted_On_Choices : Boolean := False;
1843            --  Keeps track of whether any choices have semantic errors
1844
1845            function Empty_Range (A : Node_Id)  return Boolean;
1846            --  If an association covers an empty range, some warnings on the
1847            --  expression of the association can be disabled.
1848
1849            -----------------
1850            -- Empty_Range --
1851            -----------------
1852
1853            function Empty_Range (A : Node_Id)  return Boolean is
1854               R : constant Node_Id := First (Choices (A));
1855            begin
1856               return No (Next (R))
1857                 and then Nkind (R) = N_Range
1858                 and then Compile_Time_Compare
1859                            (Low_Bound (R), High_Bound (R), False) = GT;
1860            end Empty_Range;
1861
1862         --  Start of processing for Step_2
1863
1864         begin
1865            --  STEP 2 (A): Check discrete choices validity
1866
1867            Assoc := First (Component_Associations (N));
1868            while Present (Assoc) loop
1869               Prev_Nb_Discrete_Choices := Nb_Discrete_Choices;
1870               Choice := First (Choices (Assoc));
1871               loop
1872                  Analyze (Choice);
1873
1874                  if Nkind (Choice) = N_Others_Choice then
1875                     Single_Choice := False;
1876                     exit;
1877
1878                  --  Test for subtype mark without constraint
1879
1880                  elsif Is_Entity_Name (Choice) and then
1881                    Is_Type (Entity (Choice))
1882                  then
1883                     if Base_Type (Entity (Choice)) /= Index_Base then
1884                        Error_Msg_N
1885                          ("invalid subtype mark in aggregate choice",
1886                           Choice);
1887                        return Failure;
1888                     end if;
1889
1890                  --  Case of subtype indication
1891
1892                  elsif Nkind (Choice) = N_Subtype_Indication then
1893                     Resolve_Discrete_Subtype_Indication (Choice, Index_Base);
1894
1895                     if Has_Dynamic_Predicate_Aspect
1896                       (Entity (Subtype_Mark (Choice)))
1897                     then
1898                        Error_Msg_NE
1899                          ("subtype& has dynamic predicate, "
1900                           & "not allowed in aggregate choice",
1901                           Choice, Entity (Subtype_Mark (Choice)));
1902                     end if;
1903
1904                     --  Does the subtype indication evaluation raise CE?
1905
1906                     Get_Index_Bounds (Subtype_Mark (Choice), S_Low, S_High);
1907                     Get_Index_Bounds (Choice, Low, High);
1908                     Check_Bounds (S_Low, S_High, Low, High);
1909
1910                  --  Case of range or expression
1911
1912                  else
1913                     Resolve (Choice, Index_Base);
1914                     Check_Unset_Reference (Choice);
1915                     Check_Non_Static_Context (Choice);
1916
1917                     --  If semantic errors were posted on the choice, then
1918                     --  record that for possible early return from later
1919                     --  processing (see handling of enumeration choices).
1920
1921                     if Error_Posted (Choice) then
1922                        Errors_Posted_On_Choices := True;
1923                     end if;
1924
1925                     --  Do not range check a choice. This check is redundant
1926                     --  since this test is already done when we check that the
1927                     --  bounds of the array aggregate are within range.
1928
1929                     Set_Do_Range_Check (Choice, False);
1930
1931                     --  In SPARK, the choice must be static
1932
1933                     if not (Is_OK_Static_Expression (Choice)
1934                              or else (Nkind (Choice) = N_Range
1935                                        and then Is_OK_Static_Range (Choice)))
1936                     then
1937                        Check_SPARK_05_Restriction
1938                          ("choice should be static", Choice);
1939                     end if;
1940                  end if;
1941
1942                  --  If we could not resolve the discrete choice stop here
1943
1944                  if Etype (Choice) = Any_Type then
1945                     return Failure;
1946
1947                  --  If the discrete choice raises CE get its original bounds
1948
1949                  elsif Nkind (Choice) = N_Raise_Constraint_Error then
1950                     Set_Raises_Constraint_Error (N);
1951                     Get_Index_Bounds (Original_Node (Choice), Low, High);
1952
1953                  --  Otherwise get its bounds as usual
1954
1955                  else
1956                     Get_Index_Bounds (Choice, Low, High);
1957                  end if;
1958
1959                  if (Dynamic_Or_Null_Range (Low, High)
1960                       or else (Nkind (Choice) = N_Subtype_Indication
1961                                 and then
1962                                   Dynamic_Or_Null_Range (S_Low, S_High)))
1963                    and then Nb_Choices /= 1
1964                  then
1965                     Error_Msg_N
1966                       ("dynamic or empty choice in aggregate "
1967                        & "must be the only choice", Choice);
1968                     return Failure;
1969                  end if;
1970
1971                  if not (All_Composite_Constraints_Static (Low)
1972                            and then All_Composite_Constraints_Static (High)
1973                            and then All_Composite_Constraints_Static (S_Low)
1974                            and then All_Composite_Constraints_Static (S_High))
1975                  then
1976                     Check_Restriction (No_Dynamic_Sized_Objects, Choice);
1977                  end if;
1978
1979                  Nb_Discrete_Choices := Nb_Discrete_Choices + 1;
1980                  Table (Nb_Discrete_Choices).Lo := Low;
1981                  Table (Nb_Discrete_Choices).Hi := High;
1982                  Table (Nb_Discrete_Choices).Choice := Choice;
1983
1984                  Next (Choice);
1985
1986                  if No (Choice) then
1987
1988                     --  Check if we have a single discrete choice and whether
1989                     --  this discrete choice specifies a single value.
1990
1991                     Single_Choice :=
1992                       (Nb_Discrete_Choices = Prev_Nb_Discrete_Choices + 1)
1993                         and then (Low = High);
1994
1995                     exit;
1996                  end if;
1997               end loop;
1998
1999               --  Ada 2005 (AI-231)
2000
2001               if Ada_Version >= Ada_2005
2002                 and then Known_Null (Expression (Assoc))
2003                 and then not Empty_Range (Assoc)
2004               then
2005                  Check_Can_Never_Be_Null (Etype (N), Expression (Assoc));
2006               end if;
2007
2008               --  Ada 2005 (AI-287): In case of default initialized component
2009               --  we delay the resolution to the expansion phase.
2010
2011               if Box_Present (Assoc) then
2012
2013                  --  Ada 2005 (AI-287): In case of default initialization of a
2014                  --  component the expander will generate calls to the
2015                  --  corresponding initialization subprogram. We need to call
2016                  --  Resolve_Aggr_Expr to check the rules about
2017                  --  dimensionality.
2018
2019                  if not Resolve_Aggr_Expr
2020                           (Assoc, Single_Elmt => Single_Choice)
2021                  then
2022                     return Failure;
2023                  end if;
2024
2025               elsif not Resolve_Aggr_Expr
2026                           (Expression (Assoc), Single_Elmt => Single_Choice)
2027               then
2028                  return Failure;
2029
2030               --  Check incorrect use of dynamically tagged expression
2031
2032               --  We differentiate here two cases because the expression may
2033               --  not be decorated. For example, the analysis and resolution
2034               --  of the expression associated with the others choice will be
2035               --  done later with the full aggregate. In such case we
2036               --  duplicate the expression tree to analyze the copy and
2037               --  perform the required check.
2038
2039               elsif not Present (Etype (Expression (Assoc))) then
2040                  declare
2041                     Save_Analysis : constant Boolean := Full_Analysis;
2042                     Expr          : constant Node_Id :=
2043                                       New_Copy_Tree (Expression (Assoc));
2044
2045                  begin
2046                     Expander_Mode_Save_And_Set (False);
2047                     Full_Analysis := False;
2048
2049                     --  Analyze the expression, making sure it is properly
2050                     --  attached to the tree before we do the analysis.
2051
2052                     Set_Parent (Expr, Parent (Expression (Assoc)));
2053                     Analyze (Expr);
2054
2055                     --  If the expression is a literal, propagate this info
2056                     --  to the expression in the association, to enable some
2057                     --  optimizations downstream.
2058
2059                     if Is_Entity_Name (Expr)
2060                       and then Present (Entity (Expr))
2061                       and then Ekind (Entity (Expr)) = E_Enumeration_Literal
2062                     then
2063                        Analyze_And_Resolve
2064                          (Expression (Assoc), Component_Typ);
2065                     end if;
2066
2067                     Full_Analysis := Save_Analysis;
2068                     Expander_Mode_Restore;
2069
2070                     if Is_Tagged_Type (Etype (Expr)) then
2071                        Check_Dynamically_Tagged_Expression
2072                          (Expr => Expr,
2073                           Typ  => Component_Type (Etype (N)),
2074                           Related_Nod => N);
2075                     end if;
2076                  end;
2077
2078               elsif Is_Tagged_Type (Etype (Expression (Assoc))) then
2079                  Check_Dynamically_Tagged_Expression
2080                    (Expr        => Expression (Assoc),
2081                     Typ         => Component_Type (Etype (N)),
2082                     Related_Nod => N);
2083               end if;
2084
2085               Next (Assoc);
2086            end loop;
2087
2088            --  If aggregate contains more than one choice then these must be
2089            --  static. Check for duplicate and missing values.
2090
2091            --  Note: there is duplicated code here wrt Check_Choice_Set in
2092            --  the body of Sem_Case, and it is possible we could just reuse
2093            --  that procedure. To be checked ???
2094
2095            if Nb_Discrete_Choices > 1 then
2096               Check_Choices : declare
2097                  Choice : Node_Id;
2098                  --  Location of choice for messages
2099
2100                  Hi_Val : Uint;
2101                  Lo_Val : Uint;
2102                  --  High end of one range and Low end of the next. Should be
2103                  --  contiguous if there is no hole in the list of values.
2104
2105                  Lo_Dup : Uint;
2106                  Hi_Dup : Uint;
2107                  --  End points of duplicated range
2108
2109                  Missing_Or_Duplicates : Boolean := False;
2110                  --  Set True if missing or duplicate choices found
2111
2112                  procedure Output_Bad_Choices (Lo, Hi : Uint; C : Node_Id);
2113                  --  Output continuation message with a representation of the
2114                  --  bounds (just Lo if Lo = Hi, else Lo .. Hi). C is the
2115                  --  choice node where the message is to be posted.
2116
2117                  ------------------------
2118                  -- Output_Bad_Choices --
2119                  ------------------------
2120
2121                  procedure Output_Bad_Choices (Lo, Hi : Uint; C : Node_Id) is
2122                  begin
2123                     --  Enumeration type case
2124
2125                     if Is_Enumeration_Type (Index_Typ) then
2126                        Error_Msg_Name_1 :=
2127                          Chars (Get_Enum_Lit_From_Pos (Index_Typ, Lo, Loc));
2128                        Error_Msg_Name_2 :=
2129                          Chars (Get_Enum_Lit_From_Pos (Index_Typ, Hi, Loc));
2130
2131                        if Lo = Hi then
2132                           Error_Msg_N ("\\  %!", C);
2133                        else
2134                           Error_Msg_N ("\\  % .. %!", C);
2135                        end if;
2136
2137                        --  Integer types case
2138
2139                     else
2140                        Error_Msg_Uint_1 := Lo;
2141                        Error_Msg_Uint_2 := Hi;
2142
2143                        if Lo = Hi then
2144                           Error_Msg_N ("\\  ^!", C);
2145                        else
2146                           Error_Msg_N ("\\  ^ .. ^!", C);
2147                        end if;
2148                     end if;
2149                  end Output_Bad_Choices;
2150
2151               --  Start of processing for Check_Choices
2152
2153               begin
2154                  Sort_Case_Table (Table);
2155
2156                  --  First we do a quick linear loop to find out if we have
2157                  --  any duplicates or missing entries (usually we have a
2158                  --  legal aggregate, so this will get us out quickly).
2159
2160                  for J in 1 .. Nb_Discrete_Choices - 1 loop
2161                     Hi_Val := Expr_Value (Table (J).Hi);
2162                     Lo_Val := Expr_Value (Table (J + 1).Lo);
2163
2164                     if Lo_Val <= Hi_Val
2165                       or else (Lo_Val > Hi_Val + 1
2166                                 and then not Others_Present)
2167                     then
2168                        Missing_Or_Duplicates := True;
2169                        exit;
2170                     end if;
2171                  end loop;
2172
2173                  --  If we have missing or duplicate entries, first fill in
2174                  --  the Highest entries to make life easier in the following
2175                  --  loops to detect bad entries.
2176
2177                  if Missing_Or_Duplicates then
2178                     Table (1).Highest := Expr_Value (Table (1).Hi);
2179
2180                     for J in 2 .. Nb_Discrete_Choices loop
2181                        Table (J).Highest :=
2182                          UI_Max
2183                            (Table (J - 1).Highest, Expr_Value (Table (J).Hi));
2184                     end loop;
2185
2186                     --  Loop through table entries to find duplicate indexes
2187
2188                     for J in 2 .. Nb_Discrete_Choices loop
2189                        Lo_Val := Expr_Value (Table (J).Lo);
2190                        Hi_Val := Expr_Value (Table (J).Hi);
2191
2192                        --  Case where we have duplicates (the lower bound of
2193                        --  this choice is less than or equal to the highest
2194                        --  high bound found so far).
2195
2196                        if Lo_Val <= Table (J - 1).Highest then
2197
2198                           --  We move backwards looking for duplicates. We can
2199                           --  abandon this loop as soon as we reach a choice
2200                           --  highest value that is less than Lo_Val.
2201
2202                           for K in reverse 1 .. J - 1 loop
2203                              exit when Table (K).Highest < Lo_Val;
2204
2205                              --  Here we may have duplicates between entries
2206                              --  for K and J. Get range of duplicates.
2207
2208                              Lo_Dup :=
2209                                UI_Max (Lo_Val, Expr_Value (Table (K).Lo));
2210                              Hi_Dup :=
2211                                UI_Min (Hi_Val, Expr_Value (Table (K).Hi));
2212
2213                              --  Nothing to do if duplicate range is null
2214
2215                              if Lo_Dup > Hi_Dup then
2216                                 null;
2217
2218                              --  Otherwise place proper message
2219
2220                              else
2221                                 --  We place message on later choice, with a
2222                                 --  line reference to the earlier choice.
2223
2224                                 if Sloc (Table (J).Choice) <
2225                                   Sloc (Table (K).Choice)
2226                                 then
2227                                    Choice := Table (K).Choice;
2228                                    Error_Msg_Sloc := Sloc (Table (J).Choice);
2229                                 else
2230                                    Choice := Table (J).Choice;
2231                                    Error_Msg_Sloc := Sloc (Table (K).Choice);
2232                                 end if;
2233
2234                                 if Lo_Dup = Hi_Dup then
2235                                    Error_Msg_N
2236                                      ("index value in array aggregate "
2237                                       & "duplicates the one given#!", Choice);
2238                                 else
2239                                    Error_Msg_N
2240                                      ("index values in array aggregate "
2241                                       & "duplicate those given#!", Choice);
2242                                 end if;
2243
2244                                 Output_Bad_Choices (Lo_Dup, Hi_Dup, Choice);
2245                              end if;
2246                           end loop;
2247                        end if;
2248                     end loop;
2249
2250                     --  Loop through entries in table to find missing indexes.
2251                     --  Not needed if others, since missing impossible.
2252
2253                     if not Others_Present then
2254                        for J in 2 .. Nb_Discrete_Choices loop
2255                           Lo_Val := Expr_Value (Table (J).Lo);
2256                           Hi_Val := Table (J - 1).Highest;
2257
2258                           if Lo_Val > Hi_Val + 1 then
2259
2260                              declare
2261                                 Error_Node : Node_Id;
2262
2263                              begin
2264                                 --  If the choice is the bound of a range in
2265                                 --  a subtype indication, it is not in the
2266                                 --  source lists for the aggregate itself, so
2267                                 --  post the error on the aggregate. Otherwise
2268                                 --  post it on choice itself.
2269
2270                                 Choice := Table (J).Choice;
2271
2272                                 if Is_List_Member (Choice) then
2273                                    Error_Node := Choice;
2274                                 else
2275                                    Error_Node := N;
2276                                 end if;
2277
2278                                 if Hi_Val + 1 = Lo_Val - 1 then
2279                                    Error_Msg_N
2280                                      ("missing index value "
2281                                       & "in array aggregate!", Error_Node);
2282                                 else
2283                                    Error_Msg_N
2284                                      ("missing index values "
2285                                       & "in array aggregate!", Error_Node);
2286                                 end if;
2287
2288                                 Output_Bad_Choices
2289                                   (Hi_Val + 1, Lo_Val - 1, Error_Node);
2290                              end;
2291                           end if;
2292                        end loop;
2293                     end if;
2294
2295                     --  If either missing or duplicate values, return failure
2296
2297                     Set_Etype (N, Any_Composite);
2298                     return Failure;
2299                  end if;
2300               end Check_Choices;
2301            end if;
2302
2303            --  STEP 2 (B): Compute aggregate bounds and min/max choices values
2304
2305            if Nb_Discrete_Choices > 0 then
2306               Choices_Low  := Table (1).Lo;
2307               Choices_High := Table (Nb_Discrete_Choices).Hi;
2308            end if;
2309
2310            --  If Others is present, then bounds of aggregate come from the
2311            --  index constraint (not the choices in the aggregate itself).
2312
2313            if Others_Present then
2314               Get_Index_Bounds (Index_Constr, Aggr_Low, Aggr_High);
2315
2316               --  Abandon processing if either bound is already signalled as
2317               --  an error (prevents junk cascaded messages and blow ups).
2318
2319               if Nkind (Aggr_Low) = N_Error
2320                    or else
2321                  Nkind (Aggr_High) = N_Error
2322               then
2323                  return False;
2324               end if;
2325
2326            --  No others clause present
2327
2328            else
2329               --  Special processing if others allowed and not present. This
2330               --  means that the bounds of the aggregate come from the index
2331               --  constraint (and the length must match).
2332
2333               if Others_Allowed then
2334                  Get_Index_Bounds (Index_Constr, Aggr_Low, Aggr_High);
2335
2336                  --  Abandon processing if either bound is already signalled
2337                  --  as an error (stop junk cascaded messages and blow ups).
2338
2339                  if Nkind (Aggr_Low) = N_Error
2340                       or else
2341                     Nkind (Aggr_High) = N_Error
2342                  then
2343                     return False;
2344                  end if;
2345
2346                  --  If others allowed, and no others present, then the array
2347                  --  should cover all index values. If it does not, we will
2348                  --  get a length check warning, but there is two cases where
2349                  --  an additional warning is useful:
2350
2351                  --  If we have no positional components, and the length is
2352                  --  wrong (which we can tell by others being allowed with
2353                  --  missing components), and the index type is an enumeration
2354                  --  type, then issue appropriate warnings about these missing
2355                  --  components. They are only warnings, since the aggregate
2356                  --  is fine, it's just the wrong length. We skip this check
2357                  --  for standard character types (since there are no literals
2358                  --  and it is too much trouble to concoct them), and also if
2359                  --  any of the bounds have values that are not known at
2360                  --  compile time.
2361
2362                  --  Another case warranting a warning is when the length
2363                  --  is right, but as above we have an index type that is
2364                  --  an enumeration, and the bounds do not match. This is a
2365                  --  case where dubious sliding is allowed and we generate a
2366                  --  warning that the bounds do not match.
2367
2368                  if No (Expressions (N))
2369                    and then Nkind (Index) = N_Range
2370                    and then Is_Enumeration_Type (Etype (Index))
2371                    and then not Is_Standard_Character_Type (Etype (Index))
2372                    and then Compile_Time_Known_Value (Aggr_Low)
2373                    and then Compile_Time_Known_Value (Aggr_High)
2374                    and then Compile_Time_Known_Value (Choices_Low)
2375                    and then Compile_Time_Known_Value (Choices_High)
2376                  then
2377                     --  If any of the expressions or range bounds in choices
2378                     --  have semantic errors, then do not attempt further
2379                     --  resolution, to prevent cascaded errors.
2380
2381                     if Errors_Posted_On_Choices then
2382                        return Failure;
2383                     end if;
2384
2385                     declare
2386                        ALo : constant Node_Id := Expr_Value_E (Aggr_Low);
2387                        AHi : constant Node_Id := Expr_Value_E (Aggr_High);
2388                        CLo : constant Node_Id := Expr_Value_E (Choices_Low);
2389                        CHi : constant Node_Id := Expr_Value_E (Choices_High);
2390
2391                        Ent : Entity_Id;
2392
2393                     begin
2394                        --  Warning case 1, missing values at start/end. Only
2395                        --  do the check if the number of entries is too small.
2396
2397                        if (Enumeration_Pos (CHi) - Enumeration_Pos (CLo))
2398                              <
2399                           (Enumeration_Pos (AHi) - Enumeration_Pos (ALo))
2400                        then
2401                           Error_Msg_N
2402                             ("missing index value(s) in array aggregate??",
2403                              N);
2404
2405                           --  Output missing value(s) at start
2406
2407                           if Chars (ALo) /= Chars (CLo) then
2408                              Ent := Prev (CLo);
2409
2410                              if Chars (ALo) = Chars (Ent) then
2411                                 Error_Msg_Name_1 := Chars (ALo);
2412                                 Error_Msg_N ("\  %??", N);
2413                              else
2414                                 Error_Msg_Name_1 := Chars (ALo);
2415                                 Error_Msg_Name_2 := Chars (Ent);
2416                                 Error_Msg_N ("\  % .. %??", N);
2417                              end if;
2418                           end if;
2419
2420                           --  Output missing value(s) at end
2421
2422                           if Chars (AHi) /= Chars (CHi) then
2423                              Ent := Next (CHi);
2424
2425                              if Chars (AHi) = Chars (Ent) then
2426                                 Error_Msg_Name_1 := Chars (Ent);
2427                                 Error_Msg_N ("\  %??", N);
2428                              else
2429                                 Error_Msg_Name_1 := Chars (Ent);
2430                                 Error_Msg_Name_2 := Chars (AHi);
2431                                 Error_Msg_N ("\  % .. %??", N);
2432                              end if;
2433                           end if;
2434
2435                        --  Warning case 2, dubious sliding. The First_Subtype
2436                        --  test distinguishes between a constrained type where
2437                        --  sliding is not allowed (so we will get a warning
2438                        --  later that Constraint_Error will be raised), and
2439                        --  the unconstrained case where sliding is permitted.
2440
2441                        elsif (Enumeration_Pos (CHi) - Enumeration_Pos (CLo))
2442                                 =
2443                              (Enumeration_Pos (AHi) - Enumeration_Pos (ALo))
2444                          and then Chars (ALo) /= Chars (CLo)
2445                          and then
2446                            not Is_Constrained (First_Subtype (Etype (N)))
2447                        then
2448                           Error_Msg_N
2449                             ("bounds of aggregate do not match target??", N);
2450                        end if;
2451                     end;
2452                  end if;
2453               end if;
2454
2455               --  If no others, aggregate bounds come from aggregate
2456
2457               Aggr_Low  := Choices_Low;
2458               Aggr_High := Choices_High;
2459            end if;
2460         end Step_2;
2461
2462      --  STEP 3: Process positional components
2463
2464      else
2465         --  STEP 3 (A): Process positional elements
2466
2467         Expr := First (Expressions (N));
2468         Nb_Elements := Uint_0;
2469         while Present (Expr) loop
2470            Nb_Elements := Nb_Elements + 1;
2471
2472            --  Ada 2005 (AI-231)
2473
2474            if Ada_Version >= Ada_2005 and then Known_Null (Expr) then
2475               Check_Can_Never_Be_Null (Etype (N), Expr);
2476            end if;
2477
2478            if not Resolve_Aggr_Expr (Expr, Single_Elmt => True) then
2479               return Failure;
2480            end if;
2481
2482            --  Check incorrect use of dynamically tagged expression
2483
2484            if Is_Tagged_Type (Etype (Expr)) then
2485               Check_Dynamically_Tagged_Expression
2486                 (Expr => Expr,
2487                  Typ  => Component_Type (Etype (N)),
2488                  Related_Nod => N);
2489            end if;
2490
2491            Next (Expr);
2492         end loop;
2493
2494         if Others_Present then
2495            Assoc := Last (Component_Associations (N));
2496
2497            --  Ada 2005 (AI-231)
2498
2499            if Ada_Version >= Ada_2005 and then Known_Null (Assoc) then
2500               Check_Can_Never_Be_Null (Etype (N), Expression (Assoc));
2501            end if;
2502
2503            --  Ada 2005 (AI-287): In case of default initialized component,
2504            --  we delay the resolution to the expansion phase.
2505
2506            if Box_Present (Assoc) then
2507
2508               --  Ada 2005 (AI-287): In case of default initialization of a
2509               --  component the expander will generate calls to the
2510               --  corresponding initialization subprogram. We need to call
2511               --  Resolve_Aggr_Expr to check the rules about
2512               --  dimensionality.
2513
2514               if not Resolve_Aggr_Expr (Assoc, Single_Elmt => False) then
2515                  return Failure;
2516               end if;
2517
2518            elsif not Resolve_Aggr_Expr (Expression (Assoc),
2519                                         Single_Elmt => False)
2520            then
2521               return Failure;
2522
2523            --  Check incorrect use of dynamically tagged expression. The
2524            --  expression of the others choice has not been resolved yet.
2525            --  In order to diagnose the semantic error we create a duplicate
2526            --  tree to analyze it and perform the check.
2527
2528            else
2529               declare
2530                  Save_Analysis : constant Boolean := Full_Analysis;
2531                  Expr          : constant Node_Id :=
2532                                    New_Copy_Tree (Expression (Assoc));
2533
2534               begin
2535                  Expander_Mode_Save_And_Set (False);
2536                  Full_Analysis := False;
2537                  Analyze (Expr);
2538                  Full_Analysis := Save_Analysis;
2539                  Expander_Mode_Restore;
2540
2541                  if Is_Tagged_Type (Etype (Expr)) then
2542                     Check_Dynamically_Tagged_Expression
2543                       (Expr        => Expr,
2544                        Typ         => Component_Type (Etype (N)),
2545                        Related_Nod => N);
2546                  end if;
2547               end;
2548            end if;
2549         end if;
2550
2551         --  STEP 3 (B): Compute the aggregate bounds
2552
2553         if Others_Present then
2554            Get_Index_Bounds (Index_Constr, Aggr_Low, Aggr_High);
2555
2556         else
2557            if Others_Allowed then
2558               Get_Index_Bounds (Index_Constr, Aggr_Low, Discard);
2559            else
2560               Aggr_Low := Index_Typ_Low;
2561            end if;
2562
2563            Aggr_High := Add (Nb_Elements - 1, To => Aggr_Low);
2564            Check_Bound (Index_Base_High, Aggr_High);
2565         end if;
2566      end if;
2567
2568      --  STEP 4: Perform static aggregate checks and save the bounds
2569
2570      --  Check (A)
2571
2572      Check_Bounds (Index_Typ_Low, Index_Typ_High, Aggr_Low, Aggr_High);
2573      Check_Bounds (Index_Base_Low, Index_Base_High, Aggr_Low, Aggr_High);
2574
2575      --  Check (B)
2576
2577      if Others_Present and then Nb_Discrete_Choices > 0 then
2578         Check_Bounds (Aggr_Low, Aggr_High, Choices_Low, Choices_High);
2579         Check_Bounds (Index_Typ_Low, Index_Typ_High,
2580                       Choices_Low, Choices_High);
2581         Check_Bounds (Index_Base_Low, Index_Base_High,
2582                       Choices_Low, Choices_High);
2583
2584      --  Check (C)
2585
2586      elsif Others_Present and then Nb_Elements > 0 then
2587         Check_Length (Aggr_Low, Aggr_High, Nb_Elements);
2588         Check_Length (Index_Typ_Low, Index_Typ_High, Nb_Elements);
2589         Check_Length (Index_Base_Low, Index_Base_High, Nb_Elements);
2590      end if;
2591
2592      if Raises_Constraint_Error (Aggr_Low)
2593        or else Raises_Constraint_Error (Aggr_High)
2594      then
2595         Set_Raises_Constraint_Error (N);
2596      end if;
2597
2598      Aggr_Low := Duplicate_Subexpr (Aggr_Low);
2599
2600      --  Do not duplicate Aggr_High if Aggr_High = Aggr_Low + Nb_Elements
2601      --  since the addition node returned by Add is not yet analyzed. Attach
2602      --  to tree and analyze first. Reset analyzed flag to ensure it will get
2603      --  analyzed when it is a literal bound whose type must be properly set.
2604
2605      if Others_Present or else Nb_Discrete_Choices > 0 then
2606         Aggr_High := Duplicate_Subexpr (Aggr_High);
2607
2608         if Etype (Aggr_High) = Universal_Integer then
2609            Set_Analyzed (Aggr_High, False);
2610         end if;
2611      end if;
2612
2613      --  If the aggregate already has bounds attached to it, it means this is
2614      --  a positional aggregate created as an optimization by
2615      --  Exp_Aggr.Convert_To_Positional, so we don't want to change those
2616      --  bounds.
2617
2618      if Present (Aggregate_Bounds (N)) and then not Others_Allowed then
2619         Aggr_Low  := Low_Bound  (Aggregate_Bounds (N));
2620         Aggr_High := High_Bound (Aggregate_Bounds (N));
2621      end if;
2622
2623      Set_Aggregate_Bounds
2624        (N, Make_Range (Loc, Low_Bound => Aggr_Low, High_Bound => Aggr_High));
2625
2626      --  The bounds may contain expressions that must be inserted upwards.
2627      --  Attach them fully to the tree. After analysis, remove side effects
2628      --  from upper bound, if still needed.
2629
2630      Set_Parent (Aggregate_Bounds (N), N);
2631      Analyze_And_Resolve (Aggregate_Bounds (N), Index_Typ);
2632      Check_Unset_Reference (Aggregate_Bounds (N));
2633
2634      if not Others_Present and then Nb_Discrete_Choices = 0 then
2635         Set_High_Bound
2636           (Aggregate_Bounds (N),
2637            Duplicate_Subexpr (High_Bound (Aggregate_Bounds (N))));
2638      end if;
2639
2640      --  Check the dimensions of each component in the array aggregate
2641
2642      Analyze_Dimension_Array_Aggregate (N, Component_Typ);
2643
2644      return Success;
2645   end Resolve_Array_Aggregate;
2646
2647   ---------------------------------
2648   -- Resolve_Extension_Aggregate --
2649   ---------------------------------
2650
2651   --  There are two cases to consider:
2652
2653   --  a) If the ancestor part is a type mark, the components needed are the
2654   --  difference between the components of the expected type and the
2655   --  components of the given type mark.
2656
2657   --  b) If the ancestor part is an expression, it must be unambiguous, and
2658   --  once we have its type we can also compute the needed components as in
2659   --  the previous case. In both cases, if the ancestor type is not the
2660   --  immediate ancestor, we have to build this ancestor recursively.
2661
2662   --  In both cases, discriminants of the ancestor type do not play a role in
2663   --  the resolution of the needed components, because inherited discriminants
2664   --  cannot be used in a type extension. As a result we can compute
2665   --  independently the list of components of the ancestor type and of the
2666   --  expected type.
2667
2668   procedure Resolve_Extension_Aggregate (N : Node_Id; Typ : Entity_Id) is
2669      A      : constant Node_Id := Ancestor_Part (N);
2670      A_Type : Entity_Id;
2671      I      : Interp_Index;
2672      It     : Interp;
2673
2674      function Valid_Limited_Ancestor (Anc : Node_Id) return Boolean;
2675      --  If the type is limited, verify that the ancestor part is a legal
2676      --  expression (aggregate or function call, including 'Input)) that does
2677      --  not require a copy, as specified in 7.5(2).
2678
2679      function Valid_Ancestor_Type return Boolean;
2680      --  Verify that the type of the ancestor part is a non-private ancestor
2681      --  of the expected type, which must be a type extension.
2682
2683      ----------------------------
2684      -- Valid_Limited_Ancestor --
2685      ----------------------------
2686
2687      function Valid_Limited_Ancestor (Anc : Node_Id) return Boolean is
2688      begin
2689         if Is_Entity_Name (Anc) and then Is_Type (Entity (Anc)) then
2690            return True;
2691
2692         --  The ancestor must be a call or an aggregate, but a call may
2693         --  have been expanded into a temporary, so check original node.
2694
2695         elsif Nkind_In (Anc, N_Aggregate,
2696                              N_Extension_Aggregate,
2697                              N_Function_Call)
2698         then
2699            return True;
2700
2701         elsif Nkind (Original_Node (Anc)) = N_Function_Call then
2702            return True;
2703
2704         elsif Nkind (Anc) = N_Attribute_Reference
2705           and then Attribute_Name (Anc) = Name_Input
2706         then
2707            return True;
2708
2709         elsif Nkind (Anc) = N_Qualified_Expression then
2710            return Valid_Limited_Ancestor (Expression (Anc));
2711
2712         else
2713            return False;
2714         end if;
2715      end Valid_Limited_Ancestor;
2716
2717      -------------------------
2718      -- Valid_Ancestor_Type --
2719      -------------------------
2720
2721      function Valid_Ancestor_Type return Boolean is
2722         Imm_Type : Entity_Id;
2723
2724      begin
2725         Imm_Type := Base_Type (Typ);
2726         while Is_Derived_Type (Imm_Type) loop
2727            if Etype (Imm_Type) = Base_Type (A_Type) then
2728               return True;
2729
2730            --  The base type of the parent type may appear as a private
2731            --  extension if it is declared as such in a parent unit of the
2732            --  current one. For consistency of the subsequent analysis use
2733            --  the partial view for the ancestor part.
2734
2735            elsif Is_Private_Type (Etype (Imm_Type))
2736              and then Present (Full_View (Etype (Imm_Type)))
2737              and then Base_Type (A_Type) = Full_View (Etype (Imm_Type))
2738            then
2739               A_Type := Etype (Imm_Type);
2740               return True;
2741
2742            --  The parent type may be a private extension. The aggregate is
2743            --  legal if the type of the aggregate is an extension of it that
2744            --  is not a private extension.
2745
2746            elsif Is_Private_Type (A_Type)
2747              and then not Is_Private_Type (Imm_Type)
2748              and then Present (Full_View (A_Type))
2749              and then Base_Type (Full_View (A_Type)) = Etype (Imm_Type)
2750            then
2751               return True;
2752
2753            else
2754               Imm_Type := Etype (Base_Type (Imm_Type));
2755            end if;
2756         end loop;
2757
2758         --  If previous loop did not find a proper ancestor, report error
2759
2760         Error_Msg_NE ("expect ancestor type of &", A, Typ);
2761         return False;
2762      end Valid_Ancestor_Type;
2763
2764   --  Start of processing for Resolve_Extension_Aggregate
2765
2766   begin
2767      --  Analyze the ancestor part and account for the case where it is a
2768      --  parameterless function call.
2769
2770      Analyze (A);
2771      Check_Parameterless_Call (A);
2772
2773      --  In SPARK, the ancestor part cannot be a type mark
2774
2775      if Is_Entity_Name (A) and then Is_Type (Entity (A)) then
2776         Check_SPARK_05_Restriction ("ancestor part cannot be a type mark", A);
2777
2778         --  AI05-0115: if the ancestor part is a subtype mark, the ancestor
2779         --  must not have unknown discriminants.
2780
2781         if Has_Unknown_Discriminants (Root_Type (Typ)) then
2782            Error_Msg_NE
2783              ("aggregate not available for type& whose ancestor "
2784                 & "has unknown discriminants", N, Typ);
2785         end if;
2786      end if;
2787
2788      if not Is_Tagged_Type (Typ) then
2789         Error_Msg_N ("type of extension aggregate must be tagged", N);
2790         return;
2791
2792      elsif Is_Limited_Type (Typ) then
2793
2794         --  Ada 2005 (AI-287): Limited aggregates are allowed
2795
2796         if Ada_Version < Ada_2005 then
2797            Error_Msg_N ("aggregate type cannot be limited", N);
2798            Explain_Limited_Type (Typ, N);
2799            return;
2800
2801         elsif Valid_Limited_Ancestor (A) then
2802            null;
2803
2804         else
2805            Error_Msg_N
2806              ("limited ancestor part must be aggregate or function call", A);
2807         end if;
2808
2809      elsif Is_Class_Wide_Type (Typ) then
2810         Error_Msg_N ("aggregate cannot be of a class-wide type", N);
2811         return;
2812      end if;
2813
2814      if Is_Entity_Name (A) and then Is_Type (Entity (A)) then
2815         A_Type := Get_Full_View (Entity (A));
2816
2817         if Valid_Ancestor_Type then
2818            Set_Entity (A, A_Type);
2819            Set_Etype  (A, A_Type);
2820
2821            Validate_Ancestor_Part (N);
2822            Resolve_Record_Aggregate (N, Typ);
2823         end if;
2824
2825      elsif Nkind (A) /= N_Aggregate then
2826         if Is_Overloaded (A) then
2827            A_Type := Any_Type;
2828
2829            Get_First_Interp (A, I, It);
2830            while Present (It.Typ) loop
2831
2832               --  Only consider limited interpretations in the Ada 2005 case
2833
2834               if Is_Tagged_Type (It.Typ)
2835                 and then (Ada_Version >= Ada_2005
2836                            or else not Is_Limited_Type (It.Typ))
2837               then
2838                  if A_Type /= Any_Type then
2839                     Error_Msg_N ("cannot resolve expression", A);
2840                     return;
2841                  else
2842                     A_Type := It.Typ;
2843                  end if;
2844               end if;
2845
2846               Get_Next_Interp (I, It);
2847            end loop;
2848
2849            if A_Type = Any_Type then
2850               if Ada_Version >= Ada_2005 then
2851                  Error_Msg_N
2852                    ("ancestor part must be of a tagged type", A);
2853               else
2854                  Error_Msg_N
2855                    ("ancestor part must be of a nonlimited tagged type", A);
2856               end if;
2857
2858               return;
2859            end if;
2860
2861         else
2862            A_Type := Etype (A);
2863         end if;
2864
2865         if Valid_Ancestor_Type then
2866            Resolve (A, A_Type);
2867            Check_Unset_Reference (A);
2868            Check_Non_Static_Context (A);
2869
2870            --  The aggregate is illegal if the ancestor expression is a call
2871            --  to a function with a limited unconstrained result, unless the
2872            --  type of the aggregate is a null extension. This restriction
2873            --  was added in AI05-67 to simplify implementation.
2874
2875            if Nkind (A) = N_Function_Call
2876              and then Is_Limited_Type (A_Type)
2877              and then not Is_Null_Extension (Typ)
2878              and then not Is_Constrained (A_Type)
2879            then
2880               Error_Msg_N
2881                 ("type of limited ancestor part must be constrained", A);
2882
2883            --  Reject the use of CPP constructors that leave objects partially
2884            --  initialized. For example:
2885
2886            --    type CPP_Root is tagged limited record ...
2887            --    pragma Import (CPP, CPP_Root);
2888
2889            --    type CPP_DT is new CPP_Root and Iface ...
2890            --    pragma Import (CPP, CPP_DT);
2891
2892            --    type Ada_DT is new CPP_DT with ...
2893
2894            --    Obj : Ada_DT := Ada_DT'(New_CPP_Root with others => <>);
2895
2896            --  Using the constructor of CPP_Root the slots of the dispatch
2897            --  table of CPP_DT cannot be set, and the secondary tag of
2898            --  CPP_DT is unknown.
2899
2900            elsif Nkind (A) = N_Function_Call
2901              and then Is_CPP_Constructor_Call (A)
2902              and then Enclosing_CPP_Parent (Typ) /= A_Type
2903            then
2904               Error_Msg_NE
2905                 ("??must use 'C'P'P constructor for type &", A,
2906                  Enclosing_CPP_Parent (Typ));
2907
2908               --  The following call is not needed if the previous warning
2909               --  is promoted to an error.
2910
2911               Resolve_Record_Aggregate (N, Typ);
2912
2913            elsif Is_Class_Wide_Type (Etype (A))
2914              and then Nkind (Original_Node (A)) = N_Function_Call
2915            then
2916               --  If the ancestor part is a dispatching call, it appears
2917               --  statically to be a legal ancestor, but it yields any member
2918               --  of the class, and it is not possible to determine whether
2919               --  it is an ancestor of the extension aggregate (much less
2920               --  which ancestor). It is not possible to determine the
2921               --  components of the extension part.
2922
2923               --  This check implements AI-306, which in fact was motivated by
2924               --  an AdaCore query to the ARG after this test was added.
2925
2926               Error_Msg_N ("ancestor part must be statically tagged", A);
2927            else
2928               Resolve_Record_Aggregate (N, Typ);
2929            end if;
2930         end if;
2931
2932      else
2933         Error_Msg_N ("no unique type for this aggregate",  A);
2934      end if;
2935
2936      Check_Function_Writable_Actuals (N);
2937   end Resolve_Extension_Aggregate;
2938
2939   ------------------------------
2940   -- Resolve_Record_Aggregate --
2941   ------------------------------
2942
2943   procedure Resolve_Record_Aggregate (N : Node_Id; Typ : Entity_Id) is
2944      Assoc : Node_Id;
2945      --  N_Component_Association node belonging to the input aggregate N
2946
2947      Expr            : Node_Id;
2948      Positional_Expr : Node_Id;
2949      Component       : Entity_Id;
2950      Component_Elmt  : Elmt_Id;
2951
2952      Components : constant Elist_Id := New_Elmt_List;
2953      --  Components is the list of the record components whose value must be
2954      --  provided in the aggregate. This list does include discriminants.
2955
2956      New_Assoc_List : constant List_Id := New_List;
2957      New_Assoc      : Node_Id;
2958      --  New_Assoc_List is the newly built list of N_Component_Association
2959      --  nodes. New_Assoc is one such N_Component_Association node in it.
2960      --  Note that while Assoc and New_Assoc contain the same kind of nodes,
2961      --  they are used to iterate over two different N_Component_Association
2962      --  lists.
2963
2964      Others_Etype : Entity_Id := Empty;
2965      --  This variable is used to save the Etype of the last record component
2966      --  that takes its value from the others choice. Its purpose is:
2967      --
2968      --    (a) make sure the others choice is useful
2969      --
2970      --    (b) make sure the type of all the components whose value is
2971      --        subsumed by the others choice are the same.
2972      --
2973      --  This variable is updated as a side effect of function Get_Value.
2974
2975      Is_Box_Present : Boolean := False;
2976      Others_Box     : Boolean := False;
2977      --  Ada 2005 (AI-287): Variables used in case of default initialization
2978      --  to provide a functionality similar to Others_Etype. Box_Present
2979      --  indicates that the component takes its default initialization;
2980      --  Others_Box indicates that at least one component takes its default
2981      --  initialization. Similar to Others_Etype, they are also updated as a
2982      --  side effect of function Get_Value.
2983
2984      procedure Add_Association
2985        (Component      : Entity_Id;
2986         Expr           : Node_Id;
2987         Assoc_List     : List_Id;
2988         Is_Box_Present : Boolean := False);
2989      --  Builds a new N_Component_Association node which associates Component
2990      --  to expression Expr and adds it to the association list being built,
2991      --  either New_Assoc_List, or the association being built for an inner
2992      --  aggregate.
2993
2994      function Discr_Present (Discr : Entity_Id) return Boolean;
2995      --  If aggregate N is a regular aggregate this routine will return True.
2996      --  Otherwise, if N is an extension aggregate, Discr is a discriminant
2997      --  whose value may already have been specified by N's ancestor part.
2998      --  This routine checks whether this is indeed the case and if so returns
2999      --  False, signaling that no value for Discr should appear in N's
3000      --  aggregate part. Also, in this case, the routine appends to
3001      --  New_Assoc_List the discriminant value specified in the ancestor part.
3002      --
3003      --  If the aggregate is in a context with expansion delayed, it will be
3004      --  reanalyzed. The inherited discriminant values must not be reinserted
3005      --  in the component list to prevent spurious errors, but they must be
3006      --  present on first analysis to build the proper subtype indications.
3007      --  The flag Inherited_Discriminant is used to prevent the re-insertion.
3008
3009      function Get_Value
3010        (Compon                 : Node_Id;
3011         From                   : List_Id;
3012         Consider_Others_Choice : Boolean := False)
3013         return                   Node_Id;
3014      --  Given a record component stored in parameter Compon, this function
3015      --  returns its value as it appears in the list From, which is a list
3016      --  of N_Component_Association nodes.
3017      --
3018      --  If no component association has a choice for the searched component,
3019      --  the value provided by the others choice is returned, if there is one,
3020      --  and Consider_Others_Choice is set to true. Otherwise Empty is
3021      --  returned. If there is more than one component association giving a
3022      --  value for the searched record component, an error message is emitted
3023      --  and the first found value is returned.
3024      --
3025      --  If Consider_Others_Choice is set and the returned expression comes
3026      --  from the others choice, then Others_Etype is set as a side effect.
3027      --  An error message is emitted if the components taking their value from
3028      --  the others choice do not have same type.
3029
3030      function New_Copy_Tree_And_Copy_Dimensions
3031        (Source    : Node_Id;
3032         Map       : Elist_Id   := No_Elist;
3033         New_Sloc  : Source_Ptr := No_Location;
3034         New_Scope : Entity_Id  := Empty) return Node_Id;
3035      --  Same as New_Copy_Tree (defined in Sem_Util), except that this routine
3036      --  also copies the dimensions of Source to the returned node.
3037
3038      procedure Resolve_Aggr_Expr (Expr : Node_Id; Component : Node_Id);
3039      --  Analyzes and resolves expression Expr against the Etype of the
3040      --  Component. This routine also applies all appropriate checks to Expr.
3041      --  It finally saves a Expr in the newly created association list that
3042      --  will be attached to the final record aggregate. Note that if the
3043      --  Parent pointer of Expr is not set then Expr was produced with a
3044      --  New_Copy_Tree or some such.
3045
3046      ---------------------
3047      -- Add_Association --
3048      ---------------------
3049
3050      procedure Add_Association
3051        (Component      : Entity_Id;
3052         Expr           : Node_Id;
3053         Assoc_List     : List_Id;
3054         Is_Box_Present : Boolean := False)
3055      is
3056         Loc : Source_Ptr;
3057         Choice_List : constant List_Id := New_List;
3058         New_Assoc   : Node_Id;
3059
3060      begin
3061         --  If this is a box association the expression is missing, so
3062         --  use the Sloc of the aggregate itself for the new association.
3063
3064         if Present (Expr) then
3065            Loc := Sloc (Expr);
3066         else
3067            Loc := Sloc (N);
3068         end if;
3069
3070         Append (New_Occurrence_Of (Component, Loc), Choice_List);
3071         New_Assoc :=
3072           Make_Component_Association (Loc,
3073             Choices     => Choice_List,
3074             Expression  => Expr,
3075             Box_Present => Is_Box_Present);
3076         Append (New_Assoc, Assoc_List);
3077      end Add_Association;
3078
3079      -------------------
3080      -- Discr_Present --
3081      -------------------
3082
3083      function Discr_Present (Discr : Entity_Id) return Boolean is
3084         Regular_Aggr : constant Boolean := Nkind (N) /= N_Extension_Aggregate;
3085
3086         Loc : Source_Ptr;
3087
3088         Ancestor     : Node_Id;
3089         Comp_Assoc   : Node_Id;
3090         Discr_Expr   : Node_Id;
3091
3092         Ancestor_Typ : Entity_Id;
3093         Orig_Discr   : Entity_Id;
3094         D            : Entity_Id;
3095         D_Val        : Elmt_Id := No_Elmt; -- stop junk warning
3096
3097         Ancestor_Is_Subtyp : Boolean;
3098
3099      begin
3100         if Regular_Aggr then
3101            return True;
3102         end if;
3103
3104         --  Check whether inherited discriminant values have already been
3105         --  inserted in the aggregate. This will be the case if we are
3106         --  re-analyzing an aggregate whose expansion was delayed.
3107
3108         if Present (Component_Associations (N)) then
3109            Comp_Assoc := First (Component_Associations (N));
3110            while Present (Comp_Assoc) loop
3111               if Inherited_Discriminant (Comp_Assoc) then
3112                  return True;
3113               end if;
3114
3115               Next (Comp_Assoc);
3116            end loop;
3117         end if;
3118
3119         Ancestor     := Ancestor_Part (N);
3120         Ancestor_Typ := Etype (Ancestor);
3121         Loc          := Sloc (Ancestor);
3122
3123         --  For a private type with unknown discriminants, use the underlying
3124         --  record view if it is available.
3125
3126         if Has_Unknown_Discriminants (Ancestor_Typ)
3127           and then Present (Full_View (Ancestor_Typ))
3128           and then Present (Underlying_Record_View (Full_View (Ancestor_Typ)))
3129         then
3130            Ancestor_Typ := Underlying_Record_View (Full_View (Ancestor_Typ));
3131         end if;
3132
3133         Ancestor_Is_Subtyp :=
3134           Is_Entity_Name (Ancestor) and then Is_Type (Entity (Ancestor));
3135
3136         --  If the ancestor part has no discriminants clearly N's aggregate
3137         --  part must provide a value for Discr.
3138
3139         if not Has_Discriminants (Ancestor_Typ) then
3140            return True;
3141
3142         --  If the ancestor part is an unconstrained subtype mark then the
3143         --  Discr must be present in N's aggregate part.
3144
3145         elsif Ancestor_Is_Subtyp
3146           and then not Is_Constrained (Entity (Ancestor))
3147         then
3148            return True;
3149         end if;
3150
3151         --  Now look to see if Discr was specified in the ancestor part
3152
3153         if Ancestor_Is_Subtyp then
3154            D_Val := First_Elmt (Discriminant_Constraint (Entity (Ancestor)));
3155         end if;
3156
3157         Orig_Discr := Original_Record_Component (Discr);
3158
3159         D := First_Discriminant (Ancestor_Typ);
3160         while Present (D) loop
3161
3162            --  If Ancestor has already specified Disc value then insert its
3163            --  value in the final aggregate.
3164
3165            if Original_Record_Component (D) = Orig_Discr then
3166               if Ancestor_Is_Subtyp then
3167                  Discr_Expr := New_Copy_Tree (Node (D_Val));
3168               else
3169                  Discr_Expr :=
3170                    Make_Selected_Component (Loc,
3171                      Prefix        => Duplicate_Subexpr (Ancestor),
3172                      Selector_Name => New_Occurrence_Of (Discr, Loc));
3173               end if;
3174
3175               Resolve_Aggr_Expr (Discr_Expr, Discr);
3176               Set_Inherited_Discriminant (Last (New_Assoc_List));
3177               return False;
3178            end if;
3179
3180            Next_Discriminant (D);
3181
3182            if Ancestor_Is_Subtyp then
3183               Next_Elmt (D_Val);
3184            end if;
3185         end loop;
3186
3187         return True;
3188      end Discr_Present;
3189
3190      ---------------
3191      -- Get_Value --
3192      ---------------
3193
3194      function Get_Value
3195        (Compon                 : Node_Id;
3196         From                   : List_Id;
3197         Consider_Others_Choice : Boolean := False)
3198         return                   Node_Id
3199      is
3200         Typ           : constant Entity_Id := Etype (Compon);
3201         Assoc         : Node_Id;
3202         Expr          : Node_Id := Empty;
3203         Selector_Name : Node_Id;
3204
3205      begin
3206         Is_Box_Present := False;
3207
3208         if No (From) then
3209            return Empty;
3210         end if;
3211
3212         Assoc := First (From);
3213         while Present (Assoc) loop
3214            Selector_Name := First (Choices (Assoc));
3215            while Present (Selector_Name) loop
3216               if Nkind (Selector_Name) = N_Others_Choice then
3217                  if Consider_Others_Choice and then No (Expr) then
3218
3219                     --  We need to duplicate the expression for each
3220                     --  successive component covered by the others choice.
3221                     --  This is redundant if the others_choice covers only
3222                     --  one component (small optimization possible???), but
3223                     --  indispensable otherwise, because each one must be
3224                     --  expanded individually to preserve side-effects.
3225
3226                     --  Ada 2005 (AI-287): In case of default initialization
3227                     --  of components, we duplicate the corresponding default
3228                     --  expression (from the record type declaration). The
3229                     --  copy must carry the sloc of the association (not the
3230                     --  original expression) to prevent spurious elaboration
3231                     --  checks when the default includes function calls.
3232
3233                     if Box_Present (Assoc) then
3234                        Others_Box     := True;
3235                        Is_Box_Present := True;
3236
3237                        if Expander_Active then
3238                           return
3239                             New_Copy_Tree_And_Copy_Dimensions
3240                               (Expression (Parent (Compon)),
3241                                New_Sloc => Sloc (Assoc));
3242                        else
3243                           return Expression (Parent (Compon));
3244                        end if;
3245
3246                     else
3247                        if Present (Others_Etype)
3248                          and then Base_Type (Others_Etype) /= Base_Type (Typ)
3249                        then
3250                           --  If the components are of an anonymous access
3251                           --  type they are distinct, but this is legal in
3252                           --  Ada 2012 as long as designated types match.
3253
3254                           if (Ekind (Typ) = E_Anonymous_Access_Type
3255                                or else Ekind (Typ) =
3256                                            E_Anonymous_Access_Subprogram_Type)
3257                             and then Designated_Type (Typ) =
3258                                            Designated_Type (Others_Etype)
3259                           then
3260                              null;
3261                           else
3262                              Error_Msg_N
3263                                ("components in OTHERS choice must "
3264                                 & "have same type", Selector_Name);
3265                           end if;
3266                        end if;
3267
3268                        Others_Etype := Typ;
3269
3270                        --  Copy expression so that it is resolved
3271                        --  independently for each component, This is needed
3272                        --  for accessibility checks on compoents of anonymous
3273                        --  access types, even in compile_only mode.
3274
3275                        if not Inside_A_Generic then
3276
3277                           --  In ASIS mode, preanalyze the expression in an
3278                           --  others association before making copies for
3279                           --  separate resolution and accessibility checks.
3280                           --  This ensures that the type of the expression is
3281                           --  available to ASIS in all cases, in particular if
3282                           --  the expression is itself an aggregate.
3283
3284                           if ASIS_Mode then
3285                              Preanalyze_And_Resolve (Expression (Assoc), Typ);
3286                           end if;
3287
3288                           return
3289                             New_Copy_Tree_And_Copy_Dimensions
3290                               (Expression (Assoc));
3291
3292                        else
3293                           return Expression (Assoc);
3294                        end if;
3295                     end if;
3296                  end if;
3297
3298               elsif Chars (Compon) = Chars (Selector_Name) then
3299                  if No (Expr) then
3300
3301                     --  Ada 2005 (AI-231)
3302
3303                     if Ada_Version >= Ada_2005
3304                       and then Known_Null (Expression (Assoc))
3305                     then
3306                        Check_Can_Never_Be_Null (Compon, Expression (Assoc));
3307                     end if;
3308
3309                     --  We need to duplicate the expression when several
3310                     --  components are grouped together with a "|" choice.
3311                     --  For instance "filed1 | filed2 => Expr"
3312
3313                     --  Ada 2005 (AI-287)
3314
3315                     if Box_Present (Assoc) then
3316                        Is_Box_Present := True;
3317
3318                        --  Duplicate the default expression of the component
3319                        --  from the record type declaration, so a new copy
3320                        --  can be attached to the association.
3321
3322                        --  Note that we always copy the default expression,
3323                        --  even when the association has a single choice, in
3324                        --  order to create a proper association for the
3325                        --  expanded aggregate.
3326
3327                        --  Component may have no default, in which case the
3328                        --  expression is empty and the component is default-
3329                        --  initialized, but an association for the component
3330                        --  exists, and it is not covered by an others clause.
3331
3332                        --  Scalar and private types have no initialization
3333                        --  procedure, so they remain uninitialized. If the
3334                        --  target of the aggregate is a constant this
3335                        --  deserves a warning.
3336
3337                        if No (Expression (Parent (Compon)))
3338                          and then not Has_Non_Null_Base_Init_Proc (Typ)
3339                          and then not Has_Aspect (Typ, Aspect_Default_Value)
3340                          and then not Is_Concurrent_Type (Typ)
3341                          and then Nkind (Parent (N)) = N_Object_Declaration
3342                          and then Constant_Present (Parent (N))
3343                        then
3344                           Error_Msg_Node_2 := Typ;
3345                           Error_Msg_NE
3346                             ("component&? of type& is uninitialized",
3347                              Assoc, Selector_Name);
3348
3349                           --  An additional reminder if the component type
3350                           --  is a generic formal.
3351
3352                           if Is_Generic_Type (Base_Type (Typ)) then
3353                              Error_Msg_NE
3354                                ("\instance should provide actual type with "
3355                                 & "initialization for&", Assoc, Typ);
3356                           end if;
3357                        end if;
3358
3359                        return
3360                          New_Copy_Tree_And_Copy_Dimensions
3361                            (Expression (Parent (Compon)));
3362
3363                     else
3364                        if Present (Next (Selector_Name)) then
3365                           Expr := New_Copy_Tree_And_Copy_Dimensions
3366                                     (Expression (Assoc));
3367                        else
3368                           Expr := Expression (Assoc);
3369                        end if;
3370                     end if;
3371
3372                     Generate_Reference (Compon, Selector_Name, 'm');
3373
3374                  else
3375                     Error_Msg_NE
3376                       ("more than one value supplied for &",
3377                        Selector_Name, Compon);
3378
3379                  end if;
3380               end if;
3381
3382               Next (Selector_Name);
3383            end loop;
3384
3385            Next (Assoc);
3386         end loop;
3387
3388         return Expr;
3389      end Get_Value;
3390
3391      ---------------------------------------
3392      -- New_Copy_Tree_And_Copy_Dimensions --
3393      ---------------------------------------
3394
3395      function New_Copy_Tree_And_Copy_Dimensions
3396        (Source    : Node_Id;
3397         Map       : Elist_Id   := No_Elist;
3398         New_Sloc  : Source_Ptr := No_Location;
3399         New_Scope : Entity_Id  := Empty) return Node_Id
3400      is
3401         New_Copy : constant Node_Id :=
3402                      New_Copy_Tree (Source, Map, New_Sloc, New_Scope);
3403
3404      begin
3405         --  Move the dimensions of Source to New_Copy
3406
3407         Copy_Dimensions (Source, New_Copy);
3408         return New_Copy;
3409      end New_Copy_Tree_And_Copy_Dimensions;
3410
3411      -----------------------
3412      -- Resolve_Aggr_Expr --
3413      -----------------------
3414
3415      procedure Resolve_Aggr_Expr (Expr : Node_Id; Component : Node_Id) is
3416         Expr_Type : Entity_Id := Empty;
3417         New_C     : Entity_Id := Component;
3418         New_Expr  : Node_Id;
3419
3420         function Has_Expansion_Delayed (Expr : Node_Id) return Boolean;
3421         --  If the expression is an aggregate (possibly qualified) then its
3422         --  expansion is delayed until the enclosing aggregate is expanded
3423         --  into assignments. In that case, do not generate checks on the
3424         --  expression, because they will be generated later, and will other-
3425         --  wise force a copy (to remove side-effects) that would leave a
3426         --  dynamic-sized aggregate in the code, something that gigi cannot
3427         --  handle.
3428
3429         Relocate : Boolean;
3430         --  Set to True if the resolved Expr node needs to be relocated when
3431         --  attached to the newly created association list. This node need not
3432         --  be relocated if its parent pointer is not set. In fact in this
3433         --  case Expr is the output of a New_Copy_Tree call. If Relocate is
3434         --  True then we have analyzed the expression node in the original
3435         --  aggregate and hence it needs to be relocated when moved over to
3436         --  the new association list.
3437
3438         ---------------------------
3439         -- Has_Expansion_Delayed --
3440         ---------------------------
3441
3442         function Has_Expansion_Delayed (Expr : Node_Id) return Boolean is
3443            Kind : constant Node_Kind := Nkind (Expr);
3444         begin
3445            return (Nkind_In (Kind, N_Aggregate, N_Extension_Aggregate)
3446                     and then Present (Etype (Expr))
3447                     and then Is_Record_Type (Etype (Expr))
3448                     and then Expansion_Delayed (Expr))
3449              or else (Kind = N_Qualified_Expression
3450                        and then Has_Expansion_Delayed (Expression (Expr)));
3451         end Has_Expansion_Delayed;
3452
3453      --  Start of processing for Resolve_Aggr_Expr
3454
3455      begin
3456         --  If the type of the component is elementary or the type of the
3457         --  aggregate does not contain discriminants, use the type of the
3458         --  component to resolve Expr.
3459
3460         if Is_Elementary_Type (Etype (Component))
3461           or else not Has_Discriminants (Etype (N))
3462         then
3463            Expr_Type := Etype (Component);
3464
3465         --  Otherwise we have to pick up the new type of the component from
3466         --  the new constrained subtype of the aggregate. In fact components
3467         --  which are of a composite type might be constrained by a
3468         --  discriminant, and we want to resolve Expr against the subtype were
3469         --  all discriminant occurrences are replaced with their actual value.
3470
3471         else
3472            New_C := First_Component (Etype (N));
3473            while Present (New_C) loop
3474               if Chars (New_C) = Chars (Component) then
3475                  Expr_Type := Etype (New_C);
3476                  exit;
3477               end if;
3478
3479               Next_Component (New_C);
3480            end loop;
3481
3482            pragma Assert (Present (Expr_Type));
3483
3484            --  For each range in an array type where a discriminant has been
3485            --  replaced with the constraint, check that this range is within
3486            --  the range of the base type. This checks is done in the init
3487            --  proc for regular objects, but has to be done here for
3488            --  aggregates since no init proc is called for them.
3489
3490            if Is_Array_Type (Expr_Type) then
3491               declare
3492                  Index : Node_Id;
3493                  --  Range of the current constrained index in the array
3494
3495                  Orig_Index : Node_Id := First_Index (Etype (Component));
3496                  --  Range corresponding to the range Index above in the
3497                  --  original unconstrained record type. The bounds of this
3498                  --  range may be governed by discriminants.
3499
3500                  Unconstr_Index : Node_Id := First_Index (Etype (Expr_Type));
3501                  --  Range corresponding to the range Index above for the
3502                  --  unconstrained array type. This range is needed to apply
3503                  --  range checks.
3504
3505               begin
3506                  Index := First_Index (Expr_Type);
3507                  while Present (Index) loop
3508                     if Depends_On_Discriminant (Orig_Index) then
3509                        Apply_Range_Check (Index, Etype (Unconstr_Index));
3510                     end if;
3511
3512                     Next_Index (Index);
3513                     Next_Index (Orig_Index);
3514                     Next_Index (Unconstr_Index);
3515                  end loop;
3516               end;
3517            end if;
3518         end if;
3519
3520         --  If the Parent pointer of Expr is not set, Expr is an expression
3521         --  duplicated by New_Tree_Copy (this happens for record aggregates
3522         --  that look like (Field1 | Filed2 => Expr) or (others => Expr)).
3523         --  Such a duplicated expression must be attached to the tree
3524         --  before analysis and resolution to enforce the rule that a tree
3525         --  fragment should never be analyzed or resolved unless it is
3526         --  attached to the current compilation unit.
3527
3528         if No (Parent (Expr)) then
3529            Set_Parent (Expr, N);
3530            Relocate := False;
3531         else
3532            Relocate := True;
3533         end if;
3534
3535         Analyze_And_Resolve (Expr, Expr_Type);
3536         Check_Expr_OK_In_Limited_Aggregate (Expr);
3537         Check_Non_Static_Context (Expr);
3538         Check_Unset_Reference (Expr);
3539
3540         --  Check wrong use of class-wide types
3541
3542         if Is_Class_Wide_Type (Etype (Expr)) then
3543            Error_Msg_N ("dynamically tagged expression not allowed", Expr);
3544         end if;
3545
3546         if not Has_Expansion_Delayed (Expr) then
3547            Aggregate_Constraint_Checks (Expr, Expr_Type);
3548         end if;
3549
3550         --  If an aggregate component has a type with predicates, an explicit
3551         --  predicate check must be applied, as for an assignment statement,
3552         --  because the aggegate might not be expanded into individual
3553         --  component assignments.
3554
3555         if Present (Predicate_Function (Expr_Type)) then
3556            Apply_Predicate_Check (Expr, Expr_Type);
3557         end if;
3558
3559         if Raises_Constraint_Error (Expr) then
3560            Set_Raises_Constraint_Error (N);
3561         end if;
3562
3563         --  If the expression has been marked as requiring a range check, then
3564         --  generate it here. It's a bit odd to be generating such checks in
3565         --  the analyzer, but harmless since Generate_Range_Check does nothing
3566         --  (other than making sure Do_Range_Check is set) if the expander is
3567         --  not active.
3568
3569         if Do_Range_Check (Expr) then
3570            Generate_Range_Check (Expr, Expr_Type, CE_Range_Check_Failed);
3571         end if;
3572
3573         if Relocate then
3574            New_Expr := Relocate_Node (Expr);
3575
3576            --  Since New_Expr is not gonna be analyzed later on, we need to
3577            --  propagate here the dimensions form Expr to New_Expr.
3578
3579            Copy_Dimensions (Expr, New_Expr);
3580
3581         else
3582            New_Expr := Expr;
3583         end if;
3584
3585         Add_Association (New_C, New_Expr, New_Assoc_List);
3586      end Resolve_Aggr_Expr;
3587
3588   --  Start of processing for Resolve_Record_Aggregate
3589
3590   begin
3591      --  A record aggregate is restricted in SPARK:
3592
3593      --    Each named association can have only a single choice.
3594      --    OTHERS cannot be used.
3595      --    Positional and named associations cannot be mixed.
3596
3597      if Present (Component_Associations (N))
3598        and then Present (First (Component_Associations (N)))
3599      then
3600
3601         if Present (Expressions (N)) then
3602            Check_SPARK_05_Restriction
3603              ("named association cannot follow positional one",
3604               First (Choices (First (Component_Associations (N)))));
3605         end if;
3606
3607         declare
3608            Assoc : Node_Id;
3609
3610         begin
3611            Assoc := First (Component_Associations (N));
3612            while Present (Assoc) loop
3613               if List_Length (Choices (Assoc)) > 1 then
3614                  Check_SPARK_05_Restriction
3615                    ("component association in record aggregate must "
3616                     & "contain a single choice", Assoc);
3617               end if;
3618
3619               if Nkind (First (Choices (Assoc))) = N_Others_Choice then
3620                  Check_SPARK_05_Restriction
3621                    ("record aggregate cannot contain OTHERS", Assoc);
3622               end if;
3623
3624               Assoc := Next (Assoc);
3625            end loop;
3626         end;
3627      end if;
3628
3629      --  We may end up calling Duplicate_Subexpr on expressions that are
3630      --  attached to New_Assoc_List. For this reason we need to attach it
3631      --  to the tree by setting its parent pointer to N. This parent point
3632      --  will change in STEP 8 below.
3633
3634      Set_Parent (New_Assoc_List, N);
3635
3636      --  STEP 1: abstract type and null record verification
3637
3638      if Is_Abstract_Type (Typ) then
3639         Error_Msg_N ("type of aggregate cannot be abstract",  N);
3640      end if;
3641
3642      if No (First_Entity (Typ)) and then Null_Record_Present (N) then
3643         Set_Etype (N, Typ);
3644         return;
3645
3646      elsif Present (First_Entity (Typ))
3647        and then Null_Record_Present (N)
3648        and then not Is_Tagged_Type (Typ)
3649      then
3650         Error_Msg_N ("record aggregate cannot be null", N);
3651         return;
3652
3653      --  If the type has no components, then the aggregate should either
3654      --  have "null record", or in Ada 2005 it could instead have a single
3655      --  component association given by "others => <>". For Ada 95 we flag an
3656      --  error at this point, but for Ada 2005 we proceed with checking the
3657      --  associations below, which will catch the case where it's not an
3658      --  aggregate with "others => <>". Note that the legality of a <>
3659      --  aggregate for a null record type was established by AI05-016.
3660
3661      elsif No (First_Entity (Typ))
3662         and then Ada_Version < Ada_2005
3663      then
3664         Error_Msg_N ("record aggregate must be null", N);
3665         return;
3666      end if;
3667
3668      --  STEP 2: Verify aggregate structure
3669
3670      Step_2 : declare
3671         Selector_Name : Node_Id;
3672         Bad_Aggregate : Boolean := False;
3673
3674      begin
3675         if Present (Component_Associations (N)) then
3676            Assoc := First (Component_Associations (N));
3677         else
3678            Assoc := Empty;
3679         end if;
3680
3681         while Present (Assoc) loop
3682            Selector_Name := First (Choices (Assoc));
3683            while Present (Selector_Name) loop
3684               if Nkind (Selector_Name) = N_Identifier then
3685                  null;
3686
3687               elsif Nkind (Selector_Name) = N_Others_Choice then
3688                  if Selector_Name /= First (Choices (Assoc))
3689                    or else Present (Next (Selector_Name))
3690                  then
3691                     Error_Msg_N
3692                       ("OTHERS must appear alone in a choice list",
3693                        Selector_Name);
3694                     return;
3695
3696                  elsif Present (Next (Assoc)) then
3697                     Error_Msg_N
3698                       ("OTHERS must appear last in an aggregate",
3699                        Selector_Name);
3700                     return;
3701
3702                  --  (Ada 2005): If this is an association with a box,
3703                  --  indicate that the association need not represent
3704                  --  any component.
3705
3706                  elsif Box_Present (Assoc) then
3707                     Others_Box := True;
3708                  end if;
3709
3710               else
3711                  Error_Msg_N
3712                    ("selector name should be identifier or OTHERS",
3713                     Selector_Name);
3714                  Bad_Aggregate := True;
3715               end if;
3716
3717               Next (Selector_Name);
3718            end loop;
3719
3720            Next (Assoc);
3721         end loop;
3722
3723         if Bad_Aggregate then
3724            return;
3725         end if;
3726      end Step_2;
3727
3728      --  STEP 3: Find discriminant Values
3729
3730      Step_3 : declare
3731         Discrim               : Entity_Id;
3732         Missing_Discriminants : Boolean := False;
3733
3734      begin
3735         if Present (Expressions (N)) then
3736            Positional_Expr := First (Expressions (N));
3737         else
3738            Positional_Expr := Empty;
3739         end if;
3740
3741         --  AI05-0115: if the ancestor part is a subtype mark, the ancestor
3742         --  must not have unknown discriminants.
3743
3744         if Is_Derived_Type (Typ)
3745           and then Has_Unknown_Discriminants (Root_Type (Typ))
3746           and then Nkind (N) /= N_Extension_Aggregate
3747         then
3748            Error_Msg_NE
3749              ("aggregate not available for type& whose ancestor "
3750               & "has unknown discriminants ", N, Typ);
3751         end if;
3752
3753         if Has_Unknown_Discriminants (Typ)
3754           and then Present (Underlying_Record_View (Typ))
3755         then
3756            Discrim := First_Discriminant (Underlying_Record_View (Typ));
3757         elsif Has_Discriminants (Typ) then
3758            Discrim := First_Discriminant (Typ);
3759         else
3760            Discrim := Empty;
3761         end if;
3762
3763         --  First find the discriminant values in the positional components
3764
3765         while Present (Discrim) and then Present (Positional_Expr) loop
3766            if Discr_Present (Discrim) then
3767               Resolve_Aggr_Expr (Positional_Expr, Discrim);
3768
3769               --  Ada 2005 (AI-231)
3770
3771               if Ada_Version >= Ada_2005
3772                 and then Known_Null (Positional_Expr)
3773               then
3774                  Check_Can_Never_Be_Null (Discrim, Positional_Expr);
3775               end if;
3776
3777               Next (Positional_Expr);
3778            end if;
3779
3780            if Present (Get_Value (Discrim, Component_Associations (N))) then
3781               Error_Msg_NE
3782                 ("more than one value supplied for discriminant&",
3783                  N, Discrim);
3784            end if;
3785
3786            Next_Discriminant (Discrim);
3787         end loop;
3788
3789         --  Find remaining discriminant values if any among named components
3790
3791         while Present (Discrim) loop
3792            Expr := Get_Value (Discrim, Component_Associations (N), True);
3793
3794            if not Discr_Present (Discrim) then
3795               if Present (Expr) then
3796                  Error_Msg_NE
3797                    ("more than one value supplied for discriminant &",
3798                     N, Discrim);
3799               end if;
3800
3801            elsif No (Expr) then
3802               Error_Msg_NE
3803                 ("no value supplied for discriminant &", N, Discrim);
3804               Missing_Discriminants := True;
3805
3806            else
3807               Resolve_Aggr_Expr (Expr, Discrim);
3808            end if;
3809
3810            Next_Discriminant (Discrim);
3811         end loop;
3812
3813         if Missing_Discriminants then
3814            return;
3815         end if;
3816
3817         --  At this point and until the beginning of STEP 6, New_Assoc_List
3818         --  contains only the discriminants and their values.
3819
3820      end Step_3;
3821
3822      --  STEP 4: Set the Etype of the record aggregate
3823
3824      --  ??? This code is pretty much a copy of Sem_Ch3.Build_Subtype. That
3825      --  routine should really be exported in sem_util or some such and used
3826      --  in sem_ch3 and here rather than have a copy of the code which is a
3827      --  maintenance nightmare.
3828
3829      --  ??? Performance WARNING. The current implementation creates a new
3830      --  itype for all aggregates whose base type is discriminated. This means
3831      --  that for record aggregates nested inside an array aggregate we will
3832      --  create a new itype for each record aggregate if the array component
3833      --  type has discriminants. For large aggregates this may be a problem.
3834      --  What should be done in this case is to reuse itypes as much as
3835      --  possible.
3836
3837      if Has_Discriminants (Typ)
3838        or else (Has_Unknown_Discriminants (Typ)
3839                  and then Present (Underlying_Record_View (Typ)))
3840      then
3841         Build_Constrained_Itype : declare
3842            Loc         : constant Source_Ptr := Sloc (N);
3843            Indic       : Node_Id;
3844            Subtyp_Decl : Node_Id;
3845            Def_Id      : Entity_Id;
3846
3847            C : constant List_Id := New_List;
3848
3849         begin
3850            New_Assoc := First (New_Assoc_List);
3851            while Present (New_Assoc) loop
3852               Append (Duplicate_Subexpr (Expression (New_Assoc)), To => C);
3853               Next (New_Assoc);
3854            end loop;
3855
3856            if Has_Unknown_Discriminants (Typ)
3857              and then Present (Underlying_Record_View (Typ))
3858            then
3859               Indic :=
3860                 Make_Subtype_Indication (Loc,
3861                   Subtype_Mark =>
3862                     New_Occurrence_Of (Underlying_Record_View (Typ), Loc),
3863                   Constraint   =>
3864                     Make_Index_Or_Discriminant_Constraint (Loc, C));
3865            else
3866               Indic :=
3867                 Make_Subtype_Indication (Loc,
3868                   Subtype_Mark =>
3869                     New_Occurrence_Of (Base_Type (Typ), Loc),
3870                   Constraint   =>
3871                     Make_Index_Or_Discriminant_Constraint (Loc, C));
3872            end if;
3873
3874            Def_Id := Create_Itype (Ekind (Typ), N);
3875
3876            Subtyp_Decl :=
3877              Make_Subtype_Declaration (Loc,
3878                Defining_Identifier => Def_Id,
3879                Subtype_Indication  => Indic);
3880            Set_Parent (Subtyp_Decl, Parent (N));
3881
3882            --  Itypes must be analyzed with checks off (see itypes.ads)
3883
3884            Analyze (Subtyp_Decl, Suppress => All_Checks);
3885
3886            Set_Etype (N, Def_Id);
3887            Check_Static_Discriminated_Subtype
3888              (Def_Id, Expression (First (New_Assoc_List)));
3889         end Build_Constrained_Itype;
3890
3891      else
3892         Set_Etype (N, Typ);
3893      end if;
3894
3895      --  STEP 5: Get remaining components according to discriminant values
3896
3897      Step_5 : declare
3898         Record_Def      : Node_Id;
3899         Parent_Typ      : Entity_Id;
3900         Root_Typ        : Entity_Id;
3901         Parent_Typ_List : Elist_Id;
3902         Parent_Elmt     : Elmt_Id;
3903         Errors_Found    : Boolean := False;
3904         Dnode           : Node_Id;
3905
3906         function Find_Private_Ancestor return Entity_Id;
3907         --  AI05-0115: Find earlier ancestor in the derivation chain that is
3908         --  derived from a private view. Whether the aggregate is legal
3909         --  depends on the current visibility of the type as well as that
3910         --  of the parent of the ancestor.
3911
3912         ---------------------------
3913         -- Find_Private_Ancestor --
3914         ---------------------------
3915
3916         function Find_Private_Ancestor return Entity_Id is
3917            Par : Entity_Id;
3918
3919         begin
3920            Par := Typ;
3921            loop
3922               if Has_Private_Ancestor (Par)
3923                 and then not Has_Private_Ancestor (Etype (Base_Type (Par)))
3924               then
3925                  return Par;
3926
3927               elsif not Is_Derived_Type (Par) then
3928                  return Empty;
3929
3930               else
3931                  Par := Etype (Base_Type (Par));
3932               end if;
3933            end loop;
3934         end Find_Private_Ancestor;
3935
3936      --  Start of processing for Step_5
3937
3938      begin
3939         if Is_Derived_Type (Typ) and then Is_Tagged_Type (Typ) then
3940            Parent_Typ_List := New_Elmt_List;
3941
3942            --  If this is an extension aggregate, the component list must
3943            --  include all components that are not in the given ancestor type.
3944            --  Otherwise, the component list must include components of all
3945            --  ancestors, starting with the root.
3946
3947            if Nkind (N) = N_Extension_Aggregate then
3948               Root_Typ := Base_Type (Etype (Ancestor_Part (N)));
3949
3950            else
3951               --  AI05-0115:  check legality of aggregate for type with
3952               --  aa private ancestor.
3953
3954               Root_Typ := Root_Type (Typ);
3955               if Has_Private_Ancestor (Typ) then
3956                  declare
3957                     Ancestor      : constant Entity_Id :=
3958                       Find_Private_Ancestor;
3959                     Ancestor_Unit : constant Entity_Id :=
3960                       Cunit_Entity (Get_Source_Unit (Ancestor));
3961                     Parent_Unit   : constant Entity_Id :=
3962                       Cunit_Entity
3963                         (Get_Source_Unit (Base_Type (Etype (Ancestor))));
3964                  begin
3965                     --  Check whether we are in a scope that has full view
3966                     --  over the private ancestor and its parent. This can
3967                     --  only happen if the derivation takes place in a child
3968                     --  unit of the unit that declares the parent, and we are
3969                     --  in the private part or body of that child unit, else
3970                     --  the aggregate is illegal.
3971
3972                     if Is_Child_Unit (Ancestor_Unit)
3973                       and then Scope (Ancestor_Unit) = Parent_Unit
3974                       and then In_Open_Scopes (Scope (Ancestor))
3975                       and then
3976                        (In_Private_Part (Scope (Ancestor))
3977                          or else In_Package_Body (Scope (Ancestor)))
3978                     then
3979                        null;
3980
3981                     else
3982                        Error_Msg_NE
3983                          ("type of aggregate has private ancestor&!",
3984                           N, Root_Typ);
3985                        Error_Msg_N ("must use extension aggregate!", N);
3986                        return;
3987                     end if;
3988                  end;
3989               end if;
3990
3991               Dnode := Declaration_Node (Base_Type (Root_Typ));
3992
3993               --  If we don't get a full declaration, then we have some error
3994               --  which will get signalled later so skip this part. Otherwise
3995               --  gather components of root that apply to the aggregate type.
3996               --  We use the base type in case there is an applicable stored
3997               --  constraint that renames the discriminants of the root.
3998
3999               if Nkind (Dnode) = N_Full_Type_Declaration then
4000                  Record_Def := Type_Definition (Dnode);
4001                  Gather_Components
4002                    (Base_Type (Typ),
4003                     Component_List (Record_Def),
4004                     Governed_By   => New_Assoc_List,
4005                     Into          => Components,
4006                     Report_Errors => Errors_Found);
4007
4008                  if Errors_Found then
4009                     Error_Msg_N
4010                       ("discriminant controlling variant part is not static",
4011                        N);
4012                     return;
4013                  end if;
4014               end if;
4015            end if;
4016
4017            Parent_Typ := Base_Type (Typ);
4018            while Parent_Typ /= Root_Typ loop
4019               Prepend_Elmt (Parent_Typ, To => Parent_Typ_List);
4020               Parent_Typ := Etype (Parent_Typ);
4021
4022               if Nkind (Parent (Base_Type (Parent_Typ))) =
4023                                        N_Private_Type_Declaration
4024                 or else Nkind (Parent (Base_Type (Parent_Typ))) =
4025                                        N_Private_Extension_Declaration
4026               then
4027                  if Nkind (N) /= N_Extension_Aggregate then
4028                     Error_Msg_NE
4029                       ("type of aggregate has private ancestor&!",
4030                        N, Parent_Typ);
4031                     Error_Msg_N  ("must use extension aggregate!", N);
4032                     return;
4033
4034                  elsif Parent_Typ /= Root_Typ then
4035                     Error_Msg_NE
4036                       ("ancestor part of aggregate must be private type&",
4037                         Ancestor_Part (N), Parent_Typ);
4038                     return;
4039                  end if;
4040
4041               --  The current view of ancestor part may be a private type,
4042               --  while the context type is always non-private.
4043
4044               elsif Is_Private_Type (Root_Typ)
4045                 and then Present (Full_View (Root_Typ))
4046                 and then Nkind (N) = N_Extension_Aggregate
4047               then
4048                  exit when Base_Type (Full_View (Root_Typ)) = Parent_Typ;
4049               end if;
4050            end loop;
4051
4052            --  Now collect components from all other ancestors, beginning
4053            --  with the current type. If the type has unknown discriminants
4054            --  use the component list of the Underlying_Record_View, which
4055            --  needs to be used for the subsequent expansion of the aggregate
4056            --  into assignments.
4057
4058            Parent_Elmt := First_Elmt (Parent_Typ_List);
4059            while Present (Parent_Elmt) loop
4060               Parent_Typ := Node (Parent_Elmt);
4061
4062               if Has_Unknown_Discriminants (Parent_Typ)
4063                 and then Present (Underlying_Record_View (Typ))
4064               then
4065                  Parent_Typ := Underlying_Record_View (Parent_Typ);
4066               end if;
4067
4068               Record_Def := Type_Definition (Parent (Base_Type (Parent_Typ)));
4069               Gather_Components (Empty,
4070                 Component_List (Record_Extension_Part (Record_Def)),
4071                 Governed_By   => New_Assoc_List,
4072                 Into          => Components,
4073                 Report_Errors => Errors_Found);
4074
4075               Next_Elmt (Parent_Elmt);
4076            end loop;
4077
4078         --  Typ is not a derived tagged type
4079
4080         else
4081            Record_Def := Type_Definition (Parent (Base_Type (Typ)));
4082
4083            if Null_Present (Record_Def) then
4084               null;
4085
4086            elsif not Has_Unknown_Discriminants (Typ) then
4087               Gather_Components
4088                 (Base_Type (Typ),
4089                  Component_List (Record_Def),
4090                  Governed_By   => New_Assoc_List,
4091                  Into          => Components,
4092                  Report_Errors => Errors_Found);
4093
4094            else
4095               Gather_Components
4096                 (Base_Type (Underlying_Record_View (Typ)),
4097                  Component_List (Record_Def),
4098                  Governed_By   => New_Assoc_List,
4099                  Into          => Components,
4100                  Report_Errors => Errors_Found);
4101            end if;
4102         end if;
4103
4104         if Errors_Found then
4105            return;
4106         end if;
4107      end Step_5;
4108
4109      --  STEP 6: Find component Values
4110
4111      Component := Empty;
4112      Component_Elmt := First_Elmt (Components);
4113
4114      --  First scan the remaining positional associations in the aggregate.
4115      --  Remember that at this point Positional_Expr contains the current
4116      --  positional association if any is left after looking for discriminant
4117      --  values in step 3.
4118
4119      while Present (Positional_Expr) and then Present (Component_Elmt) loop
4120         Component := Node (Component_Elmt);
4121         Resolve_Aggr_Expr (Positional_Expr, Component);
4122
4123         --  Ada 2005 (AI-231)
4124
4125         if Ada_Version >= Ada_2005 and then Known_Null (Positional_Expr) then
4126            Check_Can_Never_Be_Null (Component, Positional_Expr);
4127         end if;
4128
4129         if Present (Get_Value (Component, Component_Associations (N))) then
4130            Error_Msg_NE
4131              ("more than one value supplied for Component &", N, Component);
4132         end if;
4133
4134         Next (Positional_Expr);
4135         Next_Elmt (Component_Elmt);
4136      end loop;
4137
4138      if Present (Positional_Expr) then
4139         Error_Msg_N
4140           ("too many components for record aggregate", Positional_Expr);
4141      end if;
4142
4143      --  Now scan for the named arguments of the aggregate
4144
4145      while Present (Component_Elmt) loop
4146         Component := Node (Component_Elmt);
4147         Expr := Get_Value (Component, Component_Associations (N), True);
4148
4149         --  Note: The previous call to Get_Value sets the value of the
4150         --  variable Is_Box_Present.
4151
4152         --  Ada 2005 (AI-287): Handle components with default initialization.
4153         --  Note: This feature was originally added to Ada 2005 for limited
4154         --  but it was finally allowed with any type.
4155
4156         if Is_Box_Present then
4157            Check_Box_Component : declare
4158               Ctyp : constant Entity_Id := Etype (Component);
4159
4160            begin
4161               --  If there is a default expression for the aggregate, copy
4162               --  it into a new association. This copy must modify the scopes
4163               --  of internal types that may be attached to the expression
4164               --  (e.g. index subtypes of arrays) because in general the type
4165               --  declaration and the aggregate appear in different scopes,
4166               --  and the backend requires the scope of the type to match the
4167               --  point at which it is elaborated.
4168
4169               --  If the component has an initialization procedure (IP) we
4170               --  pass the component to the expander, which will generate
4171               --  the call to such IP.
4172
4173               --  If the component has discriminants, their values must
4174               --  be taken from their subtype. This is indispensable for
4175               --  constraints that are given by the current instance of an
4176               --  enclosing type, to allow the expansion of the aggregate to
4177               --  replace the reference to the current instance by the target
4178               --  object of the aggregate.
4179
4180               if Present (Parent (Component))
4181                 and then
4182                   Nkind (Parent (Component)) = N_Component_Declaration
4183                 and then Present (Expression (Parent (Component)))
4184               then
4185                  Expr :=
4186                    New_Copy_Tree_And_Copy_Dimensions
4187                      (Expression (Parent (Component)),
4188                       New_Scope => Current_Scope,
4189                       New_Sloc  => Sloc (N));
4190
4191                  Add_Association
4192                    (Component  => Component,
4193                     Expr       => Expr,
4194                     Assoc_List => New_Assoc_List);
4195                  Set_Has_Self_Reference (N);
4196
4197               --  A box-defaulted access component gets the value null. Also
4198               --  included are components of private types whose underlying
4199               --  type is an access type. In either case set the type of the
4200               --  literal, for subsequent use in semantic checks.
4201
4202               elsif Present (Underlying_Type (Ctyp))
4203                 and then Is_Access_Type (Underlying_Type (Ctyp))
4204               then
4205                  if not Is_Private_Type (Ctyp) then
4206                     Expr := Make_Null (Sloc (N));
4207                     Set_Etype (Expr, Ctyp);
4208                     Add_Association
4209                       (Component  => Component,
4210                        Expr       => Expr,
4211                        Assoc_List => New_Assoc_List);
4212
4213                  --  If the component's type is private with an access type as
4214                  --  its underlying type then we have to create an unchecked
4215                  --  conversion to satisfy type checking.
4216
4217                  else
4218                     declare
4219                        Qual_Null : constant Node_Id :=
4220                                      Make_Qualified_Expression (Sloc (N),
4221                                        Subtype_Mark =>
4222                                          New_Occurrence_Of
4223                                            (Underlying_Type (Ctyp), Sloc (N)),
4224                                        Expression => Make_Null (Sloc (N)));
4225
4226                        Convert_Null : constant Node_Id :=
4227                                         Unchecked_Convert_To
4228                                           (Ctyp, Qual_Null);
4229
4230                     begin
4231                        Analyze_And_Resolve (Convert_Null, Ctyp);
4232                        Add_Association
4233                          (Component  => Component,
4234                           Expr       => Convert_Null,
4235                           Assoc_List => New_Assoc_List);
4236                     end;
4237                  end if;
4238
4239               --  Ada 2012: If component is scalar with default value, use it
4240
4241               elsif Is_Scalar_Type (Ctyp)
4242                 and then Has_Default_Aspect (Ctyp)
4243               then
4244                  Add_Association
4245                    (Component  => Component,
4246                     Expr       => Default_Aspect_Value
4247                                     (First_Subtype (Underlying_Type (Ctyp))),
4248                     Assoc_List => New_Assoc_List);
4249
4250               elsif Has_Non_Null_Base_Init_Proc (Ctyp)
4251                 or else not Expander_Active
4252               then
4253                  if Is_Record_Type (Ctyp)
4254                    and then Has_Discriminants (Ctyp)
4255                    and then not Is_Private_Type (Ctyp)
4256                  then
4257                     --  We build a partially initialized aggregate with the
4258                     --  values of the discriminants and box initialization
4259                     --  for the rest, if other components are present.
4260
4261                     --  The type of the aggregate is the known subtype of
4262                     --  the component. The capture of discriminants must
4263                     --  be recursive because subcomponents may be constrained
4264                     --  (transitively) by discriminants of enclosing types.
4265                     --  For a private type with discriminants, a call to the
4266                     --  initialization procedure will be generated, and no
4267                     --  subaggregate is needed.
4268
4269                     Capture_Discriminants : declare
4270                        Loc  : constant Source_Ptr := Sloc (N);
4271                        Expr : Node_Id;
4272
4273                        procedure Add_Discriminant_Values
4274                          (New_Aggr   : Node_Id;
4275                           Assoc_List : List_Id);
4276                        --  The constraint to a component may be given by a
4277                        --  discriminant of the enclosing type, in which case
4278                        --  we have to retrieve its value, which is part of the
4279                        --  enclosing aggregate. Assoc_List provides the
4280                        --  discriminant associations of the current type or
4281                        --  of some enclosing record.
4282
4283                        procedure Propagate_Discriminants
4284                          (Aggr       : Node_Id;
4285                           Assoc_List : List_Id);
4286                        --  Nested components may themselves be discriminated
4287                        --  types constrained by outer discriminants, whose
4288                        --  values must be captured before the aggregate is
4289                        --  expanded into assignments.
4290
4291                        -----------------------------
4292                        -- Add_Discriminant_Values --
4293                        -----------------------------
4294
4295                        procedure Add_Discriminant_Values
4296                          (New_Aggr   : Node_Id;
4297                           Assoc_List : List_Id)
4298                        is
4299                           Assoc      : Node_Id;
4300                           Discr      : Entity_Id;
4301                           Discr_Elmt : Elmt_Id;
4302                           Discr_Val  : Node_Id;
4303                           Val        : Entity_Id;
4304
4305                        begin
4306                           Discr := First_Discriminant (Etype (New_Aggr));
4307                           Discr_Elmt :=
4308                             First_Elmt
4309                               (Discriminant_Constraint (Etype (New_Aggr)));
4310                           while Present (Discr_Elmt) loop
4311                              Discr_Val := Node (Discr_Elmt);
4312
4313                              --  If the constraint is given by a discriminant
4314                              --  it is a discriminant of an enclosing record,
4315                              --  and its value has already been placed in the
4316                              --  association list.
4317
4318                              if Is_Entity_Name (Discr_Val)
4319                                and then
4320                                  Ekind (Entity (Discr_Val)) = E_Discriminant
4321                              then
4322                                 Val := Entity (Discr_Val);
4323
4324                                 Assoc := First (Assoc_List);
4325                                 while Present (Assoc) loop
4326                                    if Present
4327                                         (Entity (First (Choices (Assoc))))
4328                                      and then
4329                                        Entity (First (Choices (Assoc))) = Val
4330                                    then
4331                                       Discr_Val := Expression (Assoc);
4332                                       exit;
4333                                    end if;
4334
4335                                    Next (Assoc);
4336                                 end loop;
4337                              end if;
4338
4339                              Add_Association
4340                                (Discr, New_Copy_Tree (Discr_Val),
4341                                 Component_Associations (New_Aggr));
4342
4343                              --  If the discriminant constraint is a current
4344                              --  instance, mark the current aggregate so that
4345                              --  the self-reference can be expanded later.
4346                              --  The constraint may refer to the subtype of
4347                              --  aggregate, so use base type for comparison.
4348
4349                              if Nkind (Discr_Val) = N_Attribute_Reference
4350                                and then Is_Entity_Name (Prefix (Discr_Val))
4351                                and then Is_Type (Entity (Prefix (Discr_Val)))
4352                                and then Base_Type (Etype (N)) =
4353                                           Entity (Prefix (Discr_Val))
4354                              then
4355                                 Set_Has_Self_Reference (N);
4356                              end if;
4357
4358                              Next_Elmt (Discr_Elmt);
4359                              Next_Discriminant (Discr);
4360                           end loop;
4361                        end Add_Discriminant_Values;
4362
4363                        -----------------------------
4364                        -- Propagate_Discriminants --
4365                        -----------------------------
4366
4367                        procedure Propagate_Discriminants
4368                          (Aggr       : Node_Id;
4369                           Assoc_List : List_Id)
4370                        is
4371                           Aggr_Type : constant Entity_Id :=
4372                                         Base_Type (Etype (Aggr));
4373                           Def_Node  : constant Node_Id :=
4374                                         Type_Definition
4375                                           (Declaration_Node (Aggr_Type));
4376
4377                           Comp       : Node_Id;
4378                           Comp_Elmt  : Elmt_Id;
4379                           Components : constant Elist_Id := New_Elmt_List;
4380                           Needs_Box  : Boolean := False;
4381                           Errors     : Boolean;
4382
4383                           procedure Process_Component (Comp : Entity_Id);
4384                           --  Add one component with a box association to the
4385                           --  inner aggregate, and recurse if component is
4386                           --  itself composite.
4387
4388                           -----------------------
4389                           -- Process_Component --
4390                           -----------------------
4391
4392                           procedure Process_Component (Comp : Entity_Id) is
4393                              T        : constant Entity_Id := Etype (Comp);
4394                              New_Aggr : Node_Id;
4395
4396                           begin
4397                              if Is_Record_Type (T)
4398                                and then Has_Discriminants (T)
4399                              then
4400                                 New_Aggr :=
4401                                   Make_Aggregate (Loc, New_List, New_List);
4402                                 Set_Etype (New_Aggr, T);
4403                                 Add_Association
4404                                   (Comp, New_Aggr,
4405                                     Component_Associations (Aggr));
4406
4407                                 --  Collect discriminant values and recurse
4408
4409                                 Add_Discriminant_Values
4410                                   (New_Aggr, Assoc_List);
4411                                 Propagate_Discriminants
4412                                   (New_Aggr, Assoc_List);
4413
4414                              else
4415                                 Needs_Box := True;
4416                              end if;
4417                           end Process_Component;
4418
4419                        --  Start of processing for Propagate_Discriminants
4420
4421                        begin
4422                           --  The component type may be a variant type, so
4423                           --  collect the components that are ruled by the
4424                           --  known values of the discriminants. Their values
4425                           --  have already been inserted into the component
4426                           --  list of the current aggregate.
4427
4428                           if Nkind (Def_Node) = N_Record_Definition
4429                             and then Present (Component_List (Def_Node))
4430                             and then
4431                               Present
4432                                 (Variant_Part (Component_List (Def_Node)))
4433                           then
4434                              Gather_Components (Aggr_Type,
4435                                Component_List (Def_Node),
4436                                Governed_By   => Component_Associations (Aggr),
4437                                Into          => Components,
4438                                Report_Errors => Errors);
4439
4440                              Comp_Elmt := First_Elmt (Components);
4441                              while Present (Comp_Elmt) loop
4442                                 if Ekind (Node (Comp_Elmt)) /= E_Discriminant
4443                                 then
4444                                    Process_Component (Node (Comp_Elmt));
4445                                 end if;
4446
4447                                 Next_Elmt (Comp_Elmt);
4448                              end loop;
4449
4450                           --  No variant part, iterate over all components
4451
4452                           else
4453                              Comp := First_Component (Etype (Aggr));
4454                              while Present (Comp) loop
4455                                 Process_Component (Comp);
4456                                 Next_Component (Comp);
4457                              end loop;
4458                           end if;
4459
4460                           if Needs_Box then
4461                              Append_To (Component_Associations (Aggr),
4462                                Make_Component_Association (Loc,
4463                                  Choices     =>
4464                                    New_List (Make_Others_Choice (Loc)),
4465                                  Expression  => Empty,
4466                                  Box_Present => True));
4467                           end if;
4468                        end Propagate_Discriminants;
4469
4470                     --  Start of processing for Capture_Discriminants
4471
4472                     begin
4473                        Expr := Make_Aggregate (Loc, New_List, New_List);
4474                        Set_Etype (Expr, Ctyp);
4475
4476                        --  If the enclosing type has discriminants, they have
4477                        --  been collected in the aggregate earlier, and they
4478                        --  may appear as constraints of subcomponents.
4479
4480                        --  Similarly if this component has discriminants, they
4481                        --  might in turn be propagated to their components.
4482
4483                        if Has_Discriminants (Typ) then
4484                           Add_Discriminant_Values (Expr, New_Assoc_List);
4485                           Propagate_Discriminants (Expr, New_Assoc_List);
4486
4487                        elsif Has_Discriminants (Ctyp) then
4488                           Add_Discriminant_Values
4489                              (Expr, Component_Associations (Expr));
4490                           Propagate_Discriminants
4491                              (Expr, Component_Associations (Expr));
4492
4493                        else
4494                           declare
4495                              Comp : Entity_Id;
4496
4497                           begin
4498                              --  If the type has additional components, create
4499                              --  an OTHERS box association for them.
4500
4501                              Comp := First_Component (Ctyp);
4502                              while Present (Comp) loop
4503                                 if Ekind (Comp) = E_Component then
4504                                    if not Is_Record_Type (Etype (Comp)) then
4505                                       Append_To
4506                                         (Component_Associations (Expr),
4507                                          Make_Component_Association (Loc,
4508                                            Choices     =>
4509                                              New_List (
4510                                                Make_Others_Choice (Loc)),
4511                                            Expression  => Empty,
4512                                            Box_Present => True));
4513                                    end if;
4514                                    exit;
4515                                 end if;
4516
4517                                 Next_Component (Comp);
4518                              end loop;
4519                           end;
4520                        end if;
4521
4522                        Add_Association
4523                          (Component  => Component,
4524                           Expr       => Expr,
4525                           Assoc_List => New_Assoc_List);
4526                     end Capture_Discriminants;
4527
4528                  else
4529                     Add_Association
4530                       (Component      => Component,
4531                        Expr           => Empty,
4532                        Assoc_List     => New_Assoc_List,
4533                        Is_Box_Present => True);
4534                  end if;
4535
4536               --  Otherwise we only need to resolve the expression if the
4537               --  component has partially initialized values (required to
4538               --  expand the corresponding assignments and run-time checks).
4539
4540               elsif Present (Expr)
4541                 and then Is_Partially_Initialized_Type (Ctyp)
4542               then
4543                  Resolve_Aggr_Expr (Expr, Component);
4544               end if;
4545            end Check_Box_Component;
4546
4547         elsif No (Expr) then
4548
4549            --  Ignore hidden components associated with the position of the
4550            --  interface tags: these are initialized dynamically.
4551
4552            if not Present (Related_Type (Component)) then
4553               Error_Msg_NE
4554                 ("no value supplied for component &!", N, Component);
4555            end if;
4556
4557         else
4558            Resolve_Aggr_Expr (Expr, Component);
4559         end if;
4560
4561         Next_Elmt (Component_Elmt);
4562      end loop;
4563
4564      --  STEP 7: check for invalid components + check type in choice list
4565
4566      Step_7 : declare
4567         Selectr : Node_Id;
4568         --  Selector name
4569
4570         Typech : Entity_Id;
4571         --  Type of first component in choice list
4572
4573      begin
4574         if Present (Component_Associations (N)) then
4575            Assoc := First (Component_Associations (N));
4576         else
4577            Assoc := Empty;
4578         end if;
4579
4580         Verification : while Present (Assoc) loop
4581            Selectr := First (Choices (Assoc));
4582            Typech := Empty;
4583
4584            if Nkind (Selectr) = N_Others_Choice then
4585
4586               --  Ada 2005 (AI-287): others choice may have expression or box
4587
4588               if No (Others_Etype) and then not Others_Box then
4589                  Error_Msg_N
4590                    ("OTHERS must represent at least one component", Selectr);
4591               end if;
4592
4593               exit Verification;
4594            end if;
4595
4596            while Present (Selectr) loop
4597               New_Assoc := First (New_Assoc_List);
4598               while Present (New_Assoc) loop
4599                  Component := First (Choices (New_Assoc));
4600
4601                  if Chars (Selectr) = Chars (Component) then
4602                     if Style_Check then
4603                        Check_Identifier (Selectr, Entity (Component));
4604                     end if;
4605
4606                     exit;
4607                  end if;
4608
4609                  Next (New_Assoc);
4610               end loop;
4611
4612               --  If no association, this is not a legal component of the type
4613               --  in question, unless its association is provided with a box.
4614
4615               if No (New_Assoc) then
4616                  if Box_Present (Parent (Selectr)) then
4617
4618                     --  This may still be a bogus component with a box. Scan
4619                     --  list of components to verify that a component with
4620                     --  that name exists.
4621
4622                     declare
4623                        C : Entity_Id;
4624
4625                     begin
4626                        C := First_Component (Typ);
4627                        while Present (C) loop
4628                           if Chars (C) = Chars (Selectr) then
4629
4630                              --  If the context is an extension aggregate,
4631                              --  the component must not be inherited from
4632                              --  the ancestor part of the aggregate.
4633
4634                              if Nkind (N) /= N_Extension_Aggregate
4635                                or else
4636                                  Scope (Original_Record_Component (C)) /=
4637                                                     Etype (Ancestor_Part (N))
4638                              then
4639                                 exit;
4640                              end if;
4641                           end if;
4642
4643                           Next_Component (C);
4644                        end loop;
4645
4646                        if No (C) then
4647                           Error_Msg_Node_2 := Typ;
4648                           Error_Msg_N ("& is not a component of}", Selectr);
4649                        end if;
4650                     end;
4651
4652                  elsif Chars (Selectr) /= Name_uTag
4653                    and then Chars (Selectr) /= Name_uParent
4654                  then
4655                     if not Has_Discriminants (Typ) then
4656                        Error_Msg_Node_2 := Typ;
4657                        Error_Msg_N ("& is not a component of}", Selectr);
4658                     else
4659                        Error_Msg_N
4660                          ("& is not a component of the aggregate subtype",
4661                            Selectr);
4662                     end if;
4663
4664                     Check_Misspelled_Component (Components, Selectr);
4665                  end if;
4666
4667               elsif No (Typech) then
4668                  Typech := Base_Type (Etype (Component));
4669
4670               --  AI05-0199: In Ada 2012, several components of anonymous
4671               --  access types can appear in a choice list, as long as the
4672               --  designated types match.
4673
4674               elsif Typech /= Base_Type (Etype (Component)) then
4675                  if Ada_Version >= Ada_2012
4676                    and then Ekind (Typech) = E_Anonymous_Access_Type
4677                    and then
4678                       Ekind (Etype (Component)) = E_Anonymous_Access_Type
4679                    and then Base_Type (Designated_Type (Typech)) =
4680                             Base_Type (Designated_Type (Etype (Component)))
4681                    and then
4682                      Subtypes_Statically_Match (Typech, (Etype (Component)))
4683                  then
4684                     null;
4685
4686                  elsif not Box_Present (Parent (Selectr)) then
4687                     Error_Msg_N
4688                       ("components in choice list must have same type",
4689                        Selectr);
4690                  end if;
4691               end if;
4692
4693               Next (Selectr);
4694            end loop;
4695
4696            Next (Assoc);
4697         end loop Verification;
4698      end Step_7;
4699
4700      --  STEP 8: replace the original aggregate
4701
4702      Step_8 : declare
4703         New_Aggregate : constant Node_Id := New_Copy (N);
4704
4705      begin
4706         Set_Expressions            (New_Aggregate, No_List);
4707         Set_Etype                  (New_Aggregate, Etype (N));
4708         Set_Component_Associations (New_Aggregate, New_Assoc_List);
4709         Set_Check_Actuals          (New_Aggregate, Check_Actuals (N));
4710
4711         Rewrite (N, New_Aggregate);
4712      end Step_8;
4713
4714      --  Check the dimensions of the components in the record aggregate
4715
4716      Analyze_Dimension_Extension_Or_Record_Aggregate (N);
4717   end Resolve_Record_Aggregate;
4718
4719   -----------------------------
4720   -- Check_Can_Never_Be_Null --
4721   -----------------------------
4722
4723   procedure Check_Can_Never_Be_Null (Typ : Entity_Id; Expr : Node_Id) is
4724      Comp_Typ : Entity_Id;
4725
4726   begin
4727      pragma Assert
4728        (Ada_Version >= Ada_2005
4729          and then Present (Expr)
4730          and then Known_Null (Expr));
4731
4732      case Ekind (Typ) is
4733         when E_Array_Type  =>
4734            Comp_Typ := Component_Type (Typ);
4735
4736         when E_Component    |
4737              E_Discriminant =>
4738            Comp_Typ := Etype (Typ);
4739
4740         when others =>
4741            return;
4742      end case;
4743
4744      if Can_Never_Be_Null (Comp_Typ) then
4745
4746         --  Here we know we have a constraint error. Note that we do not use
4747         --  Apply_Compile_Time_Constraint_Error here to the Expr, which might
4748         --  seem the more natural approach. That's because in some cases the
4749         --  components are rewritten, and the replacement would be missed.
4750         --  We do not mark the whole aggregate as raising a constraint error,
4751         --  because the association may be a null array range.
4752
4753         Error_Msg_N
4754           ("(Ada 2005) null not allowed in null-excluding component??", Expr);
4755         Error_Msg_N
4756           ("\Constraint_Error will be raised at run time??", Expr);
4757
4758         Rewrite (Expr,
4759           Make_Raise_Constraint_Error
4760             (Sloc (Expr), Reason => CE_Access_Check_Failed));
4761         Set_Etype    (Expr, Comp_Typ);
4762         Set_Analyzed (Expr);
4763      end if;
4764   end Check_Can_Never_Be_Null;
4765
4766   ---------------------
4767   -- Sort_Case_Table --
4768   ---------------------
4769
4770   procedure Sort_Case_Table (Case_Table : in out Case_Table_Type) is
4771      U : constant Int := Case_Table'Last;
4772      K : Int;
4773      J : Int;
4774      T : Case_Bounds;
4775
4776   begin
4777      K := 1;
4778      while K < U loop
4779         T := Case_Table (K + 1);
4780
4781         J := K + 1;
4782         while J > 1
4783           and then Expr_Value (Case_Table (J - 1).Lo) > Expr_Value (T.Lo)
4784         loop
4785            Case_Table (J) := Case_Table (J - 1);
4786            J := J - 1;
4787         end loop;
4788
4789         Case_Table (J) := T;
4790         K := K + 1;
4791      end loop;
4792   end Sort_Case_Table;
4793
4794end Sem_Aggr;
4795