1 /* Define control flow data structures for the CFG.
2    Copyright (C) 1987-2016 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 #ifndef GCC_BASIC_BLOCK_H
21 #define GCC_BASIC_BLOCK_H
22 
23 
24 /* Use gcov_type to hold basic block counters.  Should be at least
25    64bit.  Although a counter cannot be negative, we use a signed
26    type, because erroneous negative counts can be generated when the
27    flow graph is manipulated by various optimizations.  A signed type
28    makes those easy to detect.  */
29 
30 /* Control flow edge information.  */
31 struct GTY((user)) edge_def {
32   /* The two blocks at the ends of the edge.  */
33   basic_block src;
34   basic_block dest;
35 
36   /* Instructions queued on the edge.  */
37   union edge_def_insns {
38     gimple_seq g;
39     rtx_insn *r;
40   } insns;
41 
42   /* Auxiliary info specific to a pass.  */
43   PTR aux;
44 
45   /* Location of any goto implicit in the edge.  */
46   location_t goto_locus;
47 
48   /* The index number corresponding to this edge in the edge vector
49      dest->preds.  */
50   unsigned int dest_idx;
51 
52   int flags;			/* see cfg-flags.def */
53   int probability;		/* biased by REG_BR_PROB_BASE */
54   gcov_type count;		/* Expected number of executions calculated
55 				   in profile.c  */
56 };
57 
58 /* Masks for edge.flags.  */
59 #define DEF_EDGE_FLAG(NAME,IDX) EDGE_##NAME = 1 << IDX ,
60 enum cfg_edge_flags {
61 #include "cfg-flags.def"
62   LAST_CFG_EDGE_FLAG		/* this is only used for EDGE_ALL_FLAGS */
63 };
64 #undef DEF_EDGE_FLAG
65 
66 /* Bit mask for all edge flags.  */
67 #define EDGE_ALL_FLAGS		((LAST_CFG_EDGE_FLAG - 1) * 2 - 1)
68 
69 /* The following four flags all indicate something special about an edge.
70    Test the edge flags on EDGE_COMPLEX to detect all forms of "strange"
71    control flow transfers.  */
72 #define EDGE_COMPLEX \
73   (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL | EDGE_EH | EDGE_PRESERVE)
74 
75 struct GTY(()) rtl_bb_info {
76   /* The first insn of the block is embedded into bb->il.x.  */
77   /* The last insn of the block.  */
78   rtx_insn *end_;
79 
80   /* In CFGlayout mode points to insn notes/jumptables to be placed just before
81      and after the block.   */
82   rtx_insn *header_;
83   rtx_insn *footer_;
84 };
85 
86 struct GTY(()) gimple_bb_info {
87   /* Sequence of statements in this block.  */
88   gimple_seq seq;
89 
90   /* PHI nodes for this block.  */
91   gimple_seq phi_nodes;
92 };
93 
94 /* A basic block is a sequence of instructions with only one entry and
95    only one exit.  If any one of the instructions are executed, they
96    will all be executed, and in sequence from first to last.
97 
98    There may be COND_EXEC instructions in the basic block.  The
99    COND_EXEC *instructions* will be executed -- but if the condition
100    is false the conditionally executed *expressions* will of course
101    not be executed.  We don't consider the conditionally executed
102    expression (which might have side-effects) to be in a separate
103    basic block because the program counter will always be at the same
104    location after the COND_EXEC instruction, regardless of whether the
105    condition is true or not.
106 
107    Basic blocks need not start with a label nor end with a jump insn.
108    For example, a previous basic block may just "conditionally fall"
109    into the succeeding basic block, and the last basic block need not
110    end with a jump insn.  Block 0 is a descendant of the entry block.
111 
112    A basic block beginning with two labels cannot have notes between
113    the labels.
114 
115    Data for jump tables are stored in jump_insns that occur in no
116    basic block even though these insns can follow or precede insns in
117    basic blocks.  */
118 
119 /* Basic block information indexed by block number.  */
120 struct GTY((chain_next ("%h.next_bb"), chain_prev ("%h.prev_bb"))) basic_block_def {
121   /* The edges into and out of the block.  */
122   vec<edge, va_gc> *preds;
123   vec<edge, va_gc> *succs;
124 
125   /* Auxiliary info specific to a pass.  */
126   PTR GTY ((skip (""))) aux;
127 
128   /* Innermost loop containing the block.  */
129   struct loop *loop_father;
130 
131   /* The dominance and postdominance information node.  */
132   struct et_node * GTY ((skip (""))) dom[2];
133 
134   /* Previous and next blocks in the chain.  */
135   basic_block prev_bb;
136   basic_block next_bb;
137 
138   union basic_block_il_dependent {
139       struct gimple_bb_info GTY ((tag ("0"))) gimple;
140       struct {
141         rtx_insn *head_;
142         struct rtl_bb_info * rtl;
143       } GTY ((tag ("1"))) x;
144     } GTY ((desc ("((%1.flags & BB_RTL) != 0)"))) il;
145 
146   /* Various flags.  See cfg-flags.def.  */
147   int flags;
148 
149   /* The index of this block.  */
150   int index;
151 
152   /* Expected number of executions: calculated in profile.c.  */
153   gcov_type count;
154 
155   /* Expected frequency.  Normalized to be in range 0 to BB_FREQ_MAX.  */
156   int frequency;
157 
158   /* The discriminator for this block.  The discriminator distinguishes
159      among several basic blocks that share a common locus, allowing for
160      more accurate sample-based profiling.  */
161   int discriminator;
162 };
163 
164 /* This ensures that struct gimple_bb_info is smaller than
165    struct rtl_bb_info, so that inlining the former into basic_block_def
166    is the better choice.  */
167 typedef int __assert_gimple_bb_smaller_rtl_bb
168               [(int) sizeof (struct rtl_bb_info)
169                - (int) sizeof (struct gimple_bb_info)];
170 
171 
172 #define BB_FREQ_MAX 10000
173 
174 /* Masks for basic_block.flags.  */
175 #define DEF_BASIC_BLOCK_FLAG(NAME,IDX) BB_##NAME = 1 << IDX ,
176 enum cfg_bb_flags
177 {
178 #include "cfg-flags.def"
179   LAST_CFG_BB_FLAG		/* this is only used for BB_ALL_FLAGS */
180 };
181 #undef DEF_BASIC_BLOCK_FLAG
182 
183 /* Bit mask for all basic block flags.  */
184 #define BB_ALL_FLAGS		((LAST_CFG_BB_FLAG - 1) * 2 - 1)
185 
186 /* Bit mask for all basic block flags that must be preserved.  These are
187    the bit masks that are *not* cleared by clear_bb_flags.  */
188 #define BB_FLAGS_TO_PRESERVE					\
189   (BB_DISABLE_SCHEDULE | BB_RTL | BB_NON_LOCAL_GOTO_TARGET	\
190    | BB_HOT_PARTITION | BB_COLD_PARTITION)
191 
192 /* Dummy bitmask for convenience in the hot/cold partitioning code.  */
193 #define BB_UNPARTITIONED	0
194 
195 /* Partitions, to be used when partitioning hot and cold basic blocks into
196    separate sections.  */
197 #define BB_PARTITION(bb) ((bb)->flags & (BB_HOT_PARTITION|BB_COLD_PARTITION))
198 #define BB_SET_PARTITION(bb, part) do {					\
199   basic_block bb_ = (bb);						\
200   bb_->flags = ((bb_->flags & ~(BB_HOT_PARTITION|BB_COLD_PARTITION))	\
201 		| (part));						\
202 } while (0)
203 
204 #define BB_COPY_PARTITION(dstbb, srcbb) \
205   BB_SET_PARTITION (dstbb, BB_PARTITION (srcbb))
206 
207 /* Defines for accessing the fields of the CFG structure for function FN.  */
208 #define ENTRY_BLOCK_PTR_FOR_FN(FN)	     ((FN)->cfg->x_entry_block_ptr)
209 #define EXIT_BLOCK_PTR_FOR_FN(FN)	     ((FN)->cfg->x_exit_block_ptr)
210 #define basic_block_info_for_fn(FN)	     ((FN)->cfg->x_basic_block_info)
211 #define n_basic_blocks_for_fn(FN)	     ((FN)->cfg->x_n_basic_blocks)
212 #define n_edges_for_fn(FN)		     ((FN)->cfg->x_n_edges)
213 #define last_basic_block_for_fn(FN)	     ((FN)->cfg->x_last_basic_block)
214 #define label_to_block_map_for_fn(FN)	     ((FN)->cfg->x_label_to_block_map)
215 #define profile_status_for_fn(FN)	     ((FN)->cfg->x_profile_status)
216 
217 #define BASIC_BLOCK_FOR_FN(FN,N) \
218   ((*basic_block_info_for_fn (FN))[(N)])
219 #define SET_BASIC_BLOCK_FOR_FN(FN,N,BB) \
220   ((*basic_block_info_for_fn (FN))[(N)] = (BB))
221 
222 /* For iterating over basic blocks.  */
223 #define FOR_BB_BETWEEN(BB, FROM, TO, DIR) \
224   for (BB = FROM; BB != TO; BB = BB->DIR)
225 
226 #define FOR_EACH_BB_FN(BB, FN) \
227   FOR_BB_BETWEEN (BB, (FN)->cfg->x_entry_block_ptr->next_bb, (FN)->cfg->x_exit_block_ptr, next_bb)
228 
229 #define FOR_EACH_BB_REVERSE_FN(BB, FN) \
230   FOR_BB_BETWEEN (BB, (FN)->cfg->x_exit_block_ptr->prev_bb, (FN)->cfg->x_entry_block_ptr, prev_bb)
231 
232 /* For iterating over insns in basic block.  */
233 #define FOR_BB_INSNS(BB, INSN)			\
234   for ((INSN) = BB_HEAD (BB);			\
235        (INSN) && (INSN) != NEXT_INSN (BB_END (BB));	\
236        (INSN) = NEXT_INSN (INSN))
237 
238 /* For iterating over insns in basic block when we might remove the
239    current insn.  */
240 #define FOR_BB_INSNS_SAFE(BB, INSN, CURR)			\
241   for ((INSN) = BB_HEAD (BB), (CURR) = (INSN) ? NEXT_INSN ((INSN)): NULL;	\
242        (INSN) && (INSN) != NEXT_INSN (BB_END (BB));	\
243        (INSN) = (CURR), (CURR) = (INSN) ? NEXT_INSN ((INSN)) : NULL)
244 
245 #define FOR_BB_INSNS_REVERSE(BB, INSN)		\
246   for ((INSN) = BB_END (BB);			\
247        (INSN) && (INSN) != PREV_INSN (BB_HEAD (BB));	\
248        (INSN) = PREV_INSN (INSN))
249 
250 #define FOR_BB_INSNS_REVERSE_SAFE(BB, INSN, CURR)	\
251   for ((INSN) = BB_END (BB),(CURR) = (INSN) ? PREV_INSN ((INSN)) : NULL;	\
252        (INSN) && (INSN) != PREV_INSN (BB_HEAD (BB));	\
253        (INSN) = (CURR), (CURR) = (INSN) ? PREV_INSN ((INSN)) : NULL)
254 
255 /* Cycles through _all_ basic blocks, even the fake ones (entry and
256    exit block).  */
257 
258 #define FOR_ALL_BB_FN(BB, FN) \
259   for (BB = ENTRY_BLOCK_PTR_FOR_FN (FN); BB; BB = BB->next_bb)
260 
261 
262 /* Stuff for recording basic block info.  */
263 
264 /* For now, these will be functions (so that they can include checked casts
265    to rtx_insn.   Once the underlying fields are converted from rtx
266    to rtx_insn, these can be converted back to macros.  */
267 
268 #define BB_HEAD(B)      (B)->il.x.head_
269 #define BB_END(B)       (B)->il.x.rtl->end_
270 #define BB_HEADER(B)    (B)->il.x.rtl->header_
271 #define BB_FOOTER(B)    (B)->il.x.rtl->footer_
272 
273 /* Special block numbers [markers] for entry and exit.
274    Neither of them is supposed to hold actual statements.  */
275 #define ENTRY_BLOCK (0)
276 #define EXIT_BLOCK (1)
277 
278 /* The two blocks that are always in the cfg.  */
279 #define NUM_FIXED_BLOCKS (2)
280 
281 /* The base value for branch probability notes and edge probabilities.  */
282 #define REG_BR_PROB_BASE  10000
283 
284 /* This is the value which indicates no edge is present.  */
285 #define EDGE_INDEX_NO_EDGE	-1
286 
287 /* EDGE_INDEX returns an integer index for an edge, or EDGE_INDEX_NO_EDGE
288    if there is no edge between the 2 basic blocks.  */
289 #define EDGE_INDEX(el, pred, succ) (find_edge_index ((el), (pred), (succ)))
290 
291 /* INDEX_EDGE_PRED_BB and INDEX_EDGE_SUCC_BB return a pointer to the basic
292    block which is either the pred or succ end of the indexed edge.  */
293 #define INDEX_EDGE_PRED_BB(el, index)	((el)->index_to_edge[(index)]->src)
294 #define INDEX_EDGE_SUCC_BB(el, index)	((el)->index_to_edge[(index)]->dest)
295 
296 /* INDEX_EDGE returns a pointer to the edge.  */
297 #define INDEX_EDGE(el, index)           ((el)->index_to_edge[(index)])
298 
299 /* Number of edges in the compressed edge list.  */
300 #define NUM_EDGES(el)			((el)->num_edges)
301 
302 /* BB is assumed to contain conditional jump.  Return the fallthru edge.  */
303 #define FALLTHRU_EDGE(bb)		(EDGE_SUCC ((bb), 0)->flags & EDGE_FALLTHRU \
304 					 ? EDGE_SUCC ((bb), 0) : EDGE_SUCC ((bb), 1))
305 
306 /* BB is assumed to contain conditional jump.  Return the branch edge.  */
307 #define BRANCH_EDGE(bb)			(EDGE_SUCC ((bb), 0)->flags & EDGE_FALLTHRU \
308 					 ? EDGE_SUCC ((bb), 1) : EDGE_SUCC ((bb), 0))
309 
310 #define RDIV(X,Y) (((X) + (Y) / 2) / (Y))
311 /* Return expected execution frequency of the edge E.  */
312 #define EDGE_FREQUENCY(e)		RDIV ((e)->src->frequency * (e)->probability, \
313 					      REG_BR_PROB_BASE)
314 
315 /* Compute a scale factor (or probability) suitable for scaling of
316    gcov_type values via apply_probability() and apply_scale().  */
317 #define GCOV_COMPUTE_SCALE(num,den) \
318   ((den) ? RDIV ((num) * REG_BR_PROB_BASE, (den)) : REG_BR_PROB_BASE)
319 
320 /* Return nonzero if edge is critical.  */
321 #define EDGE_CRITICAL_P(e)		(EDGE_COUNT ((e)->src->succs) >= 2 \
322 					 && EDGE_COUNT ((e)->dest->preds) >= 2)
323 
324 #define EDGE_COUNT(ev)			vec_safe_length (ev)
325 #define EDGE_I(ev,i)			(*ev)[(i)]
326 #define EDGE_PRED(bb,i)			(*(bb)->preds)[(i)]
327 #define EDGE_SUCC(bb,i)			(*(bb)->succs)[(i)]
328 
329 /* Returns true if BB has precisely one successor.  */
330 
331 static inline bool
single_succ_p(const_basic_block bb)332 single_succ_p (const_basic_block bb)
333 {
334   return EDGE_COUNT (bb->succs) == 1;
335 }
336 
337 /* Returns true if BB has precisely one predecessor.  */
338 
339 static inline bool
single_pred_p(const_basic_block bb)340 single_pred_p (const_basic_block bb)
341 {
342   return EDGE_COUNT (bb->preds) == 1;
343 }
344 
345 /* Returns the single successor edge of basic block BB.  Aborts if
346    BB does not have exactly one successor.  */
347 
348 static inline edge
single_succ_edge(const_basic_block bb)349 single_succ_edge (const_basic_block bb)
350 {
351   gcc_checking_assert (single_succ_p (bb));
352   return EDGE_SUCC (bb, 0);
353 }
354 
355 /* Returns the single predecessor edge of basic block BB.  Aborts
356    if BB does not have exactly one predecessor.  */
357 
358 static inline edge
single_pred_edge(const_basic_block bb)359 single_pred_edge (const_basic_block bb)
360 {
361   gcc_checking_assert (single_pred_p (bb));
362   return EDGE_PRED (bb, 0);
363 }
364 
365 /* Returns the single successor block of basic block BB.  Aborts
366    if BB does not have exactly one successor.  */
367 
368 static inline basic_block
single_succ(const_basic_block bb)369 single_succ (const_basic_block bb)
370 {
371   return single_succ_edge (bb)->dest;
372 }
373 
374 /* Returns the single predecessor block of basic block BB.  Aborts
375    if BB does not have exactly one predecessor.*/
376 
377 static inline basic_block
single_pred(const_basic_block bb)378 single_pred (const_basic_block bb)
379 {
380   return single_pred_edge (bb)->src;
381 }
382 
383 /* Iterator object for edges.  */
384 
385 struct edge_iterator {
386   unsigned index;
387   vec<edge, va_gc> **container;
388 };
389 
390 static inline vec<edge, va_gc> *
ei_container(edge_iterator i)391 ei_container (edge_iterator i)
392 {
393   gcc_checking_assert (i.container);
394   return *i.container;
395 }
396 
397 #define ei_start(iter) ei_start_1 (&(iter))
398 #define ei_last(iter) ei_last_1 (&(iter))
399 
400 /* Return an iterator pointing to the start of an edge vector.  */
401 static inline edge_iterator
ei_start_1(vec<edge,va_gc> ** ev)402 ei_start_1 (vec<edge, va_gc> **ev)
403 {
404   edge_iterator i;
405 
406   i.index = 0;
407   i.container = ev;
408 
409   return i;
410 }
411 
412 /* Return an iterator pointing to the last element of an edge
413    vector.  */
414 static inline edge_iterator
ei_last_1(vec<edge,va_gc> ** ev)415 ei_last_1 (vec<edge, va_gc> **ev)
416 {
417   edge_iterator i;
418 
419   i.index = EDGE_COUNT (*ev) - 1;
420   i.container = ev;
421 
422   return i;
423 }
424 
425 /* Is the iterator `i' at the end of the sequence?  */
426 static inline bool
ei_end_p(edge_iterator i)427 ei_end_p (edge_iterator i)
428 {
429   return (i.index == EDGE_COUNT (ei_container (i)));
430 }
431 
432 /* Is the iterator `i' at one position before the end of the
433    sequence?  */
434 static inline bool
ei_one_before_end_p(edge_iterator i)435 ei_one_before_end_p (edge_iterator i)
436 {
437   return (i.index + 1 == EDGE_COUNT (ei_container (i)));
438 }
439 
440 /* Advance the iterator to the next element.  */
441 static inline void
ei_next(edge_iterator * i)442 ei_next (edge_iterator *i)
443 {
444   gcc_checking_assert (i->index < EDGE_COUNT (ei_container (*i)));
445   i->index++;
446 }
447 
448 /* Move the iterator to the previous element.  */
449 static inline void
ei_prev(edge_iterator * i)450 ei_prev (edge_iterator *i)
451 {
452   gcc_checking_assert (i->index > 0);
453   i->index--;
454 }
455 
456 /* Return the edge pointed to by the iterator `i'.  */
457 static inline edge
ei_edge(edge_iterator i)458 ei_edge (edge_iterator i)
459 {
460   return EDGE_I (ei_container (i), i.index);
461 }
462 
463 /* Return an edge pointed to by the iterator.  Do it safely so that
464    NULL is returned when the iterator is pointing at the end of the
465    sequence.  */
466 static inline edge
ei_safe_edge(edge_iterator i)467 ei_safe_edge (edge_iterator i)
468 {
469   return !ei_end_p (i) ? ei_edge (i) : NULL;
470 }
471 
472 /* Return 1 if we should continue to iterate.  Return 0 otherwise.
473    *Edge P is set to the next edge if we are to continue to iterate
474    and NULL otherwise.  */
475 
476 static inline bool
ei_cond(edge_iterator ei,edge * p)477 ei_cond (edge_iterator ei, edge *p)
478 {
479   if (!ei_end_p (ei))
480     {
481       *p = ei_edge (ei);
482       return 1;
483     }
484   else
485     {
486       *p = NULL;
487       return 0;
488     }
489 }
490 
491 /* This macro serves as a convenient way to iterate each edge in a
492    vector of predecessor or successor edges.  It must not be used when
493    an element might be removed during the traversal, otherwise
494    elements will be missed.  Instead, use a for-loop like that shown
495    in the following pseudo-code:
496 
497    FOR (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
498      {
499 	IF (e != taken_edge)
500 	  remove_edge (e);
501 	ELSE
502 	  ei_next (&ei);
503      }
504 */
505 
506 #define FOR_EACH_EDGE(EDGE,ITER,EDGE_VEC)	\
507   for ((ITER) = ei_start ((EDGE_VEC));		\
508        ei_cond ((ITER), &(EDGE));		\
509        ei_next (&(ITER)))
510 
511 #define CLEANUP_EXPENSIVE	1	/* Do relatively expensive optimizations
512 					   except for edge forwarding */
513 #define CLEANUP_CROSSJUMP	2	/* Do crossjumping.  */
514 #define CLEANUP_POST_REGSTACK	4	/* We run after reg-stack and need
515 					   to care REG_DEAD notes.  */
516 #define CLEANUP_THREADING	8	/* Do jump threading.  */
517 #define CLEANUP_NO_INSN_DEL	16	/* Do not try to delete trivially dead
518 					   insns.  */
519 #define CLEANUP_CFGLAYOUT	32	/* Do cleanup in cfglayout mode.  */
520 #define CLEANUP_CFG_CHANGED	64      /* The caller changed the CFG.  */
521 
522 /* Return true if BB is in a transaction.  */
523 
524 static inline bool
bb_in_transaction(basic_block bb)525 bb_in_transaction (basic_block bb)
526 {
527   return bb->flags & BB_IN_TRANSACTION;
528 }
529 
530 /* Return true when one of the predecessor edges of BB is marked with EDGE_EH.  */
531 static inline bool
bb_has_eh_pred(basic_block bb)532 bb_has_eh_pred (basic_block bb)
533 {
534   edge e;
535   edge_iterator ei;
536 
537   FOR_EACH_EDGE (e, ei, bb->preds)
538     {
539       if (e->flags & EDGE_EH)
540 	return true;
541     }
542   return false;
543 }
544 
545 /* Return true when one of the predecessor edges of BB is marked with EDGE_ABNORMAL.  */
546 static inline bool
bb_has_abnormal_pred(basic_block bb)547 bb_has_abnormal_pred (basic_block bb)
548 {
549   edge e;
550   edge_iterator ei;
551 
552   FOR_EACH_EDGE (e, ei, bb->preds)
553     {
554       if (e->flags & EDGE_ABNORMAL)
555 	return true;
556     }
557   return false;
558 }
559 
560 /* Return the fallthru edge in EDGES if it exists, NULL otherwise.  */
561 static inline edge
find_fallthru_edge(vec<edge,va_gc> * edges)562 find_fallthru_edge (vec<edge, va_gc> *edges)
563 {
564   edge e;
565   edge_iterator ei;
566 
567   FOR_EACH_EDGE (e, ei, edges)
568     if (e->flags & EDGE_FALLTHRU)
569       break;
570 
571   return e;
572 }
573 
574 /* Check tha probability is sane.  */
575 
576 static inline void
check_probability(int prob)577 check_probability (int prob)
578 {
579   gcc_checking_assert (prob >= 0 && prob <= REG_BR_PROB_BASE);
580 }
581 
582 /* Given PROB1 and PROB2, return PROB1*PROB2/REG_BR_PROB_BASE.
583    Used to combine BB probabilities.  */
584 
585 static inline int
combine_probabilities(int prob1,int prob2)586 combine_probabilities (int prob1, int prob2)
587 {
588   check_probability (prob1);
589   check_probability (prob2);
590   return RDIV (prob1 * prob2, REG_BR_PROB_BASE);
591 }
592 
593 /* Apply scale factor SCALE on frequency or count FREQ. Use this
594    interface when potentially scaling up, so that SCALE is not
595    constrained to be < REG_BR_PROB_BASE.  */
596 
597 static inline gcov_type
apply_scale(gcov_type freq,gcov_type scale)598 apply_scale (gcov_type freq, gcov_type scale)
599 {
600   return RDIV (freq * scale, REG_BR_PROB_BASE);
601 }
602 
603 /* Apply probability PROB on frequency or count FREQ.  */
604 
605 static inline gcov_type
apply_probability(gcov_type freq,int prob)606 apply_probability (gcov_type freq, int prob)
607 {
608   check_probability (prob);
609   return apply_scale (freq, prob);
610 }
611 
612 /* Return inverse probability for PROB.  */
613 
614 static inline int
inverse_probability(int prob1)615 inverse_probability (int prob1)
616 {
617   check_probability (prob1);
618   return REG_BR_PROB_BASE - prob1;
619 }
620 
621 /* Return true if BB has at least one abnormal outgoing edge.  */
622 
623 static inline bool
has_abnormal_or_eh_outgoing_edge_p(basic_block bb)624 has_abnormal_or_eh_outgoing_edge_p (basic_block bb)
625 {
626   edge e;
627   edge_iterator ei;
628 
629   FOR_EACH_EDGE (e, ei, bb->succs)
630     if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
631       return true;
632 
633   return false;
634 }
635 
636 /* Return true when one of the predecessor edges of BB is marked with
637    EDGE_ABNORMAL_CALL or EDGE_EH.  */
638 
639 static inline bool
has_abnormal_call_or_eh_pred_edge_p(basic_block bb)640 has_abnormal_call_or_eh_pred_edge_p (basic_block bb)
641 {
642   edge e;
643   edge_iterator ei;
644 
645   FOR_EACH_EDGE (e, ei, bb->preds)
646     if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
647       return true;
648 
649   return false;
650 }
651 
652 #endif /* GCC_BASIC_BLOCK_H */
653