1// Copyright 2009 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5package tls
6
7import (
8	"bytes"
9	"container/list"
10	"context"
11	"crypto"
12	"crypto/ecdsa"
13	"crypto/ed25519"
14	"crypto/elliptic"
15	"crypto/rand"
16	"crypto/rsa"
17	"crypto/sha512"
18	"crypto/x509"
19	"errors"
20	"fmt"
21	"internal/godebug"
22	"io"
23	"net"
24	"strings"
25	"sync"
26	"time"
27)
28
29const (
30	VersionTLS10 = 0x0301
31	VersionTLS11 = 0x0302
32	VersionTLS12 = 0x0303
33	VersionTLS13 = 0x0304
34
35	// Deprecated: SSLv3 is cryptographically broken, and is no longer
36	// supported by this package. See golang.org/issue/32716.
37	VersionSSL30 = 0x0300
38)
39
40const (
41	maxPlaintext       = 16384        // maximum plaintext payload length
42	maxCiphertext      = 16384 + 2048 // maximum ciphertext payload length
43	maxCiphertextTLS13 = 16384 + 256  // maximum ciphertext length in TLS 1.3
44	recordHeaderLen    = 5            // record header length
45	maxHandshake       = 65536        // maximum handshake we support (protocol max is 16 MB)
46	maxUselessRecords  = 16           // maximum number of consecutive non-advancing records
47)
48
49// TLS record types.
50type recordType uint8
51
52const (
53	recordTypeChangeCipherSpec recordType = 20
54	recordTypeAlert            recordType = 21
55	recordTypeHandshake        recordType = 22
56	recordTypeApplicationData  recordType = 23
57)
58
59// TLS handshake message types.
60const (
61	typeHelloRequest        uint8 = 0
62	typeClientHello         uint8 = 1
63	typeServerHello         uint8 = 2
64	typeNewSessionTicket    uint8 = 4
65	typeEndOfEarlyData      uint8 = 5
66	typeEncryptedExtensions uint8 = 8
67	typeCertificate         uint8 = 11
68	typeServerKeyExchange   uint8 = 12
69	typeCertificateRequest  uint8 = 13
70	typeServerHelloDone     uint8 = 14
71	typeCertificateVerify   uint8 = 15
72	typeClientKeyExchange   uint8 = 16
73	typeFinished            uint8 = 20
74	typeCertificateStatus   uint8 = 22
75	typeKeyUpdate           uint8 = 24
76	typeNextProtocol        uint8 = 67  // Not IANA assigned
77	typeMessageHash         uint8 = 254 // synthetic message
78)
79
80// TLS compression types.
81const (
82	compressionNone uint8 = 0
83)
84
85// TLS extension numbers
86const (
87	extensionServerName              uint16 = 0
88	extensionStatusRequest           uint16 = 5
89	extensionSupportedCurves         uint16 = 10 // supported_groups in TLS 1.3, see RFC 8446, Section 4.2.7
90	extensionSupportedPoints         uint16 = 11
91	extensionSignatureAlgorithms     uint16 = 13
92	extensionALPN                    uint16 = 16
93	extensionSCT                     uint16 = 18
94	extensionSessionTicket           uint16 = 35
95	extensionPreSharedKey            uint16 = 41
96	extensionEarlyData               uint16 = 42
97	extensionSupportedVersions       uint16 = 43
98	extensionCookie                  uint16 = 44
99	extensionPSKModes                uint16 = 45
100	extensionCertificateAuthorities  uint16 = 47
101	extensionSignatureAlgorithmsCert uint16 = 50
102	extensionKeyShare                uint16 = 51
103	extensionRenegotiationInfo       uint16 = 0xff01
104)
105
106// TLS signaling cipher suite values
107const (
108	scsvRenegotiation uint16 = 0x00ff
109)
110
111// CurveID is the type of a TLS identifier for an elliptic curve. See
112// https://www.iana.org/assignments/tls-parameters/tls-parameters.xml#tls-parameters-8.
113//
114// In TLS 1.3, this type is called NamedGroup, but at this time this library
115// only supports Elliptic Curve based groups. See RFC 8446, Section 4.2.7.
116type CurveID uint16
117
118const (
119	CurveP256 CurveID = 23
120	CurveP384 CurveID = 24
121	CurveP521 CurveID = 25
122	X25519    CurveID = 29
123)
124
125// TLS 1.3 Key Share. See RFC 8446, Section 4.2.8.
126type keyShare struct {
127	group CurveID
128	data  []byte
129}
130
131// TLS 1.3 PSK Key Exchange Modes. See RFC 8446, Section 4.2.9.
132const (
133	pskModePlain uint8 = 0
134	pskModeDHE   uint8 = 1
135)
136
137// TLS 1.3 PSK Identity. Can be a Session Ticket, or a reference to a saved
138// session. See RFC 8446, Section 4.2.11.
139type pskIdentity struct {
140	label               []byte
141	obfuscatedTicketAge uint32
142}
143
144// TLS Elliptic Curve Point Formats
145// https://www.iana.org/assignments/tls-parameters/tls-parameters.xml#tls-parameters-9
146const (
147	pointFormatUncompressed uint8 = 0
148)
149
150// TLS CertificateStatusType (RFC 3546)
151const (
152	statusTypeOCSP uint8 = 1
153)
154
155// Certificate types (for certificateRequestMsg)
156const (
157	certTypeRSASign   = 1
158	certTypeECDSASign = 64 // ECDSA or EdDSA keys, see RFC 8422, Section 3.
159)
160
161// Signature algorithms (for internal signaling use). Starting at 225 to avoid overlap with
162// TLS 1.2 codepoints (RFC 5246, Appendix A.4.1), with which these have nothing to do.
163const (
164	signaturePKCS1v15 uint8 = iota + 225
165	signatureRSAPSS
166	signatureECDSA
167	signatureEd25519
168)
169
170// directSigning is a standard Hash value that signals that no pre-hashing
171// should be performed, and that the input should be signed directly. It is the
172// hash function associated with the Ed25519 signature scheme.
173var directSigning crypto.Hash = 0
174
175// supportedSignatureAlgorithms contains the signature and hash algorithms that
176// the code advertises as supported in a TLS 1.2+ ClientHello and in a TLS 1.2+
177// CertificateRequest. The two fields are merged to match with TLS 1.3.
178// Note that in TLS 1.2, the ECDSA algorithms are not constrained to P-256, etc.
179var supportedSignatureAlgorithms = []SignatureScheme{
180	PSSWithSHA256,
181	ECDSAWithP256AndSHA256,
182	Ed25519,
183	PSSWithSHA384,
184	PSSWithSHA512,
185	PKCS1WithSHA256,
186	PKCS1WithSHA384,
187	PKCS1WithSHA512,
188	ECDSAWithP384AndSHA384,
189	ECDSAWithP521AndSHA512,
190	PKCS1WithSHA1,
191	ECDSAWithSHA1,
192}
193
194// helloRetryRequestRandom is set as the Random value of a ServerHello
195// to signal that the message is actually a HelloRetryRequest.
196var helloRetryRequestRandom = []byte{ // See RFC 8446, Section 4.1.3.
197	0xCF, 0x21, 0xAD, 0x74, 0xE5, 0x9A, 0x61, 0x11,
198	0xBE, 0x1D, 0x8C, 0x02, 0x1E, 0x65, 0xB8, 0x91,
199	0xC2, 0xA2, 0x11, 0x16, 0x7A, 0xBB, 0x8C, 0x5E,
200	0x07, 0x9E, 0x09, 0xE2, 0xC8, 0xA8, 0x33, 0x9C,
201}
202
203const (
204	// downgradeCanaryTLS12 or downgradeCanaryTLS11 is embedded in the server
205	// random as a downgrade protection if the server would be capable of
206	// negotiating a higher version. See RFC 8446, Section 4.1.3.
207	downgradeCanaryTLS12 = "DOWNGRD\x01"
208	downgradeCanaryTLS11 = "DOWNGRD\x00"
209)
210
211// testingOnlyForceDowngradeCanary is set in tests to force the server side to
212// include downgrade canaries even if it's using its highers supported version.
213var testingOnlyForceDowngradeCanary bool
214
215// ConnectionState records basic TLS details about the connection.
216type ConnectionState struct {
217	// Version is the TLS version used by the connection (e.g. VersionTLS12).
218	Version uint16
219
220	// HandshakeComplete is true if the handshake has concluded.
221	HandshakeComplete bool
222
223	// DidResume is true if this connection was successfully resumed from a
224	// previous session with a session ticket or similar mechanism.
225	DidResume bool
226
227	// CipherSuite is the cipher suite negotiated for the connection (e.g.
228	// TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, TLS_AES_128_GCM_SHA256).
229	CipherSuite uint16
230
231	// NegotiatedProtocol is the application protocol negotiated with ALPN.
232	NegotiatedProtocol string
233
234	// NegotiatedProtocolIsMutual used to indicate a mutual NPN negotiation.
235	//
236	// Deprecated: this value is always true.
237	NegotiatedProtocolIsMutual bool
238
239	// ServerName is the value of the Server Name Indication extension sent by
240	// the client. It's available both on the server and on the client side.
241	ServerName string
242
243	// PeerCertificates are the parsed certificates sent by the peer, in the
244	// order in which they were sent. The first element is the leaf certificate
245	// that the connection is verified against.
246	//
247	// On the client side, it can't be empty. On the server side, it can be
248	// empty if Config.ClientAuth is not RequireAnyClientCert or
249	// RequireAndVerifyClientCert.
250	PeerCertificates []*x509.Certificate
251
252	// VerifiedChains is a list of one or more chains where the first element is
253	// PeerCertificates[0] and the last element is from Config.RootCAs (on the
254	// client side) or Config.ClientCAs (on the server side).
255	//
256	// On the client side, it's set if Config.InsecureSkipVerify is false. On
257	// the server side, it's set if Config.ClientAuth is VerifyClientCertIfGiven
258	// (and the peer provided a certificate) or RequireAndVerifyClientCert.
259	VerifiedChains [][]*x509.Certificate
260
261	// SignedCertificateTimestamps is a list of SCTs provided by the peer
262	// through the TLS handshake for the leaf certificate, if any.
263	SignedCertificateTimestamps [][]byte
264
265	// OCSPResponse is a stapled Online Certificate Status Protocol (OCSP)
266	// response provided by the peer for the leaf certificate, if any.
267	OCSPResponse []byte
268
269	// TLSUnique contains the "tls-unique" channel binding value (see RFC 5929,
270	// Section 3). This value will be nil for TLS 1.3 connections and for all
271	// resumed connections.
272	//
273	// Deprecated: there are conditions in which this value might not be unique
274	// to a connection. See the Security Considerations sections of RFC 5705 and
275	// RFC 7627, and https://mitls.org/pages/attacks/3SHAKE#channelbindings.
276	TLSUnique []byte
277
278	// ekm is a closure exposed via ExportKeyingMaterial.
279	ekm func(label string, context []byte, length int) ([]byte, error)
280}
281
282// ExportKeyingMaterial returns length bytes of exported key material in a new
283// slice as defined in RFC 5705. If context is nil, it is not used as part of
284// the seed. If the connection was set to allow renegotiation via
285// Config.Renegotiation, this function will return an error.
286func (cs *ConnectionState) ExportKeyingMaterial(label string, context []byte, length int) ([]byte, error) {
287	return cs.ekm(label, context, length)
288}
289
290// ClientAuthType declares the policy the server will follow for
291// TLS Client Authentication.
292type ClientAuthType int
293
294const (
295	// NoClientCert indicates that no client certificate should be requested
296	// during the handshake, and if any certificates are sent they will not
297	// be verified.
298	NoClientCert ClientAuthType = iota
299	// RequestClientCert indicates that a client certificate should be requested
300	// during the handshake, but does not require that the client send any
301	// certificates.
302	RequestClientCert
303	// RequireAnyClientCert indicates that a client certificate should be requested
304	// during the handshake, and that at least one certificate is required to be
305	// sent by the client, but that certificate is not required to be valid.
306	RequireAnyClientCert
307	// VerifyClientCertIfGiven indicates that a client certificate should be requested
308	// during the handshake, but does not require that the client sends a
309	// certificate. If the client does send a certificate it is required to be
310	// valid.
311	VerifyClientCertIfGiven
312	// RequireAndVerifyClientCert indicates that a client certificate should be requested
313	// during the handshake, and that at least one valid certificate is required
314	// to be sent by the client.
315	RequireAndVerifyClientCert
316)
317
318// requiresClientCert reports whether the ClientAuthType requires a client
319// certificate to be provided.
320func requiresClientCert(c ClientAuthType) bool {
321	switch c {
322	case RequireAnyClientCert, RequireAndVerifyClientCert:
323		return true
324	default:
325		return false
326	}
327}
328
329// ClientSessionState contains the state needed by clients to resume TLS
330// sessions.
331type ClientSessionState struct {
332	sessionTicket      []uint8               // Encrypted ticket used for session resumption with server
333	vers               uint16                // TLS version negotiated for the session
334	cipherSuite        uint16                // Ciphersuite negotiated for the session
335	masterSecret       []byte                // Full handshake MasterSecret, or TLS 1.3 resumption_master_secret
336	serverCertificates []*x509.Certificate   // Certificate chain presented by the server
337	verifiedChains     [][]*x509.Certificate // Certificate chains we built for verification
338	receivedAt         time.Time             // When the session ticket was received from the server
339	ocspResponse       []byte                // Stapled OCSP response presented by the server
340	scts               [][]byte              // SCTs presented by the server
341
342	// TLS 1.3 fields.
343	nonce  []byte    // Ticket nonce sent by the server, to derive PSK
344	useBy  time.Time // Expiration of the ticket lifetime as set by the server
345	ageAdd uint32    // Random obfuscation factor for sending the ticket age
346}
347
348// ClientSessionCache is a cache of ClientSessionState objects that can be used
349// by a client to resume a TLS session with a given server. ClientSessionCache
350// implementations should expect to be called concurrently from different
351// goroutines. Up to TLS 1.2, only ticket-based resumption is supported, not
352// SessionID-based resumption. In TLS 1.3 they were merged into PSK modes, which
353// are supported via this interface.
354type ClientSessionCache interface {
355	// Get searches for a ClientSessionState associated with the given key.
356	// On return, ok is true if one was found.
357	Get(sessionKey string) (session *ClientSessionState, ok bool)
358
359	// Put adds the ClientSessionState to the cache with the given key. It might
360	// get called multiple times in a connection if a TLS 1.3 server provides
361	// more than one session ticket. If called with a nil *ClientSessionState,
362	// it should remove the cache entry.
363	Put(sessionKey string, cs *ClientSessionState)
364}
365
366//go:generate stringer -type=SignatureScheme,CurveID,ClientAuthType -output=common_string.go
367
368// SignatureScheme identifies a signature algorithm supported by TLS. See
369// RFC 8446, Section 4.2.3.
370type SignatureScheme uint16
371
372const (
373	// RSASSA-PKCS1-v1_5 algorithms.
374	PKCS1WithSHA256 SignatureScheme = 0x0401
375	PKCS1WithSHA384 SignatureScheme = 0x0501
376	PKCS1WithSHA512 SignatureScheme = 0x0601
377
378	// RSASSA-PSS algorithms with public key OID rsaEncryption.
379	PSSWithSHA256 SignatureScheme = 0x0804
380	PSSWithSHA384 SignatureScheme = 0x0805
381	PSSWithSHA512 SignatureScheme = 0x0806
382
383	// ECDSA algorithms. Only constrained to a specific curve in TLS 1.3.
384	ECDSAWithP256AndSHA256 SignatureScheme = 0x0403
385	ECDSAWithP384AndSHA384 SignatureScheme = 0x0503
386	ECDSAWithP521AndSHA512 SignatureScheme = 0x0603
387
388	// EdDSA algorithms.
389	Ed25519 SignatureScheme = 0x0807
390
391	// Legacy signature and hash algorithms for TLS 1.2.
392	PKCS1WithSHA1 SignatureScheme = 0x0201
393	ECDSAWithSHA1 SignatureScheme = 0x0203
394)
395
396// ClientHelloInfo contains information from a ClientHello message in order to
397// guide application logic in the GetCertificate and GetConfigForClient callbacks.
398type ClientHelloInfo struct {
399	// CipherSuites lists the CipherSuites supported by the client (e.g.
400	// TLS_AES_128_GCM_SHA256, TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256).
401	CipherSuites []uint16
402
403	// ServerName indicates the name of the server requested by the client
404	// in order to support virtual hosting. ServerName is only set if the
405	// client is using SNI (see RFC 4366, Section 3.1).
406	ServerName string
407
408	// SupportedCurves lists the elliptic curves supported by the client.
409	// SupportedCurves is set only if the Supported Elliptic Curves
410	// Extension is being used (see RFC 4492, Section 5.1.1).
411	SupportedCurves []CurveID
412
413	// SupportedPoints lists the point formats supported by the client.
414	// SupportedPoints is set only if the Supported Point Formats Extension
415	// is being used (see RFC 4492, Section 5.1.2).
416	SupportedPoints []uint8
417
418	// SignatureSchemes lists the signature and hash schemes that the client
419	// is willing to verify. SignatureSchemes is set only if the Signature
420	// Algorithms Extension is being used (see RFC 5246, Section 7.4.1.4.1).
421	SignatureSchemes []SignatureScheme
422
423	// SupportedProtos lists the application protocols supported by the client.
424	// SupportedProtos is set only if the Application-Layer Protocol
425	// Negotiation Extension is being used (see RFC 7301, Section 3.1).
426	//
427	// Servers can select a protocol by setting Config.NextProtos in a
428	// GetConfigForClient return value.
429	SupportedProtos []string
430
431	// SupportedVersions lists the TLS versions supported by the client.
432	// For TLS versions less than 1.3, this is extrapolated from the max
433	// version advertised by the client, so values other than the greatest
434	// might be rejected if used.
435	SupportedVersions []uint16
436
437	// Conn is the underlying net.Conn for the connection. Do not read
438	// from, or write to, this connection; that will cause the TLS
439	// connection to fail.
440	Conn net.Conn
441
442	// config is embedded by the GetCertificate or GetConfigForClient caller,
443	// for use with SupportsCertificate.
444	config *Config
445
446	// ctx is the context of the handshake that is in progress.
447	ctx context.Context
448}
449
450// Context returns the context of the handshake that is in progress.
451// This context is a child of the context passed to HandshakeContext,
452// if any, and is canceled when the handshake concludes.
453func (c *ClientHelloInfo) Context() context.Context {
454	return c.ctx
455}
456
457// CertificateRequestInfo contains information from a server's
458// CertificateRequest message, which is used to demand a certificate and proof
459// of control from a client.
460type CertificateRequestInfo struct {
461	// AcceptableCAs contains zero or more, DER-encoded, X.501
462	// Distinguished Names. These are the names of root or intermediate CAs
463	// that the server wishes the returned certificate to be signed by. An
464	// empty slice indicates that the server has no preference.
465	AcceptableCAs [][]byte
466
467	// SignatureSchemes lists the signature schemes that the server is
468	// willing to verify.
469	SignatureSchemes []SignatureScheme
470
471	// Version is the TLS version that was negotiated for this connection.
472	Version uint16
473
474	// ctx is the context of the handshake that is in progress.
475	ctx context.Context
476}
477
478// Context returns the context of the handshake that is in progress.
479// This context is a child of the context passed to HandshakeContext,
480// if any, and is canceled when the handshake concludes.
481func (c *CertificateRequestInfo) Context() context.Context {
482	return c.ctx
483}
484
485// RenegotiationSupport enumerates the different levels of support for TLS
486// renegotiation. TLS renegotiation is the act of performing subsequent
487// handshakes on a connection after the first. This significantly complicates
488// the state machine and has been the source of numerous, subtle security
489// issues. Initiating a renegotiation is not supported, but support for
490// accepting renegotiation requests may be enabled.
491//
492// Even when enabled, the server may not change its identity between handshakes
493// (i.e. the leaf certificate must be the same). Additionally, concurrent
494// handshake and application data flow is not permitted so renegotiation can
495// only be used with protocols that synchronise with the renegotiation, such as
496// HTTPS.
497//
498// Renegotiation is not defined in TLS 1.3.
499type RenegotiationSupport int
500
501const (
502	// RenegotiateNever disables renegotiation.
503	RenegotiateNever RenegotiationSupport = iota
504
505	// RenegotiateOnceAsClient allows a remote server to request
506	// renegotiation once per connection.
507	RenegotiateOnceAsClient
508
509	// RenegotiateFreelyAsClient allows a remote server to repeatedly
510	// request renegotiation.
511	RenegotiateFreelyAsClient
512)
513
514// A Config structure is used to configure a TLS client or server.
515// After one has been passed to a TLS function it must not be
516// modified. A Config may be reused; the tls package will also not
517// modify it.
518type Config struct {
519	// Rand provides the source of entropy for nonces and RSA blinding.
520	// If Rand is nil, TLS uses the cryptographic random reader in package
521	// crypto/rand.
522	// The Reader must be safe for use by multiple goroutines.
523	Rand io.Reader
524
525	// Time returns the current time as the number of seconds since the epoch.
526	// If Time is nil, TLS uses time.Now.
527	Time func() time.Time
528
529	// Certificates contains one or more certificate chains to present to the
530	// other side of the connection. The first certificate compatible with the
531	// peer's requirements is selected automatically.
532	//
533	// Server configurations must set one of Certificates, GetCertificate or
534	// GetConfigForClient. Clients doing client-authentication may set either
535	// Certificates or GetClientCertificate.
536	//
537	// Note: if there are multiple Certificates, and they don't have the
538	// optional field Leaf set, certificate selection will incur a significant
539	// per-handshake performance cost.
540	Certificates []Certificate
541
542	// NameToCertificate maps from a certificate name to an element of
543	// Certificates. Note that a certificate name can be of the form
544	// '*.example.com' and so doesn't have to be a domain name as such.
545	//
546	// Deprecated: NameToCertificate only allows associating a single
547	// certificate with a given name. Leave this field nil to let the library
548	// select the first compatible chain from Certificates.
549	NameToCertificate map[string]*Certificate
550
551	// GetCertificate returns a Certificate based on the given
552	// ClientHelloInfo. It will only be called if the client supplies SNI
553	// information or if Certificates is empty.
554	//
555	// If GetCertificate is nil or returns nil, then the certificate is
556	// retrieved from NameToCertificate. If NameToCertificate is nil, the
557	// best element of Certificates will be used.
558	GetCertificate func(*ClientHelloInfo) (*Certificate, error)
559
560	// GetClientCertificate, if not nil, is called when a server requests a
561	// certificate from a client. If set, the contents of Certificates will
562	// be ignored.
563	//
564	// If GetClientCertificate returns an error, the handshake will be
565	// aborted and that error will be returned. Otherwise
566	// GetClientCertificate must return a non-nil Certificate. If
567	// Certificate.Certificate is empty then no certificate will be sent to
568	// the server. If this is unacceptable to the server then it may abort
569	// the handshake.
570	//
571	// GetClientCertificate may be called multiple times for the same
572	// connection if renegotiation occurs or if TLS 1.3 is in use.
573	GetClientCertificate func(*CertificateRequestInfo) (*Certificate, error)
574
575	// GetConfigForClient, if not nil, is called after a ClientHello is
576	// received from a client. It may return a non-nil Config in order to
577	// change the Config that will be used to handle this connection. If
578	// the returned Config is nil, the original Config will be used. The
579	// Config returned by this callback may not be subsequently modified.
580	//
581	// If GetConfigForClient is nil, the Config passed to Server() will be
582	// used for all connections.
583	//
584	// If SessionTicketKey was explicitly set on the returned Config, or if
585	// SetSessionTicketKeys was called on the returned Config, those keys will
586	// be used. Otherwise, the original Config keys will be used (and possibly
587	// rotated if they are automatically managed).
588	GetConfigForClient func(*ClientHelloInfo) (*Config, error)
589
590	// VerifyPeerCertificate, if not nil, is called after normal
591	// certificate verification by either a TLS client or server. It
592	// receives the raw ASN.1 certificates provided by the peer and also
593	// any verified chains that normal processing found. If it returns a
594	// non-nil error, the handshake is aborted and that error results.
595	//
596	// If normal verification fails then the handshake will abort before
597	// considering this callback. If normal verification is disabled by
598	// setting InsecureSkipVerify, or (for a server) when ClientAuth is
599	// RequestClientCert or RequireAnyClientCert, then this callback will
600	// be considered but the verifiedChains argument will always be nil.
601	VerifyPeerCertificate func(rawCerts [][]byte, verifiedChains [][]*x509.Certificate) error
602
603	// VerifyConnection, if not nil, is called after normal certificate
604	// verification and after VerifyPeerCertificate by either a TLS client
605	// or server. If it returns a non-nil error, the handshake is aborted
606	// and that error results.
607	//
608	// If normal verification fails then the handshake will abort before
609	// considering this callback. This callback will run for all connections
610	// regardless of InsecureSkipVerify or ClientAuth settings.
611	VerifyConnection func(ConnectionState) error
612
613	// RootCAs defines the set of root certificate authorities
614	// that clients use when verifying server certificates.
615	// If RootCAs is nil, TLS uses the host's root CA set.
616	RootCAs *x509.CertPool
617
618	// NextProtos is a list of supported application level protocols, in
619	// order of preference. If both peers support ALPN, the selected
620	// protocol will be one from this list, and the connection will fail
621	// if there is no mutually supported protocol. If NextProtos is empty
622	// or the peer doesn't support ALPN, the connection will succeed and
623	// ConnectionState.NegotiatedProtocol will be empty.
624	NextProtos []string
625
626	// ServerName is used to verify the hostname on the returned
627	// certificates unless InsecureSkipVerify is given. It is also included
628	// in the client's handshake to support virtual hosting unless it is
629	// an IP address.
630	ServerName string
631
632	// ClientAuth determines the server's policy for
633	// TLS Client Authentication. The default is NoClientCert.
634	ClientAuth ClientAuthType
635
636	// ClientCAs defines the set of root certificate authorities
637	// that servers use if required to verify a client certificate
638	// by the policy in ClientAuth.
639	ClientCAs *x509.CertPool
640
641	// InsecureSkipVerify controls whether a client verifies the server's
642	// certificate chain and host name. If InsecureSkipVerify is true, crypto/tls
643	// accepts any certificate presented by the server and any host name in that
644	// certificate. In this mode, TLS is susceptible to machine-in-the-middle
645	// attacks unless custom verification is used. This should be used only for
646	// testing or in combination with VerifyConnection or VerifyPeerCertificate.
647	InsecureSkipVerify bool
648
649	// CipherSuites is a list of enabled TLS 1.0–1.2 cipher suites. The order of
650	// the list is ignored. Note that TLS 1.3 ciphersuites are not configurable.
651	//
652	// If CipherSuites is nil, a safe default list is used. The default cipher
653	// suites might change over time.
654	CipherSuites []uint16
655
656	// PreferServerCipherSuites is a legacy field and has no effect.
657	//
658	// It used to control whether the server would follow the client's or the
659	// server's preference. Servers now select the best mutually supported
660	// cipher suite based on logic that takes into account inferred client
661	// hardware, server hardware, and security.
662	//
663	// Deprecated: PreferServerCipherSuites is ignored.
664	PreferServerCipherSuites bool
665
666	// SessionTicketsDisabled may be set to true to disable session ticket and
667	// PSK (resumption) support. Note that on clients, session ticket support is
668	// also disabled if ClientSessionCache is nil.
669	SessionTicketsDisabled bool
670
671	// SessionTicketKey is used by TLS servers to provide session resumption.
672	// See RFC 5077 and the PSK mode of RFC 8446. If zero, it will be filled
673	// with random data before the first server handshake.
674	//
675	// Deprecated: if this field is left at zero, session ticket keys will be
676	// automatically rotated every day and dropped after seven days. For
677	// customizing the rotation schedule or synchronizing servers that are
678	// terminating connections for the same host, use SetSessionTicketKeys.
679	SessionTicketKey [32]byte
680
681	// ClientSessionCache is a cache of ClientSessionState entries for TLS
682	// session resumption. It is only used by clients.
683	ClientSessionCache ClientSessionCache
684
685	// MinVersion contains the minimum TLS version that is acceptable.
686	//
687	// By default, TLS 1.2 is currently used as the minimum when acting as a
688	// client, and TLS 1.0 when acting as a server. TLS 1.0 is the minimum
689	// supported by this package, both as a client and as a server.
690	//
691	// The client-side default can temporarily be reverted to TLS 1.0 by
692	// including the value "x509sha1=1" in the GODEBUG environment variable.
693	// Note that this option will be removed in Go 1.19 (but it will still be
694	// possible to set this field to VersionTLS10 explicitly).
695	MinVersion uint16
696
697	// MaxVersion contains the maximum TLS version that is acceptable.
698	//
699	// By default, the maximum version supported by this package is used,
700	// which is currently TLS 1.3.
701	MaxVersion uint16
702
703	// CurvePreferences contains the elliptic curves that will be used in
704	// an ECDHE handshake, in preference order. If empty, the default will
705	// be used. The client will use the first preference as the type for
706	// its key share in TLS 1.3. This may change in the future.
707	CurvePreferences []CurveID
708
709	// DynamicRecordSizingDisabled disables adaptive sizing of TLS records.
710	// When true, the largest possible TLS record size is always used. When
711	// false, the size of TLS records may be adjusted in an attempt to
712	// improve latency.
713	DynamicRecordSizingDisabled bool
714
715	// Renegotiation controls what types of renegotiation are supported.
716	// The default, none, is correct for the vast majority of applications.
717	Renegotiation RenegotiationSupport
718
719	// KeyLogWriter optionally specifies a destination for TLS master secrets
720	// in NSS key log format that can be used to allow external programs
721	// such as Wireshark to decrypt TLS connections.
722	// See https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS/Key_Log_Format.
723	// Use of KeyLogWriter compromises security and should only be
724	// used for debugging.
725	KeyLogWriter io.Writer
726
727	// mutex protects sessionTicketKeys and autoSessionTicketKeys.
728	mutex sync.RWMutex
729	// sessionTicketKeys contains zero or more ticket keys. If set, it means the
730	// the keys were set with SessionTicketKey or SetSessionTicketKeys. The
731	// first key is used for new tickets and any subsequent keys can be used to
732	// decrypt old tickets. The slice contents are not protected by the mutex
733	// and are immutable.
734	sessionTicketKeys []ticketKey
735	// autoSessionTicketKeys is like sessionTicketKeys but is owned by the
736	// auto-rotation logic. See Config.ticketKeys.
737	autoSessionTicketKeys []ticketKey
738}
739
740const (
741	// ticketKeyNameLen is the number of bytes of identifier that is prepended to
742	// an encrypted session ticket in order to identify the key used to encrypt it.
743	ticketKeyNameLen = 16
744
745	// ticketKeyLifetime is how long a ticket key remains valid and can be used to
746	// resume a client connection.
747	ticketKeyLifetime = 7 * 24 * time.Hour // 7 days
748
749	// ticketKeyRotation is how often the server should rotate the session ticket key
750	// that is used for new tickets.
751	ticketKeyRotation = 24 * time.Hour
752)
753
754// ticketKey is the internal representation of a session ticket key.
755type ticketKey struct {
756	// keyName is an opaque byte string that serves to identify the session
757	// ticket key. It's exposed as plaintext in every session ticket.
758	keyName [ticketKeyNameLen]byte
759	aesKey  [16]byte
760	hmacKey [16]byte
761	// created is the time at which this ticket key was created. See Config.ticketKeys.
762	created time.Time
763}
764
765// ticketKeyFromBytes converts from the external representation of a session
766// ticket key to a ticketKey. Externally, session ticket keys are 32 random
767// bytes and this function expands that into sufficient name and key material.
768func (c *Config) ticketKeyFromBytes(b [32]byte) (key ticketKey) {
769	hashed := sha512.Sum512(b[:])
770	copy(key.keyName[:], hashed[:ticketKeyNameLen])
771	copy(key.aesKey[:], hashed[ticketKeyNameLen:ticketKeyNameLen+16])
772	copy(key.hmacKey[:], hashed[ticketKeyNameLen+16:ticketKeyNameLen+32])
773	key.created = c.time()
774	return key
775}
776
777// maxSessionTicketLifetime is the maximum allowed lifetime of a TLS 1.3 session
778// ticket, and the lifetime we set for tickets we send.
779const maxSessionTicketLifetime = 7 * 24 * time.Hour
780
781// Clone returns a shallow clone of c or nil if c is nil. It is safe to clone a Config that is
782// being used concurrently by a TLS client or server.
783func (c *Config) Clone() *Config {
784	if c == nil {
785		return nil
786	}
787	c.mutex.RLock()
788	defer c.mutex.RUnlock()
789	return &Config{
790		Rand:                        c.Rand,
791		Time:                        c.Time,
792		Certificates:                c.Certificates,
793		NameToCertificate:           c.NameToCertificate,
794		GetCertificate:              c.GetCertificate,
795		GetClientCertificate:        c.GetClientCertificate,
796		GetConfigForClient:          c.GetConfigForClient,
797		VerifyPeerCertificate:       c.VerifyPeerCertificate,
798		VerifyConnection:            c.VerifyConnection,
799		RootCAs:                     c.RootCAs,
800		NextProtos:                  c.NextProtos,
801		ServerName:                  c.ServerName,
802		ClientAuth:                  c.ClientAuth,
803		ClientCAs:                   c.ClientCAs,
804		InsecureSkipVerify:          c.InsecureSkipVerify,
805		CipherSuites:                c.CipherSuites,
806		PreferServerCipherSuites:    c.PreferServerCipherSuites,
807		SessionTicketsDisabled:      c.SessionTicketsDisabled,
808		SessionTicketKey:            c.SessionTicketKey,
809		ClientSessionCache:          c.ClientSessionCache,
810		MinVersion:                  c.MinVersion,
811		MaxVersion:                  c.MaxVersion,
812		CurvePreferences:            c.CurvePreferences,
813		DynamicRecordSizingDisabled: c.DynamicRecordSizingDisabled,
814		Renegotiation:               c.Renegotiation,
815		KeyLogWriter:                c.KeyLogWriter,
816		sessionTicketKeys:           c.sessionTicketKeys,
817		autoSessionTicketKeys:       c.autoSessionTicketKeys,
818	}
819}
820
821// deprecatedSessionTicketKey is set as the prefix of SessionTicketKey if it was
822// randomized for backwards compatibility but is not in use.
823var deprecatedSessionTicketKey = []byte("DEPRECATED")
824
825// initLegacySessionTicketKeyRLocked ensures the legacy SessionTicketKey field is
826// randomized if empty, and that sessionTicketKeys is populated from it otherwise.
827func (c *Config) initLegacySessionTicketKeyRLocked() {
828	// Don't write if SessionTicketKey is already defined as our deprecated string,
829	// or if it is defined by the user but sessionTicketKeys is already set.
830	if c.SessionTicketKey != [32]byte{} &&
831		(bytes.HasPrefix(c.SessionTicketKey[:], deprecatedSessionTicketKey) || len(c.sessionTicketKeys) > 0) {
832		return
833	}
834
835	// We need to write some data, so get an exclusive lock and re-check any conditions.
836	c.mutex.RUnlock()
837	defer c.mutex.RLock()
838	c.mutex.Lock()
839	defer c.mutex.Unlock()
840	if c.SessionTicketKey == [32]byte{} {
841		if _, err := io.ReadFull(c.rand(), c.SessionTicketKey[:]); err != nil {
842			panic(fmt.Sprintf("tls: unable to generate random session ticket key: %v", err))
843		}
844		// Write the deprecated prefix at the beginning so we know we created
845		// it. This key with the DEPRECATED prefix isn't used as an actual
846		// session ticket key, and is only randomized in case the application
847		// reuses it for some reason.
848		copy(c.SessionTicketKey[:], deprecatedSessionTicketKey)
849	} else if !bytes.HasPrefix(c.SessionTicketKey[:], deprecatedSessionTicketKey) && len(c.sessionTicketKeys) == 0 {
850		c.sessionTicketKeys = []ticketKey{c.ticketKeyFromBytes(c.SessionTicketKey)}
851	}
852
853}
854
855// ticketKeys returns the ticketKeys for this connection.
856// If configForClient has explicitly set keys, those will
857// be returned. Otherwise, the keys on c will be used and
858// may be rotated if auto-managed.
859// During rotation, any expired session ticket keys are deleted from
860// c.sessionTicketKeys. If the session ticket key that is currently
861// encrypting tickets (ie. the first ticketKey in c.sessionTicketKeys)
862// is not fresh, then a new session ticket key will be
863// created and prepended to c.sessionTicketKeys.
864func (c *Config) ticketKeys(configForClient *Config) []ticketKey {
865	// If the ConfigForClient callback returned a Config with explicitly set
866	// keys, use those, otherwise just use the original Config.
867	if configForClient != nil {
868		configForClient.mutex.RLock()
869		if configForClient.SessionTicketsDisabled {
870			return nil
871		}
872		configForClient.initLegacySessionTicketKeyRLocked()
873		if len(configForClient.sessionTicketKeys) != 0 {
874			ret := configForClient.sessionTicketKeys
875			configForClient.mutex.RUnlock()
876			return ret
877		}
878		configForClient.mutex.RUnlock()
879	}
880
881	c.mutex.RLock()
882	defer c.mutex.RUnlock()
883	if c.SessionTicketsDisabled {
884		return nil
885	}
886	c.initLegacySessionTicketKeyRLocked()
887	if len(c.sessionTicketKeys) != 0 {
888		return c.sessionTicketKeys
889	}
890	// Fast path for the common case where the key is fresh enough.
891	if len(c.autoSessionTicketKeys) > 0 && c.time().Sub(c.autoSessionTicketKeys[0].created) < ticketKeyRotation {
892		return c.autoSessionTicketKeys
893	}
894
895	// autoSessionTicketKeys are managed by auto-rotation.
896	c.mutex.RUnlock()
897	defer c.mutex.RLock()
898	c.mutex.Lock()
899	defer c.mutex.Unlock()
900	// Re-check the condition in case it changed since obtaining the new lock.
901	if len(c.autoSessionTicketKeys) == 0 || c.time().Sub(c.autoSessionTicketKeys[0].created) >= ticketKeyRotation {
902		var newKey [32]byte
903		if _, err := io.ReadFull(c.rand(), newKey[:]); err != nil {
904			panic(fmt.Sprintf("unable to generate random session ticket key: %v", err))
905		}
906		valid := make([]ticketKey, 0, len(c.autoSessionTicketKeys)+1)
907		valid = append(valid, c.ticketKeyFromBytes(newKey))
908		for _, k := range c.autoSessionTicketKeys {
909			// While rotating the current key, also remove any expired ones.
910			if c.time().Sub(k.created) < ticketKeyLifetime {
911				valid = append(valid, k)
912			}
913		}
914		c.autoSessionTicketKeys = valid
915	}
916	return c.autoSessionTicketKeys
917}
918
919// SetSessionTicketKeys updates the session ticket keys for a server.
920//
921// The first key will be used when creating new tickets, while all keys can be
922// used for decrypting tickets. It is safe to call this function while the
923// server is running in order to rotate the session ticket keys. The function
924// will panic if keys is empty.
925//
926// Calling this function will turn off automatic session ticket key rotation.
927//
928// If multiple servers are terminating connections for the same host they should
929// all have the same session ticket keys. If the session ticket keys leaks,
930// previously recorded and future TLS connections using those keys might be
931// compromised.
932func (c *Config) SetSessionTicketKeys(keys [][32]byte) {
933	if len(keys) == 0 {
934		panic("tls: keys must have at least one key")
935	}
936
937	newKeys := make([]ticketKey, len(keys))
938	for i, bytes := range keys {
939		newKeys[i] = c.ticketKeyFromBytes(bytes)
940	}
941
942	c.mutex.Lock()
943	c.sessionTicketKeys = newKeys
944	c.mutex.Unlock()
945}
946
947func (c *Config) rand() io.Reader {
948	r := c.Rand
949	if r == nil {
950		return rand.Reader
951	}
952	return r
953}
954
955func (c *Config) time() time.Time {
956	t := c.Time
957	if t == nil {
958		t = time.Now
959	}
960	return t()
961}
962
963func (c *Config) cipherSuites() []uint16 {
964	if c.CipherSuites != nil {
965		return c.CipherSuites
966	}
967	return defaultCipherSuites
968}
969
970var supportedVersions = []uint16{
971	VersionTLS13,
972	VersionTLS12,
973	VersionTLS11,
974	VersionTLS10,
975}
976
977// debugEnableTLS10 enables TLS 1.0. See issue 45428.
978var debugEnableTLS10 = godebug.Get("tls10default") == "1"
979
980// roleClient and roleServer are meant to call supportedVersions and parents
981// with more readability at the callsite.
982const roleClient = true
983const roleServer = false
984
985func (c *Config) supportedVersions(isClient bool) []uint16 {
986	versions := make([]uint16, 0, len(supportedVersions))
987	for _, v := range supportedVersions {
988		if (c == nil || c.MinVersion == 0) && !debugEnableTLS10 &&
989			isClient && v < VersionTLS12 {
990			continue
991		}
992		if c != nil && c.MinVersion != 0 && v < c.MinVersion {
993			continue
994		}
995		if c != nil && c.MaxVersion != 0 && v > c.MaxVersion {
996			continue
997		}
998		versions = append(versions, v)
999	}
1000	return versions
1001}
1002
1003func (c *Config) maxSupportedVersion(isClient bool) uint16 {
1004	supportedVersions := c.supportedVersions(isClient)
1005	if len(supportedVersions) == 0 {
1006		return 0
1007	}
1008	return supportedVersions[0]
1009}
1010
1011// supportedVersionsFromMax returns a list of supported versions derived from a
1012// legacy maximum version value. Note that only versions supported by this
1013// library are returned. Any newer peer will use supportedVersions anyway.
1014func supportedVersionsFromMax(maxVersion uint16) []uint16 {
1015	versions := make([]uint16, 0, len(supportedVersions))
1016	for _, v := range supportedVersions {
1017		if v > maxVersion {
1018			continue
1019		}
1020		versions = append(versions, v)
1021	}
1022	return versions
1023}
1024
1025var defaultCurvePreferences = []CurveID{X25519, CurveP256, CurveP384, CurveP521}
1026
1027func (c *Config) curvePreferences() []CurveID {
1028	if c == nil || len(c.CurvePreferences) == 0 {
1029		return defaultCurvePreferences
1030	}
1031	return c.CurvePreferences
1032}
1033
1034func (c *Config) supportsCurve(curve CurveID) bool {
1035	for _, cc := range c.curvePreferences() {
1036		if cc == curve {
1037			return true
1038		}
1039	}
1040	return false
1041}
1042
1043// mutualVersion returns the protocol version to use given the advertised
1044// versions of the peer. Priority is given to the peer preference order.
1045func (c *Config) mutualVersion(isClient bool, peerVersions []uint16) (uint16, bool) {
1046	supportedVersions := c.supportedVersions(isClient)
1047	for _, peerVersion := range peerVersions {
1048		for _, v := range supportedVersions {
1049			if v == peerVersion {
1050				return v, true
1051			}
1052		}
1053	}
1054	return 0, false
1055}
1056
1057var errNoCertificates = errors.New("tls: no certificates configured")
1058
1059// getCertificate returns the best certificate for the given ClientHelloInfo,
1060// defaulting to the first element of c.Certificates.
1061func (c *Config) getCertificate(clientHello *ClientHelloInfo) (*Certificate, error) {
1062	if c.GetCertificate != nil &&
1063		(len(c.Certificates) == 0 || len(clientHello.ServerName) > 0) {
1064		cert, err := c.GetCertificate(clientHello)
1065		if cert != nil || err != nil {
1066			return cert, err
1067		}
1068	}
1069
1070	if len(c.Certificates) == 0 {
1071		return nil, errNoCertificates
1072	}
1073
1074	if len(c.Certificates) == 1 {
1075		// There's only one choice, so no point doing any work.
1076		return &c.Certificates[0], nil
1077	}
1078
1079	if c.NameToCertificate != nil {
1080		name := strings.ToLower(clientHello.ServerName)
1081		if cert, ok := c.NameToCertificate[name]; ok {
1082			return cert, nil
1083		}
1084		if len(name) > 0 {
1085			labels := strings.Split(name, ".")
1086			labels[0] = "*"
1087			wildcardName := strings.Join(labels, ".")
1088			if cert, ok := c.NameToCertificate[wildcardName]; ok {
1089				return cert, nil
1090			}
1091		}
1092	}
1093
1094	for _, cert := range c.Certificates {
1095		if err := clientHello.SupportsCertificate(&cert); err == nil {
1096			return &cert, nil
1097		}
1098	}
1099
1100	// If nothing matches, return the first certificate.
1101	return &c.Certificates[0], nil
1102}
1103
1104// SupportsCertificate returns nil if the provided certificate is supported by
1105// the client that sent the ClientHello. Otherwise, it returns an error
1106// describing the reason for the incompatibility.
1107//
1108// If this ClientHelloInfo was passed to a GetConfigForClient or GetCertificate
1109// callback, this method will take into account the associated Config. Note that
1110// if GetConfigForClient returns a different Config, the change can't be
1111// accounted for by this method.
1112//
1113// This function will call x509.ParseCertificate unless c.Leaf is set, which can
1114// incur a significant performance cost.
1115func (chi *ClientHelloInfo) SupportsCertificate(c *Certificate) error {
1116	// Note we don't currently support certificate_authorities nor
1117	// signature_algorithms_cert, and don't check the algorithms of the
1118	// signatures on the chain (which anyway are a SHOULD, see RFC 8446,
1119	// Section 4.4.2.2).
1120
1121	config := chi.config
1122	if config == nil {
1123		config = &Config{}
1124	}
1125	vers, ok := config.mutualVersion(roleServer, chi.SupportedVersions)
1126	if !ok {
1127		return errors.New("no mutually supported protocol versions")
1128	}
1129
1130	// If the client specified the name they are trying to connect to, the
1131	// certificate needs to be valid for it.
1132	if chi.ServerName != "" {
1133		x509Cert, err := c.leaf()
1134		if err != nil {
1135			return fmt.Errorf("failed to parse certificate: %w", err)
1136		}
1137		if err := x509Cert.VerifyHostname(chi.ServerName); err != nil {
1138			return fmt.Errorf("certificate is not valid for requested server name: %w", err)
1139		}
1140	}
1141
1142	// supportsRSAFallback returns nil if the certificate and connection support
1143	// the static RSA key exchange, and unsupported otherwise. The logic for
1144	// supporting static RSA is completely disjoint from the logic for
1145	// supporting signed key exchanges, so we just check it as a fallback.
1146	supportsRSAFallback := func(unsupported error) error {
1147		// TLS 1.3 dropped support for the static RSA key exchange.
1148		if vers == VersionTLS13 {
1149			return unsupported
1150		}
1151		// The static RSA key exchange works by decrypting a challenge with the
1152		// RSA private key, not by signing, so check the PrivateKey implements
1153		// crypto.Decrypter, like *rsa.PrivateKey does.
1154		if priv, ok := c.PrivateKey.(crypto.Decrypter); ok {
1155			if _, ok := priv.Public().(*rsa.PublicKey); !ok {
1156				return unsupported
1157			}
1158		} else {
1159			return unsupported
1160		}
1161		// Finally, there needs to be a mutual cipher suite that uses the static
1162		// RSA key exchange instead of ECDHE.
1163		rsaCipherSuite := selectCipherSuite(chi.CipherSuites, config.cipherSuites(), func(c *cipherSuite) bool {
1164			if c.flags&suiteECDHE != 0 {
1165				return false
1166			}
1167			if vers < VersionTLS12 && c.flags&suiteTLS12 != 0 {
1168				return false
1169			}
1170			return true
1171		})
1172		if rsaCipherSuite == nil {
1173			return unsupported
1174		}
1175		return nil
1176	}
1177
1178	// If the client sent the signature_algorithms extension, ensure it supports
1179	// schemes we can use with this certificate and TLS version.
1180	if len(chi.SignatureSchemes) > 0 {
1181		if _, err := selectSignatureScheme(vers, c, chi.SignatureSchemes); err != nil {
1182			return supportsRSAFallback(err)
1183		}
1184	}
1185
1186	// In TLS 1.3 we are done because supported_groups is only relevant to the
1187	// ECDHE computation, point format negotiation is removed, cipher suites are
1188	// only relevant to the AEAD choice, and static RSA does not exist.
1189	if vers == VersionTLS13 {
1190		return nil
1191	}
1192
1193	// The only signed key exchange we support is ECDHE.
1194	if !supportsECDHE(config, chi.SupportedCurves, chi.SupportedPoints) {
1195		return supportsRSAFallback(errors.New("client doesn't support ECDHE, can only use legacy RSA key exchange"))
1196	}
1197
1198	var ecdsaCipherSuite bool
1199	if priv, ok := c.PrivateKey.(crypto.Signer); ok {
1200		switch pub := priv.Public().(type) {
1201		case *ecdsa.PublicKey:
1202			var curve CurveID
1203			switch pub.Curve {
1204			case elliptic.P256():
1205				curve = CurveP256
1206			case elliptic.P384():
1207				curve = CurveP384
1208			case elliptic.P521():
1209				curve = CurveP521
1210			default:
1211				return supportsRSAFallback(unsupportedCertificateError(c))
1212			}
1213			var curveOk bool
1214			for _, c := range chi.SupportedCurves {
1215				if c == curve && config.supportsCurve(c) {
1216					curveOk = true
1217					break
1218				}
1219			}
1220			if !curveOk {
1221				return errors.New("client doesn't support certificate curve")
1222			}
1223			ecdsaCipherSuite = true
1224		case ed25519.PublicKey:
1225			if vers < VersionTLS12 || len(chi.SignatureSchemes) == 0 {
1226				return errors.New("connection doesn't support Ed25519")
1227			}
1228			ecdsaCipherSuite = true
1229		case *rsa.PublicKey:
1230		default:
1231			return supportsRSAFallback(unsupportedCertificateError(c))
1232		}
1233	} else {
1234		return supportsRSAFallback(unsupportedCertificateError(c))
1235	}
1236
1237	// Make sure that there is a mutually supported cipher suite that works with
1238	// this certificate. Cipher suite selection will then apply the logic in
1239	// reverse to pick it. See also serverHandshakeState.cipherSuiteOk.
1240	cipherSuite := selectCipherSuite(chi.CipherSuites, config.cipherSuites(), func(c *cipherSuite) bool {
1241		if c.flags&suiteECDHE == 0 {
1242			return false
1243		}
1244		if c.flags&suiteECSign != 0 {
1245			if !ecdsaCipherSuite {
1246				return false
1247			}
1248		} else {
1249			if ecdsaCipherSuite {
1250				return false
1251			}
1252		}
1253		if vers < VersionTLS12 && c.flags&suiteTLS12 != 0 {
1254			return false
1255		}
1256		return true
1257	})
1258	if cipherSuite == nil {
1259		return supportsRSAFallback(errors.New("client doesn't support any cipher suites compatible with the certificate"))
1260	}
1261
1262	return nil
1263}
1264
1265// SupportsCertificate returns nil if the provided certificate is supported by
1266// the server that sent the CertificateRequest. Otherwise, it returns an error
1267// describing the reason for the incompatibility.
1268func (cri *CertificateRequestInfo) SupportsCertificate(c *Certificate) error {
1269	if _, err := selectSignatureScheme(cri.Version, c, cri.SignatureSchemes); err != nil {
1270		return err
1271	}
1272
1273	if len(cri.AcceptableCAs) == 0 {
1274		return nil
1275	}
1276
1277	for j, cert := range c.Certificate {
1278		x509Cert := c.Leaf
1279		// Parse the certificate if this isn't the leaf node, or if
1280		// chain.Leaf was nil.
1281		if j != 0 || x509Cert == nil {
1282			var err error
1283			if x509Cert, err = x509.ParseCertificate(cert); err != nil {
1284				return fmt.Errorf("failed to parse certificate #%d in the chain: %w", j, err)
1285			}
1286		}
1287
1288		for _, ca := range cri.AcceptableCAs {
1289			if bytes.Equal(x509Cert.RawIssuer, ca) {
1290				return nil
1291			}
1292		}
1293	}
1294	return errors.New("chain is not signed by an acceptable CA")
1295}
1296
1297// BuildNameToCertificate parses c.Certificates and builds c.NameToCertificate
1298// from the CommonName and SubjectAlternateName fields of each of the leaf
1299// certificates.
1300//
1301// Deprecated: NameToCertificate only allows associating a single certificate
1302// with a given name. Leave that field nil to let the library select the first
1303// compatible chain from Certificates.
1304func (c *Config) BuildNameToCertificate() {
1305	c.NameToCertificate = make(map[string]*Certificate)
1306	for i := range c.Certificates {
1307		cert := &c.Certificates[i]
1308		x509Cert, err := cert.leaf()
1309		if err != nil {
1310			continue
1311		}
1312		// If SANs are *not* present, some clients will consider the certificate
1313		// valid for the name in the Common Name.
1314		if x509Cert.Subject.CommonName != "" && len(x509Cert.DNSNames) == 0 {
1315			c.NameToCertificate[x509Cert.Subject.CommonName] = cert
1316		}
1317		for _, san := range x509Cert.DNSNames {
1318			c.NameToCertificate[san] = cert
1319		}
1320	}
1321}
1322
1323const (
1324	keyLogLabelTLS12           = "CLIENT_RANDOM"
1325	keyLogLabelClientHandshake = "CLIENT_HANDSHAKE_TRAFFIC_SECRET"
1326	keyLogLabelServerHandshake = "SERVER_HANDSHAKE_TRAFFIC_SECRET"
1327	keyLogLabelClientTraffic   = "CLIENT_TRAFFIC_SECRET_0"
1328	keyLogLabelServerTraffic   = "SERVER_TRAFFIC_SECRET_0"
1329)
1330
1331func (c *Config) writeKeyLog(label string, clientRandom, secret []byte) error {
1332	if c.KeyLogWriter == nil {
1333		return nil
1334	}
1335
1336	logLine := []byte(fmt.Sprintf("%s %x %x\n", label, clientRandom, secret))
1337
1338	writerMutex.Lock()
1339	_, err := c.KeyLogWriter.Write(logLine)
1340	writerMutex.Unlock()
1341
1342	return err
1343}
1344
1345// writerMutex protects all KeyLogWriters globally. It is rarely enabled,
1346// and is only for debugging, so a global mutex saves space.
1347var writerMutex sync.Mutex
1348
1349// A Certificate is a chain of one or more certificates, leaf first.
1350type Certificate struct {
1351	Certificate [][]byte
1352	// PrivateKey contains the private key corresponding to the public key in
1353	// Leaf. This must implement crypto.Signer with an RSA, ECDSA or Ed25519 PublicKey.
1354	// For a server up to TLS 1.2, it can also implement crypto.Decrypter with
1355	// an RSA PublicKey.
1356	PrivateKey crypto.PrivateKey
1357	// SupportedSignatureAlgorithms is an optional list restricting what
1358	// signature algorithms the PrivateKey can be used for.
1359	SupportedSignatureAlgorithms []SignatureScheme
1360	// OCSPStaple contains an optional OCSP response which will be served
1361	// to clients that request it.
1362	OCSPStaple []byte
1363	// SignedCertificateTimestamps contains an optional list of Signed
1364	// Certificate Timestamps which will be served to clients that request it.
1365	SignedCertificateTimestamps [][]byte
1366	// Leaf is the parsed form of the leaf certificate, which may be initialized
1367	// using x509.ParseCertificate to reduce per-handshake processing. If nil,
1368	// the leaf certificate will be parsed as needed.
1369	Leaf *x509.Certificate
1370}
1371
1372// leaf returns the parsed leaf certificate, either from c.Leaf or by parsing
1373// the corresponding c.Certificate[0].
1374func (c *Certificate) leaf() (*x509.Certificate, error) {
1375	if c.Leaf != nil {
1376		return c.Leaf, nil
1377	}
1378	return x509.ParseCertificate(c.Certificate[0])
1379}
1380
1381type handshakeMessage interface {
1382	marshal() []byte
1383	unmarshal([]byte) bool
1384}
1385
1386// lruSessionCache is a ClientSessionCache implementation that uses an LRU
1387// caching strategy.
1388type lruSessionCache struct {
1389	sync.Mutex
1390
1391	m        map[string]*list.Element
1392	q        *list.List
1393	capacity int
1394}
1395
1396type lruSessionCacheEntry struct {
1397	sessionKey string
1398	state      *ClientSessionState
1399}
1400
1401// NewLRUClientSessionCache returns a ClientSessionCache with the given
1402// capacity that uses an LRU strategy. If capacity is < 1, a default capacity
1403// is used instead.
1404func NewLRUClientSessionCache(capacity int) ClientSessionCache {
1405	const defaultSessionCacheCapacity = 64
1406
1407	if capacity < 1 {
1408		capacity = defaultSessionCacheCapacity
1409	}
1410	return &lruSessionCache{
1411		m:        make(map[string]*list.Element),
1412		q:        list.New(),
1413		capacity: capacity,
1414	}
1415}
1416
1417// Put adds the provided (sessionKey, cs) pair to the cache. If cs is nil, the entry
1418// corresponding to sessionKey is removed from the cache instead.
1419func (c *lruSessionCache) Put(sessionKey string, cs *ClientSessionState) {
1420	c.Lock()
1421	defer c.Unlock()
1422
1423	if elem, ok := c.m[sessionKey]; ok {
1424		if cs == nil {
1425			c.q.Remove(elem)
1426			delete(c.m, sessionKey)
1427		} else {
1428			entry := elem.Value.(*lruSessionCacheEntry)
1429			entry.state = cs
1430			c.q.MoveToFront(elem)
1431		}
1432		return
1433	}
1434
1435	if c.q.Len() < c.capacity {
1436		entry := &lruSessionCacheEntry{sessionKey, cs}
1437		c.m[sessionKey] = c.q.PushFront(entry)
1438		return
1439	}
1440
1441	elem := c.q.Back()
1442	entry := elem.Value.(*lruSessionCacheEntry)
1443	delete(c.m, entry.sessionKey)
1444	entry.sessionKey = sessionKey
1445	entry.state = cs
1446	c.q.MoveToFront(elem)
1447	c.m[sessionKey] = elem
1448}
1449
1450// Get returns the ClientSessionState value associated with a given key. It
1451// returns (nil, false) if no value is found.
1452func (c *lruSessionCache) Get(sessionKey string) (*ClientSessionState, bool) {
1453	c.Lock()
1454	defer c.Unlock()
1455
1456	if elem, ok := c.m[sessionKey]; ok {
1457		c.q.MoveToFront(elem)
1458		return elem.Value.(*lruSessionCacheEntry).state, true
1459	}
1460	return nil, false
1461}
1462
1463var emptyConfig Config
1464
1465func defaultConfig() *Config {
1466	return &emptyConfig
1467}
1468
1469func unexpectedMessageError(wanted, got any) error {
1470	return fmt.Errorf("tls: received unexpected handshake message of type %T when waiting for %T", got, wanted)
1471}
1472
1473func isSupportedSignatureAlgorithm(sigAlg SignatureScheme, supportedSignatureAlgorithms []SignatureScheme) bool {
1474	for _, s := range supportedSignatureAlgorithms {
1475		if s == sigAlg {
1476			return true
1477		}
1478	}
1479	return false
1480}
1481