1------------------------------------------------------------------------------
2--                                                                          --
3--                         GNAT COMPILER COMPONENTS                         --
4--                                                                          --
5--                              S E M _ C H 6                               --
6--                                                                          --
7--                                 S p e c                                  --
8--                                                                          --
9--          Copyright (C) 1992-2015, Free Software Foundation, Inc.         --
10--                                                                          --
11-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12-- terms of the  GNU General Public License as published  by the Free Soft- --
13-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
17-- for  more details.  You should have  received  a copy of the GNU General --
18-- Public License  distributed with GNAT; see file COPYING3.  If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license.          --
20--                                                                          --
21-- GNAT was originally developed  by the GNAT team at  New York University. --
22-- Extensive contributions were provided by Ada Core Technologies Inc.      --
23--                                                                          --
24------------------------------------------------------------------------------
25
26with Types; use Types;
27package Sem_Ch6 is
28
29   type Conformance_Type is
30     (Type_Conformant, Mode_Conformant, Subtype_Conformant, Fully_Conformant);
31   pragma Ordered (Conformance_Type);
32   --  Conformance type used in conformance checks between specs and bodies,
33   --  and for overriding. The literals match the RM definitions of the
34   --  corresponding terms. This is an ordered type, since each conformance
35   --  type is stronger than the ones preceding it.
36
37   procedure Analyze_Abstract_Subprogram_Declaration (N : Node_Id);
38   procedure Analyze_Expression_Function             (N : Node_Id);
39   procedure Analyze_Extended_Return_Statement       (N : Node_Id);
40   procedure Analyze_Function_Call                   (N : Node_Id);
41   procedure Analyze_Operator_Symbol                 (N : Node_Id);
42   procedure Analyze_Parameter_Association           (N : Node_Id);
43   procedure Analyze_Procedure_Call                  (N : Node_Id);
44   procedure Analyze_Simple_Return_Statement         (N : Node_Id);
45   procedure Analyze_Subprogram_Declaration          (N : Node_Id);
46   procedure Analyze_Subprogram_Body                 (N : Node_Id);
47
48   function Analyze_Subprogram_Specification (N : Node_Id) return Entity_Id;
49   --  Analyze subprogram specification in both subprogram declarations
50   --  and body declarations. Returns the defining entity for the
51   --  specification N.
52
53   procedure Check_Conventions (Typ : Entity_Id);
54   --  Ada 2005 (AI-430): Check that the conventions of all inherited and
55   --  overridden dispatching operations of type Typ are consistent with their
56   --  respective counterparts.
57
58   procedure Check_Delayed_Subprogram (Designator : Entity_Id);
59   --  Designator can be a E_Subprogram_Type, E_Procedure or E_Function. If a
60   --  type in its profile depends on a private type without a full
61   --  declaration, indicate that the subprogram or type is delayed.
62
63   procedure Check_Discriminant_Conformance
64     (N        : Node_Id;
65      Prev     : Entity_Id;
66      Prev_Loc : Node_Id);
67   --  Check that the discriminants of a full type N fully conform to the
68   --  discriminants of the corresponding partial view Prev. Prev_Loc indicates
69   --  the source location of the partial view, which may be different than
70   --  Prev in the case of private types.
71
72   procedure Check_Fully_Conformant
73     (New_Id  : Entity_Id;
74      Old_Id  : Entity_Id;
75      Err_Loc : Node_Id := Empty);
76   --  Check that two callable entities (subprograms, entries, literals)
77   --  are fully conformant, post error message if not (RM 6.3.1(17)) with
78   --  the flag being placed on the Err_Loc node if it is specified, and
79   --  on the appropriate component of the New_Id construct if not. Note:
80   --  when checking spec/body conformance, New_Id must be the body entity
81   --  and Old_Id is the spec entity (the code in the implementation relies
82   --  on this ordering, and in any case, this makes sense, since if flags
83   --  are to be placed on the construct, they clearly belong on the body.
84
85   procedure Check_Mode_Conformant
86     (New_Id   : Entity_Id;
87      Old_Id   : Entity_Id;
88      Err_Loc  : Node_Id := Empty;
89      Get_Inst : Boolean := False);
90   --  Check that two callable entities (subprograms, entries, literals)
91   --  are mode conformant, post error message if not (RM 6.3.1(15)) with
92   --  the flag being placed on the Err_Loc node if it is specified, and
93   --  on the appropriate component of the New_Id construct if not. The
94   --  argument Get_Inst is set to True when this is a check against a
95   --  formal access-to-subprogram type, indicating that mapping of types
96   --  is needed.
97
98   procedure Check_Overriding_Indicator
99     (Subp            : Entity_Id;
100      Overridden_Subp : Entity_Id;
101      Is_Primitive    : Boolean);
102   --  Verify the consistency of an overriding_indicator given for subprogram
103   --  declaration, body, renaming, or instantiation.  Overridden_Subp is set
104   --  if the scope where we are introducing the subprogram contains a
105   --  type-conformant subprogram that becomes hidden by the new subprogram.
106   --  Is_Primitive indicates whether the subprogram is primitive.
107
108   procedure Check_Subtype_Conformant
109     (New_Id                   : Entity_Id;
110      Old_Id                   : Entity_Id;
111      Err_Loc                  : Node_Id := Empty;
112      Skip_Controlling_Formals : Boolean := False;
113      Get_Inst                 : Boolean := False);
114   --  Check that two callable entities (subprograms, entries, literals)
115   --  are subtype conformant, post error message if not (RM 6.3.1(16)),
116   --  the flag being placed on the Err_Loc node if it is specified, and
117   --  on the appropriate component of the New_Id construct if not.
118   --  Skip_Controlling_Formals is True when checking the conformance of
119   --  a subprogram that implements an interface operation. In that case,
120   --  only the non-controlling formals can (and must) be examined. The
121   --  argument Get_Inst is set to True when this is a check against a
122   --  formal access-to-subprogram type, indicating that mapping of types
123   --  is needed.
124
125   procedure Check_Type_Conformant
126     (New_Id  : Entity_Id;
127      Old_Id  : Entity_Id;
128      Err_Loc : Node_Id := Empty);
129   --  Check that two callable entities (subprograms, entries, literals)
130   --  are type conformant, post error message if not (RM 6.3.1(14)) with
131   --  the flag being placed on the Err_Loc node if it is specified, and
132   --  on the appropriate component of the New_Id construct if not.
133
134   function Conforming_Types
135     (T1       : Entity_Id;
136      T2       : Entity_Id;
137      Ctype    : Conformance_Type;
138      Get_Inst : Boolean := False) return Boolean;
139   --  Check that the types of two formal parameters are conforming. In most
140   --  cases this is just a name comparison, but within an instance it involves
141   --  generic actual types, and in the presence of anonymous access types
142   --  it must examine the designated types. The argument Get_Inst is set to
143   --  True when this is a check against a formal access-to-subprogram type,
144   --  indicating that mapping of types is needed.
145
146   procedure Create_Extra_Formals (E : Entity_Id);
147   --  For each parameter of a subprogram or entry that requires an additional
148   --  formal (such as for access parameters and indefinite discriminated
149   --  parameters), creates the appropriate formal and attach it to its
150   --  associated parameter. Each extra formal will also be appended to
151   --  the end of Subp's parameter list (with each subsequent extra formal
152   --  being attached to the preceding extra formal).
153
154   function Find_Corresponding_Spec
155     (N          : Node_Id;
156      Post_Error : Boolean := True) return Entity_Id;
157   --  Use the subprogram specification in the body to retrieve the previous
158   --  subprogram declaration, if any.
159
160   function Fully_Conformant (New_Id, Old_Id : Entity_Id) return Boolean;
161   --  Determine whether two callable entities (subprograms, entries,
162   --  literals) are fully conformant (RM 6.3.1(17))
163
164   function Fully_Conformant_Expressions
165     (Given_E1 : Node_Id;
166      Given_E2 : Node_Id) return Boolean;
167   --  Determines if two (non-empty) expressions are fully conformant
168   --  as defined by (RM 6.3.1(18-21))
169
170   function Fully_Conformant_Discrete_Subtypes
171      (Given_S1 : Node_Id;
172       Given_S2 : Node_Id) return Boolean;
173   --  Determines if two subtype definitions are fully conformant. Used
174   --  for entry family conformance checks (RM 6.3.1 (24)).
175
176   procedure Install_Entity (E : Entity_Id);
177   --  Place a single entity on the visibility chain
178
179   procedure Install_Formals (Id : Entity_Id);
180   --  On entry to a subprogram body, make the formals visible. Note that
181   --  simply placing the subprogram on the scope stack is not sufficient:
182   --  the formals must become the current entities for their names. This
183   --  procedure is also used to get visibility to the formals when analyzing
184   --  preconditions and postconditions appearing in the spec.
185
186   function Is_Interface_Conformant
187     (Tagged_Type : Entity_Id;
188      Iface_Prim  : Entity_Id;
189      Prim        : Entity_Id) return Boolean;
190   --  Returns true if both primitives have a matching name (including support
191   --  for names of inherited private primitives --which have suffix 'P'), they
192   --  are type conformant, and Prim is defined in the scope of Tagged_Type.
193   --  Special management is done for functions returning interfaces.
194
195   procedure List_Inherited_Pre_Post_Aspects (E : Entity_Id);
196   --  E is the entity for a subprogram or generic subprogram spec. This call
197   --  lists all inherited Pre/Post aspects if List_Inherited_Pre_Post is True.
198
199   procedure May_Need_Actuals (Fun : Entity_Id);
200   --  Flag functions that can be called without parameters, i.e. those that
201   --  have no parameters, or those for which defaults exist for all parameters
202   --  Used for subprogram declarations and for access subprogram declarations,
203   --  where they apply to the anonymous designated type. On return the flag
204   --  Set_Needs_No_Actuals is set appropriately in Fun.
205
206   function Mode_Conformant (New_Id, Old_Id : Entity_Id) return Boolean;
207   --  Determine whether two callable entities (subprograms, entries,
208   --  literals) are mode conformant (RM 6.3.1(15))
209
210   procedure New_Overloaded_Entity
211     (S            : Entity_Id;
212      Derived_Type : Entity_Id := Empty);
213   --  Process new overloaded entity. Overloaded entities are created by
214   --  enumeration type declarations, subprogram specifications, entry
215   --  declarations, and (implicitly) by type derivations. If Derived_Type
216   --  is non-empty then this is a subprogram derived for that type.
217
218   procedure Process_Formals (T : List_Id; Related_Nod : Node_Id);
219   --  Enter the formals in the scope of the subprogram or entry, and
220   --  analyze default expressions if any. The implicit types created for
221   --  access parameter are attached to the Related_Nod which comes from the
222   --  context.
223
224   procedure Reference_Body_Formals (Spec : Entity_Id; Bod : Entity_Id);
225   --  If there is a separate spec for a subprogram or generic subprogram, the
226   --  formals of the body are treated as references to the corresponding
227   --  formals of the spec. This reference does not count as an actual use of
228   --  the formal, in order to diagnose formals that are unused in the body.
229   --  This procedure is also used in renaming_as_body declarations, where
230   --  the formals of the specification must be treated as body formals that
231   --  correspond to the previous subprogram declaration, and not as new
232   --  entities with their defining entry in the cross-reference information.
233
234   procedure Set_Actual_Subtypes (N : Node_Id; Subp : Entity_Id);
235   --  If the formals of a subprogram are unconstrained, build a subtype
236   --  declaration that uses the bounds or discriminants of the actual to
237   --  construct an actual subtype for them. This is an optimization that
238   --  is done only in some cases where the actual subtype cannot change
239   --  during execution of the subprogram. By setting the actual subtype
240   --  once, we avoid recomputing it unnecessarily.
241
242   procedure Set_Formal_Mode (Formal_Id : Entity_Id);
243   --  Set proper Ekind to reflect formal mode (in, out, in out)
244
245   function Subtype_Conformant
246     (New_Id                   : Entity_Id;
247      Old_Id                   : Entity_Id;
248      Skip_Controlling_Formals : Boolean := False) return Boolean;
249   --  Determine whether two callable entities (subprograms, entries, literals)
250   --  are subtype conformant (RM 6.3.1(16)). Skip_Controlling_Formals is True
251   --  when checking the conformance of a subprogram that implements an
252   --  interface operation. In that case, only the non-controlling formals
253   --  can (and must) be examined.
254
255   function Type_Conformant
256     (New_Id                   : Entity_Id;
257      Old_Id                   : Entity_Id;
258      Skip_Controlling_Formals : Boolean := False) return Boolean;
259   --  Determine whether two callable entities (subprograms, entries, literals)
260   --  are type conformant (RM 6.3.1(14)). Skip_Controlling_Formals is True
261   --  when checking the conformance of a subprogram that implements an
262   --  interface operation. In that case, only the non-controlling formals
263   --  can (and must) be examined.
264
265   procedure Valid_Operator_Definition (Designator : Entity_Id);
266   --  Verify that an operator definition has the proper number of formals
267
268end Sem_Ch6;
269