1 /* Definitions of target machine for GNU compiler.
2    Matsushita MN10300 series
3    Copyright (C) 1996-2016 Free Software Foundation, Inc.
4    Contributed by Jeff Law (law@cygnus.com).
5 
6    This file is part of GCC.
7 
8    GCC is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License as published by
10    the Free Software Foundation; either version 3, or (at your option)
11    any later version.
12 
13    GCC is distributed in the hope that it will be useful,
14    but WITHOUT ANY WARRANTY; without even the implied warranty of
15    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16    GNU General Public License for more details.
17 
18    You should have received a copy of the GNU General Public License
19    along with GCC; see the file COPYING3.  If not see
20    <http://www.gnu.org/licenses/>.  */
21 
22 #undef ASM_SPEC
23 #undef LIB_SPEC
24 #undef ENDFILE_SPEC
25 #undef  LINK_SPEC
26 #define LINK_SPEC "%{mrelax:%{!r:--relax}}"
27 #undef  STARTFILE_SPEC
28 #define STARTFILE_SPEC "%{!mno-crt0:%{!shared:%{pg:gcrt0%O%s}%{!pg:%{p:mcrt0%O%s}%{!p:crt0%O%s}}}}"
29 
30 /* Names to predefine in the preprocessor for this target machine.  */
31 
32 #define TARGET_CPU_CPP_BUILTINS()		\
33   do						\
34     {						\
35       builtin_define ("__mn10300__");		\
36       builtin_define ("__MN10300__");		\
37       builtin_assert ("cpu=mn10300");		\
38       builtin_assert ("machine=mn10300");	\
39 						\
40       if (TARGET_AM34)				\
41         { 					\
42           builtin_define ("__AM33__=4");	\
43           builtin_define ("__AM34__");		\
44         }					\
45       else if (TARGET_AM33_2)			\
46         { 					\
47           builtin_define ("__AM33__=2");	\
48           builtin_define ("__AM33_2__");	\
49         }					\
50       else if (TARGET_AM33)			\
51         builtin_define ("__AM33__=1");		\
52 						\
53       builtin_define (TARGET_ALLOW_LIW ?	\
54 		      "__LIW__" : "__NO_LIW__");\
55 						\
56       builtin_define (TARGET_ALLOW_SETLB  ?	\
57 		      "__SETLB__" : "__NO_SETLB__");\
58     }						\
59   while (0)
60 
61 #ifndef MN10300_OPTS_H
62 #include "config/mn10300/mn10300-opts.h"
63 #endif
64 
65 extern enum processor_type mn10300_tune_cpu;
66 
67 #define TARGET_AM33	(mn10300_processor >= PROCESSOR_AM33)
68 #define TARGET_AM33_2	(mn10300_processor >= PROCESSOR_AM33_2)
69 #define TARGET_AM34	(mn10300_processor >= PROCESSOR_AM34)
70 
71 #ifndef PROCESSOR_DEFAULT
72 #define PROCESSOR_DEFAULT PROCESSOR_MN10300
73 #endif
74 
75 
76 /* Target machine storage layout */
77 
78 /* Define this if most significant bit is lowest numbered
79    in instructions that operate on numbered bit-fields.
80    This is not true on the Matsushita MN1003.  */
81 #define BITS_BIG_ENDIAN 0
82 
83 /* Define this if most significant byte of a word is the lowest numbered.  */
84 /* This is not true on the Matsushita MN10300.  */
85 #define BYTES_BIG_ENDIAN 0
86 
87 /* Define this if most significant word of a multiword number is lowest
88    numbered.
89    This is not true on the Matsushita MN10300.  */
90 #define WORDS_BIG_ENDIAN 0
91 
92 /* Width of a word, in units (bytes).  */
93 #define UNITS_PER_WORD		4
94 
95 /* Allocation boundary (in *bits*) for storing arguments in argument list.  */
96 #define PARM_BOUNDARY		32
97 
98 /* The stack goes in 32-bit lumps.  */
99 #define STACK_BOUNDARY 		32
100 
101 /* Allocation boundary (in *bits*) for the code of a function.
102    8 is the minimum boundary; it's unclear if bigger alignments
103    would improve performance.  */
104 #define FUNCTION_BOUNDARY 8
105 
106 /* No data type wants to be aligned rounder than this.  */
107 #define BIGGEST_ALIGNMENT	32
108 
109 /* Alignment of field after `int : 0' in a structure.  */
110 #define EMPTY_FIELD_BOUNDARY    32
111 
112 /* Define this if move instructions will actually fail to work
113    when given unaligned data.  */
114 #define STRICT_ALIGNMENT 1
115 
116 /* Define this as 1 if `char' should by default be signed; else as 0.  */
117 #define DEFAULT_SIGNED_CHAR 0
118 
119 #undef  SIZE_TYPE
120 #define SIZE_TYPE "unsigned int"
121 
122 #undef  PTRDIFF_TYPE
123 #define PTRDIFF_TYPE "int"
124 
125 #undef  WCHAR_TYPE
126 #define WCHAR_TYPE "long int"
127 
128 #undef  WCHAR_TYPE_SIZE
129 #define WCHAR_TYPE_SIZE BITS_PER_WORD
130 
131 /* Standard register usage.  */
132 
133 /* Number of actual hardware registers.
134    The hardware registers are assigned numbers for the compiler
135    from 0 to just below FIRST_PSEUDO_REGISTER.
136 
137    All registers that the compiler knows about must be given numbers,
138    even those that are not normally considered general registers.  */
139 
140 #define FIRST_PSEUDO_REGISTER 52
141 
142 /* Specify machine-specific register numbers.  The commented out entries
143    are defined in mn10300.md.  */
144 #define FIRST_DATA_REGNUM      0
145 #define LAST_DATA_REGNUM       3
146 #define FIRST_ADDRESS_REGNUM   4
147 /* #define PIC_REG             6 */
148 #define LAST_ADDRESS_REGNUM    8
149 /* #define SP_REG              9 */
150 #define FIRST_EXTENDED_REGNUM 10
151 #define LAST_EXTENDED_REGNUM  17
152 #define FIRST_FP_REGNUM       18
153 #define LAST_FP_REGNUM        49
154 /* #define MDR_REG            50 */
155 /* #define CC_REG             51 */
156 #define FIRST_ARGUMENT_REGNUM  0
157 
158 /* Specify the registers used for certain standard purposes.
159    The values of these macros are register numbers.  */
160 
161 /* Register to use for pushing function arguments.  */
162 #define STACK_POINTER_REGNUM (LAST_ADDRESS_REGNUM + 1)
163 
164 /* Base register for access to local variables of the function.  */
165 #define FRAME_POINTER_REGNUM (LAST_ADDRESS_REGNUM - 1)
166 
167 /* Base register for access to arguments of the function.  This
168    is a fake register and will be eliminated into either the frame
169    pointer or stack pointer.  */
170 #define ARG_POINTER_REGNUM LAST_ADDRESS_REGNUM
171 
172 /* Register in which static-chain is passed to a function.  */
173 #define STATIC_CHAIN_REGNUM (FIRST_ADDRESS_REGNUM + 1)
174 
175 /* 1 for registers that have pervasive standard uses
176    and are not available for the register allocator.  */
177 
178 #define FIXED_REGISTERS \
179   { 0, 0, 0, 0,				/* data regs */		\
180     0, 0, 0, 0,				/* addr regs */		\
181     1,					/* arg reg */		\
182     1,					/* sp reg */		\
183     0, 0, 0, 0, 0, 0, 0, 0,		/* extended regs */	\
184     0, 0,				/* fp regs (18-19) */	\
185     0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	/* fp regs (20-29) */	\
186     0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	/* fp regs (30-39) */	\
187     0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	/* fp regs (40-49) */	\
188     0,					/* mdr reg */		\
189     1					/* cc reg */		\
190   }
191 
192 /* 1 for registers not available across function calls.
193    These must include the FIXED_REGISTERS and also any
194    registers that can be used without being saved.
195    The latter must include the registers where values are returned
196    and the register where structure-value addresses are passed.
197    Aside from that, you can include as many other registers as you
198    like.  */
199 
200 #define CALL_USED_REGISTERS \
201   { 1, 1, 0, 0,				/* data regs */		\
202     1, 1, 0, 0,				/* addr regs */		\
203     1,					/* arg reg */		\
204     1,					/* sp reg */		\
205     1, 1, 1, 1, 0, 0, 0, 0,		/* extended regs */	\
206     1, 1,				/* fp regs (18-19) */	\
207     1, 1, 0, 0, 0, 0, 0, 0, 0, 0,	/* fp regs (20-29) */	\
208     0, 0, 0, 0, 0, 0, 0, 0, 1, 1,	/* fp regs (30-39) */	\
209     1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	/* fp regs (40-49) */	\
210     1,					/* mdr reg */		\
211     1					/* cc reg */		\
212   }
213 
214 /* Note: The definition of CALL_REALLY_USED_REGISTERS is not
215    redundant.  It is needed when compiling in PIC mode because
216    the a2 register becomes fixed (and hence must be marked as
217    call_used) but in order to preserve the ABI it is not marked
218    as call_really_used.  */
219 #define CALL_REALLY_USED_REGISTERS CALL_USED_REGISTERS
220 
221 #define REG_ALLOC_ORDER \
222   { 0, 1, 4, 5, 2, 3, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 8, 9 \
223   , 42, 43, 44, 45, 46, 47, 48, 49, 34, 35, 36, 37, 38, 39, 40, 41 \
224   , 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 50, 51 \
225   }
226 
227 /* Return number of consecutive hard regs needed starting at reg REGNO
228    to hold something of mode MODE.
229 
230    This is ordinarily the length in words of a value of mode MODE
231    but can be less for certain modes in special long registers.  */
232 
233 #define HARD_REGNO_NREGS(REGNO, MODE)   \
234   ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
235 
236 /* Value is 1 if hard register REGNO can hold a value of machine-mode
237    MODE.  */
238 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
239   mn10300_hard_regno_mode_ok ((REGNO), (MODE))
240 
241 /* Value is 1 if it is a good idea to tie two pseudo registers
242    when one has mode MODE1 and one has mode MODE2.
243    If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
244    for any hard reg, then this must be 0 for correct output.  */
245 #define MODES_TIEABLE_P(MODE1, MODE2) \
246   mn10300_modes_tieable ((MODE1), (MODE2))
247 
248 /* 4 data, and effectively 3 address registers is small as far as I'm
249    concerned.  */
250 #define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
251 
252 /* Define the classes of registers for register constraints in the
253    machine description.  Also define ranges of constants.
254 
255    One of the classes must always be named ALL_REGS and include all hard regs.
256    If there is more than one class, another class must be named NO_REGS
257    and contain no registers.
258 
259    The name GENERAL_REGS must be the name of a class (or an alias for
260    another name such as ALL_REGS).  This is the class of registers
261    that is allowed by "g" or "r" in a register constraint.
262    Also, registers outside this class are allocated only when
263    instructions express preferences for them.
264 
265    The classes must be numbered in nondecreasing order; that is,
266    a larger-numbered class must never be contained completely
267    in a smaller-numbered class.
268 
269    For any two classes, it is very desirable that there be another
270    class that represents their union.  */
271 
272 enum reg_class
273 {
274   NO_REGS, DATA_REGS, ADDRESS_REGS, SP_REGS, SP_OR_ADDRESS_REGS,
275   EXTENDED_REGS, FP_REGS, FP_ACC_REGS, CC_REGS, MDR_REGS,
276   GENERAL_REGS, SP_OR_GENERAL_REGS, ALL_REGS, LIM_REG_CLASSES
277 };
278 
279 #define N_REG_CLASSES (int) LIM_REG_CLASSES
280 
281 /* Give names of register classes as strings for dump file.  */
282 
283 #define REG_CLASS_NAMES					   		\
284 { "NO_REGS", "DATA_REGS", "ADDRESS_REGS", "SP_REGS", "SP_OR_ADDRESS_REGS", \
285   "EXTENDED_REGS", "FP_REGS", "FP_ACC_REGS", "CC_REGS", "MDR_REGS",	\
286   "GENERAL_REGS", "SP_OR_GENERAL_REGS", "ALL_REGS", "LIM_REGS"		\
287 }
288 
289 /* Define which registers fit in which classes.
290    This is an initializer for a vector of HARD_REG_SET
291    of length N_REG_CLASSES.  */
292 
293 #define REG_CLASS_CONTENTS					\
294 { { 0,	        0 },	  /* No regs */				\
295   { 0x0000000f, 0 },	  /* DATA_REGS */			\
296   { 0x000001f0, 0 },	  /* ADDRESS_REGS */			\
297   { 0x00000200, 0 },	  /* SP_REGS */				\
298   { 0x000003f0, 0 },	  /* SP_OR_ADDRESS_REGS */		\
299   { 0x0003fc00, 0 },	  /* EXTENDED_REGS */			\
300   { 0xfffc0000, 0x3ffff },/* FP_REGS */				\
301   { 0x03fc0000, 0 },	  /* FP_ACC_REGS */			\
302   { 0x00000000, 0x80000 },/* CC_REGS */				\
303   { 0x00000000, 0x40000 },/* MDR_REGS */			\
304   { 0x0003fdff, 0 }, 	  /* GENERAL_REGS */			\
305   { 0x0003ffff, 0 },      /* SP_OR_GENERAL_REGS */		\
306   { 0xffffffff, 0xfffff } /* ALL_REGS */			\
307 }
308 
309 /* The same information, inverted:
310    Return the class number of the smallest class containing
311    reg number REGNO.  This could be a conditional expression
312    or could index an array.  */
313 
314 #define REGNO_REG_CLASS(REGNO)			     \
315   ((REGNO) <= LAST_DATA_REGNUM ? DATA_REGS :	     \
316    (REGNO) <= LAST_ADDRESS_REGNUM ? ADDRESS_REGS :   \
317    (REGNO) == STACK_POINTER_REGNUM ? SP_REGS :	     \
318    (REGNO) <= LAST_EXTENDED_REGNUM ? EXTENDED_REGS : \
319    (REGNO) <= LAST_FP_REGNUM ? FP_REGS :	     \
320    (REGNO) == MDR_REG ? MDR_REGS :		     \
321    (REGNO) == CC_REG ? CC_REGS :		     \
322    NO_REGS)
323 
324 /* The class value for index registers, and the one for base regs.  */
325 #define INDEX_REG_CLASS \
326   (TARGET_AM33 ? GENERAL_REGS : DATA_REGS)
327 #define BASE_REG_CLASS \
328   (TARGET_AM33 ? SP_OR_GENERAL_REGS : SP_OR_ADDRESS_REGS)
329 
330 /* Macros to check register numbers against specific register classes.  */
331 
332 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
333    and check its validity for a certain class.
334    We have two alternate definitions for each of them.
335    The usual definition accepts all pseudo regs; the other rejects
336    them unless they have been allocated suitable hard regs.
337    The symbol REG_OK_STRICT causes the latter definition to be used.
338 
339    Most source files want to accept pseudo regs in the hope that
340    they will get allocated to the class that the insn wants them to be in.
341    Source files for reload pass need to be strict.
342    After reload, it makes no difference, since pseudo regs have
343    been eliminated by then.  */
344 
345 /* These assume that REGNO is a hard or pseudo reg number.
346    They give nonzero only if REGNO is a hard reg of the suitable class
347    or a pseudo reg currently allocated to a suitable hard reg.
348    Since they use reg_renumber, they are safe only once reg_renumber
349    has been allocated, which happens in reginfo.c during register
350    allocation.  */
351 
352 #ifndef REG_OK_STRICT
353 # define REG_STRICT 0
354 #else
355 # define REG_STRICT 1
356 #endif
357 
358 #define REGNO_DATA_P(regno, strict) \
359   mn10300_regno_in_class_p (regno, DATA_REGS, strict)
360 #define REGNO_ADDRESS_P(regno, strict) \
361   mn10300_regno_in_class_p (regno, ADDRESS_REGS, strict)
362 #define REGNO_EXTENDED_P(regno, strict) \
363   mn10300_regno_in_class_p (regno, EXTENDED_REGS, strict)
364 #define REGNO_GENERAL_P(regno, strict) \
365   mn10300_regno_in_class_p (regno, GENERAL_REGS, strict)
366 
367 #define REGNO_STRICT_OK_FOR_BASE_P(regno, strict) \
368   mn10300_regno_in_class_p (regno, BASE_REG_CLASS, strict)
369 #define REGNO_OK_FOR_BASE_P(regno) \
370   (REGNO_STRICT_OK_FOR_BASE_P ((regno), REG_STRICT))
371 #define REG_OK_FOR_BASE_P(X) \
372   (REGNO_OK_FOR_BASE_P (REGNO (X)))
373 
374 #define REGNO_STRICT_OK_FOR_BIT_BASE_P(regno, strict) \
375   mn10300_regno_in_class_p (regno, ADDRESS_REGS, strict)
376 #define REGNO_OK_FOR_BIT_BASE_P(regno) \
377   (REGNO_STRICT_OK_FOR_BIT_BASE_P ((regno), REG_STRICT))
378 #define REG_OK_FOR_BIT_BASE_P(X) \
379   (REGNO_OK_FOR_BIT_BASE_P (REGNO (X)))
380 
381 #define REGNO_STRICT_OK_FOR_INDEX_P(regno, strict) \
382   mn10300_regno_in_class_p (regno, INDEX_REG_CLASS, strict)
383 #define REGNO_OK_FOR_INDEX_P(regno) \
384   (REGNO_STRICT_OK_FOR_INDEX_P ((regno), REG_STRICT))
385 #define REG_OK_FOR_INDEX_P(X) \
386   (REGNO_OK_FOR_INDEX_P (REGNO (X)))
387 
388 #define LIMIT_RELOAD_CLASS(MODE, CLASS) \
389   (!TARGET_AM33 && (MODE == QImode || MODE == HImode) ? DATA_REGS : CLASS)
390 
391 /* A class that contains registers which the compiler must always
392    access in a mode that is the same size as the mode in which it
393    loaded the register.  */
394 #define CLASS_CANNOT_CHANGE_SIZE FP_REGS
395 
396 /* Return 1 if VALUE is in the range specified.  */
397 
398 #define INT_8_BITS(VALUE) ((unsigned) (VALUE) + 0x80 < 0x100)
399 #define INT_16_BITS(VALUE) ((unsigned) (VALUE) + 0x8000 < 0x10000)
400 
401 
402 /* Stack layout; function entry, exit and calling.  */
403 
404 /* Define this if pushing a word on the stack
405    makes the stack pointer a smaller address.  */
406 
407 #define STACK_GROWS_DOWNWARD 1
408 
409 /* Define this to nonzero if the nominal address of the stack frame
410    is at the high-address end of the local variables;
411    that is, each additional local variable allocated
412    goes at a more negative offset in the frame.  */
413 
414 #define FRAME_GROWS_DOWNWARD 1
415 
416 /* Offset within stack frame to start allocating local variables at.
417    If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
418    first local allocated.  Otherwise, it is the offset to the BEGINNING
419    of the first local allocated.  */
420 
421 #define STARTING_FRAME_OFFSET 0
422 
423 /* Offset of first parameter from the argument pointer register value.  */
424 /* Is equal to the size of the saved fp + pc, even if an fp isn't
425    saved since the value is used before we know.  */
426 
427 #define FIRST_PARM_OFFSET(FNDECL) 4
428 
429 /* But the CFA is at the arg pointer directly, not at the first argument.  */
430 #define ARG_POINTER_CFA_OFFSET(FNDECL) 0
431 
432 #define ELIMINABLE_REGS				\
433 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM},	\
434  { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM},	\
435  { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
436 
437 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
438   OFFSET = mn10300_initial_offset (FROM, TO)
439 
440 /* We use d0/d1 for passing parameters, so allocate 8 bytes of space
441    for a register flushback area.  */
442 #define REG_PARM_STACK_SPACE(DECL) 8
443 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
444 #define ACCUMULATE_OUTGOING_ARGS 1
445 
446 /* So we can allocate space for return pointers once for the function
447    instead of around every call.  */
448 #define STACK_POINTER_OFFSET 4
449 
450 /* 1 if N is a possible register number for function argument passing.
451    On the MN10300, d0 and d1 are used in this way.  */
452 
453 #define FUNCTION_ARG_REGNO_P(N) ((N) <= 1)
454 
455 
456 /* Define a data type for recording info about an argument list
457    during the scan of that argument list.  This data type should
458    hold all necessary information about the function itself
459    and about the args processed so far, enough to enable macros
460    such as FUNCTION_ARG to determine where the next arg should go.
461 
462    On the MN10300, this is a single integer, which is a number of bytes
463    of arguments scanned so far.  */
464 
465 #define CUMULATIVE_ARGS struct cum_arg
466 
467 struct cum_arg
468 {
469   int nbytes;
470 };
471 
472 /* Initialize a variable CUM of type CUMULATIVE_ARGS
473    for a call to a function whose data type is FNTYPE.
474    For a library call, FNTYPE is 0.
475 
476    On the MN10300, the offset starts at 0.  */
477 
478 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
479  ((CUM).nbytes = 0)
480 
481 #define FUNCTION_VALUE_REGNO_P(N)  mn10300_function_value_regno_p (N)
482 
483 #define DEFAULT_PCC_STRUCT_RETURN 0
484 
485 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
486    the stack pointer does not matter.  The value is tested only in
487    functions that have frame pointers.
488    No definition is equivalent to always zero.  */
489 
490 #define EXIT_IGNORE_STACK 1
491 
492 /* Output assembler code to FILE to increment profiler label # LABELNO
493    for profiling a function entry.  */
494 
495 #define FUNCTION_PROFILER(FILE, LABELNO) ;
496 
497 /* Length in units of the trampoline for entering a nested function.  */
498 
499 #define TRAMPOLINE_SIZE		16
500 #define TRAMPOLINE_ALIGNMENT	32
501 
502 /* A C expression whose value is RTL representing the value of the return
503    address for the frame COUNT steps up from the current frame.
504 
505    On the mn10300, the return address is not at a constant location
506    due to the frame layout.  Luckily, it is at a constant offset from
507    the argument pointer, so we define RETURN_ADDR_RTX to return a
508    MEM using arg_pointer_rtx.  Reload will replace arg_pointer_rtx
509    with a reference to the stack/frame pointer + an appropriate offset.  */
510 
511 #define RETURN_ADDR_RTX(COUNT, FRAME)   \
512   ((COUNT == 0)                         \
513    ? gen_rtx_MEM (Pmode, arg_pointer_rtx) \
514    : (rtx) 0)
515 
516 /* The return address is saved both in the stack and in MDR.  Using
517    the stack location is handiest for what unwinding needs.  */
518 #define INCOMING_RETURN_ADDR_RTX \
519   gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
520 
521 /* Maximum number of registers that can appear in a valid memory address.  */
522 
523 #define MAX_REGS_PER_ADDRESS 2
524 
525 
526 /* We have post-increments.  */
527 #define HAVE_POST_INCREMENT	TARGET_AM33
528 #define HAVE_POST_MODIFY_DISP	TARGET_AM33
529 
530 /* ... But we don't want to use them for block moves.  Small offsets are
531    just as effective, at least for inline block move sizes, and appears
532    to produce cleaner code.  */
533 #define USE_LOAD_POST_INCREMENT(M)	0
534 #define USE_STORE_POST_INCREMENT(M)	0
535 
536 /* Accept either REG or SUBREG where a register is valid.  */
537 
538 #define RTX_OK_FOR_BASE_P(X, strict)				\
539   ((REG_P (X) && REGNO_STRICT_OK_FOR_BASE_P (REGNO (X),		\
540  					     (strict))) 	\
541    || (GET_CODE (X) == SUBREG && REG_P (SUBREG_REG (X))		\
542        && REGNO_STRICT_OK_FOR_BASE_P (REGNO (SUBREG_REG (X)),	\
543  				      (strict))))
544 
545 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_L,WIN)		     \
546 do {									     \
547   rtx new_x = mn10300_legitimize_reload_address (X, MODE, OPNUM, TYPE, IND_L); \
548   if (new_x)								     \
549     {									     \
550       X = new_x;							     \
551       goto WIN;								     \
552     }									     \
553 } while (0)
554 
555 
556 /* Zero if this needs fixing up to become PIC.  */
557 
558 #define LEGITIMATE_PIC_OPERAND_P(X) \
559   mn10300_legitimate_pic_operand_p (X)
560 
561 /* Register to hold the addressing base for
562    position independent code access to data items.  */
563 #define PIC_OFFSET_TABLE_REGNUM	PIC_REG
564 
565 /* The name of the pseudo-symbol representing the Global Offset Table.  */
566 #define GOT_SYMBOL_NAME "*_GLOBAL_OFFSET_TABLE_"
567 
568 #define SYMBOLIC_CONST_P(X)	\
569 ((GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == LABEL_REF)	\
570   && ! LEGITIMATE_PIC_OPERAND_P (X))
571 
572 /* Non-global SYMBOL_REFs have SYMBOL_REF_FLAG enabled.  */
573 #define MN10300_GLOBAL_P(X) (! SYMBOL_REF_FLAG (X))
574 
575 #define SELECT_CC_MODE(OP, X, Y)  mn10300_select_cc_mode (OP, X, Y)
576 #define REVERSIBLE_CC_MODE(MODE)  0
577 
578 /* Nonzero if access to memory by bytes or half words is no faster
579    than accessing full words.  */
580 #define SLOW_BYTE_ACCESS 1
581 
582 #define NO_FUNCTION_CSE 1
583 
584 /* According expr.c, a value of around 6 should minimize code size, and
585    for the MN10300 series, that's our primary concern.  */
586 #define MOVE_RATIO(speed) 6
587 
588 #define TEXT_SECTION_ASM_OP "\t.section .text"
589 #define DATA_SECTION_ASM_OP "\t.section .data"
590 #define BSS_SECTION_ASM_OP  "\t.section .bss"
591 
592 #define ASM_COMMENT_START "#"
593 
594 /* Output to assembler file text saying following lines
595    may contain character constants, extra white space, comments, etc.  */
596 
597 #define ASM_APP_ON "#APP\n"
598 
599 /* Output to assembler file text saying following lines
600    no longer contain unusual constructs.  */
601 
602 #define ASM_APP_OFF "#NO_APP\n"
603 
604 #undef  USER_LABEL_PREFIX
605 #define USER_LABEL_PREFIX "_"
606 
607 /* This says how to output the assembler to define a global
608    uninitialized but not common symbol.
609    Try to use asm_output_bss to implement this macro.  */
610 
611 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
612   asm_output_aligned_bss ((FILE), (DECL), (NAME), (SIZE), (ALIGN))
613 
614 /* Globalizing directive for a label.  */
615 #define GLOBAL_ASM_OP "\t.global "
616 
617 /* This is how to output a reference to a user-level label named NAME.
618    `assemble_name' uses this.  */
619 
620 #undef  ASM_OUTPUT_LABELREF
621 #define ASM_OUTPUT_LABELREF(FILE, NAME) \
622   asm_fprintf (FILE, "%U%s", (*targetm.strip_name_encoding) (NAME))
623 
624 /* This is how we tell the assembler that two symbols have the same value.  */
625 
626 #define ASM_OUTPUT_DEF(FILE,NAME1,NAME2) \
627   do					 \
628     {					 \
629       assemble_name (FILE, NAME1);	 \
630       fputs (" = ", FILE);		 \
631       assemble_name (FILE, NAME2);	 \
632       fputc ('\n', FILE);		 \
633     }					 \
634   while (0)
635 
636 /* How to refer to registers in assembler output.
637    This sequence is indexed by compiler's hard-register-number (see above).  */
638 
639 #define REGISTER_NAMES							\
640 { "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3", "ap", "sp",		\
641   "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7"			\
642 , "fs0", "fs1", "fs2", "fs3", "fs4", "fs5", "fs6", "fs7"		\
643 , "fs8", "fs9", "fs10", "fs11", "fs12", "fs13", "fs14", "fs15"		\
644 , "fs16", "fs17", "fs18", "fs19", "fs20", "fs21", "fs22", "fs23"	\
645 , "fs24", "fs25", "fs26", "fs27", "fs28", "fs29", "fs30", "fs31"	\
646 , "mdr", "EPSW"								\
647 }
648 
649 #define ADDITIONAL_REGISTER_NAMES				\
650 { {"r8",  4}, {"r9",  5}, {"r10", 6}, {"r11", 7},		\
651   {"r12", 0}, {"r13", 1}, {"r14", 2}, {"r15", 3},		\
652   {"e0", 10}, {"e1", 11}, {"e2", 12}, {"e3", 13},		\
653   {"e4", 14}, {"e5", 15}, {"e6", 16}, {"e7", 17}		\
654 , {"fd0", 18}, {"fd2", 20}, {"fd4", 22}, {"fd6", 24}		\
655 , {"fd8", 26}, {"fd10", 28}, {"fd12", 30}, {"fd14", 32}		\
656 , {"fd16", 34}, {"fd18", 36}, {"fd20", 38}, {"fd22", 40}	\
657 , {"fd24", 42}, {"fd26", 44}, {"fd28", 46}, {"fd30", 48}	\
658 , {"cc", CC_REG}						\
659 }
660 
661 /* Print an instruction operand X on file FILE.
662    look in mn10300.c for details */
663 
664 #define PRINT_OPERAND(FILE, X, CODE) \
665   mn10300_print_operand (FILE, X, CODE)
666 
667 /* Print a memory operand whose address is X, on file FILE.
668    This uses a function in output-vax.c.  */
669 
670 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
671   mn10300_print_operand_address (FILE, ADDR)
672 
673 /* This is how to output an element of a case-vector that is absolute.  */
674 
675 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
676   fprintf (FILE, "\t%s .L%d\n", ".long", VALUE)
677 
678 /* This is how to output an element of a case-vector that is relative.  */
679 
680 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
681   fprintf (FILE, "\t%s .L%d-.L%d\n", ".long", VALUE, REL)
682 
683 #define ASM_OUTPUT_ALIGN(FILE,LOG)	\
684   if ((LOG) != 0)			\
685     fprintf (FILE, "\t.align %d\n", (LOG))
686 
687 /* We don't have to worry about dbx compatibility for the mn10300.  */
688 #define DEFAULT_GDB_EXTENSIONS 1
689 
690 /* Use dwarf2 debugging info by default.  */
691 #undef  PREFERRED_DEBUGGING_TYPE
692 #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
693 #define DWARF2_DEBUGGING_INFO 1
694 #define DWARF2_ASM_LINE_DEBUG_INFO 1
695 
696 /* Specify the machine mode that this machine uses
697    for the index in the tablejump instruction.  */
698 #define CASE_VECTOR_MODE Pmode
699 
700 /* Define if operations between registers always perform the operation
701    on the full register even if a narrower mode is specified.  */
702 #define WORD_REGISTER_OPERATIONS 1
703 
704 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
705 
706 /* Max number of bytes we can move from memory to memory
707    in one reasonably fast instruction.  */
708 #define MOVE_MAX	4
709 
710 /* Define if shifts truncate the shift count
711    which implies one can omit a sign-extension or zero-extension
712    of a shift count.  */
713 #define SHIFT_COUNT_TRUNCATED 1
714 
715 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
716    is done just by pretending it is already truncated.  */
717 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
718 
719 /* Specify the machine mode that pointers have.
720    After generation of rtl, the compiler makes no further distinction
721    between pointers and any other objects of this machine mode.  */
722 #define Pmode SImode
723 
724 /* A function address in a call instruction
725    is a byte address (for indexing purposes)
726    so give the MEM rtx a byte's mode.  */
727 #define FUNCTION_MODE QImode
728 
729 /* The assembler op to get a word.  */
730 
731 #define FILE_ASM_OP "\t.file\n"
732 
733