1// Copyright 2009 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5package runtime
6
7import (
8	"internal/bytealg"
9	"internal/goarch"
10	"runtime/internal/atomic"
11	"runtime/internal/sys"
12	"unsafe"
13)
14
15// The code in this file implements stack trace walking for all architectures.
16// The most important fact about a given architecture is whether it uses a link register.
17// On systems with link registers, the prologue for a non-leaf function stores the
18// incoming value of LR at the bottom of the newly allocated stack frame.
19// On systems without link registers (x86), the architecture pushes a return PC during
20// the call instruction, so the return PC ends up above the stack frame.
21// In this file, the return PC is always called LR, no matter how it was found.
22
23const usesLR = sys.MinFrameSize > 0
24
25// Generic traceback. Handles runtime stack prints (pcbuf == nil),
26// the runtime.Callers function (pcbuf != nil), as well as the garbage
27// collector (callback != nil).  A little clunky to merge these, but avoids
28// duplicating the code and all its subtlety.
29//
30// The skip argument is only valid with pcbuf != nil and counts the number
31// of logical frames to skip rather than physical frames (with inlining, a
32// PC in pcbuf can represent multiple calls).
33func gentraceback(pc0, sp0, lr0 uintptr, gp *g, skip int, pcbuf *uintptr, max int, callback func(*stkframe, unsafe.Pointer) bool, v unsafe.Pointer, flags uint) int {
34	if skip > 0 && callback != nil {
35		throw("gentraceback callback cannot be used with non-zero skip")
36	}
37
38	// Don't call this "g"; it's too easy get "g" and "gp" confused.
39	if ourg := getg(); ourg == gp && ourg == ourg.m.curg {
40		// The starting sp has been passed in as a uintptr, and the caller may
41		// have other uintptr-typed stack references as well.
42		// If during one of the calls that got us here or during one of the
43		// callbacks below the stack must be grown, all these uintptr references
44		// to the stack will not be updated, and gentraceback will continue
45		// to inspect the old stack memory, which may no longer be valid.
46		// Even if all the variables were updated correctly, it is not clear that
47		// we want to expose a traceback that begins on one stack and ends
48		// on another stack. That could confuse callers quite a bit.
49		// Instead, we require that gentraceback and any other function that
50		// accepts an sp for the current goroutine (typically obtained by
51		// calling getcallersp) must not run on that goroutine's stack but
52		// instead on the g0 stack.
53		throw("gentraceback cannot trace user goroutine on its own stack")
54	}
55	level, _, _ := gotraceback()
56
57	var ctxt *funcval // Context pointer for unstarted goroutines. See issue #25897.
58
59	if pc0 == ^uintptr(0) && sp0 == ^uintptr(0) { // Signal to fetch saved values from gp.
60		if gp.syscallsp != 0 {
61			pc0 = gp.syscallpc
62			sp0 = gp.syscallsp
63			if usesLR {
64				lr0 = 0
65			}
66		} else {
67			pc0 = gp.sched.pc
68			sp0 = gp.sched.sp
69			if usesLR {
70				lr0 = gp.sched.lr
71			}
72			ctxt = (*funcval)(gp.sched.ctxt)
73		}
74	}
75
76	nprint := 0
77	var frame stkframe
78	frame.pc = pc0
79	frame.sp = sp0
80	if usesLR {
81		frame.lr = lr0
82	}
83	waspanic := false
84	cgoCtxt := gp.cgoCtxt
85	printing := pcbuf == nil && callback == nil
86
87	// If the PC is zero, it's likely a nil function call.
88	// Start in the caller's frame.
89	if frame.pc == 0 {
90		if usesLR {
91			frame.pc = *(*uintptr)(unsafe.Pointer(frame.sp))
92			frame.lr = 0
93		} else {
94			frame.pc = uintptr(*(*uintptr)(unsafe.Pointer(frame.sp)))
95			frame.sp += goarch.PtrSize
96		}
97	}
98
99	// runtime/internal/atomic functions call into kernel helpers on
100	// arm < 7. See runtime/internal/atomic/sys_linux_arm.s.
101	//
102	// Start in the caller's frame.
103	if GOARCH == "arm" && goarm < 7 && GOOS == "linux" && frame.pc&0xffff0000 == 0xffff0000 {
104		// Note that the calls are simple BL without pushing the return
105		// address, so we use LR directly.
106		//
107		// The kernel helpers are frameless leaf functions, so SP and
108		// LR are not touched.
109		frame.pc = frame.lr
110		frame.lr = 0
111	}
112
113	f := findfunc(frame.pc)
114	if !f.valid() {
115		if callback != nil || printing {
116			print("runtime: unknown pc ", hex(frame.pc), "\n")
117			tracebackHexdump(gp.stack, &frame, 0)
118		}
119		if callback != nil {
120			throw("unknown pc")
121		}
122		return 0
123	}
124	frame.fn = f
125
126	var cache pcvalueCache
127
128	lastFuncID := funcID_normal
129	n := 0
130	for n < max {
131		// Typically:
132		//	pc is the PC of the running function.
133		//	sp is the stack pointer at that program counter.
134		//	fp is the frame pointer (caller's stack pointer) at that program counter, or nil if unknown.
135		//	stk is the stack containing sp.
136		//	The caller's program counter is lr, unless lr is zero, in which case it is *(uintptr*)sp.
137		f = frame.fn
138		if f.pcsp == 0 {
139			// No frame information, must be external function, like race support.
140			// See golang.org/issue/13568.
141			break
142		}
143
144		// Compute function info flags.
145		flag := f.flag
146		if f.funcID == funcID_cgocallback {
147			// cgocallback does write SP to switch from the g0 to the curg stack,
148			// but it carefully arranges that during the transition BOTH stacks
149			// have cgocallback frame valid for unwinding through.
150			// So we don't need to exclude it with the other SP-writing functions.
151			flag &^= funcFlag_SPWRITE
152		}
153		if frame.pc == pc0 && frame.sp == sp0 && pc0 == gp.syscallpc && sp0 == gp.syscallsp {
154			// Some Syscall functions write to SP, but they do so only after
155			// saving the entry PC/SP using entersyscall.
156			// Since we are using the entry PC/SP, the later SP write doesn't matter.
157			flag &^= funcFlag_SPWRITE
158		}
159
160		// Found an actual function.
161		// Derive frame pointer and link register.
162		if frame.fp == 0 {
163			// Jump over system stack transitions. If we're on g0 and there's a user
164			// goroutine, try to jump. Otherwise this is a regular call.
165			if flags&_TraceJumpStack != 0 && gp == gp.m.g0 && gp.m.curg != nil {
166				switch f.funcID {
167				case funcID_morestack:
168					// morestack does not return normally -- newstack()
169					// gogo's to curg.sched. Match that.
170					// This keeps morestack() from showing up in the backtrace,
171					// but that makes some sense since it'll never be returned
172					// to.
173					frame.pc = gp.m.curg.sched.pc
174					frame.fn = findfunc(frame.pc)
175					f = frame.fn
176					flag = f.flag
177					frame.sp = gp.m.curg.sched.sp
178					cgoCtxt = gp.m.curg.cgoCtxt
179				case funcID_systemstack:
180					// systemstack returns normally, so just follow the
181					// stack transition.
182					frame.sp = gp.m.curg.sched.sp
183					cgoCtxt = gp.m.curg.cgoCtxt
184					flag &^= funcFlag_SPWRITE
185				}
186			}
187			frame.fp = frame.sp + uintptr(funcspdelta(f, frame.pc, &cache))
188			if !usesLR {
189				// On x86, call instruction pushes return PC before entering new function.
190				frame.fp += goarch.PtrSize
191			}
192		}
193		var flr funcInfo
194		if flag&funcFlag_TOPFRAME != 0 {
195			// This function marks the top of the stack. Stop the traceback.
196			frame.lr = 0
197			flr = funcInfo{}
198		} else if flag&funcFlag_SPWRITE != 0 && (callback == nil || n > 0) {
199			// The function we are in does a write to SP that we don't know
200			// how to encode in the spdelta table. Examples include context
201			// switch routines like runtime.gogo but also any code that switches
202			// to the g0 stack to run host C code. Since we can't reliably unwind
203			// the SP (we might not even be on the stack we think we are),
204			// we stop the traceback here.
205			// This only applies for profiling signals (callback == nil).
206			//
207			// For a GC stack traversal (callback != nil), we should only see
208			// a function when it has voluntarily preempted itself on entry
209			// during the stack growth check. In that case, the function has
210			// not yet had a chance to do any writes to SP and is safe to unwind.
211			// isAsyncSafePoint does not allow assembly functions to be async preempted,
212			// and preemptPark double-checks that SPWRITE functions are not async preempted.
213			// So for GC stack traversal we leave things alone (this if body does not execute for n == 0)
214			// at the bottom frame of the stack. But farther up the stack we'd better not
215			// find any.
216			if callback != nil {
217				println("traceback: unexpected SPWRITE function", funcname(f))
218				throw("traceback")
219			}
220			frame.lr = 0
221			flr = funcInfo{}
222		} else {
223			var lrPtr uintptr
224			if usesLR {
225				if n == 0 && frame.sp < frame.fp || frame.lr == 0 {
226					lrPtr = frame.sp
227					frame.lr = *(*uintptr)(unsafe.Pointer(lrPtr))
228				}
229			} else {
230				if frame.lr == 0 {
231					lrPtr = frame.fp - goarch.PtrSize
232					frame.lr = uintptr(*(*uintptr)(unsafe.Pointer(lrPtr)))
233				}
234			}
235			flr = findfunc(frame.lr)
236			if !flr.valid() {
237				// This happens if you get a profiling interrupt at just the wrong time.
238				// In that context it is okay to stop early.
239				// But if callback is set, we're doing a garbage collection and must
240				// get everything, so crash loudly.
241				doPrint := printing
242				if doPrint && gp.m.incgo && f.funcID == funcID_sigpanic {
243					// We can inject sigpanic
244					// calls directly into C code,
245					// in which case we'll see a C
246					// return PC. Don't complain.
247					doPrint = false
248				}
249				if callback != nil || doPrint {
250					print("runtime: unexpected return pc for ", funcname(f), " called from ", hex(frame.lr), "\n")
251					tracebackHexdump(gp.stack, &frame, lrPtr)
252				}
253				if callback != nil {
254					throw("unknown caller pc")
255				}
256			}
257		}
258
259		frame.varp = frame.fp
260		if !usesLR {
261			// On x86, call instruction pushes return PC before entering new function.
262			frame.varp -= goarch.PtrSize
263		}
264
265		// For architectures with frame pointers, if there's
266		// a frame, then there's a saved frame pointer here.
267		//
268		// NOTE: This code is not as general as it looks.
269		// On x86, the ABI is to save the frame pointer word at the
270		// top of the stack frame, so we have to back down over it.
271		// On arm64, the frame pointer should be at the bottom of
272		// the stack (with R29 (aka FP) = RSP), in which case we would
273		// not want to do the subtraction here. But we started out without
274		// any frame pointer, and when we wanted to add it, we didn't
275		// want to break all the assembly doing direct writes to 8(RSP)
276		// to set the first parameter to a called function.
277		// So we decided to write the FP link *below* the stack pointer
278		// (with R29 = RSP - 8 in Go functions).
279		// This is technically ABI-compatible but not standard.
280		// And it happens to end up mimicking the x86 layout.
281		// Other architectures may make different decisions.
282		if frame.varp > frame.sp && framepointer_enabled {
283			frame.varp -= goarch.PtrSize
284		}
285
286		// Derive size of arguments.
287		// Most functions have a fixed-size argument block,
288		// so we can use metadata about the function f.
289		// Not all, though: there are some variadic functions
290		// in package runtime and reflect, and for those we use call-specific
291		// metadata recorded by f's caller.
292		if callback != nil || printing {
293			frame.argp = frame.fp + sys.MinFrameSize
294			var ok bool
295			frame.arglen, frame.argmap, ok = getArgInfoFast(f, callback != nil)
296			if !ok {
297				frame.arglen, frame.argmap = getArgInfo(&frame, f, callback != nil, ctxt)
298			}
299		}
300		ctxt = nil // ctxt is only needed to get arg maps for the topmost frame
301
302		// Determine frame's 'continuation PC', where it can continue.
303		// Normally this is the return address on the stack, but if sigpanic
304		// is immediately below this function on the stack, then the frame
305		// stopped executing due to a trap, and frame.pc is probably not
306		// a safe point for looking up liveness information. In this panicking case,
307		// the function either doesn't return at all (if it has no defers or if the
308		// defers do not recover) or it returns from one of the calls to
309		// deferproc a second time (if the corresponding deferred func recovers).
310		// In the latter case, use a deferreturn call site as the continuation pc.
311		frame.continpc = frame.pc
312		if waspanic {
313			if frame.fn.deferreturn != 0 {
314				frame.continpc = frame.fn.entry() + uintptr(frame.fn.deferreturn) + 1
315				// Note: this may perhaps keep return variables alive longer than
316				// strictly necessary, as we are using "function has a defer statement"
317				// as a proxy for "function actually deferred something". It seems
318				// to be a minor drawback. (We used to actually look through the
319				// gp._defer for a defer corresponding to this function, but that
320				// is hard to do with defer records on the stack during a stack copy.)
321				// Note: the +1 is to offset the -1 that
322				// stack.go:getStackMap does to back up a return
323				// address make sure the pc is in the CALL instruction.
324			} else {
325				frame.continpc = 0
326			}
327		}
328
329		if callback != nil {
330			if !callback((*stkframe)(noescape(unsafe.Pointer(&frame))), v) {
331				return n
332			}
333		}
334
335		if pcbuf != nil {
336			pc := frame.pc
337			// backup to CALL instruction to read inlining info (same logic as below)
338			tracepc := pc
339			// Normally, pc is a return address. In that case, we want to look up
340			// file/line information using pc-1, because that is the pc of the
341			// call instruction (more precisely, the last byte of the call instruction).
342			// Callers expect the pc buffer to contain return addresses and do the
343			// same -1 themselves, so we keep pc unchanged.
344			// When the pc is from a signal (e.g. profiler or segv) then we want
345			// to look up file/line information using pc, and we store pc+1 in the
346			// pc buffer so callers can unconditionally subtract 1 before looking up.
347			// See issue 34123.
348			// The pc can be at function entry when the frame is initialized without
349			// actually running code, like runtime.mstart.
350			if (n == 0 && flags&_TraceTrap != 0) || waspanic || pc == f.entry() {
351				pc++
352			} else {
353				tracepc--
354			}
355
356			// If there is inlining info, record the inner frames.
357			if inldata := funcdata(f, _FUNCDATA_InlTree); inldata != nil {
358				inltree := (*[1 << 20]inlinedCall)(inldata)
359				for {
360					ix := pcdatavalue(f, _PCDATA_InlTreeIndex, tracepc, &cache)
361					if ix < 0 {
362						break
363					}
364					if inltree[ix].funcID == funcID_wrapper && elideWrapperCalling(lastFuncID) {
365						// ignore wrappers
366					} else if skip > 0 {
367						skip--
368					} else if n < max {
369						(*[1 << 20]uintptr)(unsafe.Pointer(pcbuf))[n] = pc
370						n++
371					}
372					lastFuncID = inltree[ix].funcID
373					// Back up to an instruction in the "caller".
374					tracepc = frame.fn.entry() + uintptr(inltree[ix].parentPc)
375					pc = tracepc + 1
376				}
377			}
378			// Record the main frame.
379			if f.funcID == funcID_wrapper && elideWrapperCalling(lastFuncID) {
380				// Ignore wrapper functions (except when they trigger panics).
381			} else if skip > 0 {
382				skip--
383			} else if n < max {
384				(*[1 << 20]uintptr)(unsafe.Pointer(pcbuf))[n] = pc
385				n++
386			}
387			lastFuncID = f.funcID
388			n-- // offset n++ below
389		}
390
391		if printing {
392			// assume skip=0 for printing.
393			//
394			// Never elide wrappers if we haven't printed
395			// any frames. And don't elide wrappers that
396			// called panic rather than the wrapped
397			// function. Otherwise, leave them out.
398
399			// backup to CALL instruction to read inlining info (same logic as below)
400			tracepc := frame.pc
401			if (n > 0 || flags&_TraceTrap == 0) && frame.pc > f.entry() && !waspanic {
402				tracepc--
403			}
404			// If there is inlining info, print the inner frames.
405			if inldata := funcdata(f, _FUNCDATA_InlTree); inldata != nil {
406				inltree := (*[1 << 20]inlinedCall)(inldata)
407				var inlFunc _func
408				inlFuncInfo := funcInfo{&inlFunc, f.datap}
409				for {
410					ix := pcdatavalue(f, _PCDATA_InlTreeIndex, tracepc, nil)
411					if ix < 0 {
412						break
413					}
414
415					// Create a fake _func for the
416					// inlined function.
417					inlFunc.nameoff = inltree[ix].func_
418					inlFunc.funcID = inltree[ix].funcID
419
420					if (flags&_TraceRuntimeFrames) != 0 || showframe(inlFuncInfo, gp, nprint == 0, inlFuncInfo.funcID, lastFuncID) {
421						name := funcname(inlFuncInfo)
422						file, line := funcline(f, tracepc)
423						print(name, "(...)\n")
424						print("\t", file, ":", line, "\n")
425						nprint++
426					}
427					lastFuncID = inltree[ix].funcID
428					// Back up to an instruction in the "caller".
429					tracepc = frame.fn.entry() + uintptr(inltree[ix].parentPc)
430				}
431			}
432			if (flags&_TraceRuntimeFrames) != 0 || showframe(f, gp, nprint == 0, f.funcID, lastFuncID) {
433				// Print during crash.
434				//	main(0x1, 0x2, 0x3)
435				//		/home/rsc/go/src/runtime/x.go:23 +0xf
436				//
437				name := funcname(f)
438				file, line := funcline(f, tracepc)
439				if name == "runtime.gopanic" {
440					name = "panic"
441				}
442				print(name, "(")
443				argp := unsafe.Pointer(frame.argp)
444				printArgs(f, argp, tracepc)
445				print(")\n")
446				print("\t", file, ":", line)
447				if frame.pc > f.entry() {
448					print(" +", hex(frame.pc-f.entry()))
449				}
450				if gp.m != nil && gp.m.throwing > 0 && gp == gp.m.curg || level >= 2 {
451					print(" fp=", hex(frame.fp), " sp=", hex(frame.sp), " pc=", hex(frame.pc))
452				}
453				print("\n")
454				nprint++
455			}
456			lastFuncID = f.funcID
457		}
458		n++
459
460		if f.funcID == funcID_cgocallback && len(cgoCtxt) > 0 {
461			ctxt := cgoCtxt[len(cgoCtxt)-1]
462			cgoCtxt = cgoCtxt[:len(cgoCtxt)-1]
463
464			// skip only applies to Go frames.
465			// callback != nil only used when we only care
466			// about Go frames.
467			if skip == 0 && callback == nil {
468				n = tracebackCgoContext(pcbuf, printing, ctxt, n, max)
469			}
470		}
471
472		waspanic = f.funcID == funcID_sigpanic
473		injectedCall := waspanic || f.funcID == funcID_asyncPreempt
474
475		// Do not unwind past the bottom of the stack.
476		if !flr.valid() {
477			break
478		}
479
480		// Unwind to next frame.
481		frame.fn = flr
482		frame.pc = frame.lr
483		frame.lr = 0
484		frame.sp = frame.fp
485		frame.fp = 0
486		frame.argmap = nil
487
488		// On link register architectures, sighandler saves the LR on stack
489		// before faking a call.
490		if usesLR && injectedCall {
491			x := *(*uintptr)(unsafe.Pointer(frame.sp))
492			frame.sp += alignUp(sys.MinFrameSize, sys.StackAlign)
493			f = findfunc(frame.pc)
494			frame.fn = f
495			if !f.valid() {
496				frame.pc = x
497			} else if funcspdelta(f, frame.pc, &cache) == 0 {
498				frame.lr = x
499			}
500		}
501	}
502
503	if printing {
504		n = nprint
505	}
506
507	// Note that panic != nil is okay here: there can be leftover panics,
508	// because the defers on the panic stack do not nest in frame order as
509	// they do on the defer stack. If you have:
510	//
511	//	frame 1 defers d1
512	//	frame 2 defers d2
513	//	frame 3 defers d3
514	//	frame 4 panics
515	//	frame 4's panic starts running defers
516	//	frame 5, running d3, defers d4
517	//	frame 5 panics
518	//	frame 5's panic starts running defers
519	//	frame 6, running d4, garbage collects
520	//	frame 6, running d2, garbage collects
521	//
522	// During the execution of d4, the panic stack is d4 -> d3, which
523	// is nested properly, and we'll treat frame 3 as resumable, because we
524	// can find d3. (And in fact frame 3 is resumable. If d4 recovers
525	// and frame 5 continues running, d3, d3 can recover and we'll
526	// resume execution in (returning from) frame 3.)
527	//
528	// During the execution of d2, however, the panic stack is d2 -> d3,
529	// which is inverted. The scan will match d2 to frame 2 but having
530	// d2 on the stack until then means it will not match d3 to frame 3.
531	// This is okay: if we're running d2, then all the defers after d2 have
532	// completed and their corresponding frames are dead. Not finding d3
533	// for frame 3 means we'll set frame 3's continpc == 0, which is correct
534	// (frame 3 is dead). At the end of the walk the panic stack can thus
535	// contain defers (d3 in this case) for dead frames. The inversion here
536	// always indicates a dead frame, and the effect of the inversion on the
537	// scan is to hide those dead frames, so the scan is still okay:
538	// what's left on the panic stack are exactly (and only) the dead frames.
539	//
540	// We require callback != nil here because only when callback != nil
541	// do we know that gentraceback is being called in a "must be correct"
542	// context as opposed to a "best effort" context. The tracebacks with
543	// callbacks only happen when everything is stopped nicely.
544	// At other times, such as when gathering a stack for a profiling signal
545	// or when printing a traceback during a crash, everything may not be
546	// stopped nicely, and the stack walk may not be able to complete.
547	if callback != nil && n < max && frame.sp != gp.stktopsp {
548		print("runtime: g", gp.goid, ": frame.sp=", hex(frame.sp), " top=", hex(gp.stktopsp), "\n")
549		print("\tstack=[", hex(gp.stack.lo), "-", hex(gp.stack.hi), "] n=", n, " max=", max, "\n")
550		throw("traceback did not unwind completely")
551	}
552
553	return n
554}
555
556// printArgs prints function arguments in traceback.
557func printArgs(f funcInfo, argp unsafe.Pointer, pc uintptr) {
558	// The "instruction" of argument printing is encoded in _FUNCDATA_ArgInfo.
559	// See cmd/compile/internal/ssagen.emitArgInfo for the description of the
560	// encoding.
561	// These constants need to be in sync with the compiler.
562	const (
563		_endSeq         = 0xff
564		_startAgg       = 0xfe
565		_endAgg         = 0xfd
566		_dotdotdot      = 0xfc
567		_offsetTooLarge = 0xfb
568	)
569
570	const (
571		limit    = 10                       // print no more than 10 args/components
572		maxDepth = 5                        // no more than 5 layers of nesting
573		maxLen   = (maxDepth*3+2)*limit + 1 // max length of _FUNCDATA_ArgInfo (see the compiler side for reasoning)
574	)
575
576	p := (*[maxLen]uint8)(funcdata(f, _FUNCDATA_ArgInfo))
577	if p == nil {
578		return
579	}
580
581	liveInfo := funcdata(f, _FUNCDATA_ArgLiveInfo)
582	liveIdx := pcdatavalue(f, _PCDATA_ArgLiveIndex, pc, nil)
583	startOffset := uint8(0xff) // smallest offset that needs liveness info (slots with a lower offset is always live)
584	if liveInfo != nil {
585		startOffset = *(*uint8)(liveInfo)
586	}
587
588	isLive := func(off, slotIdx uint8) bool {
589		if liveInfo == nil || liveIdx <= 0 {
590			return true // no liveness info, always live
591		}
592		if off < startOffset {
593			return true
594		}
595		bits := *(*uint8)(add(liveInfo, uintptr(liveIdx)+uintptr(slotIdx/8)))
596		return bits&(1<<(slotIdx%8)) != 0
597	}
598
599	print1 := func(off, sz, slotIdx uint8) {
600		x := readUnaligned64(add(argp, uintptr(off)))
601		// mask out irrelevant bits
602		if sz < 8 {
603			shift := 64 - sz*8
604			if goarch.BigEndian {
605				x = x >> shift
606			} else {
607				x = x << shift >> shift
608			}
609		}
610		print(hex(x))
611		if !isLive(off, slotIdx) {
612			print("?")
613		}
614	}
615
616	start := true
617	printcomma := func() {
618		if !start {
619			print(", ")
620		}
621	}
622	pi := 0
623	slotIdx := uint8(0) // register arg spill slot index
624printloop:
625	for {
626		o := p[pi]
627		pi++
628		switch o {
629		case _endSeq:
630			break printloop
631		case _startAgg:
632			printcomma()
633			print("{")
634			start = true
635			continue
636		case _endAgg:
637			print("}")
638		case _dotdotdot:
639			printcomma()
640			print("...")
641		case _offsetTooLarge:
642			printcomma()
643			print("_")
644		default:
645			printcomma()
646			sz := p[pi]
647			pi++
648			print1(o, sz, slotIdx)
649			if o >= startOffset {
650				slotIdx++
651			}
652		}
653		start = false
654	}
655}
656
657// reflectMethodValue is a partial duplicate of reflect.makeFuncImpl
658// and reflect.methodValue.
659type reflectMethodValue struct {
660	fn     uintptr
661	stack  *bitvector // ptrmap for both args and results
662	argLen uintptr    // just args
663}
664
665// getArgInfoFast returns the argument frame information for a call to f.
666// It is short and inlineable. However, it does not handle all functions.
667// If ok reports false, you must call getArgInfo instead.
668// TODO(josharian): once we do mid-stack inlining,
669// call getArgInfo directly from getArgInfoFast and stop returning an ok bool.
670func getArgInfoFast(f funcInfo, needArgMap bool) (arglen uintptr, argmap *bitvector, ok bool) {
671	return uintptr(f.args), nil, !(needArgMap && f.args == _ArgsSizeUnknown)
672}
673
674// getArgInfo returns the argument frame information for a call to f
675// with call frame frame.
676//
677// This is used for both actual calls with active stack frames and for
678// deferred calls or goroutines that are not yet executing. If this is an actual
679// call, ctxt must be nil (getArgInfo will retrieve what it needs from
680// the active stack frame). If this is a deferred call or unstarted goroutine,
681// ctxt must be the function object that was deferred or go'd.
682func getArgInfo(frame *stkframe, f funcInfo, needArgMap bool, ctxt *funcval) (arglen uintptr, argmap *bitvector) {
683	arglen = uintptr(f.args)
684	if needArgMap && f.args == _ArgsSizeUnknown {
685		// Extract argument bitmaps for reflect stubs from the calls they made to reflect.
686		switch funcname(f) {
687		case "reflect.makeFuncStub", "reflect.methodValueCall":
688			// These take a *reflect.methodValue as their
689			// context register.
690			var mv *reflectMethodValue
691			var retValid bool
692			if ctxt != nil {
693				// This is not an actual call, but a
694				// deferred call or an unstarted goroutine.
695				// The function value is itself the *reflect.methodValue.
696				mv = (*reflectMethodValue)(unsafe.Pointer(ctxt))
697			} else {
698				// This is a real call that took the
699				// *reflect.methodValue as its context
700				// register and immediately saved it
701				// to 0(SP). Get the methodValue from
702				// 0(SP).
703				arg0 := frame.sp + sys.MinFrameSize
704				mv = *(**reflectMethodValue)(unsafe.Pointer(arg0))
705				// Figure out whether the return values are valid.
706				// Reflect will update this value after it copies
707				// in the return values.
708				retValid = *(*bool)(unsafe.Pointer(arg0 + 4*goarch.PtrSize))
709			}
710			if mv.fn != f.entry() {
711				print("runtime: confused by ", funcname(f), "\n")
712				throw("reflect mismatch")
713			}
714			bv := mv.stack
715			arglen = uintptr(bv.n * goarch.PtrSize)
716			if !retValid {
717				arglen = uintptr(mv.argLen) &^ (goarch.PtrSize - 1)
718			}
719			argmap = bv
720		}
721	}
722	return
723}
724
725// tracebackCgoContext handles tracing back a cgo context value, from
726// the context argument to setCgoTraceback, for the gentraceback
727// function. It returns the new value of n.
728func tracebackCgoContext(pcbuf *uintptr, printing bool, ctxt uintptr, n, max int) int {
729	var cgoPCs [32]uintptr
730	cgoContextPCs(ctxt, cgoPCs[:])
731	var arg cgoSymbolizerArg
732	anySymbolized := false
733	for _, pc := range cgoPCs {
734		if pc == 0 || n >= max {
735			break
736		}
737		if pcbuf != nil {
738			(*[1 << 20]uintptr)(unsafe.Pointer(pcbuf))[n] = pc
739		}
740		if printing {
741			if cgoSymbolizer == nil {
742				print("non-Go function at pc=", hex(pc), "\n")
743			} else {
744				c := printOneCgoTraceback(pc, max-n, &arg)
745				n += c - 1 // +1 a few lines down
746				anySymbolized = true
747			}
748		}
749		n++
750	}
751	if anySymbolized {
752		arg.pc = 0
753		callCgoSymbolizer(&arg)
754	}
755	return n
756}
757
758func printcreatedby(gp *g) {
759	// Show what created goroutine, except main goroutine (goid 1).
760	pc := gp.gopc
761	f := findfunc(pc)
762	if f.valid() && showframe(f, gp, false, funcID_normal, funcID_normal) && gp.goid != 1 {
763		printcreatedby1(f, pc)
764	}
765}
766
767func printcreatedby1(f funcInfo, pc uintptr) {
768	print("created by ", funcname(f), "\n")
769	tracepc := pc // back up to CALL instruction for funcline.
770	if pc > f.entry() {
771		tracepc -= sys.PCQuantum
772	}
773	file, line := funcline(f, tracepc)
774	print("\t", file, ":", line)
775	if pc > f.entry() {
776		print(" +", hex(pc-f.entry()))
777	}
778	print("\n")
779}
780
781func traceback(pc, sp, lr uintptr, gp *g) {
782	traceback1(pc, sp, lr, gp, 0)
783}
784
785// tracebacktrap is like traceback but expects that the PC and SP were obtained
786// from a trap, not from gp->sched or gp->syscallpc/gp->syscallsp or getcallerpc/getcallersp.
787// Because they are from a trap instead of from a saved pair,
788// the initial PC must not be rewound to the previous instruction.
789// (All the saved pairs record a PC that is a return address, so we
790// rewind it into the CALL instruction.)
791// If gp.m.libcall{g,pc,sp} information is available, it uses that information in preference to
792// the pc/sp/lr passed in.
793func tracebacktrap(pc, sp, lr uintptr, gp *g) {
794	if gp.m.libcallsp != 0 {
795		// We're in C code somewhere, traceback from the saved position.
796		traceback1(gp.m.libcallpc, gp.m.libcallsp, 0, gp.m.libcallg.ptr(), 0)
797		return
798	}
799	traceback1(pc, sp, lr, gp, _TraceTrap)
800}
801
802func traceback1(pc, sp, lr uintptr, gp *g, flags uint) {
803	// If the goroutine is in cgo, and we have a cgo traceback, print that.
804	if iscgo && gp.m != nil && gp.m.ncgo > 0 && gp.syscallsp != 0 && gp.m.cgoCallers != nil && gp.m.cgoCallers[0] != 0 {
805		// Lock cgoCallers so that a signal handler won't
806		// change it, copy the array, reset it, unlock it.
807		// We are locked to the thread and are not running
808		// concurrently with a signal handler.
809		// We just have to stop a signal handler from interrupting
810		// in the middle of our copy.
811		atomic.Store(&gp.m.cgoCallersUse, 1)
812		cgoCallers := *gp.m.cgoCallers
813		gp.m.cgoCallers[0] = 0
814		atomic.Store(&gp.m.cgoCallersUse, 0)
815
816		printCgoTraceback(&cgoCallers)
817	}
818
819	if readgstatus(gp)&^_Gscan == _Gsyscall {
820		// Override registers if blocked in system call.
821		pc = gp.syscallpc
822		sp = gp.syscallsp
823		flags &^= _TraceTrap
824	}
825	if gp.m != nil && gp.m.vdsoSP != 0 {
826		// Override registers if running in VDSO. This comes after the
827		// _Gsyscall check to cover VDSO calls after entersyscall.
828		pc = gp.m.vdsoPC
829		sp = gp.m.vdsoSP
830		flags &^= _TraceTrap
831	}
832
833	// Print traceback. By default, omits runtime frames.
834	// If that means we print nothing at all, repeat forcing all frames printed.
835	n := gentraceback(pc, sp, lr, gp, 0, nil, _TracebackMaxFrames, nil, nil, flags)
836	if n == 0 && (flags&_TraceRuntimeFrames) == 0 {
837		n = gentraceback(pc, sp, lr, gp, 0, nil, _TracebackMaxFrames, nil, nil, flags|_TraceRuntimeFrames)
838	}
839	if n == _TracebackMaxFrames {
840		print("...additional frames elided...\n")
841	}
842	printcreatedby(gp)
843
844	if gp.ancestors == nil {
845		return
846	}
847	for _, ancestor := range *gp.ancestors {
848		printAncestorTraceback(ancestor)
849	}
850}
851
852// printAncestorTraceback prints the traceback of the given ancestor.
853// TODO: Unify this with gentraceback and CallersFrames.
854func printAncestorTraceback(ancestor ancestorInfo) {
855	print("[originating from goroutine ", ancestor.goid, "]:\n")
856	for fidx, pc := range ancestor.pcs {
857		f := findfunc(pc) // f previously validated
858		if showfuncinfo(f, fidx == 0, funcID_normal, funcID_normal) {
859			printAncestorTracebackFuncInfo(f, pc)
860		}
861	}
862	if len(ancestor.pcs) == _TracebackMaxFrames {
863		print("...additional frames elided...\n")
864	}
865	// Show what created goroutine, except main goroutine (goid 1).
866	f := findfunc(ancestor.gopc)
867	if f.valid() && showfuncinfo(f, false, funcID_normal, funcID_normal) && ancestor.goid != 1 {
868		printcreatedby1(f, ancestor.gopc)
869	}
870}
871
872// printAncestorTraceback prints the given function info at a given pc
873// within an ancestor traceback. The precision of this info is reduced
874// due to only have access to the pcs at the time of the caller
875// goroutine being created.
876func printAncestorTracebackFuncInfo(f funcInfo, pc uintptr) {
877	name := funcname(f)
878	if inldata := funcdata(f, _FUNCDATA_InlTree); inldata != nil {
879		inltree := (*[1 << 20]inlinedCall)(inldata)
880		ix := pcdatavalue(f, _PCDATA_InlTreeIndex, pc, nil)
881		if ix >= 0 {
882			name = funcnameFromNameoff(f, inltree[ix].func_)
883		}
884	}
885	file, line := funcline(f, pc)
886	if name == "runtime.gopanic" {
887		name = "panic"
888	}
889	print(name, "(...)\n")
890	print("\t", file, ":", line)
891	if pc > f.entry() {
892		print(" +", hex(pc-f.entry()))
893	}
894	print("\n")
895}
896
897func callers(skip int, pcbuf []uintptr) int {
898	sp := getcallersp()
899	pc := getcallerpc()
900	gp := getg()
901	var n int
902	systemstack(func() {
903		n = gentraceback(pc, sp, 0, gp, skip, &pcbuf[0], len(pcbuf), nil, nil, 0)
904	})
905	return n
906}
907
908func gcallers(gp *g, skip int, pcbuf []uintptr) int {
909	return gentraceback(^uintptr(0), ^uintptr(0), 0, gp, skip, &pcbuf[0], len(pcbuf), nil, nil, 0)
910}
911
912// showframe reports whether the frame with the given characteristics should
913// be printed during a traceback.
914func showframe(f funcInfo, gp *g, firstFrame bool, funcID, childID funcID) bool {
915	g := getg()
916	if g.m.throwing > 0 && gp != nil && (gp == g.m.curg || gp == g.m.caughtsig.ptr()) {
917		return true
918	}
919	return showfuncinfo(f, firstFrame, funcID, childID)
920}
921
922// showfuncinfo reports whether a function with the given characteristics should
923// be printed during a traceback.
924func showfuncinfo(f funcInfo, firstFrame bool, funcID, childID funcID) bool {
925	// Note that f may be a synthesized funcInfo for an inlined
926	// function, in which case only nameoff and funcID are set.
927
928	level, _, _ := gotraceback()
929	if level > 1 {
930		// Show all frames.
931		return true
932	}
933
934	if !f.valid() {
935		return false
936	}
937
938	if funcID == funcID_wrapper && elideWrapperCalling(childID) {
939		return false
940	}
941
942	name := funcname(f)
943
944	// Special case: always show runtime.gopanic frame
945	// in the middle of a stack trace, so that we can
946	// see the boundary between ordinary code and
947	// panic-induced deferred code.
948	// See golang.org/issue/5832.
949	if name == "runtime.gopanic" && !firstFrame {
950		return true
951	}
952
953	return bytealg.IndexByteString(name, '.') >= 0 && (!hasPrefix(name, "runtime.") || isExportedRuntime(name))
954}
955
956// isExportedRuntime reports whether name is an exported runtime function.
957// It is only for runtime functions, so ASCII A-Z is fine.
958func isExportedRuntime(name string) bool {
959	const n = len("runtime.")
960	return len(name) > n && name[:n] == "runtime." && 'A' <= name[n] && name[n] <= 'Z'
961}
962
963// elideWrapperCalling reports whether a wrapper function that called
964// function id should be elided from stack traces.
965func elideWrapperCalling(id funcID) bool {
966	// If the wrapper called a panic function instead of the
967	// wrapped function, we want to include it in stacks.
968	return !(id == funcID_gopanic || id == funcID_sigpanic || id == funcID_panicwrap)
969}
970
971var gStatusStrings = [...]string{
972	_Gidle:      "idle",
973	_Grunnable:  "runnable",
974	_Grunning:   "running",
975	_Gsyscall:   "syscall",
976	_Gwaiting:   "waiting",
977	_Gdead:      "dead",
978	_Gcopystack: "copystack",
979	_Gpreempted: "preempted",
980}
981
982func goroutineheader(gp *g) {
983	gpstatus := readgstatus(gp)
984
985	isScan := gpstatus&_Gscan != 0
986	gpstatus &^= _Gscan // drop the scan bit
987
988	// Basic string status
989	var status string
990	if 0 <= gpstatus && gpstatus < uint32(len(gStatusStrings)) {
991		status = gStatusStrings[gpstatus]
992	} else {
993		status = "???"
994	}
995
996	// Override.
997	if gpstatus == _Gwaiting && gp.waitreason != waitReasonZero {
998		status = gp.waitreason.String()
999	}
1000
1001	// approx time the G is blocked, in minutes
1002	var waitfor int64
1003	if (gpstatus == _Gwaiting || gpstatus == _Gsyscall) && gp.waitsince != 0 {
1004		waitfor = (nanotime() - gp.waitsince) / 60e9
1005	}
1006	print("goroutine ", gp.goid, " [", status)
1007	if isScan {
1008		print(" (scan)")
1009	}
1010	if waitfor >= 1 {
1011		print(", ", waitfor, " minutes")
1012	}
1013	if gp.lockedm != 0 {
1014		print(", locked to thread")
1015	}
1016	print("]:\n")
1017}
1018
1019func tracebackothers(me *g) {
1020	level, _, _ := gotraceback()
1021
1022	// Show the current goroutine first, if we haven't already.
1023	curgp := getg().m.curg
1024	if curgp != nil && curgp != me {
1025		print("\n")
1026		goroutineheader(curgp)
1027		traceback(^uintptr(0), ^uintptr(0), 0, curgp)
1028	}
1029
1030	// We can't call locking forEachG here because this may be during fatal
1031	// throw/panic, where locking could be out-of-order or a direct
1032	// deadlock.
1033	//
1034	// Instead, use forEachGRace, which requires no locking. We don't lock
1035	// against concurrent creation of new Gs, but even with allglock we may
1036	// miss Gs created after this loop.
1037	forEachGRace(func(gp *g) {
1038		if gp == me || gp == curgp || readgstatus(gp) == _Gdead || isSystemGoroutine(gp, false) && level < 2 {
1039			return
1040		}
1041		print("\n")
1042		goroutineheader(gp)
1043		// Note: gp.m == g.m occurs when tracebackothers is
1044		// called from a signal handler initiated during a
1045		// systemstack call. The original G is still in the
1046		// running state, and we want to print its stack.
1047		if gp.m != getg().m && readgstatus(gp)&^_Gscan == _Grunning {
1048			print("\tgoroutine running on other thread; stack unavailable\n")
1049			printcreatedby(gp)
1050		} else {
1051			traceback(^uintptr(0), ^uintptr(0), 0, gp)
1052		}
1053	})
1054}
1055
1056// tracebackHexdump hexdumps part of stk around frame.sp and frame.fp
1057// for debugging purposes. If the address bad is included in the
1058// hexdumped range, it will mark it as well.
1059func tracebackHexdump(stk stack, frame *stkframe, bad uintptr) {
1060	const expand = 32 * goarch.PtrSize
1061	const maxExpand = 256 * goarch.PtrSize
1062	// Start around frame.sp.
1063	lo, hi := frame.sp, frame.sp
1064	// Expand to include frame.fp.
1065	if frame.fp != 0 && frame.fp < lo {
1066		lo = frame.fp
1067	}
1068	if frame.fp != 0 && frame.fp > hi {
1069		hi = frame.fp
1070	}
1071	// Expand a bit more.
1072	lo, hi = lo-expand, hi+expand
1073	// But don't go too far from frame.sp.
1074	if lo < frame.sp-maxExpand {
1075		lo = frame.sp - maxExpand
1076	}
1077	if hi > frame.sp+maxExpand {
1078		hi = frame.sp + maxExpand
1079	}
1080	// And don't go outside the stack bounds.
1081	if lo < stk.lo {
1082		lo = stk.lo
1083	}
1084	if hi > stk.hi {
1085		hi = stk.hi
1086	}
1087
1088	// Print the hex dump.
1089	print("stack: frame={sp:", hex(frame.sp), ", fp:", hex(frame.fp), "} stack=[", hex(stk.lo), ",", hex(stk.hi), ")\n")
1090	hexdumpWords(lo, hi, func(p uintptr) byte {
1091		switch p {
1092		case frame.fp:
1093			return '>'
1094		case frame.sp:
1095			return '<'
1096		case bad:
1097			return '!'
1098		}
1099		return 0
1100	})
1101}
1102
1103// isSystemGoroutine reports whether the goroutine g must be omitted
1104// in stack dumps and deadlock detector. This is any goroutine that
1105// starts at a runtime.* entry point, except for runtime.main,
1106// runtime.handleAsyncEvent (wasm only) and sometimes runtime.runfinq.
1107//
1108// If fixed is true, any goroutine that can vary between user and
1109// system (that is, the finalizer goroutine) is considered a user
1110// goroutine.
1111func isSystemGoroutine(gp *g, fixed bool) bool {
1112	// Keep this in sync with cmd/trace/trace.go:isSystemGoroutine.
1113	f := findfunc(gp.startpc)
1114	if !f.valid() {
1115		return false
1116	}
1117	if f.funcID == funcID_runtime_main || f.funcID == funcID_handleAsyncEvent {
1118		return false
1119	}
1120	if f.funcID == funcID_runfinq {
1121		// We include the finalizer goroutine if it's calling
1122		// back into user code.
1123		if fixed {
1124			// This goroutine can vary. In fixed mode,
1125			// always consider it a user goroutine.
1126			return false
1127		}
1128		return !fingRunning
1129	}
1130	return hasPrefix(funcname(f), "runtime.")
1131}
1132
1133// SetCgoTraceback records three C functions to use to gather
1134// traceback information from C code and to convert that traceback
1135// information into symbolic information. These are used when printing
1136// stack traces for a program that uses cgo.
1137//
1138// The traceback and context functions may be called from a signal
1139// handler, and must therefore use only async-signal safe functions.
1140// The symbolizer function may be called while the program is
1141// crashing, and so must be cautious about using memory.  None of the
1142// functions may call back into Go.
1143//
1144// The context function will be called with a single argument, a
1145// pointer to a struct:
1146//
1147//	struct {
1148//		Context uintptr
1149//	}
1150//
1151// In C syntax, this struct will be
1152//
1153//	struct {
1154//		uintptr_t Context;
1155//	};
1156//
1157// If the Context field is 0, the context function is being called to
1158// record the current traceback context. It should record in the
1159// Context field whatever information is needed about the current
1160// point of execution to later produce a stack trace, probably the
1161// stack pointer and PC. In this case the context function will be
1162// called from C code.
1163//
1164// If the Context field is not 0, then it is a value returned by a
1165// previous call to the context function. This case is called when the
1166// context is no longer needed; that is, when the Go code is returning
1167// to its C code caller. This permits the context function to release
1168// any associated resources.
1169//
1170// While it would be correct for the context function to record a
1171// complete a stack trace whenever it is called, and simply copy that
1172// out in the traceback function, in a typical program the context
1173// function will be called many times without ever recording a
1174// traceback for that context. Recording a complete stack trace in a
1175// call to the context function is likely to be inefficient.
1176//
1177// The traceback function will be called with a single argument, a
1178// pointer to a struct:
1179//
1180//	struct {
1181//		Context    uintptr
1182//		SigContext uintptr
1183//		Buf        *uintptr
1184//		Max        uintptr
1185//	}
1186//
1187// In C syntax, this struct will be
1188//
1189//	struct {
1190//		uintptr_t  Context;
1191//		uintptr_t  SigContext;
1192//		uintptr_t* Buf;
1193//		uintptr_t  Max;
1194//	};
1195//
1196// The Context field will be zero to gather a traceback from the
1197// current program execution point. In this case, the traceback
1198// function will be called from C code.
1199//
1200// Otherwise Context will be a value previously returned by a call to
1201// the context function. The traceback function should gather a stack
1202// trace from that saved point in the program execution. The traceback
1203// function may be called from an execution thread other than the one
1204// that recorded the context, but only when the context is known to be
1205// valid and unchanging. The traceback function may also be called
1206// deeper in the call stack on the same thread that recorded the
1207// context. The traceback function may be called multiple times with
1208// the same Context value; it will usually be appropriate to cache the
1209// result, if possible, the first time this is called for a specific
1210// context value.
1211//
1212// If the traceback function is called from a signal handler on a Unix
1213// system, SigContext will be the signal context argument passed to
1214// the signal handler (a C ucontext_t* cast to uintptr_t). This may be
1215// used to start tracing at the point where the signal occurred. If
1216// the traceback function is not called from a signal handler,
1217// SigContext will be zero.
1218//
1219// Buf is where the traceback information should be stored. It should
1220// be PC values, such that Buf[0] is the PC of the caller, Buf[1] is
1221// the PC of that function's caller, and so on.  Max is the maximum
1222// number of entries to store.  The function should store a zero to
1223// indicate the top of the stack, or that the caller is on a different
1224// stack, presumably a Go stack.
1225//
1226// Unlike runtime.Callers, the PC values returned should, when passed
1227// to the symbolizer function, return the file/line of the call
1228// instruction.  No additional subtraction is required or appropriate.
1229//
1230// On all platforms, the traceback function is invoked when a call from
1231// Go to C to Go requests a stack trace. On linux/amd64, linux/ppc64le,
1232// and freebsd/amd64, the traceback function is also invoked when a
1233// signal is received by a thread that is executing a cgo call. The
1234// traceback function should not make assumptions about when it is
1235// called, as future versions of Go may make additional calls.
1236//
1237// The symbolizer function will be called with a single argument, a
1238// pointer to a struct:
1239//
1240//	struct {
1241//		PC      uintptr // program counter to fetch information for
1242//		File    *byte   // file name (NUL terminated)
1243//		Lineno  uintptr // line number
1244//		Func    *byte   // function name (NUL terminated)
1245//		Entry   uintptr // function entry point
1246//		More    uintptr // set non-zero if more info for this PC
1247//		Data    uintptr // unused by runtime, available for function
1248//	}
1249//
1250// In C syntax, this struct will be
1251//
1252//	struct {
1253//		uintptr_t PC;
1254//		char*     File;
1255//		uintptr_t Lineno;
1256//		char*     Func;
1257//		uintptr_t Entry;
1258//		uintptr_t More;
1259//		uintptr_t Data;
1260//	};
1261//
1262// The PC field will be a value returned by a call to the traceback
1263// function.
1264//
1265// The first time the function is called for a particular traceback,
1266// all the fields except PC will be 0. The function should fill in the
1267// other fields if possible, setting them to 0/nil if the information
1268// is not available. The Data field may be used to store any useful
1269// information across calls. The More field should be set to non-zero
1270// if there is more information for this PC, zero otherwise. If More
1271// is set non-zero, the function will be called again with the same
1272// PC, and may return different information (this is intended for use
1273// with inlined functions). If More is zero, the function will be
1274// called with the next PC value in the traceback. When the traceback
1275// is complete, the function will be called once more with PC set to
1276// zero; this may be used to free any information. Each call will
1277// leave the fields of the struct set to the same values they had upon
1278// return, except for the PC field when the More field is zero. The
1279// function must not keep a copy of the struct pointer between calls.
1280//
1281// When calling SetCgoTraceback, the version argument is the version
1282// number of the structs that the functions expect to receive.
1283// Currently this must be zero.
1284//
1285// The symbolizer function may be nil, in which case the results of
1286// the traceback function will be displayed as numbers. If the
1287// traceback function is nil, the symbolizer function will never be
1288// called. The context function may be nil, in which case the
1289// traceback function will only be called with the context field set
1290// to zero.  If the context function is nil, then calls from Go to C
1291// to Go will not show a traceback for the C portion of the call stack.
1292//
1293// SetCgoTraceback should be called only once, ideally from an init function.
1294func SetCgoTraceback(version int, traceback, context, symbolizer unsafe.Pointer) {
1295	if version != 0 {
1296		panic("unsupported version")
1297	}
1298
1299	if cgoTraceback != nil && cgoTraceback != traceback ||
1300		cgoContext != nil && cgoContext != context ||
1301		cgoSymbolizer != nil && cgoSymbolizer != symbolizer {
1302		panic("call SetCgoTraceback only once")
1303	}
1304
1305	cgoTraceback = traceback
1306	cgoContext = context
1307	cgoSymbolizer = symbolizer
1308
1309	// The context function is called when a C function calls a Go
1310	// function. As such it is only called by C code in runtime/cgo.
1311	if _cgo_set_context_function != nil {
1312		cgocall(_cgo_set_context_function, context)
1313	}
1314}
1315
1316var cgoTraceback unsafe.Pointer
1317var cgoContext unsafe.Pointer
1318var cgoSymbolizer unsafe.Pointer
1319
1320// cgoTracebackArg is the type passed to cgoTraceback.
1321type cgoTracebackArg struct {
1322	context    uintptr
1323	sigContext uintptr
1324	buf        *uintptr
1325	max        uintptr
1326}
1327
1328// cgoContextArg is the type passed to the context function.
1329type cgoContextArg struct {
1330	context uintptr
1331}
1332
1333// cgoSymbolizerArg is the type passed to cgoSymbolizer.
1334type cgoSymbolizerArg struct {
1335	pc       uintptr
1336	file     *byte
1337	lineno   uintptr
1338	funcName *byte
1339	entry    uintptr
1340	more     uintptr
1341	data     uintptr
1342}
1343
1344// cgoTraceback prints a traceback of callers.
1345func printCgoTraceback(callers *cgoCallers) {
1346	if cgoSymbolizer == nil {
1347		for _, c := range callers {
1348			if c == 0 {
1349				break
1350			}
1351			print("non-Go function at pc=", hex(c), "\n")
1352		}
1353		return
1354	}
1355
1356	var arg cgoSymbolizerArg
1357	for _, c := range callers {
1358		if c == 0 {
1359			break
1360		}
1361		printOneCgoTraceback(c, 0x7fffffff, &arg)
1362	}
1363	arg.pc = 0
1364	callCgoSymbolizer(&arg)
1365}
1366
1367// printOneCgoTraceback prints the traceback of a single cgo caller.
1368// This can print more than one line because of inlining.
1369// Returns the number of frames printed.
1370func printOneCgoTraceback(pc uintptr, max int, arg *cgoSymbolizerArg) int {
1371	c := 0
1372	arg.pc = pc
1373	for c <= max {
1374		callCgoSymbolizer(arg)
1375		if arg.funcName != nil {
1376			// Note that we don't print any argument
1377			// information here, not even parentheses.
1378			// The symbolizer must add that if appropriate.
1379			println(gostringnocopy(arg.funcName))
1380		} else {
1381			println("non-Go function")
1382		}
1383		print("\t")
1384		if arg.file != nil {
1385			print(gostringnocopy(arg.file), ":", arg.lineno, " ")
1386		}
1387		print("pc=", hex(pc), "\n")
1388		c++
1389		if arg.more == 0 {
1390			break
1391		}
1392	}
1393	return c
1394}
1395
1396// callCgoSymbolizer calls the cgoSymbolizer function.
1397func callCgoSymbolizer(arg *cgoSymbolizerArg) {
1398	call := cgocall
1399	if panicking > 0 || getg().m.curg != getg() {
1400		// We do not want to call into the scheduler when panicking
1401		// or when on the system stack.
1402		call = asmcgocall
1403	}
1404	if msanenabled {
1405		msanwrite(unsafe.Pointer(arg), unsafe.Sizeof(cgoSymbolizerArg{}))
1406	}
1407	if asanenabled {
1408		asanwrite(unsafe.Pointer(arg), unsafe.Sizeof(cgoSymbolizerArg{}))
1409	}
1410	call(cgoSymbolizer, noescape(unsafe.Pointer(arg)))
1411}
1412
1413// cgoContextPCs gets the PC values from a cgo traceback.
1414func cgoContextPCs(ctxt uintptr, buf []uintptr) {
1415	if cgoTraceback == nil {
1416		return
1417	}
1418	call := cgocall
1419	if panicking > 0 || getg().m.curg != getg() {
1420		// We do not want to call into the scheduler when panicking
1421		// or when on the system stack.
1422		call = asmcgocall
1423	}
1424	arg := cgoTracebackArg{
1425		context: ctxt,
1426		buf:     (*uintptr)(noescape(unsafe.Pointer(&buf[0]))),
1427		max:     uintptr(len(buf)),
1428	}
1429	if msanenabled {
1430		msanwrite(unsafe.Pointer(&arg), unsafe.Sizeof(arg))
1431	}
1432	if asanenabled {
1433		asanwrite(unsafe.Pointer(&arg), unsafe.Sizeof(arg))
1434	}
1435	call(cgoTraceback, noescape(unsafe.Pointer(&arg)))
1436}
1437