1// Copyright 2015 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5package ssa
6
7import (
8	"cmd/compile/internal/types"
9	"cmd/internal/src"
10	"fmt"
11	"math"
12	"sort"
13	"strings"
14)
15
16// A Value represents a value in the SSA representation of the program.
17// The ID and Type fields must not be modified. The remainder may be modified
18// if they preserve the value of the Value (e.g. changing a (mul 2 x) to an (add x x)).
19type Value struct {
20	// A unique identifier for the value. For performance we allocate these IDs
21	// densely starting at 1.  There is no guarantee that there won't be occasional holes, though.
22	ID ID
23
24	// The operation that computes this value. See op.go.
25	Op Op
26
27	// The type of this value. Normally this will be a Go type, but there
28	// are a few other pseudo-types, see ../types/type.go.
29	Type *types.Type
30
31	// Auxiliary info for this value. The type of this information depends on the opcode and type.
32	// AuxInt is used for integer values, Aux is used for other values.
33	// Floats are stored in AuxInt using math.Float64bits(f).
34	// Unused portions of AuxInt are filled by sign-extending the used portion,
35	// even if the represented value is unsigned.
36	// Users of AuxInt which interpret AuxInt as unsigned (e.g. shifts) must be careful.
37	// Use Value.AuxUnsigned to get the zero-extended value of AuxInt.
38	AuxInt int64
39	Aux    interface{}
40
41	// Arguments of this value
42	Args []*Value
43
44	// Containing basic block
45	Block *Block
46
47	// Source position
48	Pos src.XPos
49
50	// Use count. Each appearance in Value.Args and Block.Controls counts once.
51	Uses int32
52
53	// wasm: Value stays on the WebAssembly stack. This value will not get a "register" (WebAssembly variable)
54	// nor a slot on Go stack, and the generation of this value is delayed to its use time.
55	OnWasmStack bool
56
57	// Storage for the first three args
58	argstorage [3]*Value
59}
60
61// Examples:
62// Opcode          aux   args
63//  OpAdd          nil      2
64//  OpConst     string      0    string constant
65//  OpConst      int64      0    int64 constant
66//  OpAddcq      int64      1    amd64 op: v = arg[0] + constant
67
68// short form print. Just v#.
69func (v *Value) String() string {
70	if v == nil {
71		return "nil" // should never happen, but not panicking helps with debugging
72	}
73	return fmt.Sprintf("v%d", v.ID)
74}
75
76func (v *Value) AuxInt8() int8 {
77	if opcodeTable[v.Op].auxType != auxInt8 {
78		v.Fatalf("op %s doesn't have an int8 aux field", v.Op)
79	}
80	return int8(v.AuxInt)
81}
82
83func (v *Value) AuxInt16() int16 {
84	if opcodeTable[v.Op].auxType != auxInt16 {
85		v.Fatalf("op %s doesn't have an int16 aux field", v.Op)
86	}
87	return int16(v.AuxInt)
88}
89
90func (v *Value) AuxInt32() int32 {
91	if opcodeTable[v.Op].auxType != auxInt32 {
92		v.Fatalf("op %s doesn't have an int32 aux field", v.Op)
93	}
94	return int32(v.AuxInt)
95}
96
97// AuxUnsigned returns v.AuxInt as an unsigned value for OpConst*.
98// v.AuxInt is always sign-extended to 64 bits, even if the
99// represented value is unsigned. This undoes that sign extension.
100func (v *Value) AuxUnsigned() uint64 {
101	c := v.AuxInt
102	switch v.Op {
103	case OpConst64:
104		return uint64(c)
105	case OpConst32:
106		return uint64(uint32(c))
107	case OpConst16:
108		return uint64(uint16(c))
109	case OpConst8:
110		return uint64(uint8(c))
111	}
112	v.Fatalf("op %s isn't OpConst*", v.Op)
113	return 0
114}
115
116func (v *Value) AuxFloat() float64 {
117	if opcodeTable[v.Op].auxType != auxFloat32 && opcodeTable[v.Op].auxType != auxFloat64 {
118		v.Fatalf("op %s doesn't have a float aux field", v.Op)
119	}
120	return math.Float64frombits(uint64(v.AuxInt))
121}
122func (v *Value) AuxValAndOff() ValAndOff {
123	if opcodeTable[v.Op].auxType != auxSymValAndOff {
124		v.Fatalf("op %s doesn't have a ValAndOff aux field", v.Op)
125	}
126	return ValAndOff(v.AuxInt)
127}
128
129// long form print.  v# = opcode <type> [aux] args [: reg] (names)
130func (v *Value) LongString() string {
131	s := fmt.Sprintf("v%d = %s", v.ID, v.Op)
132	s += " <" + v.Type.String() + ">"
133	s += v.auxString()
134	for _, a := range v.Args {
135		s += fmt.Sprintf(" %v", a)
136	}
137	var r []Location
138	if v.Block != nil {
139		r = v.Block.Func.RegAlloc
140	}
141	if int(v.ID) < len(r) && r[v.ID] != nil {
142		s += " : " + r[v.ID].String()
143	}
144	var names []string
145	if v.Block != nil {
146		for name, values := range v.Block.Func.NamedValues {
147			for _, value := range values {
148				if value == v {
149					names = append(names, name.String())
150					break // drop duplicates.
151				}
152			}
153		}
154	}
155	if len(names) != 0 {
156		sort.Strings(names) // Otherwise a source of variation in debugging output.
157		s += " (" + strings.Join(names, ", ") + ")"
158	}
159	return s
160}
161
162func (v *Value) auxString() string {
163	switch opcodeTable[v.Op].auxType {
164	case auxBool:
165		if v.AuxInt == 0 {
166			return " [false]"
167		} else {
168			return " [true]"
169		}
170	case auxInt8:
171		return fmt.Sprintf(" [%d]", v.AuxInt8())
172	case auxInt16:
173		return fmt.Sprintf(" [%d]", v.AuxInt16())
174	case auxInt32:
175		return fmt.Sprintf(" [%d]", v.AuxInt32())
176	case auxInt64, auxInt128:
177		return fmt.Sprintf(" [%d]", v.AuxInt)
178	case auxFloat32, auxFloat64:
179		return fmt.Sprintf(" [%g]", v.AuxFloat())
180	case auxString:
181		return fmt.Sprintf(" {%q}", v.Aux)
182	case auxSym, auxTyp, auxArchSpecific:
183		if v.Aux != nil {
184			return fmt.Sprintf(" {%v}", v.Aux)
185		}
186	case auxSymOff, auxTypSize:
187		s := ""
188		if v.Aux != nil {
189			s = fmt.Sprintf(" {%v}", v.Aux)
190		}
191		if v.AuxInt != 0 {
192			s += fmt.Sprintf(" [%v]", v.AuxInt)
193		}
194		return s
195	case auxSymValAndOff:
196		s := ""
197		if v.Aux != nil {
198			s = fmt.Sprintf(" {%v}", v.Aux)
199		}
200		return s + fmt.Sprintf(" [%s]", v.AuxValAndOff())
201	case auxCCop:
202		return fmt.Sprintf(" {%s}", v.Aux.(Op))
203	}
204	return ""
205}
206
207// If/when midstack inlining is enabled (-l=4), the compiler gets both larger and slower.
208// Not-inlining this method is a help (*Value.reset and *Block.NewValue0 are similar).
209//go:noinline
210func (v *Value) AddArg(w *Value) {
211	if v.Args == nil {
212		v.resetArgs() // use argstorage
213	}
214	v.Args = append(v.Args, w)
215	w.Uses++
216}
217func (v *Value) AddArgs(a ...*Value) {
218	if v.Args == nil {
219		v.resetArgs() // use argstorage
220	}
221	v.Args = append(v.Args, a...)
222	for _, x := range a {
223		x.Uses++
224	}
225}
226func (v *Value) SetArg(i int, w *Value) {
227	v.Args[i].Uses--
228	v.Args[i] = w
229	w.Uses++
230}
231func (v *Value) RemoveArg(i int) {
232	v.Args[i].Uses--
233	copy(v.Args[i:], v.Args[i+1:])
234	v.Args[len(v.Args)-1] = nil // aid GC
235	v.Args = v.Args[:len(v.Args)-1]
236}
237func (v *Value) SetArgs1(a *Value) {
238	v.resetArgs()
239	v.AddArg(a)
240}
241func (v *Value) SetArgs2(a *Value, b *Value) {
242	v.resetArgs()
243	v.AddArg(a)
244	v.AddArg(b)
245}
246
247func (v *Value) resetArgs() {
248	for _, a := range v.Args {
249		a.Uses--
250	}
251	v.argstorage[0] = nil
252	v.argstorage[1] = nil
253	v.argstorage[2] = nil
254	v.Args = v.argstorage[:0]
255}
256
257func (v *Value) reset(op Op) {
258	v.Op = op
259	if op != OpCopy && notStmtBoundary(op) {
260		// Special case for OpCopy because of how it is used in rewrite
261		v.Pos = v.Pos.WithNotStmt()
262	}
263	v.resetArgs()
264	v.AuxInt = 0
265	v.Aux = nil
266}
267
268// copyInto makes a new value identical to v and adds it to the end of b.
269// unlike copyIntoWithXPos this does not check for v.Pos being a statement.
270func (v *Value) copyInto(b *Block) *Value {
271	c := b.NewValue0(v.Pos.WithNotStmt(), v.Op, v.Type) // Lose the position, this causes line number churn otherwise.
272	c.Aux = v.Aux
273	c.AuxInt = v.AuxInt
274	c.AddArgs(v.Args...)
275	for _, a := range v.Args {
276		if a.Type.IsMemory() {
277			v.Fatalf("can't move a value with a memory arg %s", v.LongString())
278		}
279	}
280	return c
281}
282
283// copyIntoWithXPos makes a new value identical to v and adds it to the end of b.
284// The supplied position is used as the position of the new value.
285// Because this is used for rematerialization, check for case that (rematerialized)
286// input to value with position 'pos' carried a statement mark, and that the supplied
287// position (of the instruction using the rematerialized value) is not marked, and
288// preserve that mark if its line matches the supplied position.
289func (v *Value) copyIntoWithXPos(b *Block, pos src.XPos) *Value {
290	if v.Pos.IsStmt() == src.PosIsStmt && pos.IsStmt() != src.PosIsStmt && v.Pos.SameFileAndLine(pos) {
291		pos = pos.WithIsStmt()
292	}
293	c := b.NewValue0(pos, v.Op, v.Type)
294	c.Aux = v.Aux
295	c.AuxInt = v.AuxInt
296	c.AddArgs(v.Args...)
297	for _, a := range v.Args {
298		if a.Type.IsMemory() {
299			v.Fatalf("can't move a value with a memory arg %s", v.LongString())
300		}
301	}
302	return c
303}
304
305func (v *Value) Logf(msg string, args ...interface{}) { v.Block.Logf(msg, args...) }
306func (v *Value) Log() bool                            { return v.Block.Log() }
307func (v *Value) Fatalf(msg string, args ...interface{}) {
308	v.Block.Func.fe.Fatalf(v.Pos, msg, args...)
309}
310
311// isGenericIntConst reports whether v is a generic integer constant.
312func (v *Value) isGenericIntConst() bool {
313	return v != nil && (v.Op == OpConst64 || v.Op == OpConst32 || v.Op == OpConst16 || v.Op == OpConst8)
314}
315
316// Reg returns the register assigned to v, in cmd/internal/obj/$ARCH numbering.
317func (v *Value) Reg() int16 {
318	reg := v.Block.Func.RegAlloc[v.ID]
319	if reg == nil {
320		v.Fatalf("nil register for value: %s\n%s\n", v.LongString(), v.Block.Func)
321	}
322	return reg.(*Register).objNum
323}
324
325// Reg0 returns the register assigned to the first output of v, in cmd/internal/obj/$ARCH numbering.
326func (v *Value) Reg0() int16 {
327	reg := v.Block.Func.RegAlloc[v.ID].(LocPair)[0]
328	if reg == nil {
329		v.Fatalf("nil first register for value: %s\n%s\n", v.LongString(), v.Block.Func)
330	}
331	return reg.(*Register).objNum
332}
333
334// Reg1 returns the register assigned to the second output of v, in cmd/internal/obj/$ARCH numbering.
335func (v *Value) Reg1() int16 {
336	reg := v.Block.Func.RegAlloc[v.ID].(LocPair)[1]
337	if reg == nil {
338		v.Fatalf("nil second register for value: %s\n%s\n", v.LongString(), v.Block.Func)
339	}
340	return reg.(*Register).objNum
341}
342
343func (v *Value) RegName() string {
344	reg := v.Block.Func.RegAlloc[v.ID]
345	if reg == nil {
346		v.Fatalf("nil register for value: %s\n%s\n", v.LongString(), v.Block.Func)
347	}
348	return reg.(*Register).name
349}
350
351// MemoryArg returns the memory argument for the Value.
352// The returned value, if non-nil, will be memory-typed (or a tuple with a memory-typed second part).
353// Otherwise, nil is returned.
354func (v *Value) MemoryArg() *Value {
355	if v.Op == OpPhi {
356		v.Fatalf("MemoryArg on Phi")
357	}
358	na := len(v.Args)
359	if na == 0 {
360		return nil
361	}
362	if m := v.Args[na-1]; m.Type.IsMemory() {
363		return m
364	}
365	return nil
366}
367
368// LackingPos indicates whether v is a value that is unlikely to have a correct
369// position assigned to it.  Ignoring such values leads to more user-friendly positions
370// assigned to nearby values and the blocks containing them.
371func (v *Value) LackingPos() bool {
372	// The exact definition of LackingPos is somewhat heuristically defined and may change
373	// in the future, for example if some of these operations are generated more carefully
374	// with respect to their source position.
375	return v.Op == OpVarDef || v.Op == OpVarKill || v.Op == OpVarLive || v.Op == OpPhi ||
376		(v.Op == OpFwdRef || v.Op == OpCopy) && v.Type == types.TypeMem
377}
378