1 /* Register Transfer Language (RTL) definitions for GCC
2    Copyright (C) 1987-2016 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 #ifndef GCC_RTL_H
21 #define GCC_RTL_H
22 
23 /* This file is occasionally included by generator files which expect
24    machmode.h and other files to exist and would not normally have been
25    included by coretypes.h.  */
26 #ifdef GENERATOR_FILE
27 #include "machmode.h"
28 #include "signop.h"
29 #include "wide-int.h"
30 #include "double-int.h"
31 #include "real.h"
32 #include "fixed-value.h"
33 #include "statistics.h"
34 #include "vec.h"
35 #include "hash-table.h"
36 #include "hash-set.h"
37 #include "input.h"
38 #include "is-a.h"
39 #endif  /* GENERATOR_FILE */
40 
41 #include "hard-reg-set.h"
42 
43 /* Value used by some passes to "recognize" noop moves as valid
44  instructions.  */
45 #define NOOP_MOVE_INSN_CODE	INT_MAX
46 
47 /* Register Transfer Language EXPRESSIONS CODES */
48 
49 #define RTX_CODE	enum rtx_code
50 enum rtx_code  {
51 
52 #define DEF_RTL_EXPR(ENUM, NAME, FORMAT, CLASS)   ENUM ,
53 #include "rtl.def"		/* rtl expressions are documented here */
54 #undef DEF_RTL_EXPR
55 
56   LAST_AND_UNUSED_RTX_CODE};	/* A convenient way to get a value for
57 				   NUM_RTX_CODE.
58 				   Assumes default enum value assignment.  */
59 
60 /* The cast here, saves many elsewhere.  */
61 #define NUM_RTX_CODE ((int) LAST_AND_UNUSED_RTX_CODE)
62 
63 /* Similar, but since generator files get more entries... */
64 #ifdef GENERATOR_FILE
65 # define NON_GENERATOR_NUM_RTX_CODE ((int) MATCH_OPERAND)
66 #endif
67 
68 /* Register Transfer Language EXPRESSIONS CODE CLASSES */
69 
70 enum rtx_class  {
71   /* We check bit 0-1 of some rtx class codes in the predicates below.  */
72 
73   /* Bit 0 = comparison if 0, arithmetic is 1
74      Bit 1 = 1 if commutative.  */
75   RTX_COMPARE,		/* 0 */
76   RTX_COMM_COMPARE,
77   RTX_BIN_ARITH,
78   RTX_COMM_ARITH,
79 
80   /* Must follow the four preceding values.  */
81   RTX_UNARY,		/* 4 */
82 
83   RTX_EXTRA,
84   RTX_MATCH,
85   RTX_INSN,
86 
87   /* Bit 0 = 1 if constant.  */
88   RTX_OBJ,		/* 8 */
89   RTX_CONST_OBJ,
90 
91   RTX_TERNARY,
92   RTX_BITFIELD_OPS,
93   RTX_AUTOINC
94 };
95 
96 #define RTX_OBJ_MASK (~1)
97 #define RTX_OBJ_RESULT (RTX_OBJ & RTX_OBJ_MASK)
98 #define RTX_COMPARE_MASK (~1)
99 #define RTX_COMPARE_RESULT (RTX_COMPARE & RTX_COMPARE_MASK)
100 #define RTX_ARITHMETIC_MASK (~1)
101 #define RTX_ARITHMETIC_RESULT (RTX_COMM_ARITH & RTX_ARITHMETIC_MASK)
102 #define RTX_BINARY_MASK (~3)
103 #define RTX_BINARY_RESULT (RTX_COMPARE & RTX_BINARY_MASK)
104 #define RTX_COMMUTATIVE_MASK (~2)
105 #define RTX_COMMUTATIVE_RESULT (RTX_COMM_COMPARE & RTX_COMMUTATIVE_MASK)
106 #define RTX_NON_COMMUTATIVE_RESULT (RTX_COMPARE & RTX_COMMUTATIVE_MASK)
107 
108 extern const unsigned char rtx_length[NUM_RTX_CODE];
109 #define GET_RTX_LENGTH(CODE)		(rtx_length[(int) (CODE)])
110 
111 extern const char * const rtx_name[NUM_RTX_CODE];
112 #define GET_RTX_NAME(CODE)		(rtx_name[(int) (CODE)])
113 
114 extern const char * const rtx_format[NUM_RTX_CODE];
115 #define GET_RTX_FORMAT(CODE)		(rtx_format[(int) (CODE)])
116 
117 extern const enum rtx_class rtx_class[NUM_RTX_CODE];
118 #define GET_RTX_CLASS(CODE)		(rtx_class[(int) (CODE)])
119 
120 /* True if CODE is part of the insn chain (i.e. has INSN_UID, PREV_INSN
121    and NEXT_INSN fields).  */
122 #define INSN_CHAIN_CODE_P(CODE) IN_RANGE (CODE, DEBUG_INSN, NOTE)
123 
124 extern const unsigned char rtx_code_size[NUM_RTX_CODE];
125 extern const unsigned char rtx_next[NUM_RTX_CODE];
126 
127 /* The flags and bitfields of an ADDR_DIFF_VEC.  BASE is the base label
128    relative to which the offsets are calculated, as explained in rtl.def.  */
129 struct addr_diff_vec_flags
130 {
131   /* Set at the start of shorten_branches - ONLY WHEN OPTIMIZING - : */
132   unsigned min_align: 8;
133   /* Flags: */
134   unsigned base_after_vec: 1; /* BASE is after the ADDR_DIFF_VEC.  */
135   unsigned min_after_vec: 1;  /* minimum address target label is
136 				 after the ADDR_DIFF_VEC.  */
137   unsigned max_after_vec: 1;  /* maximum address target label is
138 				 after the ADDR_DIFF_VEC.  */
139   unsigned min_after_base: 1; /* minimum address target label is
140 				 after BASE.  */
141   unsigned max_after_base: 1; /* maximum address target label is
142 				 after BASE.  */
143   /* Set by the actual branch shortening process - ONLY WHEN OPTIMIZING - : */
144   unsigned offset_unsigned: 1; /* offsets have to be treated as unsigned.  */
145   unsigned : 2;
146   unsigned scale : 8;
147 };
148 
149 /* Structure used to describe the attributes of a MEM.  These are hashed
150    so MEMs that the same attributes share a data structure.  This means
151    they cannot be modified in place.  */
152 struct GTY(()) mem_attrs
153 {
154   /* The expression that the MEM accesses, or null if not known.
155      This expression might be larger than the memory reference itself.
156      (In other words, the MEM might access only part of the object.)  */
157   tree expr;
158 
159   /* The offset of the memory reference from the start of EXPR.
160      Only valid if OFFSET_KNOWN_P.  */
161   HOST_WIDE_INT offset;
162 
163   /* The size of the memory reference in bytes.  Only valid if
164      SIZE_KNOWN_P.  */
165   HOST_WIDE_INT size;
166 
167   /* The alias set of the memory reference.  */
168   alias_set_type alias;
169 
170   /* The alignment of the reference in bits.  Always a multiple of
171      BITS_PER_UNIT.  Note that EXPR may have a stricter alignment
172      than the memory reference itself.  */
173   unsigned int align;
174 
175   /* The address space that the memory reference uses.  */
176   unsigned char addrspace;
177 
178   /* True if OFFSET is known.  */
179   bool offset_known_p;
180 
181   /* True if SIZE is known.  */
182   bool size_known_p;
183 };
184 
185 /* Structure used to describe the attributes of a REG in similar way as
186    mem_attrs does for MEM above.  Note that the OFFSET field is calculated
187    in the same way as for mem_attrs, rather than in the same way as a
188    SUBREG_BYTE.  For example, if a big-endian target stores a byte
189    object in the low part of a 4-byte register, the OFFSET field
190    will be -3 rather than 0.  */
191 
192 struct GTY((for_user)) reg_attrs {
193   tree decl;			/* decl corresponding to REG.  */
194   HOST_WIDE_INT offset;		/* Offset from start of DECL.  */
195 };
196 
197 /* Common union for an element of an rtx.  */
198 
199 union rtunion
200 {
201   int rt_int;
202   unsigned int rt_uint;
203   const char *rt_str;
204   rtx rt_rtx;
205   rtvec rt_rtvec;
206   machine_mode rt_type;
207   addr_diff_vec_flags rt_addr_diff_vec_flags;
208   struct cselib_val *rt_cselib;
209   tree rt_tree;
210   basic_block rt_bb;
211   mem_attrs *rt_mem;
212   struct constant_descriptor_rtx *rt_constant;
213   struct dw_cfi_node *rt_cfi;
214 };
215 
216 /* Describes the properties of a REG.  */
217 struct GTY(()) reg_info {
218   /* The value of REGNO.  */
219   unsigned int regno;
220 
221   /* The value of REG_NREGS.  */
222   unsigned int nregs : 8;
223   unsigned int unused : 24;
224 
225   /* The value of REG_ATTRS.  */
226   reg_attrs *attrs;
227 };
228 
229 /* This structure remembers the position of a SYMBOL_REF within an
230    object_block structure.  A SYMBOL_REF only provides this information
231    if SYMBOL_REF_HAS_BLOCK_INFO_P is true.  */
232 struct GTY(()) block_symbol {
233   /* The usual SYMBOL_REF fields.  */
234   rtunion GTY ((skip)) fld[2];
235 
236   /* The block that contains this object.  */
237   struct object_block *block;
238 
239   /* The offset of this object from the start of its block.  It is negative
240      if the symbol has not yet been assigned an offset.  */
241   HOST_WIDE_INT offset;
242 };
243 
244 /* Describes a group of objects that are to be placed together in such
245    a way that their relative positions are known.  */
246 struct GTY((for_user)) object_block {
247   /* The section in which these objects should be placed.  */
248   section *sect;
249 
250   /* The alignment of the first object, measured in bits.  */
251   unsigned int alignment;
252 
253   /* The total size of the objects, measured in bytes.  */
254   HOST_WIDE_INT size;
255 
256   /* The SYMBOL_REFs for each object.  The vector is sorted in
257      order of increasing offset and the following conditions will
258      hold for each element X:
259 
260 	 SYMBOL_REF_HAS_BLOCK_INFO_P (X)
261 	 !SYMBOL_REF_ANCHOR_P (X)
262 	 SYMBOL_REF_BLOCK (X) == [address of this structure]
263 	 SYMBOL_REF_BLOCK_OFFSET (X) >= 0.  */
264   vec<rtx, va_gc> *objects;
265 
266   /* All the anchor SYMBOL_REFs used to address these objects, sorted
267      in order of increasing offset, and then increasing TLS model.
268      The following conditions will hold for each element X in this vector:
269 
270 	 SYMBOL_REF_HAS_BLOCK_INFO_P (X)
271 	 SYMBOL_REF_ANCHOR_P (X)
272 	 SYMBOL_REF_BLOCK (X) == [address of this structure]
273 	 SYMBOL_REF_BLOCK_OFFSET (X) >= 0.  */
274   vec<rtx, va_gc> *anchors;
275 };
276 
277 struct GTY((variable_size)) hwivec_def {
278   HOST_WIDE_INT elem[1];
279 };
280 
281 /* Number of elements of the HWIVEC if RTX is a CONST_WIDE_INT.  */
282 #define CWI_GET_NUM_ELEM(RTX)					\
283   ((int)RTL_FLAG_CHECK1("CWI_GET_NUM_ELEM", (RTX), CONST_WIDE_INT)->u2.num_elem)
284 #define CWI_PUT_NUM_ELEM(RTX, NUM)					\
285   (RTL_FLAG_CHECK1("CWI_PUT_NUM_ELEM", (RTX), CONST_WIDE_INT)->u2.num_elem = (NUM))
286 
287 /* RTL expression ("rtx").  */
288 
289 /* The GTY "desc" and "tag" options below are a kludge: we need a desc
290    field for gengtype to recognize that inheritance is occurring,
291    so that all subclasses are redirected to the traversal hook for the
292    base class.
293    However, all of the fields are in the base class, and special-casing
294    is at work.  Hence we use desc and tag of 0, generating a switch
295    statement of the form:
296      switch (0)
297        {
298        case 0: // all the work happens here
299       }
300    in order to work with the existing special-casing in gengtype.  */
301 
302 struct GTY((desc("0"), tag("0"),
303 	    chain_next ("RTX_NEXT (&%h)"),
304 	    chain_prev ("RTX_PREV (&%h)"))) rtx_def {
305   /* The kind of expression this is.  */
306   ENUM_BITFIELD(rtx_code) code: 16;
307 
308   /* The kind of value the expression has.  */
309   ENUM_BITFIELD(machine_mode) mode : 8;
310 
311   /* 1 in a MEM if we should keep the alias set for this mem unchanged
312      when we access a component.
313      1 in a JUMP_INSN if it is a crossing jump.
314      1 in a CALL_INSN if it is a sibling call.
315      1 in a SET that is for a return.
316      In a CODE_LABEL, part of the two-bit alternate entry field.
317      1 in a CONCAT is VAL_EXPR_IS_COPIED in var-tracking.c.
318      1 in a VALUE is SP_BASED_VALUE_P in cselib.c.
319      1 in a SUBREG generated by LRA for reload insns.
320      1 in a CALL for calls instrumented by Pointer Bounds Checker.  */
321   unsigned int jump : 1;
322   /* In a CODE_LABEL, part of the two-bit alternate entry field.
323      1 in a MEM if it cannot trap.
324      1 in a CALL_INSN logically equivalent to
325        ECF_LOOPING_CONST_OR_PURE and DECL_LOOPING_CONST_OR_PURE_P. */
326   unsigned int call : 1;
327   /* 1 in a REG, MEM, or CONCAT if the value is set at most once, anywhere.
328      1 in a SUBREG used for SUBREG_PROMOTED_UNSIGNED_P.
329      1 in a SYMBOL_REF if it addresses something in the per-function
330      constants pool.
331      1 in a CALL_INSN logically equivalent to ECF_CONST and TREE_READONLY.
332      1 in a NOTE, or EXPR_LIST for a const call.
333      1 in a JUMP_INSN of an annulling branch.
334      1 in a CONCAT is VAL_EXPR_IS_CLOBBERED in var-tracking.c.
335      1 in a preserved VALUE is PRESERVED_VALUE_P in cselib.c.
336      1 in a clobber temporarily created for LRA.  */
337   unsigned int unchanging : 1;
338   /* 1 in a MEM or ASM_OPERANDS expression if the memory reference is volatile.
339      1 in an INSN, CALL_INSN, JUMP_INSN, CODE_LABEL, BARRIER, or NOTE
340      if it has been deleted.
341      1 in a REG expression if corresponds to a variable declared by the user,
342      0 for an internally generated temporary.
343      1 in a SUBREG used for SUBREG_PROMOTED_UNSIGNED_P.
344      1 in a LABEL_REF, REG_LABEL_TARGET or REG_LABEL_OPERAND note for a
345      non-local label.
346      In a SYMBOL_REF, this flag is used for machine-specific purposes.
347      In a PREFETCH, this flag indicates that it should be considered a scheduling
348      barrier.
349      1 in a CONCAT is VAL_NEEDS_RESOLUTION in var-tracking.c.  */
350   unsigned int volatil : 1;
351   /* 1 in a REG if the register is used only in exit code a loop.
352      1 in a SUBREG expression if was generated from a variable with a
353      promoted mode.
354      1 in a CODE_LABEL if the label is used for nonlocal gotos
355      and must not be deleted even if its count is zero.
356      1 in an INSN, JUMP_INSN or CALL_INSN if this insn must be scheduled
357      together with the preceding insn.  Valid only within sched.
358      1 in an INSN, JUMP_INSN, or CALL_INSN if insn is in a delay slot and
359      from the target of a branch.  Valid from reorg until end of compilation;
360      cleared before used.
361 
362      The name of the field is historical.  It used to be used in MEMs
363      to record whether the MEM accessed part of a structure.  */
364   unsigned int in_struct : 1;
365   /* At the end of RTL generation, 1 if this rtx is used.  This is used for
366      copying shared structure.  See `unshare_all_rtl'.
367      In a REG, this is not needed for that purpose, and used instead
368      in `leaf_renumber_regs_insn'.
369      1 in a SYMBOL_REF, means that emit_library_call
370      has used it as the function.
371      1 in a CONCAT is VAL_HOLDS_TRACK_EXPR in var-tracking.c.
372      1 in a VALUE or DEBUG_EXPR is VALUE_RECURSED_INTO in var-tracking.c.  */
373   unsigned int used : 1;
374   /* 1 in an INSN or a SET if this rtx is related to the call frame,
375      either changing how we compute the frame address or saving and
376      restoring registers in the prologue and epilogue.
377      1 in a REG or MEM if it is a pointer.
378      1 in a SYMBOL_REF if it addresses something in the per-function
379      constant string pool.
380      1 in a VALUE is VALUE_CHANGED in var-tracking.c.  */
381   unsigned frame_related : 1;
382   /* 1 in a REG or PARALLEL that is the current function's return value.
383      1 in a SYMBOL_REF for a weak symbol.
384      1 in a CALL_INSN logically equivalent to ECF_PURE and DECL_PURE_P.
385      1 in a CONCAT is VAL_EXPR_HAS_REVERSE in var-tracking.c.
386      1 in a VALUE or DEBUG_EXPR is NO_LOC_P in var-tracking.c.  */
387   unsigned return_val : 1;
388 
389   union {
390     /* The final union field is aligned to 64 bits on LP64 hosts,
391        giving a 32-bit gap after the fields above.  We optimize the
392        layout for that case and use the gap for extra code-specific
393        information.  */
394 
395     /* The ORIGINAL_REGNO of a REG.  */
396     unsigned int original_regno;
397 
398     /* The INSN_UID of an RTX_INSN-class code.  */
399     int insn_uid;
400 
401     /* The SYMBOL_REF_FLAGS of a SYMBOL_REF.  */
402     unsigned int symbol_ref_flags;
403 
404     /* The PAT_VAR_LOCATION_STATUS of a VAR_LOCATION.  */
405     enum var_init_status var_location_status;
406 
407     /* In a CONST_WIDE_INT (aka hwivec_def), this is the number of
408        HOST_WIDE_INTs in the hwivec_def.  */
409     unsigned int num_elem;
410   } GTY ((skip)) u2;
411 
412   /* The first element of the operands of this rtx.
413      The number of operands and their types are controlled
414      by the `code' field, according to rtl.def.  */
415   union u {
416     rtunion fld[1];
417     HOST_WIDE_INT hwint[1];
418     struct reg_info reg;
419     struct block_symbol block_sym;
420     struct real_value rv;
421     struct fixed_value fv;
422     struct hwivec_def hwiv;
423   } GTY ((special ("rtx_def"), desc ("GET_CODE (&%0)"))) u;
424 };
425 
426 /* A node for constructing singly-linked lists of rtx.  */
427 
class()428 class GTY(()) rtx_expr_list : public rtx_def
429 {
430   /* No extra fields, but adds invariant: (GET_CODE (X) == EXPR_LIST).  */
431 
432 public:
433   /* Get next in list.  */
434   rtx_expr_list *next () const;
435 
436   /* Get at the underlying rtx.  */
437   rtx element () const;
438 };
439 
440 template <>
441 template <>
442 inline bool
test(rtx rt)443 is_a_helper <rtx_expr_list *>::test (rtx rt)
444 {
445   return rt->code == EXPR_LIST;
446 }
447 
class()448 class GTY(()) rtx_insn_list : public rtx_def
449 {
450   /* No extra fields, but adds invariant: (GET_CODE (X) == INSN_LIST).
451 
452      This is an instance of:
453 
454        DEF_RTL_EXPR(INSN_LIST, "insn_list", "ue", RTX_EXTRA)
455 
456      i.e. a node for constructing singly-linked lists of rtx_insn *, where
457      the list is "external" to the insn (as opposed to the doubly-linked
458      list embedded within rtx_insn itself).  */
459 
460 public:
461   /* Get next in list.  */
462   rtx_insn_list *next () const;
463 
464   /* Get at the underlying instruction.  */
465   rtx_insn *insn () const;
466 
467 };
468 
469 template <>
470 template <>
471 inline bool
test(rtx rt)472 is_a_helper <rtx_insn_list *>::test (rtx rt)
473 {
474   return rt->code == INSN_LIST;
475 }
476 
477 /* A node with invariant GET_CODE (X) == SEQUENCE i.e. a vector of rtx,
478    typically (but not always) of rtx_insn *, used in the late passes.  */
479 
class()480 class GTY(()) rtx_sequence : public rtx_def
481 {
482   /* No extra fields, but adds invariant: (GET_CODE (X) == SEQUENCE).  */
483 
484 public:
485   /* Get number of elements in sequence.  */
486   int len () const;
487 
488   /* Get i-th element of the sequence.  */
489   rtx element (int index) const;
490 
491   /* Get i-th element of the sequence, with a checked cast to
492      rtx_insn *.  */
493   rtx_insn *insn (int index) const;
494 };
495 
496 template <>
497 template <>
498 inline bool
test(rtx rt)499 is_a_helper <rtx_sequence *>::test (rtx rt)
500 {
501   return rt->code == SEQUENCE;
502 }
503 
504 template <>
505 template <>
506 inline bool
test(const_rtx rt)507 is_a_helper <const rtx_sequence *>::test (const_rtx rt)
508 {
509   return rt->code == SEQUENCE;
510 }
511 
class()512 class GTY(()) rtx_insn : public rtx_def
513 {
514 public:
515   /* No extra fields, but adds the invariant:
516 
517      (INSN_P (X)
518       || NOTE_P (X)
519       || JUMP_TABLE_DATA_P (X)
520       || BARRIER_P (X)
521       || LABEL_P (X))
522 
523      i.e. that we must be able to use the following:
524       INSN_UID ()
525       NEXT_INSN ()
526       PREV_INSN ()
527     i.e. we have an rtx that has an INSN_UID field and can be part of
528     a linked list of insns.
529   */
530 
531   /* Returns true if this insn has been deleted.  */
532 
533   bool deleted () const { return volatil; }
534 
535   /* Mark this insn as deleted.  */
536 
537   void set_deleted () { volatil = true; }
538 
539   /* Mark this insn as not deleted.  */
540 
541   void set_undeleted () { volatil = false; }
542 };
543 
544 /* Subclasses of rtx_insn.  */
545 
class()546 class GTY(()) rtx_debug_insn : public rtx_insn
547 {
548   /* No extra fields, but adds the invariant:
549        DEBUG_INSN_P (X) aka (GET_CODE (X) == DEBUG_INSN)
550      i.e. an annotation for tracking variable assignments.
551 
552      This is an instance of:
553        DEF_RTL_EXPR(DEBUG_INSN, "debug_insn", "uuBeiie", RTX_INSN)
554      from rtl.def.  */
555 };
556 
class()557 class GTY(()) rtx_nonjump_insn : public rtx_insn
558 {
559   /* No extra fields, but adds the invariant:
560        NONJUMP_INSN_P (X) aka (GET_CODE (X) == INSN)
561      i.e an instruction that cannot jump.
562 
563      This is an instance of:
564        DEF_RTL_EXPR(INSN, "insn", "uuBeiie", RTX_INSN)
565      from rtl.def.  */
566 };
567 
class()568 class GTY(()) rtx_jump_insn : public rtx_insn
569 {
570 public:
571   /* No extra fields, but adds the invariant:
572        JUMP_P (X) aka (GET_CODE (X) == JUMP_INSN)
573      i.e. an instruction that can possibly jump.
574 
575      This is an instance of:
576        DEF_RTL_EXPR(JUMP_INSN, "jump_insn", "uuBeiie0", RTX_INSN)
577      from rtl.def.  */
578 
579   /* Returns jump target of this instruction.  The returned value is not
580      necessarily a code label: it may also be a RETURN or SIMPLE_RETURN
581      expression.  Also, when the code label is marked "deleted", it is
582      replaced by a NOTE.  In some cases the value is NULL_RTX.  */
583 
584   inline rtx jump_label () const;
585 
586   /* Returns jump target cast to rtx_code_label *.  */
587 
588   inline rtx_code_label *jump_target () const;
589 
590   /* Set jump target.  */
591 
592   inline void set_jump_target (rtx_code_label *);
593 };
594 
class()595 class GTY(()) rtx_call_insn : public rtx_insn
596 {
597   /* No extra fields, but adds the invariant:
598        CALL_P (X) aka (GET_CODE (X) == CALL_INSN)
599      i.e. an instruction that can possibly call a subroutine
600      but which will not change which instruction comes next
601      in the current function.
602 
603      This is an instance of:
604        DEF_RTL_EXPR(CALL_INSN, "call_insn", "uuBeiiee", RTX_INSN)
605      from rtl.def.  */
606 };
607 
class()608 class GTY(()) rtx_jump_table_data : public rtx_insn
609 {
610   /* No extra fields, but adds the invariant:
611        JUMP_TABLE_DATA_P (X) aka (GET_CODE (INSN) == JUMP_TABLE_DATA)
612      i.e. a data for a jump table, considered an instruction for
613      historical reasons.
614 
615      This is an instance of:
616        DEF_RTL_EXPR(JUMP_TABLE_DATA, "jump_table_data", "uuBe0000", RTX_INSN)
617      from rtl.def.  */
618 
619 public:
620 
621   /* This can be either:
622 
623        (a) a table of absolute jumps, in which case PATTERN (this) is an
624            ADDR_VEC with arg 0 a vector of labels, or
625 
626        (b) a table of relative jumps (e.g. for -fPIC), in which case
627            PATTERN (this) is an ADDR_DIFF_VEC, with arg 0 a LABEL_REF and
628 	   arg 1 the vector of labels.
629 
630      This method gets the underlying vec.  */
631 
632   inline rtvec get_labels () const;
633 };
634 
class()635 class GTY(()) rtx_barrier : public rtx_insn
636 {
637   /* No extra fields, but adds the invariant:
638        BARRIER_P (X) aka (GET_CODE (X) == BARRIER)
639      i.e. a marker that indicates that control will not flow through.
640 
641      This is an instance of:
642        DEF_RTL_EXPR(BARRIER, "barrier", "uu00000", RTX_EXTRA)
643      from rtl.def.  */
644 };
645 
class()646 class GTY(()) rtx_code_label : public rtx_insn
647 {
648   /* No extra fields, but adds the invariant:
649        LABEL_P (X) aka (GET_CODE (X) == CODE_LABEL)
650      i.e. a label in the assembler.
651 
652      This is an instance of:
653        DEF_RTL_EXPR(CODE_LABEL, "code_label", "uuB00is", RTX_EXTRA)
654      from rtl.def.  */
655 };
656 
class()657 class GTY(()) rtx_note : public rtx_insn
658 {
659   /* No extra fields, but adds the invariant:
660        NOTE_P(X) aka (GET_CODE (X) == NOTE)
661      i.e. a note about the corresponding source code.
662 
663      This is an instance of:
664        DEF_RTL_EXPR(NOTE, "note", "uuB0ni", RTX_EXTRA)
665      from rtl.def.  */
666 };
667 
668 /* The size in bytes of an rtx header (code, mode and flags).  */
669 #define RTX_HDR_SIZE offsetof (struct rtx_def, u)
670 
671 /* The size in bytes of an rtx with code CODE.  */
672 #define RTX_CODE_SIZE(CODE) rtx_code_size[CODE]
673 
674 #define NULL_RTX (rtx) 0
675 
676 /* The "next" and "previous" RTX, relative to this one.  */
677 
678 #define RTX_NEXT(X) (rtx_next[GET_CODE (X)] == 0 ? NULL			\
679 		     : *(rtx *)(((char *)X) + rtx_next[GET_CODE (X)]))
680 
681 /* FIXME: the "NEXT_INSN (PREV_INSN (X)) == X" condition shouldn't be needed.
682  */
683 #define RTX_PREV(X) ((INSN_P (X)       			\
684                       || NOTE_P (X)       		\
685                       || JUMP_TABLE_DATA_P (X)		\
686                       || BARRIER_P (X)        		\
687                       || LABEL_P (X))    		\
688 		     && PREV_INSN (as_a <rtx_insn *> (X)) != NULL	\
689                      && NEXT_INSN (PREV_INSN (as_a <rtx_insn *> (X))) == X \
690                      ? PREV_INSN (as_a <rtx_insn *> (X)) : NULL)
691 
692 /* Define macros to access the `code' field of the rtx.  */
693 
694 #define GET_CODE(RTX)	    ((enum rtx_code) (RTX)->code)
695 #define PUT_CODE(RTX, CODE) ((RTX)->code = (CODE))
696 
697 #define GET_MODE(RTX)		((machine_mode) (RTX)->mode)
698 #define PUT_MODE_RAW(RTX, MODE)	((RTX)->mode = (MODE))
699 
700 /* RTL vector.  These appear inside RTX's when there is a need
701    for a variable number of things.  The principle use is inside
702    PARALLEL expressions.  */
703 
704 struct GTY(()) rtvec_def {
705   int num_elem;		/* number of elements */
706   rtx GTY ((length ("%h.num_elem"))) elem[1];
707 };
708 
709 #define NULL_RTVEC (rtvec) 0
710 
711 #define GET_NUM_ELEM(RTVEC)		((RTVEC)->num_elem)
712 #define PUT_NUM_ELEM(RTVEC, NUM)	((RTVEC)->num_elem = (NUM))
713 
714 /* Predicate yielding nonzero iff X is an rtx for a register.  */
715 #define REG_P(X) (GET_CODE (X) == REG)
716 
717 /* Predicate yielding nonzero iff X is an rtx for a memory location.  */
718 #define MEM_P(X) (GET_CODE (X) == MEM)
719 
720 #if TARGET_SUPPORTS_WIDE_INT
721 
722 /* Match CONST_*s that can represent compile-time constant integers.  */
723 #define CASE_CONST_SCALAR_INT \
724    case CONST_INT: \
725    case CONST_WIDE_INT
726 
727 /* Match CONST_*s for which pointer equality corresponds to value
728    equality.  */
729 #define CASE_CONST_UNIQUE \
730    case CONST_INT: \
731    case CONST_WIDE_INT: \
732    case CONST_DOUBLE: \
733    case CONST_FIXED
734 
735 /* Match all CONST_* rtxes.  */
736 #define CASE_CONST_ANY \
737    case CONST_INT: \
738    case CONST_WIDE_INT: \
739    case CONST_DOUBLE: \
740    case CONST_FIXED: \
741    case CONST_VECTOR
742 
743 #else
744 
745 /* Match CONST_*s that can represent compile-time constant integers.  */
746 #define CASE_CONST_SCALAR_INT \
747    case CONST_INT: \
748    case CONST_DOUBLE
749 
750 /* Match CONST_*s for which pointer equality corresponds to value
751    equality.  */
752 #define CASE_CONST_UNIQUE \
753    case CONST_INT: \
754    case CONST_DOUBLE: \
755    case CONST_FIXED
756 
757 /* Match all CONST_* rtxes.  */
758 #define CASE_CONST_ANY \
759    case CONST_INT: \
760    case CONST_DOUBLE: \
761    case CONST_FIXED: \
762    case CONST_VECTOR
763 #endif
764 
765 /* Predicate yielding nonzero iff X is an rtx for a constant integer.  */
766 #define CONST_INT_P(X) (GET_CODE (X) == CONST_INT)
767 
768 /* Predicate yielding nonzero iff X is an rtx for a constant integer.  */
769 #define CONST_WIDE_INT_P(X) (GET_CODE (X) == CONST_WIDE_INT)
770 
771 /* Predicate yielding nonzero iff X is an rtx for a constant fixed-point.  */
772 #define CONST_FIXED_P(X) (GET_CODE (X) == CONST_FIXED)
773 
774 /* Predicate yielding true iff X is an rtx for a double-int
775    or floating point constant.  */
776 #define CONST_DOUBLE_P(X) (GET_CODE (X) == CONST_DOUBLE)
777 
778 /* Predicate yielding true iff X is an rtx for a double-int.  */
779 #define CONST_DOUBLE_AS_INT_P(X) \
780   (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) == VOIDmode)
781 
782 /* Predicate yielding true iff X is an rtx for a integer const.  */
783 #if TARGET_SUPPORTS_WIDE_INT
784 #define CONST_SCALAR_INT_P(X) \
785   (CONST_INT_P (X) || CONST_WIDE_INT_P (X))
786 #else
787 #define CONST_SCALAR_INT_P(X) \
788   (CONST_INT_P (X) || CONST_DOUBLE_AS_INT_P (X))
789 #endif
790 
791 /* Predicate yielding true iff X is an rtx for a double-int.  */
792 #define CONST_DOUBLE_AS_FLOAT_P(X) \
793   (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) != VOIDmode)
794 
795 /* Predicate yielding nonzero iff X is a label insn.  */
796 #define LABEL_P(X) (GET_CODE (X) == CODE_LABEL)
797 
798 /* Predicate yielding nonzero iff X is a jump insn.  */
799 #define JUMP_P(X) (GET_CODE (X) == JUMP_INSN)
800 
801 /* Predicate yielding nonzero iff X is a call insn.  */
802 #define CALL_P(X) (GET_CODE (X) == CALL_INSN)
803 
804 /* Predicate yielding nonzero iff X is an insn that cannot jump.  */
805 #define NONJUMP_INSN_P(X) (GET_CODE (X) == INSN)
806 
807 /* Predicate yielding nonzero iff X is a debug note/insn.  */
808 #define DEBUG_INSN_P(X) (GET_CODE (X) == DEBUG_INSN)
809 
810 /* Predicate yielding nonzero iff X is an insn that is not a debug insn.  */
811 #define NONDEBUG_INSN_P(X) (INSN_P (X) && !DEBUG_INSN_P (X))
812 
813 /* Nonzero if DEBUG_INSN_P may possibly hold.  */
814 #define MAY_HAVE_DEBUG_INSNS (flag_var_tracking_assignments)
815 
816 /* Predicate yielding nonzero iff X is a real insn.  */
817 #define INSN_P(X) \
818   (NONJUMP_INSN_P (X) || DEBUG_INSN_P (X) || JUMP_P (X) || CALL_P (X))
819 
820 /* Predicate yielding nonzero iff X is a note insn.  */
821 #define NOTE_P(X) (GET_CODE (X) == NOTE)
822 
823 /* Predicate yielding nonzero iff X is a barrier insn.  */
824 #define BARRIER_P(X) (GET_CODE (X) == BARRIER)
825 
826 /* Predicate yielding nonzero iff X is a data for a jump table.  */
827 #define JUMP_TABLE_DATA_P(INSN) (GET_CODE (INSN) == JUMP_TABLE_DATA)
828 
829 /* Predicate yielding nonzero iff RTX is a subreg.  */
830 #define SUBREG_P(RTX) (GET_CODE (RTX) == SUBREG)
831 
832 /* Predicate yielding true iff RTX is a symbol ref.  */
833 #define SYMBOL_REF_P(RTX) (GET_CODE (RTX) == SYMBOL_REF)
834 
835 template <>
836 template <>
837 inline bool
test(rtx rt)838 is_a_helper <rtx_insn *>::test (rtx rt)
839 {
840   return (INSN_P (rt)
841 	  || NOTE_P (rt)
842 	  || JUMP_TABLE_DATA_P (rt)
843 	  || BARRIER_P (rt)
844 	  || LABEL_P (rt));
845 }
846 
847 template <>
848 template <>
849 inline bool
test(const_rtx rt)850 is_a_helper <const rtx_insn *>::test (const_rtx rt)
851 {
852   return (INSN_P (rt)
853 	  || NOTE_P (rt)
854 	  || JUMP_TABLE_DATA_P (rt)
855 	  || BARRIER_P (rt)
856 	  || LABEL_P (rt));
857 }
858 
859 template <>
860 template <>
861 inline bool
test(rtx rt)862 is_a_helper <rtx_debug_insn *>::test (rtx rt)
863 {
864   return DEBUG_INSN_P (rt);
865 }
866 
867 template <>
868 template <>
869 inline bool
test(rtx rt)870 is_a_helper <rtx_nonjump_insn *>::test (rtx rt)
871 {
872   return NONJUMP_INSN_P (rt);
873 }
874 
875 template <>
876 template <>
877 inline bool
test(rtx rt)878 is_a_helper <rtx_jump_insn *>::test (rtx rt)
879 {
880   return JUMP_P (rt);
881 }
882 
883 template <>
884 template <>
885 inline bool
test(rtx_insn * insn)886 is_a_helper <rtx_jump_insn *>::test (rtx_insn *insn)
887 {
888   return JUMP_P (insn);
889 }
890 
891 template <>
892 template <>
893 inline bool
test(rtx rt)894 is_a_helper <rtx_call_insn *>::test (rtx rt)
895 {
896   return CALL_P (rt);
897 }
898 
899 template <>
900 template <>
901 inline bool
test(rtx_insn * insn)902 is_a_helper <rtx_call_insn *>::test (rtx_insn *insn)
903 {
904   return CALL_P (insn);
905 }
906 
907 template <>
908 template <>
909 inline bool
test(rtx rt)910 is_a_helper <rtx_jump_table_data *>::test (rtx rt)
911 {
912   return JUMP_TABLE_DATA_P (rt);
913 }
914 
915 template <>
916 template <>
917 inline bool
test(rtx_insn * insn)918 is_a_helper <rtx_jump_table_data *>::test (rtx_insn *insn)
919 {
920   return JUMP_TABLE_DATA_P (insn);
921 }
922 
923 template <>
924 template <>
925 inline bool
test(rtx rt)926 is_a_helper <rtx_barrier *>::test (rtx rt)
927 {
928   return BARRIER_P (rt);
929 }
930 
931 template <>
932 template <>
933 inline bool
test(rtx rt)934 is_a_helper <rtx_code_label *>::test (rtx rt)
935 {
936   return LABEL_P (rt);
937 }
938 
939 template <>
940 template <>
941 inline bool
test(rtx_insn * insn)942 is_a_helper <rtx_code_label *>::test (rtx_insn *insn)
943 {
944   return LABEL_P (insn);
945 }
946 
947 template <>
948 template <>
949 inline bool
test(rtx rt)950 is_a_helper <rtx_note *>::test (rtx rt)
951 {
952   return NOTE_P (rt);
953 }
954 
955 template <>
956 template <>
957 inline bool
test(rtx_insn * insn)958 is_a_helper <rtx_note *>::test (rtx_insn *insn)
959 {
960   return NOTE_P (insn);
961 }
962 
963 /* Predicate yielding nonzero iff X is a return or simple_return.  */
964 #define ANY_RETURN_P(X) \
965   (GET_CODE (X) == RETURN || GET_CODE (X) == SIMPLE_RETURN)
966 
967 /* 1 if X is a unary operator.  */
968 
969 #define UNARY_P(X)   \
970   (GET_RTX_CLASS (GET_CODE (X)) == RTX_UNARY)
971 
972 /* 1 if X is a binary operator.  */
973 
974 #define BINARY_P(X)   \
975   ((GET_RTX_CLASS (GET_CODE (X)) & RTX_BINARY_MASK) == RTX_BINARY_RESULT)
976 
977 /* 1 if X is an arithmetic operator.  */
978 
979 #define ARITHMETIC_P(X)   \
980   ((GET_RTX_CLASS (GET_CODE (X)) & RTX_ARITHMETIC_MASK)			\
981     == RTX_ARITHMETIC_RESULT)
982 
983 /* 1 if X is an arithmetic operator.  */
984 
985 #define COMMUTATIVE_ARITH_P(X)   \
986   (GET_RTX_CLASS (GET_CODE (X)) == RTX_COMM_ARITH)
987 
988 /* 1 if X is a commutative arithmetic operator or a comparison operator.
989    These two are sometimes selected together because it is possible to
990    swap the two operands.  */
991 
992 #define SWAPPABLE_OPERANDS_P(X)   \
993   ((1 << GET_RTX_CLASS (GET_CODE (X)))					\
994     & ((1 << RTX_COMM_ARITH) | (1 << RTX_COMM_COMPARE)			\
995        | (1 << RTX_COMPARE)))
996 
997 /* 1 if X is a non-commutative operator.  */
998 
999 #define NON_COMMUTATIVE_P(X)   \
1000   ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMMUTATIVE_MASK)		\
1001     == RTX_NON_COMMUTATIVE_RESULT)
1002 
1003 /* 1 if X is a commutative operator on integers.  */
1004 
1005 #define COMMUTATIVE_P(X)   \
1006   ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMMUTATIVE_MASK)		\
1007     == RTX_COMMUTATIVE_RESULT)
1008 
1009 /* 1 if X is a relational operator.  */
1010 
1011 #define COMPARISON_P(X)   \
1012   ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMPARE_MASK) == RTX_COMPARE_RESULT)
1013 
1014 /* 1 if X is a constant value that is an integer.  */
1015 
1016 #define CONSTANT_P(X)   \
1017   (GET_RTX_CLASS (GET_CODE (X)) == RTX_CONST_OBJ)
1018 
1019 /* 1 if X can be used to represent an object.  */
1020 #define OBJECT_P(X)							\
1021   ((GET_RTX_CLASS (GET_CODE (X)) & RTX_OBJ_MASK) == RTX_OBJ_RESULT)
1022 
1023 /* General accessor macros for accessing the fields of an rtx.  */
1024 
1025 #if defined ENABLE_RTL_CHECKING && (GCC_VERSION >= 2007)
1026 /* The bit with a star outside the statement expr and an & inside is
1027    so that N can be evaluated only once.  */
1028 #define RTL_CHECK1(RTX, N, C1) __extension__				\
1029 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N);		\
1030      const enum rtx_code _code = GET_CODE (_rtx);			\
1031      if (_n < 0 || _n >= GET_RTX_LENGTH (_code))			\
1032        rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__,		\
1033 				__FUNCTION__);				\
1034      if (GET_RTX_FORMAT (_code)[_n] != C1)				\
1035        rtl_check_failed_type1 (_rtx, _n, C1, __FILE__, __LINE__,	\
1036 			       __FUNCTION__);				\
1037      &_rtx->u.fld[_n]; }))
1038 
1039 #define RTL_CHECK2(RTX, N, C1, C2) __extension__			\
1040 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N);		\
1041      const enum rtx_code _code = GET_CODE (_rtx);			\
1042      if (_n < 0 || _n >= GET_RTX_LENGTH (_code))			\
1043        rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__,		\
1044 				__FUNCTION__);				\
1045      if (GET_RTX_FORMAT (_code)[_n] != C1				\
1046 	 && GET_RTX_FORMAT (_code)[_n] != C2)				\
1047        rtl_check_failed_type2 (_rtx, _n, C1, C2, __FILE__, __LINE__,	\
1048 			       __FUNCTION__);				\
1049      &_rtx->u.fld[_n]; }))
1050 
1051 #define RTL_CHECKC1(RTX, N, C) __extension__				\
1052 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N);		\
1053      if (GET_CODE (_rtx) != (C))					\
1054        rtl_check_failed_code1 (_rtx, (C), __FILE__, __LINE__,		\
1055 			       __FUNCTION__);				\
1056      &_rtx->u.fld[_n]; }))
1057 
1058 #define RTL_CHECKC2(RTX, N, C1, C2) __extension__			\
1059 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N);		\
1060      const enum rtx_code _code = GET_CODE (_rtx);			\
1061      if (_code != (C1) && _code != (C2))				\
1062        rtl_check_failed_code2 (_rtx, (C1), (C2), __FILE__, __LINE__,	\
1063 			       __FUNCTION__); \
1064      &_rtx->u.fld[_n]; }))
1065 
1066 #define RTVEC_ELT(RTVEC, I) __extension__				\
1067 (*({ __typeof (RTVEC) const _rtvec = (RTVEC); const int _i = (I);	\
1068      if (_i < 0 || _i >= GET_NUM_ELEM (_rtvec))				\
1069        rtvec_check_failed_bounds (_rtvec, _i, __FILE__, __LINE__,	\
1070 				  __FUNCTION__);			\
1071      &_rtvec->elem[_i]; }))
1072 
1073 #define XWINT(RTX, N) __extension__					\
1074 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N);		\
1075      const enum rtx_code _code = GET_CODE (_rtx);			\
1076      if (_n < 0 || _n >= GET_RTX_LENGTH (_code))			\
1077        rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__,		\
1078 				__FUNCTION__);				\
1079      if (GET_RTX_FORMAT (_code)[_n] != 'w')				\
1080        rtl_check_failed_type1 (_rtx, _n, 'w', __FILE__, __LINE__,	\
1081 			       __FUNCTION__);				\
1082      &_rtx->u.hwint[_n]; }))
1083 
1084 #define CWI_ELT(RTX, I) __extension__					\
1085 (*({ __typeof (RTX) const _cwi = (RTX);					\
1086      int _max = CWI_GET_NUM_ELEM (_cwi);				\
1087      const int _i = (I);						\
1088      if (_i < 0 || _i >= _max)						\
1089        cwi_check_failed_bounds (_cwi, _i, __FILE__, __LINE__,		\
1090 				__FUNCTION__);				\
1091      &_cwi->u.hwiv.elem[_i]; }))
1092 
1093 #define XCWINT(RTX, N, C) __extension__					\
1094 (*({ __typeof (RTX) const _rtx = (RTX);					\
1095      if (GET_CODE (_rtx) != (C))					\
1096        rtl_check_failed_code1 (_rtx, (C), __FILE__, __LINE__,		\
1097 			       __FUNCTION__);				\
1098      &_rtx->u.hwint[N]; }))
1099 
1100 #define XCMWINT(RTX, N, C, M) __extension__				\
1101 (*({ __typeof (RTX) const _rtx = (RTX);					\
1102      if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) != (M))		\
1103        rtl_check_failed_code_mode (_rtx, (C), (M), false, __FILE__,	\
1104 				   __LINE__, __FUNCTION__);		\
1105      &_rtx->u.hwint[N]; }))
1106 
1107 #define XCNMPRV(RTX, C, M) __extension__				\
1108 ({ __typeof (RTX) const _rtx = (RTX);					\
1109    if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) == (M))		\
1110      rtl_check_failed_code_mode (_rtx, (C), (M), true, __FILE__,	\
1111 				 __LINE__, __FUNCTION__);		\
1112    &_rtx->u.rv; })
1113 
1114 #define XCNMPFV(RTX, C, M) __extension__				\
1115 ({ __typeof (RTX) const _rtx = (RTX);					\
1116    if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) == (M))		\
1117      rtl_check_failed_code_mode (_rtx, (C), (M), true, __FILE__,	\
1118 				 __LINE__, __FUNCTION__);		\
1119    &_rtx->u.fv; })
1120 
1121 #define REG_CHECK(RTX) __extension__					\
1122 ({ __typeof (RTX) const _rtx = (RTX);					\
1123    if (GET_CODE (_rtx) != REG)						\
1124      rtl_check_failed_code1 (_rtx, REG,  __FILE__, __LINE__,		\
1125 			     __FUNCTION__);				\
1126    &_rtx->u.reg; })
1127 
1128 #define BLOCK_SYMBOL_CHECK(RTX) __extension__				\
1129 ({ __typeof (RTX) const _symbol = (RTX);				\
1130    const unsigned int flags = SYMBOL_REF_FLAGS (_symbol);		\
1131    if ((flags & SYMBOL_FLAG_HAS_BLOCK_INFO) == 0)			\
1132      rtl_check_failed_block_symbol (__FILE__, __LINE__,			\
1133 				    __FUNCTION__);			\
1134    &_symbol->u.block_sym; })
1135 
1136 #define HWIVEC_CHECK(RTX,C) __extension__				\
1137 ({ __typeof (RTX) const _symbol = (RTX);				\
1138    RTL_CHECKC1 (_symbol, 0, C);						\
1139    &_symbol->u.hwiv; })
1140 
1141 extern void rtl_check_failed_bounds (const_rtx, int, const char *, int,
1142 				     const char *)
1143     ATTRIBUTE_NORETURN;
1144 extern void rtl_check_failed_type1 (const_rtx, int, int, const char *, int,
1145 				    const char *)
1146     ATTRIBUTE_NORETURN;
1147 extern void rtl_check_failed_type2 (const_rtx, int, int, int, const char *,
1148 				    int, const char *)
1149     ATTRIBUTE_NORETURN;
1150 extern void rtl_check_failed_code1 (const_rtx, enum rtx_code, const char *,
1151 				    int, const char *)
1152     ATTRIBUTE_NORETURN;
1153 extern void rtl_check_failed_code2 (const_rtx, enum rtx_code, enum rtx_code,
1154 				    const char *, int, const char *)
1155     ATTRIBUTE_NORETURN;
1156 extern void rtl_check_failed_code_mode (const_rtx, enum rtx_code, machine_mode,
1157 					bool, const char *, int, const char *)
1158     ATTRIBUTE_NORETURN;
1159 extern void rtl_check_failed_block_symbol (const char *, int, const char *)
1160     ATTRIBUTE_NORETURN;
1161 extern void cwi_check_failed_bounds (const_rtx, int, const char *, int,
1162 				     const char *)
1163     ATTRIBUTE_NORETURN;
1164 extern void rtvec_check_failed_bounds (const_rtvec, int, const char *, int,
1165 				       const char *)
1166     ATTRIBUTE_NORETURN;
1167 
1168 #else   /* not ENABLE_RTL_CHECKING */
1169 
1170 #define RTL_CHECK1(RTX, N, C1)      ((RTX)->u.fld[N])
1171 #define RTL_CHECK2(RTX, N, C1, C2)  ((RTX)->u.fld[N])
1172 #define RTL_CHECKC1(RTX, N, C)	    ((RTX)->u.fld[N])
1173 #define RTL_CHECKC2(RTX, N, C1, C2) ((RTX)->u.fld[N])
1174 #define RTVEC_ELT(RTVEC, I)	    ((RTVEC)->elem[I])
1175 #define XWINT(RTX, N)		    ((RTX)->u.hwint[N])
1176 #define CWI_ELT(RTX, I)		    ((RTX)->u.hwiv.elem[I])
1177 #define XCWINT(RTX, N, C)	    ((RTX)->u.hwint[N])
1178 #define XCMWINT(RTX, N, C, M)	    ((RTX)->u.hwint[N])
1179 #define XCNMWINT(RTX, N, C, M)	    ((RTX)->u.hwint[N])
1180 #define XCNMPRV(RTX, C, M)	    (&(RTX)->u.rv)
1181 #define XCNMPFV(RTX, C, M)	    (&(RTX)->u.fv)
1182 #define REG_CHECK(RTX)		    (&(RTX)->u.reg)
1183 #define BLOCK_SYMBOL_CHECK(RTX)	    (&(RTX)->u.block_sym)
1184 #define HWIVEC_CHECK(RTX,C)	    (&(RTX)->u.hwiv)
1185 
1186 #endif
1187 
1188 /* General accessor macros for accessing the flags of an rtx.  */
1189 
1190 /* Access an individual rtx flag, with no checking of any kind.  */
1191 #define RTX_FLAG(RTX, FLAG)	((RTX)->FLAG)
1192 
1193 #if defined ENABLE_RTL_FLAG_CHECKING && (GCC_VERSION >= 2007)
1194 #define RTL_FLAG_CHECK1(NAME, RTX, C1) __extension__			\
1195 ({ __typeof (RTX) const _rtx = (RTX);					\
1196    if (GET_CODE (_rtx) != C1)						\
1197      rtl_check_failed_flag  (NAME, _rtx, __FILE__, __LINE__,		\
1198 			     __FUNCTION__);				\
1199    _rtx; })
1200 
1201 #define RTL_FLAG_CHECK2(NAME, RTX, C1, C2) __extension__		\
1202 ({ __typeof (RTX) const _rtx = (RTX);					\
1203    if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2)			\
1204      rtl_check_failed_flag  (NAME,_rtx, __FILE__, __LINE__,		\
1205 			      __FUNCTION__);				\
1206    _rtx; })
1207 
1208 #define RTL_FLAG_CHECK3(NAME, RTX, C1, C2, C3) __extension__		\
1209 ({ __typeof (RTX) const _rtx = (RTX);					\
1210    if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2			\
1211        && GET_CODE (_rtx) != C3)					\
1212      rtl_check_failed_flag  (NAME, _rtx, __FILE__, __LINE__,		\
1213 			     __FUNCTION__);				\
1214    _rtx; })
1215 
1216 #define RTL_FLAG_CHECK4(NAME, RTX, C1, C2, C3, C4) __extension__	\
1217 ({ __typeof (RTX) const _rtx = (RTX);					\
1218    if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2			\
1219        && GET_CODE (_rtx) != C3 && GET_CODE(_rtx) != C4)		\
1220      rtl_check_failed_flag  (NAME, _rtx, __FILE__, __LINE__,		\
1221 			      __FUNCTION__);				\
1222    _rtx; })
1223 
1224 #define RTL_FLAG_CHECK5(NAME, RTX, C1, C2, C3, C4, C5) __extension__	\
1225 ({ __typeof (RTX) const _rtx = (RTX);					\
1226    if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2			\
1227        && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4		\
1228        && GET_CODE (_rtx) != C5)					\
1229      rtl_check_failed_flag  (NAME, _rtx, __FILE__, __LINE__,		\
1230 			     __FUNCTION__);				\
1231    _rtx; })
1232 
1233 #define RTL_FLAG_CHECK6(NAME, RTX, C1, C2, C3, C4, C5, C6)		\
1234   __extension__								\
1235 ({ __typeof (RTX) const _rtx = (RTX);					\
1236    if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2			\
1237        && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4		\
1238        && GET_CODE (_rtx) != C5 && GET_CODE (_rtx) != C6)		\
1239      rtl_check_failed_flag  (NAME,_rtx, __FILE__, __LINE__,		\
1240 			     __FUNCTION__);				\
1241    _rtx; })
1242 
1243 #define RTL_FLAG_CHECK7(NAME, RTX, C1, C2, C3, C4, C5, C6, C7)		\
1244   __extension__								\
1245 ({ __typeof (RTX) const _rtx = (RTX);					\
1246    if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2			\
1247        && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4		\
1248        && GET_CODE (_rtx) != C5 && GET_CODE (_rtx) != C6		\
1249        && GET_CODE (_rtx) != C7)					\
1250      rtl_check_failed_flag  (NAME, _rtx, __FILE__, __LINE__,		\
1251 			     __FUNCTION__);				\
1252    _rtx; })
1253 
1254 #define RTL_INSN_CHAIN_FLAG_CHECK(NAME, RTX) 				\
1255   __extension__								\
1256 ({ __typeof (RTX) const _rtx = (RTX);					\
1257    if (!INSN_CHAIN_CODE_P (GET_CODE (_rtx)))				\
1258      rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__,		\
1259 			    __FUNCTION__);				\
1260    _rtx; })
1261 
1262 extern void rtl_check_failed_flag (const char *, const_rtx, const char *,
1263 				   int, const char *)
1264     ATTRIBUTE_NORETURN
1265     ;
1266 
1267 #else	/* not ENABLE_RTL_FLAG_CHECKING */
1268 
1269 #define RTL_FLAG_CHECK1(NAME, RTX, C1)					(RTX)
1270 #define RTL_FLAG_CHECK2(NAME, RTX, C1, C2)				(RTX)
1271 #define RTL_FLAG_CHECK3(NAME, RTX, C1, C2, C3)				(RTX)
1272 #define RTL_FLAG_CHECK4(NAME, RTX, C1, C2, C3, C4)			(RTX)
1273 #define RTL_FLAG_CHECK5(NAME, RTX, C1, C2, C3, C4, C5)			(RTX)
1274 #define RTL_FLAG_CHECK6(NAME, RTX, C1, C2, C3, C4, C5, C6)		(RTX)
1275 #define RTL_FLAG_CHECK7(NAME, RTX, C1, C2, C3, C4, C5, C6, C7)		(RTX)
1276 #define RTL_INSN_CHAIN_FLAG_CHECK(NAME, RTX) 				(RTX)
1277 #endif
1278 
1279 #define XINT(RTX, N)	(RTL_CHECK2 (RTX, N, 'i', 'n').rt_int)
1280 #define XUINT(RTX, N)   (RTL_CHECK2 (RTX, N, 'i', 'n').rt_uint)
1281 #define XSTR(RTX, N)	(RTL_CHECK2 (RTX, N, 's', 'S').rt_str)
1282 #define XEXP(RTX, N)	(RTL_CHECK2 (RTX, N, 'e', 'u').rt_rtx)
1283 #define XVEC(RTX, N)	(RTL_CHECK2 (RTX, N, 'E', 'V').rt_rtvec)
1284 #define XMODE(RTX, N)	(RTL_CHECK1 (RTX, N, 'M').rt_type)
1285 #define XTREE(RTX, N)   (RTL_CHECK1 (RTX, N, 't').rt_tree)
1286 #define XBBDEF(RTX, N)	(RTL_CHECK1 (RTX, N, 'B').rt_bb)
1287 #define XTMPL(RTX, N)	(RTL_CHECK1 (RTX, N, 'T').rt_str)
1288 #define XCFI(RTX, N)	(RTL_CHECK1 (RTX, N, 'C').rt_cfi)
1289 
1290 #define XVECEXP(RTX, N, M)	RTVEC_ELT (XVEC (RTX, N), M)
1291 #define XVECLEN(RTX, N)		GET_NUM_ELEM (XVEC (RTX, N))
1292 
1293 /* These are like XINT, etc. except that they expect a '0' field instead
1294    of the normal type code.  */
1295 
1296 #define X0INT(RTX, N)	   (RTL_CHECK1 (RTX, N, '0').rt_int)
1297 #define X0UINT(RTX, N)	   (RTL_CHECK1 (RTX, N, '0').rt_uint)
1298 #define X0STR(RTX, N)	   (RTL_CHECK1 (RTX, N, '0').rt_str)
1299 #define X0EXP(RTX, N)	   (RTL_CHECK1 (RTX, N, '0').rt_rtx)
1300 #define X0VEC(RTX, N)	   (RTL_CHECK1 (RTX, N, '0').rt_rtvec)
1301 #define X0MODE(RTX, N)	   (RTL_CHECK1 (RTX, N, '0').rt_type)
1302 #define X0TREE(RTX, N)	   (RTL_CHECK1 (RTX, N, '0').rt_tree)
1303 #define X0BBDEF(RTX, N)	   (RTL_CHECK1 (RTX, N, '0').rt_bb)
1304 #define X0ADVFLAGS(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_addr_diff_vec_flags)
1305 #define X0CSELIB(RTX, N)   (RTL_CHECK1 (RTX, N, '0').rt_cselib)
1306 #define X0MEMATTR(RTX, N)  (RTL_CHECKC1 (RTX, N, MEM).rt_mem)
1307 #define X0CONSTANT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_constant)
1308 
1309 /* Access a '0' field with any type.  */
1310 #define X0ANY(RTX, N)	   RTL_CHECK1 (RTX, N, '0')
1311 
1312 #define XCINT(RTX, N, C)      (RTL_CHECKC1 (RTX, N, C).rt_int)
1313 #define XCUINT(RTX, N, C)     (RTL_CHECKC1 (RTX, N, C).rt_uint)
1314 #define XCSTR(RTX, N, C)      (RTL_CHECKC1 (RTX, N, C).rt_str)
1315 #define XCEXP(RTX, N, C)      (RTL_CHECKC1 (RTX, N, C).rt_rtx)
1316 #define XCVEC(RTX, N, C)      (RTL_CHECKC1 (RTX, N, C).rt_rtvec)
1317 #define XCMODE(RTX, N, C)     (RTL_CHECKC1 (RTX, N, C).rt_type)
1318 #define XCTREE(RTX, N, C)     (RTL_CHECKC1 (RTX, N, C).rt_tree)
1319 #define XCBBDEF(RTX, N, C)    (RTL_CHECKC1 (RTX, N, C).rt_bb)
1320 #define XCCFI(RTX, N, C)      (RTL_CHECKC1 (RTX, N, C).rt_cfi)
1321 #define XCCSELIB(RTX, N, C)   (RTL_CHECKC1 (RTX, N, C).rt_cselib)
1322 
1323 #define XCVECEXP(RTX, N, M, C)	RTVEC_ELT (XCVEC (RTX, N, C), M)
1324 #define XCVECLEN(RTX, N, C)	GET_NUM_ELEM (XCVEC (RTX, N, C))
1325 
1326 #define XC2EXP(RTX, N, C1, C2)      (RTL_CHECKC2 (RTX, N, C1, C2).rt_rtx)
1327 
1328 
1329 /* Methods of rtx_expr_list.  */
1330 
next()1331 inline rtx_expr_list *rtx_expr_list::next () const
1332 {
1333   rtx tmp = XEXP (this, 1);
1334   return safe_as_a <rtx_expr_list *> (tmp);
1335 }
1336 
element()1337 inline rtx rtx_expr_list::element () const
1338 {
1339   return XEXP (this, 0);
1340 }
1341 
1342 /* Methods of rtx_insn_list.  */
1343 
next()1344 inline rtx_insn_list *rtx_insn_list::next () const
1345 {
1346   rtx tmp = XEXP (this, 1);
1347   return safe_as_a <rtx_insn_list *> (tmp);
1348 }
1349 
insn()1350 inline rtx_insn *rtx_insn_list::insn () const
1351 {
1352   rtx tmp = XEXP (this, 0);
1353   return safe_as_a <rtx_insn *> (tmp);
1354 }
1355 
1356 /* Methods of rtx_sequence.  */
1357 
len()1358 inline int rtx_sequence::len () const
1359 {
1360   return XVECLEN (this, 0);
1361 }
1362 
element(int index)1363 inline rtx rtx_sequence::element (int index) const
1364 {
1365   return XVECEXP (this, 0, index);
1366 }
1367 
insn(int index)1368 inline rtx_insn *rtx_sequence::insn (int index) const
1369 {
1370   return as_a <rtx_insn *> (XVECEXP (this, 0, index));
1371 }
1372 
1373 /* ACCESS MACROS for particular fields of insns.  */
1374 
1375 /* Holds a unique number for each insn.
1376    These are not necessarily sequentially increasing.  */
INSN_UID(const_rtx insn)1377 inline int INSN_UID (const_rtx insn)
1378 {
1379   return RTL_INSN_CHAIN_FLAG_CHECK ("INSN_UID",
1380 				    (insn))->u2.insn_uid;
1381 }
INSN_UID(rtx insn)1382 inline int& INSN_UID (rtx insn)
1383 {
1384   return RTL_INSN_CHAIN_FLAG_CHECK ("INSN_UID",
1385 				    (insn))->u2.insn_uid;
1386 }
1387 
1388 /* Chain insns together in sequence.  */
1389 
1390 /* For now these are split in two: an rvalue form:
1391      PREV_INSN/NEXT_INSN
1392    and an lvalue form:
1393      SET_NEXT_INSN/SET_PREV_INSN.  */
1394 
PREV_INSN(const rtx_insn * insn)1395 inline rtx_insn *PREV_INSN (const rtx_insn *insn)
1396 {
1397   rtx prev = XEXP (insn, 0);
1398   return safe_as_a <rtx_insn *> (prev);
1399 }
1400 
SET_PREV_INSN(rtx_insn * insn)1401 inline rtx& SET_PREV_INSN (rtx_insn *insn)
1402 {
1403   return XEXP (insn, 0);
1404 }
1405 
NEXT_INSN(const rtx_insn * insn)1406 inline rtx_insn *NEXT_INSN (const rtx_insn *insn)
1407 {
1408   rtx next = XEXP (insn, 1);
1409   return safe_as_a <rtx_insn *> (next);
1410 }
1411 
SET_NEXT_INSN(rtx_insn * insn)1412 inline rtx& SET_NEXT_INSN (rtx_insn *insn)
1413 {
1414   return XEXP (insn, 1);
1415 }
1416 
BLOCK_FOR_INSN(const_rtx insn)1417 inline basic_block BLOCK_FOR_INSN (const_rtx insn)
1418 {
1419   return XBBDEF (insn, 2);
1420 }
1421 
BLOCK_FOR_INSN(rtx insn)1422 inline basic_block& BLOCK_FOR_INSN (rtx insn)
1423 {
1424   return XBBDEF (insn, 2);
1425 }
1426 
set_block_for_insn(rtx_insn * insn,basic_block bb)1427 inline void set_block_for_insn (rtx_insn *insn, basic_block bb)
1428 {
1429   BLOCK_FOR_INSN (insn) = bb;
1430 }
1431 
1432 /* The body of an insn.  */
PATTERN(const_rtx insn)1433 inline rtx PATTERN (const_rtx insn)
1434 {
1435   return XEXP (insn, 3);
1436 }
1437 
PATTERN(rtx insn)1438 inline rtx& PATTERN (rtx insn)
1439 {
1440   return XEXP (insn, 3);
1441 }
1442 
INSN_LOCATION(const rtx_insn * insn)1443 inline unsigned int INSN_LOCATION (const rtx_insn *insn)
1444 {
1445   return XUINT (insn, 4);
1446 }
1447 
INSN_LOCATION(rtx_insn * insn)1448 inline unsigned int& INSN_LOCATION (rtx_insn *insn)
1449 {
1450   return XUINT (insn, 4);
1451 }
1452 
INSN_HAS_LOCATION(const rtx_insn * insn)1453 inline bool INSN_HAS_LOCATION (const rtx_insn *insn)
1454 {
1455   return LOCATION_LOCUS (INSN_LOCATION (insn)) != UNKNOWN_LOCATION;
1456 }
1457 
1458 /* LOCATION of an RTX if relevant.  */
1459 #define RTL_LOCATION(X) (INSN_P (X) ? \
1460 			 INSN_LOCATION (as_a <rtx_insn *> (X)) \
1461 			 : UNKNOWN_LOCATION)
1462 
1463 /* Code number of instruction, from when it was recognized.
1464    -1 means this instruction has not been recognized yet.  */
1465 #define INSN_CODE(INSN) XINT (INSN, 5)
1466 
get_labels()1467 inline rtvec rtx_jump_table_data::get_labels () const
1468 {
1469   rtx pat = PATTERN (this);
1470   if (GET_CODE (pat) == ADDR_VEC)
1471     return XVEC (pat, 0);
1472   else
1473     return XVEC (pat, 1); /* presumably an ADDR_DIFF_VEC */
1474 }
1475 
1476 #define RTX_FRAME_RELATED_P(RTX)					\
1477   (RTL_FLAG_CHECK6 ("RTX_FRAME_RELATED_P", (RTX), DEBUG_INSN, INSN,	\
1478 		    CALL_INSN, JUMP_INSN, BARRIER, SET)->frame_related)
1479 
1480 /* 1 if JUMP RTX is a crossing jump.  */
1481 #define CROSSING_JUMP_P(RTX) \
1482   (RTL_FLAG_CHECK1 ("CROSSING_JUMP_P", (RTX), JUMP_INSN)->jump)
1483 
1484 /* 1 if RTX is a call to a const function.  Built from ECF_CONST and
1485    TREE_READONLY.  */
1486 #define RTL_CONST_CALL_P(RTX)					\
1487   (RTL_FLAG_CHECK1 ("RTL_CONST_CALL_P", (RTX), CALL_INSN)->unchanging)
1488 
1489 /* 1 if RTX is a call to a pure function.  Built from ECF_PURE and
1490    DECL_PURE_P.  */
1491 #define RTL_PURE_CALL_P(RTX)					\
1492   (RTL_FLAG_CHECK1 ("RTL_PURE_CALL_P", (RTX), CALL_INSN)->return_val)
1493 
1494 /* 1 if RTX is a call to a const or pure function.  */
1495 #define RTL_CONST_OR_PURE_CALL_P(RTX) \
1496   (RTL_CONST_CALL_P (RTX) || RTL_PURE_CALL_P (RTX))
1497 
1498 /* 1 if RTX is a call to a looping const or pure function.  Built from
1499    ECF_LOOPING_CONST_OR_PURE and DECL_LOOPING_CONST_OR_PURE_P.  */
1500 #define RTL_LOOPING_CONST_OR_PURE_CALL_P(RTX)				\
1501   (RTL_FLAG_CHECK1 ("CONST_OR_PURE_CALL_P", (RTX), CALL_INSN)->call)
1502 
1503 /* 1 if RTX is a call_insn for a sibling call.  */
1504 #define SIBLING_CALL_P(RTX)						\
1505   (RTL_FLAG_CHECK1 ("SIBLING_CALL_P", (RTX), CALL_INSN)->jump)
1506 
1507 /* 1 if RTX is a jump_insn, call_insn, or insn that is an annulling branch.  */
1508 #define INSN_ANNULLED_BRANCH_P(RTX)					\
1509   (RTL_FLAG_CHECK1 ("INSN_ANNULLED_BRANCH_P", (RTX), JUMP_INSN)->unchanging)
1510 
1511 /* 1 if RTX is an insn in a delay slot and is from the target of the branch.
1512    If the branch insn has INSN_ANNULLED_BRANCH_P set, this insn should only be
1513    executed if the branch is taken.  For annulled branches with this bit
1514    clear, the insn should be executed only if the branch is not taken.  */
1515 #define INSN_FROM_TARGET_P(RTX)						\
1516   (RTL_FLAG_CHECK3 ("INSN_FROM_TARGET_P", (RTX), INSN, JUMP_INSN, \
1517 		    CALL_INSN)->in_struct)
1518 
1519 /* In an ADDR_DIFF_VEC, the flags for RTX for use by branch shortening.
1520    See the comments for ADDR_DIFF_VEC in rtl.def.  */
1521 #define ADDR_DIFF_VEC_FLAGS(RTX) X0ADVFLAGS (RTX, 4)
1522 
1523 /* In a VALUE, the value cselib has assigned to RTX.
1524    This is a "struct cselib_val", see cselib.h.  */
1525 #define CSELIB_VAL_PTR(RTX) X0CSELIB (RTX, 0)
1526 
1527 /* Holds a list of notes on what this insn does to various REGs.
1528    It is a chain of EXPR_LIST rtx's, where the second operand is the
1529    chain pointer and the first operand is the REG being described.
1530    The mode field of the EXPR_LIST contains not a real machine mode
1531    but a value from enum reg_note.  */
1532 #define REG_NOTES(INSN)	XEXP(INSN, 6)
1533 
1534 /* In an ENTRY_VALUE this is the DECL_INCOMING_RTL of the argument in
1535    question.  */
1536 #define ENTRY_VALUE_EXP(RTX) (RTL_CHECKC1 (RTX, 0, ENTRY_VALUE).rt_rtx)
1537 
1538 enum reg_note
1539 {
1540 #define DEF_REG_NOTE(NAME) NAME,
1541 #include "reg-notes.def"
1542 #undef DEF_REG_NOTE
1543   REG_NOTE_MAX
1544 };
1545 
1546 /* Define macros to extract and insert the reg-note kind in an EXPR_LIST.  */
1547 #define REG_NOTE_KIND(LINK) ((enum reg_note) GET_MODE (LINK))
1548 #define PUT_REG_NOTE_KIND(LINK, KIND) \
1549   PUT_MODE_RAW (LINK, (machine_mode) (KIND))
1550 
1551 /* Names for REG_NOTE's in EXPR_LIST insn's.  */
1552 
1553 extern const char * const reg_note_name[];
1554 #define GET_REG_NOTE_NAME(MODE) (reg_note_name[(int) (MODE)])
1555 
1556 /* This field is only present on CALL_INSNs.  It holds a chain of EXPR_LIST of
1557    USE and CLOBBER expressions.
1558      USE expressions list the registers filled with arguments that
1559    are passed to the function.
1560      CLOBBER expressions document the registers explicitly clobbered
1561    by this CALL_INSN.
1562      Pseudo registers can not be mentioned in this list.  */
1563 #define CALL_INSN_FUNCTION_USAGE(INSN)	XEXP(INSN, 7)
1564 
1565 /* The label-number of a code-label.  The assembler label
1566    is made from `L' and the label-number printed in decimal.
1567    Label numbers are unique in a compilation.  */
1568 #define CODE_LABEL_NUMBER(INSN)	XINT (INSN, 5)
1569 
1570 /* In a NOTE that is a line number, this is a string for the file name that the
1571    line is in.  We use the same field to record block numbers temporarily in
1572    NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes.  (We avoid lots of casts
1573    between ints and pointers if we use a different macro for the block number.)
1574    */
1575 
1576 /* Opaque data.  */
1577 #define NOTE_DATA(INSN)	        RTL_CHECKC1 (INSN, 3, NOTE)
1578 #define NOTE_DELETED_LABEL_NAME(INSN) XCSTR (INSN, 3, NOTE)
1579 #define SET_INSN_DELETED(INSN) set_insn_deleted (INSN);
1580 #define NOTE_BLOCK(INSN)	XCTREE (INSN, 3, NOTE)
1581 #define NOTE_EH_HANDLER(INSN)	XCINT (INSN, 3, NOTE)
1582 #define NOTE_BASIC_BLOCK(INSN)	XCBBDEF (INSN, 3, NOTE)
1583 #define NOTE_VAR_LOCATION(INSN)	XCEXP (INSN, 3, NOTE)
1584 #define NOTE_CFI(INSN)		XCCFI (INSN, 3, NOTE)
1585 #define NOTE_LABEL_NUMBER(INSN)	XCINT (INSN, 3, NOTE)
1586 
1587 /* In a NOTE that is a line number, this is the line number.
1588    Other kinds of NOTEs are identified by negative numbers here.  */
1589 #define NOTE_KIND(INSN) XCINT (INSN, 4, NOTE)
1590 
1591 /* Nonzero if INSN is a note marking the beginning of a basic block.  */
1592 #define NOTE_INSN_BASIC_BLOCK_P(INSN) \
1593   (NOTE_P (INSN) && NOTE_KIND (INSN) == NOTE_INSN_BASIC_BLOCK)
1594 
1595 /* Variable declaration and the location of a variable.  */
1596 #define PAT_VAR_LOCATION_DECL(PAT) (XCTREE ((PAT), 0, VAR_LOCATION))
1597 #define PAT_VAR_LOCATION_LOC(PAT) (XCEXP ((PAT), 1, VAR_LOCATION))
1598 
1599 /* Initialization status of the variable in the location.  Status
1600    can be unknown, uninitialized or initialized.  See enumeration
1601    type below.  */
1602 #define PAT_VAR_LOCATION_STATUS(PAT) \
1603   (RTL_FLAG_CHECK1 ("PAT_VAR_LOCATION_STATUS", PAT, VAR_LOCATION) \
1604    ->u2.var_location_status)
1605 
1606 /* Accessors for a NOTE_INSN_VAR_LOCATION.  */
1607 #define NOTE_VAR_LOCATION_DECL(NOTE) \
1608   PAT_VAR_LOCATION_DECL (NOTE_VAR_LOCATION (NOTE))
1609 #define NOTE_VAR_LOCATION_LOC(NOTE) \
1610   PAT_VAR_LOCATION_LOC (NOTE_VAR_LOCATION (NOTE))
1611 #define NOTE_VAR_LOCATION_STATUS(NOTE) \
1612   PAT_VAR_LOCATION_STATUS (NOTE_VAR_LOCATION (NOTE))
1613 
1614 /* The VAR_LOCATION rtx in a DEBUG_INSN.  */
1615 #define INSN_VAR_LOCATION(INSN) PATTERN (INSN)
1616 
1617 /* Accessors for a tree-expanded var location debug insn.  */
1618 #define INSN_VAR_LOCATION_DECL(INSN) \
1619   PAT_VAR_LOCATION_DECL (INSN_VAR_LOCATION (INSN))
1620 #define INSN_VAR_LOCATION_LOC(INSN) \
1621   PAT_VAR_LOCATION_LOC (INSN_VAR_LOCATION (INSN))
1622 #define INSN_VAR_LOCATION_STATUS(INSN) \
1623   PAT_VAR_LOCATION_STATUS (INSN_VAR_LOCATION (INSN))
1624 
1625 /* Expand to the RTL that denotes an unknown variable location in a
1626    DEBUG_INSN.  */
1627 #define gen_rtx_UNKNOWN_VAR_LOC() (gen_rtx_CLOBBER (VOIDmode, const0_rtx))
1628 
1629 /* Determine whether X is such an unknown location.  */
1630 #define VAR_LOC_UNKNOWN_P(X) \
1631   (GET_CODE (X) == CLOBBER && XEXP ((X), 0) == const0_rtx)
1632 
1633 /* 1 if RTX is emitted after a call, but it should take effect before
1634    the call returns.  */
1635 #define NOTE_DURING_CALL_P(RTX)				\
1636   (RTL_FLAG_CHECK1 ("NOTE_VAR_LOCATION_DURING_CALL_P", (RTX), NOTE)->call)
1637 
1638 /* DEBUG_EXPR_DECL corresponding to a DEBUG_EXPR RTX.  */
1639 #define DEBUG_EXPR_TREE_DECL(RTX) XCTREE (RTX, 0, DEBUG_EXPR)
1640 
1641 /* VAR_DECL/PARM_DECL DEBUG_IMPLICIT_PTR takes address of.  */
1642 #define DEBUG_IMPLICIT_PTR_DECL(RTX) XCTREE (RTX, 0, DEBUG_IMPLICIT_PTR)
1643 
1644 /* PARM_DECL DEBUG_PARAMETER_REF references.  */
1645 #define DEBUG_PARAMETER_REF_DECL(RTX) XCTREE (RTX, 0, DEBUG_PARAMETER_REF)
1646 
1647 /* Codes that appear in the NOTE_KIND field for kinds of notes
1648    that are not line numbers.  These codes are all negative.
1649 
1650    Notice that we do not try to use zero here for any of
1651    the special note codes because sometimes the source line
1652    actually can be zero!  This happens (for example) when we
1653    are generating code for the per-translation-unit constructor
1654    and destructor routines for some C++ translation unit.  */
1655 
1656 enum insn_note
1657 {
1658 #define DEF_INSN_NOTE(NAME) NAME,
1659 #include "insn-notes.def"
1660 #undef DEF_INSN_NOTE
1661 
1662   NOTE_INSN_MAX
1663 };
1664 
1665 /* Names for NOTE insn's other than line numbers.  */
1666 
1667 extern const char * const note_insn_name[NOTE_INSN_MAX];
1668 #define GET_NOTE_INSN_NAME(NOTE_CODE) \
1669   (note_insn_name[(NOTE_CODE)])
1670 
1671 /* The name of a label, in case it corresponds to an explicit label
1672    in the input source code.  */
1673 #define LABEL_NAME(RTX) XCSTR (RTX, 6, CODE_LABEL)
1674 
1675 /* In jump.c, each label contains a count of the number
1676    of LABEL_REFs that point at it, so unused labels can be deleted.  */
1677 #define LABEL_NUSES(RTX) XCINT (RTX, 4, CODE_LABEL)
1678 
1679 /* Labels carry a two-bit field composed of the ->jump and ->call
1680    bits.  This field indicates whether the label is an alternate
1681    entry point, and if so, what kind.  */
1682 enum label_kind
1683 {
1684   LABEL_NORMAL = 0,	/* ordinary label */
1685   LABEL_STATIC_ENTRY,	/* alternate entry point, not exported */
1686   LABEL_GLOBAL_ENTRY,	/* alternate entry point, exported */
1687   LABEL_WEAK_ENTRY	/* alternate entry point, exported as weak symbol */
1688 };
1689 
1690 #if defined ENABLE_RTL_FLAG_CHECKING && (GCC_VERSION > 2007)
1691 
1692 /* Retrieve the kind of LABEL.  */
1693 #define LABEL_KIND(LABEL) __extension__					\
1694 ({ __typeof (LABEL) const _label = (LABEL);				\
1695    if (! LABEL_P (_label))						\
1696      rtl_check_failed_flag ("LABEL_KIND", _label, __FILE__, __LINE__,	\
1697 			    __FUNCTION__);				\
1698    (enum label_kind) ((_label->jump << 1) | _label->call); })
1699 
1700 /* Set the kind of LABEL.  */
1701 #define SET_LABEL_KIND(LABEL, KIND) do {				\
1702    __typeof (LABEL) const _label = (LABEL);				\
1703    const unsigned int _kind = (KIND);					\
1704    if (! LABEL_P (_label))						\
1705      rtl_check_failed_flag ("SET_LABEL_KIND", _label, __FILE__, __LINE__, \
1706 			    __FUNCTION__);				\
1707    _label->jump = ((_kind >> 1) & 1);					\
1708    _label->call = (_kind & 1);						\
1709 } while (0)
1710 
1711 #else
1712 
1713 /* Retrieve the kind of LABEL.  */
1714 #define LABEL_KIND(LABEL) \
1715    ((enum label_kind) (((LABEL)->jump << 1) | (LABEL)->call))
1716 
1717 /* Set the kind of LABEL.  */
1718 #define SET_LABEL_KIND(LABEL, KIND) do {				\
1719    rtx const _label = (LABEL);						\
1720    const unsigned int _kind = (KIND);					\
1721    _label->jump = ((_kind >> 1) & 1);					\
1722    _label->call = (_kind & 1);						\
1723 } while (0)
1724 
1725 #endif /* rtl flag checking */
1726 
1727 #define LABEL_ALT_ENTRY_P(LABEL) (LABEL_KIND (LABEL) != LABEL_NORMAL)
1728 
1729 /* In jump.c, each JUMP_INSN can point to a label that it can jump to,
1730    so that if the JUMP_INSN is deleted, the label's LABEL_NUSES can
1731    be decremented and possibly the label can be deleted.  */
1732 #define JUMP_LABEL(INSN)   XCEXP (INSN, 7, JUMP_INSN)
1733 
JUMP_LABEL_AS_INSN(const rtx_insn * insn)1734 inline rtx_insn *JUMP_LABEL_AS_INSN (const rtx_insn *insn)
1735 {
1736   return safe_as_a <rtx_insn *> (JUMP_LABEL (insn));
1737 }
1738 
1739 /* Methods of rtx_jump_insn.  */
1740 
jump_label()1741 inline rtx rtx_jump_insn::jump_label () const
1742 {
1743   return JUMP_LABEL (this);
1744 }
1745 
jump_target()1746 inline rtx_code_label *rtx_jump_insn::jump_target () const
1747 {
1748   return safe_as_a <rtx_code_label *> (JUMP_LABEL (this));
1749 }
1750 
set_jump_target(rtx_code_label * target)1751 inline void rtx_jump_insn::set_jump_target (rtx_code_label *target)
1752 {
1753   JUMP_LABEL (this) = target;
1754 }
1755 
1756 /* Once basic blocks are found, each CODE_LABEL starts a chain that
1757    goes through all the LABEL_REFs that jump to that label.  The chain
1758    eventually winds up at the CODE_LABEL: it is circular.  */
1759 #define LABEL_REFS(LABEL) XCEXP (LABEL, 3, CODE_LABEL)
1760 
1761 /* Get the label that a LABEL_REF references.  */
1762 #define LABEL_REF_LABEL(LABREF) XCEXP (LABREF, 0, LABEL_REF)
1763 
1764 
1765 /* For a REG rtx, REGNO extracts the register number.  REGNO can only
1766    be used on RHS.  Use SET_REGNO to change the value.  */
1767 #define REGNO(RTX) (rhs_regno(RTX))
1768 #define SET_REGNO(RTX, N) (df_ref_change_reg_with_loc (RTX, N))
1769 
1770 /* Return the number of consecutive registers in a REG.  This is always
1771    1 for pseudo registers and is determined by HARD_REGNO_NREGS for
1772    hard registers.  */
1773 #define REG_NREGS(RTX) (REG_CHECK (RTX)->nregs)
1774 
1775 /* ORIGINAL_REGNO holds the number the register originally had; for a
1776    pseudo register turned into a hard reg this will hold the old pseudo
1777    register number.  */
1778 #define ORIGINAL_REGNO(RTX) \
1779   (RTL_FLAG_CHECK1 ("ORIGINAL_REGNO", (RTX), REG)->u2.original_regno)
1780 
1781 /* Force the REGNO macro to only be used on the lhs.  */
1782 static inline unsigned int
rhs_regno(const_rtx x)1783 rhs_regno (const_rtx x)
1784 {
1785   return REG_CHECK (x)->regno;
1786 }
1787 
1788 /* Return the final register in REG X plus one.  */
1789 static inline unsigned int
END_REGNO(const_rtx x)1790 END_REGNO (const_rtx x)
1791 {
1792   return REGNO (x) + REG_NREGS (x);
1793 }
1794 
1795 /* Change the REGNO and REG_NREGS of REG X to the specified values,
1796    bypassing the df machinery.  */
1797 static inline void
set_regno_raw(rtx x,unsigned int regno,unsigned int nregs)1798 set_regno_raw (rtx x, unsigned int regno, unsigned int nregs)
1799 {
1800   reg_info *reg = REG_CHECK (x);
1801   reg->regno = regno;
1802   reg->nregs = nregs;
1803 }
1804 
1805 /* 1 if RTX is a reg or parallel that is the current function's return
1806    value.  */
1807 #define REG_FUNCTION_VALUE_P(RTX)					\
1808   (RTL_FLAG_CHECK2 ("REG_FUNCTION_VALUE_P", (RTX), REG, PARALLEL)->return_val)
1809 
1810 /* 1 if RTX is a reg that corresponds to a variable declared by the user.  */
1811 #define REG_USERVAR_P(RTX)						\
1812   (RTL_FLAG_CHECK1 ("REG_USERVAR_P", (RTX), REG)->volatil)
1813 
1814 /* 1 if RTX is a reg that holds a pointer value.  */
1815 #define REG_POINTER(RTX)						\
1816   (RTL_FLAG_CHECK1 ("REG_POINTER", (RTX), REG)->frame_related)
1817 
1818 /* 1 if RTX is a mem that holds a pointer value.  */
1819 #define MEM_POINTER(RTX)						\
1820   (RTL_FLAG_CHECK1 ("MEM_POINTER", (RTX), MEM)->frame_related)
1821 
1822 /* 1 if the given register REG corresponds to a hard register.  */
1823 #define HARD_REGISTER_P(REG) (HARD_REGISTER_NUM_P (REGNO (REG)))
1824 
1825 /* 1 if the given register number REG_NO corresponds to a hard register.  */
1826 #define HARD_REGISTER_NUM_P(REG_NO) ((REG_NO) < FIRST_PSEUDO_REGISTER)
1827 
1828 /* For a CONST_INT rtx, INTVAL extracts the integer.  */
1829 #define INTVAL(RTX) XCWINT (RTX, 0, CONST_INT)
1830 #define UINTVAL(RTX) ((unsigned HOST_WIDE_INT) INTVAL (RTX))
1831 
1832 /* For a CONST_WIDE_INT, CONST_WIDE_INT_NUNITS is the number of
1833    elements actually needed to represent the constant.
1834    CONST_WIDE_INT_ELT gets one of the elements.  0 is the least
1835    significant HOST_WIDE_INT.  */
1836 #define CONST_WIDE_INT_VEC(RTX) HWIVEC_CHECK (RTX, CONST_WIDE_INT)
1837 #define CONST_WIDE_INT_NUNITS(RTX) CWI_GET_NUM_ELEM (RTX)
1838 #define CONST_WIDE_INT_ELT(RTX, N) CWI_ELT (RTX, N)
1839 
1840 /* For a CONST_DOUBLE:
1841 #if TARGET_SUPPORTS_WIDE_INT == 0
1842    For a VOIDmode, there are two integers CONST_DOUBLE_LOW is the
1843      low-order word and ..._HIGH the high-order.
1844 #endif
1845    For a float, there is a REAL_VALUE_TYPE structure, and
1846      CONST_DOUBLE_REAL_VALUE(r) is a pointer to it.  */
1847 #define CONST_DOUBLE_LOW(r) XCMWINT (r, 0, CONST_DOUBLE, VOIDmode)
1848 #define CONST_DOUBLE_HIGH(r) XCMWINT (r, 1, CONST_DOUBLE, VOIDmode)
1849 #define CONST_DOUBLE_REAL_VALUE(r) \
1850   ((const struct real_value *) XCNMPRV (r, CONST_DOUBLE, VOIDmode))
1851 
1852 #define CONST_FIXED_VALUE(r) \
1853   ((const struct fixed_value *) XCNMPFV (r, CONST_FIXED, VOIDmode))
1854 #define CONST_FIXED_VALUE_HIGH(r) \
1855   ((HOST_WIDE_INT) (CONST_FIXED_VALUE (r)->data.high))
1856 #define CONST_FIXED_VALUE_LOW(r) \
1857   ((HOST_WIDE_INT) (CONST_FIXED_VALUE (r)->data.low))
1858 
1859 /* For a CONST_VECTOR, return element #n.  */
1860 #define CONST_VECTOR_ELT(RTX, N) XCVECEXP (RTX, 0, N, CONST_VECTOR)
1861 
1862 /* For a CONST_VECTOR, return the number of elements in a vector.  */
1863 #define CONST_VECTOR_NUNITS(RTX) XCVECLEN (RTX, 0, CONST_VECTOR)
1864 
1865 /* For a SUBREG rtx, SUBREG_REG extracts the value we want a subreg of.
1866    SUBREG_BYTE extracts the byte-number.  */
1867 
1868 #define SUBREG_REG(RTX) XCEXP (RTX, 0, SUBREG)
1869 #define SUBREG_BYTE(RTX) XCUINT (RTX, 1, SUBREG)
1870 
1871 /* in rtlanal.c */
1872 /* Return the right cost to give to an operation
1873    to make the cost of the corresponding register-to-register instruction
1874    N times that of a fast register-to-register instruction.  */
1875 #define COSTS_N_INSNS(N) ((N) * 4)
1876 
1877 /* Maximum cost of an rtl expression.  This value has the special meaning
1878    not to use an rtx with this cost under any circumstances.  */
1879 #define MAX_COST INT_MAX
1880 
1881 /* Return true if CODE always has VOIDmode.  */
1882 
1883 static inline bool
always_void_p(enum rtx_code code)1884 always_void_p (enum rtx_code code)
1885 {
1886   return code == SET;
1887 }
1888 
1889 /* A structure to hold all available cost information about an rtl
1890    expression.  */
1891 struct full_rtx_costs
1892 {
1893   int speed;
1894   int size;
1895 };
1896 
1897 /* Initialize a full_rtx_costs structure C to the maximum cost.  */
1898 static inline void
init_costs_to_max(struct full_rtx_costs * c)1899 init_costs_to_max (struct full_rtx_costs *c)
1900 {
1901   c->speed = MAX_COST;
1902   c->size = MAX_COST;
1903 }
1904 
1905 /* Initialize a full_rtx_costs structure C to zero cost.  */
1906 static inline void
init_costs_to_zero(struct full_rtx_costs * c)1907 init_costs_to_zero (struct full_rtx_costs *c)
1908 {
1909   c->speed = 0;
1910   c->size = 0;
1911 }
1912 
1913 /* Compare two full_rtx_costs structures A and B, returning true
1914    if A < B when optimizing for speed.  */
1915 static inline bool
costs_lt_p(struct full_rtx_costs * a,struct full_rtx_costs * b,bool speed)1916 costs_lt_p (struct full_rtx_costs *a, struct full_rtx_costs *b,
1917 	    bool speed)
1918 {
1919   if (speed)
1920     return (a->speed < b->speed
1921 	    || (a->speed == b->speed && a->size < b->size));
1922   else
1923     return (a->size < b->size
1924 	    || (a->size == b->size && a->speed < b->speed));
1925 }
1926 
1927 /* Increase both members of the full_rtx_costs structure C by the
1928    cost of N insns.  */
1929 static inline void
costs_add_n_insns(struct full_rtx_costs * c,int n)1930 costs_add_n_insns (struct full_rtx_costs *c, int n)
1931 {
1932   c->speed += COSTS_N_INSNS (n);
1933   c->size += COSTS_N_INSNS (n);
1934 }
1935 
1936 /* Describes the shape of a subreg:
1937 
1938    inner_mode == the mode of the SUBREG_REG
1939    offset     == the SUBREG_BYTE
1940    outer_mode == the mode of the SUBREG itself.  */
1941 struct subreg_shape {
1942   subreg_shape (machine_mode, unsigned int, machine_mode);
1943   bool operator == (const subreg_shape &) const;
1944   bool operator != (const subreg_shape &) const;
1945   unsigned int unique_id () const;
1946 
1947   machine_mode inner_mode;
1948   unsigned int offset;
1949   machine_mode outer_mode;
1950 };
1951 
1952 inline
subreg_shape(machine_mode inner_mode_in,unsigned int offset_in,machine_mode outer_mode_in)1953 subreg_shape::subreg_shape (machine_mode inner_mode_in,
1954 			    unsigned int offset_in,
1955 			    machine_mode outer_mode_in)
1956   : inner_mode (inner_mode_in), offset (offset_in), outer_mode (outer_mode_in)
1957 {}
1958 
1959 inline bool
1960 subreg_shape::operator == (const subreg_shape &other) const
1961 {
1962   return (inner_mode == other.inner_mode
1963 	  && offset == other.offset
1964 	  && outer_mode == other.outer_mode);
1965 }
1966 
1967 inline bool
1968 subreg_shape::operator != (const subreg_shape &other) const
1969 {
1970   return !operator == (other);
1971 }
1972 
1973 /* Return an integer that uniquely identifies this shape.  Structures
1974    like rtx_def assume that a mode can fit in an 8-bit bitfield and no
1975    current mode is anywhere near being 65536 bytes in size, so the
1976    id comfortably fits in an int.  */
1977 
1978 inline unsigned int
unique_id()1979 subreg_shape::unique_id () const
1980 {
1981   STATIC_ASSERT (MAX_MACHINE_MODE <= 256);
1982   return (int) inner_mode + ((int) outer_mode << 8) + (offset << 16);
1983 }
1984 
1985 /* Return the shape of a SUBREG rtx.  */
1986 
1987 static inline subreg_shape
shape_of_subreg(const_rtx x)1988 shape_of_subreg (const_rtx x)
1989 {
1990   return subreg_shape (GET_MODE (SUBREG_REG (x)),
1991 		       SUBREG_BYTE (x), GET_MODE (x));
1992 }
1993 
1994 /* Information about an address.  This structure is supposed to be able
1995    to represent all supported target addresses.  Please extend it if it
1996    is not yet general enough.  */
1997 struct address_info {
1998   /* The mode of the value being addressed, or VOIDmode if this is
1999      a load-address operation with no known address mode.  */
2000   machine_mode mode;
2001 
2002   /* The address space.  */
2003   addr_space_t as;
2004 
2005   /* A pointer to the top-level address.  */
2006   rtx *outer;
2007 
2008   /* A pointer to the inner address, after all address mutations
2009      have been stripped from the top-level address.  It can be one
2010      of the following:
2011 
2012      - A {PRE,POST}_{INC,DEC} of *BASE.  SEGMENT, INDEX and DISP are null.
2013 
2014      - A {PRE,POST}_MODIFY of *BASE.  In this case either INDEX or DISP
2015        points to the step value, depending on whether the step is variable
2016        or constant respectively.  SEGMENT is null.
2017 
2018      - A plain sum of the form SEGMENT + BASE + INDEX + DISP,
2019        with null fields evaluating to 0.  */
2020   rtx *inner;
2021 
2022   /* Components that make up *INNER.  Each one may be null or nonnull.
2023      When nonnull, their meanings are as follows:
2024 
2025      - *SEGMENT is the "segment" of memory to which the address refers.
2026        This value is entirely target-specific and is only called a "segment"
2027        because that's its most typical use.  It contains exactly one UNSPEC,
2028        pointed to by SEGMENT_TERM.  The contents of *SEGMENT do not need
2029        reloading.
2030 
2031      - *BASE is a variable expression representing a base address.
2032        It contains exactly one REG, SUBREG or MEM, pointed to by BASE_TERM.
2033 
2034      - *INDEX is a variable expression representing an index value.
2035        It may be a scaled expression, such as a MULT.  It has exactly
2036        one REG, SUBREG or MEM, pointed to by INDEX_TERM.
2037 
2038      - *DISP is a constant, possibly mutated.  DISP_TERM points to the
2039        unmutated RTX_CONST_OBJ.  */
2040   rtx *segment;
2041   rtx *base;
2042   rtx *index;
2043   rtx *disp;
2044 
2045   rtx *segment_term;
2046   rtx *base_term;
2047   rtx *index_term;
2048   rtx *disp_term;
2049 
2050   /* In a {PRE,POST}_MODIFY address, this points to a second copy
2051      of BASE_TERM, otherwise it is null.  */
2052   rtx *base_term2;
2053 
2054   /* ADDRESS if this structure describes an address operand, MEM if
2055      it describes a MEM address.  */
2056   enum rtx_code addr_outer_code;
2057 
2058   /* If BASE is nonnull, this is the code of the rtx that contains it.  */
2059   enum rtx_code base_outer_code;
2060 
2061   /* True if this is an RTX_AUTOINC address.  */
2062   bool autoinc_p;
2063 };
2064 
2065 /* This is used to bundle an rtx and a mode together so that the pair
2066    can be used with the wi:: routines.  If we ever put modes into rtx
2067    integer constants, this should go away and then just pass an rtx in.  */
2068 typedef std::pair <rtx, machine_mode> rtx_mode_t;
2069 
2070 namespace wi
2071 {
2072   template <>
2073   struct int_traits <rtx_mode_t>
2074   {
2075     static const enum precision_type precision_type = VAR_PRECISION;
2076     static const bool host_dependent_precision = false;
2077     /* This ought to be true, except for the special case that BImode
2078        is canonicalized to STORE_FLAG_VALUE, which might be 1.  */
2079     static const bool is_sign_extended = false;
2080     static unsigned int get_precision (const rtx_mode_t &);
2081     static wi::storage_ref decompose (HOST_WIDE_INT *, unsigned int,
2082 				      const rtx_mode_t &);
2083   };
2084 }
2085 
2086 inline unsigned int
2087 wi::int_traits <rtx_mode_t>::get_precision (const rtx_mode_t &x)
2088 {
2089   gcc_checking_assert (x.second != BLKmode && x.second != VOIDmode);
2090   return GET_MODE_PRECISION (x.second);
2091 }
2092 
2093 inline wi::storage_ref
2094 wi::int_traits <rtx_mode_t>::decompose (HOST_WIDE_INT *,
2095 					unsigned int precision,
2096 					const rtx_mode_t &x)
2097 {
2098   gcc_checking_assert (precision == get_precision (x));
2099   switch (GET_CODE (x.first))
2100     {
2101     case CONST_INT:
2102       if (precision < HOST_BITS_PER_WIDE_INT)
2103 	/* Nonzero BImodes are stored as STORE_FLAG_VALUE, which on many
2104 	   targets is 1 rather than -1.  */
2105 	gcc_checking_assert (INTVAL (x.first)
2106 			     == sext_hwi (INTVAL (x.first), precision)
2107 			     || (x.second == BImode && INTVAL (x.first) == 1));
2108 
2109       return wi::storage_ref (&INTVAL (x.first), 1, precision);
2110 
2111     case CONST_WIDE_INT:
2112       return wi::storage_ref (&CONST_WIDE_INT_ELT (x.first, 0),
2113 			      CONST_WIDE_INT_NUNITS (x.first), precision);
2114 
2115 #if TARGET_SUPPORTS_WIDE_INT == 0
2116     case CONST_DOUBLE:
2117       return wi::storage_ref (&CONST_DOUBLE_LOW (x.first), 2, precision);
2118 #endif
2119 
2120     default:
2121       gcc_unreachable ();
2122     }
2123 }
2124 
2125 namespace wi
2126 {
2127   hwi_with_prec shwi (HOST_WIDE_INT, machine_mode mode);
2128   wide_int min_value (machine_mode, signop);
2129   wide_int max_value (machine_mode, signop);
2130 }
2131 
2132 inline wi::hwi_with_prec
2133 wi::shwi (HOST_WIDE_INT val, machine_mode mode)
2134 {
2135   return shwi (val, GET_MODE_PRECISION (mode));
2136 }
2137 
2138 /* Produce the smallest number that is represented in MODE.  The precision
2139    is taken from MODE and the sign from SGN.  */
2140 inline wide_int
2141 wi::min_value (machine_mode mode, signop sgn)
2142 {
2143   return min_value (GET_MODE_PRECISION (mode), sgn);
2144 }
2145 
2146 /* Produce the largest number that is represented in MODE.  The precision
2147    is taken from MODE and the sign from SGN.  */
2148 inline wide_int
2149 wi::max_value (machine_mode mode, signop sgn)
2150 {
2151   return max_value (GET_MODE_PRECISION (mode), sgn);
2152 }
2153 
2154 extern void init_rtlanal (void);
2155 extern int rtx_cost (rtx, machine_mode, enum rtx_code, int, bool);
2156 extern int address_cost (rtx, machine_mode, addr_space_t, bool);
2157 extern void get_full_rtx_cost (rtx, machine_mode, enum rtx_code, int,
2158 			       struct full_rtx_costs *);
2159 extern unsigned int subreg_lsb (const_rtx);
2160 extern unsigned int subreg_lsb_1 (machine_mode, machine_mode,
2161 				  unsigned int);
2162 extern unsigned int subreg_regno_offset	(unsigned int, machine_mode,
2163 					 unsigned int, machine_mode);
2164 extern bool subreg_offset_representable_p (unsigned int, machine_mode,
2165 					   unsigned int, machine_mode);
2166 extern unsigned int subreg_regno (const_rtx);
2167 extern int simplify_subreg_regno (unsigned int, machine_mode,
2168 				  unsigned int, machine_mode);
2169 extern unsigned int subreg_nregs (const_rtx);
2170 extern unsigned int subreg_nregs_with_regno (unsigned int, const_rtx);
2171 extern unsigned HOST_WIDE_INT nonzero_bits (const_rtx, machine_mode);
2172 extern unsigned int num_sign_bit_copies (const_rtx, machine_mode);
2173 extern bool constant_pool_constant_p (rtx);
2174 extern bool truncated_to_mode (machine_mode, const_rtx);
2175 extern int low_bitmask_len (machine_mode, unsigned HOST_WIDE_INT);
2176 extern void split_double (rtx, rtx *, rtx *);
2177 extern rtx *strip_address_mutations (rtx *, enum rtx_code * = 0);
2178 extern void decompose_address (struct address_info *, rtx *,
2179 			       machine_mode, addr_space_t, enum rtx_code);
2180 extern void decompose_lea_address (struct address_info *, rtx *);
2181 extern void decompose_mem_address (struct address_info *, rtx);
2182 extern void update_address (struct address_info *);
2183 extern HOST_WIDE_INT get_index_scale (const struct address_info *);
2184 extern enum rtx_code get_index_code (const struct address_info *);
2185 
2186 /* 1 if RTX is a subreg containing a reg that is already known to be
2187    sign- or zero-extended from the mode of the subreg to the mode of
2188    the reg.  SUBREG_PROMOTED_UNSIGNED_P gives the signedness of the
2189    extension.
2190 
2191    When used as a LHS, is means that this extension must be done
2192    when assigning to SUBREG_REG.  */
2193 
2194 #define SUBREG_PROMOTED_VAR_P(RTX)					\
2195   (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED", (RTX), SUBREG)->in_struct)
2196 
2197 /* Valid for subregs which are SUBREG_PROMOTED_VAR_P().  In that case
2198    this gives the necessary extensions:
2199    0  - signed (SPR_SIGNED)
2200    1  - normal unsigned (SPR_UNSIGNED)
2201    2  - value is both sign and unsign extended for mode
2202 	(SPR_SIGNED_AND_UNSIGNED).
2203    -1 - pointer unsigned, which most often can be handled like unsigned
2204         extension, except for generating instructions where we need to
2205 	emit special code (ptr_extend insns) on some architectures
2206 	(SPR_POINTER). */
2207 
2208 const int SRP_POINTER = -1;
2209 const int SRP_SIGNED = 0;
2210 const int SRP_UNSIGNED = 1;
2211 const int SRP_SIGNED_AND_UNSIGNED = 2;
2212 
2213 /* Sets promoted mode for SUBREG_PROMOTED_VAR_P().  */
2214 #define SUBREG_PROMOTED_SET(RTX, VAL)		                        \
2215 do {								        \
2216   rtx const _rtx = RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SET",		\
2217                                     (RTX), SUBREG);			\
2218   switch (VAL)								\
2219   {									\
2220     case SRP_POINTER:							\
2221       _rtx->volatil = 0;						\
2222       _rtx->unchanging = 0;						\
2223       break;								\
2224     case SRP_SIGNED:							\
2225       _rtx->volatil = 0;						\
2226       _rtx->unchanging = 1;						\
2227       break;								\
2228     case SRP_UNSIGNED:							\
2229       _rtx->volatil = 1;						\
2230       _rtx->unchanging = 0;						\
2231       break;								\
2232     case SRP_SIGNED_AND_UNSIGNED:					\
2233       _rtx->volatil = 1;						\
2234       _rtx->unchanging = 1;						\
2235       break;								\
2236   }									\
2237 } while (0)
2238 
2239 /* Gets the value stored in promoted mode for SUBREG_PROMOTED_VAR_P(),
2240    including SRP_SIGNED_AND_UNSIGNED if promoted for
2241    both signed and unsigned.  */
2242 #define SUBREG_PROMOTED_GET(RTX)	\
2243   (2 * (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_GET", (RTX), SUBREG)->volatil)\
2244    + (RTX)->unchanging - 1)
2245 
2246 /* Returns sign of promoted mode for SUBREG_PROMOTED_VAR_P().  */
2247 #define SUBREG_PROMOTED_SIGN(RTX)	\
2248   ((RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SIGN", (RTX), SUBREG)->volatil) ? 1\
2249    : (RTX)->unchanging - 1)
2250 
2251 /* Predicate to check if RTX of SUBREG_PROMOTED_VAR_P() is promoted
2252    for SIGNED type.  */
2253 #define SUBREG_PROMOTED_SIGNED_P(RTX)	\
2254   (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SIGNED_P", (RTX), SUBREG)->unchanging)
2255 
2256 /* Predicate to check if RTX of SUBREG_PROMOTED_VAR_P() is promoted
2257    for UNSIGNED type.  */
2258 #define SUBREG_PROMOTED_UNSIGNED_P(RTX)	\
2259   (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_UNSIGNED_P", (RTX), SUBREG)->volatil)
2260 
2261 /* Checks if RTX of SUBREG_PROMOTED_VAR_P() is promoted for given SIGN.  */
2262 #define SUBREG_CHECK_PROMOTED_SIGN(RTX, SIGN)	\
2263 ((SIGN) == SRP_POINTER ? SUBREG_PROMOTED_GET (RTX) == SRP_POINTER	\
2264  : (SIGN) == SRP_SIGNED ? SUBREG_PROMOTED_SIGNED_P (RTX)		\
2265  : SUBREG_PROMOTED_UNSIGNED_P (RTX))
2266 
2267 /* True if the subreg was generated by LRA for reload insns.  Such
2268    subregs are valid only during LRA.  */
2269 #define LRA_SUBREG_P(RTX)	\
2270   (RTL_FLAG_CHECK1 ("LRA_SUBREG_P", (RTX), SUBREG)->jump)
2271 
2272 /* True if call is instrumented by Pointer Bounds Checker.  */
2273 #define CALL_EXPR_WITH_BOUNDS_P(RTX) \
2274   (RTL_FLAG_CHECK1 ("CALL_EXPR_WITH_BOUNDS_P", (RTX), CALL)->jump)
2275 
2276 /* Access various components of an ASM_OPERANDS rtx.  */
2277 
2278 #define ASM_OPERANDS_TEMPLATE(RTX) XCSTR (RTX, 0, ASM_OPERANDS)
2279 #define ASM_OPERANDS_OUTPUT_CONSTRAINT(RTX) XCSTR (RTX, 1, ASM_OPERANDS)
2280 #define ASM_OPERANDS_OUTPUT_IDX(RTX) XCINT (RTX, 2, ASM_OPERANDS)
2281 #define ASM_OPERANDS_INPUT_VEC(RTX) XCVEC (RTX, 3, ASM_OPERANDS)
2282 #define ASM_OPERANDS_INPUT_CONSTRAINT_VEC(RTX) XCVEC (RTX, 4, ASM_OPERANDS)
2283 #define ASM_OPERANDS_INPUT(RTX, N) XCVECEXP (RTX, 3, N, ASM_OPERANDS)
2284 #define ASM_OPERANDS_INPUT_LENGTH(RTX) XCVECLEN (RTX, 3, ASM_OPERANDS)
2285 #define ASM_OPERANDS_INPUT_CONSTRAINT_EXP(RTX, N) \
2286   XCVECEXP (RTX, 4, N, ASM_OPERANDS)
2287 #define ASM_OPERANDS_INPUT_CONSTRAINT(RTX, N) \
2288   XSTR (XCVECEXP (RTX, 4, N, ASM_OPERANDS), 0)
2289 #define ASM_OPERANDS_INPUT_MODE(RTX, N)  \
2290   GET_MODE (XCVECEXP (RTX, 4, N, ASM_OPERANDS))
2291 #define ASM_OPERANDS_LABEL_VEC(RTX) XCVEC (RTX, 5, ASM_OPERANDS)
2292 #define ASM_OPERANDS_LABEL_LENGTH(RTX) XCVECLEN (RTX, 5, ASM_OPERANDS)
2293 #define ASM_OPERANDS_LABEL(RTX, N) XCVECEXP (RTX, 5, N, ASM_OPERANDS)
2294 #define ASM_OPERANDS_SOURCE_LOCATION(RTX) XCUINT (RTX, 6, ASM_OPERANDS)
2295 #define ASM_INPUT_SOURCE_LOCATION(RTX) XCUINT (RTX, 1, ASM_INPUT)
2296 
2297 /* 1 if RTX is a mem that is statically allocated in read-only memory.  */
2298 #define MEM_READONLY_P(RTX) \
2299   (RTL_FLAG_CHECK1 ("MEM_READONLY_P", (RTX), MEM)->unchanging)
2300 
2301 /* 1 if RTX is a mem and we should keep the alias set for this mem
2302    unchanged when we access a component.  Set to 1, or example, when we
2303    are already in a non-addressable component of an aggregate.  */
2304 #define MEM_KEEP_ALIAS_SET_P(RTX)					\
2305   (RTL_FLAG_CHECK1 ("MEM_KEEP_ALIAS_SET_P", (RTX), MEM)->jump)
2306 
2307 /* 1 if RTX is a mem or asm_operand for a volatile reference.  */
2308 #define MEM_VOLATILE_P(RTX)						\
2309   (RTL_FLAG_CHECK3 ("MEM_VOLATILE_P", (RTX), MEM, ASM_OPERANDS,		\
2310 		    ASM_INPUT)->volatil)
2311 
2312 /* 1 if RTX is a mem that cannot trap.  */
2313 #define MEM_NOTRAP_P(RTX) \
2314   (RTL_FLAG_CHECK1 ("MEM_NOTRAP_P", (RTX), MEM)->call)
2315 
2316 /* The memory attribute block.  We provide access macros for each value
2317    in the block and provide defaults if none specified.  */
2318 #define MEM_ATTRS(RTX) X0MEMATTR (RTX, 1)
2319 
2320 /* The register attribute block.  We provide access macros for each value
2321    in the block and provide defaults if none specified.  */
2322 #define REG_ATTRS(RTX) (REG_CHECK (RTX)->attrs)
2323 
2324 #ifndef GENERATOR_FILE
2325 /* For a MEM rtx, the alias set.  If 0, this MEM is not in any alias
2326    set, and may alias anything.  Otherwise, the MEM can only alias
2327    MEMs in a conflicting alias set.  This value is set in a
2328    language-dependent manner in the front-end, and should not be
2329    altered in the back-end.  These set numbers are tested with
2330    alias_sets_conflict_p.  */
2331 #define MEM_ALIAS_SET(RTX) (get_mem_attrs (RTX)->alias)
2332 
2333 /* For a MEM rtx, the decl it is known to refer to, if it is known to
2334    refer to part of a DECL.  It may also be a COMPONENT_REF.  */
2335 #define MEM_EXPR(RTX) (get_mem_attrs (RTX)->expr)
2336 
2337 /* For a MEM rtx, true if its MEM_OFFSET is known.  */
2338 #define MEM_OFFSET_KNOWN_P(RTX) (get_mem_attrs (RTX)->offset_known_p)
2339 
2340 /* For a MEM rtx, the offset from the start of MEM_EXPR.  */
2341 #define MEM_OFFSET(RTX) (get_mem_attrs (RTX)->offset)
2342 
2343 /* For a MEM rtx, the address space.  */
2344 #define MEM_ADDR_SPACE(RTX) (get_mem_attrs (RTX)->addrspace)
2345 
2346 /* For a MEM rtx, true if its MEM_SIZE is known.  */
2347 #define MEM_SIZE_KNOWN_P(RTX) (get_mem_attrs (RTX)->size_known_p)
2348 
2349 /* For a MEM rtx, the size in bytes of the MEM.  */
2350 #define MEM_SIZE(RTX) (get_mem_attrs (RTX)->size)
2351 
2352 /* For a MEM rtx, the alignment in bits.  We can use the alignment of the
2353    mode as a default when STRICT_ALIGNMENT, but not if not.  */
2354 #define MEM_ALIGN(RTX) (get_mem_attrs (RTX)->align)
2355 #else
2356 #define MEM_ADDR_SPACE(RTX) ADDR_SPACE_GENERIC
2357 #endif
2358 
2359 /* For a REG rtx, the decl it is known to refer to, if it is known to
2360    refer to part of a DECL.  */
2361 #define REG_EXPR(RTX) (REG_ATTRS (RTX) == 0 ? 0 : REG_ATTRS (RTX)->decl)
2362 
2363 /* For a REG rtx, the offset from the start of REG_EXPR, if known, as an
2364    HOST_WIDE_INT.  */
2365 #define REG_OFFSET(RTX) (REG_ATTRS (RTX) == 0 ? 0 : REG_ATTRS (RTX)->offset)
2366 
2367 /* Copy the attributes that apply to memory locations from RHS to LHS.  */
2368 #define MEM_COPY_ATTRIBUTES(LHS, RHS)				\
2369   (MEM_VOLATILE_P (LHS) = MEM_VOLATILE_P (RHS),			\
2370    MEM_NOTRAP_P (LHS) = MEM_NOTRAP_P (RHS),			\
2371    MEM_READONLY_P (LHS) = MEM_READONLY_P (RHS),			\
2372    MEM_KEEP_ALIAS_SET_P (LHS) = MEM_KEEP_ALIAS_SET_P (RHS),	\
2373    MEM_POINTER (LHS) = MEM_POINTER (RHS),			\
2374    MEM_ATTRS (LHS) = MEM_ATTRS (RHS))
2375 
2376 /* 1 if RTX is a label_ref for a nonlocal label.  */
2377 /* Likewise in an expr_list for a REG_LABEL_OPERAND or
2378    REG_LABEL_TARGET note.  */
2379 #define LABEL_REF_NONLOCAL_P(RTX)					\
2380   (RTL_FLAG_CHECK1 ("LABEL_REF_NONLOCAL_P", (RTX), LABEL_REF)->volatil)
2381 
2382 /* 1 if RTX is a code_label that should always be considered to be needed.  */
2383 #define LABEL_PRESERVE_P(RTX)						\
2384   (RTL_FLAG_CHECK2 ("LABEL_PRESERVE_P", (RTX), CODE_LABEL, NOTE)->in_struct)
2385 
2386 /* During sched, 1 if RTX is an insn that must be scheduled together
2387    with the preceding insn.  */
2388 #define SCHED_GROUP_P(RTX)						\
2389   (RTL_FLAG_CHECK4 ("SCHED_GROUP_P", (RTX), DEBUG_INSN, INSN,		\
2390 		    JUMP_INSN, CALL_INSN)->in_struct)
2391 
2392 /* For a SET rtx, SET_DEST is the place that is set
2393    and SET_SRC is the value it is set to.  */
2394 #define SET_DEST(RTX) XC2EXP (RTX, 0, SET, CLOBBER)
2395 #define SET_SRC(RTX) XCEXP (RTX, 1, SET)
2396 #define SET_IS_RETURN_P(RTX)						\
2397   (RTL_FLAG_CHECK1 ("SET_IS_RETURN_P", (RTX), SET)->jump)
2398 
2399 /* For a TRAP_IF rtx, TRAP_CONDITION is an expression.  */
2400 #define TRAP_CONDITION(RTX) XCEXP (RTX, 0, TRAP_IF)
2401 #define TRAP_CODE(RTX) XCEXP (RTX, 1, TRAP_IF)
2402 
2403 /* For a COND_EXEC rtx, COND_EXEC_TEST is the condition to base
2404    conditionally executing the code on, COND_EXEC_CODE is the code
2405    to execute if the condition is true.  */
2406 #define COND_EXEC_TEST(RTX) XCEXP (RTX, 0, COND_EXEC)
2407 #define COND_EXEC_CODE(RTX) XCEXP (RTX, 1, COND_EXEC)
2408 
2409 /* 1 if RTX is a symbol_ref that addresses this function's rtl
2410    constants pool.  */
2411 #define CONSTANT_POOL_ADDRESS_P(RTX)					\
2412   (RTL_FLAG_CHECK1 ("CONSTANT_POOL_ADDRESS_P", (RTX), SYMBOL_REF)->unchanging)
2413 
2414 /* 1 if RTX is a symbol_ref that addresses a value in the file's
2415    tree constant pool.  This information is private to varasm.c.  */
2416 #define TREE_CONSTANT_POOL_ADDRESS_P(RTX)				\
2417   (RTL_FLAG_CHECK1 ("TREE_CONSTANT_POOL_ADDRESS_P",			\
2418 		    (RTX), SYMBOL_REF)->frame_related)
2419 
2420 /* Used if RTX is a symbol_ref, for machine-specific purposes.  */
2421 #define SYMBOL_REF_FLAG(RTX)						\
2422   (RTL_FLAG_CHECK1 ("SYMBOL_REF_FLAG", (RTX), SYMBOL_REF)->volatil)
2423 
2424 /* 1 if RTX is a symbol_ref that has been the library function in
2425    emit_library_call.  */
2426 #define SYMBOL_REF_USED(RTX)						\
2427   (RTL_FLAG_CHECK1 ("SYMBOL_REF_USED", (RTX), SYMBOL_REF)->used)
2428 
2429 /* 1 if RTX is a symbol_ref for a weak symbol.  */
2430 #define SYMBOL_REF_WEAK(RTX)						\
2431   (RTL_FLAG_CHECK1 ("SYMBOL_REF_WEAK", (RTX), SYMBOL_REF)->return_val)
2432 
2433 /* A pointer attached to the SYMBOL_REF; either SYMBOL_REF_DECL or
2434    SYMBOL_REF_CONSTANT.  */
2435 #define SYMBOL_REF_DATA(RTX) X0ANY ((RTX), 1)
2436 
2437 /* Set RTX's SYMBOL_REF_DECL to DECL.  RTX must not be a constant
2438    pool symbol.  */
2439 #define SET_SYMBOL_REF_DECL(RTX, DECL) \
2440   (gcc_assert (!CONSTANT_POOL_ADDRESS_P (RTX)), X0TREE ((RTX), 1) = (DECL))
2441 
2442 /* The tree (decl or constant) associated with the symbol, or null.  */
2443 #define SYMBOL_REF_DECL(RTX) \
2444   (CONSTANT_POOL_ADDRESS_P (RTX) ? NULL : X0TREE ((RTX), 1))
2445 
2446 /* Set RTX's SYMBOL_REF_CONSTANT to C.  RTX must be a constant pool symbol.  */
2447 #define SET_SYMBOL_REF_CONSTANT(RTX, C) \
2448   (gcc_assert (CONSTANT_POOL_ADDRESS_P (RTX)), X0CONSTANT ((RTX), 1) = (C))
2449 
2450 /* The rtx constant pool entry for a symbol, or null.  */
2451 #define SYMBOL_REF_CONSTANT(RTX) \
2452   (CONSTANT_POOL_ADDRESS_P (RTX) ? X0CONSTANT ((RTX), 1) : NULL)
2453 
2454 /* A set of flags on a symbol_ref that are, in some respects, redundant with
2455    information derivable from the tree decl associated with this symbol.
2456    Except that we build a *lot* of SYMBOL_REFs that aren't associated with a
2457    decl.  In some cases this is a bug.  But beyond that, it's nice to cache
2458    this information to avoid recomputing it.  Finally, this allows space for
2459    the target to store more than one bit of information, as with
2460    SYMBOL_REF_FLAG.  */
2461 #define SYMBOL_REF_FLAGS(RTX) \
2462   (RTL_FLAG_CHECK1 ("SYMBOL_REF_FLAGS", (RTX), SYMBOL_REF) \
2463    ->u2.symbol_ref_flags)
2464 
2465 /* These flags are common enough to be defined for all targets.  They
2466    are computed by the default version of targetm.encode_section_info.  */
2467 
2468 /* Set if this symbol is a function.  */
2469 #define SYMBOL_FLAG_FUNCTION	(1 << 0)
2470 #define SYMBOL_REF_FUNCTION_P(RTX) \
2471   ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_FUNCTION) != 0)
2472 /* Set if targetm.binds_local_p is true.  */
2473 #define SYMBOL_FLAG_LOCAL	(1 << 1)
2474 #define SYMBOL_REF_LOCAL_P(RTX) \
2475   ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_LOCAL) != 0)
2476 /* Set if targetm.in_small_data_p is true.  */
2477 #define SYMBOL_FLAG_SMALL	(1 << 2)
2478 #define SYMBOL_REF_SMALL_P(RTX) \
2479   ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_SMALL) != 0)
2480 /* The three-bit field at [5:3] is true for TLS variables; use
2481    SYMBOL_REF_TLS_MODEL to extract the field as an enum tls_model.  */
2482 #define SYMBOL_FLAG_TLS_SHIFT	3
2483 #define SYMBOL_REF_TLS_MODEL(RTX) \
2484   ((enum tls_model) ((SYMBOL_REF_FLAGS (RTX) >> SYMBOL_FLAG_TLS_SHIFT) & 7))
2485 /* Set if this symbol is not defined in this translation unit.  */
2486 #define SYMBOL_FLAG_EXTERNAL	(1 << 6)
2487 #define SYMBOL_REF_EXTERNAL_P(RTX) \
2488   ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_EXTERNAL) != 0)
2489 /* Set if this symbol has a block_symbol structure associated with it.  */
2490 #define SYMBOL_FLAG_HAS_BLOCK_INFO (1 << 7)
2491 #define SYMBOL_REF_HAS_BLOCK_INFO_P(RTX) \
2492   ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_HAS_BLOCK_INFO) != 0)
2493 /* Set if this symbol is a section anchor.  SYMBOL_REF_ANCHOR_P implies
2494    SYMBOL_REF_HAS_BLOCK_INFO_P.  */
2495 #define SYMBOL_FLAG_ANCHOR	(1 << 8)
2496 #define SYMBOL_REF_ANCHOR_P(RTX) \
2497   ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_ANCHOR) != 0)
2498 
2499 /* Subsequent bits are available for the target to use.  */
2500 #define SYMBOL_FLAG_MACH_DEP_SHIFT	9
2501 #define SYMBOL_FLAG_MACH_DEP		(1 << SYMBOL_FLAG_MACH_DEP_SHIFT)
2502 
2503 /* If SYMBOL_REF_HAS_BLOCK_INFO_P (RTX), this is the object_block
2504    structure to which the symbol belongs, or NULL if it has not been
2505    assigned a block.  */
2506 #define SYMBOL_REF_BLOCK(RTX) (BLOCK_SYMBOL_CHECK (RTX)->block)
2507 
2508 /* If SYMBOL_REF_HAS_BLOCK_INFO_P (RTX), this is the offset of RTX from
2509    the first object in SYMBOL_REF_BLOCK (RTX).  The value is negative if
2510    RTX has not yet been assigned to a block, or it has not been given an
2511    offset within that block.  */
2512 #define SYMBOL_REF_BLOCK_OFFSET(RTX) (BLOCK_SYMBOL_CHECK (RTX)->offset)
2513 
2514 /* True if RTX is flagged to be a scheduling barrier.  */
2515 #define PREFETCH_SCHEDULE_BARRIER_P(RTX)					\
2516   (RTL_FLAG_CHECK1 ("PREFETCH_SCHEDULE_BARRIER_P", (RTX), PREFETCH)->volatil)
2517 
2518 /* Indicate whether the machine has any sort of auto increment addressing.
2519    If not, we can avoid checking for REG_INC notes.  */
2520 
2521 #if (defined (HAVE_PRE_INCREMENT) || defined (HAVE_PRE_DECREMENT) \
2522      || defined (HAVE_POST_INCREMENT) || defined (HAVE_POST_DECREMENT) \
2523      || defined (HAVE_PRE_MODIFY_DISP) || defined (HAVE_POST_MODIFY_DISP) \
2524      || defined (HAVE_PRE_MODIFY_REG) || defined (HAVE_POST_MODIFY_REG))
2525 #define AUTO_INC_DEC 1
2526 #else
2527 #define AUTO_INC_DEC 0
2528 #endif
2529 
2530 /* Define a macro to look for REG_INC notes,
2531    but save time on machines where they never exist.  */
2532 
2533 #if AUTO_INC_DEC
2534 #define FIND_REG_INC_NOTE(INSN, REG)			\
2535   ((REG) != NULL_RTX && REG_P ((REG))			\
2536    ? find_regno_note ((INSN), REG_INC, REGNO (REG))	\
2537    : find_reg_note ((INSN), REG_INC, (REG)))
2538 #else
2539 #define FIND_REG_INC_NOTE(INSN, REG) 0
2540 #endif
2541 
2542 #ifndef HAVE_PRE_INCREMENT
2543 #define HAVE_PRE_INCREMENT 0
2544 #endif
2545 
2546 #ifndef HAVE_PRE_DECREMENT
2547 #define HAVE_PRE_DECREMENT 0
2548 #endif
2549 
2550 #ifndef HAVE_POST_INCREMENT
2551 #define HAVE_POST_INCREMENT 0
2552 #endif
2553 
2554 #ifndef HAVE_POST_DECREMENT
2555 #define HAVE_POST_DECREMENT 0
2556 #endif
2557 
2558 #ifndef HAVE_POST_MODIFY_DISP
2559 #define HAVE_POST_MODIFY_DISP 0
2560 #endif
2561 
2562 #ifndef HAVE_POST_MODIFY_REG
2563 #define HAVE_POST_MODIFY_REG 0
2564 #endif
2565 
2566 #ifndef HAVE_PRE_MODIFY_DISP
2567 #define HAVE_PRE_MODIFY_DISP 0
2568 #endif
2569 
2570 #ifndef HAVE_PRE_MODIFY_REG
2571 #define HAVE_PRE_MODIFY_REG 0
2572 #endif
2573 
2574 
2575 /* Some architectures do not have complete pre/post increment/decrement
2576    instruction sets, or only move some modes efficiently.  These macros
2577    allow us to tune autoincrement generation.  */
2578 
2579 #ifndef USE_LOAD_POST_INCREMENT
2580 #define USE_LOAD_POST_INCREMENT(MODE)   HAVE_POST_INCREMENT
2581 #endif
2582 
2583 #ifndef USE_LOAD_POST_DECREMENT
2584 #define USE_LOAD_POST_DECREMENT(MODE)   HAVE_POST_DECREMENT
2585 #endif
2586 
2587 #ifndef USE_LOAD_PRE_INCREMENT
2588 #define USE_LOAD_PRE_INCREMENT(MODE)    HAVE_PRE_INCREMENT
2589 #endif
2590 
2591 #ifndef USE_LOAD_PRE_DECREMENT
2592 #define USE_LOAD_PRE_DECREMENT(MODE)    HAVE_PRE_DECREMENT
2593 #endif
2594 
2595 #ifndef USE_STORE_POST_INCREMENT
2596 #define USE_STORE_POST_INCREMENT(MODE)  HAVE_POST_INCREMENT
2597 #endif
2598 
2599 #ifndef USE_STORE_POST_DECREMENT
2600 #define USE_STORE_POST_DECREMENT(MODE)  HAVE_POST_DECREMENT
2601 #endif
2602 
2603 #ifndef USE_STORE_PRE_INCREMENT
2604 #define USE_STORE_PRE_INCREMENT(MODE)   HAVE_PRE_INCREMENT
2605 #endif
2606 
2607 #ifndef USE_STORE_PRE_DECREMENT
2608 #define USE_STORE_PRE_DECREMENT(MODE)   HAVE_PRE_DECREMENT
2609 #endif
2610 
2611 /* Nonzero when we are generating CONCATs.  */
2612 extern int generating_concat_p;
2613 
2614 /* Nonzero when we are expanding trees to RTL.  */
2615 extern int currently_expanding_to_rtl;
2616 
2617 /* Generally useful functions.  */
2618 
2619 #ifndef GENERATOR_FILE
2620 /* Return the cost of SET X.  SPEED_P is true if optimizing for speed
2621    rather than size.  */
2622 
2623 static inline int
2624 set_rtx_cost (rtx x, bool speed_p)
2625 {
2626   return rtx_cost (x, VOIDmode, INSN, 4, speed_p);
2627 }
2628 
2629 /* Like set_rtx_cost, but return both the speed and size costs in C.  */
2630 
2631 static inline void
2632 get_full_set_rtx_cost (rtx x, struct full_rtx_costs *c)
2633 {
2634   get_full_rtx_cost (x, VOIDmode, INSN, 4, c);
2635 }
2636 
2637 /* Return the cost of moving X into a register, relative to the cost
2638    of a register move.  SPEED_P is true if optimizing for speed rather
2639    than size.  */
2640 
2641 static inline int
2642 set_src_cost (rtx x, machine_mode mode, bool speed_p)
2643 {
2644   return rtx_cost (x, mode, SET, 1, speed_p);
2645 }
2646 
2647 /* Like set_src_cost, but return both the speed and size costs in C.  */
2648 
2649 static inline void
2650 get_full_set_src_cost (rtx x, machine_mode mode, struct full_rtx_costs *c)
2651 {
2652   get_full_rtx_cost (x, mode, SET, 1, c);
2653 }
2654 #endif
2655 
2656 /* In explow.c */
2657 extern HOST_WIDE_INT trunc_int_for_mode	(HOST_WIDE_INT, machine_mode);
2658 extern rtx plus_constant (machine_mode, rtx, HOST_WIDE_INT, bool = false);
2659 
2660 /* In rtl.c */
2661 extern rtx rtx_alloc_stat (RTX_CODE MEM_STAT_DECL);
2662 #define rtx_alloc(c) rtx_alloc_stat (c MEM_STAT_INFO)
2663 extern rtx rtx_alloc_stat_v (RTX_CODE MEM_STAT_DECL, int);
2664 #define rtx_alloc_v(c, SZ) rtx_alloc_stat_v (c MEM_STAT_INFO, SZ)
2665 #define const_wide_int_alloc(NWORDS)				\
2666   rtx_alloc_v (CONST_WIDE_INT,					\
2667 	       (sizeof (struct hwivec_def)			\
2668 		+ ((NWORDS)-1) * sizeof (HOST_WIDE_INT)))	\
2669 
2670 extern rtvec rtvec_alloc (int);
2671 extern rtvec shallow_copy_rtvec (rtvec);
2672 extern bool shared_const_p (const_rtx);
2673 extern rtx copy_rtx (rtx);
2674 extern enum rtx_code classify_insn (rtx);
2675 extern void dump_rtx_statistics (void);
2676 
2677 /* In emit-rtl.c */
2678 extern rtx copy_rtx_if_shared (rtx);
2679 
2680 /* In rtl.c */
2681 extern unsigned int rtx_size (const_rtx);
2682 extern rtx shallow_copy_rtx_stat (const_rtx MEM_STAT_DECL);
2683 #define shallow_copy_rtx(a) shallow_copy_rtx_stat (a MEM_STAT_INFO)
2684 extern int rtx_equal_p (const_rtx, const_rtx);
2685 extern bool rtvec_all_equal_p (const_rtvec);
2686 
2687 /* Return true if X is a vector constant with a duplicated element value.  */
2688 
2689 inline bool
2690 const_vec_duplicate_p (const_rtx x)
2691 {
2692   return GET_CODE (x) == CONST_VECTOR && rtvec_all_equal_p (XVEC (x, 0));
2693 }
2694 
2695 /* Return true if X is a vector constant with a duplicated element value.
2696    Store the duplicated element in *ELT if so.  */
2697 
2698 template <typename T>
2699 inline bool
2700 const_vec_duplicate_p (T x, T *elt)
2701 {
2702   if (const_vec_duplicate_p (x))
2703     {
2704       *elt = CONST_VECTOR_ELT (x, 0);
2705       return true;
2706     }
2707   return false;
2708 }
2709 
2710 /* If X is a vector constant with a duplicated element value, return that
2711    element value, otherwise return X.  */
2712 
2713 template <typename T>
2714 inline T
2715 unwrap_const_vec_duplicate (T x)
2716 {
2717   if (const_vec_duplicate_p (x))
2718     x = CONST_VECTOR_ELT (x, 0);
2719   return x;
2720 }
2721 
2722 /* In emit-rtl.c */
2723 extern rtvec gen_rtvec_v (int, rtx *);
2724 extern rtvec gen_rtvec_v (int, rtx_insn **);
2725 extern rtx gen_reg_rtx (machine_mode);
2726 extern rtx gen_rtx_REG_offset (rtx, machine_mode, unsigned int, int);
2727 extern rtx gen_reg_rtx_offset (rtx, machine_mode, int);
2728 extern rtx gen_reg_rtx_and_attrs (rtx);
2729 extern rtx_code_label *gen_label_rtx (void);
2730 extern rtx gen_lowpart_common (machine_mode, rtx);
2731 
2732 /* In cse.c */
2733 extern rtx gen_lowpart_if_possible (machine_mode, rtx);
2734 
2735 /* In emit-rtl.c */
2736 extern rtx gen_highpart (machine_mode, rtx);
2737 extern rtx gen_highpart_mode (machine_mode, machine_mode, rtx);
2738 extern rtx operand_subword (rtx, unsigned int, int, machine_mode);
2739 
2740 /* In emit-rtl.c */
2741 extern rtx operand_subword_force (rtx, unsigned int, machine_mode);
2742 extern bool paradoxical_subreg_p (const_rtx);
2743 extern int subreg_lowpart_p (const_rtx);
2744 extern unsigned int subreg_lowpart_offset (machine_mode,
2745 					   machine_mode);
2746 extern unsigned int subreg_highpart_offset (machine_mode,
2747 					    machine_mode);
2748 extern int byte_lowpart_offset (machine_mode, machine_mode);
2749 extern rtx make_safe_from (rtx, rtx);
2750 extern rtx convert_memory_address_addr_space_1 (machine_mode, rtx,
2751 						addr_space_t, bool, bool);
2752 extern rtx convert_memory_address_addr_space (machine_mode, rtx,
2753 					      addr_space_t);
2754 #define convert_memory_address(to_mode,x) \
2755 	convert_memory_address_addr_space ((to_mode), (x), ADDR_SPACE_GENERIC)
2756 extern const char *get_insn_name (int);
2757 extern rtx_insn *get_last_insn_anywhere (void);
2758 extern rtx_insn *get_first_nonnote_insn (void);
2759 extern rtx_insn *get_last_nonnote_insn (void);
2760 extern void start_sequence (void);
2761 extern void push_to_sequence (rtx_insn *);
2762 extern void push_to_sequence2 (rtx_insn *, rtx_insn *);
2763 extern void end_sequence (void);
2764 #if TARGET_SUPPORTS_WIDE_INT == 0
2765 extern double_int rtx_to_double_int (const_rtx);
2766 #endif
2767 extern void cwi_output_hex (FILE *, const_rtx);
2768 #ifndef GENERATOR_FILE
2769 extern rtx immed_wide_int_const (const wide_int_ref &, machine_mode);
2770 #endif
2771 #if TARGET_SUPPORTS_WIDE_INT == 0
2772 extern rtx immed_double_const (HOST_WIDE_INT, HOST_WIDE_INT,
2773 			       machine_mode);
2774 #endif
2775 
2776 /* In varasm.c  */
2777 extern rtx force_const_mem (machine_mode, rtx);
2778 
2779 /* In varasm.c  */
2780 
2781 struct function;
2782 extern rtx get_pool_constant (const_rtx);
2783 extern rtx get_pool_constant_mark (rtx, bool *);
2784 extern machine_mode get_pool_mode (const_rtx);
2785 extern rtx simplify_subtraction (rtx);
2786 extern void decide_function_section (tree);
2787 
2788 /* In emit-rtl.c */
2789 extern rtx_insn *emit_insn_before (rtx, rtx);
2790 extern rtx_insn *emit_insn_before_noloc (rtx, rtx_insn *, basic_block);
2791 extern rtx_insn *emit_insn_before_setloc (rtx, rtx_insn *, int);
2792 extern rtx_jump_insn *emit_jump_insn_before (rtx, rtx);
2793 extern rtx_jump_insn *emit_jump_insn_before_noloc (rtx, rtx_insn *);
2794 extern rtx_jump_insn *emit_jump_insn_before_setloc (rtx, rtx_insn *, int);
2795 extern rtx_insn *emit_call_insn_before (rtx, rtx_insn *);
2796 extern rtx_insn *emit_call_insn_before_noloc (rtx, rtx_insn *);
2797 extern rtx_insn *emit_call_insn_before_setloc (rtx, rtx_insn *, int);
2798 extern rtx_insn *emit_debug_insn_before (rtx, rtx_insn *);
2799 extern rtx_insn *emit_debug_insn_before_noloc (rtx, rtx);
2800 extern rtx_insn *emit_debug_insn_before_setloc (rtx, rtx, int);
2801 extern rtx_barrier *emit_barrier_before (rtx);
2802 extern rtx_code_label *emit_label_before (rtx, rtx_insn *);
2803 extern rtx_note *emit_note_before (enum insn_note, rtx_insn *);
2804 extern rtx_insn *emit_insn_after (rtx, rtx);
2805 extern rtx_insn *emit_insn_after_noloc (rtx, rtx, basic_block);
2806 extern rtx_insn *emit_insn_after_setloc (rtx, rtx, int);
2807 extern rtx_jump_insn *emit_jump_insn_after (rtx, rtx);
2808 extern rtx_jump_insn *emit_jump_insn_after_noloc (rtx, rtx);
2809 extern rtx_jump_insn *emit_jump_insn_after_setloc (rtx, rtx, int);
2810 extern rtx_insn *emit_call_insn_after (rtx, rtx);
2811 extern rtx_insn *emit_call_insn_after_noloc (rtx, rtx);
2812 extern rtx_insn *emit_call_insn_after_setloc (rtx, rtx, int);
2813 extern rtx_insn *emit_debug_insn_after (rtx, rtx);
2814 extern rtx_insn *emit_debug_insn_after_noloc (rtx, rtx);
2815 extern rtx_insn *emit_debug_insn_after_setloc (rtx, rtx, int);
2816 extern rtx_barrier *emit_barrier_after (rtx);
2817 extern rtx_insn *emit_label_after (rtx, rtx_insn *);
2818 extern rtx_note *emit_note_after (enum insn_note, rtx_insn *);
2819 extern rtx_insn *emit_insn (rtx);
2820 extern rtx_insn *emit_debug_insn (rtx);
2821 extern rtx_insn *emit_jump_insn (rtx);
2822 extern rtx_insn *emit_call_insn (rtx);
2823 extern rtx_code_label *emit_label (rtx);
2824 extern rtx_jump_table_data *emit_jump_table_data (rtx);
2825 extern rtx_barrier *emit_barrier (void);
2826 extern rtx_note *emit_note (enum insn_note);
2827 extern rtx_note *emit_note_copy (rtx_note *);
2828 extern rtx_insn *gen_clobber (rtx);
2829 extern rtx_insn *emit_clobber (rtx);
2830 extern rtx_insn *gen_use (rtx);
2831 extern rtx_insn *emit_use (rtx);
2832 extern rtx_insn *make_insn_raw (rtx);
2833 extern void add_function_usage_to (rtx, rtx);
2834 extern rtx_call_insn *last_call_insn (void);
2835 extern rtx_insn *previous_insn (rtx_insn *);
2836 extern rtx_insn *next_insn (rtx_insn *);
2837 extern rtx_insn *prev_nonnote_insn (rtx);
2838 extern rtx_insn *prev_nonnote_insn_bb (rtx);
2839 extern rtx_insn *next_nonnote_insn (rtx);
2840 extern rtx_insn *next_nonnote_insn_bb (rtx_insn *);
2841 extern rtx_insn *prev_nondebug_insn (rtx);
2842 extern rtx_insn *next_nondebug_insn (rtx);
2843 extern rtx_insn *prev_nonnote_nondebug_insn (rtx);
2844 extern rtx_insn *next_nonnote_nondebug_insn (rtx);
2845 extern rtx_insn *prev_real_insn (rtx);
2846 extern rtx_insn *next_real_insn (rtx);
2847 extern rtx_insn *prev_active_insn (rtx);
2848 extern rtx_insn *next_active_insn (rtx);
2849 extern int active_insn_p (const_rtx);
2850 extern rtx_insn *next_cc0_user (rtx);
2851 extern rtx_insn *prev_cc0_setter (rtx_insn *);
2852 
2853 /* In emit-rtl.c  */
2854 extern int insn_line (const rtx_insn *);
2855 extern const char * insn_file (const rtx_insn *);
2856 extern tree insn_scope (const rtx_insn *);
2857 extern expanded_location insn_location (const rtx_insn *);
2858 extern location_t prologue_location, epilogue_location;
2859 
2860 /* In jump.c */
2861 extern enum rtx_code reverse_condition (enum rtx_code);
2862 extern enum rtx_code reverse_condition_maybe_unordered (enum rtx_code);
2863 extern enum rtx_code swap_condition (enum rtx_code);
2864 extern enum rtx_code unsigned_condition (enum rtx_code);
2865 extern enum rtx_code signed_condition (enum rtx_code);
2866 extern void mark_jump_label (rtx, rtx_insn *, int);
2867 
2868 /* In jump.c */
2869 extern rtx_insn *delete_related_insns (rtx);
2870 
2871 /* In recog.c  */
2872 extern rtx *find_constant_term_loc (rtx *);
2873 
2874 /* In emit-rtl.c  */
2875 extern rtx_insn *try_split (rtx, rtx_insn *, int);
2876 extern int split_branch_probability;
2877 
2878 /* In insn-recog.c (generated by genrecog).  */
2879 extern rtx_insn *split_insns (rtx, rtx_insn *);
2880 
2881 /* In simplify-rtx.c  */
2882 extern rtx simplify_const_unary_operation (enum rtx_code, machine_mode,
2883 					   rtx, machine_mode);
2884 extern rtx simplify_unary_operation (enum rtx_code, machine_mode, rtx,
2885 				     machine_mode);
2886 extern rtx simplify_const_binary_operation (enum rtx_code, machine_mode,
2887 					    rtx, rtx);
2888 extern rtx simplify_binary_operation (enum rtx_code, machine_mode, rtx,
2889 				      rtx);
2890 extern rtx simplify_ternary_operation (enum rtx_code, machine_mode,
2891 				       machine_mode, rtx, rtx, rtx);
2892 extern rtx simplify_const_relational_operation (enum rtx_code,
2893 						machine_mode, rtx, rtx);
2894 extern rtx simplify_relational_operation (enum rtx_code, machine_mode,
2895 					  machine_mode, rtx, rtx);
2896 extern rtx simplify_gen_binary (enum rtx_code, machine_mode, rtx, rtx);
2897 extern rtx simplify_gen_unary (enum rtx_code, machine_mode, rtx,
2898 			       machine_mode);
2899 extern rtx simplify_gen_ternary (enum rtx_code, machine_mode,
2900 				 machine_mode, rtx, rtx, rtx);
2901 extern rtx simplify_gen_relational (enum rtx_code, machine_mode,
2902 				    machine_mode, rtx, rtx);
2903 extern rtx simplify_subreg (machine_mode, rtx, machine_mode,
2904 			    unsigned int);
2905 extern rtx simplify_gen_subreg (machine_mode, rtx, machine_mode,
2906 				unsigned int);
2907 extern rtx lowpart_subreg (machine_mode, rtx, machine_mode);
2908 extern rtx simplify_replace_fn_rtx (rtx, const_rtx,
2909 				    rtx (*fn) (rtx, const_rtx, void *), void *);
2910 extern rtx simplify_replace_rtx (rtx, const_rtx, rtx);
2911 extern rtx simplify_rtx (const_rtx);
2912 extern rtx avoid_constant_pool_reference (rtx);
2913 extern rtx delegitimize_mem_from_attrs (rtx);
2914 extern bool mode_signbit_p (machine_mode, const_rtx);
2915 extern bool val_signbit_p (machine_mode, unsigned HOST_WIDE_INT);
2916 extern bool val_signbit_known_set_p (machine_mode,
2917 				     unsigned HOST_WIDE_INT);
2918 extern bool val_signbit_known_clear_p (machine_mode,
2919 				       unsigned HOST_WIDE_INT);
2920 
2921 /* In reginfo.c  */
2922 extern machine_mode choose_hard_reg_mode (unsigned int, unsigned int,
2923 					       bool);
2924 extern const HARD_REG_SET &simplifiable_subregs (const subreg_shape &);
2925 
2926 /* In emit-rtl.c  */
2927 extern rtx set_for_reg_notes (rtx);
2928 extern rtx set_unique_reg_note (rtx, enum reg_note, rtx);
2929 extern rtx set_dst_reg_note (rtx, enum reg_note, rtx, rtx);
2930 extern void set_insn_deleted (rtx);
2931 
2932 /* Functions in rtlanal.c */
2933 
2934 extern rtx single_set_2 (const rtx_insn *, const_rtx);
2935 extern bool contains_symbol_ref_p (const_rtx);
2936 extern bool contains_symbolic_reference_p (const_rtx);
2937 
2938 /* Handle the cheap and common cases inline for performance.  */
2939 
2940 inline rtx single_set (const rtx_insn *insn)
2941 {
2942   if (!INSN_P (insn))
2943     return NULL_RTX;
2944 
2945   if (GET_CODE (PATTERN (insn)) == SET)
2946     return PATTERN (insn);
2947 
2948   /* Defer to the more expensive case.  */
2949   return single_set_2 (insn, PATTERN (insn));
2950 }
2951 
2952 extern machine_mode get_address_mode (rtx mem);
2953 extern int rtx_addr_can_trap_p (const_rtx);
2954 extern bool nonzero_address_p (const_rtx);
2955 extern int rtx_unstable_p (const_rtx);
2956 extern bool rtx_varies_p (const_rtx, bool);
2957 extern bool rtx_addr_varies_p (const_rtx, bool);
2958 extern rtx get_call_rtx_from (rtx);
2959 extern HOST_WIDE_INT get_integer_term (const_rtx);
2960 extern rtx get_related_value (const_rtx);
2961 extern bool offset_within_block_p (const_rtx, HOST_WIDE_INT);
2962 extern void split_const (rtx, rtx *, rtx *);
2963 extern bool unsigned_reg_p (rtx);
2964 extern int reg_mentioned_p (const_rtx, const_rtx);
2965 extern int count_occurrences (const_rtx, const_rtx, int);
2966 extern int reg_referenced_p (const_rtx, const_rtx);
2967 extern int reg_used_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
2968 extern int reg_set_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
2969 extern int commutative_operand_precedence (rtx);
2970 extern bool swap_commutative_operands_p (rtx, rtx);
2971 extern int modified_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
2972 extern int no_labels_between_p (const rtx_insn *, const rtx_insn *);
2973 extern int modified_in_p (const_rtx, const_rtx);
2974 extern int reg_set_p (const_rtx, const_rtx);
2975 extern int multiple_sets (const_rtx);
2976 extern int set_noop_p (const_rtx);
2977 extern int noop_move_p (const rtx_insn *);
2978 extern bool refers_to_regno_p (unsigned int, unsigned int, const_rtx, rtx *);
2979 extern int reg_overlap_mentioned_p (const_rtx, const_rtx);
2980 extern const_rtx set_of (const_rtx, const_rtx);
2981 extern void record_hard_reg_sets (rtx, const_rtx, void *);
2982 extern void record_hard_reg_uses (rtx *, void *);
2983 extern void find_all_hard_regs (const_rtx, HARD_REG_SET *);
2984 extern void find_all_hard_reg_sets (const rtx_insn *, HARD_REG_SET *, bool);
2985 extern void note_stores (const_rtx, void (*) (rtx, const_rtx, void *), void *);
2986 extern void note_uses (rtx *, void (*) (rtx *, void *), void *);
2987 extern int dead_or_set_p (const_rtx, const_rtx);
2988 extern int dead_or_set_regno_p (const_rtx, unsigned int);
2989 extern rtx find_reg_note (const_rtx, enum reg_note, const_rtx);
2990 extern rtx find_regno_note (const_rtx, enum reg_note, unsigned int);
2991 extern rtx find_reg_equal_equiv_note (const_rtx);
2992 extern rtx find_constant_src (const rtx_insn *);
2993 extern int find_reg_fusage (const_rtx, enum rtx_code, const_rtx);
2994 extern int find_regno_fusage (const_rtx, enum rtx_code, unsigned int);
2995 extern rtx alloc_reg_note (enum reg_note, rtx, rtx);
2996 extern void add_reg_note (rtx, enum reg_note, rtx);
2997 extern void add_int_reg_note (rtx, enum reg_note, int);
2998 extern void add_shallow_copy_of_reg_note (rtx_insn *, rtx);
2999 extern void remove_note (rtx, const_rtx);
3000 extern bool remove_reg_equal_equiv_notes (rtx_insn *);
3001 extern void remove_reg_equal_equiv_notes_for_regno (unsigned int);
3002 extern int side_effects_p (const_rtx);
3003 extern int volatile_refs_p (const_rtx);
3004 extern int volatile_insn_p (const_rtx);
3005 extern int may_trap_p_1 (const_rtx, unsigned);
3006 extern int may_trap_p (const_rtx);
3007 extern int may_trap_or_fault_p (const_rtx);
3008 extern bool can_throw_internal (const_rtx);
3009 extern bool can_throw_external (const_rtx);
3010 extern bool insn_could_throw_p (const_rtx);
3011 extern bool insn_nothrow_p (const_rtx);
3012 extern bool can_nonlocal_goto (const rtx_insn *);
3013 extern void copy_reg_eh_region_note_forward (rtx, rtx_insn *, rtx);
3014 extern void copy_reg_eh_region_note_backward (rtx, rtx_insn *, rtx);
3015 extern int inequality_comparisons_p (const_rtx);
3016 extern rtx replace_rtx (rtx, rtx, rtx, bool = false);
3017 extern void replace_label (rtx *, rtx, rtx, bool);
3018 extern void replace_label_in_insn (rtx_insn *, rtx, rtx, bool);
3019 extern bool rtx_referenced_p (const_rtx, const_rtx);
3020 extern bool tablejump_p (const rtx_insn *, rtx *, rtx_jump_table_data **);
3021 extern int computed_jump_p (const rtx_insn *);
3022 extern bool tls_referenced_p (const_rtx);
3023 
3024 /* Overload for refers_to_regno_p for checking a single register.  */
3025 inline bool
3026 refers_to_regno_p (unsigned int regnum, const_rtx x, rtx* loc = NULL)
3027 {
3028   return refers_to_regno_p (regnum, regnum + 1, x, loc);
3029 }
3030 
3031 /* Callback for for_each_inc_dec, to process the autoinc operation OP
3032    within MEM that sets DEST to SRC + SRCOFF, or SRC if SRCOFF is
3033    NULL.  The callback is passed the same opaque ARG passed to
3034    for_each_inc_dec.  Return zero to continue looking for other
3035    autoinc operations or any other value to interrupt the traversal and
3036    return that value to the caller of for_each_inc_dec.  */
3037 typedef int (*for_each_inc_dec_fn) (rtx mem, rtx op, rtx dest, rtx src,
3038 				    rtx srcoff, void *arg);
3039 extern int for_each_inc_dec (rtx, for_each_inc_dec_fn, void *arg);
3040 
3041 typedef int (*rtx_equal_p_callback_function) (const_rtx *, const_rtx *,
3042                                               rtx *, rtx *);
3043 extern int rtx_equal_p_cb (const_rtx, const_rtx,
3044                            rtx_equal_p_callback_function);
3045 
3046 typedef int (*hash_rtx_callback_function) (const_rtx, machine_mode, rtx *,
3047                                            machine_mode *);
3048 extern unsigned hash_rtx_cb (const_rtx, machine_mode, int *, int *,
3049                              bool, hash_rtx_callback_function);
3050 
3051 extern rtx regno_use_in (unsigned int, rtx);
3052 extern int auto_inc_p (const_rtx);
3053 extern bool in_insn_list_p (const rtx_insn_list *, const rtx_insn *);
3054 extern void remove_node_from_expr_list (const_rtx, rtx_expr_list **);
3055 extern void remove_node_from_insn_list (const rtx_insn *, rtx_insn_list **);
3056 extern int loc_mentioned_in_p (rtx *, const_rtx);
3057 extern rtx_insn *find_first_parameter_load (rtx_insn *, rtx_insn *);
3058 extern bool keep_with_call_p (const rtx_insn *);
3059 extern bool label_is_jump_target_p (const_rtx, const rtx_insn *);
3060 extern int insn_rtx_cost (rtx, bool);
3061 extern unsigned seq_cost (const rtx_insn *, bool);
3062 
3063 /* Given an insn and condition, return a canonical description of
3064    the test being made.  */
3065 extern rtx canonicalize_condition (rtx_insn *, rtx, int, rtx_insn **, rtx,
3066 				   int, int);
3067 
3068 /* Given a JUMP_INSN, return a canonical description of the test
3069    being made.  */
3070 extern rtx get_condition (rtx_insn *, rtx_insn **, int, int);
3071 
3072 /* Information about a subreg of a hard register.  */
3073 struct subreg_info
3074 {
3075   /* Offset of first hard register involved in the subreg.  */
3076   int offset;
3077   /* Number of hard registers involved in the subreg.  In the case of
3078      a paradoxical subreg, this is the number of registers that would
3079      be modified by writing to the subreg; some of them may be don't-care
3080      when reading from the subreg.  */
3081   int nregs;
3082   /* Whether this subreg can be represented as a hard reg with the new
3083      mode (by adding OFFSET to the original hard register).  */
3084   bool representable_p;
3085 };
3086 
3087 extern void subreg_get_info (unsigned int, machine_mode,
3088 			     unsigned int, machine_mode,
3089 			     struct subreg_info *);
3090 
3091 /* lists.c */
3092 
3093 extern void free_EXPR_LIST_list (rtx_expr_list **);
3094 extern void free_INSN_LIST_list (rtx_insn_list **);
3095 extern void free_EXPR_LIST_node (rtx);
3096 extern void free_INSN_LIST_node (rtx);
3097 extern rtx_insn_list *alloc_INSN_LIST (rtx, rtx);
3098 extern rtx_insn_list *copy_INSN_LIST (rtx_insn_list *);
3099 extern rtx_insn_list *concat_INSN_LIST (rtx_insn_list *, rtx_insn_list *);
3100 extern rtx_expr_list *alloc_EXPR_LIST (int, rtx, rtx);
3101 extern void remove_free_INSN_LIST_elem (rtx_insn *, rtx_insn_list **);
3102 extern rtx remove_list_elem (rtx, rtx *);
3103 extern rtx_insn *remove_free_INSN_LIST_node (rtx_insn_list **);
3104 extern rtx remove_free_EXPR_LIST_node (rtx_expr_list **);
3105 
3106 
3107 /* reginfo.c */
3108 
3109 /* Resize reg info.  */
3110 extern bool resize_reg_info (void);
3111 /* Free up register info memory.  */
3112 extern void free_reg_info (void);
3113 extern void init_subregs_of_mode (void);
3114 extern void finish_subregs_of_mode (void);
3115 
3116 /* recog.c */
3117 extern rtx extract_asm_operands (rtx);
3118 extern int asm_noperands (const_rtx);
3119 extern const char *decode_asm_operands (rtx, rtx *, rtx **, const char **,
3120 					machine_mode *, location_t *);
3121 extern void get_referenced_operands (const char *, bool *, unsigned int);
3122 
3123 extern enum reg_class reg_preferred_class (int);
3124 extern enum reg_class reg_alternate_class (int);
3125 extern enum reg_class reg_allocno_class (int);
3126 extern void setup_reg_classes (int, enum reg_class, enum reg_class,
3127 			       enum reg_class);
3128 
3129 extern void split_all_insns (void);
3130 extern unsigned int split_all_insns_noflow (void);
3131 
3132 #define MAX_SAVED_CONST_INT 64
3133 extern GTY(()) rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
3134 
3135 #define const0_rtx	(const_int_rtx[MAX_SAVED_CONST_INT])
3136 #define const1_rtx	(const_int_rtx[MAX_SAVED_CONST_INT+1])
3137 #define const2_rtx	(const_int_rtx[MAX_SAVED_CONST_INT+2])
3138 #define constm1_rtx	(const_int_rtx[MAX_SAVED_CONST_INT-1])
3139 extern GTY(()) rtx const_true_rtx;
3140 
3141 extern GTY(()) rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
3142 
3143 /* Returns a constant 0 rtx in mode MODE.  Integer modes are treated the
3144    same as VOIDmode.  */
3145 
3146 #define CONST0_RTX(MODE) (const_tiny_rtx[0][(int) (MODE)])
3147 
3148 /* Likewise, for the constants 1 and 2 and -1.  */
3149 
3150 #define CONST1_RTX(MODE) (const_tiny_rtx[1][(int) (MODE)])
3151 #define CONST2_RTX(MODE) (const_tiny_rtx[2][(int) (MODE)])
3152 #define CONSTM1_RTX(MODE) (const_tiny_rtx[3][(int) (MODE)])
3153 
3154 extern GTY(()) rtx pc_rtx;
3155 extern GTY(()) rtx cc0_rtx;
3156 extern GTY(()) rtx ret_rtx;
3157 extern GTY(()) rtx simple_return_rtx;
3158 extern GTY(()) rtx_insn *invalid_insn_rtx;
3159 
3160 /* If HARD_FRAME_POINTER_REGNUM is defined, then a special dummy reg
3161    is used to represent the frame pointer.  This is because the
3162    hard frame pointer and the automatic variables are separated by an amount
3163    that cannot be determined until after register allocation.  We can assume
3164    that in this case ELIMINABLE_REGS will be defined, one action of which
3165    will be to eliminate FRAME_POINTER_REGNUM into HARD_FRAME_POINTER_REGNUM.  */
3166 #ifndef HARD_FRAME_POINTER_REGNUM
3167 #define HARD_FRAME_POINTER_REGNUM FRAME_POINTER_REGNUM
3168 #endif
3169 
3170 #ifndef HARD_FRAME_POINTER_IS_FRAME_POINTER
3171 #define HARD_FRAME_POINTER_IS_FRAME_POINTER \
3172   (HARD_FRAME_POINTER_REGNUM == FRAME_POINTER_REGNUM)
3173 #endif
3174 
3175 #ifndef HARD_FRAME_POINTER_IS_ARG_POINTER
3176 #define HARD_FRAME_POINTER_IS_ARG_POINTER \
3177   (HARD_FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM)
3178 #endif
3179 
3180 /* Index labels for global_rtl.  */
3181 enum global_rtl_index
3182 {
3183   GR_STACK_POINTER,
3184   GR_FRAME_POINTER,
3185 /* For register elimination to work properly these hard_frame_pointer_rtx,
3186    frame_pointer_rtx, and arg_pointer_rtx must be the same if they refer to
3187    the same register.  */
3188 #if FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
3189   GR_ARG_POINTER = GR_FRAME_POINTER,
3190 #endif
3191 #if HARD_FRAME_POINTER_IS_FRAME_POINTER
3192   GR_HARD_FRAME_POINTER = GR_FRAME_POINTER,
3193 #else
3194   GR_HARD_FRAME_POINTER,
3195 #endif
3196 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3197 #if HARD_FRAME_POINTER_IS_ARG_POINTER
3198   GR_ARG_POINTER = GR_HARD_FRAME_POINTER,
3199 #else
3200   GR_ARG_POINTER,
3201 #endif
3202 #endif
3203   GR_VIRTUAL_INCOMING_ARGS,
3204   GR_VIRTUAL_STACK_ARGS,
3205   GR_VIRTUAL_STACK_DYNAMIC,
3206   GR_VIRTUAL_OUTGOING_ARGS,
3207   GR_VIRTUAL_CFA,
3208   GR_VIRTUAL_PREFERRED_STACK_BOUNDARY,
3209 
3210   GR_MAX
3211 };
3212 
3213 /* Target-dependent globals.  */
3214 struct GTY(()) target_rtl {
3215   /* All references to the hard registers in global_rtl_index go through
3216      these unique rtl objects.  On machines where the frame-pointer and
3217      arg-pointer are the same register, they use the same unique object.
3218 
3219      After register allocation, other rtl objects which used to be pseudo-regs
3220      may be clobbered to refer to the frame-pointer register.
3221      But references that were originally to the frame-pointer can be
3222      distinguished from the others because they contain frame_pointer_rtx.
3223 
3224      When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
3225      tricky: until register elimination has taken place hard_frame_pointer_rtx
3226      should be used if it is being set, and frame_pointer_rtx otherwise.  After
3227      register elimination hard_frame_pointer_rtx should always be used.
3228      On machines where the two registers are same (most) then these are the
3229      same.  */
3230   rtx x_global_rtl[GR_MAX];
3231 
3232   /* A unique representation of (REG:Pmode PIC_OFFSET_TABLE_REGNUM).  */
3233   rtx x_pic_offset_table_rtx;
3234 
3235   /* A unique representation of (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM).
3236      This is used to implement __builtin_return_address for some machines;
3237      see for instance the MIPS port.  */
3238   rtx x_return_address_pointer_rtx;
3239 
3240   /* Commonly used RTL for hard registers.  These objects are not
3241      necessarily unique, so we allocate them separately from global_rtl.
3242      They are initialized once per compilation unit, then copied into
3243      regno_reg_rtx at the beginning of each function.  */
3244   rtx x_initial_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
3245 
3246   /* A sample (mem:M stack_pointer_rtx) rtx for each mode M.  */
3247   rtx x_top_of_stack[MAX_MACHINE_MODE];
3248 
3249   /* Static hunks of RTL used by the aliasing code; these are treated
3250      as persistent to avoid unnecessary RTL allocations.  */
3251   rtx x_static_reg_base_value[FIRST_PSEUDO_REGISTER];
3252 
3253   /* The default memory attributes for each mode.  */
3254   struct mem_attrs *x_mode_mem_attrs[(int) MAX_MACHINE_MODE];
3255 
3256   /* Track if RTL has been initialized.  */
3257   bool target_specific_initialized;
3258 };
3259 
3260 extern GTY(()) struct target_rtl default_target_rtl;
3261 #if SWITCHABLE_TARGET
3262 extern struct target_rtl *this_target_rtl;
3263 #else
3264 #define this_target_rtl (&default_target_rtl)
3265 #endif
3266 
3267 #define global_rtl				\
3268   (this_target_rtl->x_global_rtl)
3269 #define pic_offset_table_rtx \
3270   (this_target_rtl->x_pic_offset_table_rtx)
3271 #define return_address_pointer_rtx \
3272   (this_target_rtl->x_return_address_pointer_rtx)
3273 #define top_of_stack \
3274   (this_target_rtl->x_top_of_stack)
3275 #define mode_mem_attrs \
3276   (this_target_rtl->x_mode_mem_attrs)
3277 
3278 /* All references to certain hard regs, except those created
3279    by allocating pseudo regs into them (when that's possible),
3280    go through these unique rtx objects.  */
3281 #define stack_pointer_rtx       (global_rtl[GR_STACK_POINTER])
3282 #define frame_pointer_rtx       (global_rtl[GR_FRAME_POINTER])
3283 #define hard_frame_pointer_rtx	(global_rtl[GR_HARD_FRAME_POINTER])
3284 #define arg_pointer_rtx		(global_rtl[GR_ARG_POINTER])
3285 
3286 #ifndef GENERATOR_FILE
3287 /* Return the attributes of a MEM rtx.  */
3288 static inline struct mem_attrs *
3289 get_mem_attrs (const_rtx x)
3290 {
3291   struct mem_attrs *attrs;
3292 
3293   attrs = MEM_ATTRS (x);
3294   if (!attrs)
3295     attrs = mode_mem_attrs[(int) GET_MODE (x)];
3296   return attrs;
3297 }
3298 #endif
3299 
3300 /* Include the RTL generation functions.  */
3301 
3302 #ifndef GENERATOR_FILE
3303 #include "genrtl.h"
3304 #undef gen_rtx_ASM_INPUT
3305 #define gen_rtx_ASM_INPUT(MODE, ARG0)				\
3306   gen_rtx_fmt_si (ASM_INPUT, (MODE), (ARG0), 0)
3307 #define gen_rtx_ASM_INPUT_loc(MODE, ARG0, LOC)			\
3308   gen_rtx_fmt_si (ASM_INPUT, (MODE), (ARG0), (LOC))
3309 #endif
3310 
3311 /* There are some RTL codes that require special attention; the
3312    generation functions included above do the raw handling.  If you
3313    add to this list, modify special_rtx in gengenrtl.c as well.  */
3314 
3315 extern rtx_expr_list *gen_rtx_EXPR_LIST (machine_mode, rtx, rtx);
3316 extern rtx_insn_list *gen_rtx_INSN_LIST (machine_mode, rtx, rtx);
3317 extern rtx_insn *
3318 gen_rtx_INSN (machine_mode mode, rtx_insn *prev_insn, rtx_insn *next_insn,
3319 	      basic_block bb, rtx pattern, int location, int code,
3320 	      rtx reg_notes);
3321 extern rtx gen_rtx_CONST_INT (machine_mode, HOST_WIDE_INT);
3322 extern rtx gen_rtx_CONST_VECTOR (machine_mode, rtvec);
3323 extern void set_mode_and_regno (rtx, machine_mode, unsigned int);
3324 extern rtx gen_raw_REG (machine_mode, unsigned int);
3325 extern rtx gen_rtx_REG (machine_mode, unsigned int);
3326 extern rtx gen_rtx_SUBREG (machine_mode, rtx, int);
3327 extern rtx gen_rtx_MEM (machine_mode, rtx);
3328 extern rtx gen_rtx_VAR_LOCATION (machine_mode, tree, rtx,
3329 				 enum var_init_status);
3330 
3331 #ifdef GENERATOR_FILE
3332 #define PUT_MODE(RTX, MODE) PUT_MODE_RAW (RTX, MODE)
3333 #else
3334 static inline void
3335 PUT_MODE (rtx x, machine_mode mode)
3336 {
3337   if (REG_P (x))
3338     set_mode_and_regno (x, mode, REGNO (x));
3339   else
3340     PUT_MODE_RAW (x, mode);
3341 }
3342 #endif
3343 
3344 #define GEN_INT(N)  gen_rtx_CONST_INT (VOIDmode, (N))
3345 
3346 /* Virtual registers are used during RTL generation to refer to locations into
3347    the stack frame when the actual location isn't known until RTL generation
3348    is complete.  The routine instantiate_virtual_regs replaces these with
3349    the proper value, which is normally {frame,arg,stack}_pointer_rtx plus
3350    a constant.  */
3351 
3352 #define FIRST_VIRTUAL_REGISTER	(FIRST_PSEUDO_REGISTER)
3353 
3354 /* This points to the first word of the incoming arguments passed on the stack,
3355    either by the caller or by the callee when pretending it was passed by the
3356    caller.  */
3357 
3358 #define virtual_incoming_args_rtx       (global_rtl[GR_VIRTUAL_INCOMING_ARGS])
3359 
3360 #define VIRTUAL_INCOMING_ARGS_REGNUM	(FIRST_VIRTUAL_REGISTER)
3361 
3362 /* If FRAME_GROWS_DOWNWARD, this points to immediately above the first
3363    variable on the stack.  Otherwise, it points to the first variable on
3364    the stack.  */
3365 
3366 #define virtual_stack_vars_rtx	        (global_rtl[GR_VIRTUAL_STACK_ARGS])
3367 
3368 #define VIRTUAL_STACK_VARS_REGNUM	((FIRST_VIRTUAL_REGISTER) + 1)
3369 
3370 /* This points to the location of dynamically-allocated memory on the stack
3371    immediately after the stack pointer has been adjusted by the amount
3372    desired.  */
3373 
3374 #define virtual_stack_dynamic_rtx	(global_rtl[GR_VIRTUAL_STACK_DYNAMIC])
3375 
3376 #define VIRTUAL_STACK_DYNAMIC_REGNUM	((FIRST_VIRTUAL_REGISTER) + 2)
3377 
3378 /* This points to the location in the stack at which outgoing arguments should
3379    be written when the stack is pre-pushed (arguments pushed using push
3380    insns always use sp).  */
3381 
3382 #define virtual_outgoing_args_rtx	(global_rtl[GR_VIRTUAL_OUTGOING_ARGS])
3383 
3384 #define VIRTUAL_OUTGOING_ARGS_REGNUM	((FIRST_VIRTUAL_REGISTER) + 3)
3385 
3386 /* This points to the Canonical Frame Address of the function.  This
3387    should correspond to the CFA produced by INCOMING_FRAME_SP_OFFSET,
3388    but is calculated relative to the arg pointer for simplicity; the
3389    frame pointer nor stack pointer are necessarily fixed relative to
3390    the CFA until after reload.  */
3391 
3392 #define virtual_cfa_rtx			(global_rtl[GR_VIRTUAL_CFA])
3393 
3394 #define VIRTUAL_CFA_REGNUM		((FIRST_VIRTUAL_REGISTER) + 4)
3395 
3396 #define LAST_VIRTUAL_POINTER_REGISTER	((FIRST_VIRTUAL_REGISTER) + 4)
3397 
3398 /* This is replaced by crtl->preferred_stack_boundary / BITS_PER_UNIT
3399    when finalized.  */
3400 
3401 #define virtual_preferred_stack_boundary_rtx \
3402 	(global_rtl[GR_VIRTUAL_PREFERRED_STACK_BOUNDARY])
3403 
3404 #define VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM \
3405 					((FIRST_VIRTUAL_REGISTER) + 5)
3406 
3407 #define LAST_VIRTUAL_REGISTER		((FIRST_VIRTUAL_REGISTER) + 5)
3408 
3409 /* Nonzero if REGNUM is a pointer into the stack frame.  */
3410 #define REGNO_PTR_FRAME_P(REGNUM)		\
3411   ((REGNUM) == STACK_POINTER_REGNUM		\
3412    || (REGNUM) == FRAME_POINTER_REGNUM		\
3413    || (REGNUM) == HARD_FRAME_POINTER_REGNUM	\
3414    || (REGNUM) == ARG_POINTER_REGNUM		\
3415    || ((REGNUM) >= FIRST_VIRTUAL_REGISTER	\
3416        && (REGNUM) <= LAST_VIRTUAL_POINTER_REGISTER))
3417 
3418 /* REGNUM never really appearing in the INSN stream.  */
3419 #define INVALID_REGNUM			(~(unsigned int) 0)
3420 
3421 /* REGNUM for which no debug information can be generated.  */
3422 #define IGNORED_DWARF_REGNUM            (INVALID_REGNUM - 1)
3423 
3424 extern rtx output_constant_def (tree, int);
3425 extern rtx lookup_constant_def (tree);
3426 
3427 /* Nonzero after end of reload pass.
3428    Set to 1 or 0 by reload1.c.  */
3429 
3430 extern int reload_completed;
3431 
3432 /* Nonzero after thread_prologue_and_epilogue_insns has run.  */
3433 extern int epilogue_completed;
3434 
3435 /* Set to 1 while reload_as_needed is operating.
3436    Required by some machines to handle any generated moves differently.  */
3437 
3438 extern int reload_in_progress;
3439 
3440 /* Set to 1 while in lra.  */
3441 extern int lra_in_progress;
3442 
3443 /* This macro indicates whether you may create a new
3444    pseudo-register.  */
3445 
3446 #define can_create_pseudo_p() (!reload_in_progress && !reload_completed)
3447 
3448 #ifdef STACK_REGS
3449 /* Nonzero after end of regstack pass.
3450    Set to 1 or 0 by reg-stack.c.  */
3451 extern int regstack_completed;
3452 #endif
3453 
3454 /* If this is nonzero, we do not bother generating VOLATILE
3455    around volatile memory references, and we are willing to
3456    output indirect addresses.  If cse is to follow, we reject
3457    indirect addresses so a useful potential cse is generated;
3458    if it is used only once, instruction combination will produce
3459    the same indirect address eventually.  */
3460 extern int cse_not_expected;
3461 
3462 /* Translates rtx code to tree code, for those codes needed by
3463    real_arithmetic.  The function returns an int because the caller may not
3464    know what `enum tree_code' means.  */
3465 
3466 extern int rtx_to_tree_code (enum rtx_code);
3467 
3468 /* In cse.c */
3469 extern int delete_trivially_dead_insns (rtx_insn *, int);
3470 extern int exp_equiv_p (const_rtx, const_rtx, int, bool);
3471 extern unsigned hash_rtx (const_rtx x, machine_mode, int *, int *, bool);
3472 
3473 /* In dse.c */
3474 extern bool check_for_inc_dec (rtx_insn *insn);
3475 
3476 /* In jump.c */
3477 extern int comparison_dominates_p (enum rtx_code, enum rtx_code);
3478 extern bool jump_to_label_p (const rtx_insn *);
3479 extern int condjump_p (const rtx_insn *);
3480 extern int any_condjump_p (const rtx_insn *);
3481 extern int any_uncondjump_p (const rtx_insn *);
3482 extern rtx pc_set (const rtx_insn *);
3483 extern rtx condjump_label (const rtx_insn *);
3484 extern int simplejump_p (const rtx_insn *);
3485 extern int returnjump_p (const rtx_insn *);
3486 extern int eh_returnjump_p (rtx_insn *);
3487 extern int onlyjump_p (const rtx_insn *);
3488 extern int only_sets_cc0_p (const_rtx);
3489 extern int sets_cc0_p (const_rtx);
3490 extern int invert_jump_1 (rtx_jump_insn *, rtx);
3491 extern int invert_jump (rtx_jump_insn *, rtx, int);
3492 extern int rtx_renumbered_equal_p (const_rtx, const_rtx);
3493 extern int true_regnum (const_rtx);
3494 extern unsigned int reg_or_subregno (const_rtx);
3495 extern int redirect_jump_1 (rtx_insn *, rtx);
3496 extern void redirect_jump_2 (rtx_jump_insn *, rtx, rtx, int, int);
3497 extern int redirect_jump (rtx_jump_insn *, rtx, int);
3498 extern void rebuild_jump_labels (rtx_insn *);
3499 extern void rebuild_jump_labels_chain (rtx_insn *);
3500 extern rtx reversed_comparison (const_rtx, machine_mode);
3501 extern enum rtx_code reversed_comparison_code (const_rtx, const_rtx);
3502 extern enum rtx_code reversed_comparison_code_parts (enum rtx_code, const_rtx,
3503 						     const_rtx, const_rtx);
3504 extern void delete_for_peephole (rtx_insn *, rtx_insn *);
3505 extern int condjump_in_parallel_p (const rtx_insn *);
3506 
3507 /* In emit-rtl.c.  */
3508 extern int max_reg_num (void);
3509 extern int max_label_num (void);
3510 extern int get_first_label_num (void);
3511 extern void maybe_set_first_label_num (rtx);
3512 extern void delete_insns_since (rtx_insn *);
3513 extern void mark_reg_pointer (rtx, int);
3514 extern void mark_user_reg (rtx);
3515 extern void reset_used_flags (rtx);
3516 extern void set_used_flags (rtx);
3517 extern void reorder_insns (rtx_insn *, rtx_insn *, rtx_insn *);
3518 extern void reorder_insns_nobb (rtx_insn *, rtx_insn *, rtx_insn *);
3519 extern int get_max_insn_count (void);
3520 extern int in_sequence_p (void);
3521 extern void init_emit (void);
3522 extern void init_emit_regs (void);
3523 extern void init_derived_machine_modes (void);
3524 extern void init_emit_once (void);
3525 extern void push_topmost_sequence (void);
3526 extern void pop_topmost_sequence (void);
3527 extern void set_new_first_and_last_insn (rtx_insn *, rtx_insn *);
3528 extern unsigned int unshare_all_rtl (void);
3529 extern void unshare_all_rtl_again (rtx_insn *);
3530 extern void unshare_all_rtl_in_chain (rtx_insn *);
3531 extern void verify_rtl_sharing (void);
3532 extern void add_insn (rtx_insn *);
3533 extern void add_insn_before (rtx, rtx, basic_block);
3534 extern void add_insn_after (rtx, rtx, basic_block);
3535 extern void remove_insn (rtx);
3536 extern rtx_insn *emit (rtx, bool = true);
3537 extern void emit_insn_at_entry (rtx);
3538 extern rtx gen_lowpart_SUBREG (machine_mode, rtx);
3539 extern rtx gen_const_mem (machine_mode, rtx);
3540 extern rtx gen_frame_mem (machine_mode, rtx);
3541 extern rtx gen_tmp_stack_mem (machine_mode, rtx);
3542 extern bool validate_subreg (machine_mode, machine_mode,
3543 			     const_rtx, unsigned int);
3544 
3545 /* In combine.c  */
3546 extern unsigned int extended_count (const_rtx, machine_mode, int);
3547 extern rtx remove_death (unsigned int, rtx_insn *);
3548 extern void dump_combine_stats (FILE *);
3549 extern void dump_combine_total_stats (FILE *);
3550 extern rtx make_compound_operation (rtx, enum rtx_code);
3551 
3552 /* In sched-rgn.c.  */
3553 extern void schedule_insns (void);
3554 
3555 /* In sched-ebb.c.  */
3556 extern void schedule_ebbs (void);
3557 
3558 /* In sel-sched-dump.c.  */
3559 extern void sel_sched_fix_param (const char *param, const char *val);
3560 
3561 /* In print-rtl.c */
3562 extern const char *print_rtx_head;
3563 extern void debug (const rtx_def &ref);
3564 extern void debug (const rtx_def *ptr);
3565 extern void debug_rtx (const_rtx);
3566 extern void debug_rtx_list (const rtx_insn *, int);
3567 extern void debug_rtx_range (const rtx_insn *, const rtx_insn *);
3568 extern const rtx_insn *debug_rtx_find (const rtx_insn *, int);
3569 extern void print_mem_expr (FILE *, const_tree);
3570 extern void print_rtl (FILE *, const_rtx);
3571 extern void print_simple_rtl (FILE *, const_rtx);
3572 extern int print_rtl_single (FILE *, const_rtx);
3573 extern int print_rtl_single_with_indent (FILE *, const_rtx, int);
3574 extern void print_inline_rtx (FILE *, const_rtx, int);
3575 
3576 /* In stmt.c */
3577 extern void expand_null_return (void);
3578 extern void expand_naked_return (void);
3579 extern void emit_jump (rtx);
3580 
3581 /* In expr.c */
3582 extern rtx move_by_pieces (rtx, rtx, unsigned HOST_WIDE_INT,
3583 			   unsigned int, int);
3584 extern HOST_WIDE_INT find_args_size_adjust (rtx_insn *);
3585 extern int fixup_args_size_notes (rtx_insn *, rtx_insn *, int);
3586 
3587 /* In expmed.c */
3588 extern void init_expmed (void);
3589 extern void expand_inc (rtx, rtx);
3590 extern void expand_dec (rtx, rtx);
3591 
3592 /* In lower-subreg.c */
3593 extern void init_lower_subreg (void);
3594 
3595 /* In gcse.c */
3596 extern bool can_copy_p (machine_mode);
3597 extern bool can_assign_to_reg_without_clobbers_p (rtx, machine_mode);
3598 extern rtx fis_get_condition (rtx_insn *);
3599 
3600 /* In ira.c */
3601 extern HARD_REG_SET eliminable_regset;
3602 extern void mark_elimination (int, int);
3603 
3604 /* In reginfo.c */
3605 extern int reg_classes_intersect_p (reg_class_t, reg_class_t);
3606 extern int reg_class_subset_p (reg_class_t, reg_class_t);
3607 extern void globalize_reg (tree, int);
3608 extern void init_reg_modes_target (void);
3609 extern void init_regs (void);
3610 extern void reinit_regs (void);
3611 extern void init_fake_stack_mems (void);
3612 extern void save_register_info (void);
3613 extern void init_reg_sets (void);
3614 extern void regclass (rtx, int);
3615 extern void reg_scan (rtx_insn *, unsigned int);
3616 extern void fix_register (const char *, int, int);
3617 extern const HARD_REG_SET *valid_mode_changes_for_regno (unsigned int);
3618 
3619 /* In reload1.c */
3620 extern int function_invariant_p (const_rtx);
3621 
3622 /* In calls.c */
3623 enum libcall_type
3624 {
3625   LCT_NORMAL = 0,
3626   LCT_CONST = 1,
3627   LCT_PURE = 2,
3628   LCT_NORETURN = 3,
3629   LCT_THROW = 4,
3630   LCT_RETURNS_TWICE = 5
3631 };
3632 
3633 extern void emit_library_call (rtx, enum libcall_type, machine_mode, int,
3634 			       ...);
3635 extern rtx emit_library_call_value (rtx, rtx, enum libcall_type,
3636 				    machine_mode, int, ...);
3637 
3638 /* In varasm.c */
3639 extern void init_varasm_once (void);
3640 
3641 extern rtx make_debug_expr_from_rtl (const_rtx);
3642 
3643 /* In read-rtl.c */
3644 extern bool read_rtx (const char *, vec<rtx> *);
3645 
3646 /* In alias.c */
3647 extern rtx canon_rtx (rtx);
3648 extern int true_dependence (const_rtx, machine_mode, const_rtx);
3649 extern rtx get_addr (rtx);
3650 extern int canon_true_dependence (const_rtx, machine_mode, rtx,
3651 				  const_rtx, rtx);
3652 extern int read_dependence (const_rtx, const_rtx);
3653 extern int anti_dependence (const_rtx, const_rtx);
3654 extern int canon_anti_dependence (const_rtx, bool,
3655 				  const_rtx, machine_mode, rtx);
3656 extern int output_dependence (const_rtx, const_rtx);
3657 extern int canon_output_dependence (const_rtx, bool,
3658 				    const_rtx, machine_mode, rtx);
3659 extern int may_alias_p (const_rtx, const_rtx);
3660 extern void init_alias_target (void);
3661 extern void init_alias_analysis (void);
3662 extern void end_alias_analysis (void);
3663 extern void vt_equate_reg_base_value (const_rtx, const_rtx);
3664 extern bool memory_modified_in_insn_p (const_rtx, const_rtx);
3665 extern bool may_be_sp_based_p (rtx);
3666 extern rtx gen_hard_reg_clobber (machine_mode, unsigned int);
3667 extern rtx get_reg_known_value (unsigned int);
3668 extern bool get_reg_known_equiv_p (unsigned int);
3669 extern rtx get_reg_base_value (unsigned int);
3670 
3671 #ifdef STACK_REGS
3672 extern int stack_regs_mentioned (const_rtx insn);
3673 #endif
3674 
3675 /* In toplev.c */
3676 extern GTY(()) rtx stack_limit_rtx;
3677 
3678 /* In var-tracking.c */
3679 extern unsigned int variable_tracking_main (void);
3680 
3681 /* In stor-layout.c.  */
3682 extern void get_mode_bounds (machine_mode, int, machine_mode,
3683 			     rtx *, rtx *);
3684 
3685 /* In loop-iv.c  */
3686 extern rtx canon_condition (rtx);
3687 extern void simplify_using_condition (rtx, rtx *, bitmap);
3688 
3689 /* In final.c  */
3690 extern unsigned int compute_alignments (void);
3691 extern void update_alignments (vec<rtx> &);
3692 extern int asm_str_count (const char *templ);
3693 
3694 struct rtl_hooks
3695 {
3696   rtx (*gen_lowpart) (machine_mode, rtx);
3697   rtx (*gen_lowpart_no_emit) (machine_mode, rtx);
3698   rtx (*reg_nonzero_bits) (const_rtx, machine_mode, const_rtx, machine_mode,
3699 			   unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT *);
3700   rtx (*reg_num_sign_bit_copies) (const_rtx, machine_mode, const_rtx, machine_mode,
3701 				  unsigned int, unsigned int *);
3702   bool (*reg_truncated_to_mode) (machine_mode, const_rtx);
3703 
3704   /* Whenever you add entries here, make sure you adjust rtlhooks-def.h.  */
3705 };
3706 
3707 /* Each pass can provide its own.  */
3708 extern struct rtl_hooks rtl_hooks;
3709 
3710 /* ... but then it has to restore these.  */
3711 extern const struct rtl_hooks general_rtl_hooks;
3712 
3713 /* Keep this for the nonce.  */
3714 #define gen_lowpart rtl_hooks.gen_lowpart
3715 
3716 extern void insn_locations_init (void);
3717 extern void insn_locations_finalize (void);
3718 extern void set_curr_insn_location (location_t);
3719 extern location_t curr_insn_location (void);
3720 
3721 /* rtl-error.c */
3722 extern void _fatal_insn_not_found (const_rtx, const char *, int, const char *)
3723      ATTRIBUTE_NORETURN;
3724 extern void _fatal_insn (const char *, const_rtx, const char *, int, const char *)
3725      ATTRIBUTE_NORETURN;
3726 
3727 #define fatal_insn(msgid, insn) \
3728 	_fatal_insn (msgid, insn, __FILE__, __LINE__, __FUNCTION__)
3729 #define fatal_insn_not_found(insn) \
3730 	_fatal_insn_not_found (insn, __FILE__, __LINE__, __FUNCTION__)
3731 
3732 /* reginfo.c */
3733 extern tree GTY(()) global_regs_decl[FIRST_PSEUDO_REGISTER];
3734 
3735 /* Information about the function that is propagated by the RTL backend.
3736    Available only for functions that has been already assembled.  */
3737 
3738 struct GTY(()) cgraph_rtl_info {
3739    unsigned int preferred_incoming_stack_boundary;
3740 
3741   /* Call unsaved hard registers really used by the corresponding
3742      function (including ones used by functions called by the
3743      function).  */
3744   HARD_REG_SET function_used_regs;
3745   /* Set if function_used_regs is valid.  */
3746   unsigned function_used_regs_valid: 1;
3747 };
3748 
3749 
3750 #endif /* ! GCC_RTL_H */
3751