1 /* SSA Jump Threading
2    Copyright (C) 2005-2016 Free Software Foundation, Inc.
3    Contributed by Jeff Law  <law@redhat.com>
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11 
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 GNU General Public License for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.  */
20 
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "tree.h"
26 #include "gimple.h"
27 #include "predict.h"
28 #include "ssa.h"
29 #include "fold-const.h"
30 #include "cfgloop.h"
31 #include "gimple-iterator.h"
32 #include "tree-cfg.h"
33 #include "tree-ssa-threadupdate.h"
34 #include "params.h"
35 #include "tree-ssa-scopedtables.h"
36 #include "tree-ssa-threadedge.h"
37 #include "tree-ssa-threadbackward.h"
38 #include "tree-ssa-dom.h"
39 #include "gimple-fold.h"
40 
41 /* To avoid code explosion due to jump threading, we limit the
42    number of statements we are going to copy.  This variable
43    holds the number of statements currently seen that we'll have
44    to copy as part of the jump threading process.  */
45 static int stmt_count;
46 
47 /* Array to record value-handles per SSA_NAME.  */
48 vec<tree> ssa_name_values;
49 
50 typedef tree (pfn_simplify) (gimple *, gimple *, class avail_exprs_stack *);
51 
52 /* Set the value for the SSA name NAME to VALUE.  */
53 
54 void
set_ssa_name_value(tree name,tree value)55 set_ssa_name_value (tree name, tree value)
56 {
57   if (SSA_NAME_VERSION (name) >= ssa_name_values.length ())
58     ssa_name_values.safe_grow_cleared (SSA_NAME_VERSION (name) + 1);
59   if (value && TREE_OVERFLOW_P (value))
60     value = drop_tree_overflow (value);
61   ssa_name_values[SSA_NAME_VERSION (name)] = value;
62 }
63 
64 /* Initialize the per SSA_NAME value-handles array.  Returns it.  */
65 void
threadedge_initialize_values(void)66 threadedge_initialize_values (void)
67 {
68   gcc_assert (!ssa_name_values.exists ());
69   ssa_name_values.create (num_ssa_names);
70 }
71 
72 /* Free the per SSA_NAME value-handle array.  */
73 void
threadedge_finalize_values(void)74 threadedge_finalize_values (void)
75 {
76   ssa_name_values.release ();
77 }
78 
79 /* Return TRUE if we may be able to thread an incoming edge into
80    BB to an outgoing edge from BB.  Return FALSE otherwise.  */
81 
82 bool
potentially_threadable_block(basic_block bb)83 potentially_threadable_block (basic_block bb)
84 {
85   gimple_stmt_iterator gsi;
86 
87   /* Special case.  We can get blocks that are forwarders, but are
88      not optimized away because they forward from outside a loop
89      to the loop header.   We want to thread through them as we can
90      sometimes thread to the loop exit, which is obviously profitable.
91      the interesting case here is when the block has PHIs.  */
92   if (gsi_end_p (gsi_start_nondebug_bb (bb))
93       && !gsi_end_p (gsi_start_phis (bb)))
94     return true;
95 
96   /* If BB has a single successor or a single predecessor, then
97      there is no threading opportunity.  */
98   if (single_succ_p (bb) || single_pred_p (bb))
99     return false;
100 
101   /* If BB does not end with a conditional, switch or computed goto,
102      then there is no threading opportunity.  */
103   gsi = gsi_last_bb (bb);
104   if (gsi_end_p (gsi)
105       || ! gsi_stmt (gsi)
106       || (gimple_code (gsi_stmt (gsi)) != GIMPLE_COND
107 	  && gimple_code (gsi_stmt (gsi)) != GIMPLE_GOTO
108 	  && gimple_code (gsi_stmt (gsi)) != GIMPLE_SWITCH))
109     return false;
110 
111   return true;
112 }
113 
114 /* Return the LHS of any ASSERT_EXPR where OP appears as the first
115    argument to the ASSERT_EXPR and in which the ASSERT_EXPR dominates
116    BB.  If no such ASSERT_EXPR is found, return OP.  */
117 
118 static tree
lhs_of_dominating_assert(tree op,basic_block bb,gimple * stmt)119 lhs_of_dominating_assert (tree op, basic_block bb, gimple *stmt)
120 {
121   imm_use_iterator imm_iter;
122   gimple *use_stmt;
123   use_operand_p use_p;
124 
125   FOR_EACH_IMM_USE_FAST (use_p, imm_iter, op)
126     {
127       use_stmt = USE_STMT (use_p);
128       if (use_stmt != stmt
129           && gimple_assign_single_p (use_stmt)
130           && TREE_CODE (gimple_assign_rhs1 (use_stmt)) == ASSERT_EXPR
131           && TREE_OPERAND (gimple_assign_rhs1 (use_stmt), 0) == op
132 	  && dominated_by_p (CDI_DOMINATORS, bb, gimple_bb (use_stmt)))
133 	{
134 	  return gimple_assign_lhs (use_stmt);
135 	}
136     }
137   return op;
138 }
139 
140 /* Record temporary equivalences created by PHIs at the target of the
141    edge E.  Record unwind information for the equivalences onto STACK.
142 
143    If a PHI which prevents threading is encountered, then return FALSE
144    indicating we should not thread this edge, else return TRUE.
145 
146    If SRC_MAP/DST_MAP exist, then mark the source and destination SSA_NAMEs
147    of any equivalences recorded.  We use this to make invalidation after
148    traversing back edges less painful.  */
149 
150 static bool
record_temporary_equivalences_from_phis(edge e,const_and_copies * const_and_copies)151 record_temporary_equivalences_from_phis (edge e, const_and_copies *const_and_copies)
152 {
153   gphi_iterator gsi;
154 
155   /* Each PHI creates a temporary equivalence, record them.
156      These are context sensitive equivalences and will be removed
157      later.  */
158   for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
159     {
160       gphi *phi = gsi.phi ();
161       tree src = PHI_ARG_DEF_FROM_EDGE (phi, e);
162       tree dst = gimple_phi_result (phi);
163 
164       /* If the desired argument is not the same as this PHI's result
165 	 and it is set by a PHI in E->dest, then we can not thread
166 	 through E->dest.  */
167       if (src != dst
168 	  && TREE_CODE (src) == SSA_NAME
169 	  && gimple_code (SSA_NAME_DEF_STMT (src)) == GIMPLE_PHI
170 	  && gimple_bb (SSA_NAME_DEF_STMT (src)) == e->dest)
171 	return false;
172 
173       /* We consider any non-virtual PHI as a statement since it
174 	 count result in a constant assignment or copy operation.  */
175       if (!virtual_operand_p (dst))
176 	stmt_count++;
177 
178       const_and_copies->record_const_or_copy (dst, src);
179     }
180   return true;
181 }
182 
183 /* Valueize hook for gimple_fold_stmt_to_constant_1.  */
184 
185 static tree
threadedge_valueize(tree t)186 threadedge_valueize (tree t)
187 {
188   if (TREE_CODE (t) == SSA_NAME)
189     {
190       tree tem = SSA_NAME_VALUE (t);
191       if (tem)
192 	return tem;
193     }
194   return t;
195 }
196 
197 /* Try to simplify each statement in E->dest, ultimately leading to
198    a simplification of the COND_EXPR at the end of E->dest.
199 
200    Record unwind information for temporary equivalences onto STACK.
201 
202    Use SIMPLIFY (a pointer to a callback function) to further simplify
203    statements using pass specific information.
204 
205    We might consider marking just those statements which ultimately
206    feed the COND_EXPR.  It's not clear if the overhead of bookkeeping
207    would be recovered by trying to simplify fewer statements.
208 
209    If we are able to simplify a statement into the form
210    SSA_NAME = (SSA_NAME | gimple invariant), then we can record
211    a context sensitive equivalence which may help us simplify
212    later statements in E->dest.  */
213 
214 static gimple *
record_temporary_equivalences_from_stmts_at_dest(edge e,const_and_copies * const_and_copies,avail_exprs_stack * avail_exprs_stack,pfn_simplify simplify)215 record_temporary_equivalences_from_stmts_at_dest (edge e,
216     const_and_copies *const_and_copies,
217     avail_exprs_stack *avail_exprs_stack,
218     pfn_simplify simplify)
219 {
220   gimple *stmt = NULL;
221   gimple_stmt_iterator gsi;
222   int max_stmt_count;
223 
224   max_stmt_count = PARAM_VALUE (PARAM_MAX_JUMP_THREAD_DUPLICATION_STMTS);
225 
226   /* Walk through each statement in the block recording equivalences
227      we discover.  Note any equivalences we discover are context
228      sensitive (ie, are dependent on traversing E) and must be unwound
229      when we're finished processing E.  */
230   for (gsi = gsi_start_bb (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
231     {
232       tree cached_lhs = NULL;
233 
234       stmt = gsi_stmt (gsi);
235 
236       /* Ignore empty statements and labels.  */
237       if (gimple_code (stmt) == GIMPLE_NOP
238 	  || gimple_code (stmt) == GIMPLE_LABEL
239 	  || is_gimple_debug (stmt))
240 	continue;
241 
242       /* If the statement has volatile operands, then we assume we
243 	 can not thread through this block.  This is overly
244 	 conservative in some ways.  */
245       if (gimple_code (stmt) == GIMPLE_ASM
246 	  && gimple_asm_volatile_p (as_a <gasm *> (stmt)))
247 	return NULL;
248 
249       /* If the statement is a unique builtin, we can not thread
250 	 through here.  */
251       if (gimple_code (stmt) == GIMPLE_CALL
252 	  && gimple_call_internal_p (stmt)
253 	  && gimple_call_internal_unique_p (stmt))
254 	return NULL;
255 
256       /* If duplicating this block is going to cause too much code
257 	 expansion, then do not thread through this block.  */
258       stmt_count++;
259       if (stmt_count > max_stmt_count)
260 	return NULL;
261 
262       /* If this is not a statement that sets an SSA_NAME to a new
263 	 value, then do not try to simplify this statement as it will
264 	 not simplify in any way that is helpful for jump threading.  */
265       if ((gimple_code (stmt) != GIMPLE_ASSIGN
266            || TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
267           && (gimple_code (stmt) != GIMPLE_CALL
268               || gimple_call_lhs (stmt) == NULL_TREE
269               || TREE_CODE (gimple_call_lhs (stmt)) != SSA_NAME))
270 	continue;
271 
272       /* The result of __builtin_object_size depends on all the arguments
273 	 of a phi node. Temporarily using only one edge produces invalid
274 	 results. For example
275 
276 	 if (x < 6)
277 	   goto l;
278 	 else
279 	   goto l;
280 
281 	 l:
282 	 r = PHI <&w[2].a[1](2), &a.a[6](3)>
283 	 __builtin_object_size (r, 0)
284 
285 	 The result of __builtin_object_size is defined to be the maximum of
286 	 remaining bytes. If we use only one edge on the phi, the result will
287 	 change to be the remaining bytes for the corresponding phi argument.
288 
289 	 Similarly for __builtin_constant_p:
290 
291 	 r = PHI <1(2), 2(3)>
292 	 __builtin_constant_p (r)
293 
294 	 Both PHI arguments are constant, but x ? 1 : 2 is still not
295 	 constant.  */
296 
297       if (is_gimple_call (stmt))
298 	{
299 	  tree fndecl = gimple_call_fndecl (stmt);
300 	  if (fndecl
301 	      && (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_OBJECT_SIZE
302 		  || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CONSTANT_P))
303 	    continue;
304 	}
305 
306       /* At this point we have a statement which assigns an RHS to an
307 	 SSA_VAR on the LHS.  We want to try and simplify this statement
308 	 to expose more context sensitive equivalences which in turn may
309 	 allow us to simplify the condition at the end of the loop.
310 
311 	 Handle simple copy operations as well as implied copies from
312 	 ASSERT_EXPRs.  */
313       if (gimple_assign_single_p (stmt)
314           && TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME)
315 	cached_lhs = gimple_assign_rhs1 (stmt);
316       else if (gimple_assign_single_p (stmt)
317                && TREE_CODE (gimple_assign_rhs1 (stmt)) == ASSERT_EXPR)
318 	cached_lhs = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0);
319       else
320 	{
321 	  /* A statement that is not a trivial copy or ASSERT_EXPR.
322 	     Try to fold the new expression.  Inserting the
323 	     expression into the hash table is unlikely to help.  */
324 	  /* ???  The DOM callback below can be changed to setting
325 	     the mprts_hook around the call to thread_across_edge,
326 	     avoiding the use substitution.  The VRP hook should be
327 	     changed to properly valueize operands itself using
328 	     SSA_NAME_VALUE in addition to its own lattice.  */
329 	  cached_lhs = gimple_fold_stmt_to_constant_1 (stmt,
330 						       threadedge_valueize);
331           if (!cached_lhs
332               || (TREE_CODE (cached_lhs) != SSA_NAME
333                   && !is_gimple_min_invariant (cached_lhs)))
334 	    {
335 	      /* We're going to temporarily copy propagate the operands
336 		 and see if that allows us to simplify this statement.  */
337 	      tree *copy;
338 	      ssa_op_iter iter;
339 	      use_operand_p use_p;
340 	      unsigned int num, i = 0;
341 
342 	      num = NUM_SSA_OPERANDS (stmt, SSA_OP_ALL_USES);
343 	      copy = XALLOCAVEC (tree, num);
344 
345 	      /* Make a copy of the uses & vuses into USES_COPY, then cprop into
346 		 the operands.  */
347 	      FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
348 		{
349 		  tree tmp = NULL;
350 		  tree use = USE_FROM_PTR (use_p);
351 
352 		  copy[i++] = use;
353 		  if (TREE_CODE (use) == SSA_NAME)
354 		    tmp = SSA_NAME_VALUE (use);
355 		  if (tmp)
356 		    SET_USE (use_p, tmp);
357 		}
358 
359 	      cached_lhs = (*simplify) (stmt, stmt, avail_exprs_stack);
360 
361 	      /* Restore the statement's original uses/defs.  */
362 	      i = 0;
363 	      FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
364 		SET_USE (use_p, copy[i++]);
365 	    }
366 	}
367 
368       /* Record the context sensitive equivalence if we were able
369 	 to simplify this statement.  */
370       if (cached_lhs
371 	  && (TREE_CODE (cached_lhs) == SSA_NAME
372 	      || is_gimple_min_invariant (cached_lhs)))
373 	const_and_copies->record_const_or_copy (gimple_get_lhs (stmt),
374 						cached_lhs);
375     }
376   return stmt;
377 }
378 
379 /* Simplify the control statement at the end of the block E->dest.
380 
381    To avoid allocating memory unnecessarily, a scratch GIMPLE_COND
382    is available to use/clobber in DUMMY_COND.
383 
384    Use SIMPLIFY (a pointer to a callback function) to further simplify
385    a condition using pass specific information.
386 
387    Return the simplified condition or NULL if simplification could
388    not be performed.
389 
390    The available expression table is referenced via AVAIL_EXPRS_STACK.  */
391 
392 static tree
simplify_control_stmt_condition(edge e,gimple * stmt,class avail_exprs_stack * avail_exprs_stack,gcond * dummy_cond,pfn_simplify simplify,bool handle_dominating_asserts)393 simplify_control_stmt_condition (edge e,
394 				 gimple *stmt,
395 				 class avail_exprs_stack *avail_exprs_stack,
396 				 gcond *dummy_cond,
397 				 pfn_simplify simplify,
398 				 bool handle_dominating_asserts)
399 {
400   tree cond, cached_lhs;
401   enum gimple_code code = gimple_code (stmt);
402 
403   /* For comparisons, we have to update both operands, then try
404      to simplify the comparison.  */
405   if (code == GIMPLE_COND)
406     {
407       tree op0, op1;
408       enum tree_code cond_code;
409 
410       op0 = gimple_cond_lhs (stmt);
411       op1 = gimple_cond_rhs (stmt);
412       cond_code = gimple_cond_code (stmt);
413 
414       /* Get the current value of both operands.  */
415       if (TREE_CODE (op0) == SSA_NAME)
416 	{
417 	  for (int i = 0; i < 2; i++)
418 	    {
419 	      if (TREE_CODE (op0) == SSA_NAME
420 		  && SSA_NAME_VALUE (op0))
421 		op0 = SSA_NAME_VALUE (op0);
422 	      else
423 		break;
424 	    }
425 	}
426 
427       if (TREE_CODE (op1) == SSA_NAME)
428 	{
429 	  for (int i = 0; i < 2; i++)
430 	    {
431 	      if (TREE_CODE (op1) == SSA_NAME
432 		  && SSA_NAME_VALUE (op1))
433 		op1 = SSA_NAME_VALUE (op1);
434 	      else
435 		break;
436 	    }
437 	}
438 
439       if (handle_dominating_asserts)
440 	{
441 	  /* Now see if the operand was consumed by an ASSERT_EXPR
442 	     which dominates E->src.  If so, we want to replace the
443 	     operand with the LHS of the ASSERT_EXPR.  */
444 	  if (TREE_CODE (op0) == SSA_NAME)
445 	    op0 = lhs_of_dominating_assert (op0, e->src, stmt);
446 
447 	  if (TREE_CODE (op1) == SSA_NAME)
448 	    op1 = lhs_of_dominating_assert (op1, e->src, stmt);
449 	}
450 
451       /* We may need to canonicalize the comparison.  For
452 	 example, op0 might be a constant while op1 is an
453 	 SSA_NAME.  Failure to canonicalize will cause us to
454 	 miss threading opportunities.  */
455       if (tree_swap_operands_p (op0, op1, false))
456 	{
457 	  cond_code = swap_tree_comparison (cond_code);
458 	  std::swap (op0, op1);
459 	}
460 
461       /* Stuff the operator and operands into our dummy conditional
462 	 expression.  */
463       gimple_cond_set_code (dummy_cond, cond_code);
464       gimple_cond_set_lhs (dummy_cond, op0);
465       gimple_cond_set_rhs (dummy_cond, op1);
466 
467       /* We absolutely do not care about any type conversions
468          we only care about a zero/nonzero value.  */
469       fold_defer_overflow_warnings ();
470 
471       cached_lhs = fold_binary (cond_code, boolean_type_node, op0, op1);
472       if (cached_lhs)
473 	while (CONVERT_EXPR_P (cached_lhs))
474           cached_lhs = TREE_OPERAND (cached_lhs, 0);
475 
476       fold_undefer_overflow_warnings ((cached_lhs
477                                        && is_gimple_min_invariant (cached_lhs)),
478 				      stmt, WARN_STRICT_OVERFLOW_CONDITIONAL);
479 
480       /* If we have not simplified the condition down to an invariant,
481 	 then use the pass specific callback to simplify the condition.  */
482       if (!cached_lhs
483           || !is_gimple_min_invariant (cached_lhs))
484         cached_lhs = (*simplify) (dummy_cond, stmt, avail_exprs_stack);
485 
486       /* If we were testing an integer/pointer against a constant, then
487 	 we can use the FSM code to trace the value of the SSA_NAME.  If
488 	 a value is found, then the condition will collapse to a constant.
489 
490 	 Return the SSA_NAME we want to trace back rather than the full
491 	 expression and give the FSM threader a chance to find its value.  */
492       if (cached_lhs == NULL)
493 	{
494 	  /* Recover the original operands.  They may have been simplified
495 	     using context sensitive equivalences.  Those context sensitive
496 	     equivalences may not be valid on paths found by the FSM optimizer.  */
497 	  tree op0 = gimple_cond_lhs (stmt);
498 	  tree op1 = gimple_cond_rhs (stmt);
499 
500 	  if ((INTEGRAL_TYPE_P (TREE_TYPE (op0))
501 	       || POINTER_TYPE_P (TREE_TYPE (op0)))
502 	      && TREE_CODE (op0) == SSA_NAME
503 	      && TREE_CODE (op1) == INTEGER_CST)
504 	    return op0;
505 	}
506 
507       return cached_lhs;
508     }
509 
510   if (code == GIMPLE_SWITCH)
511     cond = gimple_switch_index (as_a <gswitch *> (stmt));
512   else if (code == GIMPLE_GOTO)
513     cond = gimple_goto_dest (stmt);
514   else
515     gcc_unreachable ();
516 
517   /* We can have conditionals which just test the state of a variable
518      rather than use a relational operator.  These are simpler to handle.  */
519   if (TREE_CODE (cond) == SSA_NAME)
520     {
521       tree original_lhs = cond;
522       cached_lhs = cond;
523 
524       /* Get the variable's current value from the equivalence chains.
525 
526 	 It is possible to get loops in the SSA_NAME_VALUE chains
527 	 (consider threading the backedge of a loop where we have
528 	 a loop invariant SSA_NAME used in the condition).  */
529       if (cached_lhs)
530 	{
531 	  for (int i = 0; i < 2; i++)
532 	    {
533 	      if (TREE_CODE (cached_lhs) == SSA_NAME
534 		  && SSA_NAME_VALUE (cached_lhs))
535 		cached_lhs = SSA_NAME_VALUE (cached_lhs);
536 	      else
537 		break;
538 	    }
539 	}
540 
541       /* If we're dominated by a suitable ASSERT_EXPR, then
542 	 update CACHED_LHS appropriately.  */
543       if (handle_dominating_asserts && TREE_CODE (cached_lhs) == SSA_NAME)
544 	cached_lhs = lhs_of_dominating_assert (cached_lhs, e->src, stmt);
545 
546       /* If we haven't simplified to an invariant yet, then use the
547 	 pass specific callback to try and simplify it further.  */
548       if (cached_lhs && ! is_gimple_min_invariant (cached_lhs))
549         cached_lhs = (*simplify) (stmt, stmt, avail_exprs_stack);
550 
551       /* We couldn't find an invariant.  But, callers of this
552 	 function may be able to do something useful with the
553 	 unmodified destination.  */
554       if (!cached_lhs)
555 	cached_lhs = original_lhs;
556     }
557   else
558     cached_lhs = NULL;
559 
560   return cached_lhs;
561 }
562 
563 /* Copy debug stmts from DEST's chain of single predecessors up to
564    SRC, so that we don't lose the bindings as PHI nodes are introduced
565    when DEST gains new predecessors.  */
566 void
propagate_threaded_block_debug_into(basic_block dest,basic_block src)567 propagate_threaded_block_debug_into (basic_block dest, basic_block src)
568 {
569   if (!MAY_HAVE_DEBUG_STMTS)
570     return;
571 
572   if (!single_pred_p (dest))
573     return;
574 
575   gcc_checking_assert (dest != src);
576 
577   gimple_stmt_iterator gsi = gsi_after_labels (dest);
578   int i = 0;
579   const int alloc_count = 16; // ?? Should this be a PARAM?
580 
581   /* Estimate the number of debug vars overridden in the beginning of
582      DEST, to tell how many we're going to need to begin with.  */
583   for (gimple_stmt_iterator si = gsi;
584        i * 4 <= alloc_count * 3 && !gsi_end_p (si); gsi_next (&si))
585     {
586       gimple *stmt = gsi_stmt (si);
587       if (!is_gimple_debug (stmt))
588 	break;
589       i++;
590     }
591 
592   auto_vec<tree, alloc_count> fewvars;
593   hash_set<tree> *vars = NULL;
594 
595   /* If we're already starting with 3/4 of alloc_count, go for a
596      hash_set, otherwise start with an unordered stack-allocated
597      VEC.  */
598   if (i * 4 > alloc_count * 3)
599     vars = new hash_set<tree>;
600 
601   /* Now go through the initial debug stmts in DEST again, this time
602      actually inserting in VARS or FEWVARS.  Don't bother checking for
603      duplicates in FEWVARS.  */
604   for (gimple_stmt_iterator si = gsi; !gsi_end_p (si); gsi_next (&si))
605     {
606       gimple *stmt = gsi_stmt (si);
607       if (!is_gimple_debug (stmt))
608 	break;
609 
610       tree var;
611 
612       if (gimple_debug_bind_p (stmt))
613 	var = gimple_debug_bind_get_var (stmt);
614       else if (gimple_debug_source_bind_p (stmt))
615 	var = gimple_debug_source_bind_get_var (stmt);
616       else
617 	gcc_unreachable ();
618 
619       if (vars)
620 	vars->add (var);
621       else
622 	fewvars.quick_push (var);
623     }
624 
625   basic_block bb = dest;
626 
627   do
628     {
629       bb = single_pred (bb);
630       for (gimple_stmt_iterator si = gsi_last_bb (bb);
631 	   !gsi_end_p (si); gsi_prev (&si))
632 	{
633 	  gimple *stmt = gsi_stmt (si);
634 	  if (!is_gimple_debug (stmt))
635 	    continue;
636 
637 	  tree var;
638 
639 	  if (gimple_debug_bind_p (stmt))
640 	    var = gimple_debug_bind_get_var (stmt);
641 	  else if (gimple_debug_source_bind_p (stmt))
642 	    var = gimple_debug_source_bind_get_var (stmt);
643 	  else
644 	    gcc_unreachable ();
645 
646 	  /* Discard debug bind overlaps.  ??? Unlike stmts from src,
647 	     copied into a new block that will precede BB, debug bind
648 	     stmts in bypassed BBs may actually be discarded if
649 	     they're overwritten by subsequent debug bind stmts, which
650 	     might be a problem once we introduce stmt frontier notes
651 	     or somesuch.  Adding `&& bb == src' to the condition
652 	     below will preserve all potentially relevant debug
653 	     notes.  */
654 	  if (vars && vars->add (var))
655 	    continue;
656 	  else if (!vars)
657 	    {
658 	      int i = fewvars.length ();
659 	      while (i--)
660 		if (fewvars[i] == var)
661 		  break;
662 	      if (i >= 0)
663 		continue;
664 
665 	      if (fewvars.length () < (unsigned) alloc_count)
666 		fewvars.quick_push (var);
667 	      else
668 		{
669 		  vars = new hash_set<tree>;
670 		  for (i = 0; i < alloc_count; i++)
671 		    vars->add (fewvars[i]);
672 		  fewvars.release ();
673 		  vars->add (var);
674 		}
675 	    }
676 
677 	  stmt = gimple_copy (stmt);
678 	  /* ??? Should we drop the location of the copy to denote
679 	     they're artificial bindings?  */
680 	  gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
681 	}
682     }
683   while (bb != src && single_pred_p (bb));
684 
685   if (vars)
686     delete vars;
687   else if (fewvars.exists ())
688     fewvars.release ();
689 }
690 
691 /* See if TAKEN_EDGE->dest is a threadable block with no side effecs (ie, it
692    need not be duplicated as part of the CFG/SSA updating process).
693 
694    If it is threadable, add it to PATH and VISITED and recurse, ultimately
695    returning TRUE from the toplevel call.   Otherwise do nothing and
696    return false.
697 
698    DUMMY_COND, HANDLE_DOMINATING_ASSERTS and SIMPLIFY are used to
699    try and simplify the condition at the end of TAKEN_EDGE->dest.
700 
701    The available expression table is referenced via AVAIL_EXPRS_STACK.  */
702 
703 static bool
thread_around_empty_blocks(edge taken_edge,gcond * dummy_cond,class avail_exprs_stack * avail_exprs_stack,bool handle_dominating_asserts,pfn_simplify simplify,bitmap visited,vec<jump_thread_edge * > * path)704 thread_around_empty_blocks (edge taken_edge,
705 			    gcond *dummy_cond,
706 			    class avail_exprs_stack *avail_exprs_stack,
707 			    bool handle_dominating_asserts,
708 			    pfn_simplify simplify,
709 			    bitmap visited,
710 			    vec<jump_thread_edge *> *path)
711 {
712   basic_block bb = taken_edge->dest;
713   gimple_stmt_iterator gsi;
714   gimple *stmt;
715   tree cond;
716 
717   /* The key property of these blocks is that they need not be duplicated
718      when threading.  Thus they can not have visible side effects such
719      as PHI nodes.  */
720   if (!gsi_end_p (gsi_start_phis (bb)))
721     return false;
722 
723   /* Skip over DEBUG statements at the start of the block.  */
724   gsi = gsi_start_nondebug_bb (bb);
725 
726   /* If the block has no statements, but does have a single successor, then
727      it's just a forwarding block and we can thread through it trivially.
728 
729      However, note that just threading through empty blocks with single
730      successors is not inherently profitable.  For the jump thread to
731      be profitable, we must avoid a runtime conditional.
732 
733      By taking the return value from the recursive call, we get the
734      desired effect of returning TRUE when we found a profitable jump
735      threading opportunity and FALSE otherwise.
736 
737      This is particularly important when this routine is called after
738      processing a joiner block.  Returning TRUE too aggressively in
739      that case results in pointless duplication of the joiner block.  */
740   if (gsi_end_p (gsi))
741     {
742       if (single_succ_p (bb))
743 	{
744 	  taken_edge = single_succ_edge (bb);
745 
746 	  if ((taken_edge->flags & EDGE_DFS_BACK) != 0)
747 	    return false;
748 
749 	  if (!bitmap_bit_p (visited, taken_edge->dest->index))
750 	    {
751 	      jump_thread_edge *x
752 		= new jump_thread_edge (taken_edge, EDGE_NO_COPY_SRC_BLOCK);
753 	      path->safe_push (x);
754 	      bitmap_set_bit (visited, taken_edge->dest->index);
755 	      return thread_around_empty_blocks (taken_edge,
756 						 dummy_cond,
757 						 avail_exprs_stack,
758 						 handle_dominating_asserts,
759 						 simplify,
760 						 visited,
761 						 path);
762 	    }
763 	}
764 
765       /* We have a block with no statements, but multiple successors?  */
766       return false;
767     }
768 
769   /* The only real statements this block can have are a control
770      flow altering statement.  Anything else stops the thread.  */
771   stmt = gsi_stmt (gsi);
772   if (gimple_code (stmt) != GIMPLE_COND
773       && gimple_code (stmt) != GIMPLE_GOTO
774       && gimple_code (stmt) != GIMPLE_SWITCH)
775     return false;
776 
777   /* Extract and simplify the condition.  */
778   cond = simplify_control_stmt_condition (taken_edge, stmt,
779 					  avail_exprs_stack, dummy_cond,
780 					  simplify, handle_dominating_asserts);
781 
782   /* If the condition can be statically computed and we have not already
783      visited the destination edge, then add the taken edge to our thread
784      path.  */
785   if (cond && is_gimple_min_invariant (cond))
786     {
787       taken_edge = find_taken_edge (bb, cond);
788 
789       if ((taken_edge->flags & EDGE_DFS_BACK) != 0)
790 	return false;
791 
792       if (bitmap_bit_p (visited, taken_edge->dest->index))
793 	return false;
794       bitmap_set_bit (visited, taken_edge->dest->index);
795 
796       jump_thread_edge *x
797 	= new jump_thread_edge (taken_edge, EDGE_NO_COPY_SRC_BLOCK);
798       path->safe_push (x);
799 
800       thread_around_empty_blocks (taken_edge,
801 				  dummy_cond,
802 				  avail_exprs_stack,
803 				  handle_dominating_asserts,
804 				  simplify,
805 				  visited,
806 				  path);
807       return true;
808     }
809 
810   return false;
811 }
812 
813 /* We are exiting E->src, see if E->dest ends with a conditional
814    jump which has a known value when reached via E.
815 
816    E->dest can have arbitrary side effects which, if threading is
817    successful, will be maintained.
818 
819    Special care is necessary if E is a back edge in the CFG as we
820    may have already recorded equivalences for E->dest into our
821    various tables, including the result of the conditional at
822    the end of E->dest.  Threading opportunities are severely
823    limited in that case to avoid short-circuiting the loop
824    incorrectly.
825 
826    DUMMY_COND is a shared cond_expr used by condition simplification as scratch,
827    to avoid allocating memory.
828 
829    HANDLE_DOMINATING_ASSERTS is true if we should try to replace operands of
830    the simplified condition with left-hand sides of ASSERT_EXPRs they are
831    used in.
832 
833    STACK is used to undo temporary equivalences created during the walk of
834    E->dest.
835 
836    SIMPLIFY is a pass-specific function used to simplify statements.
837 
838    Our caller is responsible for restoring the state of the expression
839    and const_and_copies stacks.
840 
841    Positive return value is success.  Zero return value is failure, but
842    the block can still be duplicated as a joiner in a jump thread path,
843    negative indicates the block should not be duplicated and thus is not
844    suitable for a joiner in a jump threading path.  */
845 
846 static int
thread_through_normal_block(edge e,gcond * dummy_cond,bool handle_dominating_asserts,const_and_copies * const_and_copies,avail_exprs_stack * avail_exprs_stack,pfn_simplify simplify,vec<jump_thread_edge * > * path,bitmap visited)847 thread_through_normal_block (edge e,
848 			     gcond *dummy_cond,
849 			     bool handle_dominating_asserts,
850 			     const_and_copies *const_and_copies,
851 			     avail_exprs_stack *avail_exprs_stack,
852 			     pfn_simplify simplify,
853 			     vec<jump_thread_edge *> *path,
854 			     bitmap visited)
855 {
856   /* We want to record any equivalences created by traversing E.  */
857   if (!handle_dominating_asserts)
858     record_temporary_equivalences (e, const_and_copies, avail_exprs_stack);
859 
860   /* PHIs create temporary equivalences.
861      Note that if we found a PHI that made the block non-threadable, then
862      we need to bubble that up to our caller in the same manner we do
863      when we prematurely stop processing statements below.  */
864   if (!record_temporary_equivalences_from_phis (e, const_and_copies))
865     return -1;
866 
867   /* Now walk each statement recording any context sensitive
868      temporary equivalences we can detect.  */
869   gimple *stmt
870     = record_temporary_equivalences_from_stmts_at_dest (e, const_and_copies,
871 							avail_exprs_stack,
872 							simplify);
873 
874   /* There's two reasons STMT might be null, and distinguishing
875      between them is important.
876 
877      First the block may not have had any statements.  For example, it
878      might have some PHIs and unconditionally transfer control elsewhere.
879      Such blocks are suitable for jump threading, particularly as a
880      joiner block.
881 
882      The second reason would be if we did not process all the statements
883      in the block (because there were too many to make duplicating the
884      block profitable.   If we did not look at all the statements, then
885      we may not have invalidated everything needing invalidation.  Thus
886      we must signal to our caller that this block is not suitable for
887      use as a joiner in a threading path.  */
888   if (!stmt)
889     {
890       /* First case.  The statement simply doesn't have any instructions, but
891 	 does have PHIs.  */
892       if (gsi_end_p (gsi_start_nondebug_bb (e->dest))
893 	  && !gsi_end_p (gsi_start_phis (e->dest)))
894 	return 0;
895 
896       /* Second case.  */
897       return -1;
898     }
899 
900   /* If we stopped at a COND_EXPR or SWITCH_EXPR, see if we know which arm
901      will be taken.  */
902   if (gimple_code (stmt) == GIMPLE_COND
903       || gimple_code (stmt) == GIMPLE_GOTO
904       || gimple_code (stmt) == GIMPLE_SWITCH)
905     {
906       tree cond;
907 
908       /* Extract and simplify the condition.  */
909       cond = simplify_control_stmt_condition (e, stmt, avail_exprs_stack,
910 					      dummy_cond, simplify,
911 					      handle_dominating_asserts);
912 
913       if (!cond)
914 	return 0;
915 
916       if (is_gimple_min_invariant (cond))
917 	{
918 	  edge taken_edge = find_taken_edge (e->dest, cond);
919 	  basic_block dest = (taken_edge ? taken_edge->dest : NULL);
920 
921 	  /* DEST could be NULL for a computed jump to an absolute
922 	     address.  */
923 	  if (dest == NULL
924 	      || dest == e->dest
925 	      || (taken_edge->flags & EDGE_DFS_BACK) != 0
926 	      || bitmap_bit_p (visited, dest->index))
927 	    return 0;
928 
929 	  /* Only push the EDGE_START_JUMP_THREAD marker if this is
930 	     first edge on the path.  */
931 	  if (path->length () == 0)
932 	    {
933               jump_thread_edge *x
934 	        = new jump_thread_edge (e, EDGE_START_JUMP_THREAD);
935 	      path->safe_push (x);
936 	    }
937 
938 	  jump_thread_edge *x
939 	    = new jump_thread_edge (taken_edge, EDGE_COPY_SRC_BLOCK);
940 	  path->safe_push (x);
941 
942 	  /* See if we can thread through DEST as well, this helps capture
943 	     secondary effects of threading without having to re-run DOM or
944 	     VRP.
945 
946 	     We don't want to thread back to a block we have already
947  	     visited.  This may be overly conservative.  */
948 	  bitmap_set_bit (visited, dest->index);
949 	  bitmap_set_bit (visited, e->dest->index);
950 	  thread_around_empty_blocks (taken_edge,
951 				      dummy_cond,
952 				      avail_exprs_stack,
953 				      handle_dominating_asserts,
954 				      simplify,
955 				      visited,
956 				      path);
957 	  return 1;
958 	}
959     }
960   return 0;
961 }
962 
963 /* We are exiting E->src, see if E->dest ends with a conditional
964    jump which has a known value when reached via E.
965 
966    DUMMY_COND is a shared cond_expr used by condition simplification as scratch,
967    to avoid allocating memory.
968 
969    HANDLE_DOMINATING_ASSERTS is true if we should try to replace operands of
970    the simplified condition with left-hand sides of ASSERT_EXPRs they are
971    used in.
972 
973    CONST_AND_COPIES is used to undo temporary equivalences created during the
974    walk of E->dest.
975 
976    The available expression table is referenced vai AVAIL_EXPRS_STACK.
977 
978    SIMPLIFY is a pass-specific function used to simplify statements.  */
979 
980 void
thread_across_edge(gcond * dummy_cond,edge e,bool handle_dominating_asserts,class const_and_copies * const_and_copies,class avail_exprs_stack * avail_exprs_stack,tree (* simplify)(gimple *,gimple *,class avail_exprs_stack *))981 thread_across_edge (gcond *dummy_cond,
982 		    edge e,
983 		    bool handle_dominating_asserts,
984 		    class const_and_copies *const_and_copies,
985 		    class avail_exprs_stack *avail_exprs_stack,
986 		    tree (*simplify) (gimple *, gimple *,
987 				      class avail_exprs_stack *))
988 {
989   bitmap visited = BITMAP_ALLOC (NULL);
990 
991   stmt_count = 0;
992 
993   vec<jump_thread_edge *> *path = new vec<jump_thread_edge *> ();
994   bitmap_clear (visited);
995   bitmap_set_bit (visited, e->src->index);
996   bitmap_set_bit (visited, e->dest->index);
997 
998   int threaded;
999   if ((e->flags & EDGE_DFS_BACK) == 0)
1000     threaded = thread_through_normal_block (e, dummy_cond,
1001 					    handle_dominating_asserts,
1002 					    const_and_copies,
1003 					    avail_exprs_stack,
1004 					    simplify, path,
1005 					    visited);
1006   else
1007     threaded = 0;
1008 
1009   if (threaded > 0)
1010     {
1011       propagate_threaded_block_debug_into (path->last ()->e->dest,
1012 					   e->dest);
1013       const_and_copies->pop_to_marker ();
1014       BITMAP_FREE (visited);
1015       register_jump_thread (path);
1016       return;
1017     }
1018   else
1019     {
1020       /* Negative and zero return values indicate no threading was possible,
1021 	 thus there should be no edges on the thread path and no need to walk
1022 	 through the vector entries.  */
1023       gcc_assert (path->length () == 0);
1024       path->release ();
1025       delete path;
1026 
1027       find_jump_threads_backwards (e);
1028 
1029       /* A negative status indicates the target block was deemed too big to
1030 	 duplicate.  Just quit now rather than trying to use the block as
1031 	 a joiner in a jump threading path.
1032 
1033 	 This prevents unnecessary code growth, but more importantly if we
1034 	 do not look at all the statements in the block, then we may have
1035 	 missed some invalidations if we had traversed a backedge!  */
1036       if (threaded < 0)
1037 	{
1038 	  BITMAP_FREE (visited);
1039 	  const_and_copies->pop_to_marker ();
1040 	  return;
1041 	}
1042     }
1043 
1044  /* We were unable to determine what out edge from E->dest is taken.  However,
1045     we might still be able to thread through successors of E->dest.  This
1046     often occurs when E->dest is a joiner block which then fans back out
1047     based on redundant tests.
1048 
1049     If so, we'll copy E->dest and redirect the appropriate predecessor to
1050     the copy.  Within the copy of E->dest, we'll thread one or more edges
1051     to points deeper in the CFG.
1052 
1053     This is a stopgap until we have a more structured approach to path
1054     isolation.  */
1055   {
1056     edge taken_edge;
1057     edge_iterator ei;
1058     bool found;
1059 
1060     /* If E->dest has abnormal outgoing edges, then there's no guarantee
1061        we can safely redirect any of the edges.  Just punt those cases.  */
1062     FOR_EACH_EDGE (taken_edge, ei, e->dest->succs)
1063       if (taken_edge->flags & EDGE_ABNORMAL)
1064 	{
1065 	  const_and_copies->pop_to_marker ();
1066 	  BITMAP_FREE (visited);
1067 	  return;
1068 	}
1069 
1070     /* Look at each successor of E->dest to see if we can thread through it.  */
1071     FOR_EACH_EDGE (taken_edge, ei, e->dest->succs)
1072       {
1073 	if ((e->flags & EDGE_DFS_BACK) != 0
1074 	    || (taken_edge->flags & EDGE_DFS_BACK) != 0)
1075 	  {
1076 	    find_jump_threads_backwards (taken_edge);
1077 	    continue;
1078 	  }
1079 
1080 	/* Push a fresh marker so we can unwind the equivalences created
1081 	   for each of E->dest's successors.  */
1082 	const_and_copies->push_marker ();
1083 	if (avail_exprs_stack)
1084 	  avail_exprs_stack->push_marker ();
1085 
1086 	/* Avoid threading to any block we have already visited.  */
1087 	bitmap_clear (visited);
1088 	bitmap_set_bit (visited, e->src->index);
1089 	bitmap_set_bit (visited, e->dest->index);
1090 	bitmap_set_bit (visited, taken_edge->dest->index);
1091         vec<jump_thread_edge *> *path = new vec<jump_thread_edge *> ();
1092 
1093 	/* Record whether or not we were able to thread through a successor
1094 	   of E->dest.  */
1095         jump_thread_edge *x = new jump_thread_edge (e, EDGE_START_JUMP_THREAD);
1096 	path->safe_push (x);
1097 
1098         x = new jump_thread_edge (taken_edge, EDGE_COPY_SRC_JOINER_BLOCK);
1099 	path->safe_push (x);
1100 	found = false;
1101 	found = thread_around_empty_blocks (taken_edge,
1102 					    dummy_cond,
1103 					    avail_exprs_stack,
1104 					    handle_dominating_asserts,
1105 					    simplify,
1106 					    visited,
1107 					    path);
1108 
1109 	if (!found)
1110 	  found = thread_through_normal_block (path->last ()->e, dummy_cond,
1111 					       handle_dominating_asserts,
1112 					       const_and_copies,
1113 					       avail_exprs_stack,
1114 					       simplify, path,
1115 					       visited) > 0;
1116 
1117 	/* If we were able to thread through a successor of E->dest, then
1118 	   record the jump threading opportunity.  */
1119 	if (found)
1120 	  {
1121 	    propagate_threaded_block_debug_into (path->last ()->e->dest,
1122 						 taken_edge->dest);
1123 	    register_jump_thread (path);
1124 	  }
1125 	else
1126 	  {
1127 	    find_jump_threads_backwards (path->last ()->e);
1128 	    delete_jump_thread_path (path);
1129 	  }
1130 
1131 	/* And unwind the equivalence table.  */
1132 	if (avail_exprs_stack)
1133 	  avail_exprs_stack->pop_to_marker ();
1134 	const_and_copies->pop_to_marker ();
1135       }
1136     BITMAP_FREE (visited);
1137   }
1138 
1139   const_and_copies->pop_to_marker ();
1140 }
1141