1// Copyright 2015 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5package ssa
6
7import (
8	"container/heap"
9	"sort"
10)
11
12const (
13	ScorePhi = iota // towards top of block
14	ScoreArg
15	ScoreNilCheck
16	ScoreReadTuple
17	ScoreVarDef
18	ScoreMemory
19	ScoreReadFlags
20	ScoreDefault
21	ScoreFlags
22	ScoreControl // towards bottom of block
23)
24
25type ValHeap struct {
26	a     []*Value
27	score []int8
28}
29
30func (h ValHeap) Len() int      { return len(h.a) }
31func (h ValHeap) Swap(i, j int) { a := h.a; a[i], a[j] = a[j], a[i] }
32
33func (h *ValHeap) Push(x interface{}) {
34	// Push and Pop use pointer receivers because they modify the slice's length,
35	// not just its contents.
36	v := x.(*Value)
37	h.a = append(h.a, v)
38}
39func (h *ValHeap) Pop() interface{} {
40	old := h.a
41	n := len(old)
42	x := old[n-1]
43	h.a = old[0 : n-1]
44	return x
45}
46func (h ValHeap) Less(i, j int) bool {
47	x := h.a[i]
48	y := h.a[j]
49	sx := h.score[x.ID]
50	sy := h.score[y.ID]
51	if c := sx - sy; c != 0 {
52		return c > 0 // higher score comes later.
53	}
54	if x.Pos != y.Pos { // Favor in-order line stepping
55		return x.Pos.After(y.Pos)
56	}
57	if x.Op != OpPhi {
58		if c := len(x.Args) - len(y.Args); c != 0 {
59			return c < 0 // smaller args comes later
60		}
61	}
62	return x.ID > y.ID
63}
64
65func (op Op) isLoweredGetClosurePtr() bool {
66	switch op {
67	case OpAMD64LoweredGetClosurePtr, OpPPC64LoweredGetClosurePtr, OpARMLoweredGetClosurePtr, OpARM64LoweredGetClosurePtr,
68		Op386LoweredGetClosurePtr, OpMIPS64LoweredGetClosurePtr, OpS390XLoweredGetClosurePtr, OpMIPSLoweredGetClosurePtr,
69		OpRISCV64LoweredGetClosurePtr, OpWasmLoweredGetClosurePtr:
70		return true
71	}
72	return false
73}
74
75// Schedule the Values in each Block. After this phase returns, the
76// order of b.Values matters and is the order in which those values
77// will appear in the assembly output. For now it generates a
78// reasonable valid schedule using a priority queue. TODO(khr):
79// schedule smarter.
80func schedule(f *Func) {
81	// For each value, the number of times it is used in the block
82	// by values that have not been scheduled yet.
83	uses := make([]int32, f.NumValues())
84
85	// reusable priority queue
86	priq := new(ValHeap)
87
88	// "priority" for a value
89	score := make([]int8, f.NumValues())
90
91	// scheduling order. We queue values in this list in reverse order.
92	// A constant bound allows this to be stack-allocated. 64 is
93	// enough to cover almost every schedule call.
94	order := make([]*Value, 0, 64)
95
96	// maps mem values to the next live memory value
97	nextMem := make([]*Value, f.NumValues())
98	// additional pretend arguments for each Value. Used to enforce load/store ordering.
99	additionalArgs := make([][]*Value, f.NumValues())
100
101	for _, b := range f.Blocks {
102		// Compute score. Larger numbers are scheduled closer to the end of the block.
103		for _, v := range b.Values {
104			switch {
105			case v.Op.isLoweredGetClosurePtr():
106				// We also score GetLoweredClosurePtr as early as possible to ensure that the
107				// context register is not stomped. GetLoweredClosurePtr should only appear
108				// in the entry block where there are no phi functions, so there is no
109				// conflict or ambiguity here.
110				if b != f.Entry {
111					f.Fatalf("LoweredGetClosurePtr appeared outside of entry block, b=%s", b.String())
112				}
113				score[v.ID] = ScorePhi
114			case v.Op == OpAMD64LoweredNilCheck || v.Op == OpPPC64LoweredNilCheck ||
115				v.Op == OpARMLoweredNilCheck || v.Op == OpARM64LoweredNilCheck ||
116				v.Op == Op386LoweredNilCheck || v.Op == OpMIPS64LoweredNilCheck ||
117				v.Op == OpS390XLoweredNilCheck || v.Op == OpMIPSLoweredNilCheck ||
118				v.Op == OpRISCV64LoweredNilCheck || v.Op == OpWasmLoweredNilCheck:
119				// Nil checks must come before loads from the same address.
120				score[v.ID] = ScoreNilCheck
121			case v.Op == OpPhi:
122				// We want all the phis first.
123				score[v.ID] = ScorePhi
124			case v.Op == OpVarDef:
125				// We want all the vardefs next.
126				score[v.ID] = ScoreVarDef
127			case v.Op == OpArg:
128				// We want all the args as early as possible, for better debugging.
129				score[v.ID] = ScoreArg
130			case v.Type.IsMemory():
131				// Schedule stores as early as possible. This tends to
132				// reduce register pressure. It also helps make sure
133				// VARDEF ops are scheduled before the corresponding LEA.
134				score[v.ID] = ScoreMemory
135			case v.Op == OpSelect0 || v.Op == OpSelect1:
136				// Schedule the pseudo-op of reading part of a tuple
137				// immediately after the tuple-generating op, since
138				// this value is already live. This also removes its
139				// false dependency on the other part of the tuple.
140				// Also ensures tuple is never spilled.
141				score[v.ID] = ScoreReadTuple
142			case v.Type.IsFlags() || v.Type.IsTuple() && v.Type.FieldType(1).IsFlags():
143				// Schedule flag register generation as late as possible.
144				// This makes sure that we only have one live flags
145				// value at a time.
146				score[v.ID] = ScoreFlags
147			default:
148				score[v.ID] = ScoreDefault
149				// If we're reading flags, schedule earlier to keep flag lifetime short.
150				for _, a := range v.Args {
151					if a.Type.IsFlags() {
152						score[v.ID] = ScoreReadFlags
153					}
154				}
155			}
156		}
157	}
158
159	for _, b := range f.Blocks {
160		// Find store chain for block.
161		// Store chains for different blocks overwrite each other, so
162		// the calculated store chain is good only for this block.
163		for _, v := range b.Values {
164			if v.Op != OpPhi && v.Type.IsMemory() {
165				for _, w := range v.Args {
166					if w.Type.IsMemory() {
167						nextMem[w.ID] = v
168					}
169				}
170			}
171		}
172
173		// Compute uses.
174		for _, v := range b.Values {
175			if v.Op == OpPhi {
176				// If a value is used by a phi, it does not induce
177				// a scheduling edge because that use is from the
178				// previous iteration.
179				continue
180			}
181			for _, w := range v.Args {
182				if w.Block == b {
183					uses[w.ID]++
184				}
185				// Any load must come before the following store.
186				if !v.Type.IsMemory() && w.Type.IsMemory() {
187					// v is a load.
188					s := nextMem[w.ID]
189					if s == nil || s.Block != b {
190						continue
191					}
192					additionalArgs[s.ID] = append(additionalArgs[s.ID], v)
193					uses[v.ID]++
194				}
195			}
196		}
197
198		for _, c := range b.ControlValues() {
199			// Force the control values to be scheduled at the end,
200			// unless they are phi values (which must be first).
201			// OpArg also goes first -- if it is stack it register allocates
202			// to a LoadReg, if it is register it is from the beginning anyway.
203			if c.Op == OpPhi || c.Op == OpArg {
204				continue
205			}
206			score[c.ID] = ScoreControl
207
208			// Schedule values dependent on the control values at the end.
209			// This reduces the number of register spills. We don't find
210			// all values that depend on the controls, just values with a
211			// direct dependency. This is cheaper and in testing there
212			// was no difference in the number of spills.
213			for _, v := range b.Values {
214				if v.Op != OpPhi {
215					for _, a := range v.Args {
216						if a == c {
217							score[v.ID] = ScoreControl
218						}
219					}
220				}
221			}
222
223		}
224
225		// To put things into a priority queue
226		// The values that should come last are least.
227		priq.score = score
228		priq.a = priq.a[:0]
229
230		// Initialize priority queue with schedulable values.
231		for _, v := range b.Values {
232			if uses[v.ID] == 0 {
233				heap.Push(priq, v)
234			}
235		}
236
237		// Schedule highest priority value, update use counts, repeat.
238		order = order[:0]
239		tuples := make(map[ID][]*Value)
240		for priq.Len() > 0 {
241			// Find highest priority schedulable value.
242			// Note that schedule is assembled backwards.
243
244			v := heap.Pop(priq).(*Value)
245
246			// Add it to the schedule.
247			// Do not emit tuple-reading ops until we're ready to emit the tuple-generating op.
248			//TODO: maybe remove ReadTuple score above, if it does not help on performance
249			switch {
250			case v.Op == OpSelect0:
251				if tuples[v.Args[0].ID] == nil {
252					tuples[v.Args[0].ID] = make([]*Value, 2)
253				}
254				tuples[v.Args[0].ID][0] = v
255			case v.Op == OpSelect1:
256				if tuples[v.Args[0].ID] == nil {
257					tuples[v.Args[0].ID] = make([]*Value, 2)
258				}
259				tuples[v.Args[0].ID][1] = v
260			case v.Type.IsTuple() && tuples[v.ID] != nil:
261				if tuples[v.ID][1] != nil {
262					order = append(order, tuples[v.ID][1])
263				}
264				if tuples[v.ID][0] != nil {
265					order = append(order, tuples[v.ID][0])
266				}
267				delete(tuples, v.ID)
268				fallthrough
269			default:
270				order = append(order, v)
271			}
272
273			// Update use counts of arguments.
274			for _, w := range v.Args {
275				if w.Block != b {
276					continue
277				}
278				uses[w.ID]--
279				if uses[w.ID] == 0 {
280					// All uses scheduled, w is now schedulable.
281					heap.Push(priq, w)
282				}
283			}
284			for _, w := range additionalArgs[v.ID] {
285				uses[w.ID]--
286				if uses[w.ID] == 0 {
287					// All uses scheduled, w is now schedulable.
288					heap.Push(priq, w)
289				}
290			}
291		}
292		if len(order) != len(b.Values) {
293			f.Fatalf("schedule does not include all values in block %s", b)
294		}
295		for i := 0; i < len(b.Values); i++ {
296			b.Values[i] = order[len(b.Values)-1-i]
297		}
298	}
299
300	f.scheduled = true
301}
302
303// storeOrder orders values with respect to stores. That is,
304// if v transitively depends on store s, v is ordered after s,
305// otherwise v is ordered before s.
306// Specifically, values are ordered like
307//   store1
308//   NilCheck that depends on store1
309//   other values that depends on store1
310//   store2
311//   NilCheck that depends on store2
312//   other values that depends on store2
313//   ...
314// The order of non-store and non-NilCheck values are undefined
315// (not necessarily dependency order). This should be cheaper
316// than a full scheduling as done above.
317// Note that simple dependency order won't work: there is no
318// dependency between NilChecks and values like IsNonNil.
319// Auxiliary data structures are passed in as arguments, so
320// that they can be allocated in the caller and be reused.
321// This function takes care of reset them.
322func storeOrder(values []*Value, sset *sparseSet, storeNumber []int32) []*Value {
323	if len(values) == 0 {
324		return values
325	}
326
327	f := values[0].Block.Func
328
329	// find all stores
330
331	// Members of values that are store values.
332	// A constant bound allows this to be stack-allocated. 64 is
333	// enough to cover almost every storeOrder call.
334	stores := make([]*Value, 0, 64)
335	hasNilCheck := false
336	sset.clear() // sset is the set of stores that are used in other values
337	for _, v := range values {
338		if v.Type.IsMemory() {
339			stores = append(stores, v)
340			if v.Op == OpInitMem || v.Op == OpPhi {
341				continue
342			}
343			sset.add(v.MemoryArg().ID) // record that v's memory arg is used
344		}
345		if v.Op == OpNilCheck {
346			hasNilCheck = true
347		}
348	}
349	if len(stores) == 0 || !hasNilCheck && f.pass.name == "nilcheckelim" {
350		// there is no store, the order does not matter
351		return values
352	}
353
354	// find last store, which is the one that is not used by other stores
355	var last *Value
356	for _, v := range stores {
357		if !sset.contains(v.ID) {
358			if last != nil {
359				f.Fatalf("two stores live simultaneously: %v and %v", v, last)
360			}
361			last = v
362		}
363	}
364
365	// We assign a store number to each value. Store number is the
366	// index of the latest store that this value transitively depends.
367	// The i-th store in the current block gets store number 3*i. A nil
368	// check that depends on the i-th store gets store number 3*i+1.
369	// Other values that depends on the i-th store gets store number 3*i+2.
370	// Special case: 0 -- unassigned, 1 or 2 -- the latest store it depends
371	// is in the previous block (or no store at all, e.g. value is Const).
372	// First we assign the number to all stores by walking back the store chain,
373	// then assign the number to other values in DFS order.
374	count := make([]int32, 3*(len(stores)+1))
375	sset.clear() // reuse sparse set to ensure that a value is pushed to stack only once
376	for n, w := len(stores), last; n > 0; n-- {
377		storeNumber[w.ID] = int32(3 * n)
378		count[3*n]++
379		sset.add(w.ID)
380		if w.Op == OpInitMem || w.Op == OpPhi {
381			if n != 1 {
382				f.Fatalf("store order is wrong: there are stores before %v", w)
383			}
384			break
385		}
386		w = w.MemoryArg()
387	}
388	var stack []*Value
389	for _, v := range values {
390		if sset.contains(v.ID) {
391			// in sset means v is a store, or already pushed to stack, or already assigned a store number
392			continue
393		}
394		stack = append(stack, v)
395		sset.add(v.ID)
396
397		for len(stack) > 0 {
398			w := stack[len(stack)-1]
399			if storeNumber[w.ID] != 0 {
400				stack = stack[:len(stack)-1]
401				continue
402			}
403			if w.Op == OpPhi {
404				// Phi value doesn't depend on store in the current block.
405				// Do this early to avoid dependency cycle.
406				storeNumber[w.ID] = 2
407				count[2]++
408				stack = stack[:len(stack)-1]
409				continue
410			}
411
412			max := int32(0) // latest store dependency
413			argsdone := true
414			for _, a := range w.Args {
415				if a.Block != w.Block {
416					continue
417				}
418				if !sset.contains(a.ID) {
419					stack = append(stack, a)
420					sset.add(a.ID)
421					argsdone = false
422					break
423				}
424				if storeNumber[a.ID]/3 > max {
425					max = storeNumber[a.ID] / 3
426				}
427			}
428			if !argsdone {
429				continue
430			}
431
432			n := 3*max + 2
433			if w.Op == OpNilCheck {
434				n = 3*max + 1
435			}
436			storeNumber[w.ID] = n
437			count[n]++
438			stack = stack[:len(stack)-1]
439		}
440	}
441
442	// convert count to prefix sum of counts: count'[i] = sum_{j<=i} count[i]
443	for i := range count {
444		if i == 0 {
445			continue
446		}
447		count[i] += count[i-1]
448	}
449	if count[len(count)-1] != int32(len(values)) {
450		f.Fatalf("storeOrder: value is missing, total count = %d, values = %v", count[len(count)-1], values)
451	}
452
453	// place values in count-indexed bins, which are in the desired store order
454	order := make([]*Value, len(values))
455	for _, v := range values {
456		s := storeNumber[v.ID]
457		order[count[s-1]] = v
458		count[s-1]++
459	}
460
461	// Order nil checks in source order. We want the first in source order to trigger.
462	// If two are on the same line, we don't really care which happens first.
463	// See issue 18169.
464	if hasNilCheck {
465		start := -1
466		for i, v := range order {
467			if v.Op == OpNilCheck {
468				if start == -1 {
469					start = i
470				}
471			} else {
472				if start != -1 {
473					sort.Sort(bySourcePos(order[start:i]))
474					start = -1
475				}
476			}
477		}
478		if start != -1 {
479			sort.Sort(bySourcePos(order[start:]))
480		}
481	}
482
483	return order
484}
485
486type bySourcePos []*Value
487
488func (s bySourcePos) Len() int           { return len(s) }
489func (s bySourcePos) Swap(i, j int)      { s[i], s[j] = s[j], s[i] }
490func (s bySourcePos) Less(i, j int) bool { return s[i].Pos.Before(s[j].Pos) }
491